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Abstract
Most pathogen detection tests are imperfect, with a sensitivity< 100%, thereby resulting in

the potential for a false negative, where a pathogen is present but not detected. False nega-

tives in a sample inflate the number of non-detections, negatively biasing estimates of path-

ogen prevalence. Histological examination of tissues as a diagnostic test can be

advantageous as multiple pathogens can be examined and providing important information

on associated pathological changes to the host. However, it is usually less sensitive than

molecular or microbiological tests for specific pathogens. Our study objectives were to 1)

develop a hierarchical occupancy model to examine pathogen prevalence in spring Chi-

nook salmonOncorhynchus tshawytscha and their distribution among host tissues 2) use

the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illus-

trate the effect of using replicate within host sampling on sample sizes required to detect a

pathogen. We examined histological sections of replicate tissue samples from spring Chi-

nook salmonO. tshawytscha collected after spawning for common pathogens seen in this

population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophye-
tus salmincola/metacercariae, and Renibacterium salmoninarum. A hierarchical occupan-

cy model was developed to estimate pathogen and tissue-specific test sensitivities and

unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities

and host- and organ-level infections rates varied among pathogens and model estimated in-

fection rate was higher than prevalence unadjusted for test sensitivity, confirming that prev-

alence unadjusted for test sensitivity was negatively biased. The modeling approach

provided an analytical approach for using hierarchically structured pathogen detection data

from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prev-

alence estimates with associated uncertainties. Accounting for test sensitivity using within

host replicate samples also required fewer individual fish to be sampled. This approach is
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useful for evaluating pathogen or microbe community dynamics when test sensitivity is

<100%.

Introduction
Parasites and pathogens (hereafter collectively referred to as pathogens) are routinely surveyed
and monitored in domestic (e.g., fish culture facilities) [1] and free-ranging (hereafter, natural)
wildlife populations [2]. Accurate assessment of pathogen presence and prevalence is also rele-
vant for populations destined for geographic translocation and introduction [2–4]. This is es-
pecially critical when those introductions may lead to pathogen introductions and potential
population declines of endangered species. For example, with salmonid fishes, introduction of
the causative agent of whirling disease,Myxobolus cerebralis, in the United States intermoun-
tain West through introductions of infected fish resulted in population declines and negative
biological and economic impacts [5–7]. Similarly, translocations of raccoon Procyon lotor cap-
tured in Texas and Florida resulted in the introduction of parvoviral enteritis and rabies to re-
cipient populations [8,9]. In an extreme case, the loss of approximately half of Hawaiian avian
fauna was attributed, at least in part, to the introductions of avian pathogens [10].

The ability to understand the pathogen-host dynamics and develop effective pathogen miti-
gation strategies and risk analyses depends upon the quality of the data. Many pathogen detec-
tion tests are imperfect (i.e., may not detect a pathogen even if it is present) and therefore
pathogen detection probabilities are generally less than one [11]. Imperfect detection increases
the likelihood that a pathogen present in a population is missed and induces negative biases in
the estimation of pathogen prevalence. Molecular and other similar screening methods that use
nonspecific tests (e.g., PCR tests that use universal DNA primers) are particularly vulnerable to
false negatives regarding detection of pathogens in low abundance, especially when sympatric
with other species that are in much greater abundance, regardless of virulence of any particular
pathogen [12–14]. Histopathology has been used in recent surveys for diseases in wild animal
populations, particularly for screening of pathogens or non-infectious lesions without a priori
restrictions [15–20], or when toxicopathic changes were a target endpoint [21,22]. However, a
recent evaluation on Chinook salmon Oncorhynchus tshawytscha concluded that histological
methods were considerably less sensitive than microbiological tests for certain pathogens, re-
sulting in numerous false negatives [17]. The lack of sensitivity of histology compared to mi-
crobiological tests that involve either amplification of pathogens in culture or DNA by PCR
would certainly apply to other pathogen surveys [13,23]. Imperfect detection of pathogens can
substantially influence sample design. Greater sample sizes are required to detect a pathogen in
a population, to compensate for false negatives, which may pose a significant constraint if sam-
pling is lethal, something of great importance when lethal take involves threatened and endan-
gered wildlife species. Researchers also have an ethical obligation to minimize lethal sampling
of vertebrate species required by Institutional Animal Care and Use Committees [24]. There-
fore, analytical approaches that provide accurate estimates of pathogen presence and preva-
lence while reducing the number of individuals sampled and handled are desirable. Confidence
regarding parasite prevalence estimates is also vital for studies concerned with pathogen
community ecology.

Test sensitivity is traditionally calculated by comparing the number of detections from one
test with those of a high sensitivity “gold standard” diagnostic, such as highly sensitive PCR
test, thereby providing an estimate of the probability of detecting the pathogen when truly
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present [25,26]. The gold standard test is assumed to have perfect pathogen detection (i.e., sen-
sitivity = 100%); however it is possible that these tests are imperfect as well. For example, Kent
et al. [17] detected spring Chinook salmon pathogens in histological samples that were not de-
tected in corresponding pathogen-specific gold standard tests recommended by the American
Fisheries Society-Fish Health Section [27]. Similarly, false negatives occurred between bacterio-
logical and histopathological tests, the confirmatory tests for bovine tuberculosis [28]. There
still remains need for a flexible, cost-effective approach to accurately estimate pathogen preva-
lence and detection probability (i.e., detecting a pathogen given it is present) that does not re-
quire restrictive assumptions. Approaches have been developed to estimate pathogen
prevalence in pooled samples using imperfect test [29,30]. Recently occupancy-detection esti-
mation has been proposed as a method to account for imperfect detection of Plasmodium spe-
cies and provide estimates of test sensitivity [31]. Occupancy-detection estimation includes the
collection of replicate tissue samples from individual hosts that are used to estimate pathogen
detection probabilities and provide better estimates of test sensitivity compared to ad hoc com-
parisons between diagnostic tests (e.g., a test compared to a gold standard test). Application of
occupancy-detection models to the study of pathogens in natural populations has been limited
to the individual host-level [32–34]. Additional insight into within host-pathogen dynamics
can be gained by evaluating multiple organ tissues within the host in a hierarchical structure.
Our study objectives were to 1) develop a hierarchical occupancy model to estimate pathogen
prevalence (hereafter infection rate) in spring Chinook salmon and their distribution among
host organ tissues 2) use the model to estimate pathogen- and tissue-specific test sensitivities
and host- and organ-level infection rates, and 3) illustrate the effect of using replicate within
host sampling on number of hosts sampled required to detect a pathogen in a population given
it is present (i.e., power). This manuscript reports on the successful achievement of the
study objectives.

Methods

Ethics statement
This study was performed under the auspices of animal use protocol AUP # 4438. The protocol
was approved by the Institutional Animal Care and Use Committee of Oregon State University.
This particular study utilized fish that were already dead as a result of routine spring Chinook
salmon spawning operations conducted by Oregon Department of Fish and Wildlife. Since this
study utilized existing dead fish no field permit was required from state regulatory agencies.

Fish sampling
Fish were sampled during an ongoing study of adult spring Chinook salmon in the upper Wil-
lamette River (UWR), Oregon, in September 2012. The threatened status of UWR spring Chi-
nook under the Endangered Species Act limits lethal sampling of live fish in this system [35].
However, conservation hatchery operations capture spring Chinook at Dexter Dam (Dexter,
Oregon; 43.919937N, 122.815739W) and move them to Willamette Hatchery to mature over
summer. Oregon Department of Fish and Wildlife (ODFW) hatchery spawning operations al-
lowed us to opportunistically collect a sufficient sample of fresh carcasses and tissues therein
for pathogen detection. Estimates of pathogen prevalence from previous monitoring at this lo-
cation varied from 15 to 95% [17,36] and were used as guides to estimate required sample
sizes. An a priori simulation evaluation of the sample size requirements indicated that at least
23 fish were needed to obtain a 90% probability of collecting at least one infected fish assuming
a parasite infection rate of 10% assuming 100% sensitivity (M. Colvin unpublished simulation
data). The number of fish sampled was 26 to ensure adequate sampling and because sufficient
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numbers of fish were available. Sampled fish were euthanized and spawned by ODFW employ-
ees and the carcass necropsied within 30 minutes of death.

Necropsy, tissue sampling, and histological processing
Tissue samples from organs were collected for histological examination during necropsy.
Three tissue samples of gill, heart, posterior kidney, spleen, and liver were removed and imme-
diately fixed in 10% buffered neutral formalin for at least 7 d (Fig. 1). Fixed tissues were
trimmed and placed in tissue cassettes, then dehydrated, sectioned, and affixed to slides using
standard histological techniques by the Oregon State University Veterinary Diagnostic Labora-
tory. Processing resulted in 6 slides for each individual fish; 3 slides for visceral organs (heart,
kidney, spleen, liver contained on a slide) and 3 slides for gill tissues. Slides were prepared
using standard histological protocols and stained with hematoxylin and eosin [37]. All slides
were evaluated for pathogen presence by one of the co-authors (M.K.), who is an experienced
fish pathologist. Organ-specific pathogen detections were represented as a series of 0’s and 1’s.
The following pathogens were encountered in tissue sections in many fish, and thus were in-
cluded in our analysis: 1) metacercariae in the gill (either Apophallus sp. or echinostome type),
2) metacercariae of Nanophyetus salmnicola in various organs, 3) Renibacterium salmoni-
narum, diagnosed by the presences of granulomatous lesions with no other associated patho-
gens in various organs, or 4) Parvicapsula minibicornis in kidney glomeruli or tubule tissue.

Sample and organ unadjusted prevalence
Prevalence unadjusted for test sensitivity, hereafter unadjusted prevalence (α), was calculated
for each pathogen encountered. Typical sampling would include a single tissue sample for each

Fig 1. Data structure illustration for pathogens detected by histological analysis of tissues sampled fromWillamette Hatchery (Oakridge, OR)
spring Chinook salmon.Histological samples were processed to minimize the number of slides needed and therefore multiple tissues were processed on a
single slide when feasible.

doi:10.1371/journal.pone.0116605.g001
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organ and those values aggregated to the host-level [17]; however this dataset included
3 organ-level tissue samples (hereafter, replicates). To approximate the typical approach,
organ-level and host-level prevalence was calculated for each replicate. Organ-level unadjusted
prevalence was calculated for each tissue sample replicate by dividing the number of detections
by the sample size for each pathogen detected. For example, if R. salmoninarum was detected
10, 12, and 9 times (i.e., 3 replicate tissue samples) out of 26 hosts then the prevalence would be
38.4, 46.1, and 34.6% respectively. Host-level unadjusted prevalence was calculated for each
replicate by aggregating among organ detections to the host-level and dividing the number of
infected hosts by the number of hosts. For example, if a pathogen was detected in kidney and
heart tissues these detections were aggregated to 1 at the host- level. These values were then
graphically compared to occupancy model estimated prevalence (described below) for each
pathogen to examine discrepancies between approaches.

Pathogen occupancy model overview, fitting, and inference
The hierarchical occupancy model developed in this study estimated 3 quantities: 1) the proba-
bility an individual host is infected by a pathogen (infection rate;C); 2) the probability an
organ is infected given the host is infected (conditional organ infection rate; φ); and 3) the
probability a pathogen is detected in an organ given the organ is infected (sensitivity; s)
(Table 1). Hierarchical occupancy models incorporate additional information from replicate
tissue samples of secondary sampling units, organs within fish in this case (Fig. 1). The model
also assumed pathogens were correctly identified when detected and that organ tissue-specific
detection probabilities did not depend on overall pathogen burden (i.e., sensitivity was equal
for low and high burdens). These assumptions can be relaxed as discussed later. We believe
these assumptions were reasonable given the extensive experience of the slide reader, and there
was no possibility for morphological changes in organ-specific pathogen occupancy because
tissues were preserved in a formalin-based fixative.

Given the complex nature of the hierarchical modeling framework, we used a Bayesian
approach and state space formulation [38] to estimate host and organ-level pathogen
infection rates (C and φ) and pathogen- and tissue-specific sensitivities (s). Construction of
the likelihood of the data given the occupancy model is difficult due to hierarchical dependen-
cies (i.e., organs nested within fish) arising from the sampling process. However, the likelihood
of the model given the data can be constructed using hierarchical state space models [38].
These models can be fit using a Bayesian approach to estimateC and φ and s.

Host-level pathogen infection state was modeled as a Bernoulli distributed variable that esti-
mated the unobserved infection state for each fish (i.e., uninfected = 0, infected = 1) with prob-
abilityCi as:

ZieBernðΨiÞ ð1Þ
Table 1. Parameters, symbols, and descriptions of terms used in this study.

Parameter Occupancy-detection
analog

Symbol Description

Infection rate Occupancy Ψ Probability of a host being infected by a pathogen.

φ Probability of an organ being infected by a pathogen given the host is infected.

Prevalence Proportion occupied
units

P Proportion of hosts or organs predicted to be infected calculated as the number of infected
divided by the total.

Sensitivity Detection probability s Probability of detecting a pathogen in organ tissue samples given the pathogen is present.

Unadjusted
prevalence

Naïve prevalence α The proportion of hosts in a sample infected by a pathogen calculated as the observed
number of infected hosts/number of hosts sampled.

doi:10.1371/journal.pone.0116605.t001
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where, Zi was the unobserved infection state for fish i andCi is the probability that fish i is in-
fected by the pathogen. Infection rate (Ci) was predicted using a linear model with a logit link
as:

ln
Ψi

1� Ψi

� �
¼ o0i; ð2Þ

where, ω0i is the intercept of the linear model. Linear models were used in equation 2 and in
following equations to facilitate model fitting. The infection rate of organ j within fish i condi-
tional on fish i being infected (i.e., Zi = 1) was estimated as:

zijeBernðZi � jijÞ; ð3Þ

where, zij was the unobserved infection state for organ j within fish i, Zi was the host-level infec-
tion state of the ith fish and φij was the probability that organ j was infected given the fish was
infected (i.e., Zi = 1) otherwise φij = 0. A linear model with a logit link was used to estimate φij
as:

ln
jij

1� jij

 !
¼ b0ij; ð4Þ

where β0ij is the intercept of a linear model predicting infection rate for organ j within fish i.
A detection model was used to link observed tissue level pathogen detections to the process

model described above (equations 1–4) as:

yijkeBernðzij � sijÞ; ð5Þ

where yijk was the observed pathogen detections (0 or 1) for the replicate k from organ j within
fish i, zij was the unobserved organ-specific infection state for fish i, and sij was the conditional
organ tissue-level sensitivity given the organ was infected (i.e., zij = 1), otherwise sij = 0. Organ
tissue-specific sensitivity (sij) was predicted using a linear model as:

ln
sij

1� sij

 !
¼ y0ij; ð6Þ

where θ0ij was the intercept term for organ j within fish i
Separate hierarchical occupancy models for each pathogen encountered in the study were fit

using Markov Chain Monte Carlo (MCMC) implemented in WinBUGS 2.14 [39]. Each model
was fit using diffuse priors and three chains with 130k iterations and 30k burn-in samples (i.e.,
the first 30k iterations were discarded). Chains were thinned by 10 for Apophallus/echinostome
metacercariae 20 for P.minibicornis and N. salmnicola, and 50 for R. salmoninarum to mini-
mize autocorrelation in the MCMC. The Gelman-Rubin convergence statistic and visual in-
spection of the 3 MCMC chains were used to ensure adequate chain mixing was achieved [40].
Posterior predictive check was used to calculate a Bayesian goodness-of-fit (GOF) value for fit-
ted models to assess whether the model adequately fit the data [38,41]. Goodness-of-fit values
vary from 0 to 1 with extreme values indicating lack of fit and values close to 0.5 indicating ade-
quate model fit. The R programming environment, WinBUGS 2.14, and the R2WinBUGS
package were used for all analyses [39,42,43]. Separate host- and organ-level infection rates
could not be estimated for Apophallus/echinostome metacercariae because this parasite was
only detected in gill tissue. Therefore, the organ-level infection rate was set to one during
model fitting to estimate a host-level infection rate and prevalence. Further information
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regarding the occupancy model and example code and data for replicating the analysis are
available in S1 Information.

Effects of replicates and hierarchical sampling on pathogen detection
The approach developed in this study provides a framework to analyze pathogen detection
data from multiple tissue types within a host and replicate tissue samples surveyed, which rep-
resents a tradeoff between sampling more primary sampling units (i.e., hosts) or more intensive
tissue sampling within hosts (i.e.,> 1 replicate). Because the primary objective of any pathogen
survey is to detect a pathogen in sample given the pathogen is present in the population, we
used simulation to calculate the probability of detecting a hypothetical pathogen (i.e., power)
giving varying levels of: (1) host-level infection rate, 0.1 to 0.9 by increments of 0.1; (2) condi-
tional organ tissue level infection rate, 0.1 and 0.3 (i.e., organ infection rate of infected hosts);
and (3) test sensitivity, 10% and 50%; (4) number of organ surveyed, 1, 3, and 5; (5) number of
replicates surveyed, 1–4; and (6) host sample sizes, 5–60. Two thousand replicate datasets then
were simulated for all combinations of these parameters and the proportion of the 2000 repli-
cate datasets where the hypothetical pathogen was detected at least once was calculated. The
minimum number of hosts needed to detect the pathogen with a power of 80% was determined
and graphically summarized. See S1 Information for R code used to replicate analysis.

Results

Overview of the data and model fits
Pathogens detected by histological examination of organ tissues included: gill metacercariae, R.
salmoninarum, N. salmincola, and P.minibicornis. Apophallus/echinostome metacercariae and
N. salmincolametacercariae were detected in gill tissues. Kidney tissues contained detectable
levels of N. salmincola, R. salmoninarum, and P.minibicornis. Within the kidney, P.minibicor-
nis was detected in glomeruli and tubule tissues. N. salmincola was detected in heart tissues.
Only R. salmoninarum was detected in splenic tissues. Pathogen detections were not perfect
(i.e., not detected in every replicate) for all pathogens encountered. In particular, false nega-
tives, identified as detection histories including a combination of 0s and 1s accounted for 4% to
88% of the observed detections (Table 2). Goodness-of-fit checks indicated adequate fit for
pathogen-specific occupancy models fit to detection data with p-values that varied from 0.48 to
0.58.

Fish and organ-level unadjusted pathogen prevalence
Unadjusted pathogen prevalence (α) varied at the host- and organ-levels, and organ-level prev-
alence was always lower than host-level prevalence (Table 3). Host-level unadjusted prevalence
was highest for N. salmincola (0.96–1.00) and unadjusted prevalence among organs was lower,
varying from 0.73 to 0.88. P.minibicornis host-level unadjusted prevalence varied among repli-
cates from 0.84 to 0.96 and organ-level unadjusted prevalence was lower varying from 0.64 to
0.81. R. salmoninarum prevalence was lowest among pathogens detected, and among replicate
host-level unadjusted prevalence varied from 0.08 to 0.15. Apophallus/echinostome metacer-
cariae were only detected in gill tissue and unadjusted prevalence varied among replicates from
0.08 to 0.27.

Model estimates
Sensitivity estimates.—Model estimated organ tissue-specific sensitivities (s) were all less than
one and varied among pathogens and organs (Table 4). Estimated sensitivity was lowest for
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Apophallus/echinostome metacercariae in gill tissue (0.54) and greatest for P.minibicornis in
kidney glomeruli (0.91). Sensitivity also varied more among pathogens than for individual
pathogens among organs. For instance, sensitivity for R. salmoninarum in three different or-
gans averaged 0.66 (range 0.63–0.69), whereas N. salmincola sensitivity averaged 0.85 (range
0.81–0.88). Most sensitivity estimates were relatively precise with the exception of R. salmoni-
narum estimates for liver and spleen, which had very large credible intervals (Table 4) likely
due to a very low number of detections.

Host- and organ-level infection rates
Host- and organ-level infection rates (C, φ) also varied among pathogens detected and ran-

ged from a low of 0.41 for Apophallus/echinostome metacercariae to a high of to 0.99 for N. sal-
mincola (Table 5). In some cases where pathogens infected multiple organs, organ-level

Table 2. Frequency of detection combinations for the 26 fish sampled.

Detection type

Non-detection Imperfect Perfect

Apophallus/echinnostome metacercariae Gill 17 6 3

Renibacter salmoninarum Kidney 23 23 23

Liver 25 1 0

Spleen 25 25 25

Nanophyetus salmincola Gill 0 9 17

Heart 3 12 11

Kidney 0 13 13

Parvicapsula minibicornis Glomerulus 4 9 13

Tubules 5 4 17

Non-detections represent three replicate pathogen non-detections (i.e., 000). Imperfect detections represent possible combinations of replicate pathogen

detections and non-detections (i.e., 100, 010, 001, 110, 101, 011). Perfect detections represent three replicate pathogen detections (i.e., 111).

doi:10.1371/journal.pone.0116605.t002

Table 3. Fish and organ-level prevalence (unadjusted for test sensitivity; a) for replicated tissue-level detection/non-detection data.

Replicate

Pathogen Level 1 2 3

Apophallus/echinostome metacercariae Gilla 0.08 0.27 0.27

Renibacter salmoninarum Fish 0.15 0.08 0.08

Kidney 0.08 0.08 0.08

Liver 0.04 0.00 0.00

Spleen 0.04 0.00 0.00

Nanophyetus salmincola Fish 1.00 1.00 0.96

Gill 0.84 0.85 0.85

Heart 0.80 0.81 0.81

Kidney 0.88 0.73 0.80

Parvicapsula minibicornis Kidneya 0.84 0.96 0.96

Glomerulus 0.64 0.81 0.80

Tubules 0.68 0.73 0.80

Fish level prevalence represents the aggregation of among organ detections.
a Gill and kidney represent the highest level of detection for Apophallus/echinostome metacercariae and P. minibicornis and therefore fish level

prevalence is equal to these values.

doi:10.1371/journal.pone.0116605.t003
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infection rates exceeded host-level infection rates, which can occur due to the conditional spec-
ification of organ-level infection rates given the host was infected. The unconditional organ-
level infection rate are the product of host and organ-level infection rates and are equal to or
lower than the host-level infection rate. For example, the probability that heart tissue from a
randomly selected fish was infected with N. salmincola is 0.95•0.99 = 0.94. Conditional organ-
level R. salmoninarum infection rate was highest for the kidney (0.22) and lowest for the liver
and spleen, with very imprecise estimates for the latter two organs (Table 5).

Prevalence comparison
Host-level prevalence unadjusted for test sensitivity (α) was lower than model estimated infec-
tion rates (C; Fig. 2). The negative discrepancy decreased as unadjusted prevalence approached

Table 4. Estimated organ-specific sensitivity (s) and 95% credible intervals for the occupancy model fit to spring Chinook collected from
Willamette Hatchery, Oregon.

95% credible interval

Pathogen Organ Estimate Lower Upper

Apophallus/echinostome metacercariae Gills 0.544 0.307 0.754

Renibacter salmoninarum Kidney 0.694 0.304 0.947

Liver 0.626 0.018 0.999

Spleen 0.660 0.020 0.999

Nanophyetus salmincola Gills 0.841 0.760 0.995

Heart 0.883 0.796 0.909

Kidney 0.813 0.719 0.884

Parvicapsula minibicornis Tubules 0.887 0.799 0.948

Glomerulus 0.912 0.829 0.967

Estimates reported for tissues where pathogens were detected.

doi:10.1371/journal.pone.0116605.t004

Table 5. Fish and organ-level infection rates (Ψ, φ) and prevalence estimates (P) and credible intervals for the occupancy model fit to spring
Chinook collected from Willamette Hatchery, Oakridge, Oregon.

Infection rate Prevalence

95% credible
interval

95% credible
interval

Pathogen Level Estimate Lower Upper Estimate Lower Upper

Apophallus/echinostome metacercariae Gillsa 0.414 0.228 0.665 0.401 0.346 0.577

Renibacter salmoninarum Fish 0.564 0.181 0.962 0.567 0.192 0.962

Kidney 0.219 0.043 0.703 0.123 0.115 0.192

Liver 0.161 0.010 0.876 0.076 0.038 0.423

Spleen 0.159 0.011 0.914 0.073 0.038 0.423

Nanophyetus salmincola Fish 0.953 0.862 0.995 1.000 1.000 1.000

Gills 0.990 0.939 1.000 1.000 1.000 1.000

Heart 0.901 0.753 0.990 0.906 0.846 0.962

Kidney 0.990 0.936 1.000 1.000 1.000 1.000

Parvicapsula minibicornis Fish 0.931 0.815 0.989 0.967 0.961 1.000

Tubules 0.860 0.707 0.964 0.849 0.846 0.885

Glomerulus 0.823 0.653 0.945 0.809 0.808 0.846

doi:10.1371/journal.pone.0116605.t005
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one and therefore biases were relatively small for widespread pathogens such as N. salmincola
and P.minibicornis. The largest discrepancy between model infection rates and unadjusted
prevalence was observed for gill metacercariae, which was the only pathogen detected in a sin-
gle tissue, gill in this case.

Effects of replicates and hierarchical sampling on pathogen detection
The number of host samples required to have an 80% probability of detecting a pathogen in a
sample, given it is present, varied among the parameter combinations simulated (Fig. 3). As ex-
pected, the required host sample size decreased with increasing host-level and organ-level in-
fection rates. Increasing the number of within organ replicates decreased the host sample size
required to detect the pathogen in the sample. This reduction in host sample size was especially

Fig 2. Comparison of host-level model estimated (Ψ) and unadjusted prevalence (α) for pathogens detected.Unadjusted prevalence (α) represents
estimates for each replicate (3 per pathogen, 12 estimates total). The dotted line denotes a 1:1 relationship. A small amount of random noise was added due
to overplotting. Vertical lines denote 95% credible intervals.

doi:10.1371/journal.pone.0116605.g002
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apparent for 2 or more replicates when sensitivities were low (10%). However, gains in terms
of host sample size reduction with increasing number of replicates diminished with increasing
number of organs surveyed.

Discussion
We developed an approach to use hierarchically structured pathogen detection data from im-
perfect diagnostic tests to estimate test sensitivity and use that information to achieve unbiased
estimation of pathogen infection rate in host populations and among organs within infected
hosts. The approach provided a potentially cost-efficient means to improve the effectiveness of
lower sensitivity diagnostic tests, such as histology, which is advantageous when pathogen in-
fections are unknown prior to examination [17]. Histology also provides information on detec-
tions that are biologically meaningful, representing organ or tissue damage at a histological

Fig 3. Number of host samples needed to detect a pathogen 80% of the time for varying host-level infection rates (Ψ). Panel rows illustrate the effect
of pathogens being searched for in multiple organs and the columns illustrate the effect of varying sensitivity and organ-level infection rate (φ). Organ-level
infection rate (φ) and sensitivity (s) assumed to be constant among organs in simulations. Sampling sizes for the top left panel required more than 60 and
therefore the panel represents the few combinations where the success criteria was met.

doi:10.1371/journal.pone.0116605.g003
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level, which may be preferable to highly sensitive molecular diagnostic tests that can detect
pathogen presence, but disease status may be uncertain (i.e., pathogen is present but not caus-
ing disease or pathogen may be dead).

All pathogens found in this study were detected imperfectly (i.e., present in host and organ
but not detected in every tissue sample). Imperfect pathogen detection within infected hosts
and organs can arise as a result of pathogen distribution and abundance. Non-detection can
occur if tissues are sampled prior to pathogen dispersal through the host and subsequent colo-
nization of organ tissues and due to localized areas of focal infection that may not be contained
in histological sections. In this case, once pathogens infect a host, detection depends on the
pathogens dispersing, infecting, and distributing within host organ tissues. For example, prolif-
erative pathogens, such as R. salmoninarum are likely distributed in relation to the area of ini-
tial infection in early stages. Detection of the pathogen will be difficult unless the area of initial
infection is contained in the sampled tissue. Related to infection distribution, pathogen detec-
tion will generally be related to intensity of infection. In particular, as pathogen intensity in-
creases due to proliferation or continuous colonization of host tissues, the probability of
encountering and detecting a pathogen generally increases. Test sensitivity is likely to be low
for sublinical infections because pathogen intensities are low and their distribution is likely to
be focalized to few locations and therefore difficult to detect.

Host-level unadjusted prevalence was always higher than organ-level unadjusted preva-
lence, due to the inclusion of multiple organ-level observations where a pathogen was detected
in one organ but not others. Sampling multiple organs within an individual constitutes an ad
hoc approach to account for imperfect detection and inform individual level infection status,
similar to spatial resampling [44–46]. In other words, evaluating multiple organs and aggregat-
ing detections to the host provided multiple opportunities to detect the pathogen. Discrepan-
cies between host-level unadjusted and model estimated infection rates were lower for
pathogens that infected multiple organs, such as N. salmincola, due to these additional detec-
tions from multiple organs. Because sampling multiple organ tissues provided additional op-
portunities to detect a pathogen, discrepancies between prevalence estimates was the largest for
gill metacercariae, which were only detected in gill tissue.

The occupancy model used in this study provided estimates of diagnostic test sensitivity.
Pathogen-specific test sensitivities estimates reported in our earlier study [17] and this study
were similar for N. salmincola, but higher for R. salmoninarum. This is not unexpected as sensi-
tivity is likely dependent on pathogen abundance and distribution within tissues and will vary
among studies, unless pathogen abundances and distribution are similar within tissues. There-
fore, the discrepancy with R. salmoninarum sensitivity estimates reported in Kent et al. [17] is
likely due to pathogen and associated lesion abundance and distribution differences within
organ tissues. The samples from Kent et al. [17] include adult Chinook salmon from rivers, in-
cluding moribund fish. These likely had higher R. salmoninarum levels relative to the source of
hatchery fish used in this study, which received prophylactic antibiotic injections. The relative-
ly few detections and high variability of sensitivity estimates for R. salmoninarum in the present
study were likely influenced by relatively low R. salmoninarum abundances in individuals. An-
other explanation for variability between sensitivity estimates is due to the differences in how
sensitivity was calculated. Kent et al. [17] used enzyme linked immunosorbent assay (ELISA)
to determine whether R. salmoninarum was present in the host. While the highly sensitivity
ELISA can readily detect R. salmoninarum presence, it does not necessarily translate to infec-
tion as observed by histology because this test detects bacterial proteins that may persist long
after viable infections have resolved [47]. Because we estimated organ tissue-specific sensitivity
for histology by repeated detections of infection using multiple tissue samples, it provided
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more realistic sensitivity estimates relative to comparing infection detections to pathogen pres-
ence, which may not be present at sufficient levels to cause clinical infection.

Organ-level infection rate estimates were conditional on the host infection state (infected or
not) and represent the probability that an organ is infected given the host is infected. Therefore,
these estimates provide useful information regarding pathogen specificity among organs and can
inform sample designs and pathogen dynamics. For example, the estimated R. salmoninarum
organ-level infection rates were greatest for kidney tissues, indicating that if an individual was in-
fected, the pathogen is most likely found in the kidney. This makes biological sense because R.
salmoninarum frequently occurs in the kidney and is the causative agent of bacterial kidney dis-
ease. Similarly, organ-specific conditional infection rates can provide insight into pathogen tissue
preferences, where differences among conditional organ-level infection rates can provide evi-
dence for hypothesized pathogen specific tissue preferences. These organ-level infection rates
also provide information on what organs to sample if resources are limiting. For example, given
conditional organ-level infection rates,N. salmincola was most likely found in gill and kidney tis-
sues relative to heart. This information can help to inform sample design and evaluate tradeoffs
among designs when resources are limiting and sampling of multiple organs is not feasible.

Sampling enough individual hosts to have sufficient power to detect a pathogen in a popula-
tion sample, given it is present, is necessary for potential analysis of host-pathogen interactions
and establishing sampling designs. Surveying multiple organs and using replicate tissue sam-
pling within those organs increased the likelihood of encountering a pathogen and provided at
least 2 benefits over traditional single samples. First, replicate sampling allowed for the estima-
tion of sensitivity and unbiased infection rates and associated uncertainty. Second, by account-
ing for test sensitivity using within host replicate tissue samples, fewer individuals need to be
handled, providing a beneficial reduction of animal use, an essential component of ethical ani-
mal use [24]. This effect was illustrated in the simulation analysis, where increasing the number
of organs surveyed (assuming the pathogen infects multiple organs) and tissue replicates within
host reduced the host sample size required to achieve a power of 80%. Additional general guid-
ing rules that emerged from the simulation analysis indicated that the effect of increasing with-
in organ replicates was minimal when the pathogen can be detected in multiple organs.
However, this result does not imply that within organ replicates are not an important compo-
nent of the sample design. Within organ replicates are critical for accurately estimating organ-
level infection rates and reducing associated uncertainties [48]. Additional studies have dem-
onstrated the tradeoffs involved with allocating efforts and provide guidance on occupancy-de-
tection type survey designs [49–51]

Encountering and detecting a pathogen within host organ tissue is related, in part, to patho-
gen abundance and distribution and therefore sensitivities can vary with intensity of infection.
Infection levels also will vary among the individuals sampled and this variation can influence
sensitivity estimates. In particular, aggregation of high pathogen levels in few individuals is a
common phenomenon encountered when sampling host populations, particularly with macro-
parasites [52]. Accounting for variation in pathogen abundance will improve estimates of infec-
tion rates by accounting for heterogeneous sensitivities. The analytical framework we used can
account for this by predicting sensitivity as a function of auxiliary data, if those data are avail-
able. In other words, this approach could model sensitivity as function of additional measures of
pathogen abundance. For example, the use of quantitative assays such as ELISA or qPCR that
provide quantitative measures associated with pathogen abundance could be used to account for
variability of pathogen abundances among hosts. Similarly, quantitative metacercariae counts
for worm pathogens (e.g., N. salmincola) performed from wet mount preparations of pre-
weighed tissue samples [18,53] could be used to provide additional quantitative information to
predict the probability of detecting the pathogen given pathogen abundance or density.
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Using models to predict infection probabilities provides a formal approach to evaluate hy-
potheses. For example, R. salmoninarum infections are well recognized in kidney tissues, and
so it could be hypothesized that infection of organs other than the kidney may be dependent
on kidney infection. This hypothesis can be evaluated by predicting organ-level infection rate
as a function of kidney status (i.e., infected, uninfected). Similarly, the effects of host-level in-
formation can be used to evaluate hypotheses relating to host-level infection rates. For example,
host-level infection rates could be predicted as a function of host weight or length to evaluate
the potential for size dependent effects on host-level infection rates. Similarly, the relation be-
tween infection rate and host-specific characteristics such as sex, age, and condition also could
be evaluated using this approach. Thus, the approach used in this study provides a formal ana-
lytical method to incorporate information from multiple diagnostic tests to additionally inform
estimates of infection rate and test sensitivity and potentially evaluate hypotheses.

Precise and unbiased prevalence estimates with diagnostic tests are a crucial component of
monitoring, research management, or quarantine efforts [33,54,55]. The occupancy-detection
estimation approach developed in this study provides a formal method to utilize diagnostic
tests with varying sensitivity to analyze pathogen detection data and avoid negative biases due
to imperfect detections, which has received recent attention as being an important component
of biological surveys [56]. It also provides a framework for analyzing pathogen detection
data from multiple organ tissue samples within hosts. This approach is not limited to evaluat-
ing pathogens and could use other diagnostic endpoints, such as histological manifestations
(e.g., neoplasms) or to evaluate contaminant or toxicant presence in multiple organ tissues.
Additionally, the approach also could be extended to evaluate pathogen assemblages and
co-occurrence by simultaneous analysis in a multi-pathogen occupancy models similar to
those used in ecological studies [57]. Such an approach appears especially appropriate when
considering the parasite community as potential population regulatory factors for wild hosts.

Supporting Information
S1 Information. Model Code.WinBUGS code provided to replicate analysis and R code to
simulate data for model verification.
(PDF)
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