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A thermal infrared (TIR) camera is used to remotely sense the foliage temperature in a mountain 

valley. The foliage temperature is used as a proxy for air temperature and can be used to study 

and map the dynamics of the nocturnal, weak-wind boundary layer in this valley.  All radiative 

flux not originating from the forest canopy must be filtered out of the captured imagery. Once 

the image has been filtered it must be georeferenced and orthorectified before useful analyses 

can be performed.  After geoprocessing is complete, a spatially explicit time series of 

temperatures for an entire forested mountain valley will be available for further exploitation.  

The geoprocessed thermal imagery can, when combined with various data recorded in situ, yield 

data sets such as sensible heat flux at the canopy surface, potential temperature profiles, the 

adiabatic lapse rate in the watershed, the state of static stability in the watershed, and to map 

cold-air pool dynamics.  Evidence was established that two concepts underlying the Bright Air 

study are valid for this study site.  The first is that a TIR camera can accurately record foliage 

canopy temperature.  The second is that on clear nights, foliage canopy temperature can be a 

proxy for the temperature of air immediately adjacent to the canopy.  This study indicates that a 

TIR camera can accurately measure foliage canopy temperature on clear nights.  Furthermore, 

the study indicates that on clear or intermittently cloudy nights, foliage canopy temperatures as 

measured by a TIR camera can be a proxy for the temperature of air immediately adjacent to the 

canopy.  A process to georeference and orthorectify thermal imagery was selected and a tool to 

geoprocess the thermal imagery was created.  Vertical profiles of potential temperature in the 

study area were created for times of interest and classified according to flow regimes.  Dominant 



 

flow regimes were found to correlate well with earlier studies.  Cold-air pool formation and 

drainage evolution were characterized for several clear nights.  Nocturnal cold-air dynamics in 

the study area do not agree with common explanations of behavior of cold-air pools and drainage 

in mountain valleys.  Up-valley flow patterns in the watershed indicate that nocturnal flows in 

mountain valleys are not driven solely by gravity.  For the nights studied, flows in the watershed 

interact with flows from other connected basins and have identifiable patterns and typical 

evolutionary stages.         
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BRIGHT AIR: GEOPROCESSING THERMAL IMAGERY TO MAP 
THE NOCTURNAL DYNAMICS OF THE BOUNDARY LAYER IN A 
MOUNTAIN VALLEY 

1 INTRODUCTION 

 
The Biomicrometeorology (BMM) group has been studying the nocturnal boundary layer 

dynamics of mountain valleys.  This study and others such as the valley circulation 

experiment, an effort to characterize valley-scale air circulation using acoustic ground-

based remote sensing, are conducted in support of the Advanced Resolution Canopy 

Flow Observation (ARCFLO) project.  ARCFLO studies how air moves in plant canopies 

such as crops and forests where winds are usually relatively weak, and how it affects the 

transport of heat, water, and momentum at a variety of sites with different surface 

conditions and canopy architecture.  Among these sites is the HJ Andrews long term 

ecological research site.  The project is funded by the National Science Foundation.  The 

broader impacts of ARCFLO are improved formulations of surface fluxes for regional 

and large-scale weather and climate models, as well as dispersion and diffusion models. 

 
In this supporting study a thermal infrared (TIR) camera is used to remotely sense the 

foliage temperature in a mountain valley. The foliage temperature is used as a proxy for 

air temperature and serves as a basis to study and map the dynamics of the nocturnal, 

weak-wind boundary layer in this valley.  The camera senses all the radiative flux in its 

field of view.  However, not all of the flux sensed will have originated from the object of 

interest which, in this case, is the forest canopy.  All flux not originating from the forest 

canopy must be filtered out. Once the image has been filtered it must be georeferenced 

and orthorectified before useful analyses can be performed.  After geoprocessing is 

complete, the BMM group will have an orthorectified and spatially referenced time series 

of valley temperatures for an entire forested mountain valley.  The geoprocessed thermal 

imagery, when combined with various data recorded in situ, can yield datasets such as 

sensible heat flux at the canopy surface, dry bulb and potential temperature profiles, the 
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adiabatic lapse rate in the watershed, the state of static stability in the watershed, and to 

map cold air pool dynamics. 

 

Spatially referenced temperature information is used as an input for climate models (Daly 

et al., 2008).  Analyzing and improving crop growth depends on knowledge of spatially 

referenced temperature data (Bonnardot et al., 2002).  More accurately characterizing 

boundary layer dynamics by helping close the surface energy balance may demand larger 

scale spatially referenced temperature data (Foken, 2008).  Among other areas, Frei 

(2014) counts runoff forecasting, flood estimation, soil moisture monitoring, and snow 

cover analysis as areas where spatially referenced temperature information is essential.  

Spatially referenced temperature data may contribute to the understanding of how of the 

impacts of climate change on the frequency and degree of cold air pools will affect 

species distribution and diversity (Daly et al., 2010).   

 

Remotely sensed TIR data have been used to derive foliage canopy temperatures since at 

least 1980 (Soer, 1980).  Studies have used satellite based TIR data to derive surface 

energy fluxes such as sensible and latent heat flux (e.g. Kustas and Norman, 1997, Moran 

et al., 1997, Matsushima and Kondo, 2000).  Moran (1997) used remotely sensed satellite 

data but did not explicitly correct for atmospheric effects on the thermal information.  

Instead a previously determined function relating satellite sensor based recorded radiance 

and ground temperature was used to correct for atmospheric effects.  Other remotely 

sensed satellite data is corrected using an algorithm that incorporates atmospheric 

information (e.g.Matsushima and Kondo, 2000).  However, the algorithm uses 

standardized atmospheric measurements, not measurements that are spatially and 

temporally coincident with the measurements acquired at the satellite.   Other studies that 

have used TIR cameras to record temperature differences (e.g. Leuzinger and Körner, 

2007, Leuzinger et al., 2010) correct only for emissivities and do not correct for other 

effects.  This study explicitly corrects for atmospheric effects using information from 

atmospheric measurements that temporally and spatially coincide with the acquired TIR 

measurements.       
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The spatial scale of temperature data acquired in this study bridges the gap between 

scales of existing datasets acquired by TIR cameras.  At scales of less than 1 m2, studies 

have measured temperature values of leaves for potential use in calculating leaf area 

index (e.g. Nölke et al., 2015).  The effects of temperature on crop growth at the scale 

tens to hundreds of square meters have been reviewed (e.g. Bonnardot et al., 2002, Blum 

et al., 1982).  Other researchers have mounted TIR cameras on cranes and measured 

temperatures at the multi-tree scale, 3000 m2, to determine how tree species diversity 

affects canopy leaf temperatures (e.g. Leuzinger and Körner, 2007).  Various satellite 

based TIR sensors have been in use since the 1960’s and acquire regional and planetary 

scale data at spatial resolutions that range from 30 m pixels to kilometer scale pixels.  In 

this study the area of interest is approximately 900,000 m2 and the spatial resolution is 

between one and ten square meters per pixel.   

 

The method developed to obtain a spatially referenced temperature map in this study is 

novel.  The temperatures and their associated spatial information are directly recorded.  A 

more traditional approach is to obtain multiple point temperature measurements in a 

given area and to spatially interpolate the data using various statistical methods. Reviews 

of traditional methods of kilometer grid square and larger spatial interpolation approaches 

can be found in the literature (DeGaetano, 2007, Frei, 2014, Courault and Monestiez, 

1999).  Others have applied these methods at smaller scales (e.g. Thomas, 2011).  In 

summary, there are two traditional approaches.  One approach makes temperature at any 

given location a function of factors such as nearby recorded temperature, the distance 

from the nearest recorded temperature, the elevation, whether the location of interest is 

wet or dry, atmospheric circulation patterns, distance from the coast, and the level of 

urbanization.  The other approach is to use spatial interpolation methods such as inverse 

distance weighting and kriging. 

 

The objective of this study is to use filtered and corrected spatially referenced thermal 

imagery to describe and map aspects of the dynamics of the nocturnal, weak-wind 

boundary layer in a mountain valley.  I introduce a method to filter, correct, and 

geoprocess the imagery.  
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2 THEORY 

2.1 RADIANT EXITANCE OF NATURAL OBJECTS 

Objects with a temperature above absolute zero emit TIR radiation (Nölke et al., 2015).  

This study focuses on a portion of the electromagnetic spectrum in the TIR band between 

7.5 and 13 μm.  What follows is a summary of applicable definitions and laws governing 

TIR radiation. 

 

The energy of particles of molecular matter in random motion is called kinetic heat.  The 

amount of kinetic heat can be measured.  The concentration of this heat is called the true 

kinetic temperature (Jensen, 2007).  A blackbody is a theoretical construct that absorbs 

all the radiation that falls on it and radiates energy at the maximum possible rate per unit 

area at each wavelength for any given temperature (Jensen, 2007).  Nature contains 

objects that radiate at a rate that is a proportion of the rate at which a blackbody radiates 

for a given temperature and wavelength.  The radiant flux density leaving a surface per 

wavelength as measured in W m-2 is called spectral radiant exitance.  The radiant flux 

density incident upon a surface per wavelength as measured in W m-2 is called spectral 

irradiance.  The total radiant exitance from a blackbody per wavelength is given by the 

Stefan-Boltzmann law: 

 

𝑀𝜆  =  𝜎𝑇4          (1)  

 

where Mλ [W m-2] is the spectral radiant exitance leaving a surface, σ [W m-2 K-4] is the 

Stefan-Boltzmann constant, 5.67 x 10-8, and T [K] is the dry bulb temperature of an 

object (Jensen, 2007).  Emissivity, ε, is the ratio between the actual spectral radiant 

exitance, Mr [W m-2], emitted by a real world object and the spectral radiant exitance 

emitted by a blackbody, Mb [W m-2] at the same kinetic temperature: 

 

𝜀 =  𝑀𝑟
𝑀𝑏

          (2)  
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For this study, it is assumed that an object has a constant emissivity in our spectral band 

of measurement.   

 

The general equation for the interaction of spectral radiant flux [W] with the terrain is: 

 

𝛷𝑖 =  𝛷𝑟 +  𝛷𝛼 +  𝛷𝜏        (3) 

 

where Φi is the spectral radiant flux incident on the surface, Φr is the spectral radiant flux 

reflected by the surface, Φα is the spectral radiant flux absorbed by the surface, Φτ is the 

spectral radiant flux transmitted through the surface.  Dividing each term by Φi and 

changing the notation to a widely recognized form gives: 

 

1 =  𝑟 +  𝛼 +  𝜏         (4) 

 

where r is the spectral hemispherical reflectance by the surface, α is the spectral 

hemispherical absorptance by the surface, and τ is the spectral hemispherical 

transmittance through the surface.  The Russian physicist Kirchoff found that the spectral 

emissivity of an object generally equals its spectral absorptance.  Most real world objects 

are opaque to TIR radiation, τ = 0   (Jensen, 2007).  Thus, from Kirchoff’s Law: 

 

1 =  𝑟 +  𝜀          (5) 

 

2.2 LEAF AND AIR TEMPERATURE EQUILIBRIUM 

 

Noble (2012) developed a leaf energy balance.  The difference between the energy input 

to and output from a leaf is equal to the energy stored in a leaf.  Energy inputs are 

absorbed insolation, water condensing on the leaf, and absorbed TIR radiation reflected 

from or emitted by the leaf’s surroundings.  Energy outputs are heat convection, heat 

conduction, emitted TIR radiation, and latent heat loss.  The storage term consists of 

photosynthesis, other metabolism, and temperature changes.  Noble (2012), noting that 
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individual plants and environments have tremendous variability, showed that in general 

leaf energy storage terms are relatively small and can be ignored.     

 

This study is concerned with clear sky nocturnal dynamics, so the leaf energy balance 

will be adapted to typical conditions for these types of nights.  On nights when air and 

leaf temperatures are above the dew point no water will condense on the leaf.  At night 

stomata are generally closed (Noble, 2012).  This implies a minimized loss of latent heat 

at night.  Kirchoff’s work indicated that the spectral emissivity of an object generally 

equals its spectral absorptance when the object is in equilibrium with its environment. 

These facts lead to the conclusion that leaf temperature at night depends on conduction 

and convection between the leaf and surrounding air.  Conduction is driven by 

temperature gradients.  This method of heat transfer is important in the processes leading 

to cold air pooling and drainage described in 2.3.  In fact, these drainages and pooling 

give rise to the process which ultimately determines the energy balance at the leaf, 

convection. 

 

The convective transfer coefficient [W m-2 K-1], hc, increases with increasing wind 

velocity (The Engineering Toolbox, 2015a).  A time constant for equilibrium between the 

leaf and the air based on convective heat transfer is defined as follows: 

 

𝜏 = 𝑐𝑝𝜌𝜌
ℎ𝑐𝐴

          (6) 

 

Here τ [s] is the time constant to equilibrium, cp [J kg-1 K-1] is specific heat at constant 

pressure, ρ [kg m-3] is density, V [m3] is leaf volume, and A [m2] is leaf area.  As wind 

speed increases so does hc.  This results in a shorter time to equilibrium between the leaf 

and the surrounding air.  Smaller leaf volume to area ratios also result in shorter times to 

equilibrium.  Time constants for leaves in the study area are on the order of seconds. 
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2.3 NOCTURNAL BOUNDARY LAYER DYNAMICS OF MOUNTAIN 
VALLEYS 

2.3.1 INVERSIONS 

An inversion is a layer of air where dry bulb temperature increases with height (Wallace 

and Hobbs, 2006).  This structure results in a statically stable layer of air.  The stability 

inhibits vertical mixing (Daly et al., 2010).  An inversion can also be defined in terms of 

potential temperature.  Potential temperature typically increases with height.  An 

inversion is indicated where the magnitude of the increase with height of potential 

temperatures is larger than normal.  Wallace and Hobbs (2006) give the following 

equation (Poisson’s equation) to calculate potential temperature: 

𝜃 = 𝑇 �𝑝0
𝑝
�
𝑅
𝑐𝑝          (7) 

 

In equation 7, Θ is potential temperature [K], T is temperature [K], p is pressure [Pa], p0 

is the reference pressure [Pa], R is the gas constant for dry air [J K-1 kg-1], and cp is the 

specific heat of dry air at constant pressure [J K-1 kg-1]. 

 

To determine atmospheric pressure that spatially and temporally corresponds with the 

potential temperature information, the following form of the hypsometric equation was 

used: 

 

𝑝 = 𝑝0𝑒
−� 𝑧

𝑅𝑇�
𝑔

�

          (8) 

 

In equation 8, p is the pressure [Pa], p0 is the reference pressure [Pa], z [m] is the 

elevation at the point in space where the pressure is derived, R is the gas constant for dry 

air [J K-1 kg-1], g is acceleration due to gravity [m s-2], and 𝑇� is the temperature that 

spatially corresponds to the location where the pressure is to be determined. 
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2.3.2 COLD-AIR POOLS AND DRAINAGE 

A cold-air pool is a topographic depression filled with cold air (Lareau et al., 2013).  

Cold-air pools begin to form in valleys during the transition from day to night when the 

Earth’s surface begins to cool radiatively (Mahrt et al., 2010, Whiteman, 2000b).  The 

compensating sensible heat flux from the air to the ground results in a cooler denser layer 

of air near the surface.  This cooler denser layer drains and is replaced by warmer air 

from aloft (Daly et al., 2010).  The cycle is repeated.  This forms the common 

explanation of nocturnal flow in a mountain valley.  The flow is typically downslope and 

down-valley and is gravity driven (Whiteman, 1990, Whiteman, 2000b, Pypker et al., 

2007a).  Daytime flows are typically up-valley due to a flux of sensible heat from the 

ground to the air that causes convective currents (Whiteman, 2000b).   

 

Cold air pools are inversions.  The static stability resulting from the inversion can prevent 

vertical mixing.  In this way cold air pooling can result in a decoupling between the pool 

and free atmosphere above (Daly et al., 2010).  The topography of the depression 

containing the pool can prevent lateral flow.  The lack of vertical mixing due to 

decoupling and the prevention of horizontal flow due to topography can lead to stagnant 

air (Lareau et al., 2013).  In urban environments the lack of dilution and diffusion of air 

pollutants can lead to poor air quality (Whiteman, 2000b).  In rural environments cold air 

pools can affect species phenology, distribution, and diversity (Daly et al., 2010).       
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3 MATERIALS AND METHODS 

3.1 STUDY SITE LAYOUT 

The study location was Watershed 1 at the HJ Andrews Experimental Forest.  Watershed 

1 is oriented along an east-southeast axis, and drains to Lookout Creek Valley at its 

northwestern outlet (Figure 1).  The watershed is approximately 1.5 km in length along 

its east-southeast axis.  Its width varies from approximately 1 km along Lookout Ridge to 

approximately 100 m at its northwestern outlet.  The height difference between Lookout 

Ridge and the lowest point in the watershed is approximately 550 m.  The majority of the 

watershed is forested.  Detailed descriptions of the site’s biology can be found in Pypker 

et al., (2007) and of its geology in Swanson (1975).  Places on the north side of the valley 

and the southeast corner are exposed rock.   

 

As shown in Figure 2, the TIR camera, directed toward the east-southeast, overlooked the 

watershed.  The camera was mounted in a tree approximately 36 m above ground level 

(AGL).  The camera was contained in a fan-ventilated housing  (Figure 3).  The camera’s 

lens was embedded in a black Delrin baffle machined to fit in the front of the camera 

housing. The baffle was equipped with a germanium window (63-215, Edmund Optics, 

Barrington, New Jersey, USA) that had a coating designed to maximize its transmissivity 

in the 8 -12 μm range of the electromagnetic spectrum.  The window’s temperature was 

recorded by proxy by a thermocouple (H08-031-08, Onset Computer Corporation, 

Bourne, Massachusetts, USA) embedded in the baffle.  The camera housing, set up, and 

associated sensors are identical to that used for camera calibration as described in 3.3.1.3.   

 

A flux and meteorological tower is located in Watershed 1.  Temperature sensors are 

installed at 29m (roughly the canopy height) and 37m AGL.  Water vapor pressure and 

atmospheric pressure sensors are installed at 37 m AGL.  Pyranometers and pyrgeometers 

are mounted at 37 m AGL.  Sonic anemometers were mounted at 4 and 37 m AGL. 
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Figure 1: Site overview of Lookout Creek Valley and Watershed 1 in the HJ Andrews Experimental 
Forest. 
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Figure 2: A site overview of Watershed 1 in the HJ Andrews Experimental Forest.  

 
Figure 3: The camera was contained in a fan-
ventilated housing.  The camera’s lens was 
embedded in a black Delrin baffle machined to 
fit in the front of the camera housing.  The 
baffle was equipped with a germanium window 
that had a coating designed to maximize its 
transmissivity in the 8 -12 μm spectral range. 
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3.2 STUDY SITE INSTRUMENTATION 

 

The FLIR SC305 camera uses an uncooled microbolometer to detect TIR radiation at 

wavelengths between 7.5 and 13μm.  It has a resolution of 320 x 240 pixels.  The 

accuracy of the camera is ±2 K or ±2% of the reading (FLIR, 2013).  The camera 

acquired instantaneous measurements at one-minute intervals during the study period.  

Each pixel in the image has a temperature value associated with it.  With the exception of 

an internal, automatic, and unmonitored correction for the body temperature of the 

camera itself, no corrections are incorporated into the data reported by the camera.  The 

data analyzed for this study were acquired using a lens with a 25° × 18.8° field of view.  

A wider angle lens with a 45° × 33.8 field of view was used in subsequent portions of the 

Bright Air study. 

 

The Hukseflex NR01 four component net radiation sensor consists of a downward facing 

pyranometer/pyrgeometer pair that measures radiation from the surface, an upward facing 

pyranometer/pyrgeometer pair that measures incoming radiation, and a resistance 

temperature detector that measures the device’s internal temperature.  The SR01 

pyranometers detect short-wave radiation between 305 nm and 2800 nm.  The IR01 

pyrgeometers measure far infrared longwave radiation between 4,500 nm and 50,000 nm.  

The accuracy of the NR01 is ±10% (Huskeflux, 2013).  The data recorded by the devices 

was sampled at 10 second intervals and subsequently linearly averaged to one-minute 

intervals for use in this study.  As with the TIR camera, the longwave radiation sensors 

corrected for the device’s body temperature before reporting its data. 

 

A HOBO Pro Data Logger with external temperature sensor (Model H08-031-08) 

monitored the temperature of a Delrin baffle in the camera housing.  The accuracy of the 

external temperature sensor over the range of temperatures encountered in this study is 

approximately ±0.17 K (Onset Computer Corporation, 2003).  The external temperature 

sensor recorded instantaneous data at five-minute intervals.  Its time constant is 122 ± 6 s 

(Whiteman et al., 2000a).  No corrections internal to the device were made. 
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Dry bulb temperatures at 29 m and 37 m AGL were recorded at one-minute intervals.  

Temperatures were recorded by a Campbell Scientific model 107 temperature probe 

contained in a double-walled aspirated radiation shield as described by Thomas and 

Smoot (2013).  The accuracy of the thermistor over the range of temperatures 

encountered in this study is approximately ±0.4 K (Campbell Scientific, 2014). 

 

Atmospheric pressure values were averaged across fifteen-minute intervals.  Pressure 

values were measured with a Setra model 278 barometer.  The accuracy of the barometer 

over the range of pressures encountered in this study is approximately ±60 Pa (Setra, 

2011). 

 

Water vapor pressure values were aggregated across fifteen-minute intervals and were 

measured with a Picarro G1101-i gas analyzer.   The company datasheets do not report 

accuracies associated with these measurements. 

 

Above canopy and sub-canopy wind speed and direction values were measured using 

sonic anemometers located on the flux and meteorological tower in Watershed 1. Above 

the canopy the sensor was located 37 m AGL and consisted of a Gill Instruments model 

R2 sonic anemometer.  Its sampling frequency was 20.82 Hz and its output frequency 

was 20 Hz.  In the sub-canopy at 4 m AGL a R.M. Young 81000 sonic anemometer was 

used.  Its sampling frequency was 32 Hz and its output frequency was 20 Hz.  All sonic 

anemometer data were averaged to one minute values for analysis.   

 

The time interval of the dataset derived from these sensors matched the lowest frequency 

aggregated data.  Data were analyzed at 15 minute intervals. 

 

3.3 STUDY CONCEPT AND DESIGN 

 
A method to filter and correct measurements acquired by the TIR camera and the tower-

mounted pyrgeometer is presented in this section.  The methodology is presented as an 

explanation of process and a proof of concept for the study.  The geoprocessing method is 
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then presented.  Methods for using the resulting spatially referenced temperature data to 

describe and map aspects of the dynamics of the nocturnal, weak-wind boundary layer in 

a mountain valley are then explained.   

 

3.3.1 FILTERING AND CORRECTING TIR MEASUREMENTS   

 

Two concepts underlie the Bright Air study.  Those concepts are: 

 

1. A TIR camera can accurately record foliage canopy temperature.  

 

2. On clear nights foliage canopy temperature can be a proxy for the temperature of 

air immediately adjacent to the canopy.  

 

Proving the concepts will provide evidence for and greater confidence that any 

conclusions based upon the results of the study itself are reliable.  This study builds upon 

fieldwork done in spring 2013 and a subsequent study of the calibration of the TIR 

camera used in the Bright Air study.  The proof of concept compares foliage temperatures 

derived from two different sensors, a TIR camera (SC305, FLIR, Wilsonville, Oregon, 

USA) and a pyrgeometer (NR01, Huskeflux, Delft, Netherlands), for the same spatial 

area in the HJ Andrews Experimental Forest in Oregon, USA during a period of clear, 

cool nights in September 2013.    

 

The methodology of this proof of concept is: 

 

• Develop a process to compare foliage temperatures derived from a TIR camera to 

those derived from a pyrgeometer 

 

• Prepare and incorporate time series data of air pressure, water vapor pressure, dry 

bulb air temperature, short wave radiant flux density, longwave radiant flux 

density, thermal imagery, and TIR camera enclosure dry bulb temperature into a 
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process that seeks to compare foliage temperatures derived from two different 

sensors 

 

• Determine a method to develop a time series of atmospheric TIR emissivity 

values for use in the analysis, derive the emissivity values, and compare the 

derived values to other studies for validation 

 

• Determine accepted forest canopy TIR emissivity values for use in the analysis 

 

• Compare foliage temperatures derived from a TIR camera to those derived from a 

pyrgeometer 

 

• Compare foliage temperatures derived from TIR camera to those measured by an 

in situ air dry bulb temperature sensor 

 

3.3.1.1 CAMERA-PYRGEOMETER TEMPERATURE COMPARISON SCHEME 
 
As shown in Figure 4, the Watershed 1 flux and meteorological tower is within the TIR 

camera field of view.  To show that a TIR camera can accurately record foliage canopy 

temperature, temperatures can be derived from the tower mounted downward facing 

pyrgeometer measurements and compared to those derived from the TIR camera.  The 

pyrgeometer mounted near the top of the tower integrates all the longwave radiation in its 

150° field of view to derive a temperature that is a spatial average.  To directly compare a 

pyrgeometer derived temperature to one derived from the camera:  

 

1. A spatially and temporally corresponding group of pixels from the thermal 

imagery must be extracted.  

 

2. Each data point from both datasets must be corrected for various TIR effects 

(described in section 3.3.1.2). 
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3. A previously determined calibration function must be applied to the corrected 

camera data (described in section 3.3.1.3).  

 

ExamineIR is proprietary thermal image processing software that accompanies the FLIR 

SC305 camera.  This software is used to export data acquired by the camera.  After 

exporting the data from ExamineIR, Python was used to call ArcGIS to extract the 

correct group of pixels from each one-minute interval image.  Before exporting the time 

series of raw temperatures from ArcGIS and Python, the values from the pixels were 

spatially averaged.  This dataset and time series data of atmospheric radiative and 

thermodynamic properties to make corrections for various TIR effects (described section 

3.3.1.2) were imported into Matlab.  The resulting values were then corrected using a  

 

 
Figure 4: The Watershed 1 meteorological tower is within the TIR camera field of view.  A visible 
spectrum photo in the upper left and grey scale thermal images show the tower.   To compare 
pyrgeometer and camera derived temperatures, a spatially appropriate group of pixels must first be 
extracted from each thermal image.  
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calibration function developed in the lab during a TIR camera calibration study.  This 

final corrected time series of camera derived foliage temperature values was compared to 

pyrgeometer derived temperature values, which were themselves corrected for TIR 

effects.  This workflow is shown in Figure 5. 
 

 
Figure 5: The data flow for processing thermal imagery begins with extracting imagery from 
ExamineIR.  A python script is then used to call ArcGIS to extract the relevant portion of the images.  
The python script averages temperature values associated with each group of extracted pixels and 
writes the information to a text file along with its timestamp.  A Matlab script uses this data, along 
with a host of other meteorological data, to compare the derived temperatures.  

3.3.1.2 CAMERA CORRECTION METHOD 
 
The radiant flux density [W m-2] incident at the camera in the 7.5 μm to 13 μm spectral 

range, Mcam, is the sum of the radiant exitance in the same spectral range from the foliage 

canopy, Mfol [W m-2], reflections off of the foliage canopy, Mref [W m-2], the atmospheric 

air in the camera’s field of view, Matm [W m-2], and the germanium window in the camera 

housing, Mwin [W m-2]. 

 

𝑀𝑐𝑐𝑐 = 𝑀𝑓𝑓𝑓 + 𝑀𝑟𝑟𝑟 + 𝑀𝑎𝑎𝑎 + 𝑀𝑤𝑤𝑤      (9) 
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Using the Stefan-Boltzman law and Kirchoff’s law, the terms in equation 9 can be 

defined as follows: 

 

𝑀𝑓𝑓𝑓 =  𝜀𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤𝜎𝜎𝑓𝑓𝑓4          (10) 

 

In equation 10, εfol is the emissivity of the foliage in the camera’s spectral range, τatm is 

the transmissivity of the atmosphere in the camera’s spectral range, τwin is the 

transmissivity of the germanium window in the camera’s spectral range, σ is the Stefan-

Boltzman constant [5.67 ×10-8 W m-2 K-4], Tfol is the temperature of the foliage canopy 

[K]. 

 

𝑀𝑟𝑟𝑟 =  𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤 �
𝑀𝑠𝑠𝑠

𝜎𝜎𝑎𝑎𝑎
�       (11) 

 

In equation 11, ρfol is the reflectivity of the foliage in the camera’s spectral range, εatm is 

the emissivity of the atmosphere in the camera’s spectral range, and Msky is the radiant 

exitance of the sky [W m-2] in the camera’s spectral range. 

 

𝑀𝑎𝑎𝑎 =  𝜀𝑎𝑎𝑎𝜏𝑤𝑤𝑤𝜎𝑇𝑎𝑎𝑎4          (12) 

 

In equation 12, Tatm is the temperature of the atmosphere [K]. 

 

𝑀𝑤𝑤𝑤 =  𝜀𝑤𝑤𝑤𝜎𝑇𝑤𝑤𝑤4           (13) 

 

In equation 13, Twin is the temperature of the germanium window [K]. 

 

𝑀𝑐𝑐𝑐 =  𝜎𝑇𝑐𝑐𝑐4          (14) 

 

In equation 14, Tcam is the temperature as recorded by the camera [K]. 

Solving for Tfol yields the following relationship: 
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𝑇𝑓𝑓𝑓 = �
𝑇𝑐𝑐𝑐4 −𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤�

𝑀𝑠𝑠𝑠
𝜎𝜎𝑎𝑎𝑎

�−𝜀𝑎𝑎𝑎𝜏𝑤𝑤𝑤𝑇𝑎𝑎𝑎4 −𝜀𝑤𝑤𝑤𝑇𝑤𝑤𝑤
4

𝜀𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤
�

1
4

 (15) 

 

 
Figure 6: A conceptual representation depicting the foliage canopy, atmosphere, window, and 
thermal reflections sensed by the camera. 

 

3.3.1.3 CAMERA CALIBRATION  
 

A calibration function for the TIR camera used in the Bright Air study was established.  

The details of the statistical analysis are included as an appendix to this document.  Field 

use of the camera in spring 2013 seemed to indicate that the temperatures recorded by the 

camera, even after correcting the data for longwave radiation sensed by the camera but 

not emitted by the object of interest, were systematically incorrect.  During times of 

increasing temperatures the camera reported temperatures that, in general, increased at a 

greater rate and arrived at a greater maximum than those returned by other sensors 

measuring the same object.  During times of decreasing temperatures the camera reported 

temperatures that, in general, decreased at a greater rate and arrived at a lower minimum 

than those returned by other sensors measuring the same object. 

 

To calibrate the camera the following tasks were performed: 
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• Prepare and analyze two time series of temperature data and determine if there is 

a function that describes their relationship. 

 
• Perform a statistical analysis of the relationship to establish its reliability for use 

as a correction for other data collected by the same TIR camera. 

 

3.3.1.3.1 SET UP AND DATA 
 
The data used for this analysis were collected between March 16th and 18th, 2014, at the 

Biomicrometeorology lab at Oregon State University.  Two temperature sensors, shown 

in Figure 7, measured the same object as it was alternately heated and cooled.  A 

temperature probe (RTD 810, Omega, Stamford, Connecticut, USA) was inserted in a 

piece of black Delrin plastic that was concurrently monitored by a TIR camera (SC305, 

FLIR, Wilsonville, Oregon, USA).  The Delrin being monitored was affixed to the base 

of a black Delrin plastic tube and submerged in common automobile coolant.  The 

coolant was contained in a refrigerator unit that was also equipped with a heating 

element.  

 

The 3-wire temperature probe was used as a measure of the true kinetic temperature of 

the object.  The sensor contains a 100 Ohm Class A DIN platinum element.  The 

platinum element’s resistance has a non-linear response to changes in temperature, so the 

probe’s lead wire was connected to a linearizer (OM5-IP4-100-C, Omega, Stamford, 

Connecticut, USA).  The linearizer’s voltage output was in turn fed into a data logger 

(CR3000, Campbell Scientific, Logan, Utah, USA).  The data logger’s recorded 

information was accessed via Campbell Scientific’s Loggernet 4.1 software.  The data 

logger reported moving one minute averages for the temperature probe.        

 

As shown in Figure 8, the TIR camera was contained in a fan ventilated housing and 

affixed to a mounting system that facilitated positioning the camera at the upper opening 

of the Delrin tube.  The TIR camera recorded instantaneous images at one minute 

intervals.  The camera’s lens was embedded in a black Delrin baffle machined to fit in the 
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front of the camera housing.  The baffle was equipped with a germanium window (63-

215, Edmund Optics, Barrington, New Jersey, USA) that had a coating designed to 

maximize its transmissivity in the relevant range of the electromagnetic spectrum.  The 

window’s temperature was recorded by proxy for later use in performing corrections to 

the camera’s recorded temperatures.  A thermocouple (H08-031-08, Onset Computer 

Corporation, Bourne, Massachusetts, USA) embedded in the baffle served as the proxy.    
 

  
Figure 7: Experimental setup of the camera calibration study. 

 

 
Figure 8: Photo showing camera housing, refrigeration unit, and Delrin tube. 

The thermocouple recorded instantaneous temperatures at five minute intervals.  The 

final dataset analyzed was therefore at that frequency. 
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The camera detects thermal infrared radiation between 7.5 μm and 13 μm.  In this study it 

was assumed that the object being measured had a constant emissivity in that range.  It 

was also assumed, due to the small distance between the camera lens and the object being 

measured, that any air in the path had a transmissivity of 1 in the relevant spectral range.  

The camera manufacturer states that the camera self-corrects for any effects of its own 

temperature.  Another assumption is that the Delrin being measured had no horizontal 

temperature gradient.   

 

Based on these assumptions and the camera’s setup, the camera should only sense the 

radiant exitance, M, of the Delrin being measured, the germanium window, and of 

thermal reflections (see Figure 9).  Lab testing confirmed that this configuration would 

result in a reflection of the camera’s radiant exitance in this range of wavelengths off of 

the Delrin being monitored. 

 

 
Figure 9: The Delrin, germanium window, and thermal reflections irradiate the camera. 
 

3.3.1.3.2 CAMERA CALIBRATION METHOD 
 
The radiant flux density sensed by the camera, MCAM [W m-2] is assumed to be: 
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𝑀𝐶𝐶𝐶 = 𝜏𝑊𝑀𝑅 + 𝜏𝑊𝑀𝐷 + 𝑀𝑊        (16) 
 
where τW (unitless) is the transmissivity of the germanium window in the range of the 

spectrum measured by the camera, M is an object’s radiant exitance [W m-2], and the 

subscripts R, D, and W denote reflected, Delrin, and window respectively. 

 

Using the Stefan-Boltzmann law, Kirchoff’s law, and solving 16 for the temperature, TD, 

of the Delrin being evaluated yields: 

 

�𝑇𝐶𝐶𝐶
4 −𝜏𝑊(1−𝜀𝐷)𝑇𝑅

4−(1−𝜏𝑊)𝑇𝑊
4

𝜏𝑊𝜀𝐷
�
1
4 = 𝑇𝐷       (17)  

 
 
 
where the subscripts R, D, and W again denote reflected, Delrin, and window 

respectively, εD (unitless) is the emissivity of the Delrin in the range of the spectrum 

measured by the camera, and T is temperature [K].   

 

A review in the lab determined that by carefully choosing pixels in the camera image to 

use in the analysis, reflected radiant exitance could be minimized.  However, processing 

and subsequent analyses were carried out both including and excluding the reflections.  

The relationship used to derive the Delrin’s true kinetic temperature based on the 

apparent temperature measured by the camera excluding reflected exitance was: 

 

�𝑇𝐶𝐶𝐶
4 −(1−𝜏𝑊)𝑇𝑊

4

𝜏𝑊𝜀𝐷
�
1
4 = 𝑇𝐷         (18) 

 
Figure 10 shows a scatterplot of the data used for the statistical analysis.  Initially a 

simple linear regression was taken as the model.  The data were separated by run and 

evaluated both on a per run basis and as a full set.  Probe temperature readings (TProbe in 

units of degrees Celsius) were regressed on the lagged camera temperature (TCam in units 

of degrees Celsius) readings.  Each run and the full set were investigated to check for 

violations of the basic assumptions (linearity, constant variance, normality, 
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independence) used to justify statistical statements based on a regression analysis.  A 

review for serial correlation was also undertaken.  This process was repeated for a fuller 

model that sought to correct for violations of assumptions so as to allow for a more 

reliable quantification of the uncertainty involved in the regression analysis. 
 

 
Figure 10: Initial assessment of the data indicated a linear relationship between the two datasets. 

The initial model, model 6, is: 
 
𝜇{𝑇𝑃𝑃𝑃𝑃𝑃|𝑇𝐶𝐶𝐶} = 𝛽0 + 𝛽1𝑇𝐶𝐶𝐶       (19) 
 
The fuller model, model 7, is: 
 
𝜇{𝑇𝑃𝑃𝑃𝑃𝑃|𝑇𝐶𝐶𝐶} = 𝛽0 + 𝛽1𝑇𝐶𝐶𝐶 + 𝛽2𝑇𝐶𝐶𝐶2       (20) 
 
 
The statistical analysis seemed to support the simple linear relationship displayed in 

Figure 10.  All model 6 results were applied to the data during the proof of concept to 

determine best fit with the physical system.  The best fit was the full model 6 that 

included the camera’s radiant exitance term. The calibration function used is the 

following: 

 

𝑇𝑃𝑃𝑃𝑃𝑃 = 6.59 + .61𝑇𝐶𝐶𝐶        (21) 
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In this case TCam is equivalent to Tfol from equation 15.  The calibration is applied after all 

the filtering described in section 3.3.1.2 is carried out so that the relationship used to 

determine the foliage canopy temperature, Tfol, is the following: 

 

𝑇𝑓𝑓𝑓 = 6.59 + .61 �
𝑇𝑐𝑐𝑐4 −𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤�

𝑀𝑠𝑠𝑠
𝜎𝜎𝑎𝑎𝑎

�−𝜀𝑎𝑎𝑎𝜏𝑤𝑤𝑤𝑇𝑎𝑎𝑎4 −𝜀𝑤𝑤𝑤𝑇𝑤𝑤𝑤
4

𝜀𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤
�

1
4

 (22) 

 
 

3.3.1.4 PYRGEOMETER CORRECTION METHOD 
 

The radiant flux density [W m-2] incident at the downward facing pyrgeometer in the 4.5 

μm to 50 μm spectral range, Mpyr, is the sum of the radiant exitance in the same spectral 

range from the foliage canopy, Mfol [W m-2], reflections off of the foliage canopy, Mref 

[W m-2], and the atmosphere between the foliage canopy and the sensor, Matm [W m-2]. 

 

𝑀𝑝𝑝𝑝 = 𝑀𝑓𝑓𝑓 + 𝑀𝑟𝑟𝑟 + 𝑀𝑎𝑎𝑎       (23) 

 

Using the Stefan-Boltzman law and Kirchoff’s law, the terms in equation 23 can be 

defined as follows: 

 

𝑀𝑓𝑓𝑓 =  𝜀𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜎𝜎𝑓𝑓𝑓4          (24) 

 

𝑀𝑟𝑟𝑟 =  𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎 � 𝑀𝑠𝑠𝑠

𝜎𝜎𝑎𝑎𝑎
�        (25) 

 

𝑀𝑎𝑎𝑎 =  𝜀𝑎𝑎𝑎𝜎𝑇𝑎𝑎𝑎4           (26) 

 

Solving for Tfol yields the following relationship: 
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𝑇𝑓𝑓𝑓 = �
�
𝑀𝑝𝑝𝑝
𝜎 �−𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎�

𝑀𝑠𝑠𝑠
𝜎𝜎𝑎𝑎𝑎

�−𝜀𝑎𝑎𝑎𝑇𝑎𝑎𝑎4

𝜀𝑓𝑓𝑓𝜏𝑎𝑎𝑎
�

1
4

    (27) 

 

 
Figure 11: A conceptual representation depicting the foliage canopy, atmosphere, and thermal 
reflections sensed by the pyrgeometer. 

 

3.3.1.5 ATMOSPHERIC CONDITIONS FOR SENSOR CORRECTIONS 
 

In order to compare equation 22, the camera derived foliage canopy temperature, to 

equation 27, the pyrgeometer derived foliage canopy temperature, a great deal of 

information must be available about atmospheric conditions at the study site.  Upwelling 

and downwelling longwave radiation fluxes must be measured.  Additionally, TIR 

properties of the germanium window, the atmosphere, and the foliage canopy must be 

known or derived.  Table 1 contains a summary of parameters used in equations 22 and 

27 and the source of the data for each parameter. 
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Reported vegetation TIR emissivity values are in the range of .95 to 1.0.  Canopy 

emissivity can vary according to soil emissivity, canopy structure, and geometry of 

measurements (Olioso, 1995).  Foliage canopy TIR emissivity was taken to be .98.  This 

accepted value has been used in other studies (Tunick, 2006, Sugita, 1996, French et al, 

2000) for forest and grass canopies. 

 

Clear sky atmospheric TIR emissivity mainly varies with concentration of water vapor 

and CO2 (Siqueira and Katul, 2009).  Various methods to estimate TIR atmospheric 

emissivity values have been investigated, reported, and compared since at least the early 

20th century (Idso, 1981; Siqueira and Katul, 2009).  The Bright Air study will consider 

two models.  One model was developed by Brutsaert and uses water vapor pressure and 

surface temperature as parameters to characterize emissivity (Brutsaert, 1975).  Brutsaert 

found that emissivity primarily depends on water vapor pressure.  His model accounts for 

all absorbers over the entire range of the TIR spectrum. The model has been reviewed 

several times and has been found to be a reliable estimator of clear sky atmospheric TIR 

emissivity over the range of temperatures and pressures encountered in the study area 

(Mermier and Seguin, 1976, Idso, 1981, Siqueira and Katul, 2009).  The formula was 

derived from physical measurements.  Brutsaert’s formula to determine atmospheric TIR 

emissivity is as follows: 

 

𝜀𝑎𝑎𝑎 = 1.24 �𝑒
𝑇
�
1
7          (28) 

 

In equation 28, e is the vapor pressure [mb] and T is the foliage canopy temperature [K]. 

 

Another model, developed by Idso, uses water vapor pressure and surface temperature as 

parameters to characterize emissivity (Idso, 1980).  Idso’s formulation applies 

specifically to the 8-μm to 14-μm range of the TIR spectrum (formulas for other spectral 

ranges were also developed).  The model accounts for all absorbers over the relevant 
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spectral range.  The formula was derived from physical measurements.  Idso’s formula, 

using the notation as in equation 28, is as follows: 

 

𝜀𝑎𝑎𝑎 = 0.24 + 2.98 × 10−8𝑒2exp �3000
𝑇
�         (29) 

 

However, existing instrumentation at the meteorological tower in Watershed 1 recorded 

vapor pressure on a percent volume moist air basis, epv.  To arrive at e in millibars, the 

following form of the Ideal Gas Law was used: 

 

𝑒 = 100𝑅𝑣𝑇
𝛼

                                         (30) 

 

In equation 30, Rv [J kg-1 K-1] is the gas constant for 1 kg of water vapor and equals 

461.51.  T [K] is the dry bulb air temperature at 37 m AGL on the meteorological tower, 

and α is the specific volume of water vapor [m3 kg-1].  T is a measured quantity and α is 

derived from a unit conversion of epv: 

 

𝛼 =
(𝑒𝑝𝑝 𝑚𝑚𝑚 𝐻2𝑂)�.018 𝑘𝑘 𝐻2𝑂

1 𝑚𝑚𝑚 𝐻2𝑂
�

(1 𝑚𝑚𝑚 𝑎𝑎𝑎)� 𝑅𝑢𝑇

𝑃𝑎𝑎𝑎( 1 𝑎𝑎𝑎
101.3 𝑘𝑘𝑘)

��1 𝑚3𝑎𝑎𝑎
103𝐿 𝑎𝑎𝑎

�
        (31) 

 

In equation 31, Ru is .082 [L atm mol-1 K-1] and Pamb [kPa] is air pressure at 37 m AGL 

on the meteorological tower. 
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Table 1: A summary of parameters used in equations 22 and 27 and the source of the data for each 
parameter. 

 
 

3.3.1.6 CAMERA AND AIR TEMPERATURE COMPARISON SCHEME 
 

To test concept two, that on clear nights foliage canopy temperature can be a proxy for 

the temperature of air immediately adjacent to the canopy, the corrected, calibrated, and 

spatially coincident camera derived foliage temperature was compared to dry bulb 

temperature data recorded in situ at 29 m AGL on the tower.   

 

3.3.2 GEOPROCESSING 

Thermal imagery used in the Bright Air study was georeferenced and orthorectified.  

Georeferencing is the process of ‘aligning geographic data to a known coordinate system 

so it can be viewed, queried, and analyzed with other geographic data’ (ESRI, 2015).  

Orthorectification is ‘the process of correcting the geometry of an image so that it appears 

as though each pixel were acquired from directly overhead’ (ESRI, 2015). 

 

The methodology of this part of the study is to: 

 

• Research and identify methods to georeference and orthorectify digital imagery 

• Select a method to use for this study 

• Create a tool to process the thermal imagery 

• Evaluate the tool’s output 
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3.3.2.1 SET UP AND DATA 
 
The thermal imagery was acquired by the same FLIR SC305 camera used in the camera 

calibration and proof of concept.  The details regarding this sensor are summarized in 

section 3.2.  The dataset to be processed consists of a multi-day series of 15-minute 

interval comma separated value (csv) files each arranged in an array of rows and columns 

of the same dimensions as the camera output image.  Each pixel of the thermal image 

corresponds to a temperature, in degrees C, in the corresponding location in the csv.  The 

temperature values in each file were filtered and corrected according to the methods 

specified in 3.3.1.   

3.3.2.2 REVIEW OF DIGITAL IMAGE GEOPROCESSING APPROACHES 
 
Makarovic (1973) is cited as introducing and developing digital monoplotting, ‘a 

photogrammetric system where single oblique and unrectified photographs or aerial 

(nadir) images are related to the digital elevation models (DEM) of the corresponding 

real world’ (Bozzini et al., 2012).  Various researchers have used this general approach to 

geoprocess digital imagery (e.g. Fluehler et al., 2005, Steiner 2011, Bozzini et al., 2012). 

 

Aschenwald et al. (2001) introduced the JUKE method.  This method projects the DEM 

onto the plane of digital image.  This method requires exact knowledge of the ground 

location of the camera and the use of ground control points (GCP), ‘various locations on 

a paper or digital map that have known coordinates and are used to transform another 

dataset—spatially coincident but in a different coordinate system—into the coordinate 

system of the control points’ (ESRI, 2015).  These inputs, among others, are introduced 

into the algorithm and the geoprocessing is carried out. 

 

In Corripio (2004), a digital image geoprocessing method was described that has been 

used by others (e.g. Kerr et al., 2013, Salvatori et al., 2011).  To summarize the process, 

the relevant portion of a DEM that covers an area of interest is obtained. To further 

constrict the DEM area a viewshed, ‘the locations visible from one or more specified 

points or lines’ (ESRI, 2015), is created using ArcInfo based on several parameters of the 

camera capturing the imagery. To orthorectify the images the DEM is rotated so that the 
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perspective of its view matches that of the camera. The DEM is then resampled to match 

the spatial resolution of the camera. A function that relates the location of cells in the 

DEM to cells in the imagery is developed. 

 

Exelis produces software called ENVI (Environment for Visualizing Images) for 

geospatial analysis. ENVI is run on IDL (Interactive Data Language). Many routines 

exist for the user to customize with his own data.  One such routine is 

“ENVI_REGISTER_DOIT”.  It allows a user to orthorectify and georeference digital 

images. User input to this routine includes images to be orthorectified, a DEM, and GCP 

to register the image to the map. The user has options for specifying input/output 

projections, methods of image warping to use, and the size and type of the output raster. 

Using this routine within the ENVI-IDL interface, multiple files can be batch processed. 

 

3.3.2.3 GEOPROCESSING WORKFLOW 
 
As shown in Figure 12, the ENVI software from Exelis was selected for use in this study.  

Other processing related to the Bright Air study was carried out in ArcGIS.  Customized 

tools created using the ENVI IDL interface were very well suited to process file types 

that are readily usable in both of these software environments.  For instance, converting 

from text based data files to the ERDAS Imagine .img file format is a supported process.  

ENVI software is proprietary, but is available to university researchers.  A customizable 

routine called “ENVI_REGISTER_DOIT” exists for the type of geoprocessing required 

for this study.  For reasons of access, compatibility, and customizability ENVI was 

selected as the geoprocessing tool for this study. 

 

Images are manually exported in csv format from ExamineIR, proprietary software that 

accompanied the FLIR SC305 camera.  As shown in Figure 12 and using applied theory 

described in section 3.3.1, the image data are imported into Matlab, filtered and corrected 

by a custom designed tool, and exported in csv format.  This corrected image data are 

processed by a tool designed in IDL to convert csv files to raster files in a widely 

compatible ERDAS Imagine .img format. 
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Before proceeding with geoprocessing, several parameters must be determined for use in 

the “ENVI_REGISTER_DOIT” routine.  The creation of the points file (keyword PTS in 

the routine) is nothing but a set of GCP.  A thermal image and a digital map that is 

spatially referenced, a DEM in this case, are reviewed for prominent features identifiable 

in both files.  The points file consists of longitude and latitude points from the DEM and 

their corresponding pixel row and column number from camera space.  The user must 

also specify the spatial reference system and various other parameters.  With this 

information the routine geoprocesses the files and makes them ready for further analysis.  

The output of this process is shown in Figure 13. 
 

 

Figure 12: The data flow for processing thermal imagery begins with extracting imagery from 
ExamineIR in csv format.  The image data are imported into Matlab, filtered and corrected by a 
custom designed tool, and exported in csv format.  This corrected image data are processed by a tool 
designed in IDL to convert csv files to raster files in a widely compatible ERDAS Imagine .img 
format.  Before proceeding with geoprocessing, several parameters must be determined for use in the 
ENVI_REGISTER_DOIT routine.   
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Figure 13: The map displays a geoprocessed thermal image from September 15, 2013 at 05:00.  In 
degrees Celsius the minimum and maximum temperatures in the image are 6.97 and 18.51. 

 

3.3.3 NOCTURNAL BOUNDARY LAYER DYNAMICS OF MOUNTAIN 
VALLEYS 

The geoprocessed thermal imagery, when combined with various data recorded in situ, 

yields potential temperature profiles.   Maps derived from the imagery show nocturnal 

cold air pooling and drainage.  Two investigations of the data were undertaken: 

 

1) Vertical profiles of potential temperature in the study area were created for times 

when inversions exist in Watershed 1 and classified according to flow regimes.   

 

2) Cold air pool formation and drainage evolution were characterized for several 

clear nights. 



34 
 

 

3.3.3.1 DATA AND WORKFLOW – POTENTIAL TEMPERATURE PROFILES 
 

The data consist of 15 minute interval spatially referenced temperature information for 

Watershed 1 and elevation information for each pixel in the image.  Visual inspection of 

the data revealed times when inversions existed in the watershed.  An attempt to 

characterize conditions under which these inversions occur is made.   

 

Walley (2013) sought to evaluate valley processes based on flow regimes categorized by 

insolation, wind speed, wind direction, and cloud presence in Lookout Creek Valley in 

the HJ Andrews Experimental Forest.  Lookout Creek Valley is the larger basin into 

which Watershed 1 drains (Figure 1).  For consistency similar categories were used in 

this study.  A southwesterly wind is defined as a wind originating from between 190° and 

320°.  In Watershed 1, a southwesterly wind is indicative of up-valley flow.  A north-

northeasterly wind is defined as a wind originating from between 350° and 155°.  In 

Watershed 1, a north-northeasterly wind is indicative of down-valley flow.  Strong winds 

are defined as mean winds with a magnitude greater than 0.4 m/s.  Weak winds are 

defined as mean winds with a magnitude less than 0.4 m/s.  Only clear or mostly clear 

nighttime conditions were reviewed in this study.  Wind speed at canopy height in 

Watershed 1 was measured by a sonic anemometer as described in 3.2. 

 

Using relationships described in 2.3.1 and the flow regime and wind strength 

classifications just presented, a geoprocessing workflow, Figure 14, was developed to 

output plots of potential temperatures at 10 meter vertical elevation intervals.  The plots 

show averages of 15-minute potential temperature data binned in 10 meter vertical 

intervals.  The plots are displayed per flow regime and by wind strength category.  A 

95% confidence interval for the potential temperatures was calculated.     

 

The confidence interval was calculated according to the following relationships (Ramsey, 

2002): 
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95% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜇 ± 1.96(𝑆𝐸)     (32) 

 

In equation 32, µ is the average of potential temperatures at 10 meter vertical elevation 

intervals and SE is the standard error.  Standard error is calculated according to the 

following relationship: 

 

𝑆𝑆 = 𝑠
√𝑛

          (33) 

 

In equation 33, s is the standard deviation and n is the sample size.   
 

 
Figure 14: The geoprocessing workflow was developed to output plots of potential temperatures at 10 
meter vertical elevation intervals.  First spatially referenced temperature data were used to compute 
spatially referenced potential temperature data using Python/ArcGIS.  Then an existing tool in 
ArcGIS was used to extract spatial information and potential temperature data from the raster.  This 
information was written to a text file.  Also, to quickly inspect the potential temperature rasters, the 
time series of data was animated for easy visual review.  After noting times of interest, Matlab was 
used to input the text file based data, bin and average the potential temperatures, create confidence 
intervals, and output plots based on the flow regime in the watershed. 
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The standard deviation was calculated according to the following relationship: 

 

𝑠 = � 1
𝑛−1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 �

1
2        (34) 

 

In equation 34, xi is a given potential temperature from the dataset and 𝑥̅ is the average 

potential temperature for the 10 meter vertical elevation intervals. 

 

3.3.3.2 DATA AND WORKFLOW – COLD AIR POOLS AND DRAINAGE 
 
In an unpublished analysis conducted in 2012, measurements from a dense sub-canopy 

network of sonic anemometers in Watershed 1 indicated that flows in the watershed may 

not be solely gravity driven.  However, sub-canopy flow is not what has been recorded in 

this study.  Instead, the dataset produced by the methods described in this work provides 

a time series of spatially referenced temperature information of air at the canopy surface.  

Using this information it is possible to characterize the movements of the above canopy 

flow and to speculate as to how the flow is connected to the larger valley system 

circulation.  Determining whether or not the above canopy flow is coupled to the sub-

canopy flow requires measurement of wind speed and direction from multiple point 

sensors below the canopy (e.g. Thomas, 2011, Thomas and Foken, 2007, Vickers et al., 

2012, Vickers et al., 2013).  This type of data was unavailable during this study period.  

However, at 4 m AGL wind speed, wind direction, and statistical information associated 

with those metrics were recorded at the flux and meteorological tower in Watershed 1.  

Vickers et al. (2012) found that sub-canopy flow was more likely to decouple from above 

canopy flow in weak wind conditions (less than 4 m s-1at that study site) than in strong 

wind conditions.  The 4-meter wind data and statistics will also be useful in determining 

whether the base of the flux and meteorological tower was immersed in a cold-air pool or 

measuring down-valley drainage.  Mahrt (2010) found that nocturnal flow at a given 

point in a valley will be downslope until the cold-air pool at its lower elevations rises to 

that point.  He also found that the interaction between the flow and the rising cold-air 
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pool is characterized by large unpredictable changes in wind direction, and that there is 

less variability in the wind direction during times of down-valley flow. 

 

Limiting the scope of the investigation to nocturnal flows, the above and sub-canopy 

flows were examined for further evidence of nocturnal flows that are not solely gravity 

driven.  15 minute interval temperature map data described in section 3.3.2 formed the 

basis for analysis.  The data were acquired using the wider angle lens for the TIR camera 

described in section 3.2 and provided some thermal information about the portion of 

Lookout Creek Valley immediately adjacent to Watershed 1.  The data were animated 

and visually reviewed.  This initial step indicated a physical basis to divide nocturnal 

flow in Watershed 1 into four time intervals that represent distinct stages of typical 

nocturnal flow in the watershed.  With a basis for temporally categorizing the data 

established, wind speed and direction measurements recorded by a sonic anemometer 

(R2, Gill Instruments Ltd, Lymington, UK) mounted above the main tree canopy height 

(hcanopy = 29 m AGL) at 37 m AGL and those recorded by a sonic anemometer (81000, 

Manufacturer R.M. Young, Traverse City, MI, USA) in the sub-canopy at 4 m AGL were 

examined to further characterize the nocturnal cold-air dynamics observed by the camera.  

Comparing wind speeds and directions above and below canopy level gave an indication 

of the extent to which the two flow regimes were coupled.  The variation in wind 

direction can offer an indication about interactions between cold-air pools and down-

valley flows.  Wind direction variability was characterized by calculating the change in 

wind direction between 1 minute measurements correcting for north jumps.  These values 

were averaged by stage of nocturnal flow evolution.   

   

The details of the physical characteristics of the four stages of typical nocturnal flow in 

the watershed are described in section 4.2.2.  The general division scheme is the 

following: 

 

• Stage 1 is the transition from evening to night and lasts one hour after sunset.  It is 

characterized by cooling air in Lookout Creek Valley and Watershed 1.  Flow is 

predominately down-valley during this period.   



38 
 

 

• Stage 2 lasts until approximately 22:30 local time (dependent on time of sunset) 

and is characterized by cold air pool formation in Lookout Creek Valley.  In 

Watershed 1 down-valley flow is evident during this period, but up-valley flow is 

increasing and can even prevail above the canopy.   

 

• Stage 3 lasts until approximately 02:00 local time (dependent on time of sunset) 

and is characterized by continued cold air pool growth in Lookout Creek Valley.  

In Watershed 1 up-valley flows are strengthening and occasionally prevail above 

and below the canopy.   

 

• Stage 4 lasts until one hour after sunrise.  Up-valley flows continue to strengthen 

during this stage.  It is characterized by a higher likelihood of decoupled above 

and sub-canopy flows.   

 

Each stage is an average of two nights of data from clear nights available for study 

between September 9th and 17th and the night of October 26th 2013.  The exact time 

periods for these stages depend on sunrise and sunset times for the date being 

investigated.  Each stage is an average of two nights that correspond to a composite case.  

Each composite case exhibits general trends described in the four stages but displays 

unique features.  The details of each composite are described in section 4.2.2.  Composite 

cases are divided as follows: 

 

• Composite case 1 corresponds to the nights of October 26th and September 14th. 

 

• Composite case 2 corresponds to the nights of September 9th and September 10th. 

 

• Composite case 3 corresponds to the nights of September 12th and September 13th. 

 

The full discussion of cold air pooling and drainage in section 4.2.2 includes a review of 

wind speed, direction, and direction variability by stage and composite.  These metrics’ 
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averages are based on the one minute interval values from the sonic anemometer dataset 

described in section 3.2.  Each of these one minute values was categorized by composite 

case, stage, and wind direction.  Wind direction was then categorized according to the 

scheme defined by Walley (2013) discussed in section 3.3.3.1.  Because only wind 

direction measurements that met the classification scheme requirements were analyzed, 

the number of one minute interval measurements discussed in section 4.2.2 varies by 

composite and stage.  Stage 1 varied between 160 and 180 samples, stages 2 and 3 varied 

between 150 and 180 samples, and stage 4 varied between 330 and 335 samples.     
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4 RESULTS AND DISCUSSION 

4.1 FILTERING AND CORRECTING TIR MEASUREMENTS 

4.1.1 ATMOSPHERIC TIR EMISSIVITY 

The terms in the numerators of equations 22 and 27 are in units of K4.  In terms of these 

units, the total quantity of longwave radiation sensed by each sensor is on the order of 

109.  The contribution to the total quantity of longwave radiation measured by each 

sensor that is attributable to the atmosphere (the ‘atmosphere’ term) is on the order of 

109.  Quantities attributable to reflections from the sky and the germanium window are on 

the order of 108.  The correction of the greatest magnitude is the atmosphere term.  As 

discussed earlier (also displayed in Table 1), atmospheric emissivity in the spectral range 

of interest is the only term in equations 22 and 27 sensitive to choice of computational 

model.  

 

TIR emissivities derived from Brutsaert’s and Idso’s formulations generally agreed with 

previous results (Brutsaert, 1975; Idso, 1980).  However, the upper limit of the range of 

emissivities derived here from Idso’s formulation (8-μm to 14-μm range) is 

approximately .18 higher than that reported in Idso’s results (Idso, 1980).  Atmospheric 

TIR emissivities derived from Brutsaert’s formulation ranged from approximately .79 

to .87 over the range of vapor pressures measured at the study site for the data analyzed.  

The small data spread seen in the left pane of Figure 15 indicates emissivity values from 

Brutsaert’s formulation are relatively insensitive to changes in surface air temperature.  

Atmospheric TIR emissivities derived from Idso’s formulation (8-μm to 14-μm range) 

ranged from approximately .33 to .74 over the range of vapor pressures measured at the 

study site for the data analyzed.  The large data spread seen in the right pane Figure 15 

indicates emissivity values from Idso’s formulation are sensitive to changes in surface air 

temperatures.  Figure 16 shows temperature dependencies for each formulation.  Only 

Idso’s formulation has a visibly discernable temperature dependency for emissivity 

values.  The figure shows that for a given vapor pressure increasing temperatures result in 

decreasing emissivities.   
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Figure 15: Atmospheric TIR emissivities as derived from Brutsaert’s and Idso’s formulations.  The 
emissivity derived from Brutsaert’s work accounts for a broad range of TIR wavelengths.  The 
formulations developed by Idso are (in black) for the 8-μm to 14-μm range of the TIR spectrum and 
(in red) the entire TIR spectrum.  

Using Brutsaert’s formulation for atmospheric TIR emissivity resulted in camera derived 

temperatures that were tens of degrees different from the temperatures recorded by the 

thermistors and those derived from the pyrgeometer.  The right pane of Figure 16 shows 

that increasing water vapor pressure results in increasing TIR atmospheric emissivity.  As 

just noted, it also shows that for a given water vapor pressure, increasing temperature 

results in decreasing values for TIR atmospheric emissivity.  The left pane of Figure 16 

shows that Brutsaert’s formulation does not parse out the differing effects of these two 

parameters.  Noting that prior formulations for estimating atmospheric TIR emissivity 

show that increasing emissivities correspond to increasing temperatures, Idso wrote: 

 

“The relative successes of all prior equations have been due to general 
correlations between e0 and T0…prior equations can in no way be expected to 
give accurate instantaneous results for the same reason.” 

 

 

Based on this review of methods of determining atmospheric TIR emissivity, Idso’s 

formulation was selected for use in this study. 
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Figure 16: Atmospheric TIR emissivities as derived from Brutsaert’s and Idso’s formulations.  The 
emissivity derived from Brutsaert’s work accounts for a broad range of TIR wavelengths whereas 
the formulation used from Idso is for the 8-μm to 14-μm range of the TIR spectrum.  Only Idso’s 
formulation has a visibly discernable temperature dependency for emissivity values.  For a given 
vapor pressure, increasing temperatures result in decreasing emissivities.  

 

4.1.2 TEMPERATURE COMPARISONS 

Temperatures were compared for the nights of September 8, 2013 to September 17, 2013.  

For the purposes of this comparison, night is defined as whenever downwelling 

shortwave radiation as measured by a pyranometer mounted on the Watershed 1 

meteorological tower is less than 10 W/m2.  Nights were reliably clear until the morning 

of September 13th.  After that date clouds were intermittent.  The results were 

characterized for the overall dataset and broken out into groups corresponding to the 

cloud conditions.  This distinction between clear and intermittently cloudy nights is based 

on the importance of atmospheric emissivity, as discussed in section 4.1.1, in determining 

the foliage canopy temperature.  For example, a cloud could envelop the camera but not 

the instrument tower in the watershed.  In this case the camera would see the cloud’s 

emissivity but be corrected by the emissivity values derived from tower based data.  This 

would introduce uncertainty into the filtering process.  Idso’s formulation for emissivity, 

equation 29, was used to derive the results presented in these comparisons. 
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4.1.2.1 COMPARISON OF CAMERA AND PYRGEOMETER DERIVED    
TEMPERATURES 

For the full dataset, the maximum and minimum differences between the derived foliage 

canopy temperatures are 5.9 K and .01 K.  A paired t-test was performed (t=12.7, two 

sided p-value of 2.2×10-16 on 443 degrees of freedom).  The results indicate with 95% 

certainty that the camera gives a lower estimate of the foliage canopy temperature than 

the pyrgeometer. The 95% confidence interval for the difference is between 1.0 K and 1.4 

K with an average difference of 1.2 K. 

For reliably clear nights, the maximum and minimum differences between the derived 

foliage canopy temperatures are 5.9 K and .02 K.  A paired t-test was performed (t=3.11, 

two sided p-value of .002, on 222 degrees of freedom).  The results indicate with 95% 

certainty that the camera gives a lower estimate of the foliage canopy temperature than 

the pyrgeometer. The 95% confidence interval for the difference is between .15 K and .67 

K with an average difference of .41 K.  These results are presented in Figure 17. 

For cloudy nights, the maximum and minimum differences between the derived foliage 

canopy temperatures are 4.6 K and .01 K.  A paired t-test was performed (t=17.3, two 

sided p-value of 2.2×10-16, on 221 degrees of freedom).  The results indicate with 95% 

certainty that the camera gives a lower estimate of the foliage canopy temperature than 

the pyrgeometer. The 95% confidence interval for the difference is between 2.3 K and 1.8 

K with an average difference of 2.0 K.  These results are presented in Figure 18. 

4.1.2.2 COMPARISON OF CAMERA DERIVED TEMPERATURE AND CANOPY 
LEVEL AIR TEMPERATURE 

For the full dataset, the maximum and minimum differences between the derived foliage 

canopy temperatures are 8.1 K and .003 K.  A paired t-test was performed (t=3.53, two 

sided p-value of .0005 on 394 degrees of freedom).  The results indicate with 95% 

certainty that the camera gives a higher estimate of the air temperature than the tower 

mounted temperature sensor. The 95% confidence interval for the difference is between 

.18 K and .63 K with an average difference of .40 K. 
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For reliably clear nights, the maximum and minimum differences between the derived 

foliage canopy temperatures are 8.1 K and .02 K.  A paired t-test was performed (t=2.54, 

two sided p-value of .01, on 172 degrees of freedom).  The results indicate with 95% 

certainty that the camera gives a lower estimate of the foliage canopy temperature than 

the tower mounted temperature sensor. The 95% confidence interval for the difference is 

between .12 K and .98 K with an average difference of .55 K.  These results are presented 

in Figure 19. 

For cloudy nights, the maximum and minimum differences between the derived foliage 

canopy temperatures are 4.9 K and .003 K.  A paired t-test was performed (t=13.3, two 

sided p-value of 2.2×10-16, on 221 degrees of freedom).  The results indicate with 95% 

certainty that the camera gives a higher estimate of the foliage canopy temperature than 

the tower mounted temperature sensor. The 95% confidence interval for the difference is 

between .98 K and 1.3 K with an average difference of 1.1 K.  These results are presented 

in Figure 20. 
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Figure 17: TIR camera and pyrgeometer derived foliage canopy temperatures are compared for reliably clear nights in September 2013.    Downwelling 
shortwave radiation is included as an indicator for nighttime conditions.  The maximum and minimum differences between the derived foliage canopy 
temperatures are 5.9 K and .02 K.  A paired t-test was performed (t=-3.11, two sided p-value of .002, on 222 degrees of freedom).  The results indicate 
with 95% certainty that the camera gives a lower estimate of the foliage canopy temperature than the pyrgeometer. The 95% confidence interval for the 
difference is between .15 K and .67 K with an average difference of .41 K.  Camera temperatures corrected by best fitting model from calibration study.
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Figure 18: TIR camera and pyrgeometer derived foliage canopy temperatures are compared for intermittently cloudy nights in September 2013.  
Downwelling shortwave radiation is included as an indicator for nighttime conditions.  The maximum and minimum differences between the derived 
foliage canopy temperatures are 4.6 K and .01 K.  Paired t-test was performed (t=-17.3, two sided p-value of 2.2×10-16, 221 degrees of freedom).  The 
results indicate with 95% certainty that the camera gives a lower estimate of the canopy temperature than the pyrgeometer. The 95% confidence 
interval is between 2.3 K and 1.8 K with an average difference of 2.0 K.  Camera temperatures corrected by best fitting model from calibration study.
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Figure 19: TIR camera derived foliage canopy temperature and measurements for tower mounted air temperature sensors are compared for reliably 
clear nights in September 2013.  Downwelling shortwave radiation is included as an indicator for nighttime conditions.  The maximum and minimum 
differences between the derived foliage canopy temperature and the 29-meter level temperature are 8.1 K and .02 K.  A paired t-test was performed (t=-
2.54, two sided p-value of .01, on 172 degrees of freedom).  The results indicate with 95% certainty that the camera gives a lower estimate of the foliage 
canopy temperature than the tower mounted temperature sensor. The 95% confidence interval for the difference is between .12 K and .98 K with an 
average difference of .55 K.  Data from night 3 have been excluded from the analysis.  Camera temperatures corrected by best fitting model from 
calibration study.    
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Figure 20: TIR camera derived foliage canopy temperature and measurements for tower mounted air temperature sensors are compared for 
intermittently cloudy nights in September 2013.  Downwelling shortwave radiation is included as an indicator for nighttime conditions.  The maximum 
and minimum differences between the derived foliage canopy temperature and the 29-meter level temperature are 4.9 K and .003 K.  A paired t-test 
was performed (t=13.3, two sided p-value of 2.2×10-16, on 221 degrees of freedom).  The results indicate with 95% certainty that the camera gives a 
higher estimate of the foliage canopy temperature than the tower mounted temperature sensor. The 95% confidence interval for the difference is 
between .98 K and 1.3 K with an average difference of 1.1 K.  Camera temperatures corrected by best fitting model from calibration study.  
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4.2 NOCTURNAL BOUNDARY LAYER DYNAMICS OF MOUNTAIN VALLEYS 

4.2.1 POTENTIAL TEMPERATURE PROFILES BY FLOW REGIME 

Figure 21 shows the vertical profile of potential temperature during periods of up-valley 

(southwesterly) winds.  Up to the base of the inversion, the lowest altitude at which a departure 

from the expected increase in potential temperature with height is found, the atmosphere is 

statically neutral for strong winds and statically unstable for weak winds.  In Figure 22, which 

shows the vertical profile of potential temperature during periods of down-valley (north-

northeasterly) winds, the atmosphere is statically unstable up to the base of the inversion.  In 

every case the atmosphere is statically neutral above the inversion layer.   

 

Lookout Creek Valley is the valley into which Watershed 1 drains (Figure 1).  Walley (2013) 

found the three most common modes of flow regimes in Lookout Creek Valley to have weak 

synoptic forcing.  Weak synoptic forcing was classified as the presence of wind speeds less than 

5 m s-1 for more than 6 hours of a 12 hour period at elevations between 490 m ASL (47 m AGL) 

and 540 m ASL (97 m AGL).  As outlined in section 3.3.3.1, the physical characteristics of 

Watershed 1 guide the threshold for weak winds to values less than 0.4 m s-1.  Wind speeds in 

Watershed 1 were measured at 518 ASL (39 m AGL) and analyzed at 1 minute intervals.  10 % 

of the values used to create the potential temperature profiles were in the strong winds category.   

 
Figure 21: The plots show averages of 15-minute interval potential temperature data binned in 10 meter 
vertical intervals in Watershed 1 on mostly clear nights with up-valley (southwesterly) winds.   
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Of those, 75% were strong up-valley (southwesterly) forcing.  Walley (2013) found that 20% of 

the nights studied had strong synoptic forcing.  Of those, 60% were strong southwesterly forcing.         

 
Figure 22: The plots show averages of 15-minute interval potential temperature data binned in 10 meter 
vertical intervals in Watershed 1 on mostly clear nights with down-valley (north-northeasterly) winds. 

On clear nights when inversions are present in Watershed 1 flow regime direction, strength, and 

frequency correspond well with those found for Lookout Creek Valley in Walley (2013).  In fact, 

for the dataset used to plot the vertical profiles of potential temperature when inversions are 

present, only 10% of the measurements don’t correspond to the north-northeasterly or 

southwesterly flow regimes described by Walley (2013).  This correlation suggests that flows 

between Watershed 1 and Lookout Creek Valley are subject to the same larger scale synoptic 

flow and may be physically connected through mass transport.  The following section 

investigates that connection. 

     

4.2.2 COLD AIR POOLS AND DRAINAGE 

In section 3.3.3.2 four stages of nocturnal cold air pooling and drainage in Lookout Creek Valley 

and Watershed 1 were introduced.  These stages were determined as a result of a visual 

inspection of an animation of temperature maps for Watershed 1.  Figure 23 displays a summary 

of the animation.  The four stages describe general trends in the watershed, however, a review of 

ten nights of data revealed three composite cases that reflect the overall trends but display unique 

features.   
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Figure 23: The left panels represent the start of each stage.  The right panels show the end of each stage.  This 
data is from the night of October 26, 2013.  Stage 1 is the transition from evening to night.  It is characterized 
by cooling air in Lookout Creek Valley and Watershed 1.  Flow is predominately down-valley during this 
period.  Stage 2 is characterized by cold air pool formation in Lookout Creek Valley.  Down-valley flow is 
evident during this period, but up-valley flow is increasing and can even predominate above the canopy.  
Stage 3 is characterized by continued cold air pool growth in Lookout Creek Valley.  Up-valley flows are 
strengthening and occasionally predominate above and below the canopy.  Stage 4 lasts until an hour after 
sunrise.  It is characterized by a higher likelihood of decoupled above and sub-canopy flows.    
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4.2.2.1 COMPOSITE 1 
 

Stage 1 is characterized by cooling air in both Lookout Creek Valley and Watershed 1.  Air 

temperatures for both valleys cool by approximately 5° C during this stage.  As shown in Figure 

24, the immediate response to the cooling air near the ground and canopy is a prevailing down-

valley flow both above and below the foliage canopy.  Mean wind speeds above and below 

canopy level are 0.28 m s-1.  If typical shear flow dominated the above canopy wind speed would 

be greater than the sub-canopy wind speed.  This is an indicator that cold air flow depth is from 

the ground to at least the canopy height of 37 m AGL.  Mean changes of wind direction above 

and below canopy are 32° and 44° respectively.  At the tower location the two flows have very 

similar characteristics and appear to be coupled during this period.   

 

A visual inspection of stage 2 temperature maps seems to show a cold air pool forming in 

Lookout Creek Valley.  The cold air pool appears to deepen and begin to spill into Watershed 1.  

Air temperatures as shown on the temperature maps for both valleys again cool by approximately 

5° C during this period.  At this point the cold air pool from Lookout Creek Valley has reached 

the flux and meteorological tower location (elevation 488 m ASL).  Figure 24 reveals an increase 

in the frequency of up-valley flows compared to down-valley flows relative to stage 1 at both 

measurement heights.  Up-valley flow now dominates above the canopy.  Sub-canopy trends are 

less clear.  There are fewer data points for this time period that fit into the up-valley and down-

valley flow regimes in Watershed 1 than during any other stage for this composite.  The 

temperature maps show that air continues to cool at higher elevations in the watershed.  This 

implies continued down-valley flows originating at those elevations.  Average wind speeds 

above and below canopy level are both 0.28 m s-1.  As in stage 1, this indicates that the cold air 

flow depth is from the ground to at least the canopy height of 37 m AGL.   Mean changes of 

wind direction above and below canopy are 28° and 50° respectively.  Although the frequency of 

up-valley flow is less than that for down-valley flows in the sub-canopy, the mean wind direction 

for this stage, 247°, falls in the up-valley category and is very similar to the above canopy mean 

of 236°. The two flows remain coupled though less strongly than during stage 1. 
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For the time period of stage 3 the temperature maps reveal cooling of about 1° C in all parts of 

the watershed.  Up-valley flow now dominates above canopy flow at the tower location.  The 

number of up-valley and down-valley flow regime measurements in the sub-canopy has 

increased relative to stage 2.  However, neither regime dominates in the sub-canopy.  Mean 

changes of wind direction above and below canopy are 47° and 24° respectively.  While above 

canopy flow is dominated by up-valley flow at the tower location, the interplay between the 

deepening Lookout Creek Valley cold air pool and down-valley flow in Watershed 1 is 

responsible for more variability in sub-canopy flows.  Average wind speeds above and below 

canopy level are both 0.29 m s-1.  The trend is for less wind direction variability above the 

canopy leading into Stage 4.  This is not the case for the sub-canopy.   

 

Figure 24: Frequency of flow regimes is displayed by physical stage for one minute interval wind direction 
data.  Up-valley flows are between 190° and 320°.  Down-valley flows are between 350° and 150°.  For 
composite 1, the response to the cooling air during stage 1 is a predominating down-valley flow both above 
and below the foliage canopy.  An increase in the frequency of up-valley flows compared to down-valley flows 
relative to stage 1 at both measurement heights is seen in stage 2.  In stage 3 up-valley flow dominates above 
the canopy, but sub-canopy trends are less clear.  In stage 4 up-valley flow continues above the canopy.  In 
the sub-canopy neither flow regime dominates.     
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During stage 4 colder air appears at upper elevations at the east end of Watershed 1, and 

temperatures in all parts of the watershed decrease by approximately 1° C.  Average wind speeds 

above and below canopy level are both 0.28 m s-1.   At the meteorological tower, up-valley flow 

dominates above canopy flow.  In the sub-canopy neither flow dominates.  Variability in wind 

direction has increased in the sub-canopy and decreased above the canopy.  Mean changes of 

wind direction above and below canopy were 25° and 32° respectively.  The total number of one 

minute interval measurements in this stage that fall into up-valley and down-valley flow regimes 

increases as the night progresses suggesting that at the tower location there is a significant 

interplay between the larger valley cold air pool and down-valley flows in the watershed sub-

canopy.  Above the canopy flow is becoming more consistently up-valley.  Flow is less coupled 

during this period than any other.  For one of the nights analyzed in this stage down-valley flow 

in the sub-canopy predominated.  On that night the flows were decoupled.  

4.2.2.2 COMPOSITE 2 
 

Two of the warmest nights during the study period were characterized by much more apparent 

down-valley flows during every stage than for the other composite cases.  Temperatures were on 

the order of 10° to 12° C.  Figure 25 displays an ensemble average of flow regimes on those 

nights.  Flow is consistently down-valley during all four stages.  During stage 1, winds were 

strong.  During composite 1, winds were weak for every stage.  This composite supports the 

theory that strong winds are less likely to be associated with decoupled above and sub-canopy 

flows than weak winds.  
 

As in composite 1, stage 1 is characterized by cooling air in both Lookout Creek Valley and 

Watershed 1.  Mean wind speeds above and below canopy level are 0.74 m s-1.  There is a 

prevailing down-valley flow both above and below the foliage canopy.  The average above and 

below canopy wind directions in this stage are 137° and 123° respectively.   The similarity of 

mean wind speeds and their strength are an indicator that flow is strongly coupled both above 

and below the canopy.  Mean changes of wind direction above and below canopy are 32° and 7° 

respectively.  Both values are much lower than those for the first stage of composite 1 and 

indicate a more organized flow at both levels relative to composite 1. 
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Figure 25: Frequency of flow regimes is displayed by physical stage for one minute interval wind direction 
data.  Up-valley flows are between 190° and 320°.  Down-valley flows are between 350° and 150°.  For 
composite 2, down-valley flow dominates throughout the night.  However, underlying general trends are still 
evident.  Up-valley flow frequency increases during stages 2 and 3.  In stage 4 above canopy up-valley flow 
accounts for one-third of recorded wind direction measurements.   

 

Stages 2 and 3 continue to display strong coupling in above and below canopy flow.  

Additionally, the flow continues to be organized.  However, trends in stages 2 and 3 reflect the 

general trends for the watershed.  In the sub-canopy mean changes of wind direction are 18° for 

stage 2 and 27° for stage 3.  Above the canopy mean changes of wind direction are 14° for stage 

2 and 16° for stage 3.  At both levels wind speeds decrease to 0.28 m s-1 from 0.34 m s-1.  As 

winds transition from strong to weak variation in wind direction increases at both levels.  The 

increases are greatest in the sub-canopy where the number of wind direction measurements that 

correspond to up-valley and down-valley flow has decreased from 160 to 130 to 120 in stages 1, 

2, and 3.   

 

In stage 4 both wind speed and variation in wind direction measurements in the sub-canopy have 

returned to levels consistent with those in composite 1, 0.24 m s-1 and 34° respectively.  Above 

canopy flow continues to be less variable than sub-canopy flow.  The number of wind direction 
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measurements that correspond to up-valley and down-valley flow for this period is 35% greater 

above the canopy than below the canopy.  While flow is still coupled for this period, the 

coupling is the weakest of any stage for this composite.  These characteristics agree with the 

overall trends for the watershed. 
 

4.2.2.3 COMPOSITE 3 
 

In many respects composite 3 appears to be a hybrid of composites 1 and 2. Temperatures in the 

watershed are on the order of 10° C.  As in composite 2 there are strong winds for stage 1 that 

decrease to composite 1 levels throughout the night.  As in composite 2 there is down-valley 

flow at both heights for stages 1, 2, and 3.  However, as in composite 1, up-valley flow above the 

canopy increases rapidly in stage 3 and comes to dominate above canopy flow in stage 4.  In 

further agreement with composite 1, in stage 4 the flow becomes decoupled at the tower location.  

Above canopy flow is up-valley.  Sub-canopy flow is predominately down-valley.  Figure 26 

displays composite 3 flow regimes. 

 

Above and below canopy mean speeds for stage 1 are strong, 0.56 m s-1 and 0.57 m s-1 

respectively.  Variability in mean direction above and below the canopy is the lowest recorded 

during the study period, 26° and 7° respectively.  The number of wind direction measurements in 

this stage that correspond to up-valley and down-valley flow is as high as in stage 1 of composite 

2.  These metrics all indicate organized flow above and below the canopy.  With one exception 

both above and below the canopy metrics for stage 2 of this composite are extremely similar to 

those for stage 2 in composite 2.  The exception is that wind direction variation above the canopy 

is 12° higher in composite 3. 
 

Mean wind direction above and below the canopy shifts from down-valley to up-valley between 

stage 2 and stage 4.  Both above and below the canopy variability in the mean wind direction 

peaks in stage 2 or 3 and then rapidly decreases in stage 4 as the mean wind direction becomes 

up-valley.  However, after the change in wind flow regimes, wind direction variability in stage 4 

for above the canopy is 8° and in the sub-canopy it is 23°.  These variabilities in wind direction 
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Figure 26: Frequency of flow regimes is displayed by physical stage for one minute interval wind direction 
data.  Up-valley flows are between 190° and 320°.  Down-valley flows are between 350° and 150°.  For 
composite 3, the response to the cooling air during stage 1 is a predominating down-valley flow both above 
and below the foliage canopy.  An increase in the frequency of up-valley flows compared to down-valley flows 
relative to stage 1 at both measurement heights is seen in stages 2 and 3.  In stage 4 up-valley flow 
predominates above the canopy.  In the sub-canopy down-valley flow is the most frequent flow regime.  In 
stage 4 the flow becomes decoupled at the tower location.   

are some of the lowest recorded in each category.  Flow above the canopy is more organized than 

below the canopy.  This organizational differential is also reflected in the fact that the number of 

wind direction measurements that correspond to up-valley and down-valley flow for this period 

is 96% greater above the canopy than below the canopy.  This is an indication that flow above 

and below the canopies has become less coupled and possibly decoupled in this stage.  Mean 

wind speeds are both 0.22 m s-1, however, and this metric does not support the characterization 

of decoupling.    

4.2.2.4 REVIEW  
 

Mahrt (2010) observed that nocturnal flow at a given point in a valley will be downslope until 

the cold air pool at its lower elevations rises to that point.  That observation is confirmed here by 

the transition from stage 1 to stage 2 in composite 1.  During stages with strong winds 

(composite 2: stage 1; composite 3: stage 1) the above and below canopy flows are strongly 
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coupled, and remain so throughout the following stage.  In Watershed 1, when above canopy 

flow becomes predominately up-valley (composite 1: stages 2, 3, and 4; composite 3: stage 4) 

sub-canopy flow is not typically associated with a dominant wind flow regime.  With the 

possible exception of stage 4 in composite 3, in the sub-canopy, up-valley flow was not observed 

to be the dominant flow regime for any stage in any composite.  However, when reviewing 

specific nights it was noted that up-valley flow predominated in the sub-canopy during stage 4 

on the night of September 14th.  Down-valley flow is the only flow regime always associated 

with strong coupling between the above and sub-canopy flows (composite 1: stage 1; composite 

2; stages 1, 2, 3, and 4; composite 3: stages 1, 2, and 3) for the composites reviewed.   
 

 
Figure 27: Above and sub-canopy mean wind velocity (multiplied by 10 for display purposes), mean wind 
direction (divided by 10 for display purposes), and mean wind directional variability are shown.  These 
metrics are displayed by composite and stage. 

 

Less variability in mean wind direction is associated with the dominance of one flow regime 

over another.  For every composite reviewed, this type of dominance occurred during stage 1 

both above and below the canopy and is associated with down-valley flows.  Figure 27 shows 

mean wind direction variability by composite and stage.  Above the canopy stage 1 variability 

can be as high as 44° but is more typically on the order of 30°.   In the sub-canopy stage 1 
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variability can be as high as 32° but is more typically on the order of 7°.  This measure of 

variability typically decreased throughout the night above and increased below the canopy.  

These opposing trends help explain the tendency for weaker coupling in stage 4.  In every 

composite up-valley flow frequency increased in stages 2 and 3 relative to stage 1.  During these 

stages there is interaction between the Lookout Creek Valley cold air pool and down-valley 

flows from the watershed.  This interaction increases the variability in wind direction and is an 

indicator of when the cold air pool from Lookout Creek Valley reaches the elevation of the flux 

and meteorological tower. 

 

Watershed 1 is connected to a larger system of valleys.  For the nights studied, flows in the 

watershed interact with flows from these other connected basins.  The primary interaction occurs 

with the cold air pool in Lookout Creek Valley.  As the pool deepens during the night, it drains 

into Watershed 1 creating up-valley flow.  This flow is recorded at the location of the flux and 

meteorological tower.  As evidenced by the increased variability of the mean wind direction, 

during several of the nights examined during this study the tower was located in a zone where 

the Lookout Creek Valley cold air pool and watershed down-valley flows interacted.  This is an 

indication of the depth of the cold air pool.  However, on many of the nights studied the tower’s 

instruments did not record this interaction.  This suggests a cold air pool with variable depth.  On 

warmer nights noted in composite 2 there was consistent down-valley flow at both above and 

sub-canopy heights.  This implies that the valley cold air pool was shallower on these nights than 

on other nights.   

 

The weakening of the coupling between the above canopy flow and sub-canopy flow was in 

every composite associated with up-valley flow above and stronger down-valley flows below.  

At the same time the valley cold air pool spilled into the watershed, the watershed flowed into 

the valley.  Above the canopy during these times, the depth of the cold air pool reached 

elevations higher than that of the tower.  This occurred on cold nights and more mild ones.  The 

weakening of the connection between the above and below canopy flows suggests the possibility 

of a circulation pattern.  The mass of air leaving the watershed, if it is not ultimately being 

blocked before leaving, must be replaced by air entering the watershed.  On the nights when this 
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type of decoupling occurs, there must be a net downward flux of momentum up-valley from the 

meteorological tower. 

 

These results are based on categories for typical flow regimes as determined by Walley (2013).  

Changing the definition of up-valley to include flows between 190° and 349° (instead of 320°) 

leads to the conclusion that flows in stages 2, 3, and 4 for composite 1 were up-valley and 

coupled.  For composite 2 stage 4 changes from coupled and down-valley to coupled and up-

valley.  Stage 3 results for composite 2 show no predominant flow above or below the canopy.  

For composite 3 only stage 4 results change.  In stage 4 flow becomes coupled and up-valley.  

The axis of Watershed 1 runs along a 290° heading.  The mouth of the watershed opens to 

headings between 240° and 330°.  There are very few wind direction data points with values 

between 190° and 240°.  However, there are a significant number between 320° and 340°.   These 

results are sensitive to wind flow regime definitions. 
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5 SUMMARY AND CONCLUSIONS 

5.1 FILTERING AND CORRECTING TIR MEASUREMENTS 

As shown in section 4.1.1, the atmosphere term of equations 22 and 27 is the most important 

correction to make for raw longwave radiation measurements.  An accurate determination of TIR 

atmospheric emissivity is necessary to make this correction.  Results presented in section 4.1.1 

showed that in this case, Brutsaert’s model for estimating TIR atmospheric emissivity is not 

appropriate for use in making corrections to a TIR camera that measures in the 8-μm to 14-μm 

range of the TIR spectrum.  Applying Idso’s model for estimating TIR atmospheric emissivity in 

the 8-μm to 14-μm range yielded results that ultimately agreed with those derived from two other 

sensors measuring the same thing as the TIR camera. 

While a direct comparison between the temperatures derived from the pyrgeometer and canopy 

level temperature sensors was not made, one can still compare the relative differences between 

those sensors and the camera derived temperatures using the results from the paired t-tests 

presented in section 4.1.2.  On nights without any cloud cover the implied difference in air 

temperature as measured at 29 m AGL (canopy height) and the canopy temperature derived from 

the downward facing pyrgeometer is 0.1 K.  This is well within the uncertainty levels inherent in 

the sensors.  Canopy temperature as derived by the camera on nights without any cloud cover, on 

average, is within 0.5 K of both of the other sensors.  These differences are also within the 

uncertainty levels inherent in the sensors.  The best conditions for using this method to derive 

foliage canopy temperatures occur on very clear nights.  

However, on nights with even intermittent cloud cover there is a 3 K difference between the air 

temperature as measured at 29 m AGL and the canopy temperature derived from the downward 

facing pyrgeometer.  An explanation for this discrepancy was not found.  Canopy temperature as 

derived by the camera on nights with intermittent cloud cover, on average, is within 2 K of the 

canopy temperature derived from the downward facing pyrgeometer.  If the intermittent clouds 

were above the mounting height of the pyrgeometer but below the mounting height of the camera 

it would imply the vapor pressure reading used as the basis to calculate atmospheric emissivity 

and transmissivity could not reliably be used for corrections on the readings of both sensors.  

Also it would mean that air temperatures measured at canopy level could not be reliably used for 
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corrections to the readings of both sensors.  Also the amount of longwave radiation reflected by 

the foliage canopy (seen by the pyrgeometer) and top of the cloud (seen by the camera) would be 

different values.  In this case camera readings would be less reliable because the data available to 

filter and correct the camera readings were not applicable to what is sensed by the camera.  The 

same type of reasoning applies to the difference in temperatures recorded by the camera and the 

thermistor. 

The proof of concept demonstrates that the best results for this method of determining air 

temperature in a mountain valley are obtained on very clear nights.  On those nights the 

differences between temperatures derived from the TIR camera, pyrgeometer, and the air 

temperature sensor were all within the devices’ margin of error.  Furthermore, the study indicates 

that on clear or intermittently cloudy nights foliage canopy temperatures as measured by a TIR 

camera can be a proxy for the temperature of air immediately adjacent to the canopy.    

5.2 GEOPROCESSING 

Georeferencing the images can be made simpler and even more reliable.  There were many 

prominent features to use for GCP in this study.  Supplementing these features by placing 

thermally reflective markers in the area viewed by the camera at points recorded by global 

positioning system devices would likely decrease the error associated with the geoprocessing.  

However, in Watershed 1, a valley with slopes up to 70° and trees commonly as tall as 25 m, 

placing the thermally reflective markers does present its own challenge.   

 

The angle the camera viewed the watershed was not an advantage.  The camera was placed at an 

angle 18° above horizontal looking up into the watershed.  Images recorded at a less oblique 

angle would capture more data.  Additionally, any warping and spatial interpolation associated 

with the geoprocessing would tend to decrease as the angle approaches a view from directly 

overhead.  The possibility of achieving a better viewing angle is study site dependent. 
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Figure 28: The thermal images acquired deciduous and non-deciduous trees, branches and tree trunks, rocks, 
and soil.  All of the items have unique thermal properties.  The emissivity for each item differs in the 7.5 μm 
to13 μm range.  The bright rocks in the top left of the image illustrate this point.  The bright tree in the 
foreground also shows the effects of differing emissivities on the image.  Additionally, the tree is not actually 
in Watershed 1.      

 
As shown in Figure 28, the thermal images captured deciduous and non-deciduous trees, 

branches and tree trunks, rocks, and soil.  All of the items have unique thermal properties.  The 

emissivity for each item differs in the 7.5 μm to13 μm range.  No attempt was made to correct 

for this variability.  The implication of this fact is that for a number of pixels, approximately 1% 

of the pixels in the original images, bad data are being analyzed.  There are at least two methods 

to address this variability.  One is to mask out any items that do not form a part of the forest 

canopy.  This would include bare rocks, soil, and any tree tops visible in the imagery that are 

simply in the camera’s field of view but not physically in the watershed.  The other approach is 

to use the concept of raster math.  A raster could be created that contains cell values 

(emissivities) that spatially correspond to each item that needs to be accounted for.  This raster 

could be referenced in subsequent calculations any time the foliage emissivity or reflectivity 

needed to be used. 

   

5.3 NOCTURNAL BOUNDARY LAYER DYNAMICS OF MOUNTAIN VALLEYS 

 

Nocturnal cold air dynamics in Watershed 1 do not reflect the typical behavior of cold-air pools 

and drainage as introduced in 2.3.2.  This statement supports the analysis and conclusions 

reached based upon the 2012 data mentioned in 3.3.3.2.  Up-valley flow patterns in the 
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watershed observed in this study indicate that nocturnal flows in mountain valleys are not driven 

solely by colder denser air near the surface that drains down-slope and down-valley.  However, 

the up-valley flow patterns in Watershed 1 are related to growth in the cold air pool that forms in 

Lookout Creek Valley each night as a direct result of the drainage of this colder denser surface 

air.  However, this study did not isolate and measure any effects of the transport of turbulence at 

the meteorological tower.   It can’t be stated conclusively that all variability in wind direction at 

the tower is due to the growth of the valley cold-air pool.  However, the temperature maps show 

temporal correlation between higher frequency up-valley flows at the flux and meteorological 

tower and growth in the valley cold-air pool. 

 

Cold-air pools in Lookout Creek Valley and drainage in Watershed 1 have a typical nightly 

evolution that can be broken down into four stages.  Though there is variation in specific aspects 

of each stage, the overall trends for each stage apply to each case reviewed in this study.  In the 

sub-canopy a denser network of sensors in the watershed may have been able to track the growth 

in the valley cold air pool and characterize its depth (e.g. Thomas, 2011, Thomas and Foken, 

2007, Vickers et al., 2012, Vickers et al., 2013).  Spatial patterns of sub-canopy flows would 

also be more clearly defined.  A similar design above the canopy would complement the sub-

canopy information and provide a more complete dataset.        

 

The results and conclusions in this section are sensitive to wind flow regime classification.  

Based on the physical processes observed in the watershed, the classification scheme used in 

Walley (2013) for Lookout Creek Valley is applicable to Watershed 1.  The scheme captures up-

valley and down-valley flows, but may not capture all upslope and downslope flows that are 

occurring in the watershed.  However, since these flows were measured close to the base of the 

valley, downslope flows will have been funneled into the range of down-valley angles.  It also 

excludes down slope flows that move down from the slopes near the entrance to Watershed 1 to 

the flux and meteorological tower from being considered up-valley.  

 

A study site such as Watershed 1 provides some desirable conditions for this type of study.  The 

watershed connects to a larger system of valleys and basins.  Recording between valley 

interactions is useful in more completely characterizing nocturnal flows in mountain valleys.   



65 
 

The foliage canopy is very dense.  This minimizes effects of differing emissivities between 

branches, trunks, and leaves.  Valley slopes are very steep.  These slopes are conducive to 

measureable density driven nocturnal flows.  Additionally, as this watershed is located in a forest 

dedicated to scientific research, it and the nearby Lookout Creek Valley have been extensively 

studied.  These studies provide a good basis for comparison.  A more ideal study site would have 

more uniform ground cover.  There are rocky outcrops along the north side of the watershed and 

near the top of the valley (Figure 28).  The varying emissivities add extra computational steps 

when fully addressed.  Additionally, the basaltic outcrops have a different heat capacity than the 

foliage.  This implies a variable time constant for equilibrium between air temperature and the 

surface.  These rocks have a time constant of greater magnitude than the leaves and will take 

longer to equilibrate with air temperature.  Vegetation species variation in the watershed has the 

same complicating effects as the rocky outcrops.  However, TIR emissivity differences and time 

constant differences between vegetation types will be much less than between large basaltic 

outcrops and leaves. 
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8 STATISTICAL ANALYSIS OF CAMERA CALIBRATION DATA 

 
A set of 360 data points with a temporal resolution of five minutes spread over several runs of 

heating and cooling the assembly was prepared using Matlab.  A first glance, shown in Figure 

29, at the data suggested a simple linear relationship between the camera derived object 

temperature and the object temperature recorded by the probe.  To evaluate this initial 

assessment, a full statistical analysis was carried out using R. 
 

 
Figure 29: Initial assessment of the data indicated a linear relationship between the two datasets. 

 

8.1.1 EXAMINATION OF THE DATA 

Run 1 data begin at 13:04 (all times PST) on March 16th, 2014.  The heating element had been 

turned on at 13:03.  The refrigerator was turned on at 14:45.  Run 1 data end at 16:29.  The 

refrigerator was turned off at 16:24.  Run 2 data begin at 16:34.  Run 2 data consist of the 

assembly equilibrating with its environment.  Run 2 data end at 21:59.  On March 17th, 2014, at 

11:28 the heating element was turned on and the refrigerator was turned off.  Run 3 data begin at 

11:19 that morning and end at 19:04 that evening.  At 19:02 the heater was shut off.  Run 4 data 

begin at 19:09 and ends at 07:29 on March 18th, 2014.  At 07:32 the refrigerator was turned on.  

Run 5 data begin at 07:34 and end at 08:14.  Each run is a continuous set of data. 

 

Run 1 shows a linear relationship between the sensors during heating by the element and a non-

linear relationship during cooling by refrigeration.  Run 2 shows a linear relationship, different 
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from that expressed in Run 1, between the sensors during heating without using the heating 

element.  For the first few data points of Run 3 the refrigerator was on.  Subsequently the heater 

was turned on.  During this process the submersible pump in the coolant was on (as it was the 

entire study).  The temperature probe recorded runs of heating and cooling that did not align 

exactly with the heating/cooling controls.   

 

The resulting relationship for this time period is unclear, but after 12:19 on March 17th the 

constant heating by the element began to be clearly expressed in the data.  The constant heating 

portions of Runs 1 and 3 appear to agree.  From 13:34 to 14:14, while the heating element was 

on, both the camera and the probe recorded declining temperatures.  The element may not have 

had constant output during this period.  The disruption in the linear relationship, as well as other 

instances of camera temperatures lagging probe temperatures is likely a consequence of the 

nature of heat conduction.  The time it takes for the Delrin to communicate the coolant’s 

temperature to the camera is different from the time it takes for the probe to record that 

information.  A discussion of this thermal inertia can be found later in this section. 
 

 
Figure 30: Scatterplot showing temperature as measured by the probe and camera.  Triangles indicate 
measurement recording during heating.  Circles indicate measurement recorded during cooling.  Each run is 
uniquely colored. 
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Portions of the relationship between the sensors expressed in Run 4 defy explanation.  At 19:02 

on March 17th the heating element was turned off.  The probe records declining temperatures at 

19:09.  However, by 19:34 the temperature (as measured by the probe) is again increasing.  The 

instrument records increasing temperatures for the remainder of Run 4.  The camera does not 

record decreasing temperatures between 19:09 and 19:34.  At 19:19 the camera records its lowest 

recorded temperature increase, .03° C, during this period.  At 23:59 the camera again begins 

recording decreasing temperatures and does so until the end of Run 4 in direct contradiction to 

the data recorded by the probe.  This portion of Run 4 must have some recording errors by one of 

the sensors.  Run 5 was a cooling run.  It shows a linear relationship between the sensors.  This 

relationship does not agree with the cooling portion of Run 1.   
 

8.1.2 THERMAL CONDUCTIVITY OF DELRIN AND ITS EFFECTS ON RECORDED 
TEMPERATURES 

As earlier noted, instances of camera temperatures lagging probe temperatures are likely a 

consequence of the nature of heat conduction.  A typical timescale in terms of seconds, t, for heat 

to diffuse through a body is given by: 

 

𝑡 = 𝑥2

𝛼
            (1) 

 

where x is the body’s thickness measured in meters and α is the thermal diffusivity of the body in 

terms of m2 s-1.  Thermal diffusivity is defined as the ratio of a substance’s thermal conductivity 

to its capacity to store thermal energy.  In equation form: 

 

𝛼 = 𝑘
𝜌𝑐𝑝

           (2) 

 

In (2) k is thermal conductivity in units of W m-1 K-1, ρ is density in units of kg m-3, and cp is 

specific heat in units of J kg-1 K-1.  The Delrin being measured was ½” (.0127 m) thick and had a 

thermal diffusivity of 1.72 × 10-7 m2 s-1.  The resulting characteristic time scale for heat to diffuse 

throughout the Delrin is about 15 minutes.  The temperature probe was only ¼” from the coolant.  

The characteristic time scale for heat to be sensed by the temperature probe is about 4 minutes.  
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This results in an approximately 11 minute lag between when the probe and the camera sense the 

same input energy.  In this study 11 minutes represents approximately two time steps in 

measurements.  This implies that a correction may be made by lagging the camera temperature 

relative to the probe temperature. 

 

However, thermal conductivity is itself dependent on temperature.  This in turn means thermal 

diffusivity and the characteristic time scale for heat to diffuse through a body are also 

temperature dependent.  The temperature dependency implies that any possible correction made 

by time lags will be non-constant.  Data obtained from DuPont and the vendor for the Delrin 150 

used in this study did not include a description of the temperature dependence of the thermal 

conductivity of Delrin 150 acetal.  For this analysis a constant two step (10 minute) time lag 

between the camera and probe temperature readings is assumed. 

 

As mentioned before, a portion of Run 4 recorded increasing probe temperatures and decreasing 

camera temperature.  This is likely a recording error.  The data are excluded from the analysis.  

The same phenomenon is expressed at the beginning of Run 3.  The data are excluded from the 

analysis.  Run 5, as a standalone dataset, is too small to be statistically robust (seven data points 

after the time lag adjustment is made). Additionally, even after applying the time lag Run 5 

displays a different pattern than the remainder of the data.  This raises questions about the 

appropriateness of a two time step lag for these seven points.  The data are excluded from the 

analysis.  After applying the time lag adjustments, the cooling portion of Run 1 continued to 

display a non-linearity that is believed to be correctable by applying an appropriate correction for 

thermal inertia.  No data upon which to base a correction are available from the Delrin 

manufacturer or vendor.  That portion of the data set is assumed to be a recording error and is 

excluded from the analysis.  After applying the time lag adjustments a portion of Run 3 (as 

mentioned earlier) passed through a brief period of heating and cooling that resulted in a non-

linearity that is believed to be correctable by applying an appropriate correction for thermal 

inertia.  No data upon which to base a correction are available from the Delrin manufacturer or 

vendor.  That portion of the data set is assumed to be a recording error and is excluded from the 

analysis. 
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8.1.3 EFFECTS OF GERMANIUM WINDOW  

 
The germanium window temperature stayed fairly constant during the time period this report 

addresses.  Measurements were taken at five-minute intervals with a thermocouple.  The range of 

temperatures varied approximately 1.7 K.  The camera, in its ventilated housing, was on the 

entire time in question.  As shown in Figure 6, the window temperature trend in Run 2 is unique 

in this group.  Run 2 was conducted during time periods analogous to portions of Runs 3 and 4.  

This implies that any effects of the lab’s HVAC system or other heat sources that vary with time 

on the window temperature should be similar for these runs.  There was no on site monitoring 

during Run 2.  It is possible that conditions in the lab during Run 2 were distinct from those 

during the other runs.  That suggests that, by the statistical meaning, Run 2 data are from a 

population distinct from those of the other runs. The data are excluded from the analysis.    
 

 
Figure 31: The window temperature trend in Run 2 is distinct from that of the other runs. 

 

8.1.4 STATISTICAL ANALYSIS 

Figure 32 shows a scatterplot of the data to be used for the statistical analysis.  Initially a simple 

linear regression was taken as the model.  The data were separated by run and evaluated both on 

a per run basis and as a full set.  Probe temperature readings (TProbe in units of degrees Celsius) 

were regressed on the lagged camera temperature (TCam in units of degrees Celsius) readings.  
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Each run and the full set were investigated to check for violations of the basic assumptions 

(linearity, constant variance, normality, independence) used to justify statistical statements based 

on a regression analysis.  A review for serial correlation was also undertaken.  This process was 

repeated for a fuller model that sought to correct for violations of assumptions so as to allow for 

a more reliable quantification of the uncertainty involved in the regression analysis. 
 

 
Figure 32: A scatterplot of the data used in the statistical analysis. 

The initial model, model 6, is: 
 
𝜇{𝑇𝑃𝑃𝑃𝑃𝑃|𝑇𝐶𝐶𝐶} = 𝛽0 + 𝛽1𝑇𝐶𝐶𝐶        (3) 
 
The fuller model, model 7, is: 
 
𝜇{𝑇𝑃𝑃𝑃𝑃𝑃|𝑇𝐶𝐶𝐶} = 𝛽0 + 𝛽1𝑇𝐶𝐶𝐶 + 𝛽2𝑇𝐶𝐶𝐶2        (4) 
 

8.1.4.1 LINEARITY 
 
A graphical analysis confirms that all runs display a linear relationship between the recorded 

probe temperatures and the lagged camera recorded temperatures.  A more formal Lack-of-Fit F-

test can’t be applied here to quantify the appropriateness of the simple linear regression model 

because there is a maximum of one measurement for each value of the explanatory variable. 
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Figure 33: A graphical analysis confirms all runs display a linear relationship between the recorded probe 
temperatures and lagged camera recorded temperatures. 

8.1.4.2 CONSTANT VARIANCE 
 
As shown in Figure 34, model (6) Run 1 residuals show a random distribution about the fitted 

line consistent with the distribution expected to satisfy the assumption of constant variance.  

Runs 3 and 4 show an ordered pattern with residuals above the fitted line at high and low 

temperatures and below the fitted line at temperatures in between.  Not satisfying the equal 

spread assumption causes standard errors derived from the regression to be inaccurately 

described.  As shown in Figure 35, adding a term to the model appears to result in equal 

variances about the regression line on a per run basis, but not for the whole dataset.  Although, 

Run 4 may have violations.   
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Figure 34: Graphical review of variance for model (6). 

 
 

 
Figure 35: Graphical review of variance for model (7). 
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8.1.4.3 NORMALITY 
 
Model (6) Run 1 residuals and residuals from the whole dataset show a long-tailed distribution.  

Runs 3 and 4 show a skewed distribution.  These plots are evidence of a non-normal distribution.  

Coefficient estimates and associated standard errors are robust to non-normal distributions.  

However, prediction intervals are not valid.  Model (7) results in long-tailed distribution for the 

whole set but well behaved runs. 

 
Figure 36: Graphical review of the normality of the distribution for model (6). 

 
Figure 37: Graphical review of the normality of the distribution for model (7). 
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8.1.4.4 INDEPENDENCE/SERIAL CORRELATION 
 
Model (6) Run 1 residuals display no particular pattern, so no serial correlation is indicated.  

Runs 3, 4, and the entire dataset have obvious runs above and below the regression line.  Serial 

correlation is indicated for these runs and the assumption of independence is not satisfied.  

Standard errors derived from these regressions may underestimate the true variation in the 

sample average.  Model (7) displays the same serial correlation trends as model (6). 
 

Serial correlation is present, so any standard errors associated with coefficient estimates of either 

of the regression models will be underestimated.  These standard errors must be corrected using a 

serial correlation coefficient.  Determining which correlation coefficient to use (corresponding to 

first or higher order autoregressive models) was accomplished graphically based on a partial 

autocorrelation function analysis. A first order autoregressive model is appropriate for runs 3, 4, 

and the whole dataset.  The correction factor for the standard errors of the coefficient estimates 

for runs 3 and 4 was on the order of 2 (standard errors were about twice as large as reported by 

the regression model) and for the whole set was on the order of 5 (standard errors were about 

five times as large as reported by the regression model). 
 

 
Figure 38: Graphical review for serial correlation for model (6). 
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Figure 39: Graphical review for serial correlation for model (7). 

 

8.1.5 REVIEW OF REFLECTED RADIANT EXITANCE ASSUMPTION 

 
It was assumed that by carefully choosing the pixels in the thermal image created by the camera 

the analysis avoided the necessity of including effects of radiant exitance reflected off of the 

Delrin base and sensed by the camera.  The pixels chosen did not contain a reflection of the 

camera itself, but it is possible the Delrin base reflected the radiant exitance of portions of the 

Delrin tube.  In an attempt to better account for non-linearity in the relationship between the 

temperatures recorded by the two sensors, a review of the data was conducted based on a Delrin 

temperature derived from the following equation: 

 

�𝑇𝐶𝐶𝐶
4 −𝜏𝑊(1−𝜀𝐷)𝑇𝑅

4−(1−𝜏𝑊)𝑇𝑊
4

𝜏𝑊𝜀𝐷
�
1
4 = 𝑇𝐷         (5) 

 

Equation (5) retains the term, not present in equation (3) from section 2.1.2, that accounts for the 

temperature, TR in units of Kelvin, of the surrounding environment reflected off of the Delrin 

base.   
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To arrive at TR, the probe temperature was used as a proxy for the surface temperature of the 

Delrin tube.  The tube was ¼” thick and the probe was inserted in the Delrin base approximately 

¼” from the coolant. The temperature at which the portion of the tube submerged in the coolant 

emitted is assumed to be equal to the probe temperature.  This assumption is supported by 

properties associated with heat conduction already addressed in this report.  A statistical analysis 

of the data that included the reflected term revealed that all the trends associated with models (6) 

and (7) previously discussed were evident in this modified set of data.  Figure 40 shows the only 

evident change, an offset (y-intercept) shifted upward when compared to the other set of data. 
 

 
Figure 40: Scatterplots of the data analyzed.  The plot on the left excluded the reflected term.  The plot on the 
right includes the reflected term. 

 

8.1.6 RESULTS 

The results from model 6, 𝜇{𝑇𝑃𝑃𝑃𝑃𝑃|𝑇𝐶𝐶𝐶} = 𝛽0 + 𝛽1𝑇𝐶𝐶𝐶, are shown in Table 2 and Table 3. 

Reliable estimates of uncertainty can be provided only for Run 1.   
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  Β0 
STANDARD 
ERROR (C)  Β1 

STANDARD 
ERROR (C)  

RUN 1 -3.69 0.17 0.74 0.004 
RUN 3 -1.18 NA 0.68 NA 
RUN 4 -15.50 NA 0.83 NA 

FULL SET 0.08 NA 0.62 NA 
Table 2: Model 6 regression results.  The results are for the dataset that excluded the reflected exitance term.  
NA indicates that no reliable estimate could be made. 

 

  Β0 
STANDARD 
ERROR (C)  Β1 

STANDARD 
ERROR (C)  

RUN 1 3.74 0.13 0.74 0.004 
RUN 3 5.67 NA 0.68 NA 
RUN 4 8.28 NA 0.84 NA 

FULL SET 6.59 NA 0.61 NA 
Table 3: Model 6 regression results.  The results are for the dataset that included the reflected exitance term.  
NA indicates that no reliable estimate could be made. 

The results from model 7, 𝜇{𝑇𝑃𝑃𝑃𝑃𝑃|𝑇𝐶𝐶𝐶} = 𝛽0 + 𝛽1𝑇𝐶𝐶𝐶 + 𝛽2𝑇𝐶𝐶𝐶2 , are shown in Table 4 and 

Table 5. 

 

The results indicate that including the reflected radiant exitance term in the camera derived 

Delrin temperature mainly had an impact on the offset (y-intercept) of the regression line.  The 

term did not help explain the non-linearity in the probe/camera temperature relationship.     
 
 

  Β0 
STANDARD 
ERROR (C)  Β1 

STANDARD 
ERROR (C)  Β2 

STANDARD 
ERROR (C)  

RUN 1 -5.25 1.73 0.82 0.09 -0.001 0.0011 
RUN 3 -0.78 0.12 0.61 0.01 0.001 0.0002 
RUN 4 94.23 11.92 -2.33 0.34 0.023 0.0024 

FULL SET -0.94 NA 0.70 NA -0.001 NA 
Table 4: Model 7 regression results.  The results are for the dataset that excluded the reflected exitance term.  
NA indicates that no reliable estimate could be made. 
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  Β0 
STANDARD 
ERROR (C)  Β1 

STANDARD 
ERROR (C)  Β2 

STANDARD 
ERROR (C)  

RUN 1 3.57 0.96 0.75 0.06 0.000 0.0011 
RUN 3 5.63 0.04 0.64 0.00 0.001 0.0001 
RUN 4 85.92 9.87 -2.31 0.33 0.026 0.0027 

FULL SET 6.01 NA 0.69 NA -0.001 NA 
Table 5: Model 7 regression results.  The results are for the dataset that included the reflected exitance term.  
NA indicates that no reliable estimate could be made. 

 

In attempting to meet the four basic assumptions that justify conclusions based on a linear 

regression model, the statistical analysis indicated the need to add a term that included the 

camera derived Delrin temperature squared (see model 7).  This added term seems to address the 

observation stated in the introduction that provided the impetus for this study.  During times of 

increasing temperatures the camera reported temperatures that, in general, increased at a greater 

rate and arrived at a greater maximum than those returned by other sensors measuring the same 

object.  A simple linear relationship between the two sensors does not account for the non-

constant difference between measured rates of temperature change.  However, the temperature-

squared term can account for a varying response in the camera recorded temperature encountered 

in the field.  If the coefficient associated with the temperature-squared term is negative (as in 

model 7 Run 1 reflected term excluded and both full dataset regressions for model 7), as the 

camera measured temperature and its rate of change increase the correction to the camera 

measured temperature accounts for that response and offsets it.  A similar correction (depending 

on the sign of the coefficient) occurs as the temperature decreases.   
 

An extra sum of squares (ESS) F-test was used to provide evidence about whether the difference 

in the sums of squared residuals between the fuller model 7 and simpler model 6 is greater than 

can be explained by chance variation.  That is to say, it was used to provide evidence that can be 

used to justify adding a term to a regression model and against a suspicion of over fitting the 

model.  The test results are reliable only if both models meet the basic regression assumptions.  

In this study, this test can only be applied to Run 1.  The test provided no evidence that the 

temperature-squared term in Run 1 should be retained (ESS F-test, p-values .38 and .86).  

However, Run 1 did not include any of the most extreme temperatures encountered during the 
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study, and conclusions based on data from Run 1 are supported statistically only for the range of 

temperatures encountered in Run 1. 

 

The statistical analysis seemed to support the simple linear relationship displayed in Figure 4.  

All model 6 results were applied to the data during the proof of concept to determine best fit with 

the physical system.  The best fit was the full model 6 that included the camera’s radiant exitance 

term (see equation 2 and Table 3).  The calibration function used is the following: 

 

𝑇𝑃𝑃𝑃𝑃𝑃 = 6.59 + .61𝑇𝐶𝐶𝐶         (21) 

 

In this case TCam is equivalent to Tfol from equation 15 from 3.3.1.2.  The calibration is applied 

after all the filtering described in section 3.3.1 is carried out so that the relationship used to 

determine the foliage canopy temperature, Tfol, is the following: 

 

𝑇𝑓𝑓𝑓 = 6.59 + .61 �
𝑇𝑐𝑐𝑐4 −𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤�

𝑀𝑠𝑠𝑠
𝜎𝜎𝑎𝑎𝑎

�−𝜀𝑎𝑎𝑎𝜏𝑤𝑤𝑤𝑇𝑎𝑎𝑎4 −𝜀𝑤𝑤𝑤𝑇𝑤𝑤𝑤
4

𝜀𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤
�

1
4

    (22) 

 

8.1.7 CONCLUSIONS 

Properties and effects associated with heat transfer were not dealt with in a satisfactory way in 

this study.  For example, neither the Delrin manufacturer nor its vendor was able to provide 

information about how that material’s thermal conductivity changed with respect to temperature.  

This led to the assumption that time lags (see appendix section 8.1.2 for full explanation) 

between camera recorded temperatures and probe recorded temperatures were constant, and data 

that did not appear to agree with this assumption were excluded from analysis.  There was a 

small pump in the refrigeration unit.  Convective heat transfer was not addressed at all in this 

analysis.  Better material data and a more accurate treatment of heat transfer may have resulted 

in clearer results.    

 

The FLIR SC305 camera displayed a non-linear response to temperature changes during field 

use.  Using a calibration function model with a temperature-squared term addressed effects 

associated with that observation.  This study produced no statistical evidence to support adding 
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such a term.  For model 6 only Run 1 produced data that met the assumptions necessary to justify 

statistical conclusions based on linear regression.  For model 7 Runs 1, 3, and 4 produced data 

that met the assumptions necessary to justify statistical conclusions based on linear regression.  

The data in Run 4 differed significantly from that in Runs 1 and 3. Data from Runs 1 and 3 

largely agreed.  These at times contradictory conclusions indicated a need to apply the 

calibration functions developed in this study to data collected with this TIR camera to determine 

their goodness of fit.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



89 
 

9 GEOPROCESSING RESULTS 

9.1 A NOTE ON THERMAL REFLECTIVITY 

 
Figure 13 shows ‘hot spots’ in the upper regions of Watershed 1.  As can be seen in Figure 2, 

these hot spots are actually outcroppings of bare rock.  The explanation for the temperature 

difference is based on the differences in thermal properties between the rocks and the foliage 

canopy.  Comments on the HJ Andrews website and a study of the geology of HJ Andrews 

Experimental Forest (Swanson, 1975) seem to confirm these outcrops are basalt.  Basalt has a 

thermal reflectivity of .28 (Engineering Toolbox, 2015).  This is much higher than the thermal 

reflectivity of .02 for the foliage canopy in the watershed.   No attempt was made to mask these 

outcrops from the image or to apply a variable emissivity to the thermal imagery. 

 

The camera measures the amount of incoming longwave radiation and assigns a temperature to 

each pixel in the image based on this information.  Equation 11 form 3.3.1.2, defining the 

amount of reflected longwave radiation sensed by the camera, shows why the difference in 

thermal reflectivity is important. 

 

𝑀𝑟𝑟𝑟 =  𝜌𝑓𝑓𝑓𝜏𝑎𝑎𝑎𝜏𝑤𝑤𝑤( 𝑀𝑠𝑠𝑠

𝜎𝜎𝑎𝑎𝑎
)   

 

Increasing ρfol from .02 to .28 increases the amount of incoming longwave radiation the camera 

senses by an order of magnitude.  This is what causes the rocks to look brighter than the foliage.  

There is a corresponding decrease in the amount of thermal longwave radiation emitted by the 

rocks, but changing the emissivity value from .98 to .72 does not decrease that term’s 

contribution by an order of magnitude.  The nighttime temperature difference between the rocks 

and the foliage canopy is on the order of 2 K. 
 

9.2 GEOPROCESSING TOOL STRENGTHS 

 

The output image maintained the integrity of the data.  The minimum and maximum 

temperatures did not change between the filtered and corrected camera image and the 
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geoprocessed camera image.  Prominent features in the output image coincide spatially with their 

counterparts in the base map imagery in Figure 13.  Some analysis on this dataset is concerned 

with vertical profiles of temperature and potential temperature in the watershed.  The root mean 

square error for the location of each pixel in the geoprocessed file is 29 m (23 m for the wider 

angle lens mentioned in section 2.2.2).  There are some areas in Watershed 1 where uphill slopes 

exceed 70°.  A 29 m error may correspond with nearly the same vertical rise.  At a typical value 

for the saturated adiabatic lapse rate of 6.5 K km-1, the 29 m elevation error can approximately 

correspond to a .2 K temperature variation.  This is well within the uncertainty involved with the 

sensors involved in the study.   
 

9.3 GEOPROCESSING TOOL WEAKNESSES 

 

The input raster size was 320 x 240 pixels.  The output raster size is 1133 x 657.  Exactly 

400,340 of the values in the output raster are simply background values that exist to maintain the 

rectangular shape of the raster after the image was warped.  These background values are not 

displayed in Figure 13.  The remaining number of pixels is approximately 4.5 times larger than 

the original number.  The discrepancy is based on two facts.  Firstly, the geoprocessing routine in 

ENVI only accepts a constant physical dimension for the input pixel size.  As the image is 

warped to match its map coordinates the pixels change size.  Secondly, from the camera’s 

perspective there are portions of the watershed that are not visible.  The ENVI routine 

compensates for this fact by using nearest neighbor (method is user specified) spatial 

interpolation.  While the proof of concept portion of this study was able to compare camera 

derived temperatures to values from a pyrgeometer and air temperature sensors, there were no 

sensors in situ in the areas not seen by the camera.  Therefore there is no way to evaluate the 

interpolated camera derived temperatures for accuracy. 

 

9.4 SUMMARY AND CONCLUSIONS 

The errors reported in section 9.2 suggest that the selected thermal imagery geoprocessing 

workflow produced results that are accurate.  The root mean square error calculated for the 

results provides a level of certainty that spatial inaccuracies will have a very small effect on any 
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temperature based calculations.  A time series dataset of spatially referenced foliage canopy 

temperatures in Watershed 1 has been produced and uncertainties involving its spatial accuracy 

and sensors providing the data are known.  This dataset can be a basis for further analysis.    
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