

Ν()ΑΑ

FISHFRIFS

Pacific Islands

Science Center

Fisheries

Can Native Species Compete with Valuable Exotics?

Measuring Willingness to Pay for Recreational Fishing in Lake Michigan

Jennifer Raynor – NOAA Fisheries Daniel Phaneuf – University of Wisconsin-Madison

July 17, 2018

NOAA FISHERIES

Research Questions

For recreational anglers on Lake Michigan...

Does target species affect econ. value? Walleye ≽ Chinook ≻ Lake Trout

Can native species maintain econ. value?

Lake trout: lose 14-37% of value Walleye: increase value (maybe)

Data Collection

- Wisconsin Angler Survey 2016 (n=1000, 48% response)
- Licensed anglers + Trout and Salmon Stamp holders
- Choice Experiment: 6 questions each
- 11. Which of the following options would you prefer? Please choose only one.

	Option A	Option B	Option C
• Target species	Chinook Salmon	Lake Trout	
• Number of target species caught	2	1	
• Average size of target species	10 pounds / 30 inches	15 pounds / 35 inches	Do something other
 Secondary target species 	Coho Salmon	Rainbow Trout	Michigan or Green
 Likelihood of catching secondary species 	High	Low	Bay
• Trip cost per person	\$150	\$50	
Preferred option			

Random Utility Maximization (RUM) Model

- Predict angler behavior
- Choose trip that maximizes utility

 $U_{ijt} = V_{ijt}(p_{jt}, q_{jt}, s_i) + \mathcal{E}_{ijt}$ **Observed** Unobserved Utility (known to angler)

Specification of Utility

Welfare Estimates

- Can only estimate <u>conditional</u> welfare changes
 - Fish v. not fish
 - Switch trips

- Trip scenarios, by sp.
 - Current
 - Good
 - Best-case

Estimation

- Multinomial logit
- Subsamples

Warm Water Angler

Stamp Holders

Thresholds to Fish

	Stamp- holder	Salmon Angler	Trout Angler	Warm Water Angler
Walleye	Always	Always	Always	Always
Chinook Salmon	Always	Always	Always	
Lake Trout (Low prob. 2 nd)				
Lake Trout (High prob. 2 nd)				

WTP for Fishing Trips (v. Not Fish)

WTP/WTA to Switch from Chinook Salmon Trip to...

Feasibility of Switching Target Species

- Gear, expertise, accessibility
- Salmon \rightarrow Trout = Trivial
- Salmon \rightarrow Walleye = Hard

WTP/WTA to Switch from Chinook Salmon Trip to...

Aggregate Economic Value (Non-Market)

• WTP × trips = aggregate value = \$81 million/year

Conclusions

- Chinook Salmon economically important, Walleye
 even more so
- Native species could maintain economic value if...
 - Walleye widely-accessible
 - Lake trout conditions improve
 - Managers recruit new anglers

Recommendations

- Maintain diverse sportfish base
- Rehabilitate Walleye more widely
- Publicize native species fishery
- Reassess preferences in future

Thank you! Questions?

Contact info: jennifer.raynor@noaa.gov jenniferraynor.com

Funded by: Wisconsin Sea Grant Institute

