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Diffusion processes in networks are common models for many domains, including

species colonization, information/idea cascade, disease propagation and fire spreading.

In diffusion networks, a diffusion event occurs when a behavior spreads from one node

to the other following a probabilistic model, where the behavior could be species, an

idea, a virus, fire, etc. In the real world, in addition to observing diffusion processes,

people are usually able to control the influence of diffusion by conducting operations on

each individual node or node groups. Then the diffusion network control problem is to

decide how to perform possible controls in order to maximize or minimize the range of

diffusion, especially when there is a limited resource for doing controls.

Diffusion network control problems are challenging for most AI planning techniques.

The complexity comes from highly stochastic exogenous events, a large action branching

factor (the number of combinations of individual operations), a long time horizon, and

the need to reason about numeric resource limits. In this thesis, we explore approaches

that offer high-quality policies of controlling diffusion processes in large-scale networks.

We first propose a non-adaptive policy in conservation planning, where the goal is

to encourage species spread in a long term. Given a set of control operations of interest,

this policy specifies the deadline of taking each operation, so that the resource is used

with the most flexibility while keeping the loss of diffusion influence within a desired

ratio. This is particularly applicable in cases where a domain expert can develop a set



of control operations that captures their own objectives. Then our approach provides a

way of trading off diffusion influence and resource usage.

We further propose a fully adaptive approach for this conservation planning problem

by computing a Hindsight Optimization (HOP) solution at every time step. Instead of

computing a HOP action in the traditional way which is linear in the number of actions,

we take advantage of its separable structure and develop an effective algorithm that scales

for exponentially large, factored action spaces. From experiments on both synthetic and

real data sets, we show that our algorithm returns near-optimal HOP solutions while

scaling to large problems.

Moreover, we extend our implementation of HOP policy to a general framework of

online planning for diffusion network control problems. In particular, we give a general

and formal representation of diffusion network problems. Our framework proposes a

schema of effectively computing multiple lookahead policies, some of which have been

successfully applied to various probabilistic planning problems. We evaluate our ap-

proach on diffusion network control problems in conservation planning, epidemic control

and firefighting. The experimental results demonstrate the behaviors of these lookahead

policies and the advantage of each in different domains.
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Chapter 1: Introduction

Many natural processes, such as the idea broadcasting in social networks and disease

spreading in population, can be abstracted as a network with a diffusion process. The

basic observation is that a behavior of an individual may trigger similar behaviors in its

connections. And such viral behavior (information/idea/disease) propagates contagion

from nodes to nodes over time following a certain spreading model, which is typically

stochastic. Within some time horizon, the behavior can cascade over a significant portion

of the network. For example, some species occupying one habitat patch may colonize

other patches in a fragmented landscape. If the landscape contains suitable patches, the

species would cover some of them after some period of time.

In reality, one would often like to control the diffusion process for optimizing the

influence of a cascading behavior (e.g. to conserve some portion of the landscape for

maximizing the number of patches covered by the species at the end of some time hori-

zon). Usually, the controls would not only affect the diffusion at current time step, but

also have long-term effects. Hence the optimization problem must include many time

steps, making it more challenging to solve. Also, the controls do not directly affect the

diffusion outcome. A diffusion process includes stochastic events that probabilistically

depend on the controls. In other words, there is great uncertainty as to the actual re-

sult of the controls. Therefore, to decide the optimal controls, one must reason about a

long-term stochastic influence.

Another complexity comes from the size of decision space. An atomic control in

networks is often defined with respect to an individual node or a set of nodes. Then

the action space is combinatorial due to the combinations of atomic controls. In online

planning problems where the task is to find a sequential plan, the long time horizon adds

one more dimension to the policy space.

In this dissertation, we present our progress in probabilistic planning with exponential

state and action space by addressing several planning problems with diffusion networks.

We propose several techniques to handle stochastic optimizations and leveraging large

action space. Our solutions are shown to be effective and high-quality in a number of
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domains with diffusion network control.

1.1 Diffusion Networks

A network (graph) is a widely used mathematical form to express a set of entities and

their relationship, where entities are abstracted as nodes and edges between node pairs

represent their connections. As a fundamental process in networks, diffusion is a behavior

that cascades from nodes to nodes like epidemics. Some examples include:

Species conservation. A landscape of interest is divided into small land patches,

each of which corresponds to a node in the network. Each node has two possible states

at each time step: either unoccupied or occupied by the species, and only conserved

patches may be occupied. An edge exists between two nodes if the species may colonize

from the corresponding land patch to the other. When the species of interest are highly

mobile like birds, we have edges between every pair of nodes and arrive at a complete

graph.

Information diffusion. Nowadays, online social networks are major media for

spreading information at a very large scale. Here information can be news, rumors,

opinions, recommendations, etc. The network could be a social network of individu-

als or organizations. Edges represent a medium for communication or the passage of

information.

Disease or virus propagation. For centuries, people have observed infectious

diseases spreading through a susceptible population. The connection between people

can be interpreted as whom-infects-whom. Computer virus diffusion can be modeled

similarly over a computer network. A typical epidemic often spread rapidly by infecting

a large number of people within a short period of time.

Fire spreading. Fire also spreads in a network of fragmented flammable surfaces.

Fire can jump over small gaps and climb up walls. The diffusion model of a fire heavily

depends on the combustible material present, as well as some factors that are independent

of the nodes, such as weather.

Note that in practice these networks are usually large scale. Moreover, we are par-

ticularly interested in applications with stochastic diffusion processes, i.e. the spreading

between two nodes follows a probabilistic model.
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1.2 Controls in Diffusion Networks

One important purpose of studying diffusion networks is to make decisions about what

actions to take before or during the diffusion process in order to control the diffusion

influence. For instance, to prevent an infectious disease breakout, vaccinations are pro-

vided to susceptible individuals and treatments are given to infected patients. As another

example, a commonly used marketing strategy is to select a group of influential people as

seeds and let them introduce a new product to their connections and followers. Usually a

type of control operation (e.g. a vaccination) is available to a large number of individual

nodes in the network. Therefore, a possible decision is to take a control operation on a

subset of nodes, which gives rise to a combinatorial decision space.

Above examples highlight the challenges in planning for diffusion networks, especially

when the state space and action space are exponentially large. We aim to pursue a general

schema for optimizing the diffusion in these networks by taking control actions during

a time horizon. This probabilistic planning problem poses considerable challenges to

general off-the-shelf planners. The complicating factors include: 1) highly-stochastic,

exogenous dynamics that arise from the large-scale network and the spreading model, 2)

the need to reason about spatio-temporal processes, 3) the combinatorial action space

at each point of time that comes from all the investment combinations, and 4) the long

time horizons of interest that must be considered. The general solution schema we

provide suggests approximating the problem via sampling of the future dynamics and

then studying the resulting deterministic optimization problem through a well-studied

subproblem, or a compact encoding and possible computation speedup using techniques

like Lagrangian Relaxation.

1.3 Non-adaptive Planning for Diffusion Network Control

With some simplification, a diffusion network control problem is more likely to allow

efficient and near optimal approaches. One popular simplified problem is upfront plan-

ning, which assumes that all control actions are taken upfront with currently available

resources. This version of problem has shown importance in real-world applications.

In the viral marketing setting, Kempe et al. [34] address the problem of selecting k of

individuals to initiate a diffusion process in order to maximize the eventual influence
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of the diffusion. They also show that with several diffusion models, this problem is

a submodular maximization problem and admits a greedy, but near optimal approach.

Another upfront problem in conservation planning is done by Sheldon et al. [51]. Though

their optimization problem is still difficult since it is not submodular, their approach can

provide solutions with stochastic optimality guarantee.

1.4 Fully Adaptive Planning for Diffusion Network Control

An ideal approach would be fully adaptive planning, in which the planner faces a task

of making sequential decisions in an interaction with the environment. In particular, at

every decision step, the planner observes the state of the environment and returns an

action that is executed immediately. As a feedback, the environment provides a numeric

reward that specifies the immediate utility of taking that action in the current state.

Such steps repeat until a terminal state is reached.

Compared to non-adaptive planning, the fully adaptive planning has the advantage of

observing and making decisions based on the stochastic outcomes of diffusion. It may be

very suboptimal to ignore the actual diffusion outcomes in domains with highly stochastic

events. This is analogous to the comparison between open-loop and closed-loop controls.

Moreover, in many real problems, resources for controls arrive in increments over time.

Then only a small number of controls can be afforded at initial time step. In a long

term, it is not reasonable and also suboptimal to only make upfront controls.

One popular framework for adaptive planning is Reinforcement Learning (RL) ap-

proaches, in which the planner explores the environment and learns a policy that maps

states to actions. Pure RL algorithms require little knowledge about the specific problem

as long as a Markov Decision Process (MDP) encoding is given. Typically, the policy is

learned and improved through a trial-and-error process, where the agent observes cur-

rent state, executes an action according to its algorithm, receives only a reward value as

feedback, and then repeats. Unfortunately, without additional modeling and knowledge,

pure RL algorithms are usually expensive to use in terms of how much experience is

needed. Their complexity is even higher in problems with large state and action spaces

since the planner aims to compute a policy over the entire reachable state space.

Recently, several techniques are proposed to accelerate the learning of pure RL. For

example, in Hierarchical RL, a large task is decomposed into a hierarchy of smaller tasks.
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The policy to be learned is then restricted to be consistent with this hierarchy. Ideally, the

task hierarchy serves as a pruning technique for eliminating obviously incorrect strategies.

However, it may occur that the constraints also prune the optimal solution and the

returned policy is suboptimal.

Unlike RL approaches, lookahead policies make decisions through a domain model or

simulator of the environment that allows forecasting into the future for a finite horizon.

Using future scenarios, lookahead algorithms explicitly consider the space of future ac-

tions for optimizing the action values at the current state. There have been a variety of

algorithms for building lookahead search trees, including model-based approaches such

as RTDP [5] and AO* [7], along with simulation-based approaches such as UCT [36]

and its variants, Policy Rollout, etc. Unfortunately, the performance of tree search al-

gorithms largely depends on the action branching factor, which greatly limits the search

depth in the tree in domains with large action spaces. While it is helpful to address this

problem by pruning bad actions in the search tree (e.g. [45]), it is still a challenge to

apply search methods to large factored action spaces.

1.5 Contributions of This Thesis

In Chapter 2, we address a non-adaptive planning problem of diffusion network control

inn a conservation planning application. Given a design (set) of control actions, a planner

is asked to schedule the time of taking each action in the design so that the budget is used

with maximum flexibility while the population loss is within control. With the Sample

Average Approximation (SAA), we reduce a special case of this probabilistic scheduling

problem to a variant of the Steiner tree problem, which is shown to be computationally

hard. We apply primal dual techniques to develop an algorithm that computes both

a feasible solution and a lower bound on the quality of the optimal solution. Next,

we add early-stopping to our primal dual algorithm in order to trade off between future

population and budget flexibility. Experiments on synthetic and real data sets show that

our algorithm can effectively return near-optimal solutions and is much more scalable

than off-the-shelf optimizers.

In Chapter 3, we propose a fully adaptive approach based on Hindsight Optimization

(HOP) for this conservation planning problem. At every decision epoch, we observe the

current state and compute a HOP action for immediate execution. Compared to standard
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implementations of HOP that enumerate each action, our algorithm shows scalability to

the combinatorial action space via the use of a dual decomposition technique. Our

experimental results demonstrate that the HOP solution can be computed effectively

through our algorithm and HOP can significantly outperform myopic alternatives.

In Chapter 4, we formally set up the probabilistic diffusion network control problem in

a general way. To provide a fully adaptive solution, we extend our HOP implementation

to a general framework, which can incorporate multiple lookahead policies. Then we

apply our approach schema to diffusion network control problems in epidemic control

and stochastic firefighting. Evaluation results show the effectiveness of the approach. We

also observe different strategies of each lookahead policy in each domain, which highlight

their differences.

All together, this thesis explores probabilistic planning techniques for controlling

large-scale diffusion networks which contain highly stochastic spreading events. Ex-

perimental results show that these techniques return high-quality plans on real-world

problems. Hopefully, diffusion network control problems in other disciplines can adopt

our approaches easily and successfully.



7

Chapter 2: Scheduling Conservation Designs for Maximum

Flexibility

2.1 Introduction

Reserve site selection is a key problem in conservation planning in which planners select

land regions to be designated as nature reserves, either to achieve general conservation

goals such as preserving biodiversity, or to achieve specific goals such as supporting the

recovery of an endangered species. In general, the problem is extremely complex as it

involves reasoning about the interplay between uncertain population spread, uncertain

future budgets, and other problem specific factors. In particular, properly assessing

population spread involves reasoning about spatial aspects of landscapes such as their

sizes, shapes, and connectivity. Further, the decision space is huge, consisting of all

possible land investment combinations over time.

Given the above factors, it would be highly desirable for conservation practition-

ers to enhance their decision making via automated, or semi-automated, planning and

scheduling algorithms. Unfortunately, this problem is beyond the scope of existing off-

the-shelf stochastic planners and schedulers. This is largely due to the combination of

enormous state and action spaces, the highly uncertain, exogenous dynamics, and the

need for spatio-temporal reasoning. The main contribution of this paper is to make

progress toward handling these complexities by studying a useful subproblem of conser-

vation planning that can be used by practitioners on realistic scenarios. The general

schema used to develop our algorithm is more widely applicable (see Section 2.6) and

one that has not received significant attention in the AI community. Thus, we hope that

this work will also inspire new specialized and general-purpose approaches for complex

stochastic planning/scheduling problems.

Recently, Sheldon et al. [51] studied a restricted, but still challenging, version of the

conservation planning problem, which we will refer to as upfront conservation design

optimization. In this problem, the planner is given an upfront budget and a stochastic

metapopulation model [26] that describes how the species under consideration will spread



8

throughout a landscape of available habitat. In addition the system is given information

about the costs of potential land parcels that are available for purchase and conservation.

The objective is to select a set of land parcels to immediately purchase and conserve,

subject to the budget constraint, that will maximize the spread of the population within

a specified time horizon.

A key simplification present in this problem is that all land parcels are assumed to

be purchased upfront with the currently available budget. An advantage of this simpli-

fication is that it allows for a reasonably efficient and near optimal solution approach

[51]. However, the upfront simplification limits the utility of the approach in a number

of ways. First, conservation budgets generally arrive in increments over time, so it is

unrealistic to purchase a large set of parcels in advance and restricting to a small set of

parcels using the current budget may be very suboptimal in the long run. Moreover, it

is often unnecessary to purchase parcels that are spatially remote from the current pop-

ulation until the species has spread enough to make them relevant to further population

growth. Second, this upfront simplification requires planners to commit in advance to

conservation strategies that may take many years to play out, which ignores the poten-

tial advantage of observing and responding to the stochastic outcomes of the population

spreading process as it unfolds. For example, as the population spread is observed, it

may be beneficial to divert money from failed subpopulations to purchase more parcels

near thriving populations.

In contrast to upfront planning, an ideal approach would be fully adaptive planning,

where, at regular decision epochs, the planner would make purchase decisions based

on the most recent population and budgetary information. Unfortunately, no currently-

available adaptive planning tools can scale to realistic conservation scenarios. This is due

to the combination of an enormous state space (possible population and purchase con-

figurations), enormous action space (possible subsets of land parcels to purchase), long

horizons (tens to hundreds of years), and high degree of stochasticity in the population

spread model.

Given the challenge of arriving at a fully adaptive solution, a main contribution of

this paper is to introduce a problem that strikes an important middle-ground between

the upfront and fully adaptive approaches. In particular, we consider conservation design

scheduling for exploring the trade-off between future population and cost, where we are

given an initial conservation design (i.e. a set of parcels to purchase) and are asked to
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schedule the purchase time of each parcel in a way that (1) achieves a population spread

over the time horizon within an arbitrary tolerance of population loss, and (2) maximizes

purchase flexibility by delaying the specified purchase time (i.e. purchase deadline) for

each parcel as long as possible.

This problem formulation simplifies over the fully adaptive problem in a number of

ways. First, the set of parcels to be purchased is provided as input, which removes this

degree of freedom from the planning problem. Second, and more significantly, in order

to select an action for the current time step, the general case of fully adaptive planning

requires computing a policy that dictates what to do at each possible future contingency,

or at least the reasonably likely ones. In contrast, the space of possible schedules, our

focus here, is much smaller than the space of policies or even partial policies. This allows

for a compact encoding of the scheduling problem, which does not appear possible for

the problem of computing full, or even, partial policies. This distinction between the

fully adaptive and scheduling setting is akin to the distinction between closed-loop and

open-loop planning, where generally computing closed-loop plans is considered to be

more difficult than open-loop plans for large stochastic problems.

A solution to the above scheduling problem yields a useful tool to conservation plan-

ners, who can first develop conservation designs that capture their own complex decision-

making objectives, perhaps with optimization software, and then schedule the purchases

to obtain the most efficient and cost-effective implementation of that design. The con-

servation planner then has the flexibility to purchase the parcels at any time before the

schedule-specified deadlines, knowing that the population spread will not be hurt too

much by such purchase delays.

In addition, our scheduling problem can potentially be used as a component of an

adaptive planner. A common and successful approach for many adaptive planning prob-

lems is replanning, where at each decision epoch a non-adaptive plan is computed from

the current state and its first actions are executed. Our work enables a replanning

approach that at each decision epoch first computes an upfront design using existing

work [51], and then computes a schedule and purchases only the parcels scheduled to be

purchased immediately. This purchase strategy would spend the minimum amount of

budget at each step while guaranteeing a limited loss in population spread.

In addition to introducing and formalizing the problem of conservation design schedul-

ing, the second contribution of this paper is to develop a principled algorithm for solving
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it. The key idea is to apply the Sample Average Approximation (SAA) approach [50]

in order to arrive at a novel deterministic optimization problem, for which we develop

a principled solution with a motivation from its special case. In particular, when the

approximated loss tolerance ratio is 0, our deterministic optimization problem is one

of network cascade optimization, which we show is equivalent to a novel variant of the

directed Steiner tree problem. In the traditional Steiner tree problem, graph edges are

associated with costs, and the objective is to compute a Steiner tree with minimum

cumulative edge cost. In our variant, the set-weighted directed Steiner graph problem,

costs are associated with sets of edges (possibly non-disjoint) rather than individual

edges. We show that this problem is computationally hard even under restrictions where

the traditional problem admits an efficient solution. We then present an efficient primal-

dual algorithm, which is guaranteed to compute both a feasible solution and a bound on

the quality of the optimal solution. Then an early-stopping version of the algorithm pro-

vides a natural approach to explore the trade-off between future population and budget

flexibility.

Our experiments on both real and synthetic data from a Red-cockaded Woodpecker

conservation problem show that our primal-dual algorithm produces near optimal results

and is much more scalable than standard optimization tools (CPLEX). We also show

that the trade-off between population and budget allows for a flexibility of purchasing

land parcels.

In what follows, Section 2.2 first presents related work, followed by our problem

formulation in Section 2.3. Section 2.4.1 then shows how to reduce our subproblem to

the set-weighted directed Steiner graph problem. Section 2.4.2 derives the corresponding

primal-dual algorithm and a natural extension for the trade-off problem. Experiments

are presented in Section 2.5. Finally we conclude and discuss future work.

2.2 Related Work

Previously, many different algorithms have been proposed to select reserve sites by for-

mulating a numerical measure of reserve quality (together with the possible addition of

constraints the reserve must satisfy) and then solving for the optimal set of sites un-

der the proposed model (e.g. see the review article, Williams, Revelle, & Levin, 2005).

Although the earliest reserve site selection algorithms largely ignored spatial considera-
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tions, many newer models incorporate spatial objectives or constraints directly into the

optimization problems. Williams, Revelle, and Levin argue that a primary reason for

the importance of spatial attributes is the fact that they capture properties of the land-

scape that are favorable for the underlying population dynamics, and that an important,

but computationally difficult, research direction is to directly optimize with respect to a

model for the population dynamics instead of using spatial attributes as a proxy. This

is the direction that we are following in this paper by addressing the problem of spatial

conservation planning with respect to a specific and widely adopted model of population

dynamics.

A recent approach that explicitly reasons about a population dynamics model is the

work of Sheldon et al. [51] on the upfront conservation design problem, as described in

Section 2.1. In order to cope with the stochasticity of the model, the Sample Average

Approximation (SAA) approach was employed to transform the stochastic problem into

a deterministic combinatorial optimization problem. This problem was then encoded as

a Mixed Integer Program (MIP) and solved using state-of-the-art solvers. While that

approach was able to solve reasonably large problems via various speedup techniques,

the scalability is still limited to a relatively small number of “sample scenarios” used by

SAA, which controls the accuracy of the approach. Kumar et al. [37] have addressed

this aspect of the approach. Lagrangian relaxation was used to decompose the SAA

problem into independent subproblems that could each be solved in a practical time

frame, possibly in parallel, by standard optimizers. This was shown to significantly

reduce the runtime dependence on the number of SAA samples used.

Unfortunately, directly extending the above approach to compute multi-stage adap-

tive solutions, where the budget arrives in increments over time, does not seem practical.

One attempt at this for two-stage problems was considered by Ahmadizadeh et al. [1].

They explore re-planning using a two-stage non-adaptive problem formulation and find

that it can indeed offer advantages over upfront planning. In their setting, the budget

split and decision epochs are manually fixed. Unlike that work, our work explicitly sep-

arates the decision of which parcels to buy from the decision of when to buy them (the

focus of this work), so that we may develop efficient special-purpose algorithms for the

latter problem that scale much more easily to bigger problems and more stages.

There are several existing approaches that might be considered for a fully adaptive

solution to the conservation problem. For example, the fully adaptive problem can be
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encoded as a Markov Decision Process (MDP), but the resulting state and action spaces

would be far too big for state-of-the-art solvers. For instance, recent advances in solving

large spatio-temporal MDPs [14] require significant restrictions to the solution space,

which are not acceptable in our application. As an existing approach for stochastic

planning that has been successfully applied by Bent et al. [6], Chang et al. [10], Chong

et al. [12] and Yoon et al. [59], Hindsight Optimization samples the future outcomes and

optimistically estimates the state value based on the determined futures. However, when

the action space is huge, this approach would have computational problems as current

algorithms require enumeration of all the candidate actions when approximating the

state value. Another approach would be to formulate the adaptive planning problem as a

multi-stage stochastic integer program. However, the size of such a problem formulation

scales exponentially with the number of stages, and the running time is already very

costly for a single stage [51], or for a two-stage problem in a simpler setting that is not

fully adaptive [1].

Recently, Golovin et al. [25] proved that a simple greedy planning strategy provides

near-optimal solutions in an adaptive conservation setting that at first appears similar

to ours. However, in order to provide approximation guarantees, the authors restrict the

population dynamics so that no spread occurs between distinct land parcels. While this

may be a reasonable assumption for slow-moving species such as certain insects, which

were the focus of that work, it ignores critical aspects of the population dynamics of

highly-mobile animals such as birds, including the Red-cockaded Woodpecker on which

our experiments are based.

2.3 Problem Statement

In this section, we first introduce the basic terminology of conservation design planning

and define our main stochastic optimization problem. Next, we describe how the Sample

Average Approximation (SAA) is used to transform this problem into a deterministic

optimization problem, which is the focus of the remainder of the paper.
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2.3.1 Basic Concepts

We largely follow the formulation of [51]. Our conservation problems will involve a (large)

land region of interest that is divided into land parcels that are the smallest land units

available for purchase. Each parcel contains some number of distinct habitat patches,

which are the atomic units in the population dynamics model and can either be occupied

or unoccupied by the species of interest. For example, in the Red-cockaded Woodpecker

problem considered in our experiments, habitat patches correspond to particular trees

that have been prepared by humans (or existing birds) to facilitate nesting. Each parcel p

has a cost c(p), which denotes the cost of purchasing the land and restoring or conserving

all of its habitat patches so that they are suitable for the species to occupy.

A conservation design is a set of parcels that are intended to be purchased and

conserved. Given a conservation design D, a purchase schedule π for D is a mapping

from parcels in D to purchase times in {0, 1, . . . ,H,∞}, where H is the time horizon

of interest and purchasing a parcel at time t = ∞ means this parcel is not going to be

purchased. Thus the scheduler may choose not to purchase some parcels even though

they are part of the design so as to realize the best tradeoff between budget flexibility

and population spread. Although the species population dynamics have a yearly time

step in our model (described below), the allowed purchase times (i.e. decision epochs)

may be less frequent depending on the specific problem. An upfront schedule is one that

assigns all parcels to purchase time t = 0.

It is worth noting that the purchase times specified by a schedule are best viewed as

purchase deadlines. That is, we interpret the schedule as constraining the purchases to

occur before or at the specified times. This view is justified by the fact that in the setup

below, purchasing a parcel at an earlier time than specified will never result in worse

population spread.

2.3.1.1 Population Dynamics Model

We use the same stochastic dynamics model as [51], which is an instance of a popular

metapopulation model from the ecology literature [26]. A patch a has two possible

states at each time step, either unoccupied or occupied, and only conserved patches

may be occupied. The population dynamics consists of two types of stochastic events.
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Colonization events occur when a population from patch a colonizes an unoccupied

patch b, which happens with probability pab. Extinction events occur when a patch

a that is occupied at time t becomes unoccupied at time t + 1, which happens with

probability 1− paa. All events are independent. The details of the probabilities used in

our experiments are given in Section 2.5.

The single-step colonization probability pab in our experiments typically decays with

the distance between patches a and b, which encodes spatio-temporal dynamics in which

populations slowly spread from a source population when new habitat is made available.

Thus, in long-term planning for population spread, it is often unnecessary to purchase

parcels that are distant from a source population at time t = 0, since the probability

of the population spreading to such distant patches in the near future is negligible. By

delaying such purchases until they become relevant to the design (i.e. the population has

spread nearby), a conservation organization can use limited funds much more flexibly.

However, it is non-trivial to decide how much to delay purchases so as not to harm

the spread, since this decision depends very much on the spatio-temporal details of the

population spread model. It is this decision that the optimization problem defined below

is designed to make.

2.3.2 Stochastic Optimization Problem

Our problem statement will rely on two important concepts: 1) the reward of a schedule,

and 2) the flexibility of a schedule. We first define these two concepts and then formulate

the optimization problem in terms of them.

The reward of schedule π, denoted by R(π), is a random variable that encodes the

amount of population spread at time H, which is simply a count of the number of

occupied patches at time H. It is easy to show in our model that the upfront schedule

always achieves at least as much reward as any other schedule and thus maximizes the

expected reward. Thus, we define the maximum expected reward as R∗ = E[R(πupfront)].

Our optimization goal is to find a schedule π that almost achieves this optimal expected

reward, —i.e. E[R(π)] ≥ (1 − ε)R∗ where ε is a positive real number and indicates

the percentage tolerance of reward loss —but has maximum “purchase flexibility”. We

know that the upfront schedule achieves (1− ε)R∗, however, it requires commitment to

all expenditures at the first time step and is thus the least flexible. Indeed, we now
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formalize the notion of flexibility in terms of expenditures over time.

Given any schedule π we can define its corresponding cost curve Cπ to be a function

from purchase times to accumulated cost, so that Cπ(t) is equal to the total cost of parcels

purchased under π from time 0 up to and including time t. This curve is non-decreasing

and provides a view of a schedule’s spending profile over the time horizon. In particular,

if the profile of cost curve Cπ1 is never above that of Cπ2 , i.e. the total expenditures of

π1 never exceed those of π2, then we can say that π1 offers more flexibility in terms of

budget management compared to π2 and should be preferred if all else is equal.

Now we define a surrogate cost function over schedules as

costf (π) =
∑
p

c(p) · f(π(p))

which is parameterized by a function f from times in {0, . . . ,H,∞} to real numbers.

We require f(∞) = 0 for any f so that any parcel that is not purchased within the time

horizon would not contribute to the surrogate cost. We can see that this surrogate cost

function is simply a weighted sum of the parcel costs, where the weight is determined

by f based on the parcel’s purchase time. Although our algorithm can work with any

real-valued function, we assume henceforth that f is strictly decreasing. There are two

reasons for this. First, discounting future costs makes sense due to economic factors such

as inflation. Second, intuitively, since f decreases with purchase times, minimizing with

respect to costf would favor schedules that delay purchasing. In particular, if policy π1

has a cost profile that is never greater than that of π2, then π1 will be assigned a lower

surrogate cost when f is strictly decreasing.

If all parcels have positive costs, then the upfront schedule is the unique element that

maximizes the surrogate cost, and the schedule that defers all purchases until time H

gives the unique minimum as f is a strictly decreasing function. However, if we restrict

to schedules that achieve at least reward (1− ε)R∗, the latter schedule will be excluded

and there may no longer be a unique minimum.

We can now specify the problem of conservation design scheduling, which is to find

a schedule π∗ from the set of all possible schedules such that:

π∗ ∈ arg min
π

costf (π) s.t. E[R(π)] ≥ (1− ε)R∗ (2.1)
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That is, out of all schedules that achieve reward (1− ε)R∗ we want to return one that is

minimal in terms of its surrogate cost (i.e. it has maximal flexibility). Thus, ε controls

the trade-off between flexibility and reward. In particular, using larger ε increases the

set of feasible schedules and allows the potential for returning a more flexible schedule

by sacrificing some reward.

Note that by varying the choice of f it may be possible to generate different solutions

to Equation 2.1, each of which is minimal in the sense that no other feasible policy has

a strictly lower cost curve. In our experiments, we use a simple discounted f given by

f(t) = βt for a discount factor β ∈ (0, 1).

In practice, it is likely that a conservation manager will not have a particular value

of ε in mind at design time. Rather, ε is best viewed as a parameter that will be varied

in order to observe the different flexibility-reward trade-offs that are possible. The final

selection of a schedule would then be based on an assessment of those possibilities.

Finally, it is worth noting that for ε = 0 (no reward approximation), the upfront

solution will be the only feasible solution under typical population spread models. Thus,

using ε > 0 is necessary for achieving any additional flexibility. This is because requiring

a policy to achieve expected reward exactly R∗ (i.e., ε = 0) requires it to make purchases

to accommodate very unlikely outcomes of the population spread model that contribute

a tiny, but positive, amount to the expected reward. For example, consider an outcome

where the population jumps from its initial location to a very distant location in the first

year, and then undergoes no further spread. This has vanishingly small, but positive,

probability. The upfront schedule will support this population spread, since the distant

location is purchased at the first step. Thus, any schedule that does not purchase the

distant parcel in the first step will suffer a tiny loss in reward compared to the upfront

schedule, so it does not achieve ε = 0. However, such a purchase will tend to be useless

for the vast majority of the probability mass.

2.3.3 Deterministic Optimization Problem

The above optimization problem is stochastic in the sense that its constraint is defined

in terms of an expectation over a complicated population spread distribution. This

greatly complicates the direct solution of this problem. As in prior work on stochastic

optimization of upfront schedules [51], we address this complication by converting the
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stochastic problem into an approximately equivalent deterministic optimization problem.

This is done via the very common Sample Average Approximation (SAA) approach (see

Shapiro, 2003 for a survey of some results). The key idea is to approximate a stochastic

optimization problem using a collection of samples from the probability distribution,

which are used to approximate expectations or probabilities via averages over samples.

In our problem formulation, each sample corresponds to a so-called cascade scenario,

which is a particular realization of the population spread process over the time horizon.

The main idea behind our application of SAA is to generate a set of such cascade scenarios

from the probabilistic population spread model, and to approximate the expected reward

of schedules as the average reward over the scenarios. The scenarios are combined into

a single scenario graph, which is illustrated in Figure 2.1 and explained in detail in the

remainder of this section.

More concretely, a cascade scenario is a layered graph, where layers correspond to

time steps, with a vertex va,t for each patch a and each time step t. For each pair

of patches (a, b) and time step t, a coin is flipped with probability pab to determine if

the directed edge (va,t, vb,t+1) is present or not. If this edge is present and patch a is

occupied at time t (through previous colonizations or non-extinctions), then patch b will

be colonized and become occupied at time t+ 1, as long as it is conserved. That is, the

presence of edge (va,t, vb,t+1) is interpreted as meaning that if a is occupied at time t and

b is conserved at or before time t+1, then b will be occupied at time t+1 in the particular

scenario. In this way, a cascade scenario graph encodes occupancy as reachability. In

particular, assuming (for now) that all patches are conserved, then patch b is occupied

at time t exactly when vb,t is reachable from a vertex va,0 corresponding to an initially

occupied patch a.

To approximate the probabilistic spread model, we sample a set of N i.i.d. cascade

scenarios {C1, . . . , CN}, where we will denote the vertices in Cn by {vna,t}. These scenarios

are combined into a single scenario graph, which has an additional root vertex r with

directed edges (r, vna,0) to each vertex representing an initially occupied patch a. Figure

2.1 shows an example scenario graph that has three scenarios over a range of five time

steps involving three patches a, b, and c, and two parcels, one containing a and b and the

other containing just c. In this example, a is the only initially occupied patch and hence

is connected at time step zero to the root node r across all three scenarios. Assuming

that all parcels are conserved (i.e. purchased upfront), if a vertex is connected to the root
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node r, then the corresponding patch is considered to be occupied at the corresponding

time in the particular scenario. This is because we defined r so that it can only be

connected to other vertices through initially occupied patches.

Scenario graphs will be used in our work to estimate the reward of schedules as

follows. Given a scenario graph, a schedule π is said to purchase node vna,t and all of its

incoming edges if patch a is purchased no later than time t, that is, π(p) ≤ t where a

belongs to parcel p. Thus, purchasing a parcel p at time t can be viewed as purchasing

all vertices in the scenario graph, along with their incoming edges that involve patches

in p that occur at layer t or later. This reflects the fact that once a patch is purchased

and conserved, it is considered to be conserved and hence eligible for occupancy for

the remainder of the time horizon. In Figure 2.1, an example schedule is shown that

purchases parcel p1 (containing a and b) at time 0, and parcel p2 (containing c) at time

3. The vertices that are purchased by this schedule are shown in the shaded region and

their (purchased) incoming edges are shown in bold.

We can now define under what conditions a vertex in a scenario graph is considered

to be occupied given a schedule. Vertex vna,t becomes occupied under π if there is a path

through purchased edges from r to vna,t. We define the variable Xn
π (a, t) to be equal to

1 if vna,t is occupied under π and 0 otherwise. In Figure 2.1, we have shaded in red the

set of vertices that are occupied under the example policy. As an example, note that

in scenario 3, the vertex v3
c,3 is not occupied since there is no path from r to it through

purchased edges. This is despite the fact that there is a path in the graph from r,

since that path involves some unpurchased edges. Note that the upfront schedule would

purchase this node, since all vertices and edges would be considered to be purchased

under that schedule.

The average reward of a schedule π relative to a scenario graph built from scenarios

{C1, . . . , CN} is denoted as follows.

R̂(π) =
1

N

N∑
n=1

∑
a

Xn
π (a,H)

This is just the average across scenarios of the number of occupied patches at time H.

In Figure 2.1 the average reward for the example schedule would be 2. A key property of

scenario graphs is that as N →∞ we have that R̂(π) converges to E[R(π)] for any fixed
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Figure 2.1: Example scenario graph (N = 3) for problem with parcels p1 = {a, b},
p2 = {c}. The schedule (π(p1) = 0, π(p2) = 3) is also illustrated, using shaded boxes to
indicate purchased nodes and heavy line weights to indicate purchased edges. Vertices
representing occupied patches under this schedule are colored red.

π. This implies that the set of schedules {π : R̂(π) ≥ (1−ε)R̂(πupfront)} converges to the

set {π : R(π) ≥ (1−ε)R∗} asN grows, which is the set of policies that we wish to optimize

flexibility over. Further, for any policy π, one can use standard probability concentration

bounds (e.g. Chernoff bounds) to show that the event |R(π)−R̂(π)| ≥ ε has a probability

mass that decreases exponentially fast as N grows. This suggests that only a relatively

small number of scenarios are required to reliably obtain a tight approximation to the

true expected reward of a policy. In practice, however, it is important to empirically

validate that the approximation errors are reasonable for the number of scenarios used

in the approximation.

The above motivates a deterministic SAA formulation of our original stochastic op-

timization problem (2.1) where flexibility is optimized subject to a constraint based on
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the empirical reward R̂. That is, our deterministic problem is to solve:

π∗ ∈ arg min
π

costf (π) s.t. R̂(π) ≥ (1− ε̂)R̂∗ (2.2)

where R̂∗ = R̂(πupfront).

2.4 Approach

Recall that for the stochastic optimization problem (2.1) setting ε = 0 resulted in an

optimization problem that would typically have only the upfront schedule as a feasible

solution. Rather, here, for the approximate SAA formulation, there will typically be

non-upfront solutions that are feasible, even when using ε̂ = 0. This is because even for

large (but practical) values of N , the set of scenarios used for the approximation will not

tend to include highly unlikely scenarios, which need to be accounted for in the stochastic

solution when using ε = 0. This observation motivates our solution approach for (2.2).

In particular, in Section 2.4.1, we first consider the problem when ε̂ = 0, which turns out

to be a new variant of the classic Steiner tree problem. We then derive an incremental

primal-dual algorithm for the problem (Section 2.4.2) that can be used to approximately

solve the ε̂ = 0 case or the ε̂ > 0 case through early stopping. Our experiments will show

that this approach is able to provide significant flexibility with little loss in reward, with

the flexibility-reward trade-off being controlled by ε̂ > 0.

2.4.1 Set-Weighted Directed Steiner Graph Formulation

As motivated above, here we focus on optimization problem (2.2) for the case when

ε̂ = 0. That is, we must optimize flexibility subject to the constraint that we obtain the

optimal empirical reward as measured by R̂. In this section, we show how to formulate

this problem as a novel variant of the Steiner tree problem.
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2.4.1.1 Set-Weighted Directed Steiner Graph

From (2.2), we arrive at our final optimization problem for ε̂ = 0:

π∗ ∈ arg min
π

costf (π) s.t. R̂(π) = R̂∗. (2.3)

We can view this problem as a type of Steiner tree problem on the scenario graph. In

particular, we say that any vertex at time t = H is a terminal vertex if it is reachable

from the root r, which is the set of nodes with Xn
πupfront

(a,H) = 1 and hence contribute

to the upfront reward R̂∗. The only way for π to satisfy the constraint R̂(π) = R̂∗ is to

purchase a set of edges in the scenario graph that connect all of those target nodes to r.

Thus, the constraint in Equation 2.3 corresponds to purchasing edges such that r has a

path to each terminal, as in the Steiner tree problem.

As an example, consider again the scenario graph in Figure 2.1. The terminal nodes

in this example are all nodes at layer t = 4 except for v1
b,4 and v3

b,4, which are the only

two nodes that are not connected to r by a directed path. A schedule that satisfies the

constraint R̂(π) = R̂∗ must purchase edges such that all of these terminals are reachable

from r. Note that for the example schedule of Figure 2.1, the set of purchased edges

does not satisfy this constraint since there is no path of purchased edges to the terminal

vertex v3
c,4.

While our problem is very similar to the traditional Steiner tree problem, there is a

significant difference. In the traditional problem, each edge is associated with a distinct

weight and can be purchased individually, with the goal of connecting all terminals using

a set of edges of minimum total weight (which always forms a tree). Rather, our situation

is more complicated because we purchase parcels, which correspond to subsets of edges

in the scenario graph. In particular, purchasing a parcel p at time t, which incurs cost

c(p)f(t) in Equation (2.3), corresponds to purchasing an edge set Ep,t with cost c(p)f(t)

that contains all the edges (u, vna,t′) that come from any vertex u and arrive at any vertex

vna,t′ with a ∈ p, t′ ≥ t and n ∈ {1, . . . , N}. Note that under this cost model, the total cost

of edge sets purchased by a schedule π exactly equals our surrogate objective costf (π).

From the above we see that our problem is an instance of a problem that we will

call the Set-weighted Directed Steiner Graph (SW-DSG) problem, a novel variant of the

Steiner tree problem, the goal of which is to select a set of vertices with minimal total

cost in order to connect all the terminal vertices to the root. For the remainder of the
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paper we will discuss this problem in its general form to simplify notation. The input

for SW-DSG is a directed graph G = (V,E) with a single root vertex r, a set of terminal

vertices T ⊆ V, a set of M edge sets E = {E1, . . . , EM} where each Es ⊆ E, and a

non-negative cost cs for each Es. In particular, our conservation problem has edge sets

E = {Ep,t} with Ep,t = {(u, vna,t′) : (u, vna,t′) ∈ E, a ∈ p, t′ ≥ t, n ∈ {1, . . . , N}} and cost

cp,t = c(p)f(t). A subset of E forms a Steiner graph if the union of the edges connect r to

all vertices in T . The desired output is a minimum cost subset of E that forms a Steiner

graph. Note that the optimal Steiner graph need not be a tree in SW-DSG, unlike in

the traditional Steiner tree problem.

It is clear that SW-DSG is more general than the original deterministic optimization

problem since the latter has a specific edge set structure. For instance, Ep,t1 ⊆ Ep,t2 if

t1 > t2. However, this structure does not make it an easier problem than SW-DSG. In

the following sections, we prove that both problems are NP-complete and our primal-

dual algorithm is the same for either setting. The special structure does not lead to

any algorithmic advantages in deriving a primal-dual algorithm. Therefore, we mainly

discuss the problem in the form of SW-DSG to simplify notation.

While the SW-DSG problem was motivated by our particular conservation appli-

cation, it is relevant to other problems that have Steiner style objectives, but where

the “edge resources” are best considered as groups. For example, Steiner trees are

often used for the design of communication networks where edges correspond to exist-

ing or potentially new communication links. For situations where those links must be

purchased as coherent sets (e.g. the communication infrastructure of different compa-

nies/organizations), our SW-DSG problem would be the appropriate formulation.

2.4.1.2 Computational Complexity

To our knowledge, the SW-DSG generalization of the Steiner tree problem has not been

previously studied and hence we now consider its computational complexity.

The SW-DSG problem is a generalization of the traditional directed Steiner tree

(DST) problem, which is known to be NP-complete [32]. Further, under standard com-

plexity assumptions, DST is hard to approximate by a factor better than log(|T |) [11].

Note that these results hold even for acyclic directed graphs. There are a number of

effective heuristic algorithms for DST [18], with many of the most successful relying on
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shortest path computations as a subroutine. While shortest paths can be computed in

edge weighted graphs efficiently, this turns out to not be the case for our set-weighted

problem. In particular, note that the shortest path problem is a special case of DST

(or SW-DSG) where there is a single terminal vertex. This problem turns out to be

NP-Hard for SW-DSG, even when restricted to acyclic graphs and the special edge set

structure shown in our original deterministic optimization problem, which is the case for

the scenario graphs from our conservation problem.

Theorem 1. The SW-DSG problem is NP-hard even when restricted to acyclic graphs

with a single terminal vertex and the edge set structure in scenario graph.

Proof. We prove the hardness by reducing the weighted set cover problem to the subclass

of SW-DSG problems restricted to a scenario graph with one scenario and exactly one

terminal. Note that here we consider the decision version of the SW-DSG problem,

which asks if there is a feasible Steiner graph whose cost is less than a specified threshold

C∗. An instance of the weighted set cover problem specifies a ground set of elements

S = {e1, . . . , en}, a set S = {S1, . . . , Sm} of m subsets Sj ⊆ S, a cost Cj for each subset,

and a cost bound C∗. The problem asks whether there is a collection S ′ ⊆ S with total

cost no more than C∗ such that
⋃
Sj∈S′ = S.

Given a set cover instance, we first describe how to construct a scenario graph as

illustrated in Figure 2.2 and later describe the corresponding SW-DSG instance. The

graph contains 2n layers, which alternate between set layers and element layers starting

with a set layer (n layers of each, hence 2n layers). Each layer has m vertices labeled

S1, . . . , Sm to represent the sets in S and n vertices labeled e1, . . . , en to represent the

elements in S. In addition we include a root vertex r. Each vertex can also be seen

as a parcel with a single patch. The edges in the graph only go from one layer to the

immediate next layer as follows. The root vertex has an edge going to each Sj in the

first set layer. For the ith element layer (i.e. layer 2i in the graph), we include an edge

from a vertex with label Sj in the previous layer to a vertex with label ei in the current

layer whenever ei ∈ Sj . Finally, vertex ei at the ith element layer has an edge from it to

each Sj in the next layer.

The corresponding SW-DSG (conservation problem) instance on this graph is spec-

ified as follows. The root node is r and the single terminal vertex is en at the final

element layer. The edge sets are specified as follows, which is the same as the setting
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in a scenario graph. There are edge sets Ej,t for each Sj at time t. In particular, Ej,t

contains every incoming edge that is from any vertex and to any vertex labeled as Sj at

layers t′ ≥ t. We let the strictly decreasing f(t) be sufficiently close to 1 for all t’s. The

cost of each Ej,t is equal to Cj × f(t) where Cj is the cost of Sj in the original set cover

problem. In other words, the cost of Ej,t is almost Cj . Similarly, there are edge sets

Ei,t for each ei at time t. We set their costs as 0. The cost threshold for the SW-DSG

problem is equal to the threshold C∗ of the set cover problem.

To see that this reduction is correct, consider the case where the resulting SW-DSG

instance has a feasible solution. The solution provides a path from r to en through

purchased edge sets that have total cost at most C∗.

Since the edge set Ei,t for each ei has zero cost, the edge set cost is the result of

purchasing edge sets Ej,t. By the construction the path must go through a sequence

of alternating element nodes and set nodes. In particular, the path must traverse each

element node ei for i = 1, . . . , n. The only way for this to happen is to purchase for each

of those ei at least one edge leading to ei from one of the immediately preceding Sj at

layer t ≤ 2i, which is only possible when ei ∈ Sj . This can only happen by purchasing the

corresponding edge set Ej,t, corresponding to Sj , which has a cost of (almost) Cj . From

this we see that the collection of Sj corresponding to purchased edge sets must cover all

of the elements and that their total cost is no more than C∗. Thus, the collection of sets

is a solution to the set cover problem.

Conversely consider an instance of the set cover problem with a feasible solution. It

is easy to verify that a feasible solution to the corresponding SW-DSG problem is to

purchase edge sets Ej,1 corresponding to any Sj in the set cover solution. Combining

the above we see that there is a feasible solution to the SW-DSG instance if and only if

there is a feasible solution to the set cover instance.

The above result proves that the shortest (or least cost) path problem is also NP-hard

for SW-DSG, i.e. the problem of finding a least cost path when edges are purchased as

sets. Thus, it is difficult to extend prior shortest-path-based heuristics for the Steiner

tree problem to our problem. Given that SW-DSG is in NP, it is NP-complete. This

motivates our derivation of an efficient heuristic solution approach in the next section,

which computes both a feasible solution along with a bound on the cost of the optimal
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Figure 2.2: Description of the reduction from set cover to SW-DSG with a single terminal
vertex and a scenario graph.

solution. Importantly this bound provides a sense of how good the computed solution is

compared to the optimal.

2.4.2 Primal-Dual Algorithm

A potential solution approach to the SW-DSG problem is to encode it as a Mixed Integer

Program (MIP), which is straightforward, and then to use an off-the-shelf MIP optimizer.

While this approach produced non-trivial results for the upfront conservation problem

[51], as our experiments will demonstrate, it does not scale well for our problem. A related

approach could be to consider a rounding procedure for the MIP’s LP-relaxation. While

solving the LP-relaxation is easier than solving the MIP, our experiments show that the

scalability of LP solvers is also poor for the problem sizes of interest to us. Instead,

we exploit the MIP encoding in another way, by following the primal-dual schema [55]

to derive a scalable algorithm that performs near optimally in our experiments. Our

work can be considered as a non-trivial generalization of previous work [57], where the

primal-dual schema was applied to DST. Moreover, an early-stopping version of our

primal-dual algorithm provides a way to trade-off the schedule flexibility and reward

(ε̂ > 0). Note that the primal-dual algorithms for SW-DSG and our original deterministic

conservation problem only differ in the notations. In other words, the edge set structure

in conservation problem does not offer further improvements for the algorithm. Thus in
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the following, we only present the approach for SW-DSG.

2.4.2.1 Primal-Dual Algorithm for SW-DSG

To apply the primal-dual schema, we start by giving a primal MIP for the SW-DSG

problem along with the dual of its LP-relaxation in Figure 2.3. The primal MIP includes

a binary variable y(Es) for each edge set in E , which indicates whether Es was purchased

(y(Es) = 1) or not (y(Es) = 0). The objective of the primal is then simply the sum of

these variables weighted by the costs of the corresponding edge sets. The Steiner graph

constraint, requiring that all terminals be connected to the root node by purchased

edges, is encoded using a standard network-flow encoding (lines 2.2–2.4) involving flow

variables xki,j . The flow variable xki,j encodes the flow on edge (i, j) destined for terminal

k. The flow balance constraints (line 2.2) guarantee that one unit of flow is carried on a

path from the root node r to terminal k.

The LP-relaxation of the primal simply replaces the integer constraints on the y(Es)

variables with a positivity constraint. The dual of this relaxed problem (lines 2.6–2.9)

includes dual variables uki and wki,j corresponding to the primal flow constraints. Note

that the constraint that one unit of flow leaves the root is implied by the other flow

constraints. By omitting this constraint, one could simplify the dual by eliminating the

ukr variables (or, equivalently, set ukr = 0 for all k ∈ T ).

Given the primal and dual formulations of our problem, we can now apply the primal-

dual schema for designing optimization algorithms. In particular, our primal-dual algo-

rithm is iterative where each iteration increases the value of the dual objective and pur-

chases a single edge set Es, which corresponds to setting the primal variable y(Es) = 1.

The iteration stops when the purchased edges form a Steiner graph (i.e. the primal be-

comes feasible). The value of the dual objective at the end of the iteration serves as a

lower bound on the optimal primal objective, which provides a worst-case indication of

how far from optimal the returned solution is. At a high level, this algorithm is a simple

greedy heuristic that continuously purchases the most beneficial edge set in order to

build paths for an unconnected terminal. The primal-dual schema provides a principled

way of incrementally computing this heuristic and at the same time computing a lower

bound.

Algorithm 1 gives pseudo-code for the algorithm. The main data structure is an
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Algorithm 1 Primal-Dual Algorithm for SW-DSG.

1: {Inputs: Graph G = (V,E), edge sets E = {E1, . . . , EM}, costs {c1, · · · , cM},
terminals T ⊆ V}

2: Initialize:
uki = 0, for each k ∈ T, i ∈ V; wki,j = 0, for each (i, j) ∈ E, k ∈ T
G′ = (V,A) with A = ∅
lowerBound = 0, solution = ∅

3: while G′ is not a Steiner graph do
4: Let k be random vertex in T not connected to r in G′
5: S = {s | Es ∩ Cut(k) 6= ∅, s 6∈ solution}
6: s∗ = arg mins∈S ∆(s, k)

where ∆(s, k) =
(
cs −

∑
k′∈T,(m,n)∈Es

wk
′
m,n

)
/|Es ∩ Cut(k)|

7: ukj = ukj + ∆(s∗, k), for each j ∈ C(k)

8: wki,j = wki,j + ∆(s∗, k), for each (i, j) ∈ Cut(k)
9: A = A ∪ Es∗

10: lowerBound = lowerBound + ∆(s∗, k)
11: solution = solution ∪ {s∗}
12: end while
13: Pruning: solution = solution− {s | ∃s′ ∈ solution, Es ⊂ Es′}

auxiliary graph G′ = (V,A) with the same vertices as the input graph G. The auxiliary

graph edge set A is initially empty and then each iteration adds the newly purchased

edges Es ∈ E . The algorithm terminates when the edges in A form a Steiner graph.

The edge sets used to construct this graph are then returned as the solution, following

a pruning step that removes obviously redundant edge sets, which the algorithm can

sometimes include during the iteration process.

In order to describe the algorithm in detail, we first introduce some terminology.

Given a current auxiliary graph A, we let C(k) denote the set of all vertices that have

directed paths to terminal node k via only edges in A. Note that we consider k to be

included in C(k). Also, we define the cut set of a terminal node k, denoted by Cut(k),

to be the set of all edges (i, j) such that j ∈ C(k) and i 6∈ C(k). Intuitively, if k is

not already reachable from the root, we know that at least one edge in Cut(k) must be

added to A in order to arrive at a Steiner graph.

The algorithm first initializes all dual variables to zeros and the auxiliary graph A to

include all vertices and no edges. Each iteration then proceeds by first randomly selecting
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a terminal vertex k that is not connected to r in the auxiliary graph. At an intuitive level,

the algorithm will then select an edge set Es that contains a cutset edge of k according to

a heuristic ∆(s, k) that is derived by applying the primal-dual schema. More concretely,

the aim of each iteration is to raise the dual objective value by increasing the value of ukk
while maintaining feasibility. Increasing ukk by itself will violate constraints of type (8)

in the dual and lines 5 through 8 of the algorithm maintain feasibility by selecting an

edge set Es∗ among those that intersects the cut set of k and then raising all variables

corresponding to vertices in C(k) and edges in Cut(k) by a value ∆(s∗, k) (including ukk).

This is done in a way that causes the dual constraint of type (7) corresponding to edge

set Es∗ to become tight. Since this constraint corresponds to primal variable y(Es∗), the

algorithm effectively sets y(Es∗) = 1, indicating a purchase, by adding the edges in Es∗

to A. The dual objective value at termination is the sum across iterations of ∆(s∗, k)

and is returned as the lower bound.

The key property of our algorithm is that each iteration increases the dual objective,

while also maintaining feasibility of the dual. This guarantees that at each iteration

the dual objective value corresponds to a true lower bound on the optimal value of the

primal.

Theorem 2. Each iteration of the primal-dual algorithm produces a feasible dual solution

with increased objective.

Proof. As the base case, the initialization assigns all dual variables to be zeros, which

is a feasible solution. Now suppose that iteration q − 1 starts with a feasible solution

{uli, wli,j}, which satisfies the dual constraints of type (7) and (8). Now if the algorithm

terminates, we get a feasible solution. Otherwise let k be the terminal vertex selected.

For all variables {uli, wli,j} with l 6= k the values are not changed, so (8) is satisfied. For

the remaining variables with l = k, there are three cases. Case 1: For j 6∈ C(k), the

variables ukj and wki,j are unchanged, so they cannot contribute to a violation of (7) or

(8). Case 2: For any edge (i, j) with both j, i ∈ C(k), we increase both ukj and uki by

∆(s∗, k) and continue to satisfy the corresponding constraint of (8). Case 3: For any cut

set edge (i, j) ∈ Cut(k), we increase ukj and wki,j by ∆(s∗, k) so that (8) remains satisfied.

Since the wki,j for edges in the cut set are increased, we must ensure that constraints of

type (7) do not become violated. The choice of ∆(s∗, k) made by the algorithm can be

verified to never violate any of those constraints and makes at least one of them tight.
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After the main portion of the algorithm terminates, a pruning step is conducted to

remove any edge set that is a subset of some other edge set in the solution, which de-

creases the total cost while maintaining feasibility. In particular, in the context of our

conservation scheduling problem, the pruning step ensures that each parcel is purchased

no more than once in the final solution. There are other more aggressive and computa-

tionally expensive pruning techniques that could also be used. For example, one could

consider removing each one of the selected edge sets from the final solution and then test

for feasibility. If the solution is still feasible, then the edge set can be eliminated. We

did not find this more aggressive style of pruning to be necessary in our experiments.

Implementation and Running Time. Note that our pseudo-code stores and

updates values for the ukj and wki,j dual variables. Then a naive implementation of

the above algorithm would result in O(|E||T |) runtime for initialization as well as the

computation per iteration, where |E| is the number of edges in the graph and |T | is the

number of terminals. This could be too much for SW-DSG problems with a large network

such as the one in our conservation application. However, the algorithm is described in

this way only for presentation purposes. It turns out that for the purposes of running

the algorithm, it can be implemented significantly more efficiently. In particular, we only

need to store and update the sum of corresponding wki,j values for each edge set (i.e. the

sum term that appears inside of the definition of ∆(s, k) on line 6), and maintain the

current objective value (stored as lowerBound in the pseudo-code), which is updated on

line 10. Therefore, before the iterations only those M+1 variables need to be initialized,

where M is the number of edge sets and is much smaller than the size of the network.

In our implementation the dominant computation per iteration is the computation of

the cut set for the selected terminal k. We find the cut set by a backward traversal

from terminal k toward the root. The time for this computation is acceptable when

terminals are only connected to relatively small parts of the overall graph. This is the

case in our conservation problem, where terminals are only connected to nodes in the

same cascade and among those only ones that are spatially close enough to be reached.

In other applications where terminals are possibly connected to a large portion of the

graph, it may be preferable to incrementally maintain a cut set for every terminal at

each iteration to reduce the computation. Then the memory needed is O(C|T |) where

C is the maximum size of a cut set and presumably C � |E|. After getting the cut set,

the algorithm takes O(MC) time to identify the best edge set and update the solution.
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2.4.2.2 Early-Stopping for Fractional Connection

In our primal-dual algorithm, the computation continues until all of the terminals in the

scenario graph are connected by paths from the root. In the context of our conservation

problem this corresponds to having no reward approximation loss (ε̂ = 0). Here we

modify the above primal-dual algorithm to allow for reward approximation loss where

ε̂ > 0. This case corresponds to only modifying the SW-DSG feasibility constraint to

only require a fraction 1− ε̂ of the terminals to be connected, leading to a natural way

of exploring the trade-off between reward and flexibility.

Given the incremental, greedy nature of our primal-dual algorithm, which adds one

edge set each iteration, a natural choice for this fractional connection problem is to stop

the algorithm whenever at least a fraction 1− ε̂ of the terminals are connected.

While this basic early-stopping approach will lead to some improvement in the cost

of the returned solution, compared to ε̂ = 0, the savings are often quite minimal. This

is due to the fact that the primal-dual algorithm grows paths from the terminal nodes

to the root and is unaware of the early-stopping condition. As a result, some of the

paths that were being grown are never actually connected to the root at the point that

the algorithm is stopped. These unconnected paths can be considered to be a waste

of resources with respect to meeting the fractional connection constraint. Thus, to

make this early-stopping algorithm viable, it is necessary to perform pruning on the

early-stopping result. Our algorithm for fractional coverage then has two stages: 1)

Generation, where early-stopping is used to generate an initial solution that meets the

fractional connection constraint, and 2) Pruning, where the solution produced in stage

1 is pruned while maintaining the fractional connection constraint.

For the pruning stage we use a simple but effective greedy strategy. The idea is

to iterate through the purchased parcels in the schedule returned by the early-stopping

stage and to delay the purchase of each parcel as long as possible while ensuring that

the number of connected terminal nodes is almost always within the required fractional

connection tolerance.

We have found that for our conservation application, where the SW-DSG problem

corresponds to a set of cascades, it is beneficial to prune using an independently generated

and larger set of scenarios than those used to create the initial solution. This is analogous

to using validation data to tune algorithm parameters in Machine Learning prediction
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problems, and it is beneficial for the same reasons. We found that pruning based on the

original set of scenarios was often overly aggressive and hurt empirical performance due

to over-fitting of the SAA scenarios. Since we can easily generate independent scenarios

to estimate the true expected reward of the pruned policies, it is better to prune based

on that criterion instead. Also, since the computational complexity of evaluating the

reward of pruned policies is low compared with the SAA optimization, we can afford

to use a larger set of scenarios. In particular, in our experiments we formed the initial

schedules based on a set of 10 cascade scenarios and conducted the pruning step with

respect to 40 cascade scenarios.

This approach for pruning can also be viewed as directly enforcing a threshold on

the (independently estimated) expected reward from the original stochastic problem

(Equation 2.1) instead of enforcing a threshold on the objective value of the SAA problem

(Equation 2.2). Since we can’t calculate the correct threshold value (the RHS of Equation

2.1) without knowing the true optimum R∗ of the stochastic problem, we use the SAA

optimum R̂∗ in its place. The SAA optimum is a stochastic upper bound to R∗, so this

is generally a conservative approach for enforcing Equation 2.1.

2.5 Experiments

In this section, we first evaluate our primal-dual algorithm by applying it to a real,

full-scale conservation problem. Next, to verify the robustness of our approach to other

problems, we present results using synthetic conservation data from a problem generator

used in several recent studies. We focus the first two parts of the experimentation on

the case of ε̂ = 0, which we will see provides substantial gains in flexibility. In order to

explore the trade-off between flexibility and reward (population spread), at the end of

this section, we evaluate the early-stopping approach for ε̂ > 0.

2.5.1 Evaluation of Primal-Dual Algorithm on Real Conservation

Map

The real map we use is the same dataset as in prior work by Sheldon et al. [51] on com-

puting upfront conservation designs. The data is derived from a conservation problem

involving the Red-cockaded Woodpecker (RCW) in a large land region of the south-
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eastern United States that was of interest to The Conservation Fund. The region was

divided into 443 non-overlapping parcels (each with an area of at least 125 acres) and

2500 patches serving as potential habitat sites. Parcel costs were based on land prices

and some land parcels were already conserved and thus had cost zero. We use the same

population spread model as Sheldon et al. [51], which was based on individual-based

models of the RCW. Since our approach requires a conservation design as input, we use

the design computed by Sheldon et al. [51] using a total budget constraint of $320M. The

map of the area is shown in the left cell of Figure 2.7, with parcels making up the design

shaded green and free parcels (with cost 0) shaded grey; red ‘+’ marks indicate initially

occupied patches. Our method also requires specifying a strictly decreasing function for

defining the surrogate cost function, for which we use f(t) = βt with β = 0.96. We found

that the results are not very sensitive to the value of β.

2.5.1.1 Comparing to Optimal Solutions

Here we compare the solutions of our primal-dual algorithm to optimal solutions found

using the CPLEX solver applied to a MIP encoding of the SW-DSG problem. The

MIP encodings become very large as the horizon and number of scenarios increase. In

particular, there are 443 · H + 2500 · H · N variables and the number of constraints

grows with the number of edges, in the cascade network, which becomes impractical as

N and H grow. Since the optimal solver can’t scale to large versions of the problem, we

consider problems involving cascade networks with just 2 scenarios and horizons ranging

from just 15 to 40 years. We also use CPLEX to compute solutions to the LP-relaxation

of the MIP. The objective value returned for the LP provides an alternative approach

to computing a lower bound on the optimal solution and thus is interesting to compare

to our lower bound in terms of tightness and runtime. Since our primal-dual algorithm

is stochastic due to the random selection of terminal nodes, we report averages over 20

runs, noting that the standard deviations are negligible.

The first two data columns of Table 2.1 show the (surrogate) cost of the solutions

found by CPLEX solving MIP and our algorithm (PD) for increasing horizons, where

larger horizons correspond to larger problems. When a method fails to return a solution

due to memory constraints no value is shown in the table. We see that for horizons where

MIP is able to yield solutions by CPLEX, our algorithm produces solutions that have
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Table 2.1: Comparison of Primal-Dual (PD) with MIP and LP
Cost (M$) Lower Bound Run Time (s)

MIP PD LP PD MIP LP PD

H = 15 126.8 126.22 122.2 84.9 5.5 6.13 0.9

H = 20 123.6 125.7 117.7 71.9 8.2 7.6 2.5

H = 25 117.6 121.4 104.7 61.5 28 10 9.0

H = 30 130.4 134.0 117.3 56.9 5126 15 11

H = 35 131.3 109.9 64.1 18 25

H = 40 127.5 59.7 45

very similar costs (here lower cost is better). We also see that the MIP solver runs out of

memory and is unable to return solutions for the 2 largest problem instances, which are

already scaled down versions of the problem (small number of cascades and horizon).

The next two columns of Table 2.1 provide results for the lower bound computed by

CPLEX solving the LP and by the PD algorithm. We see that the lower bound produced

by the LP is significantly tighter than the bound produced by our algorithm. However,

the LP cannot be solved by CPLEX for the largest problem, while our approach still

yields a lower bound. Overall, though our lower bound is not as good as the LP (when

it can be computed), it is generally within a factor of two of the optimal solution, which

provides a non-trivial assurance about the quality of the returned solution for very large

problems.

The final three columns of Table 2.1 present the time used by the approaches for each

problem, where blank cells indicate that the method ran out of memory. Our algorithm

is significantly faster than the MIP approach, which fails for the two largest problems,

and is comparable with the LP approach, which only provides a lower bound and fails for

the largest problem. This latter result indicates that a solution based on LP-rounding

would face difficulty, since even solving the LP for these large problems (40 time steps

with 2500 patches each) is computationally demanding. An advantage of the primal-dual

2Here the PD cost is less than the “optimal” MIP cost returned by CPLEX. After investigating, we
found that CPLEX correctly evaluates the solution it returns, but thinks that the solution is optimal
when it is not. It appears that this issue is due to the small error tolerance allowed by the CPLEX solver.

3Here MIP takes less time than LP. We think this is possibly because CPLEX uses different algorithms
for LP and MIP. Especially, MIP is solved by a branch-and-bound algorithm that uses modern features
like cutting planes and heuristics, making CPLEX a powerful MIP solver.
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algorithm is that it avoids encoding the LP and works directly with the graph.

2.5.1.2 Number of Cascades in the Scenario Graph

According to SAA, the optimal solution over a finite set of cascade scenarios will converge

to true optimum with more scenarios. Previously only two cascades are used due to the

poor scalability of CPLEX. Now we study the number of cascade scenarios we should use

to ensure a good solution. Recall that as N increases, the original stochastic problem is

approximated more accurately. Yet a larger N corresponds to more computation. More

importantly, here with ε = 0, a larger N leaves the schedule less space for flexibility.

In the extreme case of N → ∞, the only possible schedule is the upfront schedule that

has minimal flexibility. To find a good value of N in practice, we study the primal-

dual solutions with different number of cascade scenarios by validating the reward R(π)

that the each primal-dual schedule can achieve. Given that the population spread is

stochastic, we compute the reward R̂(π) by running 20 simulations of the stochastic

population spread model. Each simulation provides a reward value (number of occupied

patches at the horizon) and we average the results. We do this for the schedules produced

by our primal-dual algorithm and for the upfront schedule. Recall that the intention is

to nearly match the reward of the upfront schedule. Figure 2.4 presents the results when

the time horizon is H = 20. We observe that the primal-dual schedule achieves more

and more reward when N increases, and the reward is converging towards the expected

reward of the upfront schedule. We also see that 10 cascades is quite close to get the

best performance and the rate of improvement is slowing down. Thus, the remainder of

our experiments use 10 cascades for the SAA.

2.5.1.3 Quality of Conservation Schedules

We now evaluate our algorithm on problems of more realistic sizes. Here, we consider

problems based on 10 cascades and horizons ranging from 20 to 100 years, which are

well beyond the range approachable for the MIP and LP. The solution times for our

algorithm ranged from 15 seconds for H = 20 to 29 minutes for H = 100.

First, we evaluate the average accumulated reward of the schedule returned by our

method for each horizon in Figure 2.5. The average reward of the upfront schedule ranged
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from 332 for H = 20 to 615 at H = 100 and for all time horizons the primal-dual solution

attained average reward at least 95.3% of optimal, with negligible error bars about the

averages. The small gap indicates that for 10 scenarios the SAA approximation is quite

good—the gap could be further reduced by increasing the number of scenarios.

Of course, we must also consider the cost curves corresponding to the schedules, since

that is what affords the flexibility criterion of our problem. Figure 2.6 presents the cost

curves for our schedules. Note that as defined in Section 2.3.2, a cost curve shows the

(non-discounted) accumulated cost of a schedule over time. Then the cost curve for a

schedule produced for horizon H will only increase until time H and then remain flat,

reflecting that no purchases are made after that time. We see that for all horizons the

cost curves show a fairly gradual increase in cost expenditures over time, indicating that

the schedules are indeed providing a significant amount of flexibility regarding purchase

times, particularly when compared to the upfront schedule, the cost curve of which is the

flat black line in Figure 2.6 since all the parcels are purchased at time 0. In experiments

not shown, we found that the cost curves vary by a small amount for different values of β,

but the same general trend is present. Interestingly, in all curves there is a sudden jump

in cost at around 20 years. To understand this in Figure 2.7 we show both the parcel

purchases made by our schedule and the population spread on the map over the 100 year

horizon. We see that at t = 20 the sharp increase in cost is due to the purchase of some

relatively expensive and vast parcels in the southern part of the design. Looking at the

population spread dynamics, it is apparent that those parcels are a critical gateway for

ensuring reliable spread to the southwestern part of the design in later years. Delaying

the purchase any longer significantly increases the probability that such spread does not

occur, which our approach discovers.

Another interesting observation can be seen by comparing the expected population

spread under the PD computed schedule and the expected population spread of the

upfront schedule (Figure 2.7). The most striking difference between the spreads is seen

at time steps t = 20, 60, 80 in the northeastern part of the map. For the upfront schedule

the entire northeastern part is occupied in large part, while for the PD schedule there

is a “hole” in the northeastern part near where the initial bird populations are located.

Note, however, that this hole is finally occupied by the horizon of the problem (t = 100).

At that time, the spread in the upfront and PD schedules are visually very similar, which

agrees with the fact that their measured rewards were also similar. The reason for the
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difference in population spread is that the PD schedule delays the purchase of some of

the northeastern parts of the map near the initial bird population until about 20 years

before the time horizon ends. From the population spread process of both schedules,

we found that these parcels are very closely connected and hence can become occupied

in a fairly short time if a bird population is nearby. This is apparent for the upfront

schedule, where those areas are already occupied by t = 20. Thus, the purchase of such

parcels can be delayed as long as there is enough time left for the population to spread

over these landscapes. Therefore, the purchasing can be delayed not only for parcels

far away from current population, but also for parcels that can be covered quickly and

reliably. Note that such flexibility is mainly due to our definition of the reward function,

which only takes the population at time H into account. If we count the population at

every time step, presumably a good schedule would purchase the “hole” area very soon

for more population.

2.5.2 Evaluation of Primal-Dual on Synthetic Maps

To evaluate the primal-dual algorithm more thoroughly, we randomly selected 10 syn-

thetic maps generated and used in prior work [1]. All the maps consist of the same

region of 146 non-overlapping parcels and 411 patches, with different configurations of

parcel costs and the initial population. For each map, we considered problems involving

different conservation designs, where each design corresponded to the upfront solution

when the budget is limited to a factor b of the total parcel cost of the map, where b

ranged from 0.1 to 0.5. In this section, we present a very similar analysis as in Section

2.5.1 and show consistent results, indicating that our primal-dual algorithm is stable

across different problems.

2.5.2.1 Comparing to Optimal Solutions

We first compare the upper and lower bounds returned by our primal-dual algorithm to

the optimal objective values of MIP and LP as computed using CPLEX. Since CPLEX

still has scalability issues when solving the larger synthetic problems, we restrict the

comparison to problems with 2 and 4 scenarios and a horizon of 20 years.

Results on all of the 10 maps are very similar. As an example, Figure 2.8 shows the
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surrogate cost (PD-UB) and dual objective value (PD-LB) of the primal-dual solution on

map 768, together with the optimal surrogate cost (CPLEX-MIP) and the lower bound

computed for the LP by CPLEX. We see that compared to optimal, our algorithm

can still produce solutions with similar costs, especially when the problem is easy (b is

smaller). Also, we again see that the lower bound computed by CPLEX is better than

the PD lower bound. However, the PD lower bound is still within a factor of 2.

2.5.2.2 Quality of Conservation Schedules

We now consider larger problems based on 10 cascade scenarios and horizon H = 40, for

which the MIP and LP are not practically solvable.

We first compare the average accumulated reward of the schedule returned by our

primal-dual algorithm and the upfront schedule. Figure 2.9 shows results for one of our

maps, indicating that the rewards achieved by our primal-dual schedules are always very

close to those of the upfront schedules, as desired. The results for other maps are very

similar.

We also study the cost curves of the schedules in order to illustrate their flexibility

compared to upfront schedules. Figure 2.10 presents the average cost curves for our

schedules across all the 10 maps. It is noted that when the budget is very limited,

the purchase is not delayed very much. For example, when b = 0.1, most parcels are

purchased before t = 15, long ahead of the time horizon. On further analysis this can

be explained by the fact that for many of the maps and such small budgets, the sets

of affordable parcels are fairly spread out and loosely connected. This means that the

population requires more time in order to reliably spread across such sets. Thus, the

parcels must be purchased quite early in the horizon to support that spread. Rather

for larger budgets, the sets of parcels that must be purchased are spread out but also

more tightly coupled, which allows for easier, more reliable population spread. Thus, it

is possible to delay purchases to a much larger extent as seen by the cost curves for the

larger budgets. This shows that our algorithm is able to afford considerable flexibility

when the initial conservation design supports reasonably reliable population spread.
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2.5.3 Early-Stopping for Trading Off Flexibility and Reward

We now consider the early-stopping variant of our primal-dual algorithm, referred to as

PD-ES, for producing schedules that trade off flexibility for reward using ε̂ > 0. The

dataset we use here is the real conservation map. Figure 2.11 illustrates the cost curves

of the early-stopping schedules with ε̂ = 0.0, 0.05, 0.10, 0.15, 0.20 and H = 20, 40, 60, 80,

which demonstrates the possible budget saving over time if a corresponding fraction

of reward loss is allowed. Figure 2.12 shows the average simulated rewards of these

schedules.

First we notice that the average reward achieved by the early-stopping schedules is

almost always within the specified error tolerance, which shows that the pruning step is

generalizing effectively. We also see that the cost curves of the early-stopping schedules

show significant improvement for even small values of ε̂ compared to no early-stopping

(ε̂ = 0). For example, when H = 60 and ε̂ = 0.20, there is almost no cost during the first

several years, and for several decades the cost is approximately half of the cost required

for ε̂ = 0. These results show that our approach is able to provide a set of schedules that

spans a spectrum of trade-offs, which can then be considered by conservation managers.

2.6 Summary

In this work, we addressed the problem of scheduling purchases of parcels in a conser-

vation design. We formulated the problem as a network cascade optimization problem

which was reduced to a novel variant of the classic directed Steiner tree problem. We

showed that this problem is computationally hard and then developed a primal-dual

algorithm for the problem. Our experiments showed that this algorithm produces close

to optimal results and is much more scalable than a state-of-the-art MIP solver. We

also showed that an early-stopping variant of the algorithm is able to explore the pos-

sible trade-offs between flexibility and reward, which is an important consideration in

practice.

The scheduling problem considered in this work poses considerable challenges to

generic off-the-shelf schedulers and planners. The complicating factors include: 1) highly-

stochastic, exogenous dynamics that arise from the population spread model, 2) the need

to reason about spatio-temporal processes, 3) the long horizons that must be considered,
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and 4) the combinatorial space of potential investment options at each point in time.

The general solution schema we pursued in this work is likely to be applicable to other

problems that pose similar challenges to existing techniques. In particular, this general

schema suggests approximating the problem via the SAA and then studying the result-

ing deterministic optimization problem. Often the resulting deterministic problem will

correspond to an existing well-studied problem, for which state-of-the-art approximation

algorithms can be used. In other cases, such as in this work, the resulting problem will be

related to an existing well-studied problem and a solution can be designed by extending

existing solution frameworks. We expect that this generic SAA schema will be particu-

larly useful for problems involving stochastic spread of populations or information across

networks, since the deterministic problems will typical map to graph-theoretic problems,

for which there is a vast literature.
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(Primal) min
M∑
s=1

y(Es)× cs, subject to: (2.1)

∑
(i,h)∈E

xki,h −
∑

(j,i)∈E

xkj,i =


1, if i = r

−1, if i = k

0, if i 6= r, k

, k ∈ T, i ∈ V (2.2)

xki,j ≤
∑

s:(i,j)∈Es

y(Es), k ∈ T, (i, j) ∈ E (2.3)

xki,j ≥ 0, (i, j) ∈ E, k ∈ T (2.4)

y(Es) ∈ {0, 1} (2.5)

(Dual) max
∑
k∈T

(ukk − ukr ), subject to: (2.6)

∑
k,(i,j)∈Es

wki,j ≤ cs, s ∈ {1, . . . ,M} (2.7)

ukj − uki − wki,j ≤ 0, k ∈ T, (i, j) ∈ E (2.8)

wki,j ≥ 0 (2.9)

Figure 2.3: MIP for the SW-DSG problem and the corresponding dual LP of the MIP’s
LP-relaxation. The SW-DSG problem is defined by a graph G = (V,E), a root vertex r,
a set of terminal vertices T , and a set of edges sets E = {Es : s = 1, . . . ,M}, where each
Es ⊆ E.
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Figure 2.4: Rewards of PD solutions w.r.t the number of cascade scenarios.

Figure 2.5: Rewards of PD schedules w.r.t. time horizon H.
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Figure 2.6: Cost curves of PD schedules for horizons 20 to 100.
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t = 20 t = 60 t = 80 t = 100

Figure 2.7: (Left) Original conservation design used for scheduling shown as green shaded
parcels. Free (zero-cost) parcels are also shaded in dark grey and red ‘+’ indicates
initially occupied patches. (Right) The top row shows the parcels purchased (shaded
green) by our PD schedule over a horizon of 100 years. The middle row shows the
population spread over the same horizon for the schedule, where lighter red shading of a
patch indicates a smaller probability of being occupied (as measured by 20 simulations).
The bottom row shows the population spread of the upfront schedule over a horizon of
100 years.
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Figure 2.8: Cost and objective value of problems on map 768. The horizontal axis
varies the amount of budget used to compute the upfront solution that is used as the
conservation design given to the scheduling algorithms.

Figure 2.9: Rewards of primal-dual schedule and upfront schedule on map 1027.
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Figure 2.10: Average cost curves of PD schedules on 10 maps.
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H = 20 H = 40

H = 60 H = 80

Figure 2.11: Cost curves of PD-ES schedules with pruning. The red line (ε̂ = 0) shows
the cost curve of non-early-stopping PD schedule.
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H = 20 H = 40

H = 60 H = 80

Figure 2.12: Rewards of primal-dual schedules with early-stopping. The number below
each data point indicates the percentage of PD-ES reward over PD reward.
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Chapter 3: Dynamic Resource Allocation for Conservation Planning

3.1 Introduction

Now we address the adaptive conservation planning, where the goal is to maximize the

population growth of a species by purchasing and reserving land parcels to best support

population spread. This optimization problem is challenging as it requires reasoning

about the stochastic population spread on a large network, uncertain future budgets,

and a combinatorial action space (the set of possible investment combinations).

Our work fills the research gap in conservation planning with an adaptive approach for

highly spreading species. We take the future population dynamics, the future budget, and

the future actions into account. Our approach is based on hindsight optimization (HOP),

which computes an upper bound on action values and selects the action that has the

maximum value. Unfortunately, standard implementations of HOP scale linearly in the

number of actions available at any time, which is prohibitive for our exponential action

space. Thus, our main contribution is to develop an efficient algorithm for computing

HOP policies for such exponentially large, factored action spaces. We accomplish this by

representing the HOP policy via a large Mixed Integer Program (MIP) and then applying

the Dual Decomposition schema to make its solution more practical. Our experiments

show that HOP can significantly outperform more myopic alternatives while also showing

scalability to large problems.

3.2 Related Work

Generally, our conservation planning problem can be seen as an adaptive probabilistic

planning problem. Then we may consider existing planning approaches. Encoded as a

Markov Decision Process (MDP), this conservation planning problem is still challenging

for state-of-the-art planers as the corresponding state space and action space are very

large.

For instance, tree search is a particularly popular approach for probabilistic planning,
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which estimates action values for the current state by constructing a lookahead search

tree. Many tree search algorithms have shown strong empirical performance in very chal-

lenging domains. Examples of tree search planners include heuristic search methods like

AO* [42], as well as simulation-based methods like UCT [23] and its variants. However,

in practice, the performance of these approaches strongly depends on the action branch-

ing factor. In domains with a considerable action space, the feasible search tree depth

is greatly limited. While it is helpful to address this problem by pruning bad actions in

the tree (e.g. [45]), it is still a challenge to apply search methods to large factored action

spaces.

Symbolic dynamic programming (SDP) algorithms also attempt to save computations

by using symbolic representations of policies and value functions. Though SDP has been

developed for factored action space ([47]), its scalability to large problems is still limited

since it aims to compute policies over the entire reachable state space.

Another possible online planning approach is Hindsight Optimization (HOP), which

has been successfully applied to a variety of difficult stochastic planning problems, e.g.

[10], [12], [58], [60], [31]. At every decision step, it optimistically estimates the value

of each action by simulating future samples assuming that the optimal policy is always

followed after this action is taken. The action with the best value is then selected as

the next action. Unfortunately, the standard implementation of HOP enumerates all the

possible actions at any time, which would have a computational problem with our huge,

combinatorial action space.

In an adaptive conservation planning problem for slow-moving species, [25] proposes

a simple greedy policy, which is near-optimal since their problem is submodular. This

policy selects the best action that can achieve the best future goal while assuming that

no actions would be taken after current time step. We name this policy as HNoop as it

assumes only Noop actions are allowed in the future. HNoop is a strong policy, yet it is

easy to prove that for problems without submodularity, HNoop may perform arbitrarily

worse.
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3.3 Problem Statement

3.3.1 Population Model

The population model here is the same as the one in Chapter 1. In addition, there

is a stochastic budget process, where new funds arrive each year according to some

distribution. Parcels can only be purchased when enough funds are available and hence

must be purchased incrementally. Since the population can only spread to patches in

conserved parcels, the population diffusion is strongly influenced by parcel purchases.

3.3.2 Adaptive Planning Problem

We consider a finite-horizon setting, where the goal is to optimize the total population

across patches at the specified horizon H. Decision epochs occur every Tr years and

at each a decision is made about the set of parcels to purchase, limited by the current

budget. Thus, our planning problem is to produce a policy π that is given the current

problem state at a decision epoch and outputs a set of parcels to purchase with cost no

more than the current budget B(t). Here the problem state is composed of the time-

to-horizon, the species occupancy at each patch, the current budget, and knowledge of

previous purchases. We follow a model-based approach, where π can be computed using

provided stochastic models of the population dynamics and budget.

It will be useful to define the notion of a future F , which is a random variable

encoding the random outcomes that dictate the future population spread and budget

over the horizon H. In our setting, a realization f of F deterministically dictates whether

a population can spread between two patches at any particular time and the budget at

each future year. Such a future can be visualized as a deterministic network as in Figure

3.1. In the network, all the patches repeat at every time step and an edge between patch

u at time t and v at time t+ 1 indicates that if the species is at u at time t then it will

spread to v at time t+ 1.

For a fixed realization f , we effectively get a deterministic problem, for which any

policy can be evaluated against. We say a policy π is feasible for a future f iff at any

time step the total cost of parcel purchases of π is within the budget limit of f . For a

future f , a feasible policy π, and initial state s0 we denote the total population/reward

achieved at the horizon H by R(s0, f, π). The optimal solution to our problem can
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Figure 3.1: Visualization of An Example Future. Suppose there are totally 3 patches: u,
v, and w, then each patch repeats at each time step. The edge indicates the colonization
from one patch to the other at a certain time step.

then be expressed as finding a policy π∗ that maximizes the expected reward, i.e. π∗ =

arg maxπ E[R(s0, F, π)].

An exact solution for π∗ is beyond the capabilities of existing planners. To address

this, prior work [25] used a simple policy based on myopic, greedy action selection.

The main contribution was to give approximation bounds for the policy under strong

assumption of no diffusion across parcels. Rather, here we develop a non-myopic action

selection heuristic, hindsight optimization, which has shown success in various other areas

of planning. While hindsight optimization also requires strong assumption to provide

performance guarantees, our experiments demonstrate that its non-myopic nature can

lead to significant improvements over [25].

3.4 Approach

3.4.1 Hindsight Optimization for Conservation Planning

Hindsight Optimization. The main idea behind hindsight optimization (HOP) is to

drive action selection by computing upper bounds on the values of states. Given a state s,

the hindsight value of the state Vhs(s) is an optimistic estimate of the true value obtained
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by interchanging expectation and maximization, i.e. Vhs(s) = E [maxπ R(s, F, π)]. This

clearly gives an upper bound on the value since it allows for inconsistent policies to

optimize each future.

The key computational advantage of working with Vhs rather than directly with the

value function V is that it can be approximated by solving a set of deterministic planning

problems for individual futures. That is, given a set of sampled futures {f1, f2, . . . , fK}
we estimate the hindsight value as:

V̂hs(s) =
∑
k

[
max
π

R(s, fk, π)
]

where the internal maximization problem for each fk can often be solved with existing

solvers. The hindsight Q-function Qhs(s, a) is accordingly defined as the expected hind-

sight value achieved for states reached by taking action a in state s and is also an upper

bound on the true Q-value of a state-action pair. The HOP policy for a state s is then

defined as arg maxaQhs(s, a). Under certain assumptions performance guarantees can

be made for the HOP policy ([40, 59]). However, in general, no guarantees can be made

and examples of arbitrarily poor performance compared to optimal can be constructed.

Fortunately such examples are often not reflective of real problems and the HOP policy

is often an effective way to select action non-myopically.

The traditional way to compute the HOP policy is to estimate Qhs(s, a) by sampling

a set of states resulting from taking a in s, computing the hindsight value for each state,

and averaging. Unfortunately, this traditional approach scales linearly with the size

of the action space and hence is not feasible for the combinatorial action space in our

conservation problem and many others with factored actions.

HOP for Large Action Spaces. The traditional computation of the HOP policy

estimates Q-values for each action for the purpose of maximizing over them. However,

this is not strictly necessary if we can directly compute the optimizing HOP action at

a state without explicitly estimating each Q-value. Thus, the main idea behind our

approach is to encode the problem of computing the optimizing HOP action (Q-values)

as a mixed integer program (MIP) and then apply decomposition techniques to solve it,

which avoids the explicit enumeration over actions.

Our MIP for HOP is defined relative to a set of sampled futures {f1, f2, . . . , fK} and

a current state s. Similar to the formulation of [51], for each future fk, we can define a
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MIP, denoted as MIPk, which encodes the problem of finding a policy that maximizes

the reward of fk. That is, MIPk solves the problem maxπk R(s, fk, πk), where πk is

represented as a binary vector that specifies for each parcel and time, whether to buy

the parcel at that time in future fk. We will denote by π1
k the parcel purchases specified

for the first time step in MIPk. We also let OBJk and CONk denote the objective and

constraints of MIPk respectively and let Vk be all variables in MIPk excluding πk. The

detail of MIPk is similar to that in [51] and not crucial to our main contribution. Since

we have separate decision variables for each future, the maximization and summation in

the Q-value function can be interchanged, which results in a MIP that encodes the HOP

policy:

HOP Policy MIP:

min
{πk,Vk}

− 1

K

∑
k

OBJk, s.t.

π1
1 = π1

2 = . . . = π1
K and

⋃
k

CONk

That is, we can compute the HOP policy by maximizing the sum (minimizing the

negative sum) of objectives across the futures, subject to the constraint that the solutions

for each future agree on the first action. This MIP can then in concept be given to any

MIP solver and then the returned value of π1
1 can be returned as the HOP action.

While in our experience, it is generally feasible to use existing MIP solvers to solve the

individual MIPk problems for realistic scenarios, when the number of futures increases,

solving the combined MIP can become prohibitive. This is an important limitation since

the variance of the HOP policy reduces with more futures. Fortunately, this issue can be

largely overcome via the use of dual decomposition techniques as the HOP policy MIP

reveals a separable structure.

3.4.2 Dual Decomposition for HOP

In the HOP policy MIP, the individual MIPk problems are only coupled via the policy

constraints on the first action. If the constraints are removed then the combined MIP

can be solved by solving each MIPk independently. This structure motivates the applica-
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tion of Lagrangian dual decomposition, which we formulate below and follows a similar

structure as prior work on upfront conservation planning by [37].

We start by rewriting the coupling constraint π1
1 = π1

2 = . . . = π1
K of MIPk as the

set of constraints {π1
k = d : k = 1, . . . ,K} where d is a new vector of binary variables

that represents the HOP policy action at the first time step. We let π1
k,i and di denote

component i of π1
k and d, indicating whether i was purchased or not at time step 1.

We can now relax these coupling constraints to get the Lagrangian of the HOP MIP by

introducing Lagrangian multipliers λk,i for each constraint.

L({Vk, πk},d,λ) =− 1

K

K∑
k=1

OBJk +
∑
k,i

λk,i(π
1
k,i − di)

s.t.
⋃
k

CONk

The dual is then given by

q(λ) = min
{Vk,πk},d

L({Vk, πk},d,λ)

= min
{Vk,πk},d

− 1

K

K∑
k=1

OBJk +
∑
k,i

λk,i(π
1
k,i − di)

= min
{Vk,πk},d

K∑
k=1

− 1

K
OBJk +

∑
k,i

λk,iπ
1
k,i

−
∑
i

di
∑
k

λk,i, s.t.
⋃
k

CONk

Intuitively, the relaxed constraints in the dual act as a penalty for violating the

consistency requirement that all policies across futures agree on the first action. Since

the dual minimizes over d, in order to ensure that q(λ) > −∞ we require the constraint∑K
k=1 λk,i = 0,∀i. To simplify notation, we denote the space of Langrange multipliers

that satisfy this constraint as:
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Λ = {{λk,i} |
K∑
k=1

λk,i = 0, ∀i}

Under this constraint the last term in the dual vanishes and we finally get the dual

which consists of independent subproblems for any fixed λ:

q(λ) = min
{Vk,πk}

− 1

K

K∑
k=1

OBJk +
∑
k,i

λk,iπ
1
k,i

s.t.
⋃
k

CONk and {λk,i} ∈ Λ

One important characteristic of the dual is that q(λ) for any feasible λ is a lower

bound on the optimal primal MIP objective value, which motivates attempting to make

the bound as tight as possible by maximizing q(λ) over λ. Since q(λ) is not continuous

and the dual includes constraints over λ we use projected subgradient descent for this

purpose, iterating as follows:

λ
(j+1)
k = [λ

(j)
k + αj+1gk(λ

(j)
k )]Λ (3.1)

where j is the iteration number, gk(·) is a subgradient of q(λ) with respect to λk, αj is

the step size, and [z]Λ is the projection of z onto constraint space Λ.

For our objective, one subgradient of q(λ) with respect to λk is π̄1
k such that

π̄k = arg min
Vk,πk

− 1

K
OBJk +

∑
i

λk,iπ
1
k,i,

which can be found by solving a minimization problem involving a single future fk and

hence is much more tractable than the full MIP. Note that this minimization problem is

simply the original objective of MIPk with an added term involving the current Lagrange

multiplier values that can be viewed as assigning a penalty or reward for purchasing

particular parcels at the first time step. Finally, given the subgradient, the projection

onto Λ (with Euclidean norm) is well known, requiring only that we subtract from each
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component of the subgradient the average component value. Letting π̄
1,(j)
k denote the

subgradient at iteration j we get the following:

λ
(j+1)
k = λ

(j)
k + αj+1

[
π̄

1,(j)
k −

∑K
k′=1 π̄

1,(j)
k′

K

]
(3.2)

This shows that the gradient steps for dual optimization can be computed by opti-

mizing independent sub-problems for each future (i.e. solving for each π̄k), which avoids

solving a single MIP involving all futures. Putting everything together, the complete

dual optimization algorithm is given in Algorithm 2.

Algorithm 2 Dual Decomposition Algorithm

1: Given: initial vector λ ∈ Λ

2: while convergence is not reached do

3: Optimize subproblems independently:

solve each subproblem and get {π̄1,(j)
k }

4: Compute average value of π̄
1,(j)
k over K subproblems:

d̂
(j)

=
∑K

k′=1 π̄
1,(j)

k′
K

5: Update λ:

λ
(j+1)
k = λ

(j)
k + αj+1[π̄

1,(j)
k − d̂(j)

]

6: end while

At a high level, the final algorithm involves optimizing the dual via iterations. Each

iteration involves solving multiple modified MIPi problems, which are different from the

originals in that the costs of certain purchases at the first time step are modified in

order to encourage the subproblems to agree on the first actions. Specifically costs are

increased for parcels that are not currently purchased by most futures and decreased

for parcels that are purchased by many futures. The iteration ends when either the

subproblems all agree on the first action, in which case we get the optimal HOP action,

or the maximum number of iterations is reached, in which case we extract a solution as

described below.

Feasible Solution Extraction. The above algorithm optimizes the dual and does

not explicitly provide a primal solution, which in our case is the action of the HOP pol-
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icy. After optimizing the dual it is often the case that the solutions to the independent

subproblems (i.e. the π1
k) are consistent and hence represent a feasible primal solution.

In these cases, any of the π1
k are optimal primal solutions, and we output the resulting

action as the HOP action. However, in general there can be a duality gap, and we are

not guaranteed that optimizing the dual will produce feasible primal solutions. Thus,

as is typical in Lagrangian relaxation techniques, we must define a strategy for heuristi-

cally selecting a feasible primal solution guided by the information obtained during the

optimization.

Our approach is a heuristic based on the consistency requirement. As in the algo-

rithm, we let d̂i denote the average value of π1
k,i over different futures, which is 1 if parcel

i is purchased in all futures and 0 if it is not purchases in any futures, and otherwise

d̂i ∈ (0, 1) indicating the percentage of futures in which parcel i was purchased. To

extract a HOP action d where di indicates whether to purchase i, we first set di = 0

whenever d̂i = 0, since purchasing i was not preferred in any future. Next, we cycle

through each patch i with d̂i = 1 and purchase the patch (set di = 1). If there is remain-

ing budget after processing all parcels with d̂i = 1, we sort all remaining parcels with

d̂i ∈ (0, 1) in descending order. Then for each parcel, if purchasing it does not violate

the budget constraint we set di = 1 and otherwise set di = 0.

Step Size Control. Correctly controlling the step size αi can have a large impact

on efficiency, since each iteration involves solving K MIP problems (one per future).

We follow the same, relatively standard, step size control as [37], where the step size

is computed according to the gap between the feasible primal solution quality and the

dual solution quality. In particular, after extracting a feasible solution for the primal, let

APXj be the sum of rewards on every future and DUALj be the dual objective value,

we set

αj =
APXj −DUALj∑

k,t,i(π̄
t,(j)
k,i )2

. (3.3)

3.4.3 Dual Decomposition for Baselines

There are multiple alternative heuristics that can be formulated within the same dual

decomposition framework described above for HOP. These heuristics differ in terms of
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the horizon over which they consider future population spread and whether or not they

consider the possibility of selecting actions in the future when selecting actions at the cur-

rent moment. Below we describe two baselines within this framework that are included

in our experiments.

GreedyZero Policy. The GreedyZero policy is our most near-sighted baseline

as it selects the action that looks best assuming the population growth and available

budget after the next decision epoch is zero. In particular, the futures for GreedyZero

are simulated for only Tr years instead of until time H. Correspondingly, its MIP is

exactly the same as the HOP MIP except that the horizon H is always replaced by Tr,

and no purchases are allowed after the first year.

HNoop Policy. The HNoop policy is unlike GreedyZero as it considers the popula-

tion spread until the real horizon H. However, unlike HOP and similar to GreedyZero,

it does not consider the possibility of selecting actions after the first time step. Thus, it

evaluates purchasing actions according to how much long-term population spread they

will facilitate assuming that the Noop action is taken thereafter. The computation of

HNoop is similar to our approach for HOP, except that we simply remove all “action

variables” from each MIPk after the first time step, which prevents the consideration of

future actions. This myopic policy will often work well, when the consideration of future

actions is unimportant. However, when this is not the case, we might expect HOP to

have an advantage. For example, in some conservation situations it is important to con-

sider building longer-term paths for population spread in order to encourage spread to a

particularly good habitat. Such paths will often not result from purely myopic reasoning.

Interestingly, the conceptual definition of the HNoop policy corresponds exactly to

the myopic policy proposed in the only prior work on adaptive conservation planning

in [25]. However, their computation of HNoop was carried out via a greedy algorithm

that considered greedily adding parcels into the purchased set one at a time until the

budget was exhausted. Given certain submodularity assumptions that greedy algorithm

came with approximation guarantees. Our framework provides an alternative approach

to computing HNoop that is not purely greedy, instead relying on decomposition for

efficiency.
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3.5 Experiments

Our evaluation uses a real dataset of the Red-cockaded Woodpecker (RCW) recovery

project from [51] along with some hand-designed synthetic maps. The various problems

differ in terms of the spatial layout of available parcels, the initial population of birds,

and the set of parcels that are already reserved (i.e. free parcels). The real RCW map

is from a large land region of the southeastern United States that was of interest to The

Conservation Fund. The region was divided into 443 non-overlapping parcels (each with

area at least 125 acres) and 2500 patches serving as potential habitat sites. Parcel costs

were based on estimated land prices.

Throughout the experiments, we use a reliable MIP solver, IBM CPLEX, to directly

solve MIPs if needed. Our experiments are performed on a single core machine with a

memory limit of 6GB. We do not set time limit for the computation.

3.5.1 Performance of Dual Decomposition

Here we compare the use of Dual Decomposition (DD) for computing the HOP policy

compared to directly applying CPLEX to the full HOP policy MIP, which includes all

futures into a single MIP. This provides an indication of the optimality of DD, when

CPLEX can solve the problems, and also the efficiency/scalability of the approach. We

use the large RCW map and run DD until either the step size α ≤ 0.001 or a maximum

of 50 iterations is reached.

Table 3.1 shows the HOP value computed by CPLEX and DD as well as the timing

results for time horizon H = 20. When a method fails to return a solution, no value is

shown in the table. From the table, we see that the objective value of DD is very close or

equal to that of CPLEX, meaning that DD is providing an extremely close approximation

to the HOP policy. When the number of future scenarios is small, the MIP instances seen

by CPLEX are relatively small and can be solved quickly by CPLEX. As the number of

futures increases, CPLEX takes a much longer time to find solutions compared to DD

or even fails to solve the problem within a reasonable amount of time and memory. To

make the problem more challenging, we increase the time horizon to H = 40 where the

problem size is much larger. Table 3.2 shows the results. We see similar results, but they

are more pronounced since the problems seen by CPLEX are now significantly larger.



60

Table 3.1: Solution Quality and Run Time(H=20)
K CPLEX-OBJ DD-OBJ CPLEX-Time(s) DD-Time(s)

5 -393.0 -392.4 26.8 112.0

10 -389.6 -388.0 41.9 100.3

15 -354.5 -353.2 71.2 79.0

20 -382.6 -381.4 102.5 210.8

25 -383.2 -381.2 368.7 159.8

30 -378.6 -375.0 650.8 187.1

35 -380.7 -377.9 430.1 205.6

40 -394.2 -392.8 1201.3 247.6

45 -391.3 280.3

Table 3.2: Solution Quality and Run Time(H=40)
K CPLEX-OBJ DD-OBJ CPLEX-Time(s) DD-Time(s)

5 -502.4 -502.4 61.8 94.4

10 -480.8 -480.4 196.9 181.4

15 -505.7 -501.7 1039.7 294.2

20 -504.6 -504.6 1417.2 358.2

25 -500.8 -499.7 4091.1 487.0

30 -502.3 568.5

The expensive computation and failures of CPLEX indicate that the full MIP approach

is not practical to solve real-world problems.

It is important to note that DD can be easily parallelized to achieve significant

speedup in terms of the number of processors. In particular, if we use one processor per

future, the wall clock time per iteration would be equal to the maximum time required

to solve an individual future. If those times are nearly uniform then this would result in

nearly linear speedup.

3.5.2 Adaptive Planning Results on Synthetic Maps

We now evaluate the quality of the HOP policies and compare it with the GreedyZero

and HNoop policies. The results reported for each algorithm are averaged over 10 runs

to account for randomness of the environment and sample futures. We note that we have

attempted to apply other planning formalisms to this problem, such as Monte-Carlo Tree
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Figure 3.2: (Left) Grid Map 1. (Right) Grid Map 2. For both maps, the number marks
the index of patches and each grid represents one parcel. The initially occupied patches
are numbered in red and the free parcels are shaded in green.

Search, but without success due to the extreme action and stochastic branching factors

of our problems.

We created two simple grid maps (Figure 3.2) to illustrate the advantage of the

non-myopic HOP policy over the more myopic baselines. In the maps, each rectangle

represents one parcel and each patch is marked using a number (its index). Note that

most parcels contain only one patch while some contain two patches. The cost of each

parcel is 1 and the annual budget is also 1. In other words, only one parcel can be

purchased each year. In the first grid map, most parcels contain only one patch, but

there are many parcels with two patches in the south of the initial population. Generally

speaking, there are two possible directions of purchasing: to either the Northwest or the

Southeast. Presumably, purchasing the Northwest part would lead the population to the

most promising free area as long as the time horizon is large enough for the population

to spread there, while the Southeast region provides more instant benefit as each year

two patches would be available instead of only one. It is obvious that the optimal policy

would follow the first strategy in order to maximize the long-term reward. The results

shown in Table 3.3 illustrate that HOP recognizes the potential benefit of the free parcels

and purchases parcels towards the correct direction, while GreedyZero and HNoop are

easily distracted by the Southeast purchasing due to their myopia.

Grid map 2 is similar to grid map 1, but the purchasing is not limited to only two
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directions so a planner would have more choices of purchasing, which also means more

distractions from the far-away free area. Again, HOP recognizes the potential benefit

of the free parcels and purchases parcels towards that direction, while GreedyZero and

HNoop expand the reserve around the initial population uniformly. This leads HOP to

achieve a higher reward as shown in Table 3.3.

Table 3.3: Rewards on Different Maps
Map HOP HNoop GreedyZero

Grid map 1 85.2 35.0 70.2

Grid map 2 32 25.1 23.2

Real map 248.75 220.6 198.8

3.5.3 Adaptive Planning Results on Real Map

The real map (Figure 3.3) shows, via red + marks, where the initial bird population

is, and free parcels are shaded in dark gray. Parcels shaded in pink are expensive yet

affordable ones. The right map gives the natural population spread that would result if

all parcels were conserved. We see that the free area in the Northeast corner is promising

for optimal reward, therefore the optimal solution prefers to build a path from the initial

population to it as long as there is enough budget and time for diffusion. However, many

parcels on such a path are comparatively more expensive, adding more distractions for

myopic decision makers.

We present the reward data for the three policies in Table 3.3, showing that HOP

gains more reward than others. To further check their strategies, we plot the purchased

parcels and corresponding population spread of the HOP and HNoop policies in Figures

3.4 and 3.5. While not shown, the GreedyZero policy gradually purchases parcels around

the initial population. Compared to GreedyZero, HNoop finds the Southwest part more

beneficial for longer-term population spread, so more parcels are bought in that direc-

tion. However, HNoop fails to recognize the most promising free area in the Northeast,

which requires consideration of future actions. HOP recognizes the Northeast area and

purchases expensive parcels to build a path to the free parcels. In addition, HOP also

buys parcels around the initial population if the reward gain is justified.
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3.6 Summary

We presented an action selection approach for adaptive conservation planning where it

is necessary to dynamically reason about an extremely large set of resource management

decisions and how they will impact the stochastic population spread. Our algorithm,

based on hindsight optimization (HOP), is the first non-myopic approach for this prob-

lem and was shown to be effective compared to natural baselines. The main technical

contribution was to show how to compute HOP policies for huge branching factor action

spaces, for which prior HOP algorithms were inapplicable.
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Figure 3.3: (Left) Initial state of the real map. (Right) The population distribution after
20 years on the real map.

t = 5 t=10 t=15 t=20

Figure 3.4: Purchases and population spread of HNoop. Parcels shaded in green are
purchased with a probability of ≥ 0.5. Yellow is used for parcels with purchase proba-
bility of < 0.5. Patches are colored by the probability of being occupied (lighter color
indicates lower probability).

t = 5 t=10 t=15 t=20

Figure 3.5: Purchases and population spread of the HOP policy. The color setting is the
same as Figure 3.4.
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Chapter 4: A Framework for Online Planning in Diffusion Networks

4.1 Introduction

In this chapter, we address the online planning problem of diffusion network control in

a general way. At every time step, a planner takes the most recent state information

into consideration and provides a control action for the current step that specifies the

operations to take right away on certain sets of nodes in the network. The ultimate goal

is to optimize some measure of the long-term realization of the diffusion process, i.e. to

minimize the number of infected individuals in an epidemic breakout.

This dynamic optimization problem is challenging for existing planners due to several

factors. First, the diffusion process poses highly stochastic, exogenous dynamics that

arise from the large-scale network and the probabilistic spreading model. Second, the

action branching factor is usually large due to the possible combinations of node sets at

each time step. In addition, the long time horizon of interest adds one more dimension

to the policy space.

The first contribution of this chapter is to provide a general formulation of the online

planning problem in diffusion networks. We explore multiple realistic examples of dif-

fusion network control. Even though they share similar diffusion processes in networks,

each application has domain specific settings of node states, diffusion models and con-

trol models. The formulation we propose is generic enough to incorporate a variety of

problems with diffusion network control.

Another contribution of this chapter is to explore an effective method to solve the

problems with diffusion network control. We describe how to adapt our HOP algorithm

to a solution schema for handling the complexities in this group of problems. From a

higher level, we can view Hindsight [12], HNoop [25] and some other variants as a group

of lookahead policies, which make decisions by looking into the future diffusion process

and reasoning about the effects of each possible action. But they differ in terms of the

horizon over which they consider about future spread and whether or not they consider

the possibility of selecting actions in the future. Traditionally, each lookahead policy has
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been implemented in very different ways. Unfortunately, a direct application of these

approaches is not practical mainly because they treat each action as atomic and exhibit

serious scalability issues for our combinatorial action space. Therefore, our work can

also be seen as an alternative way to compute these lookahead policies more effectively.

The evaluation of our approach involves probabilistic planning in two new domains:

epidemic control of influenza and dynamic firefighting. In the past decades, both diffusion

applications have been well studied, but most work on diffusion network control has been

limited to a static version of the planning problem in which all the actions are taken

before the diffusion begins. This limits the solution quality in practice since it ignores the

advantage of observing and responding to the stochastic outcomes of diffusion at every

decision epoch. Thus, our approach fills a research gap in these domains by providing

high-quality solutions for dynamic diffusion network control.

In addition, although we present our approach for diffusion networks, the possible

application is not limited to this setting. At a high level, our approach is a framework

of effective implementation of some lookahead policies, which can be applied to any

probabilistic planning problem with a domain-specific tool for simulating future samples.

In what follows, Section 4.2 presents prior work related to epidemic control and

Firefighting, followed by our problem formulation in Section 4.3. In Section 4.4 we

present our approach schema that incorporates multiple lookahead policies. Descriptions

of domains we study and the corresponding experiments are given in Section 4.5. Finally

we conclude our work and suggest future research possibilities.

4.2 Related Work

4.2.1 Epidemic Control

Epidemic control has been a very important issue for protecting public health and the

problem of diseases propagation has attracted huge interest by researchers in various

areas.

The earliest study of epidemic propagation focus on epidemiological models of vari-

ous diseases such as chickenpox, HIV/AIDS and influenza ([4], [17]). Hethcote [29] gives

a general transfer diagram to model the possible status change on an individual. There

are five compartments labeled as M, S, E, I and R in their diagram. M denotes people
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who are new infants and have temporary passive immunity to the disease by receiving

antibodies from the mother. After the maternal antibodies disappear, the infant be-

comes susceptible (S). Any other people who do not have antibodies are also susceptible

individuals, i.e. they can get infected. A disease transmission occurs when there is ad-

equate contact between an infected (I) individual and a susceptible (S) one. When this

occurs, the susceptible enters the exposed (E) stage with a latent period, when they are

infected but not yet infectious to others. After the latent period ends, an exposed (E)

individual becomes infective (I) and is capable of transmitting the disease. When an

individual gains permanant immunity, the status is recovered (R). Note that depending

on the characteristics of a particular disease, its model may miss some of the five com-

partments. Here we are applying our approach to influenza control where infants are not

crucial, so we omitted M and use SEIR model in our work.

Based on these models, one research direction is to estimate the growth of the infected

population as a whole. The goal is to find an epidemic threshold of a network so that

the disease would naturally die out. In particular, in the disease spreading network,

each edge is associated with β which is the rate of infection, and each infected node is

associated with δ which is the virus death rate. An epidemic threshold τ is the value that

a disease breakout dies out quickly if β/δ < τ . With different models of the network,

the epidemic threshold is proposed in multiple works. Bailey[4], McKendrick[39] and

Anderson et al.[48] give the epidemic threshold for homogeneous graphs, where each

individual has equal connection with others. In many real-world networks, a power-law

structure is followed, in which there exist a few nodes with high connectivity but the

majority of the nodes have low connectivity. Pastor et al. ([43], [44]) and Eguiluz et

al. [19] derive the epidemic threshold for such power-law networks and show that it is

more accurate for realistic epidemic networks. Newman et al. [41] address the disease

spread problem in small-world networks with high clustering ([56]). Chakrabarti et al.

[9] further develops a nonlinear dynamic system to more accurately model an arbitrary

network and proposes the epidemic threshold to ensure an exponential disease die-out

rate.

However, studies on epidemic thresholds do not model specific individuals and do not

include options to treat individuals. Researchers also study how to use immunization

to control propagation. Several papers show that targeted vaccinations can effectively

reduce epidemics, though they usually have certain assumptions about the networks. For
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instance, Briesemeister et al.[8] studied a random immunization on power-law graphs.

An acquaintance immunization policy was proposed in [13] , which is proved to be much

better than a random policy. The acquaintance immunization policy tends to immunize

nodes that are connected with more neighbors (like a hub in the network). Following this

idea, Madar et al. [38] and Dezso et al. [16] give a hub-based policy for vaccinations in

scale-free networks. Later some studies model vaccinations using graph theory, especially

graph cut (e.g. [3], [20], [28]). To minimize the number of infected individuals, they use

vaccinations to create a barrier or cut to block the diseases. Goldenberg et al. [24] further

extends the problem to a probabilistic model where each edge is associated with its own

transition probability and the infection transmission events are independent among all

edges. To solve this NP-hard problem, they formulate a nonlinear integer program with

high-order multilinear terms. Then they propose a quadratic formulation and solve it

with a state-of-the-art MIP solver. The solution provides a lower bound and a feasible

solution to the original problem.

Note that all the above studies with controls (immunization) work on static problems

where vaccinations are applied before the epidemic begins to spread. This is analogous to

the upfront conservation problem by Sheldon et al. [51] where all the purchases are made

at time 0. In contrast, we address a dynamic, adaptive version of epidemics controlling

problems where the decision of vaccinations and quarantines is made at every time point

for the most recent state and available medical resources.

4.2.2 Stochastic Firefighting

Fire spreading is another important diffusion network control problem. The protection

of forests/landscapes from wild fire is important, as the fire can cause loss and damages

to human life, property and the ecological system.

Introduced by [27], the traditional Firefighter problem is defined on a graph of land

patches and a source node s. At any time, each node in the graph can have one of the

following states: susceptible, protected, or burning. In the beginning, only s is burning

and all the other nodes are susceptible. Then at every time step, the fire spreads from

each burning node to all of its susceptible neighbors, unless a susceptible node is protected

at or before current time step. Burning nodes and protected nodes remain burning and

protected respectively afterwards. The diffusion process terminates when the fire no
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longer spreads and the goal of this problem is to find a protection strategy to maximize

the safe nodes (either protected or remain susceptible and isolated from burning nodes)

in the end with a budget constraint B (at most B nodes can be protected at each time

step).

This Firefighter problem is a deterministic, discrete-time model of the spread on a

graph. It is NP-complete even on trees with maximum degree three [21]. There has

been tremendous work (see e.g. [22] for a survey), most of which focuses on special

graphs, such as trees and grids. Anshelevich et al. [2] considers variants of the Fire-

fighter problem on general graphs. The spreading-vaccination version of the problem,

where the protection/vaccination also spreads deterministically to neighbors as the fire

spreads, can be reduced to maximizing a submodular function with a partition-matroid

constraint. There is a randomized algorithm with (1− 1/e) approximation and a greedy

algorithm with 1/2 approximation for solving it. Recently, Spencer [52] captures the key

tensions in containing invasive species with unreliable biological control agents, i.e. each

protection/vaccination has a probability of effectiveness. Since their objective function

is still submodular in this stochastic setting, the approximation algorithms from [2] are

extended.

Spatial wildfire spread model has been studied by researchers in Forest engineering

for decades. See [53] for a review of early attempts for modeling the behaviour of wildland

fires and how to simulate wildfire spreading across landscape.

Wildfire management is another research direction researchers are more interested

recently. Examples include reduction of fire suppression costs [30], resource sharing

[54], fire fuel reduction, etc. With more collaboration between Forest Management and

Artificial Intelligence, Reinforcement Learning has been applied to solve various forest

planning problems [46]. [14] and [15] model the decision making problem as a large scale

spatial-temporal planning problem and present a policy gradient approach to handle it.

Another work on introducing AI approach to wildfire management problem is given in

[30], where Monte Carlo method is used to show that sometimes it is more cost-effective

to allow a light fire to burn.
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4.3 Problem Statement

In this section, we introduce the formal notation of stochastic diffusion networks and the

control actions so that it can represent most diffusion network control problems. The

main stochastic planning problem is defined afterwards.

4.3.1 Basic Notation

A stochastic diffusion network involves a directed network (graph) G = (V,E) where the

node set is V = {v1, . . . , vN}. At any time t, the state of each node va is an element in the

set of node states S = {x1, . . . , xM}, which is denoted as vta. Generally, a diffusion process

is observed as nodes change their states when a behavior (information/idea/disease)

cascades from node to node. To better describe a diffusion process, we assume that S

is partitioned into three subsets S = SSus
⋃
SInf

⋃
SR. SSus is the set of susceptible

states. A node with a state xm ∈ SSus is not hit (affected) by the cascading yet but can

be hit later. SInf contains infectious states that mean the node has been affected and

is able to propagate the contagious behavior to other neighbors. xm ∈ SR indicates the

node can resist infections from others.

There are two events in a diffusion process. Diffusion events happen on edges of G

as an infectious node propagates the contagion to a susceptible neighbor and changes

that neighbor’s state. In particular, suppose a is in an infectious state and b is in a

susceptible state at t, then each edge eab ∈ E is associated with a probabilistic model

Pab(v
t
a, v

t
b, v

t+1
b ), vta ∈ SInf , vtb ∈ SSus, v

t+1
b ∈ SInf , indicating the single-step probability

that the behavior would spread from node a to node b at time t and b becomes infectious

in the next time step. The mass function requires
∑

vt+1
b ∈SInf

Pab(v
t
a, v

t
b, v

t+1
b ) = 1,∀vta ∈

SInf ,∀vtb ∈ SSus. We further assume that the diffusion events taking place on different

edges are independent. Thus a node gets infected iff at least one of its parents pass the

contagion to it. Local events describe how the state of a node changes without interacting

with other nodes. We use Pa(v
t
a, v

t+1
a ) to denote the probability of local state transition

and
∑

vt+1
a

Pa(v
t
a, v

t+1
a ) = 1,∀vta ∈ S.

Let {Oi} be the set of binary control operations that can be applied to a set of

nodes for changing their state. Each operation may have some preconditions specifying

that the operation is only feasible on nodes with certain state values. Usually, with



71

limited control resources, each control operation is assigned with a cost Cost(Oi). The

operation model T (vta, O
t
i , v

t+W (Oi)
a ) models the chance that Oi, which is performed at

time t, becomes effective after a time window W (Oi) and changes the state of a at time

t + W (Oi). In most cases we have W (Oi) = 1, meaning that the operation modifies

the state of a node in the following time step. However, for some operations such as

vaccinations, a short time period W > 1 is needed in reality. This is to stimulate the

real case that an individual’s immune system takes a few days to produce antibodies

successfully. Note that it is feasible to do no controls at all, which we denote as a NOOP

operation.

At every decision epoch, based on the current state s, a policy π(s) for diffusion

network control gives a set of control operations, which is also named as one (control)

action. In our settings, at every time step t ∈ {0, 1, . . . ,H − 1}, we compute a new

control action πt to be performed immediately, where H is the time horizon of interest.

But the decision epoch may be less frequent depending on the specific problem. The

policy is also required not to violate any other domain specific constraints. We assume

that at every time step, the control operations are always first applied before diffusion

happens. Thus, given any policy, we can simulate a diffusion control process by deciding

the value of each node at every time step according to the control model and diffusion

model.

4.3.2 Stochastic Planning Problem

A general goal of any stochastic planning problem can be represented as finding a policy

π∗ that maximizes an objective function OBJ:

π∗ ∈ arg max
π

OBJ (4.1)

Depending on the specific application, the objective function may vary. But in dif-

fusion network control problems, the ultimate purpose is to optimize an expectation of

some measure of the long-term diffusion process. We present a general formulation of

the objective function in (4.2). First, we use SG to denote the set of goal states we

would like each node to achieve and define a node reward r(xm),∀xm ∈ SG. Thus the

diffusion utility is calculated by summing up the rewards for all the nodes with a goal
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state. In some applications, it is also important to evaluate a plan based on its control

actions. We define an operation measure c(πt) which is allowed to be different from the

cost function of operations. To have a long-term evaluation, we include the time steps of

interest in a set TG and accumulate the evaluation at each time step in TG. For instance,

if we are only interested in the final influence of a diffusion process, then TG = {H}
where H is the time horizon of interest. Another extreme example is TG = {0, 1, . . . ,H},
which counts the diffusion realization of every single time.

OBJ = E

∑
t∈TG

[ ∑
a∈V,vta∈SG

r(vta)−
∑
Ot

i

c(Oi)]

 (4.2)

4.3.3 Futures in Diffusion Networks

Note that in Equation (4.2), the expectation is taken over the stochastic realization of a

diffusion process. For presentation purpose, we introduce the notion of a general future

F , which is a random variable encoding the random outcomes that dictate the future

diffusion and any other stochastic over some horizon H. Besides, a future is independent

of actions within horizon H, but can incorporate any policy to show the impact of the

actions. Therefore, the ultimate purpose of generating a future is to remove all the

randomness in both the diffusion model and control model.

First, to eliminate the randomness introduced by the diffusion process, the simulation

of a future instance requires H coin flips for each edge following the diffusion model and

for each node following the local state transition model. If there are different probabilities

in multiple cases, we do the realization for each case. For example, individuals at certain

state have a higher infectiousness. Particularly, assume that the spreading probability

pab(v
t
a, v

t
b, v

t+1
b ) is p1 when vta = xm but p2 with a node state vta 6= xm. Then we first flip

one coin with p1, set the diffusion result to 1 if Head is seen and 0 if we see Tail. Also

we flip coin again with p2 and record the result similarly. In addition, when the control

operations have stochastic effects, it is also required to determinize such randomness.

Then at each time step in horizon H, we flip coins according to the operation model.

In this way, a realization f of future F deterministically decides the state of each

node at any particular future time under any conditions. Such a future can be visualized
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as a deterministic network as in Figure 1. In the network, all the nodes in G repeat at

every time step and an edge between a at time t and b at time t + 1 indicates that if

node a and b satisfy the diffusion preconditions at time t then the contagion will spread

from a to b at time t+ 1.

For a fixed realization f , we effectively get a deterministic problem, against which

any policy can be evaluated. We say a policy π is feasible for a future f iff at any time

step, actions returned by π can be applied to f without violating any constraint in the

domain. For a future f , a feasible policy π, and initial state s0, we evaluate the diffusion

result achieved during the horizon H by a reward function R(s0, f, π), which is equal to

the measure in (4.2) of a single future f . The optimal solution to our problem can then

be expressed as finding a policy π∗ that maximizes the expected reward, ı.e.

π∗ ∈ arg max
π

E[R(s0, F, π)], (4.3)

where the expectation is taken over the future variable F .

4.4 Approach Schema

Here we present our approach schema that incorporates multiple lookahead policies, as

well as how our computation of a policy solution can be accelerated compared to their

previous implementations. In particular, we evaluate the candidate actions by simulat-

ing multiple futures using the Sample Average Approximation (SAA) and optimizing a

goal w.r.t. the samples via a compact Mixed Integer Program (MIP). For large-scale

(MIPs) which can not be solved by off-the-shelf optimizers, we suggest an efficient way

of computation with Lagrangian Relaxation technique.

4.4.1 Lookahead Policies

Lookahead policies are a group of policies that make a decision by optimizing future

actions on forecasted scenarios over a certain time horizon. Compared to some ele-

mentary policies that do not consider the impact of decisions in the future, lookahead

policies explicitly use the future information. Yet usually, the optimization is computed

approximately due to the difficulty of direct optimization of a stochastic function.
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Here we focus on four different types of lookahead policies. Though all the policies

explicitly optimize the actions on some futures, they are different in the horizon of

futures, horizon of action impact and how much policy consistency is required among

different futures. We denote the horizon of future F as TF , the horizon of a policy π

as Tπ, and the policy in future fk at time t as πk,t. A basic requirement for any policy,

including lookahead policies, is that the first actions in the K futures are consistent.

That is, Π = {π | π1,0 = π2,0 = · · · = πK,0}.
The GreedyZero policy is the most myopic lookahead policy in our framework. It

only looks ahead to the next time step, i.e. the future horizon is 2 and action horizon is

1. Thus, for GreedyZero, the diffusion after the next time step is zero. Its policy space

is ΠGZ = Π
⋂
{π | Tπ = 1, TF = 2}.

The HNoop policy looks further into the future than GreedyZero as it considers the

diffusion process until the real horizon H. However, similar to GreedyZero, it does not

consider the possibility of taking actions after the first decision epoch, i.e. only NOOP

actions are taken afterwards and the action horizon is still 1. The corresponding policy

space is ΠHNoop = Π
⋂
{π | Tπ = 1, TF = H}.

HNoop policy will often work well, when the consideration of future actions is not

critical. But when this is not the case, we might expect policies that consider future

actions to have an advantage. Interestingly, the conceptual definition of the HNoop policy

corresponds exactly to the myopic policy proposed in the only prior work on adaptive

conservation planning in Golovin et al. [2011]. However, their computation of HNoop

is carried out via a greedy algorithm that considered greedily adding node operations

into the operation set one at a time until the some constraints are violated. Given

certain submodularity assumptions their greedy algorithm comes with approximation

guarantees. Our framework provides an alternative approach to compute HNoop that is

not purely greedy, but relies on decomposition for efficiency and optimality.

The Hindsight policy is a non-myopic policy as it makes use of both the future

states and the future decisions for a long horizon. There is no consistency requirement

for actions after the first time step. Thus there could be different policies in each future.

The policy space is ΠHS = Π
⋂
{π | Tπ = H,TF = H}.

The main idea behind the Hindsight policy is to compute an upper bound of the

optimal action value and then select the best action. The traditional implementation

of Hindsight requires an enumeration of all the possible actions. For each action, its
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value is estimated by sampling multiple futures that takes this action first, optimizing

each future, and averaging their rewards. Policies on different futures can be different,

resulting a higher reward value than the optimal.

The Straightline policy is the same as Hindsight except that at every time step,

the decisions in every future should be the same. The solution is an offline policy that

can be directly applied for T time steps. Its policy space is ΠSL = Π
⋂
{π | π1,t = π2,t =

· · · = πK,t, ∀t > 0, Tπ = H,TF = H}.
Formally, for each lookahead policy above, the corresponding optimization problem

is limited to a specific policy space. For instance, the optimal Hindsight solution is

π∗HS ∈ arg max
π∈ΠHS

E[R(s0, F, π)], (4.4)

An exact solution of this stochastic optimization problem is usually beyond the ca-

pabilities of existing planners since it is defined in terms of an expectation over a com-

plicated diffusion distribution in large-scale networks. In the following, we develop an

approach for approximating these lookahead policies within one framework, which is a

reformulation of our HOP algorithm in Chapter 3. Since their essential steps are the

same, here we present the procedure briefly.

4.4.2 A Framework for Computing Lookahead Policies

In the following, we describe our approach mostly using notations of Hindsight policy.

However, it is straightforward to generate the details for other lookahead policies.

Deterministic Optimization Problem. The objective function (4.4) demon-

strates the stochasticity of a diffusion network, which we deal with by employing Sample

Average Approximation (SAA), so that the stochastic problem is transformed into a

deterministic one as follows, where the infinite number of futures are replaced with K

futures. Theoretically, as K increases, the solution of problem (4.5) converges to that of

problem (4.3).

π∗HS ∈ arg max
π∈ΠHS

1

K

K∑
k=1

R(s0, fk, π), (4.5)
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Encoding with Mixed Integer Programs. A direct way of computing (4.5) is

to translate it to a Mixed Integer Program (MIP) that represents the objective function

as well as all the constraints in the specific diffusion network domain. In the Appendix,

we give the MIP encodings we use, but any other approaches also work as long as the

MIP correctly represents the corresponding problem. By adding a negative sign to the

objective function and replacing max with min, we have a general form of MIP for (4.5)

in (4.6), where CON includes every domain specific constraint.

min
π,X
− 1

K

K∑
k=1

R(s0, fk, π)

s.t. CON
⋃
π ∈ ΠHS . (4.6)

In our experience, (4.6) can be directly solved via a standard MIP optimizer, such

as IBM CPLEX optimizer, Gurobi MIP solver, etc. Unfortunately, as the number of

futures increases to ensure an empirically good approximation result, the MIP of a

practical problem often becomes unsolvable for generic MIP solvers, which is observed

as either failing to handle a very huge MIP or taking too much time to complete the

computation.

Dual Decomposition Algorithm. In order to scale (4.6) to the number of

futures, we explore a separable structure in it. Now we have separate decision variables

for each future and add binary variables d to force agreement of operations at the first

time step, then problem (4.6) is re-written as

min
πk,Xk

− 1

K

K∑
k=1

R(s0, fk, πk)

s.t. CON
⋃
{πk,0 = d, k = 1, . . . ,K}. (4.7)

Now the problem reveals a separable structure that the policies of futures are only

coupled via the policy constraints on the first action. If the constraints are removed then

the combined objective function can be solved by optimizing over each future indepen-

dently. With Lagrangian dual decomposition, we relax the coupling constraints on the

first action and get the dual
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q(λ) = min
{Xk,πk}

− 1

K

K∑
k=1

R(s0, fk, πk) +
∑
k,i

λk,iπk,0,i

s.t.
⋃
k

CONk and {λk,i} ∈ Λ

Λ = {{λk,i} |
K∑
k=1

λk,i = 0,∀i},

which can be maximized iteratively using projected subgradient descent. The update

step at iteration j is given by

λ
(j+1)
k = λ

(j)
k + αj+1

π̄(j)
k,0 −

∑K
k′=1 π̄

(j)
k′,0

K

 , (4.8)

where π̄k can be found by solving a minimization problem involving a single future fk

and hence is much more tractable than the full MIP, i.e.

π̄k = arg min
Xk,πk

− 1

K
R(s0, fk, πk) +

∑
i

λk,iπk,0,i,

Putting everything together, we get the complete dual optimization algorithm for a

lookahead policy similar to Algorithm 2.

One important issue in this algorithm is the extraction of a feasible solution. When

the algorithm converges, the solutions to the independent subproblems (i.e. the πk,0) are

consistent and hence represent a feasible primal solution. Then any of the πk,0 are optimal

primal solutions and we output the resulting action as the policy action. However, in

general there can be a duality gap, and we are not guaranteed that optimizing the dual

will produce feasible primal solutions. From our experience with different applications,

different domains may require a domain specific heuristic for extracting feasible solution.

In general, it is reasonable to choose an action that is voted for by more futures. It is also

possible to include heuristics for action preference in this step. For instance, in influenza
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control, we can choose to add an isolation control to the feasible solution as long as it is

selected by at least one future, while a vaccination control is selected only when it is the

majority choice.

Correctly controlling the step size αj can have a large impact on efficiency, since

each iteration involves solving K smaller MIP problems (one MIP encoding per future).

We follow the same, relatively standard, step size control as [37], where the step size

is computed according to the gap between the feasible primal solution quality and the

dual solution quality. In particular, after extracting a feasible solution for the primal, let

APXj be the sum of rewards on every future and DUALj be the dual objective value,

we set

αj =
APXj −DUALj∑

k,t,i(π̄
(j)
k,t,i)

2

4.5 Experiments

To evaluate the performace of our lookahead policies in domains with diffusion network

control, we apply our approach to an epidemic control problem and the stochastic fire-

fighting problem. For each domain, we describe the domain settings, along with our

implementation details and experimental results.

4.5.1 Epidemic Control of Influenza

Our application involves the spreading of influenza among people. Even though influenza

is usually not fatal and people infected with influenza can recover by themselves after

a period of time, the disease transfers fast and a large-scale breakout can still affect

people’s normal life and leads to severe illnesses in the young and the old. In the control

of influenza, we aim to minimize the number of infected individuals as well as the total

cost to reduce infection.
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4.5.1.1 Domain Settings

We model influenza virus spreading among people as follows. In the population net-

work, every individual person is a node and each edge represents the contact between

individuals that can lead to virus transmission. We use the SEIR model [29] to describe

the state of a node. At any time, a node could be S (susceptible), or E (exposed), or I

(infectious), or R (recovered). Susceptible people are healthy but vulnerable and have a

chance of getting infected by other infectious people. When an individual gets infected,

his/her state is deterministically exposed until the incubation period of the virus ends,

after which the individual becomes infectious. Here we assume that the individual with

influenza virus can naturally generate antibodies and recover after an infection period.

Then they will remain recovered for the rest of the time horizon.

To precisely describe the progress of the epidemic, we further expand E and I as-

suming that the incubation period is 2 days and infectious period is 5 days. As a

result, the set of possible states of a node includes 9 values: S = {susceptible, exposed-1,

exposed-2, infectious-1, infectious-2, infectious-3, infectious-4, infectious-5, recovered}.
We also denote some subsets of S so that the following formulation is easier to under-

stand: SSus = {susceptible}, SInf = {exposed-1, exposed-2, infectious-1, infectious-2,

infectious-3, infectious-4, infectious-5}, and SR = {recovered}.
The virus can only spread from an infectious node a to a susceptible node b with a

probability pab if there is an edge (a, b) in the network. Therefore,

Pab(v
t
a, v

t
b, v

t+1
b ) =


pab, if vta ∈ SInf , vtb = susceptible, vt+1

b = exposed-1

1− pab, if vta ∈ SInf , vtb = susceptible, vt+1
b = susceptible

0, o.w.

Pa(v
t
a, v

t+1
a ) =



1, if vta = susceptible, vt+1
a = susceptible

1, if vta = exposed-1, vt+1
a = exposed-2

1, if vta = exposed-2, vt+1
a = infectious-1

1, if vta = infectious-(d), vt+1
a = infectious(d+1), d = 1, . . . , 4

1, if vta = infectious-5, vt+1
a = recovered

1, if vta = recovered, vt+1
a = recovered

0, o.w.
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Following the independent contagion model [35], the transmission events are indepen-

dent.

There are two types of operations on an individual a for controlling the epidemic

diffusion: vaccinations (Va) and quarantines (Qa), with costs of cv and cq respectively.

Hence the operation set {Oi} = {Va}
⋃
{Qa}. A vaccination can only be applied to a

susceptible node, and is effective with a probability of pv. We also define W as the

period of time that a vaccine takes to produce a good immune response. In other words,

if a vaccination is effective, its effect still takes several days to be realized. Before the

time window is over, a vaccine receiver still has a chance to be infected just as if there is

no vaccine. A quarantine is only available to an infectious node, and is effective with a

probability of pq. We assume that pq is close to 1 due to the fact that a quarantine isolates

an individual so that there is little possibility to spread disease to others. Formally, we

get the following transmission model.

T (vta, Va, v
t+W
a ) =


pv, if vta = susceptible, vt+1

a = recovered

1− pv, if vta = susceptible, vt+1
a = vta

0, o.w.

T (vta, Qa, v
t+W
a ) =


pq, if vta ∈ SInf , vt+1

a = recovered

1− pq, if vta ∈ SInf , vt+1
a = vta

0, o.w.

At any time point, the single-step measure here is the number of unhealthy individuals

(either exposed or infectious), plus the total cost for vaccinations and quarantines, i.e.

SG = {recovered}, TG = {0, . . . ,H}, and

OBJ = E
[∑H

t=0[
∑

vHa =recovered 1−
∑

Va=1 cv −
∑

Qa=1 cq]
]
.

4.5.1.2 Experimental results

To evaluate our approach in epidemic control problems, we randomly generate population

networks of various sizes, connections and initially affected individuals. The Gurobi MIP

Solver is used to solve an MIP if needed.

Performance of Dual Decomposition. We first compare the performance of

the Gurobi solver with DD as they compute a decision of a lookahead policy by solving
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the MIP. Here we just use a small network that contains 1,000 nodes and 10 initially

affected individuals. The time horizon H here is 20 and vaccine effectiveness window W

is 1.

Table 4.1: Objective Value and Computation Time
K Gurobi-OBJ DD-OBJ Gurobi-Time (s) DD-Time (s)

10 90.4 90.4 63.4 127.5

20 90.4 90.4 123.5 254.2

30 90.6 90.5 202.4 376.1

40 89.2 88.0 602.4 494.6

50 96.3 89.7 1038.6 634.8

From Table 4.1, we see how Gurobi and DD behave when computing Hindsight

solutions as the number of futures K increases. On these problems, DD can returns

near optimal solutions as its OBJ is equal to or very close to the OBJ of Gurobi. The

computation time of DD scales linearly with the number of futures. When K is small,

Gurobi takes less time than DD as the problem is small. For larger problems where K >

30, the time Gurobi needs is much longer and DD shows an advantage of computation

complexity.

Performance of Adaptive Planning on A Small Network. For this small

network, when 10 futures are used, both Gurobi and DD can return a lookahead solution

within a decent time. We evaluate the adaptive control process for 10 times and average

the reward of each run. Table 4.2 shows how each policy performs when the vaccine

effectiveness window varies. Note that the numbers reported here give the accumulated

number of infected population. A larger number indicates a worse control policy.

In addition to four lookahead policies, we also have a Random policy and HubBased

policy. Random always takes L operations randomly, where L is a parameter that

limiting the number of operations Random can take at each decision step. Similarly,

HubBased also takes L operations per decision epoch. But it is smarter as it only

conducts operations on top L nodes according to their number of connections. HubBased

represents a group of heuristics that vaccinate popular nodes in some previous literatures.

Each row of the table shows the performance of each policy in the same setting.

We see that Random, HubBased and GreedyZero are much worse than HNoop, Hind-

sight and Straightline. This is within our expectation since they use none or very little
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information of the future diffusion realization. HNoop performs better than Hindsight

though it is more myopic. By checking their decisions at every time step, we believe

that HNoop usually takes many more actions, especially vaccinations, than Hindsight as

HNoop thinks there would be no chance to take actions in later time steps. For epidemic

control, such strategies with early actions are usually more effective. In contrast, Hind-

sight delays actions until they are necessary. But with a low infection rate (0.06), there

is a high degree of randomness and the futures used by the lookahead policies are often

very different. Hindsight will do nothing if one node is not infected in all the futures

while in reality infection of this node might happen.

We change the value of vaccine effectiveness window and repeat the evaluation. When

W is larger, a vaccine takes longer to be effective. For an individual, the chance of

getting infected is higher. Thus more nodes get infected when Random and HubBased

polices are used. However, lookahead policies, especially those with a long horizon of the

futures, are able to see how W affects the action result. They are able to take actions

earlier in order to effectively control the breakout. Therefore, HNoop, Hindsight and

Straightline are able to keep the number of infections under control. GreedyZero only

looks ahead towards the next time step. For W > 1, GreedyZero cannot see the benefit

of vaccinations. Then it can perform even worse than Random and HubBased.

Table 4.2: The Number of Infection on A Small Network (Gurobi)
W Random HubBased GreedyZero HNoop Hindsight Straightline

1 796 680.2 744.5 158.9 269.9 191.9

3 806.3 736.8 842.4 186.7 238.3 167.1

5 843.1 750.4 850.6 161.1 247.5 165.9

Performance of Adaptive Planning on A Large Network. A large network is

needed to push our evaluation towards an instance that is closer to reality. We create a

population network with 10, 000 nodes and 10 initially infected nodes. The time horizon

H is increased to 50. Since our lookahead policies cannot be computed by directly using

a MIP solver, we apply DD to get lookahead solutions. For each policy, we still run 10

control simulations and report the average numbers of infection in Table 4.3. The result

is consistent with the results on a small network.
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Table 4.3: The Number of Infection on A Large Network (DD)
Random HubBased GreedyZero HNoop Hindsight Straightline

1295.9 956.8 1056.8 583.7 707.2 558.2

4.5.2 Stochastic Firefighting

Now we present our exploration in stochastic firefighting problem. Unlike most previous

work, we are particularly interested in dynamic strategies to prevent and suppress fire,

which is more realistic.

4.5.2.1 Domain Settings

Similar to the settings in RCW domain, we divide an area into small patches, where a

patch is an atomic land unit. At any time, a land patch a can be susceptible, burning,

burnt or protected. A Susceptible patch is not on fire yet but is vulnerable to the fire from

other patches. A burning patch a is on fire and the fire can spread to any susceptible

neighbor b with a probability pab. If the fire on a burning patch is not suppressed, the

patch will be burnt at the next time step. When a susceptible patch is successfully

protected from catching fire or the fire on a burning patch is put out, the patch becomes

protected. We assume that for the remaining time steps within the time horizon H, burnt

patches remain burnt and protected patches remain protected. In addition, there are

two types of actions: protection (Pa) and suppression (Sa), with a cost cp(a) and cs(a)

respectively. Since the actions may not successfully protect the patch due to complicated

fire conditions, we assign each action an effectiveness probability pp and ps. A standard

encoding in our general framework is as follows.

S = {susceptible, burning, burnt, protected}, SSus = {susceptible}, SInf = {burning}, SR =

{protected, burnt}, {Oi} = {Pa}
⋃
{Sa},W = 1.

Pab(v
t
a, v

t
b, v

t+1
b ) =


pab, if vta = burning, vtb = susceptible, vt+1

b = burning

1− pab, if vta = burning, vtb = susceptible, vt+1
b = susceptible

0, o.w.
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Pa(v
t
a, v

t+1
a ) =



1, if vta = susceptible, vt+1
a = susceptible

1, if vta = burning, vt+1
a = burnt

1, if vta = protected, vt+1
a = protected

1, if vta = burnt, vt+1
a = burnt

0, o.w.

T (vta, Pa, v
t+1
a ) =


pp, if vta = susceptible, vt+1

a = protected

1− pp, if vta = susceptible, vt+1
a = vta

0, o.w.

T (vta, Sa, v
t+1
a ) =


ps, if vta = burning, vt+1

a = protected

1− ps, if vta = burning, vt+1
a = vta

0, o.w.

The ultimate goal in this domain is to minimize the total number of burnt patches.

It is equivalent to have SG = {burnt}, TG = {H} and OBJ = E[
∑

vHa =burnt 1].

Diffusion Model on Synthetic Maps. In our empirical study, we create grid

maps as our study areas (Figure 4.1). Each cell represents a patch. Red cells are

initially burning. Green and yellow cells are susceptible. Yellow ones have more fuel than

the green hence yellow cells are more likely to catch fire. Adapted from Karafyllidis et

al. [33], our fire spreading model calculates the spread probability pab by considering fuel

level (amount of flammable material) of patch b, distance between a and b, their height

difference and the real-time weather condition. This model is designed based on known

knowledge of fire spreading. In particular, the more fuel an area contains, the faster

the fire will spread. Fire may jump over some distance but mainly spreads to nearby

patches. Moreover, it is known that fire shows a higher spreading rate when climbing up

an upward slope. Weather is a very important factor that affects how the fire spreads,

for which we include temperature and wind. Either a higher temperature or faster wind

will lead to a faster fire spreading. The wind direction also affects fire spreading rate

in different directions. For instance, when other factors are the same and the wind is

blowing from South to North, the fire tends to move faster towards North than South.

Formally, pab is computed by the following equation.
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pab(t) = fuel(b) · TMP(t) · 1

Dist(a, b)
·Wind(a, b, t) ·Height(a, b) (4.9)

Figure 4.1: Grid maps of Firefighting. Each cell represents a land patch. Red cells are
initially burning. Green and yellow cells are susceptible. Yellow ones have more fuel than
the green hence yellow cells are more likely to catch fire.

In our calculation of the fire spreading model, fuel(a) is a random number in [0,

1]. TMP(t) is set to 1 for simplicity but is allowed to be a variable. Wind(a, b, t) is a

8-dimension vector that specifies its influence in each direction. For example, if the wind

blows from South to North with a high speed and patch a is on fire, then the influence

vector 〈1.0, 1.0, 0.8, 1.3, 1, 1.1, 1, 1.1〉 indicates the value of Wind(a, b, t) if any b is in the

West, East, South, North, SW, NW, SE, NE of a respectively. The influence vector of a

slower wind could be 〈1.0, 1.0, 0.9, 1.1, 1, 1.04, 1, 1.04〉.

4.5.2.2 Experimental results

We conduct experiments for this Firefighting domain on grid maps with different sizes

and a time horizon H = 20. The wind blows from South to North during the whole

period, but with a high speed in the first 10 time steps and becomes slower after t = 10.

Whenever an MIP needs to be solved directly, we apply the Gurobi MIP solver to get a

solution. All the experiments are run on a single machine with 8GB memory.
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Performance of MIP and DD. We first test the performance of MIP and DD on a

smaller map in Figure 4.1 and present the objective value and computation time in Table

4.4. In all the test cases here, DD always returns optimal solutions, as its objective value

is always the same as Gurobi’s. As the problem gets larger, DD has more computation

time savings than Gurobi. It is worth noting that from our observation, most times DD

needs a lot of iterations to reach convergence. But it is able to find the best feasible

solution within a few iterations. Hence there could be more time savings by limiting the

number of iterations to a small number without hurting the quality of the DD solution.

Table 4.4: Objective Value and Computation Time
K Gurobi-OBJ DD-OBJ Gurobi-Time (s) DD-Time (s)

10 3.3 3.3 45.0 70.4

20 2.9 2.9 78.6 123.1

30 3.5 3.5 169.1 210.7

40 3.1 3.1 293.6 257.8

50 3.5 3.5 2231.9 352.3

Evaluation of Adaptive Planning on A Small Problem. Now we report the

rewards of our policies that are computed by Gurobi and DD. We still use the small grid

map with 100 cells. Given that Gurobi and DD perform similarly, we only present the

result of Gurobi in Table 4.5. The reward here is the number of burnt cells in the end

of the time horizon.

Compared to Random policy, all the lookahead policies keep many more cells from

being burnt, though GreedyZero performs worse than other lookahead policies. Hindsight

and Straightline outperform HNoop, showing the benefit of considering future actions.

We further find that with our experimental settings, the budget of one time step is

not enough to suppress the fire completely. Therefore, it is necessary and reasonable to

also consider future budget for making a better decision for the current time step.

It is seen that Hindsight and Straightline make better decisions with 20 futures

compared to 10 futures, yet such increase of futures does not help GreedyZero and HNoop

attain more reward. After a closer examination of their solutions and the domain itself,

we believe that Hindsight and Straightline need more futures for a good estimation

of the candidate actions for the following reasons. First, the fire spreading events in

this firefighting domain are highly stochastic. In addition, different from other policies,
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Hindsight and Straightline are also required to make decisions for time steps after 0.

They can benefit from more futures to see the real distribution of the diffusion.

Table 4.5: Rewards of MIP
K Random GreedyZero HNoop Hindsight Straightline

10 72.6 41.3 27.6 20.2 21.1

20 72.6 42.8 27.5 8.4 11.8

Adaptive Planning on A Large Problem. When the map gets larger, direct

solution of an MIP using a generic MIP solver becomes impractical. Here for the adap-

tive planning on a large map (Right of Figure 4.1), we only evaluate the performance

of policies based on DD optimizations. We use 20 futures and set the number of itera-

tions to 10 for computing lookahead policies. The results, presented in Table 4.6, show

that lookahead policies largely outperform the Random policy, and the best policies are

Hindsight and Straightline.

Table 4.6: Rewards of MIP
Random GreedyZero HNoop Hindsight Straightline

346.5 101.3 57.2 34.5 31.8

4.6 Summary

We address a class of probabilistic planning problems that involves controlling of diffusion

process in networks. We formally set up the problem and propose a framework for solv-

ing it via lookahead policies. With our framework, lookahead decisions can be directly

computed by using off-the-shelf MIP optimizers when the problem is small. For large

problems that MIP solvers cannot solve in reasonable time, we provide a dual decom-

position algorithm for approximating the lookahead solutions. Thus our work can also

be seen as an alternative implementation of computing lookahead solutions efficiently.

We study and apply our approach to two important domains with diffusion process:

epidemic control of Influenza and stochastic firefighting problem. Experimental results

confirm that dual decomposition returns near-optimal solutions within decent time. In

addition, our lookahead policies outperform baselines in each domain and HNoop, Hind-

sight and Straightline are often the best policies in each application.
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Chapter 5: Lessons Learned and Future Work

In this dissertation, we present our work on planning in diffusion networks. We first

proposed a non-adaptive policy in conservation planning, where the goal is to encourage

species spread in the long term. Given a set of control operations of interest, this policy

explores the trade-off between population loss and policy flexibility. We also develop a

fully adaptive approach for this conservation planning problem by computing a Hindsight

Optimization (HOP) solution at every time step. Our algorithm scales for exponentially

large, factored action spaces, and returns near-optimal decisions. Moreover, we generally

address the diffusion network control problem via a single framework that incorporates

multiple lookahead policies. Evaluations of our approach in several domains show that we

can effectively compute high-quality policies. In this Chapter, we summarize a number

of lessons we learned and discuss a few directions for future study.

5.1 Lessons Learned

Model-based vs. simulation-based lookahead policies. Our lookahead policies

are computed via sampling futures, which in fact represent knowledge of a domain specific

model. Simulation-based policies, on the other hand, only have access to a simulator

for sampling trajectories, which are sequences of states and actions. A key point is that

a future is much more informative than a trajectory. A trajectory can be obtained by

evaluating a single policy on a future. But a future is able to incorporate any policy.

From another point of view, there is a trade-off between knowledge representation and

sampling complexity. In Monte-Carlo tree search, only a numeric reward of a trajectory

is used and overall a large amount of sampling is needed. Yet in our experiments, a

small number of futures is enough for returning near optimal solutions (e.g. we use just

10 futures in our online conservation planning).

Size of futures. As previously mentioned, to realize a future, we need to remove

all the randomness in the diffusion process. Following our formulation, randomness can

be caused by diffusion events, local events and the operation model, which all together
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decide the scale of a future. In our study, the probabilistic models are comparatively

simple. However, if the probabilistic model has large CPTs, a future may not be scalable.

For example, imagine a case where the effectiveness probability of an operation is given

by a complete CPT on the state of the network, to realize a future, an exponential

number of coin flips are needed since the state space is exponential.

It is also critical to efficiently record the outcomes of sampling all the stochastics at

every time step. This requires a careful design of the representation of a future.

MIP encoding. The model knowledge and optimization goal are represented as

a single MIP. While in many cases constructing MIP formulations is relatively straight-

forward, the resulting MIPs can be too large or too weak to be solved by state-of-art

solvers. Therefore, it is necessary to optimize a MIP formulation when the problem scale

is huge.

In Appendix A, we give examples of our MIP formulations. The MIP in conservation

planning is simplified by having a binary variable for each node, meaning the node

is occupied or not. The state of conserved is expressed via the state constraint that a

node is susceptible only when it is in a purchased parcel. The diffusion event is described

concisely. A node value would be 1 iff at least one occupied neighbor spreads successfully.

Experience with MIP solvers. MIP solvers are required in our approach and

we have been using the IBM CPLEX and Gurobi optimizers. Both are state-of-art MIP

optimizers that efficiently compute optimal solutions when the problem size is not too

huge. Here we share two tricks of using CPLEX and Gurobi for implementing our dual

decomposition algorithm.

At every iteration of the dual decomposition algorithm (2), after optimizing sub-

problems on each future and extracting a feasible solution, we need to re-compute the

subproblems with the feasible solution to get APX (Equation 3.3). This recomputa-

tion can be done efficiently by maintaining each subproblem in memory and assigning

the operation variable with the feasible solution value. Then the solver can start the

recomputation from the previous optimal point.

When an MIP problem is too large to get an optimal solution within a reasonable

time, we can get a suboptimal and feasible solution instead. The first method is to set a

time limit to the computation process and ask for the newest feasible solution found. The

other way is to iteratively track the new feasible solution found during the computation

and pick the best one in the end.



90

5.2 Future Work

5.2.1 Scheduling Conservation Designs for Maximum Flexibility

In future work, we plan to consider several improvements to the primal-dual algorithm.

Currently, at each iteration, the algorithm randomly picks an unconnected terminal to

grow a path from. It is likely that more intelligent selection mechanisms can improve

the overall results. We are also interested in developing a primal-dual algorithm that

directly incorporates the error tolerance constraint of our early-stopping approach. This

would provide a more direct method for trading off reward for improved flexibility. Fur-

thermore, we intend to pursue fully adaptive approaches to this and other conservation

problems. One idea is to incorporate our scheduling approach into a replanning algo-

rithm that selects purchases for the current decision epoch based on the most up-to-date

information. In particular, at each decision epoch a schedule would be formed and those

parcels scheduled to be purchased immediately (those with no flexibility) would be pur-

chased or a subset of those in cases where the immediate budget would be exceeded.

Considering more sophisticated approaches that take into account the immediate bud-

get would be a natural and useful extension. It would also be interesting to consider

the conservation problem with other variants of the reward function. For some species,

rather than caring only the population in the end, the ecological goal may value the

spread during the whole period the same or even more. Presumably such models would

have different properties and complexities from the one we study in this paper.

5.2.2 Online Planning in Diffusion Networks

Although we treat the various lookahead policies as competitors, it is possible to create

a policy-switching planner that combines all of the lookahead policies. At every decision

epoch, the new planner evaluates all the four policies for a good action and then picks

the best decision.

Another future direction is to extend our framework into a generic planner for solving

probabilistic planning problems with exponential state and action spaces. The main

difficulty is to encode the problem in a MIP compactly and generally. For example,

RDDL [49] is a uniform planner language for representing factored MDPs in dynamic

Bayesian net (DBN). Translations of a problem’s CPT are available with the RDDL
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system. Unfortunately, a direct translation is represented via structures like decision

diagrams (trees), which could be exponentially large due to redundancy in the paths. It

is more beneficial to use a set of compact rules, but they are usually domain specific.
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Appendix A: MIP Encoding

For reference, we include our formulations of Equation 4.6 in each application in this

appendix.

A.1 Conservation Planning

Let vk,ta be a state variable for each node, which is binary indicating node a is occupied

or not in future k at time t, binary P k,ti be operation variable for each parcel, meaning if

parcel i is purchased or not in future k at time t, P̄ ti be the consistent operation variable

at time 0, and B(t) be the budget at every time step.

min− 1

K

K∑
k=1

∑
a∈V

vk,Ha (A.1)

initialization vk,0a = 0/1,∀k, a

state constraint vk,ta ≤
∑
a∈i

t∑
t′=0

P k,t
′

i , ∀k, t, a

purchase constraint

H−1∑
t=0

P k,ti ≤ 1,∀k, i

diffusion vk,t+1
b ≤

∑
(a,b)∈fk

vk,ta , ∀k, t, b

consistent first action P k,ti = P̄ ti ,∀k, i, t = 0,

budget constraint
∑
i

P k,ti × ci ≤ B(t), ∀k, t
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A.2 Epidemic Control of Influenza

Here the node state is a value from set S = {susceptible, exposed-1, exposed-2, infectious-

1, infectious-2, infectious-3, infectious-4, infectious-5, recovered}. We use 8 bits to

represent the state of node a in future k at time t, i.e. binary variables vk,ta,d, d = 0, . . . , 8,

each corresponding to a state value in S and we allow only one bit is 1. V k,t
a and Qk,ta

are vaccinations and quarantines respectively. V̄ t
a and Q̄ta are the consistent operation

variable at t = 0.
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min
1

K

K∑
k=1

T∑
t=0

∑
a∈V

[(vk,ta,1 + vk,ta,2 + · · ·+ vk,ta,7) (A.2)

+ (V k,t
a × cv +Qk,ta × cq)]

initialization vk,0a,d = 0/1, ∀k, a, d

state constraint

d=8∑
d=0

vk,ta,d = 1, ∀k, t, a

vaccination pre-constraint V k,t
a ≤ vk,ta,0,∀k, t, a

quarantine pre-constraint Qk,ta ≤
7∑
d=3

vk,ta,d,∀k, t, a

successful action result vk,t+1
a,8 ≥ V k,t

a , ∀k, t, a with a successful V flip

successful action result vk,t+1
a,8 ≥ Qk,ta ,∀k, t, a with a successful Q flip

diffusion w/t actions vk,t+1
a,8 ≥ vk,ta,7 + vk,ta,8,∀k, a, t < T − 1

infection uk,ta ≤
8∑
d=3

vk,ta,d,∀k, t, a

infection uk,ta +Qk,ta ≤ 0, ∀k, t, a

infection uk,ta −
8∑
d=3

vk,ta,d +Qk,ta ≥ 0,∀k, t, a

infection zk,t+1
a ≥ uk,tb ,∀k, t, a, b is a parent of a

infection zk,t+1
a ≤

∑
b is a parent of a

uk,tb ,∀k, t, a

diffusion w/t actions V k,t
a +Qk,ta − v

k,t
a,0 − z

k,t+1
a + vk,t+1

a,1 + 1 ≥ 0, ∀k, t, a,

diffusion w/t actions V k,t
a +Qk,ta − v

k,t
a,0 + zk,t+1

a + vk,t+1
a,1 ≥ 0,∀k, t, a,

state change w/t actions V k,t
a +Qk,ta + vk,ta,0 + vk,ta,d − v

k,t+1
a,d+1 ≥ 0,∀k, t, a, d = 1, 2, . . . , 7

state change w/t actions V k,t
a +Qk,ta + vk,ta,0 − v

k,t
a,d + vk,t+1

a,d+1 ≥ 0,∀k, t, a, d = 1, 2, . . . , 7

failed action result 1−Qk,ta + vk,ta,d − v
k,t+1
a,d+1 ≥ 0,∀k, t, a with a failed Q flip, d = 3, 4, . . . , 7

failed action result 1−Qk,ta − v
k,t
a,d + vk,t+1

a,d+1 ≥ 0,∀k, t, a with a failed Q flip, d = 3, 4, . . . , 7

diffusion w/t actions 1− V k,t
a − zk,t+1

a + vk,t+1
a,1 ≥ 0,∀k, t, a with a failed V flip,

diffusion w/t actions − V k,t
a + zk,t+1

a + vk,t+1
a,0 ≥ 0, ∀k, t, a with a failed V flip,

consistent first action V k,t
a = V̄ t

a , ∀k, a, t = 0,

consistent first action Qk,ta = Q̄ta,∀k, a, t = 0



101

A.3 Stochastic Firefighting

We use 4 bits to represent the state of node a in future k at time t, i.e. binary variables

vk,ta,d, d = 0, . . . , 3, each corresponding to a state value in S = {susceptible, burning, burnt,

protected}. For each node, only one state variable is 1. P k,ta and Sk,ta are protections and

suppressions respectively. P̄ ta and S̄ta are the consistent operation variable at t = 0.
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min
1

K

K∑
k=1

∑
a∈V

vk,Ta,2 (A.3)

initialization vk,0a,d = 0/1,∀k, a, d

state constraint

d=3∑
d=0

vk,ta,d = 1,∀k, t, a

protection pre-constraint P k,ta ≤ vk,ta,0, ∀k, t, a

suppression pre-constraint Sk,ta ≤ v
k,t
a,1, ∀k, t, a

successful action result vk,t+1
a,3 ≥ P k,ta ,∀k, t, a with a successful P flip

successful action result vk,t+1
a,3 ≥ Sk,ta ,∀k, t, a with a successful S flip

infection uk,ta ≤ v
k,t
a,1, ∀k, t, a

infection uk,ta + Sk,ta ≤ 1,∀k, t, a

infection uk,ta − v
k,t
a,1 + Sk,ta ≥ 0, ∀k, t, a

infection zk,t+1
a ≥ uk,tb , ∀k, t, a, b is a parent of a

infection zk,t+1
a ≤

∑
b is a parent ofa

uk,tb , ∀k, t, a

diffusion w/t actions P k,ta + Sk,ta − v
k,t
a,0 − z

k,t+1
a + vk,t+1

a,1 + 1 ≥ 0,∀k, t, a

diffusion w/t actions P k,ta + Sk,ta − v
k,t
a,0 + zk,t+1

a + vk,t+1
a,1 ≥ 0,∀k, t, a

state change w/t actions vk,t+1
a,2 − vk,ta,2 ≥ 0,∀k, t, a,

state change w/t actions vk,t+1
a,3 + vk,ta,3 ≥ 0,∀k, t, a,

state change w/t actions Sk,ta − v
k,t
a,1 + vk,t+1

a,2 ≥ 0, ∀k, t, a,

failed action result Sk,ta − v
k,t+1
a,2 ≤ 0,∀k, t, a with a failed S flip,

failed action result 1− V k,t
a − zk,t+1

a + vk,t+1
a,1 ≥ 0, ∀k, t, a with a failed P flip

failed action result − V k,t
a + zk,t+1

a + vk,t+1
a,0 ≥ 0,∀k, t, a with a failed P flip

consistent first action P k,ta = P̄ ta, ∀k, a, t = 0

consistent first action Sk,ta = S̄ta, ∀k, a, t = 0

budget constraint
∑
a∈V

P k,ta × cp(a) + Sk,ta × cs(a) ≤ B(t), ∀k, t




