

AN ABSTRACT OF THE DISSERTATION OF

Janardhan Rao Doppa for the degree of Doctor of Philosophy in Computer Science presented

on July 17, 2014.

Title: Integrating Learning and Search for Structured Prediction

Abstract approved:

Prasad Tadepalli Alan P. Fern

We are witnessing the rise of the data-driven science paradigm, in which massive amounts of

data – much of it collected as a side-effect of ordinary human activity – can be analyzed to make

sense of the data and to make useful predictions. To fully realize the promise of this paradigm,

we need automated systems that can transform structured inputs to structured outputs. Examples

include parsing a sentence, resolving coreferences of entity and event mentions in a piece of

text, interpreting a visual scene, and translating from one language to another. Problems such as

these are often referred to as structured prediction problems in the machine learning community.

These prediction problems pose severe learning and inference challenges due to the huge number

of possible outputs.

This thesis explores how to integrate two fundamental branches of Artificial Intelligence,

namely learning and search, to solve structured prediction tasks. We study a new framework for

structured prediction calledHC-Search, where we formulate the problem of structured prediction

as an explicit search process in the combinatorial space of outputs. The system starts from a

reasonably good initial solution and performs an heuristic search guided by a learned heuristic

function H until a fixed number of alternative solutions has been generated or a fixed time limit

is reached. It then evaluates each of these alternatives using a learned cost function C and returns

the minimum-cost solution.

There are three key learning challenges in this framework – Search space design: how can

we automatically design an efficient search space over structured outputs?; Heuristic learning:

how can we learn a heuristic functionH for effectively guiding the search?; Cost function learn-

ing: how can we learn a cost function C that can accurately select the best output among the

candidate outputs? We develop generic solutions for each of these learning challenges and an

engineering methodology for applying this framework. We show that theHC-Search framework

achieves results in a wide range of structured prediction problems that significantly exceed the

best previous results.

c©Copyright by Janardhan Rao Doppa
July 17, 2014

All Rights Reserved

Integrating Learning and Search for Structured Prediction

by

Janardhan Rao Doppa

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented July 17, 2014
Commencement June 2015

Doctor of Philosophy dissertation of Janardhan Rao Doppa presented on July 17, 2014.

APPROVED:

Co-Major Professor, representing Computer Science

Co-Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader
upon request.

Janardhan Rao Doppa, Author

ACKNOWLEDGEMENTS

I was extremely fortunate to have a lot of incredibly nice and helpful people in my life and

it is very important to thank all these wonderful people. However, Prasad Tadepalli, Alan Fern,

and Tom Dietterich are very important and special people to me, and they will remain so for the

rest of my life. I owe everything I learned in graduate school to them. They gave me very good

training and mentored me all the way through this journey.

I would like to begin by thanking my advisor Prasad Tadepalli for his help, guidance, and

the freedom he gave to pursue my ideas over the years. As a young graduate student, I made a

lot of mistakes (in the hindsight), partly because I didn’t know the “academic research MDP.”

Prasad showed immense faith in me during that difficult phase. If not for his faith and patience,

the research community might not have seen the “HC-Search framework.” In spite of his busy

schedule, he was very approachable and patiently listened to all my premature ideas and problem

formulations, and provided critical feedback on my research work. He always amazed me with

his fundamental questions full of insights that greatly helped in improving the quality of my

work. I also highly appreciate his support and help throughout my academic job search. He

always put his students above everything, which is something I will try hard to achieve. He

deeply cared about the well-being of everyone around him including myself, and along the way

inspired me to become a better human being.

I would like to thank my co-advisor, the inmitable Alan Fern, for providing me high-quality

training data at all stages of the research life-cycle, and for his professional advice. I learned

most of my core research skills from Alan via imitation learning. He taught me how to break a

complex problem into simpler ones to quickly get to the bottom of it; how to productively explore

the space of solutions to quickly reach a near-optimal solution; and how to tell a good story based

on the audience to effectively communicate my research ideas. In spite of his extremely busy

schedule, he provided timely feedback on my initial ideas and formulations, and helped me in

refining them. I hope his indefatigable spirit of pursuing a problem until he sees the solution as

a series of logical steps has rubbed off on me. I have seen Alan’s rise since he joined OSU as

a junior faculty, and he greatly inspired me with his deep research work over diverse topics. In

fact, I wouldn’t have pursued this line of research if I haven’t read his beautiful work on beam

search with his student Yuehua Xu. Thank-you, Alan, for being a great role model.

I was very fortunate to have Tom Dietterich as one of my closest mentor. He is also my

closest collaborator outside this work. I worked on several diverse projects and wrote several

papers with him. I learned both directly and indirectly (e.g., his Fall 1996 course on Research

Methods in CS, Dietterich’s rules of English) from him. He also helped me in polishing my

writing skills and often emphasized the importance of good writing. His positive encouragement

and support made a lot of difference to me. His enthusiasm for research and optimism are highly

infectious. It was a great experience working with and learning from a visionary and a leader like

him. While it will be naive to think that Tom’s uncanny ability to look at the bigger picture can

be inculcated, I sincerely hope that I have taken a leaf off it. In spite of his jet speed schedule, he

spent a lot of time to help me with my academic job search (as much as a faculty would do for

his/her direct advisee), and also created a lot of professional opportunities for me. Thanks for

patiently answering all my questions related to academics. I can’t imagine a better mentor than

him.

A big thank-you to Bella Bose who always took the time to enquire about my work, progress,

and well-being in spite of being very busy wearing multiple hats at the same time. He gave

me several opportunities to learn about the academic MDP by putting me on the faculty hiring

committee for two consecutive years and also giving me the opportunity to teach the 507 course

on Introduction to Graduate School. Teaching the 507 course gave me a lot of satisfaction and I

hope someone will continue teaching it in the future.

I would like to thank Dan Roth for being a great mentor and inspiring me through his deep

research work on learning to reason dating back to his PhD work. I highly appreciate his help

with my job search, and for his encouraging emails telling me that I did a good job and will

do well as a junior faculty. Thanks to Roni Khardon who greatly influenced me in a lot of

different ways. Some part of this dissertation work is built on his seminal work on learning to

take actions. I enjoyed all my interactions with him, and look forward to learning more from

him in the future. Thanks to Jason Eisner for that caring note he sent to me after my job search.

It was very touching to receive it consdering the fact that I never collaborated with him. Thanks

to Sinisa Todorovic for some of the practical advice he gave me from time to time.

A special thanks to my friend and academic sibling Sriraam Natarajan. He gave me good

advice, guidance, help, and provided critical feedback when needed. He has done wonderful

things after graduating from OSU and inspired many graduate students like me. Thanks to

Kristian Kersting for his friendship and mentoring advice. His leadership skills are something I

can only aspire for. I enjoyed the time I spent with him at various conferences.

I was very fortunate to collaborate and work with several people on a lot of diverse projects.

Thanks to all my collaborators for their excellent work and fantastic ideas: Charles Parker,

Chris-Mills Price, Mohammad Nasresfahani, Shahed Sorower, Chao Ma, Jun Xie, Walker Orr,

Prashanth Mannem, Nathan Murrow, Rui Qin, Michael Lam, Shell Hu Xu, Jun Yu, Liping Liu,

Jed Irvine, Tom Dietterich, Xiaoli Fern, Lise Getoor, Sinisa Todorovic, and Weng-Keen Wong.

I would also like to thank all the machine learning reading group participants over the years. I

learned a lot from all of you.

Thanks to all the great researchers who influenced me and my work over the years. In par-

ticular, I would like to thank late Ben Taskar, Dan Roth, Drew Bagnell, Roni Khardon, Andrew

McCallum, Lise Getoor, Jason Eisner, Hal Daumé III, John Langford, Kristian Kersting, and

Subbarao Kambhampati.

Thanks to all the OSU administrative staff including Ferne Simendinger, Nicole Thompson,

Colisse Franklin, Mike Sander, Todd Schecter, Renee Lyon, and Pat Sullivan, for all your help.

You were my lifelines at OSU. Special thanks goes to Mike Sander, for accommodating all my

requests for cluster resources and helping me in meeting all my deadlines; and Pat Sullivan,

for making the GRA appointments, conference travel, and reibursements easier for all the AI

students including myself.

I would like to thank all the wonderful teachers and mentors I had before coming to OSU:

Pabitra Mitra, TV Prabhakar, Sumit Ganguly, Mainak Chaudhuri, Bhaskar Ramanan, M.N. See-

taramanathan, N.B. Venkateswarlu, KVSVN Raju and M. Shashi. I would especially like to

thank both MNS and NBV for regularly enquiring about my progress in graduate school over

the years, and for sending cheerful notes on many occasions.

I would like to thank all the friends at OSU who made my stay at OSU very enjoyable: Rajesh

Inti, Ravi Tagore, Charith Abeywarna, Radha-Krishna Balla, Arunkumar Puppala, Jervis Pinto,

Rob Hess, Theresa Migler, Ethan Dereszenski, Jun Yu, Shahed Sorower, Saikat Roy, Kshitiz

Judah, Sriraam Natarajan, Aaron Wilson, Ronny Bjarnson, Javad Azimi, Chris Chambers, Nadia

Payet, William Brendel, Shell Hu Xu, Shubhomoy Das, Rebecca Hutchinson, and Prashanth

Mannem. Thanks to Padma Akkaraju for being a motherly figure to me, for all the good advice,

and for showing a lot of care towards me over the years. Thanks to Shravya Tadepalli, the

walking encyclopedia, for sharing her knowledge of the world enthusiastically, and to Soumya

Tadepalli for the humorous conversations.

Thanks to the cricket community in Portland and Seattle for giving me an opportunity to

play and enjoy the game I love the most. I thoroughly enjoyed all the games I played over the

years for various clubs including OSU, Portland, and Chak De Oregon. Special thanks goes to

my good friends Raiyo Aspandiar, Narinder, and Sonu.

A big thank-you to my very close friend Ganesh Yerubandi for his support and encourage-

ment, and for believing in me even during my bad days. His selfless attitude and helping nature

is something I can only aspire for. I couldn’t have asked for a better guardian than him. Thanks

also goes to my good friend Raja Sandireddy for all his support and help.

I would like to thank all my “coolandhra” friends for their encouragement, support, and

providing a virtual home that is very close to my heart. I wouldn’t have been able to finish this

long journey without their love and affection. Thanks to my good friends from IITK, Barna

Saha and Arya Mazumdar, who inspired me through their great research work. Special thanks

goes to Vinaya Natarajan for being a great friend to me over the years. She virtually played a

motherly role for me. Words cannot express my gratitude to her. Thanks to my close friend

Vijaya Saradhi for his encouragement and support from my time at IITK. He gave me very good

advice on several occasions and taught me how to be enthusiastic about your ideas and work.

Thanks to Suryaprakash Kotha, Venkatrao Chimata, Late Ranjit Vasireddy, Kaushik Ramajyam,

Mallika Allu, and Swati Tata for all their help when I applied to graduate schools.

On the personal side, I would like to thank my parents Penta Rao Doppa and Varalaxmi

Doppa for all the sacrifices they have made to provide good education to me even though they

never had any formal education themselves. All my little achievements over the years are all

yours. Thank-you Amma and Nanna for your love and affection. Thanks to my brother Pavan for

shouldering the family responsibility in my absence, to my sister Anasuya for her love and care,

and to my sweet nephews Sai and Mahi for making me laugh over our phone conversations. Last

but not the least, I would like to thank my wife Prameela for the love and comfort she provided

me after our marriage. She was very understanding during the last six months when I was very

busy with my job search and dissertation work. I look forward to sharing the rest of my life with

her.

Finally, I would like to thank all the funding agencies that supported my research work. I

greatfully acknowledge the support of National Science Foundation (NSF) through grant IIS

1219258; and Defense Advanced Research Project Agency (DARPA) through Integrated Learn-

ing (IL) project; Machine Reading (MR) project; and Deep Exploration and Filtering of Text

(DEFT) project.

CONTRIBUTION OF AUTHORS

• Jun Yu and Chao Ma were involved in the research presented in Chapter 5.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Technical Contributions . 3

1.2 Outline of the Thesis . 4

2 Related Work 7

2.1 Cost Function Learning . 7

2.2 Cascade Training . 8

2.3 Control Knowledge Learning . 9

2.4 Output Space Search . 9

2.5 Re-Ranking Algorithms . 10

2.6 Learning to Improve Combinatorial Optimization 10

3 Limited Discrepancy Search Space for Structured Prediction 12

3.1 Problem Setup . 13

3.2 Search Spaces Over Complete Outputs . 14
3.2.1 Recurrent Classifiers . 16
3.2.2 Flipbit Search Space . 18
3.2.3 Limited-Discrepancy Search Space (LDS) 20
3.2.4 Search Space Quality . 23
3.2.5 Sparse Search Spaces . 24

3.3 Cost Function Learning . 25
3.3.1 Cost Function Learning via Imitation Learning 26
3.3.2 Ranking-based Search . 28
3.3.3 Sufficient Pairwise Decisions . 30
3.3.4 Rank Learner . 33
3.3.5 Summary of Overall Training Approach 34

3.4 Empirical Results . 34
3.4.1 Experimental Setup . 34
3.4.2 Comparison to State-of-the-Art . 36
3.4.3 Framework Variations . 39
3.4.4 Results with Sparse Search Spaces 40

3.5 Summary . 45

TABLE OF CONTENTS (Continued)
Page

4 HC-Search Framework 46

4.1 HC-Search Framework . 47
4.1.1 Problem Setup . 47
4.1.2 Search Spaces and Search Strategies 48
4.1.3 HC-Search Approach . 49
4.1.4 Learning Complexity . 53

4.2 Learning Approach . 57
4.2.1 Loss Decomposition and Staged Learning 57
4.2.2 Heuristic Function Learning . 58
4.2.3 Cost Function Learning . 63
4.2.4 Rank Learner . 66

4.3 Experiments and Results . 67
4.3.1 Datasets . 67
4.3.2 Experimental Setup . 67
4.3.3 Comparison to State-of-the-Art . 68
4.3.4 Higher-Order Features . 69
4.3.5 Loss Decomposition Analysis . 69
4.3.6 Ablation Study . 70
4.3.7 Results for Heuristic Training via DAGGER 71
4.3.8 Results for Training with Different Time bounds 73
4.3.9 Results for Training with Non-Hamming Loss functions 75
4.3.10 Discussion on Efficiency of theHC-Search Approach 75

4.4 Engineering Methodology for ApplyingHC-Search 76
4.4.1 Selection of Time-bounded Search Architecture 76
4.4.2 Training and Debugging . 77

4.5 Summary . 78

5 Search-based Multi-Label Prediction 79

5.1 Related Work . 80

5.2 Multi-Label Search Framework . 82
5.2.1 Problem Setup . 82
5.2.2 Overview of theHC-Search Framework 82
5.2.3 Multi-Label Search (MLS) . 83
5.2.4 Learning Algorithms . 85

5.3 Empirical Results . 87

TABLE OF CONTENTS (Continued)
Page

5.3.1 Datasets . 87
5.3.2 Experimental Setup . 87
5.3.3 Results . 90

5.4 Summary and Future Work . 90

6 Conclusions and Future Work 92

6.1 Lessons Learned . 92

6.2 Summary of Contributions . 93

6.3 Future Work . 94

Bibliography 96

LIST OF FIGURES
Figure Page

3.1 A high level overview of our output space search framework. Given a structured
input x, we first instantiate a search space over complete outputs. Each search
node in this space consists of a complete input-output pair. Next, we run a search
procedureA (e.g., greedy search) guided by the cost function C for a time bound
τ . The highlighted nodes correspond to the search trajectory traversed by the
search procedure, in this case greedy search. We return the least cost output ŷ
that is uncovered during the search as the prediction for x. 15

3.2 An example primitive search space for the handwriting recognition problem.
Arcs represent labeling actions. Solid arcs correspond to the labeling actions
taken by the recurrent classifier (optimal classifier in this case). 17

3.3 An example Flipbit search space for the handwriting recognition problem . . . 19

3.4 Illustration of Limited Discrepancy Search: (a) Trajectory of the recurrent classi-
fier with no discrepancies. Arcs with ‘X’ mark indicate incorrect actions chosen
by the classifier. (b) Trajectory of the recurrent classifier with a correction (dis-
crepancy) at the first error. A single correction allows the classifier to correct all
the remaining errors. 21

3.5 An example Limited Discrepancy Search (LDS) space for the handwriting recog-
nition problem . 22

3.6 An example search tree that illustrates greedy search with loss function. Each
node represents a complete input-output pair and can be evaluated using the loss
function. The highlighted nodes correspond to the trajectory of greedy search
guided by the loss function. 31

3.7 Anytime curves for greedy search comparing sparse and complete search spaces. 44

4.1 A high level overview of our HC-Search framework. Given a structured input x
and a search space definition So, we first instantiate a search space over complete
outputs. Each search node in this space consists of a complete input-output
pair. Next, we run a search procedure A (e.g., greedy search) guided by the
heuristic function H for a time bound τ . The highlighted nodes correspond
to the search trajectory traversed by the search procedure, in this case greedy
search. The scores on the nodes correspond to cost values, which are different
from heuristic scores (not shown in the figure). We return the least cost output ŷ
that is uncovered during the search as the prediction for input x. 51

LIST OF FIGURES (Continued)
Figure Page

4.2 An example that illustrates that C-Search can suffer arbitrarily large loss com-
pared toHC-Search. 52

4.3 An example search space for T = {x1, x2, x3} and k = 1. All greedy paths
terminate at the zero loss node n∗ and no path selects more than one instance to
include in the mistake set T−. 55

4.4 An example search tree that illustrates greedy search with loss function. Each
node represents a complete input-output pair and can be evaluated using the loss
function. The highlighted nodes correspond to the trajectory of greedy search
guided by the loss function. 62

4.5 HC-Search results for training with different time bounds. We have training time
bound (i.e., no. of greedy search steps) on x-axis and error on y-axis. There are
three curves in each graph corresponding to overall loss εHC , generation loss εH
and selection loss εC|H. 74

LIST OF TABLES
Table Page

3.1 Prediction accuracy results of different structured prediction algorithms and vari-
ations of our framework. A + indicates that the particular variation being con-
sidered resulted in improvement. 37

3.2 Prediction accuracy and timing results for greedy search comparing sparse and
complete search spaces. 42

4.1 Error rates of different structured prediction algorithms. 69

4.2 HC-Search: Error decomposition of heuristic and cost function. 71

4.3 Results for training with non-hamming loss functions. 75

5.1 Performance of different multi-label prediction algorithms. 88

5.2 Characteristics of the datasets: the number of training (#TR) and testing (#TS)
examples; number of features (#F); number of labels (#L); and the expected
target depth of our Flipbit-null space (E[d]). 89

This dissertation is dedicated to all my Teachers and Mentors.

Chapter 1: Introduction

Over the last two decades, significant progress has been made in building intelligent machines.

We now have machines that can accurately solve simple classification problems (e.g., classifying

an email as spam or not spam, recognizing a person from an image of their face). However,

computers are still not very good at solving structured prediction problems (Bakir et al., 2007).

In structured prediction problems, the predictor must produce a complex structured output given

a complex structured input. For example, in Part-Of-Speech (POS) tagging, the structured input

is a sequence of words and the structured output consists of the POS tags for those words. Image

scene labeling is another example, where the structured input is an image and the structured

output is a labeling of the image regions. Structured prediction tasks arise in several domains

ranging from natural language processing (e.g., named entity recognition, coreference resolution,

and semantic parsing) and computer vision (e.g., multi-object tracking and activity recognition

in videos) to speech (e.g., text-to-speech mapping and speech recognition) and computational

biology (e.g., protein secondary structure prediction and gene prediction).

This dissertation explores how to integrate two fundamental branches of AI, learning and

search, to solve structured prediction problems. Viewed as a traditional classification problem,

the set of possible classes in structured prediction is exponential in the size of the output. Thus,

the problem of producing an output is combinatorial in nature, which introduces the non-trivial

choice of selecting a computational framework for producing outputs. Importantly, this frame-

work needs to balance two conflicting criteria: 1) It must be flexible enough to allow for com-

plex and accurate structured predictors to be learned, and 2) It must support inference of outputs

within the computational time constraints of an application. One of the core research challenges

in structured prediction has been to achieve a balance between these criteria. The main contribu-

tion of this dissertation is to address this challenge by studying a broad search-based framework

for structured prediction that supports learning to improve both speed and accuracy.

The standard approach to structured prediction is to learn a cost function for scoring a po-

tential output for each input. Given such a cost function and a new input, the output computation

involves solving the so-called “Argmin” inference problem, which is to find the minimum cost

output for the corresponding input. Unfortunately, exactly solving the Argmin inference problem

2

is often intractable (NP-Hard) except for some special cases such as chains and trees. Existing

methods such as Conditional Random Fields (CRF) (Lafferty et al., 2001) and Structured Sup-

port Vector Machines (SSVM) (Tsochantaridis et al., 2004) try to learn a cost function that can

score the correct output higher than all incorrect outputs, which is a very hard ranking problem

in general.

In this dissertation, we study a framework for structured prediction calledHC-Search, which

is based on search in the space of complete outputs. The framework involves first defining

a combinatorial search space over complete structured outputs that allows for traversal of the

output space. Next, given a structured input, the system starts from the initial solution and

performs an heuristic search guided by a learned heuristic function H until a fixed number of

alternative solutions have been generated (or a fixed time limit is reached). It then evaluates each

of these alternatives using a learned cost function C and returns the minimum-cost alternative.

The key insight is that, unlike existing approaches, the cost function only needs to select from

the small subset of candidate outputs generated during the search. This is much easier than

the standard CRF/SSVM approach, which must learn a scoring function that ranks the correct

answer above all possible alternative answers.

Advantages of HC-Search. HC-Search has several advantages compared to the existing ap-

proaches for structured prediction (see Chapter 2 for more details):

• The framework scales gracefully with the representation complexity. In particular, the

approach only needs to be able to efficiently evaluate the heuristic and cost function at

specific input-output pairs, which is generally straightforward even when the correspond-

ing Argmin problem is intractable. Thus, we are free to increase the complexity of the H
and C functions without considering the impact on inference complexity.

• Since the framework is based on search over complete outputs, our inference is inherently

an anytime procedure, meaning that it can be stopped at any time and return the best output

discovered so far. The framework provides a way of using machine learning to trade off

accuracy for inference-time efficiency as dictated by the application. For example, we can

optimize accuracy given constraints on the prediction time or minimize prediction time

while maintaining high accuracy.

• The training procedure is sensitive to the particular loss function (evaluation metric) of

interest and makes minimal assumptions about it, requiring only that we have a black box

3

that can evaluate it for any potential output. It can even work with non-decomposable loss

functions (e.g., F1 score).

• The overall error decomposes into heuristic error (error due to not generating the optimal

solution) and cost function error (error due to not selecting the best candidate solution

generated by the heuristic). These errors can be easily measured for a learned (H,C)

pair and allow for an assessment of which function is more responsible for the overall

error. This in turn can guide additional engineering of the representation of the H and C
functions.

1.1 Technical Contributions

The main contribution of this dissertation is the “HC-Search framework” that integrates learn-

ing and search in a principled manner for solving structured prediction problems. There are

three key learning challenges in this framework – Search space design: how can we automati-

cally design an efficient search space over structured outputs?; Heuristic learning: how can we

learn a heuristic function H for effectively guiding the search?; Cost function learning: how

can we learn a cost function C that can accurately select the best output among the candidate

outputs? We develop generic solutions for each of these learning challenges and an engineering

methodology for applying this framework. In particular, the contributions include the following.

1. Search Space over Structured Outputs: We adapted the basic idea of Limited Discrep-

ancy Search (LDS) (Harvey and Ginsberg, 1995) to structured prediction by defining the

Limited Discrepancy Search Space (Doppa et al., 2014b), a generic search space over out-

puts that leverages greedy classifers (Dietterich et al., 1995; Hal Daumé III et al., 2009).

These classifiers build the structured output incrementally by making a sequence of inter-

related decisions in a primitive space (e.g., labeling a sequence from left-to-right). Such

classifiers are very efficient, but of course some decisions are difficult to make by a greedy

classifier, and the resulting errors can propagate to downstream decisions and lead to poor

global performance. The key idea behind LDS is to note that if the classifier response can

be corrected at one or more of these critical errors, then a much better output will be pro-

duced. Any such change that is made to override a decision taken by the greedy classifier

is called a discrepancy. If the accuracy of the classifier on individual decisions is high,

then the number of discrepancies needed to produce a correct output will be correspond-

4

ingly small. The problem is that we do not know where the corrections should be made,

and thus LDS conducts a search over the discrepancy sets, usually from smaller to larger

sets. With a fairly good classifier, the target outputs can be found at a small depth in the

discrepancy search tree.

2. Heuristic Learning: Our heuristic learning approach is based on the observation that for

many structured prediction problems, we can quickly generate very high-quality outputs

by guiding the search procedure using the true loss function (which is only available dur-

ing training). Motivated by this observation, the heuristic learning problem is formulated

in the framework of imitation learning to learn a heuristic that mimics the search deci-

sions made by the true loss function on training examples. This is a generic approach

that is applicable to all ranking-based search procedures (e.g., greedy search and beam

search). We provide a characterization of the ranking constraints that are minimally suffi-

cient to replicate the search behavior with true loss function. The aggregate set of ranking

constraints collected over all of the training examples is given to a rank learning algorithm

(e.g., Perceptron or SVM-Rank) to learn the heuristic functionH.

3. Cost Function Learning: Given a learned heuristic H, we want to learn a cost function

that correctly ranks the candidate outputs generated by the search procedure guided byH.

This is formulated as another rank-learning problem such that the cost function C scores

the best output generated during search higher than the other outputs.

4. Multi-Label Search Framework: We developed a simple framework for multi-label pre-

diction called Multi-Label Search (MLS) based on instantiating ourHC-Search framework

to multi-label learning by explicitly exploiting the sparsity property of multi-label prob-

lems. We empirically evaluated our MLS framework along with many existing multi-label

learning algorithms on a variety of benchmarks by employing diverse task loss functions.

1.2 Outline of the Thesis

The remaining part of the dissertation is organized as follows. In Chapter 2, we discuss the

related work on structured prediction and motivate ourHC-Search approach.

We describe the C-Search framework for structured prediction based on search in the space

of complete structured outputs in Chapter 3. Given a structured input, an output is produced by

5

running a time-bounded search procedure guided by a learned cost function, and then return-

ing the least cost output uncovered during the search. This framework can be instantiated for a

wide range of search spaces and search procedures. In this chapter, we make two main technical

contributions. First, we describe a novel approach to automatically defining an effective search

space over structured outputs, which is able to leverage the availability of powerful classification

learning algorithms. In particular, we define the limited-discrepancy search (LDS) space and

relate the quality of that space to the quality of the learned classifiers. We also define a sparse

version of the search space to improve the efficiency of our overall approach. Second, we give

a generic cost function learning approach that is applicable to a wide range of search proce-

dures. The key idea is to learn a cost function that attempts to mimic the behavior of conducting

searches guided by the true loss function. Our experiments on several benchmark domains show

that a small amount of search in the limited discrepancy search space is often sufficient to sig-

nificantly improve on state-of-the-art structured-prediction performance. We also demonstrate

significant speed improvements for our approach using sparse search spaces with little or no loss

in accuracy.

In Chapter 4, we introduce the HC-Search framework for structured prediction whose prin-

cipal feature is the separation of the cost function from search heuristic. Given a structured

input, the framework uses a search procedure guided by a learned heuristic H to uncover high

quality candidate outputs and then employs a separate learned cost function C to select a final

prediction among those outputs. The overall loss of this prediction architecture decomposes into

the loss due to H not leading to high quality outputs and the loss due to C not selecting the

best among the generated outputs. Guided by this decomposition, we minimize the overall loss

in a greedy stage-wise manner by first training H to quickly uncover high quality outputs via

imitation learning, and then training C to correctly rank the outputs generated via H according

to their true losses. Importantly, this training procedure is sensitive to the particular loss func-

tion of interest and the time-bound allowed for predictions. Experiments on several benchmark

domains show that our HC-Search approach significantly outperforms several state-of-the-art

methods including the C-Search approach. Our investigation showed that the main source of er-

ror of existing output-space approaches including ourHC-Search approach is the inability of the

cost function to correctly rank the candidate outputs produced by the output generation process.

In Chapter 5, we consider multi-label prediction problems from a search perspective. We

treat multi-label learning as a special case of structured-output prediction (SP), where each input

x is mapped to a binary vector y that indicates the set of labels predicted for x. The main contri-

6

bution of this chapter is to investigate a simple framework for multi-label prediction called Multi-

Label Search (MLS) based on instantiating ourHC-Search framework to multi-label learning by

explicitly exploiting the sparsity property of multi-label problems. We empirically evaluate the

MLS framework along with many existing multi-label learning algorithms on a variety of bench-

marks by employing diverse task loss functions. Our results demonstrate that the performance

of existing algorithms tends to be very similar in most cases, and that the MLS approach is

comparable and often better than all the other algorithms across different loss functions.

Finally, we conclude the dissertation with the lessons learned and discuss important future

directions in Chapter 6.

7

Chapter 2: Related Work

In this chapter, we review the related work on structured prediction and compare ourHC-Search

approach with existing methods.

A structured prediction problem specifies a space of structured inputs X , a space of struc-

tured outputs Y , and a non-negative loss function L : X ×Y ×Y 7→ <+ such that L(x, y′, y∗) is

the loss associated with labeling a particular input x by output y′ when the true output is y∗. We

are provided with a training set of input-output pairs {(x, y∗)} drawn from an unknown target

distributionD. The goal is to return a function/predictor from structured inputs to outputs whose

predicted outputs have low expected loss with respect to the distribution D.

2.1 Cost Function Learning

A typical approach to structured prediction is to learn a cost function C(x,y) for scoring a

potential structured output y given a structured input x. Given such a cost function and a new

input x, the output computation then involves solving the so-called Argmin problem:

ŷ = arg min
y
C(x,y).

For example, approaches including Conditional Random Fields (CRFs) (Lafferty et al., 2001),

Structured Perceptron (Collins, 2002), Max-Margin Markov Networks (Taskar et al., 2003) and

Structured SVMs (Tsochantaridis et al., 2004) fall in this category. These methods represent the

cost function as a linear model over template features of both x and y, and learn the parameters

of the cost function by making repeated calls to an Argmin inference routine to optimize various

objective functions, which differ among learning algorithms (Lafferty et al., 2001; Taskar et al.,

2003; Tsochantaridis et al., 2004; McAllester et al., 2010).

Unfortunately exactly solving the Argmin problem is often intractable and efficient solutions

exist only in limited cases such as when the dependency structure among features forms a tree. In

such cases, one might simplify the features to allow for tractable inference, which can be detri-

mental to prediction accuracy. Alternatively, a heuristic optimization method can be used such

as loopy belief propagation or variational inference (Murphy et al., 1999; Andrieu et al., 1999).

8

While such methods have shown some success in practice, it can be difficult to characterize their

solutions and to predict when they are likely to work well for a new problem.

Inference-free Training Methods. There are also approximate cost function learning approaches

that do not employ any inference routine during training. For example, piece-wise training (Sut-

ton and McCallum, 2009), Decomposed Learning (Samdani and Roth, 2012) and its special case

pseudo-max training (Sontag et al., 2010) fall under this category. These training approaches are

very efficient, but they still need an inference algorithm to make predictions during testing. In

these cases, one could employ the Constrained Conditional Models (CCM) framework (Chang

et al., 2012) with some declarative (global) constraints to make predictions using the learned

cost function. The CCM framework relies on the Integer Linear Programming (ILP) inference

method (Roth and tau Yih, 2005).

More recent work has attempted to integrate (approximate) inference and cost function learn-

ing in a principled manner (Meshi et al., 2010; Stoyanov et al., 2011; Hazan and Urtasun, 2012;

Domke, 2013). Researchers have also worked on using higher-order features for CRFs in the

context of sequence labeling under the pattern sparsity assumption (Ye et al., 2009; Qian et al.,

2009). However, these approaches are not applicable for the graphical models where the sparsity

assumption does not hold.

2.2 Cascade Training

An alternative approach to addressing inference complexity is cascade training (Felzenszwalb

and McAllester, 2007; Weiss and Taskar, 2010; Weiss et al., 2010), where efficient inference

is achieved by performing multiple runs of inference from a coarse level to a fine level of ab-

straction. While such approaches have shown good success, they place some restrictions on the

form of the cost functions to facilitate cascading. Another potential drawback of cascades and

most other approaches is that they either ignore the loss function of a problem (e.g. by assuming

Hamming loss) or require that the loss function be decomposable in a way that supports loss aug-

mented inference. Our approach is sensitive to the loss function and makes minimal assumptions

about it, requiring only that we have a blackbox that can evaluate it for any potential output.

9

2.3 Control Knowledge Learning

Classifier-based structured prediction algorithms avoid directly solving the Argmin problem by

assuming that structured outputs can be generated by making a series of discrete decisions. These

approaches then attempt to learn a recurrent classifier that given an input x is iteratively applied

in order to generate the series of decisions for producing the target output y. The approach of

learning an iteratively applied classifier to avoid Argmin inference can be viewed as learning

control knowledge (here a classifier) that guides a greedy search in an enormous search space.

Simple training methods (e.g. Dietterich et al. (1995)) have shown good success and there are

some positive theoretical guarantees (Syed and Schapire, 2010; Ross and Bagnell, 2010). How-

ever, recurrent classifiers can be prone to error propagation (Kääriäinen, 2006; Ross and Bag-

nell, 2010). Recent work, e.g. SEARN (Hal Daumé III et al., 2009), SMiLe (Ross and Bagnell,

2010), and DAGGER (Ross et al., 2011), attempts to address this issue using more sophisti-

cated training techniques and has shown state-of-the-art structured-prediction results. However,

all these approaches use classifiers to produce structured outputs through a single sequence of

greedy decisions. Unfortunately, in many problems, some decisions are difficult to predict by

a greedy classifier, but are crucial for good performance. In contrast, our approach leverages

recurrent classifiers to define good quality search spaces over complete outputs, which allows

decision making by comparing multiple complete outputs and choosing the best.

There are also non-greedy methods that learn a scoring function to search in the space of

partial structured outputs (Hal Daumé III and Marcu, 2005; Daumé III, 2006; Xu et al., 2009;

Huang et al., 2012; Yu et al., 2013). All these methods perform online training, and differ only

in the way search errors are defined and how the weights are updated when errors occur. Unfor-

tunately, training the scoring function can be difficult because it is hard to evaluate states with

partial outputs and the theoretical guarantees for the learned scoring function (e.g., convergence

and generalization results) rely on strong assumptions (Xu et al., 2009).

2.4 Output Space Search

Our work is most closely related to the output space search approaches (Doppa et al., 2012;

Wick et al., 2011), which use a single cost function to serve as both search heuristic and score

the candidate outputs. Serving these dual roles often means that the cost function needs to

make unclear tradeoffs, which increases the difficulty of learning. Our HC-Search approach

10

overcomes this deficiency by learning two different functions, a heuristic function to guide the

search to generate high-quality candidate outputs, and a cost function to rank the candidate

outputs. Additionally, the error decomposition ofHC-Search in terms of heuristic error and cost

function error allows the human designers of the learning system to diagnose failures and take

corrective measures.

While SampleRank (Wick et al., 2011) shares with our work the idea of explicit search in

the output space, there are some significant differences. The SampleRank framework is mainly

focused on Monte-Carlo search, and the underlying flipbit search space, whereas our approach

can be instantiated for a wide range of search spaces (e.g., LDS space that leverages powerful

recurrent classifiers) and rank-based search algorithms (e.g., greedy search, beam search and

best-first search). We believe that this flexibility is important since it is well-understood in the

search literature that the best search space formulation and the most appropriate search algorithm

change from problem to problem. In addition, the SampleRank framework is highly dependent

on a hand-designed “proposal distribution” for guiding the search or effectively defining the

search space. In contrast, we describe a generic approach for constructing search spaces that is

shown to be effective across a variety of domains.

2.5 Re-Ranking Algorithms

Our approach is also related to Re-Ranking (Collins, 2002), which uses a generative model to

propose a k-best list of outputs, which are then ranked by a separate ranking function. In contrast,

rather than restricting to a generative model for producing potential outputs, our approach lever-

ages generic search over efficient search spaces guided by a learned heuristic function that has

minimal representational restrictions, and employs a learned cost function to rank the candidate

outputs. Recent work on generating multiple diverse solutions in a probabilistic framework can

be considered as another way of producing candidate outputs. A representative set of approaches

in this line of work are diverse M-best (Batra et al., 2012), M-best modes (Park and Ramanan,

2011; Chen et al., 2013) and Determinantal Point Processes (Kulesza and Taskar, 2012).

2.6 Learning to Improve Combinatorial Optimization

The general area of speedup learning studied in the planning and search community is also

related to our work (Fern, 2010). In these problems, the cost function is typically known and the

11

objective is to learn control knowledge (i.e., heuristic function) for directing a search algorithm

to a low-cost terminal node in the search space. For example, STAGE (Boyan and Moore,

2000) learns an evaluation function over the states to improve the performance of search, where

the value of a state corresponds to the performance of a local search algorithm starting from that

state. Zhang and Dietterich (1995) use Reinforcement Learning (RL) methods to learn heuristics

for job shop scheduling with the goal of minimizing the duration of the schedule. Unlike these

problems in planning and combinatorial optimization, such a cost function is not given for the

structured prediction problems. Therefore, our HC-Search approach learns a cost function to

score the structured outputs along with a heuristic function to guide the search towards low cost

outputs.

12

Chapter 3: Limited Discrepancy Search Space for Structured Prediction

In this chapter, we study a new search-based approach to structured prediction based on search

in the space of complete outputs. The approach involves first defining a combinatorial search

space over complete structured outputs that allows for traversal of the output space. Next, given

a structured input, a state-based search strategy (e.g., best-first or greedy search), guided by a

learned cost function, is used to explore the space of outputs for a specified time bound. The

least cost output uncovered by the search is then returned as the prediction. This approach is mo-

tivated by our observation that for a variety of structured prediction problems, if we use the true

loss function of the structured prediction problem to guide the search (even non-decomposable

losses), then high-quality outputs are found very quickly. This suggests that similar performance

might be achieved if we could learn an appropriate cost function to guide search in place of the

true loss function.

A potential advantage of our search-based approach, compared to most structured-prediction

approaches (see Section Chapter 2), is that it scales gracefully with the complexity of the cost

function dependency structure. In particular, the search procedure only needs to be able to ef-

ficiently evaluate the cost function at specific input-output pairs, which is generally straightfor-

ward even when the corresponding Argmin problem is intractable. Thus, we are free to increase

the complexity of the cost function without considering its impact on the inference complexity.

Another potential benefit of our approach is that since the search is over complete outputs, our

inference is inherently an anytime procedure, meaning that it can be stopped at any time and

return the best output discovered so far. This has the flexibility of allowing for the use of more or

less inference time for computing outputs as dictated by the application, with the idea that more

inference time may sometimes allow for higher quality outputs.

The effectiveness of our approach for a particular problem depends critically on: 1) The

identification of an effective combination of search space and search strategy over structured

outputs, and 2) Our ability to learn a cost function for effectively guiding the search for high

quality outputs. The main contribution of our work is to provide generic solutions to these two

issues and to demonstrate their empirical effectiveness.

First, we describe the limited-discrepancy search space, as a generic search space over com-

13

plete outputs that can be customized to a particular problem by leveraging the power of (non-

structured) classification learning algorithms. We show that the quality of this search space is

directly related to the error of the learned classifiers and can be quite favorable compared to more

naive search space definitions. We also define a sparse version of the search space to improve

the efficiency of our approach. The sparse search space tries to reduce the branching factor while

not hurting the quality of the search space too much.

Our second contribution is to describe a generic cost function learning algorithm that can

be instantiated for a wide class of “ranking-based search strategies.” The key idea is to learn a

cost function that allows for imitating the search behavior of the algorithm when guided by the

true loss function. We give a PAC bound for the approach in the realizable setting, showing a

polynomial sample complexity for doing approximately as well as when guiding search with the

true loss function.

Finally, we provide experimental results for our approach on a number of benchmark prob-

lems and show that even when using a relatively small amount of search, the performance is

comparable or better than the state-of-the-art in structured prediction. We also demonstrate sig-

nificant speed improvements of our approach when used with sparse search spaces.

The remainder of the chapter is organized as follows. In Section 3.1, we introduce our

problem setup and give a high-level overview of our framework. In Section 3.2, we define two

search spaces over complete outputs in terms of a recurrent classifier, relate their quality to the

accuracy of the classifier, and then, define sparse search spaces to improve the efficiency of our

approach. We describe our cost function learning approach in Section 3.3. Section 3.4 presents

our experimental results and finally Section 3.5 provides a summary of what we learned from

this work.

3.1 Problem Setup

A structured prediction problem specifies a space of structured inputs X , a space of structured

outputs Y , and a non-negative loss function L : X × Y × Y 7→ <+ such that L(x, y′, y) is the

loss associated with labeling a particular input x by output y′ when the true output is y. We

are provided with a training set of input-output pairs {(x1, y1), . . . , (xN , yN)}, drawn from an

unknown target distribution, where yi is the true output for input xi. The goal is to return a

function/predictor from structured inputs to outputs whose predicted outputs have low expected

loss with respect to the target distribution. Since our algorithms will be learning cost functions

14

over input-output pairs we assume the availability of a feature function Φ : X × Y 7→ <n that

computes an n dimensional feature vector for any pair. Intuitively these features should provide

some measure of compatibility between (parts of) the structured input and output.

We consider a framework for structured prediction based on state-based search in the space

of complete structured outputs. The states of the search space are pairs of inputs and outputs

(x, y), representing the possibility of predicting y as the output for x. A search space over those

states is specified by two functions: 1) An initial state function I such that I(x) returns an initial

search state for any input x, and 2) A successor function S such that for any search state (x, y),

S((x, y)) returns a set of successor states {(x, y1), . . . , (x, yk)}, noting that each successor must

involve the same input x as the parent. Section 3.2 will describe our approach for automatically

defining and learning search spaces.

In order to predict outputs, our framework requires two elements in addition to the search

space. First, we require a cost function C that returns a numeric cost for any input-output pair

(i.e., search state). Second, we require a search procedureA (e.g., greedy search or beam search)

for traversing search spaces, possibly guided by the cost function. Given these elements, an input

x, and a prediction time bound τ we compute an output by executing the search procedure A
starting in the initial state I(x) and guided by the cost function until the time bound is exceeded.

We then return the output ŷ corresponding to the least cost state that was uncovered during

the search as the prediction for x. Figure 3.1 gives a high-level overview of our search-based

framework for structured prediction.

The effectiveness of our search-based framework depends critically on the quality of the

search space and the cost function. Ideally we would like the search space to be organized such

that high quality outputs are as close as possible to the initial state, which allows the search

procedure to uncover those outputs more easily. In addition, it is critical that the cost function

is able to correctly score the generated outputs according to their true losses and also to pro-

vide effective guidance to the chosen search procedure. A key contribution of this work is to

propose supervised learning mechanisms for producing both high-quality search spaces and cost

functions, which are described in the next two sections respectively.

3.2 Search Spaces Over Complete Outputs

In this section we describe two search spaces over structured outputs: 1) The Flipbit space, a

simple but sometimes effective baseline, and 2) The limited-discrepancy search (LDS) space,

15

Figure 3.1: A high level overview of our output space search framework. Given a structured
input x, we first instantiate a search space over complete outputs. Each search node in this space
consists of a complete input-output pair. Next, we run a search procedureA (e.g., greedy search)
guided by the cost function C for a time bound τ . The highlighted nodes correspond to the search
trajectory traversed by the search procedure, in this case greedy search. We return the least cost
output ŷ that is uncovered during the search as the prediction for x.

16

which is intended to improve on the baseline. The key trainable element of each search space is

a recurrent classifier, which once trained will fully define each space. Thus, we start this section

by describing recurrent classifiers and how they are learned. Next we describe how the learned

recurrent classifier is used to define each of the search spaces by defining the initial state and the

successor function.

3.2.1 Recurrent Classifiers

A recurrent classifier h constructs structured outputs based on a series of discrete decisions.

This is formalized for a given structured-prediction problem by defining an appropriate primi-

tive search space over the possible sequences of decisions. It is important to keep in mind the

distinctions between primitive search spaces, which are used by recurrent classifiers, and the

search spaces over complete outputs (e.g., flipbit and LDS) upon which our overall framework

is built. A primitive search space is a 5-tuple 〈I, A, s, f, T 〉, where I is a function that maps

an input x to an initial search node, A is a finite set of actions (or operators), s is the successor

function that maps any search node and action to a successor search node, f is a feature function

from search nodes to real-valued feature vectors, and T is the terminal state predicate that maps

search nodes to {1, 0} indicating whether the node is a terminal or not. Each terminal node in the

search space corresponds to a complete structured output, while non-terminal nodes correspond

to partial structured outputs. Thus, the decision process for constructing an output corresponds

to selecting a sequence of actions leading from the initial node to a terminal. A recurrent clas-

sifier is a function that maps nodes of the primitive search space to actions, where typically the

mapping is defined in terms of a feature function f(n) that returns a feature vector for any search

node. Thus, given a recurrent classifier, we can produce an output for x by starting at the initial

node of the primitive space and following its decisions until reaching a terminal state.

As an example, for sequence labeling problems, the initial state for a given input sequence

x is a node containing x with no labeled elements. The actions correspond to the selection of

individual labels, and the successor function adds the selected label in the next position. Terminal

nodes correspond to fully labeled sequences and the feature function computes a feature vector

based on the input and previously assigned labels. Figure 3.2 provides an illustration of the

primitive search space for a simple handwriting recognition problem. Each search state is a pair

(x, y′) where x is the structured input (binary image of the handwritten word) and y′ is a partial

labeling of the word. The arcs in this space correspond to search steps that label the characters in

17

Figure 3.2: An example primitive search space for the handwriting recognition problem. Arcs
represent labeling actions. Solid arcs correspond to the labeling actions taken by the recurrent
classifier (optimal classifier in this case).

the input image in a left-to-right order by extending y′ in all possible ways by one element. The

terminal states or leaves of this space correspond to complete labelings of input x. The terminal

state corresponding to the correct output y is labeled as goal state. Highlighted nodes correspond

to the trajectory of the optimal recurrent classifier (i.e., a classifier that chooses correct action at

every state leading to the goal state).

The most basic approach to learning a recurrent classifier is via exact imitation of the tra-

jectory followed by the optimal classifier. For this, we assume that for any training input-output

pair (x, y) we can efficiently find an action sequence, or solution path, for producing y from x.

For example, the sequence of highlighted states in Figure 3.2 correspond to such a solution path.

The exact imitation approach learns a classifier by creating a classification training example for

each node n on the solution path of a structured example with feature vector f(n) and label equal

18

to the action followed by the path at n. Our experiments will use recurrent classifiers trained via

exact imitation (see Algorithm 1), but more sophisticated methods such as SEARN (Hal Daumé

III et al., 2009) or DAGGER (Ross et al., 2011) could also be used.

Algorithm 1 Recurrent Classifier Learning via Exact Imitation
Input: D = Training examples

Output: h, the recurrent classifier

1: Initialize the set of classification examples L = ∅
2: for each training example (x, y = y1y2 · · · yT) ∈ D do
3: for each search step t = 1 to T do
4: Compute features fn for search node n = (x, y1 · · · yt−1)
5: Add classification example (fn, yt) to L
6: end for
7: end for
8: h =Classifier-Learner(L) // learn classifier from all the classification examples

9: return learned classifier h

3.2.2 Flipbit Search Space

The Flipbit search space is a simple baseline space over complete outputs that uses a given

recurrent classifier h for bootstrapping the search. Each search state is represented by a sequence

of actions in the primitive space ending in a terminal node representing a complete output. The

initial search state corresponds to the actions selected by the classifier, so that I(x) is equal to

(x, h(x)), where h(x) is the complete output generated by the recurrent classifier. The search

steps generated by the successor function can change the value of one action at any sequence

position of the parent state. In a sequence labeling problem, this corresponds to initializing to

the recurrent classifier output and then searching over flips of individual labels. The flipbit space

is often used by local search techniques (without the classifier initialization) and is similar to the

search space underlying Gibbs Sampling.

Figure 3.3 provides an illustration of the flipbit search space via the same handwriting recog-

nition example that was used earlier. Each search state consists of a complete input-output pair

and the complete output at every state differs from that of its parent by exactly one label. The

highlighted state corresponds to the one with true output y at the smallest depth, which is equal

19

Figure 3.3: An example Flipbit search space for the handwriting recognition problem

20

to the number of errors in the output produced by the recurrent classifier.

3.2.3 Limited-Discrepancy Search Space (LDS)

Notice that the Flipbit space only uses the recurrent classifier when initializing the search. The

motivation behind the Limited Discrepancy Search (LDS) space is to more aggressively exploit

the recurrent classifier in order to improve the search space quality. LDS was originally intro-

duced in the context of problem solving using heuristic search (Harvey and Ginsberg, 1995). To

put LDS in context, we will describe it in terms of using a classifier for structured prediction

given a primitive search space. If the learned classifier is accurate, then the number of incorrect

action selections will be relatively small. However, even a small number of errors can propagate

and cause poor outputs. The key idea behind LDS is to realize that if the classifier response was

corrected at the small number of critical errors, then a much better output would be produced.

LDS conducts a (shallow) search in the space of possible corrections in the hope of finding a

solution better than the original.

More formally, given a recurrent classifier h and its selected action sequence of length T ,

a discrepancy is a pair (i, a) where i ∈ {1, . . . , T} is the index of a decision step and a ∈ A

is an action, which generally is different from the choice of the classifier at step i. For any set

of discrepancies D we let h[D] be a new classifier that selects actions identically to h, except

that it returns action a at decision step i if (i, a) ∈ D. Thus, the discrepancies in D can be

viewed as overriding the preferred choice of h at particular decision steps, possibly correcting

errors, or introducing new errors. For a structured input x, we will let h[D](x) denote the output

returned by h[D] for the search space conditioned on x. At one extreme, when D is empty,

h[D](x) simply corresponds to the output produced by the recurrent classifier. At the other

extreme, when D specifies an action at each step, h[D](x) is not influenced by h at all and is

completely specified by the discrepancy set. In practice, when h is reasonably accurate, we will

be primarily interested in small discrepancy sets relative to the size of the decision sequence. In

particular, if the error rate of the classifier on individual decisions is small, then the number of

corrections needed to produce a correct output will be correspondingly small. The problem is

that we do not know where the corrections should be made, and thus LDS conducts a search over

the discrepancy sets, usually from small to large sets.

Consider the handwriting recognition example in Figure 3.4. The actual output produced

by the classifier for the input image is praual, that is, output produced by introducing zero

21

(a)

(b)

Figure 3.4: Illustration of Limited Discrepancy Search: (a) Trajectory of the recurrent classifier
with no discrepancies. Arcs with ‘X’ mark indicate incorrect actions chosen by the classifier. (b)
Trajectory of the recurrent classifier with a correction (discrepancy) at the first error. A single
correction allows the classifier to correct all the remaining errors.

22

Figure 3.5: An example Limited Discrepancy Search (LDS) space for the handwriting recogni-
tion problem

discrepancies (see Figure 3.4(a)). If we introduce one discrepancy at the first position (1, s) and

run the classifier for the remaining labeling, we get struct which corrects all the remaining

mistakes (see Figure 3.4(b)). By introducing this single correction, the classifier automatically

corrected a number of other previous mistakes, which had been introduced due to propagation

of the first error. Thus only one discrepancy was required to produce the correct output even

though the original output contained many more errors.

Given a recurrent classifier h, we define the corresponding limited-discrepancy search space

over complete outputs Sh as follows. Each search state in the space is represented as (x,D)

where x is a structured input and D is a discrepancy set. We view a state (x,D) as equivalent

to the input-output state (x, h[D](x)). The initial state function I simply returns (x, ∅) which

corresponds to the original output of the recurrent classifier. The successor function S for a

state (x,D) returns the set of states of the form (x,D′), where D′ is the same as D, but with

an additional discrepancy. In this way, a path through the LDS search space starts at the output

generated by the recurrent classifier and traverses a sequence of outputs that differ from the

original by some number of discrepancies. Given a reasonably accurate h, we expect that high-

23

quality outputs will be generated at relatively shallow depths of this search space and hence will

be generated quickly.

Figure 3.5 illustrates1 the limited-discrepancy search space. Each state consists of the input

x, a discrepancy set D and the output produced by running the classifier with the specified

discrepancy set, that is, h[D](x). The root node has an empty discrepancy set. Nodes at level

one contain discrepancy sets of size one and nodes at level two contain discrepancy sets of size

two, and so on. The highlighted state corresponds to the smallest depth state containing the true

output.

3.2.4 Search Space Quality

Recall that in our experiments we train recurrent classifiers via exact imitation, which is an

extremely simple approach compared to more elaborate methods such as SEARN. We now show

the desirable property that the “exact imitation accuracy” optimized by that approach is directly

related to the “quality” of the LDS search space, where quality relates the expected amount of

search needed to uncover the target output. More formally, given an input-output pair (x, y) we

define the LDS target depth for an example (x, y) and recurrent classifier h to be the minimum

depth of a state in the LDS space corresponding to y. Given a distribution over input-output

pairs we let d(h) denote the expected LDS target depth of a classifier h. Intuitively, the depth of

a state in a search space is highly related to the amount of search time required to uncover the

node (exponentially related for exhaustive search, and at least linearly related for more greedy

search). Thus, we will use d(h) as a measure of the quality of the LDS space. We now relate

d(h) to the classifier error rate.

For simplicity, assume that all decision sequences for the structured-prediction problem have

a fixed length T and consider an input-output pair (x, y), which has a corresponding sequence

of actions that generates y. Given a classifier h, we define its exact imitation error on (x, y)

to be e/T where e is the number of mistakes h makes at nodes along the action sequence of

(x, y) (i.e., how often does it disagree with the optimal classifier along the path of the optimal

classifier). Further, given a distribution over input-output pairs, we let εei(h) denote the expected

exact imitation error with respect to examples drawn from the distribution. Note that the exact

imitation training approach aims to learn a classifier that minimizes εei(h). Also, let εr(h) denote

1It may not be clear from this example, but we allow over-riding the discrepancies to provide the opportunity to
recover from the search errors.

24

the expected recurrent error of h, which is the expectation over randomly drawn (x, y) of the

Hamming distance between the action sequence produced by h when applied to x and the true

action sequence for (x, y). The error εr(h) is the actual measure of performance of h when

applied to structured prediction. Recall that due to error propagation it is possible that εr(h)

can be much worse than εei(h), by as much as a factor of T (e.g., see Ross et al., 2011). The

following proposition shows that d(h) is related to εei(h) rather than the potentially much larger

εr(h).

Proposition 1. For any classifier h and distribution over structured input-outputs, d(h) =

Tεei(h).

Proof. For any example (x, y) the depth of y in Sh is equal to the number of imitation errors

made by h on (x, y). To see this, simply create a discrepancy set D that contains a discrepancy

at the position of each imitation error that corrects the error. This set is at a depth equal to the

number of imitation errors and the classifier h[D] will exactly produce the action sequence that

corresponds to y. The result follows by noting that the expected number of imitation errors is

equal to Tεei(h).

It is illustrative to compare this result with the Flipbit space. Let d′(h) be the expected target

depth in the Flipbit space of a randomly drawn (x, y). It is easy to see that d′(h) = Tεr(h)

since each search step can only correct a single error and the expected number of errors of

the action sequence at the initial node is Tεr(h). Since in practice and in theory εr(h) can be

substantially larger than εei(h) (by as much as a factor of T), this shows that the LDS space

will often be superior to the baseline Flipbit space in terms of the expected target depth. For

example, the target depth of the example LDS space in Figure 3.5 is one and is much smaller

than the target depth of the example flipbit space in Figure ??, which is equal to five. Since this

depth relates to the difficulty of search and cost-function learning, we can expect the LDS space

to be advantageous when εr(h) is larger than εei(h). In our experiments, we will see that this is

indeed the case.

3.2.5 Sparse Search Spaces

In this section, we first discuss some of the scalability issues that arise in our framework due

to the use of LDS and Flipbit spaces as defined above. Next, we describe how to define sparse

versions of these search spaces to improve the efficiency of our approach.

25

In our search-based framework, the most computationally demanding part is the generation

of candidate states during the search process. Given a parent state, the number of successor

states for both the LDS and flipbit spaces is equal to T · (L − 1) where T is the size of the

structured output and L is the number of primitive action choices (the number of labels for

sequence labeling problems). When T and/or L is large the time required for this expansion and

computing the feature vector for each successor can be non-trivial. While we cannot control T ,

since that is dictated by the size of the input, we can consider reducing the effective size of L via

pruning. Intuitively, for many sequence positions of a structured output, there will often be labels

that can be easily determined to be bad by looking at the confidence of the recurrent classifier.

By explicitly pruning those labels from consideration we can arrive at a sparse successor set that

requires significantly less computation to generate.

More formally, our approach for defining a sparse successor function assumes that the recur-

rent classifier used to define the LDS and flipbit spaces produces confidence scores, rather than

just simple classifications. This allows us to provide a ranking of the potential actions, or labels,

at each position of the structured output. Using this ranking information it is straightforward to

define sparse versions of the LDS and flipbit successor function by only considering successors

corresponding to the top k labels at each sequence position. For the flipbit space this means that

successors correspond to any way of changing the choice of the recurrent classifier at a sequence

position to one of the top k labels at that position. For the LDS space, this means that we only

consider introducing discrepancies at position i involving the top k labels at position i. In this

way, the number of successors of a state in either space will be T · k rather than T · (L − 1).

Therefore, these sparse search spaces will lead to significant speed improvements for problems

with large L (e.g., POS tagging, Handwriting recognition, and Phoneme prediction).

The potential disadvantage of using a small value of k is that accuracy could be hurt if good

solution paths are pruned away due to inaccuracy of the classifier’s confidence estimates. Thus,

k provides a way to trade-off prediction speed versus accuracy. As we will show later in the

experiments, we are generally able to find values of k that lead to significant speedups with little

loss in accuracy.

3.3 Cost Function Learning

In this section, we describe a generic framework for cost function learning that is applicable

for a wide range of search spaces and search strategies. This approach is motivated by our

26

empirical observation that for a variety of structured prediction problems, we can uncover high

quality outputs if we guide the output-space search using the true loss function as an oracle

cost function to guide the search (close to zero error with both LDS and Flipbit spaces). Since

the loss function depends on correct target output y∗, which is unknown at test time, we aim

to learn a cost function that mimics this oracle search behavior on the training data without

requiring knowledge of y∗. With an appropriate choice of hypothesis space of cost functions,

good performance on the training data translates to good performance on the test data.

3.3.1 Cost Function Learning via Imitation Learning

Recall that in our output space search framework, the role of the cost function C is to evaluate

the complete outputs that are uncovered by the search procedure. These evaluations may be used

internally by the search procedure as a type of heuristic guidance and also used when the time

bound is reached to return the least cost output that has been uncovered as the prediction. Based

on our empirical observations, it is very often the case that the true loss function serves these roles

very effectively, which might suggest a goal of learning a cost function that is approximately

equal to the true loss function L over all possible outputs. However, this objective will often

be impractical and fortunately is unnecessary. In particular, the learned cost function need not

approximate the true loss function uniformly over the output space, but only needs to make the

decisions that are sufficient for leading the time-bounded search to behave as if it were using the

true loss function. Often this allows for a much less constrained learning problem, for example,

C may only need to preserve the rankings among certain outputs, rather than exactly matching

the values of L. The key idea behind our cost learning approach is to learn such a sufficient C.

The main assumptions made by this approach are: 1) the true loss function can provide effective

guidance to the search procedure by making a series of ranking decisions, and 2) we can learn

to imitate those ranking decisions sufficiently well.

Our goal now is to learn a cost function that causes the search to behave as if it were using

loss function L for guiding the search and selecting the final output. We propose to formulate

and solve this problem in the framework of imitation learning. In traditional imitation learning,

the goal of the learner is to learn to imitate the behavior of an expert performing a sequential-

decision making task in a way that generalizes to similar tasks or situations. Typically this

is done by collecting a set of trajectories of the expert’s behavior on a set of training tasks.

Then supervised learning is used to find a policy that can replicate the decisions made on those

27

trajectories. Often the supervised learning problem corresponds to learning a classifier or policy

from states to actions and off-the-shelf tools can be used.

In our cost function learning problem, the expert corresponds to the search procedure A
using the loss function L for a search time bound τmax. The behavior that we would like to

imitate is the internal behavior of this search procedure, which consists of all decisions made

during the search including the final decision of which output to return. Thus, the goal of cost

function learning is to learn the weights of C so that this behavior is replicated when it is used

by the search procedure in place of L. We propose to achieve this goal by directly monitoring

the expert search process on all of the structured training examples and generating the set of

constraints on L that were responsible for the observed decisions. Then we attempt to learn a C
that satisfies the constraints using an optimization procedure.

Algorithm 2 Cost Function Learning via Exact Imitation
Input: D = Training examples, (I, S) = Search space definition, L = Loss function, A =

Rank-based search procedure, τmax = search time bound

Output: C, the cost function

1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s0 = I(x) // initial state of the search tree

4: M0 = {s0} // set of open nodes in the internal memory of the search procedure

5: ybest =OutputOf(s0) // best loss output so far

6: for each search step t = 1 to τmax do
7: Select the state(s) to expand: Nt =Select(A, L,Mt−1)

8: Expand every state s ∈ Nt using the successor function S: Ct =Expand(Nt, S)

9: Prune states and update the internal memory state of the search procedure:

Mt =Prune(A, L,Mt−1 ∪ Ct \Nt)

10: Update the best loss output ybest // track the best output

11: Generate ranking examples Rt to imitate this search step

12: Add ranking examples Rt toR: R = R∪Rt // aggregation of training data

13: end for
14: end for
15: C =Rank-Learner(R) // learn cost function from all the ranking examples

16: return learned cost function C

28

Algorithm 2 describes our generic approach for cost function learning via exact imitation

of searches conducted by the loss function. It is applicable to a wide-range of search spaces,

search procedures and loss functions. The learning algorithm takes as input: 1) D = {(x, y∗)},
set of training examples for a structured prediction problem (e.g., handwriting recognition); 2)

So = (I, S), definition of a search space over complete outputs (e.g., LDS space), where I

is the initial state function and S is the successor function; 3) L, a task loss function defined

over complete outputs (e.g., hamming loss); 4) A, a rank-based search procedure (e.g., greedy

search); and 5) τmax, the search time bound (e.g., number of search steps).

First, it runs the search procedure A with the given loss function L, in the search space

So instantiated for every training example (x, y∗), upto the maximum time bound τmax (steps

3-10), and generates a set of pair-wise ranking examples that need to be satisfied to be able to

imitate the search behavior with loss function (step 11). Second, the aggregate set of ranking

examples collected over all the training examples is then given to a rank-learning algorithm (e.g.,

Perceptron or SVM-Rank) to learn the weights of the cost function (step 15).

The algorithmic description assumes a best-first search procedure with some level of pruning

(e.g., greedy search and best-first beam search). These search procedures typically involve three

key steps: 1) Selection, 2) Expansion and 3) Pruning. During selection, the search procedure

selects one or more2 open nodes from its internal memory for expansion (step 7), and expands

all the selected nodes to generate the candidate set (step 8). It retains only a subset of all the open

nodes after expansion in its internal memory and prunes away all the remaining ones (step 9).

For example, greedy search maintains only the best node and best-first beam search with beam

width b retains the best b nodes.

The most important step in our cost function learning algorithm is the generation of ranking

examples to imitate the search procedure (step 11). In what follows, we first formalize ranking-

based search that allows us to specify what these pairwise ranking examples are and then, give

a generic description of “sufficient” pair-wise decisions to imitate the search, and illustrate them

for greedy search and best-first beam search through a simple example.

3.3.2 Ranking-based Search

We now precisely define the notion of “guiding the search” with a loss function. If the loss func-

tion can be invoked arbitrarily by the search procedure, for example, evaluating and comparing
2Breadth-first beam search expands all nodes in the beam.

29

arbitrary expressions involving the cost, then matching its performance would require the cost

function to approximate it arbitrarily closely, which is quite demanding in most cases. Hence,

we restrict ourselves to ranking-based search defined as follows.

Let P be an anytime search procedure that takes an input x ∈ X , calls a cost function C
over the pairs from X × Y some number of times and outputs a structured output ybest ∈ Y .

We say that P is a ranking-based search procedure if the results of calls to C are only used to

compare the relative values for different pairs (x, y) and (x, y′) with a fixed tie breaker. Each

such comparison with tie-breaking is called a ranking decision and is characterized by the tuple

(x, y, y′, d), where d is a binary decision that indicates y is a better output than y′ for input x.

When requested, it returns the best output ybest encountered thus far as evaluated by the cost

function.

Note that the above constraints prohibit the search procedure from being sensitive to the

absolute values of the cost function for particular search states (x, y) pairs, and only consider

their relative values. Many typical search strategies such as greedy search, best-first search, and

beam search satisfy this property.

A run of a ranking-based search is a sequence x,m1, o1, . . . ,mn, on, y, where x is the in-

put to the predictor, y is the output, and mi is the internal memory state of the predictor just

before the ith call to the ranking function. oi is the ith ranking decision (x, yi, y
′
i, di). Given a

hypothesis space H of cost functions, the cost function learning works as follows. It runs the

search procedure P on each training example (x, y∗) for a maximum search time bound of τmax
substituting the loss function L(x, y, y∗) for the cost function C(x, y). For each run, it records

the set of all ranking decisions (x, yi, y
′
i, di). The set of all ranking decisions from all the runs is

given as input to a binary classifier, which finds a cost function C ∈ H, consistent with the set

of all such ranking decisions.

The ranking-based search can be viewed as a Markov Decision Process (MDP), where the

internal states of the search procedure correspond to the states of the MDP, and the ranking deci-

sion is an action. The following theorem can be proved by adapting the proof of Fern et al. (2006)

with minor changes, for example, no discounting, and two actions, and applies to stochastic as

well as deterministic search procedures.

Theorem 1. LetH be a finite class of ranking functions. For any target ranking function r ∈ H,

and any set of m = 1
ε ln |H|δ independent runs of a rank-based search procedure P guided by

r drawn from a target distribution over inputs, there is a 1 − δ probability that every r̂ ∈ H

30

that is consistent with the runs satisfies L(r̂) ≤ L(r) + 2εLmax, where Lmax is the maximum

possible loss of any output and L(t) is the expected loss of running the search procedure P with

the ranking function t ∈ H.

Although the theoretical result assumes that the target cost function r is in the hypothesis

space, in practice this is not guaranteed as the set of generated constraints might be quite large

and diverse. To help reduce the complexity of the learning problem, in practice we only learn

from a smaller set of pair-wise ranking decisions that are sufficient (see below) to preserve the

best output that is encountered during search at any time step.

3.3.3 Sufficient Pairwise Decisions

Above we noted that we only need to collect and learn to imitate the “sufficient” pairwise de-

cisions encountered during search. We say that a set of constraints is sufficient for a structured

training example (x, y∗), if any cost function that is consistent with the constraints causes the

search to follow the same trajectory (sequence of states) and retains the best loss output that is

encountered during search so far for input x. The precise specification of these constraints de-

pends on the actual search procedure that is being used. For rank-based search procedures, the

sufficient constraints can be categorized into three types:

1. Selection constraints, which ensure that the search node(s) from the internal memory state

that will be expanded in the next search step is (are) ranked better than all other nodes.

2. Pruning constraints, which ensure that the internal memory state (set of search nodes) of

the search procedure is preserved at every search step. More specifically, these constraints

involve ranking every search node in the internal memory state better (lower C-value) than

those that are pruned.

3. Anytime constraints, which ensure that the search node corresponding to the best loss

output that is encountered during search so far is ranked better than every other node that

is uncovered by the search procedure.

Below, we will illustrate these constraints concretely for greedy search and best-first beam

search noting that similar formulations for other rank-based search procedures is straightforward.

Greedy Search: This is the most basic rank-based search procedure. For a given input x,

it traverses the search space by selecting the next state as the successor of the current state that

31

Figure 3.6: An example search tree that illustrates greedy search with loss function. Each node
represents a complete input-output pair and can be evaluated using the loss function. The high-
lighted nodes correspond to the trajectory of greedy search guided by the loss function.

looks best according to the cost function C (loss function L during training). In particular, if si
is the search state at step i, greedy search selects si+1 = argmins∈S(si)C(s), where s0 = I(x).

In greedy search, the internal memory state of the search procedure at step i consists of only the

best open (unexpanded) node si. Additionally, it keeps track of the best node sbesti uncovered so

far as evaluated by the cost function.

Let (x, yi) correspond to the input-output pair associated3 with state si. Since greedy search

maintains only a single open node si in its internal memory at every search step i, there are no

selection constraints. Let Ci+1 be the candidate set after expanding state si, that is, Ci+1 =

S(si). Let si+1 be the best node in the candidate set Ci+1 as evaluated by the loss function, that

is, si+1 = argmins∈Ci+1L(s). As greedy search prunes all the nodes in the candidate set other

than si+1, pruning constraints need to ensure that si+1 is ranked better than all the other nodes

in Ci+1. Therefore, we include one ranking constraint for every node (x, y) ∈ Ci+1 \ (x, yi+1)

such that C(x, yi+1) < C(x, y). As part of the anytime constraints, we introduce a constraint

between (x, ybesti) and (x, yi+1) according to their losses. For example, if L(x, yi+1, y
∗) <

L(x, ybesti , y∗), we introduce a ranking constraint such that C(x, yi+1) < C(x, ybesti) and vice

3We use input-output pair (x, yi) and state si inter-changeably for the sake of brevity.

32

versa.

We will now illustrate these ranking constraints through an example. Figure 4.4 shows

an example search tree of depth two with associated losses for every search node. The high-

lighted nodes correspond to the trajectory of greedy search with loss function that our learner

has to imitate. At first search step, {C(3) < C(2), C(3) < C(4)}, and {C(3) < C(1)} are the

pruning and anytime constraints respectively. Similarly, {C(10) < C(8), C(10) < C(9)}, and

{C(3) < C(10)} form the pruning and anytime constraints at second search step. Therefore, the

aggregate set of constraints needed to imitate the greedy search behavior shown in Figure 4.4

are:

{C(3) < C(2), C(3) < C(4), C(3) < C(1), C(10) < C(8), C(10) < C(9), C(3) < C(10)}.
Best-first Beam Search: This is a more sophisticated search procedure compared to greedy

search. Best-first beam search maintains a set of b open nodes Bi in its internal memory at every

search step i, where b is the beam width. Greedy search is a special case of beam search, where

beam width b equals 1. For a given input x, it traverses the search space by expanding the best

node si in the current beam Bi (i.e., si = argmins∈BiC(s)) and computes the next beam Bi+1

by retaining the best b open nodes after expanding si, where B0 = {I(x)}.
Best-first beam search selects the best node si at every search step i from its beam Bi for

expansion, that is, si = argmins∈BiL(s). Therefore, selection constraints need to ensure that

si is ranked better than all the other nodes in beam Bi. Therefore, we include one ranking

constraint for every node (x, y) ∈ Bi \ (x, yi) such that C(x, yi) < C(x, y). Let Ci+1 be the

candidate set after expanding state si, that is, Ci+1 = S(si) ∪ Bi \ si and let Bi+1 be the best

b nodes in the candidate set according to the loss function. As best-first beam search prunes all

the nodes in the candidate set other than those in Bi+1, pruning constraints need to ensure that

every node in Bi+1 is ranked better than every node in Ci+1 \Bi+1. Therefore, we generate one

ranking example for every pair of nodes ((x, yb) , (x, y)) ∈ Bi+1 × Ci+1 \ Bi+1, requiring that

C(x, yb) < C(x, y). Similar to greedy search, as part of the anytime constraints, we introduce a

ranking constraint between (x, ybesti) and (x, yi+1) according to their losses.

We will now illustrate the above ranking constraints for best-first beam search through the

example search tree in Figure 4.4. Let us consider best-first beam search with beam width

b = 2 and let (B0, B1, B2) correspond to the beam trajectory of search with loss function

that needs to be imitated by our learner, where B0 = {1}, B1 = {3, 4} and B2 = {4, 10}.
At first search step, there are no selection constraints as B0 contains only a single node, and

{C(3) < C(2), C(4) < C(2)} and {C(3) < C(1)} are the pruning and anytime constraints respec-

33

tively. Similarly, {C(3) < C(4)}, {C(4) < C(8), C(4) < C(9), C(10) < C(8), C(10) < C(9)} and

{C(3) < C(10)} form the selection, pruning and anytime constraints at second search step.

The only thing that remains to be explained in Algorithm 2 is, how to learn a cost function

C from the aggregate set of ranking examplesR (step 15). Below we describe this rank learning

procedure.

3.3.4 Rank Learner

We can use any off-the-shelf rank-learning algorithm (e.g., Perceptron, SVM-Rank) as our base

learner to learn the cost function from the set of ranking examplesR. In our specific implemen-

tation we employed the online Passive-Aggressive (PA) algorithm (Crammer et al., 2006) as our

base learner.4 Training was conducted for 50 iterations in all of our experiments.

PA is an online large-margin algorithm, which makes several passes over the training exam-

plesR, and updates the weights whenever it encounters a ranking error. Recall that each ranking

example inR is of the form C(x, y1) < C(x, y2), where x is a structured input with target output

y∗, y1 and y2 are potential outputs for x such that L(x, y1, y
∗) < L(x, y2, y

∗). Let ∆ > 0 be

the difference between the losses of the two outputs involved in a ranking example. We experi-

mented with PA variants that use margin scaling (margin scaled by ∆) and slack scaling (errors

weighted by ∆) (Tsochantaridis et al., 2005). Since margin scaling performed slightly better

than slack scaling, we report the results of the PA variant that employs margin scaling. Below

we give the full details of the margin scaling update.

Let wt be the current weights of the cost function. If there is a ranking error, that is, wt ·
Φ(x, y2) − wt · Φ(x, y1) <

√
∆, the new weights wt+1 that corrects the error can be obtained

using the following equation.5

4In the conference version of this work, we employed the perceptron learner and followed a training approach
that slightly differs from Algorithm 2. Specifically, the ranking examples for exact imitation were generated until
reaching y∗, the correct output, and after that we only generate training examples to rank y∗ higher than the best
cost open node(s) as evaluated by the current cost function and continue the search guided by the cost function. This
particular training approach may be beneficial (results in the conference paper are slightly better than those presented
in this article and in practice, breaking ties via cost function is better than employing a random tie-breaker), but it
is computationally very expensive (requires the ranking examples to be generated on-the-fly during each iteration of
online training). However, this training methodology can be both beneficial and practical when applied on sparse
search spaces.

5Crammer et al. (2006) prove bounds on the cumulative squared loss and therefore, they employ this particular
margin constraint with

√
∆.

34

wt+1 = wt + τt(Φ(x, y2)− Φ(x, y1))

where the learning rate τt is given by

τt =
wt · Φ(x, y1)− wt · Φ(x, y2) +

√
∆

‖Φ(x, y2)− Φ(x, y1)‖2
.

This specific update has been previously used for cost-sensitive multiclass classification

(Crammer et al., 2006) (See Equation 51) and for structured output problems (Keshet et al.,

2005) (See Equation 7).

3.3.5 Summary of Overall Training Approach

Our search-based framework thus consists of two main learning components: 1) the search space

learner, and 2) the cost function learner. We train them sequentially. First, we train the recurrent

classifier as described in Section 3.2.1, which is used to define either the LDS or flipbit search

spaces (see Section 3.2). Second, we train the cost function C to score the outputs for a given

combination of search space over complete outputs So and a search procedure A as described in

Algorithm 2. More specifically, for every training example (x, y∗), we run the search procedure

A on the search space So instantiated for input x, using the loss function L for the specified time

bound τ , and generate imitation training data (ranking examples) for the cost function learning

(see Section 3.3.3). We give the aggregate set of imitation training data to a rank learner to train

the cost function C as described in Section 3.3.4.

3.4 Empirical Results

In this section we empirically investigate our approach along several dimensions and compare it

against the state-of-the-art in structured prediction.

3.4.1 Experimental Setup

We evaluate our approach on the following six structured prediction problems including five

benchmark sequence labeling problems and a 2D image labeling problem.

35

• Handwriting Recognition (HW). The input is a sequence of binary-segmented handwrit-

ten letters and the output is the corresponding character sequence [a − z]+. This data set

contains roughly 6600 examples divided into 10 folds (Taskar et al., 2003). We consider

two different variants of this task as in Hal Daumé III et al. (2009). For the HW-Small

version of the problem,, we employ one fold for training and the remaining 9 folds for

testing, and vice-versa in HW-Large.

• NETtalk Stress. This is a text-to-speech mapping problem, where the task is to assign

one of the 5 stress labels to each letter of a word (Sejnowski and Rosenberg, 1987). There

are 1000 training words and 1000 test words in the standard data set. We use a sliding

window of size 3 for observational features.

• NETtalk Phoneme. This is similar to NETtalk Stress except that the task is to assign one

of the 51 phoneme labels to each letter of a word.

• Chunking. The goal in this task is to syntactically chunk English sentences into meaning-

ful segments. We consider the full syntactic chunking task and use the data set from the

CONLL 2000 shared task,6 which consists of 8936 sentences of training data and 2012

sentences of test data.

• POS tagging. We consider the tagging problem for the English language, where the goal

is to assign the part-of-speech tag to each word in a sentence. The standard data from Wall

Street Journal (WSJ) corpus7 was used in our experiments.

• Scene labeling. This data set contains 700 images of outdoor scenes (Vogel and Schiele,

2007). Each image is divided into patches by placing a regular grid of size 10 × 10 over

the entire image, where each patch takes one of the 9 semantic labels (sky, water, grass,

trunks, foliage, field, rocks, flowers, sand). Simple appearance features including color,

texture and position are used to represent each patch. Training was performed with 600

images, and the remaining 100 images were used for testing.

We used F1 loss as the loss function for the chunking task and employed Hamming loss for all

other tasks.
6CONLL task can be found at http://www.cnts.ua.ac.be/conll2000/chunking/.
7WSJ corpus can be found at http://www.cis.upenn.edu/˜treebank/.

36

For all sequence labeling problems, the recurrent classifier labels a sequence using a left-to-

right ordering and for scene labeling uses an ordering of top-left to right-bottom in a row-wise

raster form. To train the recurrent classifiers, the output label of the previous token is used as

a feature to predict the label of the current token for all sequence labeling problems with the

exception of chunking and POS tagging, where labels of the two previous tokens were used.

For scene labeling, the labels of neighborhood (top and left) patches were used. In all our

experiments, we train the recurrent classifier using exact imitation (see Section 3.2) with the

Perceptron algorithm for 100 iterations with a learning rate of 1.

Unless otherwise indicated, the cost functions learned over input-output pairs are second

order, meaning that they have features over neighboring label pairs and triples along with features

of the structured input. For the scene labeling task, we consider pairs and triples along both

horizontal and vertical directions. We trained the cost function via exact imitation as described

in Section 3.3 using 50 iterations of Passive-Aggressive training.

3.4.2 Comparison to State-of-the-Art

We experimented with several instantiations of our framework. First, we consider our framework

using a greedy search procedure for both the LDS and flipbit spaces, denoted by LDS-Greedy
and FB-Greedy. Unless otherwise noted, in both training and testing, the greedy search was run

for a number of steps equal to the length of the sequence. Using longer runs did not impact results

significantly. Second, we performed experiments with best-first beam search for different beam

widths and search steps, but we didn’t see significant improvements over the results with greedy

search. Therefore, we do not report these results. Third, to see the impact of adding additional

search at test time to a greedily trained cost function, we also used the cost function learned by

LDS-Greedy and FB-Greedy in the context of a best-first beam search (beam width = 100) at test

time in both the LDS and flipbit spaces, denoted by LDS-BST(greedy) and FB-BST(greedy).
We also report the performance of using our trained recurrent classifier (Recurrent) to make

predictions, which is equivalent to performing no search since both search spaces are initialized

to the recurrent classifier output. Finally, we also report the exact imitation accuracy (100 ∗ (1−
εei)), which as described earlier (see Section 3.2) is the accuracy being directly optimized by the

recurrent classifier and is related to the structure of the flipbit and LDS spaces.

We compare our results with other structured prediction algorithms including CRFs (Laf-

ferty et al., 2001), SVM-Struct (Tsochantaridis et al., 2004), SEARN (Hal Daumé III et al.,

37

ALGORITHMS DATA SETS

HW-Small HW-Large Stress Phoneme Chunk POS Scene labeling

a. Comparison to state-of-the-art
100 ∗ (1− εei) 73.9 83.99 77.97 77.09 88.84 92.5 78.61

Recurrent 65.67 74.87 72.82 73.58 88.51 92.15 56.64

LDS-Greedy 82.59 92.59 78.85 79.09 94.62 96.93 72.95
FB-Greedy 80.3 89.38 77.93 78.43 93.96 96.87 67.67

CRF 80.03 86.89 78.52 78.91 94.77 96.84 -
SVM-Struct 80.36 87.51 77.99 78.3 93.64 96.81 -

SEARN 82.12B 90.58B 76.15 77.26 94.44B 95.83 62.31
CASCADES(2012) 69.62 87.95 77.18 69.77 - 96.82 -

CASCADES(updated) 86.98 96.78 79.59 82.44 - 96.82 -

b. Results with Additional Search
LDS-BST(greedy) 83.81+ 93.17+ 78.76 78.87 94.63 96.95 74.12+

FB-BST(greedy) 81.19+ 90.21+ 77.61 78.32 93.98 96.91 69.23+

c. Results with DAgger
LDS-Greedy 83.62+ 93.24+ 79.81+ 79.97+ 94.61 96.91 74.27+

FB-Greedy 81.28+ 90.45+ 78.96+ 79.23+ 93.94 96.89 69.63+

d. Results with Third-Order Features
LDS-Greedy 85.85+ 95.08+ 80.21+ 81.61+ 94.63 96.97 74.71+

FB-Greedy 83.18+ 92.66+ 79.23+ 80.65+ 94.17+ 96.94 69.81+

CASCADES(2012) 81.87+ 93.76+ 73.48 68.98 - 96.84 -
CASCADES(updated) 89.18+ 97.84+ 80.49+ 82.59+ - 96.84 -

Table 3.1: Prediction accuracy results of different structured prediction algorithms and varia-
tions of our framework. A + indicates that the particular variation being considered resulted in
improvement.

38

2009) and CASCADES (Weiss and Taskar, 2010). For these algorithms, we report the best pub-

lished results whenever available. In the remaining cases, we used publicly available code or our

own implementation to generate those results. Ten percent of the training data was used to tune

the hyper-parameters. CRFs were trained using SGD.8 SVMhmm was used to train SVM-Struct

and the value of the parameter C was chosen from
{

10−4, 10−3, · · · , 103, 104
}

based on the

validation set. Cascades were trained using the implementation9 provided by the authors, which

can be used for sequence labeling problems with Hamming loss. We present two different results

for CASCADES: 1) CASCADES(2012) employs the version of the code at the original time this

work was done, 2) CASCADES(updated) employs the most recent updated10 version of the CAS-

CADES training code, which significantly improves on the CASCADES(2012). For SEARN we

report the best published results with a linear classifier (i.e., linear SVMs instead of Perceptron)

as indicated by B in the table and otherwise ran our own implementation of SEARN with opti-

mal approximation as described in Hal Daumé III et al. (2009) and optimized the interpolation

parameter β over the validation set. Note that we do not compare our results to SampleRank due

to the fact that its performance is highly dependent on the hand-designed proposal distribution,

which varies from one domain to another.

Table 3.1a shows the prediction accuracies of different algorithms (‘-’ indicates that we were

not able to generate results for those cases as the software package was not directly applicable).

Across all benchmarks we see that the most basic instantiations of our framework, LDS-Greedy

and FB-Greedy, produce results that are comparable or significantly better than all the other

methods excluding11 CASCADES(updated). This is particularly interesting, since these results

are achieved using a relatively small amount of search and the simplest search method, and

results tend to be the same or better for our other instantiations. A likely reason that we are out-

performing CRFs and SVM-Struct is that we use second-order features while those approaches

use first-order features, since exact inference with higher order features is too costly, especially

during training. As stated earlier, one of the advantages of our approach is that we can use

higher-order features with negligible overhead.

Finally, the improvement in the scene labeling domain is the most significant, where SEARN

8SGD code can be found at http://leon.bottou.org/projects/sgd.
9Cascades code can be found at http://code.google.com/p/structured-cascades/.

10Most recent based on personal communication with the author.
11A followup work (Doppa et al., 2014a) that employs two distinct functions for guiding the search and scoring

the candidate outputs generated during search performs comparably or better than CASCADES(updated) across all
benchmarks.

39

achieves an accuracy of 62.31 versus 72.95 for LDS-Greedy. In this domain, most prior work

has considered the simpler task of classifying entire images into one of a set of discrete classes,

but to the best of our knowledge no one has considered a structured prediction approach for

patch classification. The only reported result for patch classification that we are aware of Vogel

and Schiele (2007) obtains an accuracy of 71.7 (versus our best performance of 74.27) with

non-linear SVMs trained i.i.d. on patches using more sophisticated features than ours.

3.4.3 Framework Variations

Adding More Search. Table 3.1b shows that LDS-BST(greedy) and FB-BST(greedy) are gen-

erally the same or better than LDS-Greedy and FB-Greedy, with the biggest improvements in

handwriting recognition task and the challenging scene labeling (‘+’ indicates improvement).

Results improve from 82.59 to 83.81 in HW-Small, from 92.59 to 93.17 in HW-Large and from

72.95 to 74.12 in the scene labeling task. This shows that it can be an effective strategy to train

using greedy search and then insert that cost function into a more elaborate search at test time

for further improvement. As noted earlier, in the domains we considered, training with a more

sophisticated search procedure like beam search did not improve results over greedy search. This

demonstrates the efficiency of our search spaces and can be considered as a positive result.

Exact Imitation vs. DAGGER. Our experiments show that the simple exact imitation ap-

proach for cost function training performs extremely well on our problems. However, cost func-

tions trained via exact imitation can be prone to error propagation (Kääriäinen, 2006; Ross and

Bagnell, 2010). It is interesting to consider whether addressing this issue might improve re-

sults further. Therefore, we experimented with DAGGER (Ross et al., 2011), a more advanced

imitation training regime that addresses error propagation through on-line training and expert

demonstrations. At a high-level, DAGGER learns on-line from an aggregate data set collected

over several iterations. The first iteration corresponds to the data produced by exact imitation of

the expert. Further iterations correspond to the actions suggested by the expert on trajectories

produced by a mixture of the learned policy from the previous iteration and the expert policy.

This allows DAGGER to learn from states visited by its possibly erroneous learned policy and

correct its mistakes using expert input. In our adaptation, the “learned policy” corresponds to the

decisions made by the greedy search guided by the cost function as the heuristic, and the “expert

policy” corresponds to the decisions made by greedy search guided by the loss function. Ross

et al. (2011) show that during the iterations of DAGGER just using the learned policy without

40

mixing the expert policy performs very well across diverse domains. Therefore, we use the same

setting in our DAGGER experiments.

We picked the best cost function based on a validation set after 5 iterations of DAGGER, not-

ing that no noticeable improvement was observed after 5 iterations. Table 3.1c shows the results

of LDS-Greedy and FB-Greedy obtained by training with DAGGER. We see that there are some

improvements over the cost function trained with exact imitation, although the improvements

are quite small (‘+’ indicates improvement). As we will show later, we get much more positive

results for DAGGER in the context of pruned search spaces.

Higher-Order Features. One of the advantages of our framework compared to other ap-

proaches for structured prediction is the ability to use more expressive feature spaces with neg-

ligible computational overhead. Table 3.1d shows results using third-order features (compared

to second-order results in Table 3.1a) for LDS-Greedy, FB-Greedy and Cascades.12 Note that it

is not practical to run the other methods (e.g., CRFs and SVM-Struct) using third-order features

due to the substantial increase in inference time. The results of LDS-Greedy and FB-Greedy with

third-order features improve over the corresponding results with second-order features across the

board (‘+’ indicates improvement). Finally, we note that while CASCADES(updated) is able to

improve performance by using third-order features, the improvement is negligible for phoneme

prediction.

LDS space vs. Flipbit space. We see that generally the instances of our method that use the

LDS space outperform the corresponding instances that use the Flipbit space. Interestingly, if

there is a large difference between the exact imitation accuracy 1−εei and the recurrent classifier

accuracy (e.g., Handwriting and Scene labeling), then the LDS space is significantly better than

the flip-bit space. This is particularly true in our most complex problem of scene labeling where

this difference is quite large, as is the gap between LDS and Flipbit. These results show the

benefit of using the LDS space and empirically confirm our observations in Section 3.2 that the

quality of the LDS and Flipbit spaces are related to the exact imitation and recurrent error rates

respectively.

3.4.4 Results with Sparse Search Spaces

Recall that sparse search spaces are parameterized by k, the sparsity parameter (see Section 3.2.5).

Small values of k lead to proportionately smaller branching factors for search. We perform ex-
12Cascades code can be found at http://code.google.com/p/structured-cascades/.

41

periments for different values of k to evaluate the effectiveness of sparse search spaces (i.e.,

LDS-k and FB-k). For example, LDS-2 and FB-2 correspond to the configurations where k

equals 2. We only report the results for k = 2 and k = 4 noting that we didn’t see major im-

provements for larger values of k. For all these experiments, we run greedy search for a number

of steps equal to the length of the sequence during both training and testing. For greedy search,

the computation time can be expected to be linearly related to k since the main computational

bottleneck is the generation of T · k successors for each node encountered during the search.

Results of Cost Function Trained on Complete Search Spaces. Table 3.2b gives the re-

sults of using a cost function trained on a complete (non-sparse) search space (as in the previous

experiments) to make predictions via the pruned spaces. As we can see, the gap between the

results of LDS-2 and FB-2 and the corresponding results obtained using complete search space

(see Table 3.2a) is very small. This means that we get huge speed improvements during testing

with only a small loss in accuracy (more details on speedup below). The accuracy loss reduces

with less sparse search spaces (LDS-4 and FB-4), but comes at the expense of more computation

time.

Results of Cost Function Trained on Sparse Search Spaces. It is natural to expect that

performance on sparse search spaces might improve if the cost function is trained using the same

sparse search space. Further, since conducting searches in the sparse spaces is computationally

cheaper, learning directly in sparse spaces can be much more efficient. Table 3.2c shows the

results of training the cost function on the sparse search spaces using exact imitation. As we

can see, accuracies of LDS-2 and FB-2 slightly degrade compared to the corresponding results

in Table 3.2b, but the results of LDS-4 and FB-4 equal or slightly improve in almost all cases

except for scene labeling. These results show that we get speed improvements during both

training and testing with little loss in accuracy.

Contrary to expectation, the above results show that when using the LDS-2 and FB-2 spaces,

training directly on those spaces was often slightly worse than training on the complete spaces.

One hypothesis for this observation is that the number and variation of states encountered during

training by the exact imitation approach is much less for sparser spaces. This can possibly hurt

robustness of the learned cost function. This suggests that a more sophisticated approach such as

DAGGER might be more effective since it effectively generates a wider diversity of states during

training.

Table 3.2 shows the results of training with DAGGER, which confirm the above hypothe-

sis. First, DAGGER significantly improves over the results obtained with exact imitation (see

42

ALGORITHMS DATA SETS

HW-Small HW-Large Stress Phoneme Chunk POS Scene labeling

a. Accuracy results of training and testing on complete search space
LDS 82.59 92.59 78.85 79.09 94.62 96.93 72.95
FB 80.3 89.38 77.93 78.43 93.96 96.87 67.67

b. Accuracy results of cost function trained on complete search space
LDS-2 81.02 91.38 78.62 79.79 93.95 96.13 69.87
FB-2 79.47 86.95 77.82 79.23 93.18 96.08 65.43

LDS-4 82.55 92.45 78.85 79.97 94.55 96.77 72.11
FB-4 80.43 88.40 77.93 79.23 94.23 96.81 66.98

c. Accuracy results of cost function trained on sparse search space via Exact Imitation
LDS-2 80.17 90.43 78.72 78.90 94.08 96.29 68.62
FB-2 78.95 87.61 77.57 78.80 94.11 96.45 63.45

LDS-4 83.12 92.84 78.85 79.46 94.55 96.51 70.69
FB-4 80.80 90.04 77.93 79.59 94.39 96.57 65.67

d. Accuracy results of cost function trained on sparse search space via DAgger
LDS-2 82.54 92.14 79.27 80.57 94.27 96.38 71.56
FB-2 80.73 89.65 78.94 80.48 94.32 96.55 66.78

LDS-4 85.53 94.14 79.81 81.23 94.58 96.85 73.61
FB-4 82.87 91.75 78.96 81.26 94.56 96.89 68.71

e. Timing results (avg. time per greedy search step in milli seconds)
LDS 40.0 40.0 1.0 23.0 421.0 695.0 2660.0
FB 20.0 19.0 1.0 10.0 134.0 170.0 1740.0

LDS-2 3.0 3.8 0.7 1.0 70.0 65.0 580.0
FB-2 2.0 2.0 0.6 0.7 27.0 17.0 350.0

LDS-4 7.0 7.2 1.3 2.0 160.0 140.0 1350.0
FB-4 3.6 3.6 1.2 1.3 60.0 35.0 790.0

Table 3.2: Prediction accuracy and timing results for greedy search comparing sparse and com-
plete search spaces.

43

Table 3.2c) across the board. Second, the results of training (via DAGGER) and testing on sparse

search spaces are better than the results of training on complete search spaces and testing on

sparse search spaces (see Table 3.2b). This agrees with the intuition that training on the search

space used for testing should be superior to training on a different search space. Third, the

results of LDS-4 and FB-4 with DAGGER are significantly better than the results obtained by

training and testing on complete search spaces (see Table 3.2a). This indicates that training on

sparse search spaces via DAgger is very effective and gives us speed improvement with no loss

in accuracy and sometimes improves accuracy compared to the complete spaces.

Inference Time and Anytime Performance. Table 3.2e shows the timing results (avg. time

per greedy search step in secs.) of our approach during testing using sparse (LDS-k and FB-

k) and complete search spaces (LDS and FB). As we can see, we get speed improvement by

a factor of ten (roughly) with sparse search spaces. Note that the speedup will generally be

larger for problems with larger numbers of labels L, since the number of successors decreases

from T · (L − 1) to T · k. We would like to point out that sparse search spaces will also

improve the training time of our approach (fewer ranking examples in step 11 of Algorithm

2), and can be advantageous13 compared to standard approaches including CRFs and SVM-

Struct. Further, we compare the anytime curves of configurations of our approach with sparse

and complete search spaces, which show the accuracy achieved by a method versus an inference

time bound at prediction time. Figure 3.7 shows the anytime curves for all the problems except

stress prediction, where there is hardly any difference due to the small label set size (5 labels).

Note that all these results are for training with DAgger.

From the anytime curves, it is clear that the configurations with sparse search spaces have a

much better anytime profile compared to the ones with complete search spaces. LDS-2 and FB-2

reach the respective accuracies of LDS and FB very quickly in all the cases except for POS and

Scene labeling, where there is a small loss in accuracy. However, LDS-4 and FB-4 recover the

accuracy losses in those two cases. These results demonstrate that sparse search spaces would

be highly effective in those situations, where there is a need to make anytime predictions.

Comparing the anytime curves of LDS and FB, we can see that LDS is comparable or better

than FB in all cases other than Chunking and POS.14 This is especially true for the handwriting

recognition and scene labeling problems. In the anytime curves for scene labeling task, we can

see that LDS is dominant and improves accuracy much more quickly than FB. For example,
13It is hard to do a fair comparison of wall clock times due to differences in implementations.
14The experimental setup only differs in the search space (LDS or FB) employed during training and testing.

44

Figure 3.7: Anytime curves for greedy search comparing sparse and complete search spaces.

45

a 10 second time bound for LDS achieves the same accuracy as FB using 70 seconds. This

shows the benefit of using the LDS space. In the case of Chunking and POS, there is almost

no difference between the accuracy of the recurrent classifier and exact imitation accuracy (see

Table 3.1a), so LDS does not provide any extra benefit over FB. Recall that there is significant

additional overhead for successor generation for LDS compared to flipbit. To generate each

successor, LDS must evaluate the recurrent classifier at sequence positions after discrepancies

are introduced. On the other hand, the flipbit space need not evaluate the recurrent classifier

during successor generation, but only uses the recurrent classifier to generate the initial state.

In Chunking and POS, the additional overhead of the LDS search does not payoff in improved

accuracy and the anytime curve of flipbit is accordingly better. All these findings are true for the

sparser versions of LDS and FB as well.

3.5 Summary

We studied a general approach for structured prediction based on search in the space of complete

outputs. We showed how powerful classifiers can be leveraged to define an effective search space

over complete outputs called limited discrepancy search (LDS) space, and gave a generic cost

function learning approach to score the outputs for any given combination of search space and

search strategy. Our experimental results showed that a very small amount of search in the LDS

space is needed to improve upon the state-of-the-art performance, validating the effectiveness of

our framework. We also addressed some of the scalability issues via a simple pruning strategy

that creates sparse search spaces that are more efficient to search in.

46

Chapter 4:HC-Search Framework

In this chapter, we study a new framework for structured prediction called HC-Search that

closely follows the traditional search literature. The key idea is to learn distinct functions for

each of the above roles: 1) a heuristic functionH to guide the search and generate a set of high-

quality candidate outputs, and 2) a cost function C to score the outputs generated by the heuristic

H. Given a structured input, predictions are made by using H to guide a search strategy (e.g.,

greedy search or beam search) until a time bound to generate a set of candidate outputs and then

returning the generated output of least cost according to C.

While existing output space search approaches have achieved state-of-the-art performance on

a number of benchmark problems (see Chapter 3 and (Wick et al., 2011)), a primary contribution

of this chapter is to highlight a fundamental deficiency that they share. In particular, prior work

uses a single cost function to serve the dual roles of both: 1) guiding the search toward good

outputs, and 2) scoring the generated outputs in order to select the best one. Serving these dual

roles often means that the cost function needs to make unclear tradeoffs, increasing the difficulty

of learning. Indeed, in the traditional AI search literature, these roles are typically served by

different functions, mainly a heuristic function for guiding search, and a cost/evaluation function

(often part of the problem definition) for selecting the final output.

While the move to HC-Search might appear to be relatively small, there are significant im-

plications in terms of both theory and practice. First, the regret of the HC-Search approach can

be decomposed into the loss due to H not leading to high quality outputs, and the loss due to

C not selecting the best among the generated outputs. This decomposition helps us target our

training to minimize each of these losses individually in a greedy stage-wise manner. Second,

as we will show, the performance of the approaches with a single function can be arbitrarily bad

when compared to that of HC-Search in the worst case. Finally, we show that in practice HC-

Search performs significantly better than the single cost function search and other state-of-the-art

approaches to structured prediction.

The effectiveness of theHC-Search approach for a particular problem depends critically on:

1) the quality of the search space over complete outputs being used, where quality is defined as

the expected depth at which target outputs (zero loss outputs) can be located, 2) our ability to

47

learn a heuristic function for effectively guiding the search to generate high-quality candidate

outputs, and 3) the accuracy of the learned cost function in selecting the best output among the

candidate outputs generated by the heuristic function. In this work, we assume the availability

of an efficient search space over complete outputs and provide an effective training regime for

learning both heuristic function and cost function within theHC-Search framework.

Summary of Contributions. The main contributions of our work are as follows: 1) We intro-

duce theHC-Search framework, where two different functions are learned to serve the purposes

of search heuristic and cost function as in the search literature; 2) We analyze the representa-

tional power and computational complexity of learning within the HC-Search framework; 3)

We identify a novel decomposition of the overall regret of the HC-Search approach in terms

of generation loss, the loss due to heuristic not generating high-quality candidate outputs, and

selection loss, the loss due to cost function not selecting the best among the generated outputs;

4) Guided by the decomposition, we propose a stage-wise approach to learning the heuristic and

cost functions based on imitation learning; 5) We empirically evaluate the HC-Search approach

on a number of benchmarks, comparing it to state-of-the-art methods and analyzing different

dimensions of the framework.

The remainder of the chapter proceeds as follows. In Section 4.1, we introduce our problem

setup, give a high-level overview of our framework, and analyze the complexity of HC-Search

learning problem. We describe our approaches to heuristic and cost function learning in Sec-

tion 4.2. Section 4.3 presents our experimental results followed by an engineering methodology

for applying our framework to new problems in Section 4.4. Finally, Section 4.5 provides a

summary of what we learned from this work.

4.1 HC-Search Framework

In this section, we first state the formal problem setup and then describe the specifics of the

search spaces and search strategies that we will investigate in this work. Next, we give a high-

level overview of ourHC-Search framework along with its learning objective.

4.1.1 Problem Setup

Recall that a structured prediction problem specifies a space of structured inputs X , a space

of structured outputs Y , and a non-negative loss function L : X × Y × Y 7→ <+ such that

48

L(x, y′, y∗) is the loss associated with labeling a particular input x by output y′ when the true

output is y∗. We are provided with a training set of input-output pairs {(x, y∗)} drawn from an

unknown target distribution D. The goal is to return a function/predictor from structured inputs

to outputs whose predicted outputs have low expected loss with respect to the distribution D.

Since our algorithms will be learning heuristic and cost functions over input-output pairs, as is

standard in structured prediction, we assume the availability of a feature function Φ : X × Y 7→
<n that computes an n dimensional feature vector for any pair. Importantly, we can employ

two different feature functions ΦH and ΦC for heuristic and cost function noting that they are

serving two different roles: the heuristic is making local decisions to guide the search towards

high-quality outputs and the cost function is making global decisions by scoring the candidate

outputs generated by the heuristic in this framework.

4.1.2 Search Spaces and Search Strategies

Search Spaces. Our approach is based on search in a space So of complete outputs, which we

assume to be given. Every state in a search space over complete outputs consists of an input-

output pair (x, y), representing the possibility of predicting y as the output for structured input x.

Such a search space is defined in terms of two functions: 1) An initial state function I such that

I(x) returns an initial state for input x, and 2) a successor function S such that for any search

state (x, y), S((x, y)) returns a set of next states {(x, y1), · · · , (x, yk)} that share the same input

x as the parent. For example, in a sequence labeling problem, such as part-of-speech tagging,

(x, y) is a sequence of words and corresponding part-of-speech (POS) labels. The successors

of (x, y) might correspond to all ways of changing one of the output labels in y, the so-called

“flipbit” space. Figure 3.3 provides an illustration of the flipbit search space for the handwriting

recognition task.

Search Space Quality. The effectiveness of our HC-Search framework depends on the

quality of the search space that is used. Recall that we can quantify the quality of a search space,

independently of the specific search strategy, by considering the expected depth of target outputs

y∗. Clearly according to this definition, the expected target depth of the flipbit space is equal to

the expected number of errors in the output corresponding to the initial state.

A variety of search spaces, such as the simple flipbit space, the Limited Discrepancy Search

(LDS) space, and those defined based on hand-designed proposal distributions (Wick et al.,

2011) have been used in past research. While our work applies to any such space, we will focus

49

on the LDS space in our experiments, which has been shown to effectively uncover high-quality

outputs at relatively shallow search depths (see Chapter 3).

The LDS space is defined in terms of a recurrent classifier h which uses the next input token,

e.g. word, and output tokens in a small preceding window, e.g. POS labels, to predict the next

output token. The initial state of the LDS space consists of the input x paired with the output of

the recurrent classifier h on x. One problem with recurrent classifiers is that when a recurrent

classifier makes a mistake, its effects get propagated to down-stream tokens. The LDS space is

designed to prevent this error propagation by immediately correcting the mistakes made before

continuing with the recurrent classifier. Since we do not know where the mistakes are made

and how to correct them, all possible corrections, called discrepancies, are considered. Hence

the successors of any state (x, y) in the LDS space consist of the results of running the recurrent

classifier after changing exactly one more label, i.e., introducing a single new discrepancy, some-

where in the current output sequence y while preserving all previously introduced discrepancies.

In previous work, the LDS space has been shown to be effective in uncovering high-quality out-

puts at relatively shallow search depths, as one would expect with a good recurrent classifier (see

Chapter 3).

Search Strategies. Recall that in ourHC-Search framework, the role of the search procedure is

to uncover high-quality outputs. We can consider both uninformed and informed search strate-

gies. However, uninformed search procedures like depth bounded breadth-first search will only

be practical when high-quality outputs exist at small depths and even when they are feasible,

they are not a good choice because they don’t use the search time bound in an intelligent way to

make predictions. For most structured prediction problems, informed search strategies that take

heuristic functions into account, such as greedy search or best-first search are a better choice,

noting that their effectiveness depends on the quality of the search heuristic H. Prior work

(Chapter 3 and (Wick et al., 2011)) has shown that greedy search (hill climbing based on the

heuristic value) works quite well for a number of structured prediction tasks when used with

an effective search space. Thus, in this work, we focus our empirical work on the HC-Search

framework using greedy search, though the approach applies more widely.

4.1.3 HC-Search Approach

Our approach is parameterized by a search space over complete outputs So (e.g., LDS space), a

heuristic search strategy A (e.g., greedy search), a learned heuristic function H : X × Y 7→ <,

50

and a learned cost function C : X × Y 7→ <. Given an input x and a prediction time bound

τ , HC-Search makes predictions as follows. It traverses the search space starting at I(x) using

the search procedure A guided by the heuristic function H until the time bound is exceeded.

Then the cost function C is applied to return the least-cost output ŷ that is generated during the

search as the prediction for input x. Figure 4.1 gives a high-level overview of our HC-Search

framework.

More formally, let YH(x) be the set of candidate outputs generated using heuristic H for a

given input x. The output returned by HC-Search is ŷ the least cost output in this set according

to C, i.e.,

ŷ = arg miny∈YH(x) C(x, y)

The expected loss of the HC-Search approach E(H, C) for a given heuristic H and C can be

defined as

E (H, C) = E(x,y∗)∼D L (x, ŷ, y∗) (4.1)

Our goal is to learn a heuristic function H∗ and corresponding cost function C∗ that minimize

the expected loss from their respective spaces H and C, i.e.,

(H∗, C∗) = arg min(H,C)∈H×C E (H, C) (4.2)

In contrast to our framework, existing approaches for output space search (Doppa et al.,

2012; Wick et al., 2011) use a single function (say C) to serve the dual purpose of heuristic

and cost function. This raises the question of whether HC-Search, which uses two different

functions, is strictly more powerful in terms of its achievable losses. The following proposition

shows that the expected loss of HC-Search can be arbitrarily smaller than when restricting to

using a single function C.

Proposition 2. Let H and C be functions from the same function space. Then for all learning

problems, minC E(C, C) ≥ min(H,C) E(H, C). Moreover there exist learning problems for which

minC E(C, C) is arbitrarily larger (i.e. worse) than min(H,C) E(H, C) even when using the same

feature space.

Proof. The first part of the proposition follows from the fact that the first minimization is over a

subset of the choices considered by the second.

51

Figure 4.1: A high level overview of ourHC-Search framework. Given a structured input x and a
search space definition So, we first instantiate a search space over complete outputs. Each search
node in this space consists of a complete input-output pair. Next, we run a search procedure A
(e.g., greedy search) guided by the heuristic function H for a time bound τ . The highlighted
nodes correspond to the search trajectory traversed by the search procedure, in this case greedy
search. The scores on the nodes correspond to cost values, which are different from heuristic
scores (not shown in the figure). We return the least cost output ŷ that is uncovered during the
search as the prediction for input x.

52

Figure 4.2: An example that illustrates that C-Search can suffer arbitrarily large loss compared
toHC-Search.

To see the second part, consider a problem with a single training instance with search space

shown in Figure 3. The search procedure will be greedy search that is either guided by H for

HC-Search, or by C when only one function is used. L(n) and Φ(n) represents the true loss and

the feature vector of node n respectively. The cost and heuristic functions are linear functions of

Φ(n). Node 7 corresponds to the lowest-loss output and greedy search must follow the trajectory

of highlighted nodes in order to reach that output. First considerHC-Search. For the highlighted

path to be followed the heuristic H needs to satisfy the following constraints: H(3)<H(2),

H(7)<H(6), and the weights wH = [−1, 1, 1] result in a heuristic that satisfies the constraints.

Given this heuristic function, in order to return node 7 as the final output, the cost function

must satisfy the following constraints: C(7)<C(1), C(7)<C(2), C(7)<C(3), C(7)<C(6), and the

weights wC = [−1,−1, 0] solve the problem. Thus we see thatHC-Search can achieve zero loss

on this problem.

Now consider the case where a single function C is used for the heuristic and cost func-

tion. Here in order to generate a loss of zero, the function C must satisfy the combined set of

constraints from above that were placed on the heuristic and cost function. However, it can be

verified that there is no set of weights that satisfies both C(3)<C(2) and C(7)<C(1), and hence,

there is no single function C in our space that can achieve a loss of zero. By scaling the losses

by constant factors we can make the loss suffered arbitrarily high.

53

Thus, we see that there can be potential representational advantages to following the HC-

Search framework. In what follows, we consider the implications of this added expressiveness

in terms of the worst-case time complexity of learning.

4.1.4 Learning Complexity

We now consider the feasibility of efficient, optimal learning in the simplest setting of greedy

search using linear heuristic and cost functions represented by their weight vectors wH and wC
respectively. In particular, we consider the HC-Search Consistency Problem, where the input is

a training set of structured examples, and we must decide whether or not there exists wH and

wC such that HC-Search using greedy search will achieve zero loss on the training set. We first

note, that this problem can be shown to be NP-Hard by appealing to results on learning for beam

search (Xu et al., 2009). In particular, results there imply that in all but trivial cases, simply

determining whether or not there is a linear heuristic wH that uncovers a zero loss search node

is NP-Hard. Since HC-Search can only return zero loss outputs when the heuristic is able to

uncover them, we see that our problem is also hard.

Here we prove a stronger result that provides more insight into the HC-Search framework.

In particular, we show that even when it is “easy” to learn a heuristic that uncovers all zero loss

outputs, the consistency problem is still hard. This shows, that in the worst case the hardness

of our learning problem is not simply a result of the hardness of discovering good outputs.

Rather our problem is additionally complicated by the potential interaction between H and C.

Intuitively, when learningH in the worst case there can be ambiguity about which of many small

loss outputs to generate, and for only some of those will we be able to find an effective C to return

the best one. This is formalized by the following theorem.

Theorem 2. The HC-Search Consistency Problem for greedy search and linear heuristic and

cost functions is NP-Hard even when we restrict to problems for which all possible heuristic

functions uncover a zero loss output.

Proof. We reduce from the Minimum Disagreement problem for linear binary classifiers, which

was proven to be NP-complete in the work of Hoffgen et al. (1995). In one statement of this

problem we are given as input a set of N , p-dimensional vectors T = {x1, . . . , xN} and a

positive integer k. The problem is to decide whether or not there is a p-dimensional real-valued

weight vector w such that w · xi < 0 for at most k of the vectors.

54

We first sketch the high-level idea of the proof. Given an instance of Minimum Disagree-

ment, we construct an HC-Search consistency problem with only a single structured training

example. The search space corresponding to the training example is designed such that there is

a single node n∗ that has a loss of zero and all other nodes have a loss of 1. Further for all linear

heuristic functions all greedy search paths terminate at n∗, while generating some other set of

nodes/outputs on the path there. The search space is designed such that each possible path from

the initial node to n∗ corresponds to selecting k or fewer vectors from T , which we will denote

by T−. By traversing the path, the set of nodes generated (and hence must be scored by C), say

N , includes feature vectors corresponding to those in T − T− along with the negation of the

feature vectors in T−. We further define n∗ to be assigned the zero vector, so that the cost of that

node is 0 for any weight vector.

In order to achieve zero loss given the path in consideration, there must be a weight vector

wC such that wC · x ≥ 0 for all x ∈ N . By our construction this is equivalent to wC · x < 0

for x ∈ T−. If this is possible then we have found a solution to the Minimum Disagreement

problem since |T−| ≤ k. The remaining details show how to construct this space so that there

is a setting of the heuristic weights that can generate paths corresponding to all possible T− in a

way that all paths end at n∗. For completeness we describe this construction below.

Each search node in the space other than n∗ is a tuple (i,m, t) where 1 ≤ i ≤ N , 0 ≤ m ≤ k,

and t is one of 5 node types from the set {d, s+, s−, x+, x−}. Here i should be viewed as

indexing an example xi ∈ T and m effectively codes how many instances in T have been

selected to be mistakes and hence put in T−. Finally, t encodes the type of the search node with

the following meanings which will become more clear during the construction: d (decision), s+

(positive selection), s− (negative selection), x+ (positive instance), x− (negative instance). The

search space is constructed so that each example xi is considered in order and a choice is made

about whether to count it as a mistake (put it in T−) or not. This choice is made at decision

nodes, which all have the form (i,m, d), indicating that a decision is to be made about example

i and that there have already been m examples selected for T−. Each such decision node with

m < k has two children (i,m, s−) and (i,m, s+), which respectively correspond to selecting xi
to be in the mistake set or not. Later we will show how features are assigned to nodes so as to

allow the heuristic to make any selection desired.

Each selection node has a single node as a child. In particular, a positive selection node

(i,m, s+) has the positive instance node (i,m, x+) as a child, while negative selection nodes

(i,m, s−) has the negative instance node (i,m, x−) as a child. Each such instance node effec-

55

Figure 4.3: An example search space for T = {x1, x2, x3} and k = 1. All greedy paths terminate
at the zero loss node n∗ and no path selects more than one instance to include in the mistake set
T−.

56

tively implements the process of putting xi into T− or not as will become clear when feature

vectors are described below. After arriving at either a positive or negative instance node, the

consideration of xi is complete and we must move on to the decision for the next example xi+1.

Thus, a positive instance node (i,m, x+) has the single child decision node (i+1,m, d), while a

negative instance node has a single child decision node (i+ 1,m+ 1, d), noting that the number

of mistakes is incremented for negative nodes.

The final details of the search space structure ensure that no more than k mistakes are allowed

and force all search paths to terminate at n∗. In particular, for any decision node (i,m, d) with

m = k, we know that no more mistakes are allowed and hence no more decisions should be

allowed. Thus, from any such node we form a path from it to n∗ that goes through positive

instance nodes (i,m, x+), . . . , (N,m, x+), which reflects that none of {xi, . . . , xN} will be in

T−. Figure 4.3 shows an example search space for our construction.

Given the above search space, which has polynomial size (since k ≤ N), one can verify that

for any set of k or fewer instances T− there is a path from the root to n∗ that goes through the

negative instance nodes for instances in T− and positive instance nodes for instances in T −T−.

Further, each possible path goes through either a positive or negative instance node for each

instance and no more than k negative nodes. Thus there is a direct correspondence between

paths and mistake sets T−.

We now describe how to assign features to each node in a way that allows for the heuristic

function to select each path and effectively construct the set T−. For any node u the feature vec-

tor φ(u) = (x, s, b). The component x is an p-dimensional feature vector and will correspond

to one of the xi. The component s is an N -dimensional vector where si ∈ {−1, 1} will imple-

ment the selection of instances. Finally b is a binary value that is equal to 1 for all non-instance

nodes and is 0 for both positive and negative instance nodes. The mapping from nodes to feature

vectors is as follows. Each decision node (i,m, d), is all zeros, except for b = 1. Each positive

selection node (i,m, s+) is all zeros except for si = 1 and b = 1. Negative selection nodes

are similar except that si = −1. For a positive instance node (i,m, x+) the feature vector is

(xi, 0, 0) and for negative instance nodes (i,m, x−) the feature vector is (−xi, 0, 0). Finally the

feature vector for n∗ is all zeros.

The key idea to note is that the heuristic function can effectively select a positive or negative

selection node by setting the weight for si to be positive or negative respectively. In particular,

the set of negative selection nodes visited (and hence negative instance nodes) correspond to

the first k or fewer negative weight values for the s component of the feature vector. Thus, the

57

heuristic can select any set of negative nodes that it wants to go through, but no more than k. On

such a path there will be three types of nodes encountered that the cost function must rank. First,

there will be control nodes (decision and selection nodes) that all have b = 1. Next there will

be positive instance nodes that will have a feature vector (xi, 0, 0) and no more than k negative

instance nodes with feature vectors (−xi, 0, 0). The cost function can easily rank n∗ higher than

the control nodes by setting the weight for b to be negative. Further if it can find heuristic weights

for the x component that allows n∗ to be ranked highest then that is a solution to the original

minimum disagreement problem. Further if there is a solution to the disagreement problem it is

easy to see that there will also be a solution to the HC-Search consistency problem by selecting

a heuristic that spans the proper set T−.

4.2 Learning Approach

The above complexity result suggests that, in general, learning the optimal (H∗, C∗) pair is

impractical due to their potential interdependence. In this section, we develop a stage-wise

learning approach that first learns H and then a corresponding C. The approach is motivated by

observing a decomposition of the expected loss into components due toH and C. Below, we first

describe the decomposition and the staged learning approach that it motivates. Next we describe

our approaches for learning the heuristic and cost functions.

4.2.1 Loss Decomposition and Staged Learning

For any heuristic H and cost function C, the expected loss E (H, C) can be decomposed into

two parts: 1) the generation loss εH, due to H not generating high-quality outputs, and 2) the

selection loss εC|H, the additional loss (conditional on H) due to C not selecting the best loss

output generated by the heuristic. Formally, let y∗H be the best loss output in the set YH(x), i.e.,

y∗H = arg miny∈YH(x) L(x, y, y∗)

58

We can express the decomposition as follows:

E (H, C) = E(x,y∗)∼D L (x, y∗H, y
∗)︸ ︷︷ ︸

εH

+ E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗H, y
∗)︸ ︷︷ ︸

εC|H

(4.3)

Note that given labeled data, it is straightforward to estimate both the generation and selection

loss, which is useful for diagnosing the HC-Search framework. For example, if one observes

that a system has high generation loss, then there will be little payoff in working to improve the

cost function. In our empirical evaluation we will further illustrate how the decomposition is

useful for understanding the results of learning.

In addition to being useful for diagnosis, the decomposition motivates a learning approach

that targets minimizing each of the errors separately. In particular, we optimize the overall error

of the HC-Search approach in a greedy stage-wise manner. We first train a heuristic Ĥ in order

to optimize the generation loss component εH and then train a cost function Ĉ to optimize the

selection loss εC|Ĥ conditioned on Ĥ.

Ĥ ≈ arg minH∈H εH

Ĉ ≈ arg minC∈C εC|Ĥ

Note that this approach is decoupled in the sense that Ĥ is learned without considering the

implications for learning Ĉ. While the proof of Theorem 2 hinges on this coupling, we have

found that in practice, learning Ĥ independently of Ĉ is a very effective strategy.

In what follows, we first describe a generic approach for heuristic function learning that is

applicable for a wide range of search spaces and search strategies, and then explain our cost

function learning algorithm.

4.2.2 Heuristic Function Learning

Most generally, learning a heuristic can be viewed as a Reinforcement Learning (RL) problem

where the heuristic is viewed as a policy for guiding “search actions” and rewards are received

for uncovering high quality outputs (Zhang and Dietterich, 1995). In fact, this approach has

been explored for structured prediction in the case of greedy search (Wick et al., 2009) and was

shown to be effective given a carefully designed reward function and action space. While this

59

is a viable approach, general purpose RL can be quite sensitive to the algorithm parameters and

specific definition of the reward function and actions, which can make designing an effective

learner quite challenging. Indeed, recent work (Jiang et al., 2012), has shown that generic RL

algorithms can struggle for some structured prediction problems, even with significant effort put

forth by the designer. Hence, in this work, we follow an approach based on imitation learning,

that makes stronger assumptions, but has nevertheless been very effective and easy to apply

across a variety of problems.

Our heuristic learning approach is based on the observation that for many structured pre-

diction problems, we can quickly generate very high-quality outputs by guiding the search pro-

cedure using the true loss function L as a heuristic. Obviously this can only be done for the

training data for which we know y∗. This suggests formulating the heuristic learning problem

in the framework of imitation learning by attempting to learn a heuristic that mimics the search

decisions made by the true loss function on training examples. The learned heuristic need not

approximate the true loss function uniformly over the output space, but need only make the

distinctions that were important for guiding the search. The main assumptions made by this

approach are: 1) the true loss function can provide effective heuristic guidance to the search

procedure, so that it is worth imitating, and 2) we can learn to imitate those search decisions

sufficiently well.

This imitation learning approach is similar to learning single cost functions for output-space

search discussed in the previous chapter. However, a key distinction here is that learning is

focused on only making distinctions necessary for uncovering good outputs (the purpose of the

heuristic) and hence requires a different formulation. As in prior work, in order to avoid the

need to approximate the loss function arbitrarily closely, we restrict ourselves to “rank-based”

search strategies. A search strategy is called rank-based if it makes all its search decisions by

comparing the relative values of the search nodes (their ranks) assigned by the heuristic, rather

than being sensitive to absolute values of heuristic. Most common search procedures such as

greedy search, beam search, and best-first search fall under this category.

60

Algorithm 3 Heuristic Function Learning via Exact Imitation
Input: D = Training examples, (I, S) = Search space definition, L = Loss function, A =

Rank-based search procedure, τmax = search time bound

Output: H, the heuristic function

1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s0 = I(x) // initial state of the search tree

4: M0 = {s0} // set of open nodes in the internal memory of the search procedure

5: for each search step t = 1 to τmax do
6: Select the state(s) to expand: Nt =Select(A, L,Mt−1)

7: Expand every state s ∈ Nt using the successor function S: Ct =Expand(Nt, S)

8: Prune states and update the internal memory state of the search procedure:

Mt =Prune(A, L,Mt−1 ∪ Ct \Nt)

9: Generate ranking examples Rt to imitate this search step

10: Add ranking examples Rt toR: R = R∪Rt // aggregation of training data

11: end for
12: end for
13: H =Rank-Learner(R) // learn heuristic function from all the ranking examples

14: return learned heuristic functionH

Imitating Search Behavior. Given a search space over complete outputs S, a rank-based search

procedureA, and a search time bound τ , our learning procedure generates imitation training data

for each training example (x, y∗) as follows. We run the search procedure A for a time bound

of τ for input x using a heuristic equal to the true loss function, i.e. H(x, y) = L(x, y, y∗).

During the search process we observe all of the pairwise ranking decisions made byA using this

oracle heuristic and record those that are sufficient (see below) for replicating the search. If the

state (x, y1) has smaller loss than (x, y2), then a ranking example is generated in the form of the

constraint H(x, y1)<H(x, y2). Ties are broken using a fixed arbitrator1. The aggregate set of

ranking examples collected over all the training examples is then given to a learning algorithm

to learn the weights of the heuristic function.

If we can learn a function H from hypothesis space H that is consistent with these ranking
1For the LDS Space that we employed in this work, we implemented an arbitrator which breaks the ties based on

the position of the discrepancy (prefers earlier discrepancies).

61

examples, then the learned heuristic is guaranteed to replicate the oracle-guided search on the

training data. Further, given assumptions on the base learning algorithm (e.g. PAC), generic

imitation learning results can be used to give generalization guarantees on the performance of

search on new examples (Khardon, 1999; Fern et al., 2006; Syed and Schapire, 2010; Ross and

Bagnell, 2010). Our experiments show, that the simple approach described above, performs

extremely well on our problems.

Algorithm 3 describes our approach for heuristic function learning via exact imitation of

search guided by the loss function. It is applicable to a wide-range of search spaces, search

procedures and loss functions. The learning algorithm takes as input: 1) D = {(x, y∗)}, a

set of training examples for a structured prediction problem (e.g., handwriting recognition); 2)

So = (I, S), a search space over complete outputs (e.g., LDS space), where I is the initial state

function and S is the successor function; 3) L, a task loss function defined over complete outputs

(e.g., hamming loss); 4) A, a rank-based search procedure (e.g., greedy search); and 5) τmax,

the search time bound (e.g., number of search steps).

The algorithmic description of Algorithm 3 assumes that the search procedure A can be

described in terms of three steps that are executed repeatedly on an open list of search nodes:

1) selection, 2) expansion and 3) pruning. In each execution, the search procedure selects one

or more open nodes from its internal memory for expansion (step 6) based on heuristic value,

and expands all the selected nodes to generate the candidate set (step 7). It retains only a subset

of all the open nodes after expansion in its internal memory and prunes away all the remaining

ones (step 8) again based on heuristic value. For example, greedy search maintains only the best

node, best-first beam search retains only the best b nodes for a fixed beam-width b, and pure best

first search does not do any pruning.

Algorithm 3 loops through each training example and collects a set of ranking constraints.

Specifically, for example (x, y∗), the search procedure is run for a time bound of τmax using

the true loss function L as the heuristic (steps 2-12). During each search step a set of pairwise

ranking examples is generated that are sufficient for allowing the search step to be imitated (step

9) as described in more detail below. After all such constraints are aggregated across all search

steps of all training examples, they are given to a rank-learning algorithm (e.g., Perceptron or

SVM-Rank) to learn the weights of the heuristic function (step 13).

The most important step in our heuristic function learning algorithm is the generation of

ranking examples to imitate each step of the search procedure (step 9). In what follows, we will

give a generic description of “sufficient” pairwise decisions to imitate the search, and illustrate

62

Figure 4.4: An example search tree that illustrates greedy search with loss function. Each node
represents a complete input-output pair and can be evaluated using the loss function. The high-
lighted nodes correspond to the trajectory of greedy search guided by the loss function.

them for greedy search through a simple example.

Sufficient Pairwise Decisions. Above we noted that we only need to collect and learn to imitate

the “sufficient” pairwise decisions encountered during search. We say that a set of constraints is

sufficient for a structured training example (x, y∗), if any heuristic function that is consistent with

the constraints causes the search to follow the same trajectory of open lists encountered during

search. The precise specification of these constraints depends on the actual search procedure that

is being used. For rank-based search procedures, the sufficient constraints can be categorized into

two types:

1. Selection constraints, which ensure that the search node(s) from the internal memory state

that will be expanded in the next search step is (are) ranked better than all other nodes.

2. Pruning constraints, which ensure that the internal memory state (set of search nodes) of

the search procedure is preserved at every search step. More specifically, these constraints

involve ranking every search node in the internal memory state better (lowerH-value) than

those that are pruned.

Below, we will illustrate these constraints concretely for greedy search noting that similar

formulations for other rank-based search procedures are straightforward (See previous chapter

63

for beam search formulation).

Constraints for Greedy Search. This is the most basic rank-based search procedure. For

a given input x, it traverses the search space by selecting the next state as the successor of the

current state that looks best according to the heuristic functionH. In particular, if si is the search

state at step i, greedy search selects si+1 = argmins∈S(si)H(s), where s0 = I(x). In greedy

search, the internal memory state of the search procedure at step i consists of only the best open

(unexpanded) node si.

Let (x, yi) correspond to the input-output pair associated with state si. Since greedy search

maintains only a single open node si in its internal memory at every search step i, there are no

selection constraints. Let Ci+1 be the candidate set after expanding state si, i.e., Ci+1 = S(si).

Let si+1 be the best node in the candidate set Ci+1 as evaluated by the loss function, i.e., si+1 =

argmins∈Ci+1
L(s). As greedy search prunes all the nodes in the candidate set other than si+1,

pruning constraints need to ensure that si+1 is ranked better than all the other nodes in Ci+1.

Therefore, we include one ranking constraint for every node (x, y) ∈ Ci+1 \ (x, yi+1) such that

H(x, yi+1) < H(x, y).

We will now illustrate these ranking constraints through an example. Figure 4.4 shows an

example search tree of depth two with associated losses for every search node. The highlighted

nodes correspond to the trajectory of greedy search with loss function that our learner has to

imitate. At the first search step, {H(3) < H(2),H(3) < H(4)} are the pruning constraints.

Similarly, {H(10) < H(8),H(10) < H(9)} form the pruning constraints at the second search

step. Therefore, the aggregate set of constraints needed to imitate the greedy search behavior

shown in Figure 4.4 are:

{H(3) < H(2),H(3) < H(4),H(10) < H(8),H(10) < H(9)}.

4.2.3 Cost Function Learning

Given a learned heuristicH, we now want to learn a cost function that correctly ranks the poten-

tial outputs generated by the search procedure guided byH. More formally, let YH(x) be the set

of candidate outputs generated by the search procedure guided by heuristic H for a given input

x, and lbest be the loss of the best output among those outputs as evaluated by the true loss func-

tion L, i.e., lbest = miny∈YH(x) L(x, y, y∗). In an exact learning scenario, the goal is to find the

parameters of a cost function C such that for every training example (x, y∗), the loss of the min-

imum cost output ŷ equals lbest, i.e., L(x, ŷ, y∗) = lbest, where ŷ = argminy∈YH(x) C(x, y).

64

In practice, when exact learning isn’t possible, the goal is to find a cost function such that the

average loss over the training data of the predicted output using the cost function is minimized.

We formulate the cost function training problem as an instance of rank learning problem

(Agarwal and Roth, 2005). More specifically, we want all the best loss outputs in YH(x) to be

ranked better than all the non-best loss outputs according to our cost function, which is a bi-

partite ranking problem. Let Ybest be the set of all best loss outputs from YH(x), i.e., Ybest =

{y ∈ YH(x)|L(x, y, y∗) = lbest}. We generate one ranking example for every pair of outputs

(ybest, y) ∈ Ybest × YH(x) \ Ybest, requiring that C(x, ybest)<C(x, y). If the search procedure

was able to generate the target output y∗ (i.e., lbest = 0), this is similar to the standard learning in

CRFs and SVM-Struct, but results in a much simpler rank-learning problem (cost function needs

to rank the correct output above only the incorrect outputs generated during search). When the set

of best loss outputs Ybest is very large, bi-partite ranking may result in a highly over-constrained

problem. In such cases, one could relax the problem by attempting to learn a cost function that

ranks at least one output in Ybest higher than all the non-best loss outputs. This can be easily

implemented in an online-learning framework as follows. If there is an error (i.e., the best cost

output according to the current weights ŷ /∈ Ybest), the weights are updated to ensure that the best

cost output ŷbest ∈ Ybest according to the current weights is ranked better than all the outputs in

YH(x) \ Ybest.
It is important to note that both in theory and practice, the distribution of outputs generated

by the learned heuristic H on the testing data may be slightly different from the one on training

data. Thus, if we train C on the training examples used to train H, then C is not necessarily

optimized for the test distribution. To mitigate this effect, we train our cost function via cross

validation (see Algorithm 4) by training the cost function on the data, which was not used to

train the heuristic. This training methodology is commonly used in Re-ranking style algorithms

(Collins, 2000) among others.

65

Algorithm 4 Cost Function Learning via Cross Validation
Input: D = Training examples, So = Search space definition, L = Loss function, A = Search

procedure, τmax = search time bound

Output: C, the cost function

1: Divide the training set D into k folds D1,D2, · · · ,Dk
2: // Learn k different heuristicsH1, · · · ,Hk
3: for i = 1 to k do
4: Ti = ∪j 6=i Dj // training data for heuristicHi
5: Hi = Learn-Heuristic(Ti,So, L,A, τmax) // heuristic learning via Algorithm 3

6: end for
7: // Generate ranking examples for cost function training

8: Intialize the set of ranking examplesR = ∅
9: for i = 1 to k do

10: for each training example (x, y∗) ∈ Di do
11: Generate outputs by running the search procedure A with heuristic Hi for time bound

τmax: YHi(x) = Generate-Outputs(x,So,A,Hi, τmax)

12: Compute the set of best loss outputs: Ybest = {y ∈ YHi(x)|L(x, y, y∗) = lbest}, where

lbest = miny∈YHi
(x) L(x, y, y∗)

13: for each pair of outputs (ybest, y) ∈ Ybest × YHi(x) \ Ybest do
14: Add ranking example C(x, ybest) < C(x, y) toR
15: end for
16: end for
17: end for
18: // Train cost function on all the ranking examples

19: C = Rank-Learner(R)

20: return learned cost function C

Algorithm 4 describes our approach for cost function training via cross validation. There

are four main steps in the algorithm. First, we divide the training data D into k folds. Second,

we learn k different heuristics, where each heuristic Hi is learned using the data from all the

folds excluding the ith fold (Steps 3-6). Third, we generate ranking examples for cost function

learning as described above using each heuristic Hi on the data it was not trained on (Steps 9-

17). Finally, we give the aggregate set of ranking examplesR to a rank learner (e.g., Perceptron,

66

SVM-Rank) to learn the cost function C (Step 19).

4.2.4 Rank Learner

In this section, we describe the specifics of the rank learner that can be used to learn both the

heuristic and cost functions from the aggregate sets of ranking examples produced by the above

algorithms. We can use any off-the-shelf rank-learning algorithm (e.g., Perceptron, SVM-Rank)

as our base learner to train the heuristic function from the set of ranking examples R. In our

specific implementation we employed the online Passive-Aggressive (PA) algorithm (Crammer

et al., 2006) as our base learner. Training was conducted for 50 iterations in all of our experi-

ments.

PA is an online large-margin algorithm, which makes several passes over the training exam-

plesR, and updates the weights whenever it encounters a ranking error. Recall that each ranking

example is of the form H(x, y1) < H(x, y2) for heuristic training and C(x, y1) < C(x, y2) for

cost function training, where x is a structured input with target output y∗, y1 and y2 are potential

outputs for x such that L(x, y1, y
∗) < L(x, y2, y

∗). Let ∆>0 be the difference between the

losses of the two outputs involved in a ranking example. We experimented with PA variants that

use margin scaling (margin scaled by ∆) and slack scaling (errors weighted by ∆) (Tsochan-

taridis et al., 2005). Since margin scaling performed slightly better than slack scaling, we report

the results of the PA variant that employs margin scaling. Below we give the full details of the

margin scaling update.

Let wt be the current weights of the linear ranking function. If there is a ranking error when

cycling through the training data, i.e., wt ·Φ(x, y2)−wt ·Φ(x, y1) <
√

∆, the new weights wt+1

that correct the error can be obtained using the following equation.

wt+1 = wt + τt(Φ(x, y2)− Φ(x, y1))

where the learning rate τt is given by

τt =
wt · Φ(x, y1)− wt · Φ(x, y2) +

√
∆

‖Φ(x, y2)− Φ(x, y1)‖2

This specific update has been previously used for cost-sensitive multiclass classification (Cram-

mer et al., 2006) (See Equation 51) and for structured output problems (Keshet et al., 2005) (See

67

Equation 7) in addition to the C-Search framework of the previous chapter.

4.3 Experiments and Results

In this section we empirically investigate our HC-Search approach and compare it against the

state-of-the-art in structured prediction.

4.3.1 Datasets

We evaluate our approach on the following four structured prediction problems including three

benchmark sequence labeling problems and a 2D image labeling problem (same as the ones used

in Chapter 3). We did not experiment with Chunking and POS tagging problems because there

is hardly any room for improvement (see Chapter 3).

• Handwriting Recognition (HW). The input is a sequence of binary-segmented handwrit-

ten letters and the output is the corresponding character sequence [a− z]+.

• NETtalk Stress. This is a text-to-speech mapping problem, where the task is to assign

one of the 5 stress labels to each letter of a word.

• NETtalk Phoneme. This is similar to NETtalk Stress except that the task is to assign one

of the 51 phoneme labels to each letter of the word.

• Scene labeling. This data set contains 700 images of outdoor scenes (Vogel and Schiele,

2007). Each image is divided into patches by placing a regular grid of size 10 × 10 over

the entire image, where each patch takes one of the 9 semantic labels (sky, water, grass,

trunks, foliage, field, rocks, flowers, sand).

4.3.2 Experimental Setup

For our HC-Search experiments, we use the Limited Discrepancy Space (LDS) exactly as de-

scribed in the previous chapter as our search space over structured outputs. Prior work with

C-Search has shown that greedy search works quite well for most structured prediction tasks,

particularly when using the LDS space (see Chapter 3). Hence, we consider only greedy search

in our experiments. We would like to point out that experiments (not shown) using beam search

68

and best first search produce similar results. During training and testing we set the search time

bound τ to be 25 search steps for all domains except for scene labeling, which has a much larger

search space and uses τ = 150. We found that using values of τ larger than these did not produce

noticeable improvement. For extremely small values of τ , performance tends to be worse, but

it increases quickly as τ is made larger. We will also show results for the full spectrum of time

bounds later. For all domains, we learn linear heuristic and cost functions over second order fea-

tures unless otherwise noted. In this case, the feature vector measures features over neighboring

label pairs and triples along with features of the structured input (ΦH and ΦC are same). We

measure error with Hamming loss unless otherwise noted.

4.3.3 Comparison to State-of-the-Art

We compare the results of ourHC-Search approach with other structured prediction algorithms

including CRFs (Lafferty et al., 2001), SVM-Struct (Tsochantaridis et al., 2004), Searn (Hal

Daumé III et al., 2009), Cascades (Weiss and Taskar, 2010) and C-Search, which is identical

to HC-Search except that it uses a single-function for output space search (see Chapter 3). We

also show the performance of Recurrent, which is a simple recurrent classifier trained exactly

as in the previous chapter. The top section of Table 4.1 shows the error rates of the different

algorithms. For scene labeling it was not possible to run CRFs, SVM-Struct, and Cascades

due to the complicated grid structure of the outputs (hence the ’-’ in the table). We report

the best published results of CRFs, SVM-Struct, and Searn. Cascades was trained using the

implementation (Weiss, 2014) provided by the authors, which can be used for sequence labeling

problems with Hamming loss. We would like to point out that the results of cascades differ

from those that appear in the work of Doppa et al. (2013) and are obtained using an updated2

version of cascades training code. Across all benchmarks, we see that results of HC-Search

are comparable or significantly better than the state-of-the-art including C-Search, which uses

a single function as both heuristic function and cost function. The results in the scene labeling

domain are the most significant, improving the error rate from 27.05 to 19.71. These results show

that HC-Search is a state-of-the-art approach across these problems and that learning separate

heuristic and cost functions can significantly improve output-space search.
2Personal communication with the author

69

ALGORITHMS DATASETS

HW-Small HW-Large Stress Phoneme Scene labeling

a. Comparison to state-of-the-art
HC-Search 12.81 03.23 17.58 16.91 19.71
C-Search 17.03 07.16 21.07 20.81 27.05

CRF 19.97 13.11 21.48 21.09 -
SVM-Struct 19.64 12.49 22.01 21.70 -
Recurrent 34.33 25.13 27.18 26.42 43.36

Searn 17.88 09.42 23.85 22.74 37.69
Cascades 13.02 03.22 20.41 17.56 -

b. Results with Third-Order Features
HC-Search 10.04 02.21 16.32 14.29 18.25
C-Search 14.15 04.76 19.36 18.19 25.79
Cascades 10.82 02.16 19.51 17.41 -

Table 4.1: Error rates of different structured prediction algorithms.

4.3.4 Higher-Order Features

One of the advantages of our approach compared to many frameworks for structured prediction

is the ability to use more expressive feature spaces without paying a huge computational price.

The bottom part of Table 4.1b shows results using third-order features (compared to second-

order above) forHC-Search, C-Search and Cascades. Note that it is not practical to run the other

methods using third-order features due to the substantial increase in inference time. The overall

error ofHC-Search with higher-order features slightly improved compared to using second-order

features across all benchmarks and is still better than the error-rates of C-Search and Cascades

with third-order features, with the exception of Cascades on HW-Large. In fact,HC-Search us-

ing only second-order features is still outperforming the third-order results of the other methods

on three out of five domains.

4.3.5 Loss Decomposition Analysis

We now examine HC-Search and C-Search in terms of their loss decomposition (see Equation

4.3) into generation loss εH and selection loss εC|H. Both of these quantities can be easily

70

measured for both HC-Search and C-Search by keeping track of the best loss output generated

by the search (guided either by a heuristic or the cost function for C-Search) across the testing

examples. Table 4.2 shows these results, giving the overall error εHC and its decomposition

across our benchmarks for bothHC-Search and C-Search.

We first see that generation loss εH is very similar for C-Search and HC-Search across the

benchmarks with the exception of scene labeling, where HC-Search generates slightly better

outputs. This shows that at least for the LDS search space the difference in performance between

C-Search and HC-Search cannot be explained by C-Search generating lower quality outputs.

Rather, the difference between the two methods is most reflected by the difference in selection

loss εC|H, meaning that C-Search is not as effective at ranking the outputs generated during search

compared toHC-Search. This result clearly shows the advantage of separating the roles of C and

H and is understandable in light of the training mechanism for C-Search. In that approach, the

cost function is trained to satisfy constraints related to both the generation loss and selection

loss. It turns out that there are many more generation loss constraints, which we hypothesize

biases C-Search toward low generation loss at the expense of selection loss.

These results also show that for both methods the selection loss εC|H contributes significantly

more to the overall error compared to εH. This shows that both approaches are able to uncover

very high-quality outputs, but are unable to correctly rank the generated outputs according to

their losses. This suggests that a first avenue for improving the results of HC-Search would be

to improve the cost function learning component, e.g., by using non-linear cost functions.

4.3.6 Ablation Study

To futher demonstrate that having two separate functions (heuristic and cost function) as inHC-

Search will lead to more accurate predictions compared to using a single function as in C-Search,

we perform some ablation experiments. In this study, we take the learned heuristic function H
and cost function C in the HC-Search framwork, and use only one of them to make predictions.

For example, HH-Search corresponds to the configuration when we use the function H as both

heuristic and cost function. Similarly, CC-Search corresponds to the configuration when we use

the function C as both heuristic and cost function.

Table 4.2b shows the results for these ablation experiments. We can make several interesting

observations from these results. First, the overall error of HC-Search is significantly better

than that of HH-Search and CC-Search. Second, the selection loss for HH-Search increases

71

compared to that of HC-Search. This is understandable because H is not trained to score the

candidate outputs that are generated during search. Third, the generation loss for CC-Search

increases compared to that of HC-Search and this behavior is significant (increases to 11.24

compared to 5.82) for the scene labeling task. All these results provide further evidence for the

importance of separating the training of the heuristic and cost functions, and using appropriate

training data to learn each function.

DATASETS HW-Small HW-Large Stress Phoneme Scene
ERROR εHC εH εC|H εHC εH εC|H εHC εH εC|H εHC εH εC|H εHC εH εC|H

a. HC-Search vs. C-Search
HC-Search 12.8 04.7 08.0 03.2 00.7 02.7 17.5 02.7 14.7 16.9 03.4 13.4 19.7 05.8 13.8
C-Search 17.5 04.9 12.6 07.1 00.9 06.2 21.0 03.0 18.0 20.8 04.1 16.6 27.0 07.8 19.2

b. Results for Ablation study
HH-Search 18.4 04.7 13.7 07.9 00.7 7.2 22.5 02.7 19.7 22.1 03.4 18.7 32.1 07.8 24.3
CC-Search 16.2 05.3 10.9 06.6 01.7 04.9 19.1 03.2 15.8 21.6 04.3 17.3 25.3 11.2 14.0

c. Results with heuristic function training via DAGGER

HC-Search 12.0 03.9 08.1 03.1 00.4 02.6 17.2 02.2 15.0 16.8 03.0 13.8 18.0 03.7 14.3
C-Search 15.1 04.6 09.9 05.1 00.8 03.6 20.3 02.8 17.1 19.0 03.9 14.7 24.2 05.9 18.3

d. Results with Oracle Heuristic
LC-Search
(OracleH) 10.1 00.2 09.9 03.0 00.5 02.5 14.1 00.2 13.9 12.2 00.5 11.7 16.3 00.3 16.0

Table 4.2: HC-Search: Error decomposition of heuristic and cost function.

4.3.7 Results for Heuristic Training via DAGGER

Our heuristic learning approach follows the simplest approach to imitation learning, exact imita-

tion, where the learner attempts to exactly imitate the observed expert trajectories (here imitate

search with the oracle heuristic). While our experiments show that exact imitation performs

quite well, it is known that exact imitation has certain deficiencies in general. In particular, func-

tions trained via exact imitation can be prone to error propagation (Kääriäinen, 2006; Ross and

Bagnell, 2010), where errors made at test time change the distribution of decisions encountered

in the future compared to the training distribution. To address this problem, more sophisticated

imitation learning algorithms have been developed, with a state-of-the-art approach being DAG-

GER (Ross et al., 2011). Here we consider whether DAGGER can improve our heuristic learning

and in turn overall accuarcy.

72

DAGGER is an iterative algorithm, where each iteration adds imitation data to an aggregated

data set. The first iteration follows the exact imitation approach, where data are collected by

observing an expert trajectory (or a number of them). After each iteration an imitation function

(here a heuristic) is learned from the current data. Successive iterations generate trajectories by

following a mixture of expert suggestions (in our case ranking decisions) and suggestions of the

most recently learned imitation function. Each decision point along the trajectory is added to

the aggregate data set by labeling it by the expert decision. In this way, later iterations allow

DAGGER to learn from states visited by its possibly erroneous learned functions and correct its

mistakes using the expert input. Ross et al. (2011) show that during the iterations of DAGGER

just using the learned policy without mixing the expert policy performs very well across diverse

domains. Therefore, we use the same approach in our DAGGER experiments. In our experiments

we run 5 iterations of DAGGER, noting that no noticable improvement was observed after 5

iterations.

Table 4.2c shows the results ofHC-Search and C-Search obtained by training with DAGGER.

ForHC-Search, the generation loss (εH) improved slightly on the sequence labeling problems as

there is little room for improvement, but DAGGER leads to significant improvement in the gen-

eration loss on the more challenging problem of scene labeling. We can also see that the overall

error of HC-Search for scene labeling reduces due to improvement in generation loss showing

that cost function is able to leverage the better outputs produced by the heuristic. Similarly, the

overall error of C-Search also improved with DAGGER across the board and we see most sig-

nificant improvements for handwiriting and scene labeling domains. It is interesting to note that

unlikeHC-Search, the improvement in C-Search is mostly due the improvement in the selection

loss (εC|H) except for scene labeling task, where it is due to the improvement in both generation

loss and selection loss.

These results show that improving the heuristic learning is able to improve overall perfor-

mance. What is not clear is whether further improvement, perhaps due to future advances in im-

itation learning, would yet again lead to overall improvement. That is, while it may be possible

to further improve the generation loss, it is not clear that the cost function will be able to exploit

such improvments. To help evaluate this we ran an experiment where we gave HC-Search the

true loss function to use as a heuristic (an oracle heuristic), i.e., H(x, y) = L(x, y, y∗), during

both training of the cost function and testing. This provides an assessment of how much better

we might be able to do if we could improve heuristic learning. The results in Table 4.2d, which

we label as LC-Search (OracleH) show that when using the oracle heuristic, εH is negligible as

73

we might expect and smaller than observed for HC-Search in 4.2c. This shows that it may be

possible to further improve our heuristic learning via better imitation.

We also see from the oracle results that the overall error εHC is better than that of HC-

Search, but for HW-Small and Scene labeling tasks, the selection error εC|H got slightly worse..

This indicates that our cost function learner is able to leverage, to varying degrees, the better

outputs produced by the oracle heuristic. This suggests that improving the heuristic learner in

order to reduce the generation loss could be a viable way of further reducing the overall loss of

HC-Search, even without altering the current cost learner. However, as we saw above there is

much less room to improve the heuristic learner for these data sets and hence the potential gains

are less than for directly trying to improve the cost learner.

4.3.8 Results for Training with Different Time bounds

We also trained HC-Search for different time bounds (i.e., number of greedy search steps) to

see how the overall loss, generation loss and selection loss vary as we increase the training time

bound. In general, as the time bound increases, the generation loss will monotonically decrease,

since strictly more outputs will be encountered. On the other hand the difficulty of cost function

learning can increase as the time bound grows since it must learn to distinguish between a larger

set of candidate outputs. Thus, the degree to which the overall error decreases (or grows) with the

time bound depends on a combination of how much the generation loss decreases and whether

the cost function learner is able to accurately distinguish improved outputs.

Figure 4.5 shows the performance ofHC-Search for the full spectrum of time bounds. Qual-

itatively, we see that the generation loss, due to the heuristic, decreases remarkably fast and for

most benchmarks improves very little after the initial decrease. We also see that the cost function

learner achieves a relatively stable selection loss in a short time, though it does increase a bit with

time in most cases. The combined effect is that we see the overall error εHC improves quickly

as we increase the time bound and the improvement tends to be very small beyond certain time

bound. Also, in some cases (e.g., phoneme prediction and scene labeling) performance tends to

get slightly worse for very large time bounds, which happens when the increase in selection loss

is not counteracted by a decreased generation loss.

74

Figure 4.5: HC-Search results for training with different time bounds. We have training time
bound (i.e., no. of greedy search steps) on x-axis and error on y-axis. There are three curves in
each graph corresponding to overall loss εHC , generation loss εH and selection loss εC|H.

75

Test
Loss Function Hamming VC

Tr
ai

n Hamming 1757 4658
VC 1769 4620

Table 4.3: Results for training with non-hamming loss functions.

4.3.9 Results for Training with Non-Hamming Loss functions

One of the advantages of HC-Search compared to many other approaches for structured predic-

tion is that it is sensitive to the loss function used for training. So we trained HC-Search with

different loss functions on the handwriting domain to verify if this is true in practice or not. We

used hamming loss (uniform misclassification cost of 1 for all characters) and Vowel-Consonant

(VC) loss (different misclassification costs for vowels and consonants) for this experiment. For

VC loss, we used misclassification costs of 4 and 2 for vowels and consonants respectively.

Training was done on 5 folds and the remaining 5 folds were used for testing. Table ?? shows

the results for training and testing with the two loss functions. We report cumulative loss over

all the testing examples. As we can see, for any testing loss function, training with the same

loss function gives slightly better performance than training using a different loss function. This

result is preliminary and more extensive evaluation is needed to generalize this result to other

cost functions and domains.

4.3.10 Discussion on Efficiency of theHC-Search Approach

In our HC-Search framework, the basic computational elements include generating candidate

states for a given state; computing the heuristic function features via ΦH and cost function fea-

tures via ΦC for all the candidate states; and computing the heuristic and cost scores via the

learned heuristic and cost function pair (H, C). The computational time for generating the can-

didate states depends on the employed search space So = (I, S), where I is the initial state

function and S is the successor function. For example, the generation of candidates will be very

efficient with Flipbit space compared to the LDS space (which involves running the recurrent

classifier for every action specified by the successor function S). Therefore, the efficiency of the

overall approach depends on the size of the candidate set and can be greatly improved by gener-

ating fewer candidate states (e.g., via pruning) or parallelizing the computation. In the previous

76

chapter, we have done some preliminary work in this direction by introducing sparse versions of

both LDS and Flipbit search spaces by pruning actions based on the recurrent classifier scores

(as specified by the prunining parameter k). This simple pruning strategy resulted in 10-fold

speedup with little or no loss in accuracy across several benchmark problems. However, more

work needs to be done on learning pruning rules to improve the efficiency of the HC-Search

approach.

4.4 Engineering Methodology for ApplyingHC-Search

In this section, we describe an engineering methodology for applying our HC-Search frame-

work to new problems. At a very high-level, the methodology involves selecting an effective

time-bounded search architecture (search space, search procedure, and search time-bound), and

leveraging the loss decomposition in terms of generation and selection loss for training and de-

bugging the heuristic and cost functions. Below we describe these steps in detail.

4.4.1 Selection of Time-bounded Search Architecture

A time-bounded search architecture can be instantiated by selecting a search space, search strat-

egy, and search time-bound. As we mentioned before, the effectiveness of HC-Search depends

critically on the quality of the search space that is being employed, i.e., search depth at which

target outputs can be found. In the previous chapter, we empirically demonstrated that the perfor-

mance gap of the search architectures with Flipbit space and LDS space grows as the difference

between their target depths increase. Therefore, it is important to select/design a high-quality

search space for the problem at hand.

If there exists a greedy predictor for the structured prediction problem, one could leverage

it to define an appropriate variant of the LDS space. Fortunately, there are greedy predictors

for several problems in natural language processing, computer vision, relational networks, and

planning with preferences. For example, transition-based parsers for dependency parsing (Nivre,

2008; Goldberg and Elhadad, 2010); greedy classifiers for co-reference resolution (Ma et al.,

2014; Chang et al., 2013; Stoyanov and Eisner, 2012) and event extraction (Li et al., 2013);

sequential labelers for boundary detection of objects in images (Payet and Todorovic, 2013);

iterative classifiers for collective inference in relational networks (Sen et al., 2008; Doppa et al.,

2009, 2010); classifier chains for multi-label prediction (Read et al., 2011); and greedy planners

77

for planning with preferences (Xu et al., 2010). In general, designing high-quality search spaces

is a key research topic and more work needs to be done in this direction. Learning search

operators (“macro actions”) or transformation rules as in Transformation-based Learning (TBL)

(Brill, 1995) to optimize the search space is one of the many possibilities. Sometimes problem

structure can also help in designing effective search spaces. For example, in most multi-label

prediction problems, the outputs which are binary vectors have a small number of active labels

(highly sparse). So a simple flipbit space initialized with the null vector can be very effective

(Doppa et al., 2014c).

After picking the search space, we need to select an appropriate search procedure and search

time-bound. The effectiveness of a search architecture can be measured by performing oracle

search (true loss function used as both heuristic and cost function) on the training data. So

one could perform oracle search (LL-Search) with different search procedures (e.g., greedy and

beam search) for different time-bounds and select the search procedure that is more effective.

We did not see benefit with beam search for the problems we considered, but we expect that

this can change for harder problems with non-Hamming loss functions (e.g., B-Cubed score

for co-reference resolution). If the search space is not redundant (meaning we cannot recover

from search errors), then we can fix the search time-bound to a value where the performance

of the search architecture stagnates. Otherwise, one should allow some slack so that the search

procedure can recover from errors. In our experiments, we found that T (the size of the structured

output) is a reasonable value for the time-bound (Figure 4.5 provides justification for this choice).

4.4.2 Training and Debugging

The training procedure involves learning the heuristic H and cost function C to optimize the

performance of the selected time-bounded search architecture on the training data. Following

our staged learning approach, one could start with learning a heuristic via exact imitation of the

oracle search. After that, the learned heuristic H should be evaluated by measuring the gen-

eration loss (HL-Search configuration). If the performance of the HL-Search configuration is

acceptable with respect to the performance of LL-Search, we can move to cost function learning

part. Otherwise, we can try to improve the heuristic by either employing more sophisticated

imitation learning algorithms (e.g., DAgger), enriching the feature function ΦH, or employing

a more powerful rank learner. Similarly, after learning the cost function C conditioned on the

learned heuristic, we can measure the selection loss. If the selection loss is very high, we can

78

try to improve the cost function by either adding expressive features to ΦC or employing a more

powerful rank learner.

4.5 Summary

We introduced the HC-Search framework for structured prediction whose principal feature is

the separation of the cost function from search heuristic. We showed that our framework yields

significantly superior performance to state-of-the-art results, and allows an informative error

analysis and diagnostics. Our investigation showed that the main source of error of existing

output-space approaches including our own approach (HC-Search) is the inability of cost func-

tion to correctly rank the candidate outputs produced by the output generation process. We also

developed an engineering methodology for applying this framework.

79

Chapter 5: Search-based Multi-Label Prediction

In this chapter, we adapt the HC-Search framework to the problem of multi-label prediction,

where the learner needs to predict multiple labels for a given input example (Tsoumakas et al.,

2012). Multi-label problems commonly arise in domains involving data such as text, images,

audio, and bio-informatics where instances can fall into overlapping conceptual categories of

interest. For example, in document classification an input document can belong to multiple topics

and in image classification an input image can contain multiple scene properties and objects of

interest.

An important aspect of most multi-label problems is that the individual output labels are not

independent, but rather are correlated in various ways. One of the challenges in multi-label pre-

diction is to exploit this label correlation in order to improve accuracy compared to predicting

labels independently. Unfortunately, existing approaches for multi-label prediction that consider

label correlation suffer from the intractable problem of making optimal predictions (inference)

(Dembczynski et al., 2010; Ghamrawi and McCallum, 2005; Zhang and Zhang, 2010; Guo and

Gu, 2011; Petterson and Caetano, 2011). Another challenge is to automatically adapt the learn-

ing approach to the task loss function that is most appropriate for the real-world application

at hand. However, most approaches are designed to minimize a single multi-label loss func-

tion (Elisseeff and Weston, 2001; Read et al., 2011; Fürnkranz et al., 2008). There are existing

frameworks for multi-label prediction that can handle varying loss functions, but unfortunately

they are non-trivial to adapt for a new task loss based on the needs of the application. For exam-

ple, Probabilistic Classifier Chains (PCC) require a Bayes optimal inference rule (Dembczynski

et al., 2010) and Structured Support Vector Machines (SSVMs) require a loss-augmented infer-

ence routine for the given task loss (Tsochantaridis et al., 2005).

In this work, we treat multi-label learning as a special case of structured-output prediction

(SP), where each input x is mapped to a binary vector y (i.e., a structured output) that indicates

the set of labels predicted for x. The main contribution of this chapter is to investigate a simple

framework for multi-label prediction called Multi-Label Search (MLS) that makes joint predic-

tions without suffering from intractability of the inference problem, and can be easily adapted

80

to optimize arbitrary loss functions1. The framework is a straightforward adaptation of the HC-

Search framework to the problem of multi-label learning.

The MLS approach first defines a generic combinatorial search space over all possible multi-

label outputs. Next, a search procedure (e.g. breadth-first or greedy search) is specified, which

traverses the output space with the goal of uncovering high-quality outputs for a given input x.

Importantly, for this search to be effective, it will often be necessary to guide it using a learned

heuristic. Finally a learned cost function is used to score the set of outputs uncovered by the

search procedure, and the least-cost one is returned. The effectiveness of the MLS approach

depends on: 1) the ability of the search to uncover good outputs for given inputs, which for

difficult problems will depend on the quality of the search heuristic H, and 2) the ability of

the cost function C to select the best of those outputs. We employ existing learning approaches

proposed within the HC-Search framework for learning effective heuristics and cost functions

for these purposes as they are shown to be very effective in practice.

Our second contribution is to conduct a broad evaluation of several existing multi-label learn-

ing algorithms along with our MLS approach on a variety of benchmarks by employing diverse

task loss functions. Our results demonstrate that the performance of existing algorithms tends to

be very similar in most cases, and that our MLS approach is comparable and often better than

all the other algorithms across different loss functions. Our results also identify particular ways

where our approach can be improved.

5.1 Related Work

Typical approaches to multi-label learning decompose the problem into a series of independent

binary classification problems, and employ a thresholding or ranking scheme to make predictions

(Elisseeff and Weston, 2001; Read et al., 2011; Fürnkranz et al., 2008; Tsoumakas et al., 2010).

The Binary Relevance (BR) method ignores correlations between output labels and learns one

independent classifier for every label (Tsoumakas et al., 2010). The Classifier Chain (CC) (Read

et al., 2011) approach learns one classifier for every label based on input x and the assignments

to previous labels in a fixed ordering over labels. CC leverages the interdependencies between

output labels to some extent, but it suffers from two major problems: 1) It is hard to determine a

good ordering of the labels in the chain, 2) Errors can propagate from earlier predictions to later
1In a concurrent work to ours, the Condensed Filter Tree (CFT) algorithm was proposed for training loss-sensitive

multi-label classifiers (Li and Lin, 2014).

81

ones (Ross and Bagnell, 2010; Hal Daumé III et al., 2009; Ross et al., 2011). To address some of

these issues, researchers have employed ensembles of chains (ECC), beam search (Kumar et al.,

2013) and monte carlo search (MCC) (Read et al., 2013) techniques to find a good ordering and

for predicting the labels. All these label decomposition approaches try to optimize the Hamming

loss.

Output coding methods try to exploit the correlations between output labels by coding them

using a different set of latent classes. There are several output coding techniques for multi-label

learning, including coding based on compressed sensing (Hsu et al., 2009), Principal Compo-

nent Analysis (PCA) (Tai and Lin, 2012), and Canonical Correlation Analysis (CCA) (Zhang

and Schneider, 2011). These methods either try to find a discriminative set of codes ignoring

predictability, or vice versa. The recent max-margin output coding method (Zhang and Schnei-

der, 2012) tries to overcome some of the drawbacks of previous coding approaches by searching

for a set of codes that are both discriminative and predictable via a max-margin formulation.

However, their formulation poses the problem of finding these codes as an intractable optimiza-

tion problem for which they propose an approximate solution. These output coding approaches

optimize a fixed, but unknown loss function.

Graphical modeling approaches including Conditional Random Fields (CML) (Ghamrawi

and McCallum, 2005), Bayesian Networks (LEAD) (Zhang and Zhang, 2010), and Conditional

Dependency Networks (CDN) (Guo and Gu, 2011) try to capture label dependencies, but unfor-

tunately suffer from the intractability of the exact inference problem due to the high tree-width

graphical structure. It is possible to employ approximate inference methods (e.g., Loopy Belief

Propagation and MCMC), with the associated risk of converging to local optima or not converg-

ing at all. These methods try to optimize the structural log loss or some variant of it.

Probablistic Classifier Chains (PCC) (Dembczynski et al., 2010) estimate the conditional

probablity of every possible label set for an input instance, and employ a Bayes optimal inference

rule to optimize the given task loss function. However, the PCC framework suffers from two

problems: 1) It is hard to accurately estimate the conditional probabilities, and 2) It is non-trivial

to come up with the inference rule for a new loss function. Exact inference rules are known for

a few loss functions: Hamming loss, Rank loss, and F1 loss (Dembczynski et al., 2010, 2011,

2012a, 2013). Approximate inference methods can be employed to optimize the Exact-Match

loss (Dembczynski et al., 2012b; Kumar et al., 2013; Read et al., 2013).

The Structured Support Vector Machines (SSVMs) (Tsochantaridis et al., 2005) framework

allows varying loss functions, but requires a loss-augmented inference routine for the given task

82

loss function, which is non-trivial if the loss function is non-decomposable. Existing multi-label

prediction approaches based on this framework either resort to approximate inference or some

form of convex relaxation for non-decomposable losses (Hariharan et al., 2010; Petterson and

Caetano, 2010, 2011).

Label powerset (LP) methods reduce the multi-label learning problem to a multi-class clas-

sification problem, and optimize the Exact-Match loss. These approaches are very inefficient for

training and testing. RAndom K-labELsets (RAKEL) is a representative approach of LP meth-

ods (Tsoumakas and Vlahavas, 2007). Some recent work has proposed a variant of RAKEL to

optimize weighted Hamming loss (Lo et al., 2011). ML-kNN (Zhang and Zhou, 2007) is an ex-

tension of the traditional k-Nearest Neighbor classification algorithm for multi-label prediction.

It is very expensive to make predictions with ML-kNN for large-scale training data.

5.2 Multi-Label Search Framework

In this section, we first describe the formal problem setup. Next, we give an overview of the

HC-Search framework followed by our instantiation for multi-label prediction problems and

then describe the learning algorithms.

5.2.1 Problem Setup

A multi-label prediction problem specifies a space of inputs X , where each input x ∈ X can

be represented by a d dimensional feature vector; a space of outputs Y , where each output

y = (y1, y2, · · · , yT) ∈ Y is a binary vector of length T ; and a non-negative loss function

L : X × Y × Y 7→ <+ such that L(x, y′, y∗) is the loss associated with labeling a particular

input x by output y′ when the true output is y∗. We are provided with a training set of input-

output pairs {(x, y∗)} drawn from an unknown target distribution D. The goal is to return a

function/predictor from inputs to outputs whose predicted outputs have low expected loss with

respect to the distribution D.

5.2.2 Overview of theHC-Search Framework

Recall that the HC-Search framework for structured prediction is based on search in the output

space Y and is parameterized by the following elements: 1) a search space So, where each state

83

in the search space consists of an input-output pair (x, y) where y represents the potential output

for the input x, 2) a time-bounded search strategy A (e.g., depth-limited greedy search), 3) a

learned heuristic function H : X × Y 7→ < in cases where the search strategy requires one, and

4) a learned cost function C : X × Y 7→ <.

Given all of these elements and an input x, a prediction is made by first running the search

procedure A (guided byH when appropriate), for a specified time bound τ . During the search a

set of states is traversed, where each state represents a potential output for x. The cost function is

employed to score each such output and the least-cost output is returned as the predicted label for

x. The effectiveness of this approach depends on the quality of the search space (i.e., expected

depth at which the target outputs can be located), the ability of the search procedure and heuristic

function to guide the search to uncover high-quality outputs, and the quality of the cost function

in terms of correctly scoring those outputs.

5.2.3 Multi-Label Search (MLS)

To instantiate the HC-Search framework for multi-label prediction, we need to specify effec-

tive search spaces and search strategies that are appropriate for different multi-label prediction

problems.

Search Space. The states of our multi-label search space correspond to input-output pairs (x, y),

representing the possibility of predicting y as the multi-label output for x. In general, such a

search space is defined in terms of two functions: 1) An initial state function I that takes an

input x and returns an initial search state (x, y), and 2) A successor function S that takes a state

as input and returns a set of child states. Given an input x, the search always begins at state I(x)

and then traverses the space by following paths allowed by the successor function.

In this work, we employ a simple search space for multi-label problems, which we call the

Flipbit-null space. In particular, the initial state function I is defined as I(x) = (x, null), where

null is the zero vector indicating that no labels are present. The successor function S((x, y))

returns all states of the form (x, y′), where y′ differs from y in exactly one label position, i.e.,

the hamming distance between y and y′ is 1. Thus, individual search steps in this space can be

viewed as picking a particular output label and flipping its value. This space is effectively the

search space underlying Gibbs sampling. Clearly the search space is complete, since for any

input x it is possible to reach any possible output starting from the initial state.

Search Space Quality. The quality of a search space can be understood in terms of the ex-

84

pected amount of search needed to uncover the correct output y∗, which often increases mono-

tonically with the expected depth of the target in the search space. In particular, for a given

input-output pair (x, y∗), the target depth d(x, y∗) is defined as the minimum depth at which

we can find a state corresponding to the target output y∗. Clearly according to this definition,

the expected target depth of the Flipbit-null space is equal to the expected number of non-zero

labels. That is, for the Flipbit-null space we have,

d = E(x,y∗)∼D d (x, y∗)

= E(x,y∗)∼D |y∗|1 (5.1)

Thus, the expected target depth of the Flipbit-null space is related to the average sparseness of

the label vectors. We observe that for several standard benchmarks the outputs are very sparse2

(80 perecent of the benchmarks have sparsity less than 4), which makes the above search space

very effective. To the best of our knowledge, we are not aware of any multi-label approach that

explicitly exploits the sparsity property of multi-label problems.

Other Search Space Choices. One possible way to decrease the expected target depth,

if necessary, would be to define more sophisticated search spaces that are tuned for particular

types of multi-label problems. As a simple example, if the number of zero entries in the outputs

is small, then it would be more effective to define the initial state of the Flipbit space to be the

vector of all ones. The expected target depth would then be the expected number of zero output

labels. Another way to reduce the expected target depth would be to use an existing multi-label

approach P (e.g., Binary Relevance) to produce the initial state. The resulting Flipbit space can

then be viewed as biasing the search toward this solution (e.g., see (Lam et al., 2013)). In this

case, the expected target depth of the search space would be equal to the expected Hamming error

of P on the multi-label problem. Finally, even more sophisticated spaces such as the Limited

Discrepancy Search space (Doppa et al., 2012) defined in terms of a greedy classifier chain or a

variant of its sparse version (Doppa et al., 2014b) could be employed.

Search Strategies. Recall that in our MLS approach, the role of the search procedure is to

uncover high-quality outputs. We can consider depth-bounded breadth-first search (BFS), but

unfortunately BFS will not be practical for a large depth k and/or a large number of output labels

T . Even when BFS is practical, it generates a large number of outputs (T k) that will make

the cost function learning problem harder. Therefore, in this paper, we consider depth-limited
2http://mulan.sourceforge.net/datasets.html

85

greedy search guided by a (learned) heuristic function H as our search strategy. Given an input

x, greedy search traverses a path of user specified length k through the search space, at each

point selecting the successor state that looks best according to the heuristic. In particular, if si is

the state at search step i, greedy search selects si+1 = argmins∈S(si)H(s), where s0 = I(x).

The time complexity of generating this sequence isO(k ·T), which makes it much more practical

than BFS for larger values of k. The effectiveness of greedy search is determined by how well

H guides the search toward generating state sequences that contain high quality outputs. It is

possible to consider other heuristic search strategies, such as best-first search and beam-search.

However, in our experience so far, greedy search has proven sufficient.

5.2.4 Learning Algorithms

We first describe the loss decomposition of the HC-Search approach along with its staged

learning. Next, we briefly talk about the heuristic and cost function learning algorithms in

the context of greedy search. In this work, we focus on learning linear H and C of the form

H(x, y) = wH · ΦH(x,y) and C(x, y) = wC · ΦC(x,y), where ΦH and ΦC are feature functions

that compute the feature vectors forH and C respectively, and wH and wC stand for their weights

that will be learned from the training data.

Loss Decomposition and Staged Learning. As discussed in Chapter 4, for any heuristic func-

tion H and cost function C, the overall loss of the HC-Search approach E (H, C) can be decom-

posed into the loss due to H not being able to generate the target output (generation loss εH),

and the additional loss due to C not being able to score the best outputs generated byH correctly

(selection loss εC|H) . The loss decomposition can be mathematically expressed as follows:

E (H, C) = E(x,y∗)∼D L (x, y∗H, y
∗)︸ ︷︷ ︸

εH

+

E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗H, y
∗)︸ ︷︷ ︸

εC|H

where y∗H is the best output that is generated by the search guided by H and ŷ is the predicted

output. The HC-Search approach performs a staged-learning by first learning a heuristic H to

minimize the generation loss εH, and then the cost function C is learned by minimizing the

selection loss εC|H, given the learnedH.

86

Heuristic Learning. The heuristic function H is trained via imitation learning. For a given

training time bound τmax and task loss function L, we perform greedy search with the loss

function used as an oracle heuristic on every training example (x, y∗) (ties are broken randomly)

and generate training data for imitation (see Algorithm 5). The imitation example Rt at each

search step t consists of one ranking example for every candidate state s ∈ S(st−1)\st such that

H(x, yt) < H(x, y), where (x, yt) and (x, y) correspond to the input-output pairs associated

with states st and s respectively. The aggregate set of imitation examples collected over all

the training data is then given to a rank learner (e.g., Perceptron or SVM-Rank) to learn the

parameters ofH.

Cost Function Learning. The cost function C is trained via cross-validation to avoid over-

fitting (see Chapter 4 for details). We divide the training data into k folds and learn k different

heuristics, where each heuristic function Hi is learned using the data from all the folds exclud-

ing the ith fold. We generate ranking examples for cost function learning using each heuristic

function Hi on the data it was not trained on. Specifically, we perform greedy search guided by

Hi to generate a set of outputs YHi(x), and generate ranking examples for any pair of outputs

(ybest, y) ∈ Ybest × YHi(x) \ Ybest such that C(x, ybest) < C(x, y), where Ybest is the set of all

best loss outputs. We give the aggregate set of ranking examples to a rank learner to learn the

cost function C.

Algorithm 5 Heuristic Function Learning for Greedy Search
Input: D = Training data, (I, S) = Search space, L = Loss function, τmax = no. of training

steps

1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s0 ← I(x) // initial state

4: for each search step t = 1 to τmax do
5: Generate example Rt to imitate this search step

6: Aggregate training data: R = R∪Rt
7: st ← argmins∈S(st−1) L(s) // oracle search

8: end for
9: end for

10: H = Rank-Learner(R)

11: return heuristic functionH

87

5.3 Empirical Results

In this section, we evaluate our MLS approach along with several existing multi-label algorithms

on a variety of benchmarks and evaluation measures.

5.3.1 Datasets

We employ nine benchmark3 datasets for our evaluation. We selected these datasets based on

the diversity of domains (text, images, audio and bio-informatics) and their popularity within

the multi-label learning community. Table 5.2 presents the properties of different datasets. Ten

percent of the training data were used to tune the hyper-parameters.

5.3.2 Experimental Setup

Evaluation Measures. We consider four diverse loss functions: Hamming loss, Exact-Match

(0/1) loss, F1 loss, and Accuracy loss. F1 and Accuracy losses do not decompose over individual

labels. They are defined as follows: F1 loss = 1 - 2‖ŷ∩y∗‖1
‖ŷ‖1+‖y∗‖1

; Accuracy loss = 1 - ‖ŷ∩y
∗‖1

‖ŷ∪y∗‖1
, where

ŷ is the predicted output and y∗ is the correct output. When both the predicted labels and ground-

truth labels are zero vectors, then we consider the loss to be zero for both F1 and Accuracy unlike

existing software packages including Mulan and Meka4 that consider the loss to be one in this

case.

MLS Approach. We employ the simple Flipbit-null space and greedy search as described in

Section 5.2. We use unary and pair-wise potential features for our heuristic and cost function

representation, i.e., these functions are represented asw·Φ(x, y), wherew is the parameter vector

to be learned, and Φ(x, y) is a feature vector that contains indicator features for the activation

levels of all label pairs and features that are the cross product of the label space and input features

composing x. We estimate the expected target depth E[d] of the Flipbit-null space for each

dataset and use 2∗dE[d]e steps for training and testing the heuristic function noting that we didn’t

see any improvements with larger timebounds. For cost function learning, we experimented with

3 folds and 5 folds, but larger folds didn’t help much. We employ SVM-Rank (Joachims, 2006)

as our base rank learner for both heuristic and cost function learning. The C parameter was
3http://mulan.sourceforge.net/datasets.html
4http://meka.sourceforge.net/

88

ALGORITHMS Scene Emotions Medical Genbase Yeast Enron LLog Slashdot Tmc2007
a. Hamming Accuracy Results

BR 86.90 77.10 98.50 99.80 78.30 94.00 97.70 94.50 94.70
CC 88.70 76.80 98.60 99.90 78.50 95.10 98.40 94.50 94.60
ECC 89.00 78.40 98.30 99.90 78.50 94.30 98.40 94.70 94.70
M2CC 89.80 78.50 98.30 99.90 78.10 94.50 98.50 94.90 94.60
CLR 89.10 78.40 97.90 96.60 77.00 94.00 97.10 92.70 94.50
CDN 89.40 80.30 98.40 99.60 78.10 94.70 97.70 94.60 94.60
CCA 88.59 79.05 97.79 99.19 79.05 93.66 95.10 94.60 94.22
PIR 87.81 67.99 98.79 99.93 77.18 94.66 97.05 94.11 94.34
SML 86.32 78.64 98.83 99.04 78.64 94.80 99.60 95.28 94.01
RML 88.11 79.04 98.83 99.89 79.71 95.25 98.46 95.48 94.68
DecL 90.12 81.89 98.79 99.80 79.67 95.40 98.40 95.22 93.91
MLS 90.41 82.75 98.83 99.80 80.72 95.60 98.50 95.63 94.10

b. Instance-based F1 Results
BR 52.60 60.20 63.90 98.70 63.20 53.90 36.00 46.20 71.80
CC 59.10 57.50 64.00 99.40 63.20 53.30 26.50 44.90 70.30
ECC 68.00 62.60 65.30 99.40 64.60 59.10 32.20 50.20 72.70
M2CC 68.20 63.20 65.40 99.40 64.90 59.10 32.30 50.30 72.80
CLR 62.20 66.30 66.20 70.70 63.80 56.50 22.70 46.60 70.80
CDN 63.20 61.40 68.90 97.80 64.00 58.50 36.60 53.10 71.30
CCA 66.43 63.27 49.60 98.60 61.64 53.83 25.80 48.00 69.53
PIR 74.45 60.92 80.17 99.41 65.47 61.14 38.95 57.55 73.73
SML 68.50 64.32 68.34 99.62 64.32 57.46 34.95 55.73 71.63
RML 74.17 64.83 80.73 98.80 63.18 57.79 35.97 51.30 71.34
DecL 73.76 65.29 78.02 97.89 63.46 61.19 37.52 54.67 69.08
MLS 75.89 66.17 78.19 98.12 63.78 62.34 39.76 57.98 69.17

c. Instance-based Accuracy Results
BR 48.50 52.30 61.50 98.00 52.30 44.10 27.80 41.90 62.30
CC 55.90 49.70 61.00 99.10 51.80 43.00 25.30 42.00 61.70
ECC 63.40 54.80 62.20 99.10 53.70 47.00 29.40 45.70 63.50
M2CC 63.70 55.00 62.90 99.10 53.40 47.10 29.50 46.00 63.70
CLR 62.50 56.80 58.10 56.10 51.30 42.70 17.20 38.10 60.00
CDN 61.50 56.80 64.70 96.60 52.80 47.00 32.30 48.40 62.10
CCA 62.12 55.40 60.10 98.20 50.82 42.90 19.60 43.30 62.38
PIR 67.87 49.75 76.33 99.16 53.92 49.16 34.42 52.87 63.76
SML 63.65 52.38 64.03 98.42 52.38 48.08 33.49 43.92 63.77
RML 67.23 53.91 75.90 98.17 52.41 47.98 33.16 47.27 63.05
DecL 66.19 54.17 74.23 97.91 50.45 49.87 35.78 48.77 58.56
MLS 69.12 57.89 74.98 98.34 51.23 51.21 36.67 52.85 59.76

d. Exact-Match Results
BR 45.90 24.80 46.20 95.50 15.60 10.90 21.90 31.50 32.20
CC 47.50 25.20 47.80 98.00 19.20 12.50 22.60 32.00 34.00
ECC 52.00 28.20 43.60 98.00 19.60 11.90 22.40 32.50 33.50
M2CC 59.63 32.20 43.90 98.00 21.50 13.50 24.70 33.20 34.00
CLR 58.30 28.70 33.60 11.10 5.80 2.80 2.70 13.90 25.10
CDN 57.60 32.20 52.20 94.00 17.00 12.60 22.40 34.10 32.40
CCA 59.63 30.20 22.48 97.99 20.39 15.70 15.07 32.00 31.04
PIR 50.08 19.80 64.65 98.49 14.29 13.64 23.63 38.80 30.73
SML 52.84 30.06 62.17 91.51 15.05 12.15 24.23 35.03 31.75
RML 47.32 25.74 62.94 91.45 13.63 12.43 24.48 35.09 30.44
DecL 59.00 31.89 63.76 96.81 15.12 12.11 20.81 37.89 29.98
MLS 58.10 31.18 63.46 96.75 14.30 12.71 19.12 38.13 28.29

Table 5.1: Performance of different multi-label prediction algorithms.

89

Dataset Domain #TR #TS #F #L E[d]
Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86
Medical text 333 645 1449 45 1.24
Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23
Enron text 1123 579 1001 53 3.37
LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 1.18
Tmc2007 text 21519 7077 500 22 2.15

Table 5.2: Characteristics of the datasets: the number of training (#TR) and testing (#TS) ex-
amples; number of features (#F); number of labels (#L); and the expected target depth of our
Flipbit-null space (E[d]).

tuned using the validation set. The MLS approach cannot work for Exact-Match loss5, so we

present the Exact-Match results by training with Hamming loss. In all other cases, we train for

the given task loss function. Our base rank learner did not scale to the Tmc2007 dataset, so we

performed our training on a subset of 5000 training examples.

Baseline Methods. Our baselines include Binary Relevance BR (Tsoumakas et al., 2010); Clas-

sifier Chain with greedy inference CC (Read et al., 2011); Ensemble of Classifier Chains ECC

(Read et al., 2011); Monte Carlo optimization of Classifier Chains M2CC (Read et al., 2013);

Calibrated Label Ranking CLR (Fürnkranz et al., 2008); Conditional Dependency Networks CDN

(Guo and Gu, 2011); Canonical Correlation Analysis CCA (Zhang and Schneider, 2011); Plug-

in-Rule approach PIR (Dembczynski et al., 2013); Submodular Multi-Label prediction SML

(Petterson and Caetano, 2011); Reverse Multi-Label prediction RML (Petterson and Caetano,

2010); and Decomposed Learning DecL (Samdani and Roth, 2012). The last method, DecL,

is a variant of our MLS approach that employs a different cost function learning algorithm by

trying to rank the correct output y∗ higher than all the outputs with a hamming distance of at

most k from y∗. We employed the Meka package to run BR, CC, ECC, M2CC, CLR, and CDN.

We ran the code provided by the authors for CCA6, PIR7, SML and RML8.

For the methods that require a base classifier, we employed logistic regression with L2 reg-

ularization. The regularization parameter was tuned via 5-fold cross validation. We employed

the natural ordering of labels for CC and 20 random orderings for ECC. We used 10 iterations
5We cannot differentiate between the outputs with loss one.
6http://www.cs.cmu.edu/∼yizhang1/files/AISTAT2011 Code.zip
7https://github.com/multi-label-classification/PCC
8http://users.cecs.anu.edu.au/∼jpetterson/

90

for learning the ordering, and 100 iterations for inference with M2CC. The parameters of CCA

were tuned as described in the original paper. For PIR, we tuned the hyper-parameter λ via 5-fold

cross-validation and report the results with their exact algorithm (EFP). The hyper-parameters

for RML (λ), and SML (λ, C) were tuned based on the validation set. For DecL, we employed

the largest value of k that was practical for training the cost function.

5.3.3 Results

Table 5.1 shows the accuracy results (higher is better) of different multi-label approaches with

different evaluation measures. We can make several interesting observations from these results.

First, the performance of several algorithms tend to be very similar in most cases. Second, our

MLS approach performs comparably and often better than all other algorithms for all evaluation

measures other than the Exact-Match accuracy, which MLS cannot optimize. The results of MLS

for Tmc2007 are competetive with other methods even though MLS was trained only on one-

fourth of the training data. Third, ECC performs better than CC as one would expect, and M2CC

significantly improves over both CC and ECC showing the benefit of learning the ordering and

performing a more elaborate search instead of greedy search. Fourth, PIR performs comparably

or better than all other methods on F1 accuracy across all the datasets excluding Emotions. This

behavior is expected because PIR is designed to optimize F1 loss.

We do not provide the error decomposition results for our MLS approach, but we would like

to mention that the generation error for most datasets is close to zero, which means that most

of our error is coming from the cost function, i.e., even though the heuristic is able to generate

good outputs, cost function is not able to score them properly. Therefore, it would be productive

to consider more powerful rank learners9 (e.g., Regression trees (Mohan et al., 2011)) for cost

function learning to improve the results.

5.4 Summary and Future Work

We introduced the Multi-Label Search (MLS) approach by adapting the HC-Search framework

for multi-label prediction problems. MLS can automatically adapt its training for a given task

loss function, and can jointly predict all the labels without suffering from the intractability of in-

ference. We show that the MLS approach gives comparable or better results than existing multi-
9http://sourceforge.net/p/lemur/wiki/RankLib/

91

label approaches across several benchmarks and diverse loss functions. Future work should

tackle the problem of designing an appropriate search space for the problem at hand, and the

problem of learning in the context of more sophisticated search strategies when the expected

depth of the search space is high and the greedy search is not effective.

92

Chapter 6: Conclusions and Future Work

In this dissertation, we studied a general framework for structured prediction called HC-Search

that integrates learning and search in a principled manner for solving structured prediction prob-

lems. Our framework subsumes existing frameworks for cost function learning and control

knowledge learning. The HC-Search framework involves designing a high-quality search space

over structured outputs by leveraging the problem structure such that the target outputs (zero

loss outputs) can be located at small depths; learning a heuristic functionH to quickly guide the

search towards high-quality outputs; and learning a cost function C to correctly score the outputs

generated by the search procedure guided by heuristicH.

We developed generic solutions for learning problems associated with all the key elements of

this framework and an engineering methodology for applying this framework. We investigated

several instantiations of the HC-Search framework and showed that the HC-Search framework

achieves results in a wide range of structured prediction problems that significantly exceed the

best previous results. Additonally, the error decomposition in terms of heuristic error (error due

to not generating the optimal solution) and cost function error (error due to not selecting the

best candidate solution generated by the heuristic) can be easily measured for a learned (H,C)

pair and allow for an assessment of which function is more responsible for the overall error.

The effectiveness of HC-Search for a particular problem depends critically on the quality of

the search space over structured outputs being employed, and our Limited Discrepancy Search

(LDS) space played a major role in the current success ofHC-Search.

6.1 Lessons Learned

In this section, we describe the two most important lessons we learned from this work.

1. HC-Search is a “Divide and Conquer” solution approach with procedural knowledge
injected into it. Every component of the HC-Search solution has a clearly pre-defined

role, and contributes towards the overall goal by making the role of the other components

easier. For example, the LDS space leverages greedy classifiers to reduce the target depth

of the search space to make the heuristic learning problem easier; the heuristic function

93

H tries to make the cost function learning problem easier by generating high-quality out-

puts with as little (heuristically guided) search as possible; and it is sufficient for the cost

function C to correctly score the best outputs generated by the heuristic.

2. Inference in HC-Search vs. Inference in CRF/SSVM. Inference procedure in standard

approaches such as CRF and SSVM involves scoring all possible outputs by the cost func-

tion. In contrast, in HC-Search, the cost function needs to score only a small subset of

candidate outputs generated by the search procedure guided by the heuristic H, which is

relatively easier.

6.2 Summary of Contributions

The main contribution of this dissertation is the “HC-Search framework” for solving structured

prediction problems; developing generic solutions for learning problems associated with all the

key elements of this framework; and an engineering methodology for applying this framework

to new problems. In particular, the contributions include the following.

• We adapted the basic idea of Limited Discrepancy Search (LDS) (Harvey and Ginsberg,

1995) to structured prediction by defining the Limited Discrepancy Search Space (Doppa

et al., 2014b), a generic search space over outputs that leverages greedy classifers (Diet-

terich et al., 1995; Hal Daumé III et al., 2009), and related the quality of the LDS space to

the quality of learned classifiers.

• We analyzed the computational complexity of learning within theHC-Search framework.

We identified a novel decomposition of the overall regret of the HC-Search approach in

terms of generation loss, the loss due to heuristic not generating high-quality candidate

outputs, and selection loss, the loss due to cost function not selecting the best among the

generated outputs. Guided by the decomposition, we developed a stage-wise approach to

learning the heuristic and cost functions based on imitation learning.

• We evaluated the HC-Search approach empirically on a number of benchmark problems

arising in natural language processing and computer vision, compared it to state-of-the-art

methods, and analyzed different dimensions of the framework. We showed that our frame-

work yields significantly superior performance, and allows an informative error analysis

and diagnostics.

94

• We developed a simple framework for multi-label prediction called Multi-Label Search

(MLS) based on instantiating ourHC-Search framework to multi-label learning by explic-

itly exploiting the sparsity property of multi-label problems. We empirically evaluated our

MLS framework along with many existing multi-label learning algorithms on a variety of

benchmarks by employing diverse task loss functions. We showed that the performance

of existing algorithms tends to be very similar in most cases, and that the MLS approach

is comparable and often better than all the other algorithms across different loss functions.

6.3 Future Work

In this section, we list some important future directions for this line of research.

• TheHC-Search framework should be applied to more challenging problems in natural lan-

guage processing (e.g., co-reference resolution, dependency parsing, and semantic pars-

ing) and computer vision (e.g., object detection in biological images Lam et al. (2013),

and multi-object tracking in complex sports videos Chen et al. (2014)). The effectiveness

of HC-Search approach depends on the quality of the search space, and therefore, more

work needs to be done in learning to optimize search spaces by leveraging the problem

structure.

• Our investigation showed that the main source of error of existing output-space approaches

including our own approach (HC-Search) is the inability of cost function to correctly rank

the candidate outputs produced by the output generation process. This analysis suggests

that using more expressive representations for the cost functions (e.g., boosted regression

trees) would be productive. Our results also suggested that there is room to improve overall

performance with better heuristic learning. Thus, another direction to pursue is heuristic

function learning to speed up the process of generating high-quality outputs (Fern, 2010).

• An important research problem is to investigate learning approaches to trade off speed and

accuracy of inference in a principled manner. In HC-Search, the most computationally

demanding steps are the generation of candidate states. Hence, we can obtain speedups

by generating fewer candidate states (e.g., via pruning). Therefore, future work should

consider learning search space pruning rules to improve the efficiency of both training and

making predictions.

95

• Another interesting line of work is to learn representations for heuristic and cost functions

by trading off computational cost and value of information of features (Weiss and Taskar,

2013).

96

Bibliography

Shivani Agarwal and Dan Roth. Learnability of bipartite ranking functions. In Proceedings of
International Conference on Learning Theory (COLT), pages 16–31, 2005.

C. Andrieu, N. De Freitas, A. Doucet, and M. Jordan. An introduction to MCMC for machine
learning. Machine Learning, 37(3):277–296, 1999.

Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and
S. V. N. Vishwanathan. Predicting Structured Data. MIT Press, 2007. ISBN 0262026171.

Dhruv Batra, Payman Yadollahpour, Abner Guzmán-Rivera, and Gregory Shakhnarovich. Di-
verse m-best solutions in Markov random fields. In Proceedings of European Conference on
Computer Vision (ECCV), pages 1–16, 2012.

Justin A. Boyan and Andrew W. Moore. Learning evaluation functions to improve optimization
by local search. Journal of Machine Learning Research (JMLR), 1:77–112, 2000.

Eric Brill. Transformation-based error-driven learning and natural language processing: A case
study in part-of-speech tagging. Computational Linguistics, 21(4):543–565, 1995.

Kai-Wei Chang, Rajhans Samdani, and Dan Roth. A Constrained Latent Variable Model for
Coreference Resolution. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 601–612, 2013.

Ming-Wei Chang, Lev-Arie Ratinov, and Dan Roth. Structured learning with constrained condi-
tional models. Machine Learning Journal (MLJ), 88(3):399–431, 2012.

Chao Chen, Vladimir Kolmogorov, Yan Zhu, Dimitris Metaxas, and Christoph H. Lampert.
Computing the M most probable modes of a graphical model. In Proceedings of International
Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

Sheng Chen, Alan Fern, and Sinisa Todorovic. Multi-Object Tracking via Constrained Sequen-
tial Labeling. In To appear in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

Michael Collins. Discriminative reranking for natural language parsing. In ICML, pages 175–
182, 2000.

Michael Collins. Ranking algorithms for named entity extraction: Boosting and the voted per-
ceptron. In Proceedings of Association of Computational Linguistics (ACL) Conference, 2002.

97

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research (JMLR), 7:551–585,
2006.

Hal Daumé III. Practical Structured Learning Techniques for Natural Language Processing.
PhD thesis, University of Southern California, Los Angeles, CA, 2006.

Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal multilabel clas-
sification via probabilistic classifier chains. In Proceedings of International Conference on
Machine Learning (ICML), pages 279–286, 2010.

Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier. An ex-
act algorithm for F-measure maximization. In Advances in Neural Information Processing
Systems (NIPS), pages 1404–1412, 2011.

Krzysztof Dembczynski, Wojciech Kotlowski, and Eyke Hüllermeier. Consistent multilabel
ranking through univariate losses. In Proceedings of International Conference on Machine
Learning (ICML), 2012a.

Krzysztof Dembczynski, Willem Waegeman, and Eyke Hüllermeier. An analysis of chaining in
multi-label classification. In Proceedings of European Conference on Artificial Intelligence
(ECAI), pages 294–299, 2012b.

Krzysztof Dembczynski, Arkadiusz Jachnik, Wojciech Kotlowski, Willem Waegeman, and Eyke
Hüllermeier. Optimizing the F-measure in multi-label classification: Plug-in rule approach
versus structured loss minimization. In Proceedings of International Conference on Machine
Learning (ICML), pages 1130–1138, 2013.

Thomas G. Dietterich, Hermann Hild, and Ghulum Bakiri. A comparison of ID3 and backprop-
agation for English text-to-speech mapping. Machine Learning Journal (MLJ), 18(1):51–80,
1995.

Justin Domke. Structured learning via logistic regression. In Advances in Neural Information
Processing Systems (NIPS), pages 647–655, 2013.

Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, and Lise Getoor. Chance-constrained programs
for link prediction. In Proceedings of NIPS Workshop on Analyzing Networks and Learning
with Graphs, 2009.

Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, and Lise Getoor. Learning algorithms for link
prediction based on chance constraints. In Proceedings of European Conference on Machine
Learning (ECML), pages 344–360, 2010.

98

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Output space search for structured
prediction. In Proceedings of International Conference on Machine Learning (ICML), 2012.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-Search: Learning heuristics and
cost functions for structured prediction. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), 2013.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-Search: A learning framework
for search-based structured prediction. Journal of Artificial Intelligence Research (JAIR), 50:
369–407, 2014a.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Structured Prediction via Output Space
Search. Journal of Machine Learning Research (JMLR), 15:1317–1350, 2014b.

Janardhan Rao Doppa, Jun Yu, Chao Ma, Alan Fern, and Prasad Tadepalli. HC-Search for
Multi-Label Prediction: An Empirical Study. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), 2014c.

André Elisseeff and Jason Weston. A kernel method for multi-label classification. In Advances
in Neural Information Processing Systems (NIPS), pages 681–687, 2001.

Pedro F. Felzenszwalb and David A. McAllester. The generalized A* architecture. Journal of
Artificial Intelligence Research (JAIR), 29:153–190, 2007.

Alan Fern. Speedup learning. In Encyclopedia of Machine Learning, pages 907–911. 2010.

Alan Fern, Sung Wook Yoon, and Robert Givan. Approximate policy iteration with a policy
language bias: Solving relational Markov decision processes. Journal of Artificial Intelligence
Research (JAIR), 25:75–118, 2006.

Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencı́a, and Klaus Brinker. Multilabel
classification via calibrated label ranking. Machine Learning, 73(2):133–153, 2008.

Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In Proceedings
of Conference on Information and Knowledge Management (CIKM), pages 195–200, 2005.

Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-directional de-
pendency parsing. In Proceedings of Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistic (HLT-NAACL), pages 742–
750, 2010.

Yuhong Guo and Suicheng Gu. Multi-label classification using conditional dependency net-
works. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
pages 1300–1305, 2011.

99

Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. In Proceedings of International Conference on Machine
Learning (ICML), 2005.

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
Learning Journal (MLJ), 75(3):297–325, 2009.

Bharath Hariharan, Lihi Zelnik-Manor, S. V. N. Vishwanathan, and Manik Varma. Large scale
max-margin multi-label classification with priors. In Proceedings of International Conference
on Machine Learning (ICML), pages 423–430, 2010.

William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pages 607–615, 1995.

Tamir Hazan and Raquel Urtasun. Efficient learning of structured predictors in general graphical
models. CoRR, abs/1210.2346, 2012.

Klaus-Uwe Hoffgen, Hans-Ulrich Simon, and Kevin S. Van Horn. Robust trainability of single
neurons. Journal of Computer and System Sciences, 50(1):114–125, 1995.

Daniel Hsu, Sham Kakade, John Langford, and Tong Zhang. Multi-label prediction via com-
pressed sensing. In Advances in Neural Information Processing Systems (NIPS), pages 772–
780, 2009.

Liang Huang, Suphan Fayong, and Yang Guo. Structured perceptron with inexact search. In
Proceedings of Human Language Technology Conference of the North American Chapter of
the Association of Computational Linguistics (HLT-NAACL), pages 142–151, 2012.

Jiarong Jiang, Adam Teichert, Hal Daumé III, and Jason Eisner. Learned prioritization for trad-
ing off accuracy and speed. In Advances in Neural Information Processing (NIPS), 2012.

T. Joachims. Training linear SVMs in linear time. In ACM SIGKDD International Conference
On Knowledge Discovery and Data Mining (KDD), pages 217–226, 2006.

Matti Kääriäinen. Lower bounds for reductions. In Atomic Learning Workshop, 2006.

Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, and Dan Chazan. Phoneme alignment based
on discriminative learning. In Proceedings of Annual Conference of the International Speech
Communication Association (Interspeech), pages 2961–2964, 2005.

Roni Khardon. Learning to take actions. Machine Learning Journal (MLJ), 35(1):57–90, 1999.

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Foundations
and Trends in Machine Learning, 5(2-3):123–286, 2012.

100

Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan. Beam search
algorithms for multilabel learning. Machine Learning, 92(1):65–89, 2013.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of International
Conference on Machine Learning (ICML), pages 282–289, 2001.

Michael Lam, Janardhan Rao Doppa, Xu Hu, Sinisa Todorovic, Thomas Dietterich, Abigail
Reft, and Marymegan Daly. Learning to detect basal tubules of nematocysts in SEM images.
In Proceedings of ICCV Workshop on Computer Vision for Accelerated Biosciences (CVAB).
IEEE, 2013.

Chun-Liang Li and Hsuan-Tien Lin. Condensed filter tree for cost-sensitive multi-label classifi-
cation. In Proceedings of International Conference on Machine Learning (ICML), 2014.

Qi Li, Heng Ji, and Liang Huang. Joint event extraction via structured prediction with global
features. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (ACL), pages 73–82, 2013.

Hung-Yi Lo, Ju-Chiang Wang, Hsin-Min Wang, and Shou-De Lin. Cost-sensitive multi-label
learning for audio tag annotation and retrieval. IEEE Transactions on Multimedia, 13(3):
518–529, 2011.

Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Fern, Thomas G. Dietterich, and
Prasad Tadepalli. Prune-and-score: Learning for greedy coreference resolution. In Proceed-
ings of Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.

David A. McAllester, Tamir Hazan, and Joseph Keshet. Direct loss minimization for structured
prediction. In Advances in Neural Information Processing Systems (NIPS), pages 1594–1602,
2010.

Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson. Learning efficiently with ap-
proximate inference via dual losses. In Proceedings of International Conference on Machine
Learning (ICML), pages 783–790, 2010.

Ananth Mohan, Zheng Chen, and Kilian Q. Weinberger. Web-search ranking with initialized
gradient boosted regression trees. Journal of Machine Learning Research - Proceedings Track,
14:77–89, 2011.

Kevin Murphy, Yair Weiss, and Michael Jordan. Loopy-belief propagation for approximate
inference: An empirical study. In Conference on Uncertainty in Artificial Intelligence (UAI),
1999.

101

Joakim Nivre. Algorithms for deterministic incremental dependency parsing. Computational
Linguistics, 34(4):513–553, 2008.

Dennis Park and Deva Ramanan. N-best maximal decoders for part models. In Proccedings of
IEEE International Conference on Computer Vision (ICCV), pages 2627–2634, 2011.

Nadia Payet and Sinisa Todorovic. SLEDGE: Sequential labeling of image edges for boundary
detection. International Journal of Computer Vision (IJCV), 104(1):15–37, 2013.

James Petterson and Tibério S. Caetano. Reverse multi-label learning. In Advances in Neural
Information Processing Systems (NIPS), pages 1912–1920, 2010.

James Petterson and Tibério S. Caetano. Submodular multi-label learning. In Advances in Neural
Information Processing Systems (NIPS), pages 1512–1520, 2011.

Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, and Lide Wu. Sparse higher order
conditional random fields for improved sequence labeling. In Proceedings of International
Conference on Machine Learning (ICML), 2009.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-
label classification. Machine Learning, 85(3):333–359, 2011.

Jesse Read, Luca Martino, and David Luengo. Efficient Monte Carlo optimization for multi-
label classifier chains. In Proceedings of International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 3457–3461, 2013.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. Journal of Machine
Learning Research - Proceedings Track, 9:661–668, 2010.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. Journal of Machine Learning Research -
Proceedings Track, 15:627–635, 2011.

Dan Roth and Wen tau Yih. Integer linear programming inference for conditional random fields.
In Proceedings of International Conference on Machine Learning (ICML), pages 736–743,
2005.

Rajhans Samdani and Dan Roth. Efficient decomposed learning for structured prediction. In
Proceedings of International Conference on Machine Learning (ICML), 2012.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pronounce
English text. Complex Systems, 1:145–168, 1987.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93–106, 2008.

102

David Sontag, Ofer Meshi, Tommi Jaakkola, and Amir Globerson. More data means less in-
ference: A pseudo-max approach to structured learning. In Advances in Neural Information
Processing Systems (NIPS), pages 2181–2189, 2010.

Veselin Stoyanov and Jason Eisner. Easy-first coreference resolution. In Proceedings of Inter-
national Conference on Computational Linguistics (COLING), pages 2519–2534, 2012.

Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure. In Proceed-
ings of International Conference on Artificial Intelligence and Statistics (AISTATS), pages
725–733, 2011.

Charles A. Sutton and Andrew McCallum. Piecewise training for structured prediction. Machine
Learning Journal (MLJ), 77(2-3):165–194, 2009.

Umar Syed and Rob Schapire. A reduction from apprenticeship learning to classification. In
Advances in Neural Information Processing Systems (NIPS), pages 2253–2261, 2010.

Farbound Tai and Hsuan-Tien Lin. Multilabel classification with principal label space transfor-
mation. Neural Computation, 24(9):2508–2542, 2012.

Benjamin Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In Ad-
vances in Neural Information Processing Systems (NIPS), 2003.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings of
International Conference on Machine Learning (ICML), 2004.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large mar-
gin methods for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 6:1453–1484, 2005.

Grigorios Tsoumakas and Ioannis P. Vlahavas. Random k -labelsets: An ensemble method
for multilabel classification. In Proceedings of European Conference on Machine Learning
(ECML), pages 406–417, 2007.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vlahavas. Mining multi-label data. In
Data Mining and Knowledge Discovery Handbook, pages 667–685. 2010.

Grigorios Tsoumakas, Min-Ling Zhang, and Zhi-Hua Zhou. Introduction to the special issue on
learning from multi-label data. Machine Learning, 88(1-2):1–4, 2012.

Julia Vogel and Bernt Schiele. Semantic modeling of natural scenes for content-based image
retrieval. International Journal of Computer Vision (IJCV), 72(2):133–157, 2007.

103

David Weiss. Structured prediction cascades code. http://code.google.com/p/
structured-cascades/, 2014.

David Weiss and Benjamin Taskar. Structured prediction cascades. Journal of Machine Learning
Research - Proceedings Track, 9:916–923, 2010.

David Weiss, Ben Sapp, and Ben Taskar. Sidestepping intractable inference with structured
ensemble cascades. In Advances in Neural Information Processing Systems (NIPS), pages
2415–2423, 2010.

David J. Weiss and Ben Taskar. Learning adaptive value of information for structured prediction.
In Advances in Neural Information Processing Systems (NIPS), pages 953–961, 2013.

Michael L. Wick, Khashayar Rohanimanesh, Sameer Singh, and Andrew McCallum. Training
factor graphs with reinforcement learning for efficient MAP inference. In Advances in Neural
Information Processing Systems (NIPS), pages 2044–2052, 2009.

Michael L. Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew McCal-
lum. Samplerank: Training factor graphs with atomic gradients. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), 2011.

Yuehua Xu, Alan Fern, and Sung Wook Yoon. Learning linear ranking functions for beam search
with application to planning. Journal of Machine Learning Research (JMLR), 10:1571–1610,
2009.

Yuehua Xu, Alan Fern, and Sung Wook Yoon. Iterative learning of weighted rule sets for greedy
search. In Proceedings of International Conference on Automated Planning and Systems
(ICAPS), pages 201–208, 2010.

Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan Wu. Conditional random fields with high-
order features for sequence labeling. In Advances in Neural Information Processing Systems
(NIPS), pages 2196–2204, 2009.

Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao. Max-violation perceptron and forced decoding
for scalable MT training. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1112–1123, 2013.

Min-Ling Zhang and Kun Zhang. Multi-label learning by exploiting label dependency. In Pro-
feedings of International Conference on Knowledge Discovery in Databased (KDD), pages
999–1008, 2010.

Min-Ling Zhang and Zhi-Hua Zhou. ML-kNN: A lazy learning approach to multi-label learning.
Pattern Recognition, 40(7):2038–2048, 2007.

104

Wei Zhang and Thomas G. Dietterich. A reinforcement learning approach to job-shop schedul-
ing. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages
1114–1120, 1995.

Yi Zhang and Jeff G. Schneider. Multi-label output codes using canonical correlation analysis.
Journal of Machine Learning Research - Proceedings Track, 15:873–882, 2011.

Yi Zhang and Jeff G. Schneider. Maximum margin output coding. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), pages 1223–1230, 2012.

