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Chapter 1 – Introduction

In recent years, materials with a negative index of refraction have been researched

extensively due to their physical realization using structured electromagnetic com-

posite materials and their unusual interaction with electromagnetic waves. A neg-

ative refractive index is characteristic of materials for which both the dielectric

permittivity and magnetic permeability are simultaneously negative. This distic-

tive negative material property provides new physical phenomena such as reversed

Snell’s law, Cherenkov radiation, etc [2, 3] and the ability to enhance evanescent

wave components [4]. Unique applications such as subwavelength imaging and pla-

nar lens design can be derived from a negative index of refraction [2, 5]. Negative

index materials (NIMs) provide exciting opportunities for the field of photonics

including applications for imaging and sensing devices, optical cloaking structures,

and electro-plasmonic circuits [4, 6, 7, 8, 9, 10]. To actively engage in this promis-

ing class of materials and applications we study the electromagnetic properties

of nanoscale1 planar waveguides with non-magnetic strongly anisotropic dielectric

cores in this dissertation. The index of refraction in these systems is shown to

be either positive or negative depending on the material parameters. We primar-

ily focus on the potential negative refractive index effects in order to design and

optimize planar-waveguide based beam-steering photonic devices. The goal is to

answer the fundamental question of coupling between micron-sized telecom fibers

and nanoscale waveguides in order to make photonic circuits realizable.

The first chapter is an overview of negative index media including the fun-

damental differences between positive and negative index materials. We briefly

discuss the discovery of some of the phenomena related to NIMs. We review the

physics behind obtaining the essential simultaneous negative permittivity and neg-

ative permeability and the proposed manufactured solutions achieving these nega-

tive parameters as no naturally occuring material has been found to demonstrate

1Wavelength is the commonly used size scale unit in electrodynamics. The terms nanoscale
refers to sizes much smaller than the optical wavelength (λ ∼ 1µm) region while and microns
to larger sizes. The descriptions, nano and subwavelength will be interchanged throughout this
work when referring to optical systems.
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them in the same frequency range. We explain how negative refraction provides

opportunities for reversed physical effects and subwavelength imaging- novel imag-

ing that surpasses the conventional diffraction limit. This common optical problem

prevents the resolution of features in an image to better than the order of the a

wavelength of incident radiation [11]. Due to the wave nature of light, focusing can

only occur to a point as small as half the light wavelength by traditional methods.

Thus, in order to obtain optical resolution below the wavelength of the light, this

barrier, known as the Abbe barrier, must be surpassed [12]. It is this limited reso-

lution of light that currently restricts the exciting optical field of photonic circuits.

Optical circuits, which employ the use of light instead of electricity, provide the

promise to advance the progress of electronic devices. Travelling massless light

particles (photons) are much “faster” than the comparatively massive electrons,

conceivably allowing faster information processing by a factor ∼ 106 for visible

light. Overheating is the major obstacle facing electronic circuits today optical

circuits providing faster oscillations will also aid in eliminating that problem. The

current limitation for optical elements is their size; they are currently on the order

of microns (µm) for visible light, which is still two orders of magnitude bigger than

the electronic circuits made today (∼ 10nm) [13, 14, 15, 16].

A particular realization of negative index materials are non-magnetic planar

waveguides with anisotropic cores. Such a system is studied in detail in Chap-

ter 3. These unique structures provide a new approach to producing a negative

index material without needing a negative magnetic material response and are

not limited by diffraction2. In the first part of this chapter we develop the an-

alytical formalism to describe mode structure and propagation of light in these

strongly anisotropic systems. Section 3.4 studies the effects related to finite con-

ducting waveguide cladding on the modal structure and index of refraction inside

the waveguide. Section 3.5 gives an analytical description of the electromagnetic

properties of nanostructured metal-dielectric composites, including the nanolay-

ered and nanowired metamaterials used for the numerical simulations of planar

lens imaging presented in Section 3.6. These simulations demonstrate results us-

ing a low-loss, far-field, negative index planar lens that obtain image resolution

better than the conventional free-space diffraction limit for λ = 1.5µm.

2As we will show in Chapter 3, the diffraction limit still applies to such waveguides but it is
delayed rather than eliminated.
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A practical extension of the proposed waveguide system is found in Chapter 4.

We investigate the coupling to and from our subwavelength waveguide system with

various sizes of surrounding waveguides and are motivated by the goal to find trans-

mission through and reflection from the combined system. Section 4.1 presents

the design of the numerical simulations employed to model electromagnetic wave

propagation in arbitrary waveguide configurations. The case of multiple coupled

waveguides is explored using the relaxation technique found in Section 4.3, includ-

ing a comparison in the behavior between isotropic, positive index and anisotropic,

negative index waveguides. The derivation of analytical expressions for the trans-

mission and reflection coefficients is found in Section 4.2 along with a comparison

of these expressions to our numerical results. Finally, we investigate the extension

of the planar lens with imaging in chosen coupled waveguide configurations. Using

imaging to focus light at the nanoscale aids in the ongoing pursuit for smaller and

faster processors, sensors, and related devices.
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Chapter 2 – Negative Index Media

This chapter overviews the physics and history of negative index materials start-

ing with the electromagnetism basics involved. Section 2.2 explains what it means

to have a negative electromagnetic response and reviews recent experiments per-

formed to develop materials with this necessary response in various frequency

ranges. Section 2.3 explains some of the unusual physics demonstrated by NIMs

including reversed effects, imaging with NIM lenses, and experiments validating

negative refraction in manufactured materials.

The same mathematical formalism is used throughout this dissertation. We

model the electromagnetic wave in the proposed planar waveguide system as a

series of modes. Choosing a single frequency ω = 2πc/λ0, where λ0 is the vacuum

wavelength, these modes can be written as,

ψl = Cl(κl)e
i(kyy+kzz−iωt) (2.1)

where Cl(κl) designates the structure of the mode in the x-direction and is a linear

combination of cos(κlx) and sin(κlx) in the most general case. The modes are

numbered by the κ parameter which is π times an integer multiple (depending on

the symmetry of the mode) divided by the size of the waveguide1. Each individual

mode is a solution to Maxwell’s equations, which in Gaussian units are stated as,

∇ · �D = 4πρ (2.2)

∇ · �B = 0

∇× �H =
4π

c
�J +

1

c

∂ �D

∂t

∇× �E = −1

c

∂ �B

∂t

With each mode satisfying these fundamental equations, the general solution for

the electromagnetic fields can be represented as a linear combination of individual

1The κ parameter is described explicitly in Chapter 3.
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modes (2.1) with coefficients calculated from boundary conditions using advanced

numerical calculations involving delicate matrix manipulations.

In general, the electric field �E and the magnetic flux density �B are the basic

vectors and �D and �H are obtained from them by adding the polarization �P or

subtracting the magnetization �M , respectively. If �P and �M are proportional to

the applied field, then �D and �B are related to �E and �H through the material

parameters; the dielectric constant ε and the permeability µ.

�D = ε �E (2.3)

�B = µ �H. (2.4)

The tensors of dielectric permittivity (ε) and magnetic permeability (µ) describe

the linear response and electromagnetic properties of the medium. The simplest

case is for isotropic media, where the tensors are diagonal with three identical

entries. In this case, the parameters can be replaced with scalars ε and µ.

Together, Eqs. (2.2, 2.3, 2.4) determine how electromagnetic waves propagate

within a medium. These equations can be combined to obtain the electromagnetic

wave equation,

∇2 �E(�r, t) =
εµ

c2
∂2 �E(�r, t)

∂t2
, (2.5)

where c = 2.9979 × 1010cm/s is the speed of light in a vacuum. Solutions of

this equation are waves of the form; exp[i(�k̇�x − ωt)]. The phase velocity of the

individual wave fronts is then given by vph = ω/k = c/n where n is the index of

refraction of the material in which the wave propagates. From this one can easily

derive the conventional index of refraction definition: the ratio of the speed of light

to the speed of light in the material, n = c/vph. Putting the solutions back into

Eq. 2.5 reveals the wave vector, k = ±√
εµω/c. Combining this with the definition

of the phase velocity, the index of refraction is,

n = ±√
εµ. (2.6)

2.1 Left Handed versus Right Handed Media

All transparent or translucent materials that we know of possess a positive refrac-

tive index. Optical materials usually have a positive ε and µ so that the positive
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√
εµ is typically taken for n. It is interesting to consider the case where both ε and

µ are negative and the negative sign is chosen for n. Following the simple analysis

from Pendry [3]: if ε = −1 and µ = −1 are instead written as ε = exp(iπ) and

µ = exp(iπ), then n =
√
εµ =

√
(ε)
√

(µ) = exp(iπ/2) exp(iπ/2) = exp(iπ) = −1.

Furthermore, if these materials are uniform, �k, �E, �H form a left-handed set of vec-

tors. Hence, these materials are referred to as “left-handed”, because the wave

vector, k, is antiparallel to the energy propagation of the wave determined by the

Poynting vector, �S = �E× �H . �S always forms a right-handed cross product with the

electric field and magnetic field even in left-handed materials. These materials are

called left-handed materials (LHM), doubly negative materials (DNG), or negative

index of refraction materials (NIM). We will primarily use the latter convention in

this work to avoid confusion with the notation for optical chirality [17, 18]. NIMs

also exhibit antiparallel phase, vp and group, vg velocities which we will discuss in

detail in Sec 2.3.1.

Victor Veselago is known to first consider and predict the effects of lossless NIMs

in his 1968 paper [2], but some concepts and phenomena related to materials with

a negative refractive index were discovered as early as 1904. Horace Lamb (1904)

and Henry Pocklington (1905) both found antiparallel phase and group velocities in

mechanical systems [19, 20]. Near the same time, Arthur Schuster derived similar

behavior in optical systems as well as the resulting negative refraction [21]. In the

1950’s antiparallel energy flux and phase velocity were theoretically recognized by

Dmitriy Sivukhin in materials with ε < 0 and µ < 0 although he noted that these

materials were not known to exist [22].

2.2 Electromagnetic Material Response

The dielectric constant ε and magnetic permeability µ characterize the macro-

scopic response of a homogeneous material to applied electric and magnetic fields.

Therefore, simultaneously negative values of ε and µ imply the material has a

negative response to the driving field [3]. Conceptually one can use the Drude-

Lorentz model visualize this response by picturing the material as harmonically

bound electrons and magnetic moments, oscillating with frequency ω0 in response

to applied electromagnetic fields of the form, �E(�r, t) = �E exp(−iωt). First con-

sider the bound electron resonant system as known in insulators; for frequencies
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far below ω0, a polarization is induced in the same direction as the applied field

because the field displaces the electrons from the positive sites. As the frequency of

the driving field is varied across the resonance frequency, the material polarization

flips from in-phase to out-of-phase with the driving field, demonstrating a negative

response. A negative magnetic response is achieved when the material response is

due to harmonically bound magnetic moments [3].

Conductors can be viewed as insulators with charges free to move larger dis-

tances from the atoms where only the applied field frequency, ω, effects the material

parameters (not the individual oscillator frequencies, ω0). The Drude form for the

dielectric function in metals responding to high frequencies (e.g. light) is domi-

nated by the plasma-like response as described in Refs. [17, 23]. This form is given

by,

ε(ω) = 1 − ωpl
2

ω(ω + i τ)
(2.7)

where τ represents the EM losses due to damping by a frictional force in the

material and ω2
pl = 4π( ne2

meff
) is the definition of the effective plasma frequency.

This electrostatic oscillation frequency is in response to a small charge separation.

Here, e and meff are the charge and effective mass of the electron respectively,

and n is the density of conduction electrons. Typical values for ωpl are on the

order of several eV, and τ is small [23, 24]. Note that for ω < ωpl the real part of

the permittivity of the metal becomes negative. This occurs in the optical to GHz

frequencies when using metals like Ag, Al, and Au, where the plasma frequency is

on the order of 10 eV . The losses, given by ratio of the imaginary part of ε to the

absolute value of the real part, are typically small in these spectral ranges [25].

To adhere with causality between the polarization and the applied electric field,

NIM’s must necessarily be both dispersive and absorptive. As in Eq. 2.7, their

dielectric permittivity and magnetic permeability are generally complex functions

of the frequency. It can be shown with the Kramers-Kronig relations that the

real part of the dielectric function can be used to find the imaginary part and

vice versa, connecting the dispersive and absorptive aspects of the process [23, 26].

Absorption of radiation in the material is directly related to the imaginary parts

of ε(ω) and µ(ω). The material frequency dispersion is related primarily to the

real part of ε and µ as seen in Eq. 2.7. There is no fundamental reason the real

parts of ε and µ cannot be negative, however there is a restriction on the sign of



8

the imaginary parts. The imaginary parts of ε and µ must remain positive so that

the total energy absorbed in a volume of the medium remains positive definite

assuming the medium is dissipative, which we will assume in the remainder of this

work [17, 27]. Causality, along with the possibility of materials with gain and the

resulting signs of ε, µ, and n are further discussed in Section 2.3.1.

The fact that the negative response and the resulting negative material param-

eters happen near a resonance gives reason for why no naturally occurring material

or compound has ever been demonstrated with negative values for both ε and µ

in the same frequency range. Negative material parameters will vary as a function

of frequency thus exhibiting frequency dispersion [2]. The frequency bandwidth

for which negative materials transpire is relatively narrow compared to the posi-

tive material bandwidth. A negative electric response due to electric polarizations

typically occurs at higher frequencies than for the magnetic counterpart. ε < 0

is found rather easily at optical frequencies for metals like silver, gold, and alu-

minum, and in the terahertz to IR region for semiconductors and insulators. It is

rare to achieve a natural negative magnetic response, but it is found in resonant

ferromagnetic, ferromagnetic, and antiferromagnetic systems at a few hundred gi-

gahertz. The fundamental processes causing the resonance and resulting negative

magnetic polarization are either unpaired electron spins or orbital electron cur-

rents, both of which tend to occur at low frequencies, falling off toward the THz

and IR range [3, 27].

Although overlapping negative material parameters are necessary to achieve a

negative refractive index in uniform, isotropic materials, other natural materials

can exhibit negative refraction without this requirement. For example, birefrin-

gent crystals with dielectric anisotropy display negative refraction at some incident

angles [28], and at all angles with a strong enough anisotropy, having a negative

permittivity in the direction transverse to the surface and positive in-plane per-

mittivity [29]. However, the phase velocity remains in the same direction as the

energy flux in birefringent materials so all attributes of a NIM are not obtained.

The revived interest in negative index materials led to the development of arti-

ficial materials, known as metamaterials, which have an electromagnetic response

that is unachievable in conventional materials [30]. This class of inhomogenous ma-

terials was primarily developed as arrays of repeated subwavelength elements that

possessed a strong response to applied electromagnetic fields. The inhomogeni-
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eties, or size and spacing of the repeated elements, must have length scales smaller

than the wavelength of the incident radiation. Typically, the size is 5 to 10 times

smaller than the free-space wavelength. Then the incident radiation cannot distin-

guish the individual elements but rather reponds to the macroscopic features (ie.

ε, µ) and resonances of the structure [3, 27, 31, 32]. Therefore global electromag-

netic parameters can be used to describe the material. Some metamaterial designs

are best described by effective-medium theory or derivations thereof [30, 33, 34].

Effective-medium theory (EMT) calculates the effective macroscopic properties for

a medium based on its components and is a continuous approximation.

It is noteworthy to mention that the Kramers-Kronig relations mentioned above

involve integrations over the frequency from negative infinity to infinity and the

effective-medium theories will break down at high frequencies. This is especially

important to realize when working with metamaterials because the scale of the

structures is only one to two orders smaller than the wavelength. Thus, the ho-

mogenization of the metamaterials becomes invalid at the high frequency limit and

care must be taken when evaluating the Kramers-Kronig integrals [27].

Metamaterials are different from other structured photonic materials such as

photonic crystals or photonic band-gap materials that have been popularly used

to produce negative refractive phenomenon [35, 36, 37]. Photonic crystals are a

media with a periodic structure on dielectric or metallic body, usually produced

by drilling or etching holes [3]. These structures are capable of achieving a nega-

tive phase velocity and therefore negative refraction. However, it is the multiple

Bragg scattering in these periodic structures that produces the band-gaps and re-

sulting negative refraction near the band edges [38, 39]. The periodicity of these

structures is actually on the order of the incident radiation wavelength, therefore

homogeneity is effectively lost and single values of the bulk parameters, ε and µ

can not easily describe these media. The near-wavelength periodicity blurs the

line between refraction and diffraction in experiments done with photonic crystals.

Also, fabrication defects have a large impact on material performance, particulary

for three-dimensional systems [27]. In the case of metamaterials, the periodicity is

not as important and the properties depend mainly on single scatterer resonances

so this paper will focus on those structures and not photonic band-gap materials.

Specific designs and experiments demonstrating negative refraction using metama-

terials will be discussed in Section 2.3.2.
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2.2.1 Negative Dielectric Permittivity

It is easier to find materials with a negative dielectric permittivity than negative

permeability so we will start with them. Some metals and plasmas already have a

negative ε at optical frequencies because the conduction electrons can be assumed

to be free in the background of static positive ion cores. This plasma-like behavior

is reponsible for obtaining a negative permittivity at frequencies less than the

plasma frequency as seen in Eq. 2.7. Above ωp the medium behaves as a positive

dielectric. This is the Drude-Lorentz model for dispersion in a plasma. For many

metals, the plasma frequency is near ultraviolet frequencies and τ is small compared

to ωp, so they possess a negative ε at optical frequencies [24]. Because most metals

have large dissipation, it is hard to extend this theory to lower frequencies where

the dissipation dominates. It should be noted that for a band of frequencies above

the resonance frequency, negative ε can be found in ordinary dielectrics with bound

charges. Here the electrons are bound to positive nuclei and respond accordingly to

an applied electric field. In effect, this adds a restoring force term to the equation

of motion for an electron and leads to the Lorentz dielectric function,

ε = 1 +
ω2

p

ω0
2 − ω2 − iτω

. (2.8)

It is clearly seen that setting ω0 = 0, we obtain the Drude form for ε (Eq. 2.7).

Now with a sharp enough resonance, the dielectric permittivity can be negative

for a small frequency range above ω0 [27].

Metal-dielectric composites have been studied extensively for their electromag-

netic response [40]. When the wavelength of incident radiation is much larger than

the length scales of the structures, effective medium theories can be used to de-

scribe these composite systems. Independently both Pendry et. al. [41, 42] and

Sievenpiper et. al. [43] demonstrated that metallic wire-mesh structures have a

low frequency stop band from zero frequency up to a cutoff frequency due to the

movement of electrons in the metallic wires. A negative dielectric permittivity is

thought to be the reason behind the low frequency stop band and provides a way

to obtain negative ε at microwave frequencies [27]. The position and direction of

the wires is important to consider because wires in only one direction will make

the medium anisotropic with negative ε only for waves with their electric field in
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that specific direction. An effective isotropic response can be acquired by placing

a three-dimensional lattice of wires oriented along three orthogonal directions. In

the limit of large wavelengths, the incoming light will not resolve the cubic sym-

metry and the medium appears to be isotropic, resulting in a true low-frequency

plasma.

Pendry [3] proposed an array of wire elements with periodic cuts to achieve a

negative ε metamaterial. Similar to the Drude-Lorentz model, the effective per-

mittivity is given by,

ε(ω) = 1 − ωp
2 − ω0

2

ω2 − ω0
2 + iτω

, (2.9)

where the plasma frequency, ωp, and the resonant frequency, ω0, are determined by

the geometry of the lattice rather than by the charge, effective mass, and density of

electrons as is the case with the metals and plasmas described above. The dielectric

permittivity is negative when ω0 < ω < ωp, and since the resonant frequency can

be set to almost any value in a metamaterial, this cut-wire medium can obtain

negative ε at frequencies as low as a few megahertz.

2.2.2 Negative Permeability

A negative magnetic response is tougher to obtain as magnetic activity in most

materials falls off for frequencies higher than a few gigahertz. A first considera-

tion for obtaining the negative µ was the diamagnetic screening effect found in

the response of a stack of metallic cylinders to an incident electromagnetic field.

Percolation metallodielectric composites have also been used to produce a diamag-

netic effective medium [40]. The problem with the cylinders is that the system only

had an inductive response. Pendry uses the basic definition of a magnetic dipole

moment, �m = 1/2
∫
�r × �jd3�r, with current density �j, to prove that a magnetic

response is achievable if current can be induced in closed loops [3]. Introducing a

resonance (capacitative elements) at the same time will envoke a strong magnetic

response and a possiblity of negative µ.

In 1999 Pendry and colleagues predicted magnetic metamaterials could be

formed from a proposed variety of structures consisting of loops or tubes of con-

ductors with a gap inserted (for illustration see Ref. [44]). These elements can be

viewed as miniature circuits where a time-varying magnetic field polarized perpen-
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dicular to the plane of the elements, induces an electromotive force in the plane,

driving currents around the conductor. Charges accumulate at the gaps in the

conductor, building up capacitance. This capacitance gives rise to a resonance

with frequency like that of an LC circuit, ω0

√
1/LC where the inductance, L, is

determined by the geometry of the element. These structures are known as split-

ring resonators (SRR) and have been built with numerous designs [45, 46, 47]. The

negative magnetic response occurs from the resonance. For frequencies far below

ω0 the currents in the conductor can keep up with the driving force caused by the

external magnetic field producing a positive response. As the frequency of the ap-

plied field increases, the currents start to lag, resulting in an out-of-phase, negative

response. The SRR can be thought of as the metamaterial version of a collection

of magnetic atoms with an effective frequency-dependent magnetic permeability,

µ(ω) = 1 − Fω2

ω2 − ω0
2 + iωΓ

(2.10)

[3, 48].

The SSR systems were first successful in the GHz range, and are a viable

solution for microwave frequencies, but are currently only scaled down to THz

frequencies. These artificial materials, used in microwave experiments, are used

to make an array of unit cells consisting of a SRR (µ < 0) and a thin wire span-

ning the cell (ε < 0) to yield a medium with n < 0. This repeated structure is

designed to have a strong response to an applied electromagnetic field and has

demonstrated negative refraction. However, the practical applications for NIMs

are in the optical to infrared frequency ranges (1013 − 1016) Hz. This is impossible

to reach with present SRR designs because the size of the conductor tubes and gap

would need to be on the order of 10 nanometers which is currently too small to

build. Additionally, because the negative effective magnetic response of the SRR

depends on the “bulk” conductivity of a metal they are predicted to break down at

the higher optical and ultra-violet wavelengths when metals become transparent

to light and no longer have the free-electron conductivity [48].

Negative magnetic permeability has been experimentally shown with several

other structures. Another Pendry design is the double SRR [44]. This struc-

ture involves two subwavelength-sized concentric SRRs, facing opposite directions,

which can be regarded as an LC circuit. The rings are considered as inductors and
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the gaps as well as the space between the rings are the capacitive elements. Ori-

enting a magnetic field perpendicular to the plane of the rings induces an opposing

magnetic field in the loop due to Lenz’s law. This diamagnetic response leads to

negative real µ and the double SRR has been scaled to 1 THz. An alternative

approach is to use a staple-structure facing a metallic mirror proposed by Zhang

et. al. [49], pushing the resonant frequency range to 60 THz. Single SRRs have

been shown to exhibit electric response at 85 THz and will provide a magnetic

response in that frequency range as well [50].

In 2005, U-shaped structures were reportedly found by Enkrich to have a mag-

netic response at the telecommunications wavelength of 1.5 µm [51]. Lastly, Yuan

et. al. used arrays of pairs of parallel silver strips demonstrated a negative mag-

netic response (µ′ = −1.7) in the red portion of the visible spectrum (λ = 725

nm) [52]. Asymmetric currents in the metal structures, induced by a perpendic-

ular TM polarized light, give rise to this magnetic response. A strong resonance

is required to get the desired negative magnetic response at higher frequencies.

These systems therefore have significant resonance losses making them impractical

for optical applications.

2.3 Predicted Physics in NIMs

Veselago was the first to publish a full report on negative refraction materials,

bringing attention to the unusual physical properties exhibited in such materials.

Examples of these properties include modified Snell’s law of refraction, reversal

of the Doppler shift, and inversed Cherenkov radiation [2]. Recently, left-handed

materials have received much more attention as they have been manufactured and

have actually demonstrated these exciting new physical phenomena for certain

frequency ranges. Furthermore, in 2000, Sir Pendry demonstrated that negative

index materials can be used to make planar lenses which do not fall subject to the

conventional diffraction limit [4]. In this section these physical effects are explained

and explored in detail.
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2.3.1 Wave Propagation

Both ε and µ are analytic functions of the frequency, ω, with complex values.

Together they determine the propagation of electromagnetic waves in the media

they paramaterize. In particular, absorption and amplification in the media are

accounted for with positive or negative imaginary parts of these parameters re-

spectively. Here and below in this paper, we will use single and double prime (′; ′′)

to denote the real and imaginary parts of complex numbers, respectively. Thus we

can write, ε = ε′+ iε′′ and µ = µ′+ iµ′′. A passive medium is absorbing (dissipative

or lossy) and is characterized by a parameters (|ε|µ′′+ |µ|ε′′) > 0, whereas an active

dielectric medium is said to have gain (amplifying) and has (|ε|µ′′ + |µ|ε′′) < 0 [53].

As discussed above, with both ε and µ negative in Maxwell’s equations, the

wave vector �k has a reversed sign and is therefore opposite in direction to the

Poynting vector. By definition, the group velocity of a wave with wave vector �k is

�vg = ∂ω

∂�k
. The group velocity is directly proportional to the Poynting vector, and

thus conveys the energy of the wave as it describes the undistorted propagation

of the wave pulse envelope through space [2, 26]. Therefore, in NIMs the phase

velocity and group velocity are also antiparallel.

Considering all field components are proportional to the plane wave form exp[i(�k̇�r−
ωt)] and applying the second two Maxwell’s equations in Eq. 2.2 we arrive at:

�k × �E =
ω

c
µ �H (2.11)

�k × �H = −ω
c
ε �E

Defining the wave vector as, �k = nω
n̂c

, where n̂ is the unit vector along �E × �H, one

can verify that the phase vector indeed has a reversed sign when (ε′ < 0), and

(µ′ < 0), obtaining propagating waves with negative phase velocity. Since ε and

µ appear as a product in Eq. 2.5, propagating solutions exist for two cases: when

their signs are either both positive or both negative. Figure 2.3.1 shows the (ε′)-(µ′)

plane with the behavior of the electromagnetic waves in each quadrant. Materials

with ε′ > 0, µ′ > 0 fall in the first quadrant and support right-handed propagating

waves with positive phase velocity. Materials with properties in the upper left,

or second quadrant, are commonly found as electrical plasmas, metals in the UV



15

Figure 2.1: A schematic showing the categorization of materials based on the
dielectric permittivity and magnetic permeability. The vector sets in the upper
right and lower left show the right- and left-handed relationship between �E, �H ,
and �k.

to optical frequency ranges, and thin wire structures at GHz frequency. However,

the electromagnetic waves evenescently decay in these media. Likewise, waves are

also damped exponentially in media with parameters in the fourth quadrant. This

quadrant classifies structured materials and some natural magnetic materials up to

GHz frequency [2, 27]. The third quadrant is of interest as it includes NIM’s, which

allow propagating waves with a negative phase velocity. The right-handed and

left-handed vector triad of
〈
�E, �H,�k

〉
is drawn for the quadrants with propagating

waves.

Physically, an electromagnetic wave should decay in amplitude as it propagates

in a dissipative medium, like a NIM, therefore we must ensure the correct sign for

the propagating wave vector component. We start with the general wave vector
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dispersion relation,

|�k|2 = kx
2 + ky

2 + kz
2 = εµ

ω2

c2
, (2.12)

in an assumed homogenous media. Consider an electromagnetic plane wave with

wave vector 〈0, ky, kz〉 incident on an interface at z = 0 from a vacuum on the left

in the region (−∞ < z < 0) onto a medium with arbitrary ε and µ on the right in

the region (0 < z < ∞). ky must be held constant across the interface while kz is

given by,

k2
z = εµ

ω2

c2
− k2

y. (2.13)

This material dispersion relates the phase velocity to the frequency, and can be

used to determine the behavior of electromagnetic pulses in the material, such as

attenuation and distortion. The sign of kz in Eq. 2.13 cannot be determined from

Maxwell’s equations alone but must be selected to enforce the causality princi-

ple, or propagation away from the source. Mathematically, a branch cut in the

complex plane for values of k2
z must be chosen carefully to describe the optical

properties of the system. The behavior of the waves across this cut is discontin-

uous. To the right of the interface, if (k2
y < Re[εµω2/c2]) the waves are propa-

gating and if (k2
y > Re[εµω2/c2]) the waves are evanescently decaying. Also, the

medium on the right could be amplifying or absorbing depending on the sign of

Im[εµ]. The treatment of causality for this situation has lead to much contro-

versy [54, 55, 56, 57, 58]. Some argue to select the sign of kz by enforcing a

physically positive energy propagation [54, 56], but this is only physical in trans-

parent materials. Single negative materials, with opposite signs of ε and µ reflect

most of the incident radiation [26, 53]. Others propose a cut along the positive

real axis (0,∞) which enforces the decay of waves away from the boundary in pas-

sive media [55, 59]. This is used when considering metals and dielectrics excited

inside a geometry supporting total internal reflection. Regardless of the imaginary

part of the dielectric permittivity (ε′′), Re[k2
z < 0] implies propagating waves are

not supported, and the field must exponentially decay away from the source, ie.

k′′z > 0 [60]. This branch cut is only valid for passive materials when the causality

arguments are reduced. Similary, the cut along the negative real axis as proposed

in [7, 54, 61, 62] is not physical for active media.

Rewriting the wave vector equation as |n| = |�k|c/ω reveals why the index of
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refraction is an important optical property; it’s magnitude directly relates the mag-

nitude of the wave vector to the frequency, and therefore the phase velocity within

the material [26, 53]. Govyadinov et. al. in Ref. [53] propose the simultaneous

consideration of material transparency without losses or gains as well as a material

in the state of absorption or gain. They assert that a cut in the complex k2
z plane

will not satisfy all physical situations. There are four cases for an optical material

to belong to: it has either a positive or negative refractive index, n′, and radiation

is either absorbed (n′′ > 0) or amplified (n′′ < 0). They claim that a single branch

cut finding n from Eq. 2.6 is incorrect as it would limit the combinations of (n′, n′′)

to only two. Therefore, they suggest considering
√
ε and

√
µ separately, cutting

the complex plane along the negative imaginary axis for both parameters, and then

calculating n as
√
ε
√
µ [53, 60]. This universal approach adheres to causality and

correctly determines the direction of wavevectors in optical metamaterials.

2.3.2 Negative Refraction

The most commonly discussed issue associated with a reversed wave vector is the

refraction of radiation at an interface between a positive index material and a

negative index material. To begin analysis of the passage of light through this

interface, we review the boundary conditions derived from Maxwells equations

(Eq. 2.2):

E‖1
= E‖2

, H‖1
= H‖2

, (2.14)

ε1E⊥1 = ε2E⊥2, µ1H⊥1 = µ2H⊥2,

where subscript 1 refers to the positive index medium to the left of the interface,

and 2 indicates the negative index medium on the right. These boundary conditions

must be satisfied regardless of the sign of the index of refraction in the materials.

Assume electromagnetic plane wave propagation in the (y, z) plane, with the in-

terface located at z = 0 and the normal to the interface in the z-direction. The

first two conditions in Eq. 2.14 disclose that the x and y components of the �E and
�H fields maintain their direction in the refracted ray, independent of the sign of

the index of refraction in the media. However, the z (normal) component of the

refracted ray will change direction if there is a relative difference in the sign of n
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between the two media. From the second set of equations in Eq. 2.14 it is obvious

that �E and �H change magnitude from the first to second media, but their direction

also reflects relative to the media interface. The same is true of �k and this can

be seen in the
〈
�E, �H,�k

〉
vector diagrams in quadrants I and III of Figure 2.3.1.

In NIMs the save vector, �k, is directed toward the incident radiation, exactly op-

posite of �k in a right-handed medium. Therefore it is understood that there is a

negative phase velocity, meaning the phase decreases rather than advances as the

wave passes through the medium [2, 3].

A direct consequence of negative refraction at the interface between a positive

index material and negative index material is the reversal of the well-known Snell’s

law of refraction. Consider an electromagentic plane wave incident from a positive

index medium with wave vector 〈0, ky, kz〉 onto a NIM. The boundary conditions

in Eq. 2.14 must be satisfied, meaning the fields must be continuous, hence the

transmitted wave vector is (0, ky,−kz). As mentioned above, the phase vector, �k,

and the Poynting vector, �S, are antiparallel in NIMs, hence the refraction of the

energy flow an electromagnetic wave at such an interface would be at the “wrong”

side relative to the normal, bending away from the normal. This negative refraction

angle is seen most easily in Snell’s law,

n1 sin(θ1) = n2 sin(θ2), (2.15)

where n2 < 0 implying θ2 < 0 as well. This is in opposition to what is taught in

conventional optics: that the refractive wave may bend very close to the normal,

but will never cross it, regardless of how dense the second medium is. It is also

noteworthy to mention that the reflected angle remains unaffected by the negative

index of the second medium.

To demonstrate, Figure 2.3.2 shows numerical simulation results for the refrac-

tion of a mode in free space with the red, green, and blue arrows representing

the energy propagation direction of incident, reflected, and refracted waves respec-

tively in non-absorbing media. In (a) isotropic right-handed media is on both sides

of the interface and the rays behave as expected for positive index materials. The

schematic in (b) has a NIM on the right side of the interface and shows negative

refraction.

Fresnel’s formulas [26] are often used to find the amplitudes of the reflected



19

Figure 2.2: Exact numerical calculations of refraction of the mode in free space.
In all schematics, the right-handed media (zλ < 4) has ε = µ = 1, the angle
of incidence is π/4, and red, green, and blue arrows show the direction of inci-
dent, reflected, and refracted waves respectively. (a) Isotropic media with region
2 (z /λ > 4) having ε = 2.5, µ = 2.5. (b) NIM in region 2 (z /λ > 4) having
ε = −2.5, µ = −2.5.

and refracted light, knowing the incident radiation at a boundary. These may

still be used for the case of NIMs, but it is important to use the absolute values

of ε, µ, n, θ, and ϕ to ensure correct answers. A unique and valuable outcome of

negative refraction is a new type of optical lens formed with a planar slab of NIM,

first proposed by Veselago [2]. We will discuss these planar lenses and imaging

through them in Section 2.3.3.

2.3.2.1 Experiments

Now that we’ve covered how Re(ε) < 0 and Re(µ) < 0 were obtained using meta-

materials, it is necessary and interesting to include a discussion on experiments

performed to demonstrate negative refraction with these materials. Experimen-

tally, the first thing to attempt was the demonstration and measurement of trans-

mission through negative index materials. This was done by Shelby et. al. in 2001

using a two-dimensional isotropic split-ring NIM structure at microwave frequen-

cies [63]. They performed numerical simulations and analytical transfer-matrix
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calculations to verify their experimental transmission measurements. They con-

cluded that it is appropriate to treat the NIM used as a homogenous material with

material parameters having appropriate frequency dispersion. The next step was

to experimentally verify some of the predicted phenomena of negative refraction

media.

Snell’s law is the primary basis for measuring the index of refraction directly.

The first experiment revealing an actual negative index of refraction was also

done by Shelby et.al. [47] in 2001. They measured the power refracted from a

two-dimensional wedge of a metamaterial sample as a function of angle using mi-

crowave frequencies. The material consisted of a two-dimensional array of repeated

unit cells of copper strips and split ring resonators on interlocking strips of stan-

dard circuit board material. Using Snell’s law, they determined the effective n by

measuring the scattering angle of the transmitted beam through a wedge of the

metamaterial and confirmed that n is indeed given by −√
εµ when both ε and µ

are negative. In 2003 Houck et.al. at MIT [64] used composite wire and split-ring

resonator prisms to measure transmitted two-dimensional profiles of microwave

beams. Their transmission results obeyed Snell’s law with negative refraction.

They admitted the design of the materials was more complicated than they first

thought as the composite material exhibited a large sensitivity to the electromag-

netic environment, whereas the independent elements designed to obtain negative

ε and µ did not. It was the discrete nature of the material which adversely affected

transmission.

The first experiments demonstrating negative refraction scaled to the optical

range were accomplished at almost the same time for pairs of metal rods and for

the inverted system of pairs of dielectric voids in metals [61, 65]. Podolskiy et. al.

first showed that the pairs of metal nanorods are not only capable of diamagnetic

response but of obtaining a negative n′ in the optical frequency range [62]. The

negative response is due to an incident electromagnetic wave on the system. An

alternating current parallel electric field causes currents producing the −ε due to

resonant or off-resonant oscillations of the electrons in the metal. A magnetic field

oriented perpendicular to the plane of the rods causes antiparallel currents in the

rods yielding −µ. The magnetic response is either dia- or paramagnetic depending

on whether the wavelength of incident radiation is shorter or longer than the

magnetic resonance of the coupled rods. The rods are thought of as equivalent
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to inductors and gaps to capacitors, so the result is an LC circuit with a current

loop at optical frequency. The performance of these structures is measured with

a figure of merit, F = |n′|/n′′, where F > 1 is considered high and is usually only

obtained when both ε′ and µ′ are negative at the same frequency. An experiment

performed in the optical range (λ = 1.5 µm) resulted in a refractive index with real

part n′ = −0.3 ± 0.1 using a electron-beam-fabricated sample of paired rods [61].

F for this experiment was only 0.1 due to the large imaginary component of µ.

Another technique for NIM design is to use paired elliptically shaped voids in

metal films with a dielectric between the films. This is essentially an inverse of the

metal nanorod structure described above so the same idea of obtaining −n can be

applied. Typically, gold films are used with a dielectric between on the order of 100

nm. Zhang et. al. obtained a negative index of refraction for both circular voids

and later for elliptical voids of n′ = −2.0 and n′ = −4.0 respectively [65, 66]. The

wavelengths used were λ = 1.8 µm and λ = 2.0 µm with resulting figure of merits

F = 0.5 and F = 2.0. Similar to the circular or ellipsoidal voids is the fishnet

structure, proposed by Dolling, made with pairs of rectangular dielectric voids in

parallel metal films. Here, the broader metal strips supporting asymmetric currents

give rise to the negative permeability and the narrower metal strips, resembling

wires, produce the negative permittivity [67]. The Karlsruhe-Iowa State group

obtained the highest figure of merit for negative refractive index materials with

F = 3.0, n′ = −1.0 at λ = 1.4 µm [67].

2.3.2.2 Alternate Approaches for Obtaining Negative Refraction

The above approaches to designing negative index materials suffer from the lim-

itations imposed by using resonant structures to produce the necessary negative

electric and magnetic responses in the same frequency range. For desired optical

region applications, low-loss systems using the above approaches are not practical

due to the magnetic resonance involved. In addition, the metamaterials described

in Section 2.2 are required to be as fine as possible so that incoming electromagnetic

fields experience a homogeneous material and often do not achieve better than a

10:1 ratio of wavelength to structure size. Therefore, Pendry [68] suggests using

chiral materials, which can exhibit negative refraction of one polarization with

only a single resonance. Chiral materials have polarization-dependent refractive
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indices. Introducing the chirality tensor, χ,

χ =

[
χEE χEH

χHE χHH

]
(2.16)

the response of the medium to an electromagnetic field is given by:

�D = χEE
�E + χEH

�H (2.17)

�B = χHE
�E + χHH

�H. (2.18)

Pendry proposed a system with only a resonant band gap and chirality necessary

to obtain negative refraction and suggested a practical realization for this struc-

ture [68]. Others have proposed a chiral material with gyrotropy for optical appli-

cations, [69, 70, 71], while Qiu et al. focus on chiral medium with magnetoelectric

couplings to achieve the backward phase velocity present in NIMs [18]. Magneto-

electric materials have an electric field which may generate magnetization [33] and

Qiu claims that even a material with a weak or non-existant magnetic response

may exhibit negative index behavior. They theoretically demonstrate a negative

phase velocity and/or negative refraction within specific frequency ranges in both

isotropic and anisotropic magnetoelectric materials, resulting in a NIM without

artificial magnetic materials or resonant permittivity and permeability.

The next chapter offers another approach to producing negative index materials

using a non-magnetic anisotropic dielectric filling in a planar waveguide proposed

by Podolskiy and Narimanov [1]. This design does not rely on any resonances for

the negative electric and magnetic response, nor does it fall subject to fabrication

defects like photonic crystals.

2.3.3 Imaging and Lenses

Conventional optical systems have a single optical axis, limited aperture, and fall

subject to the diffraction limit. This fundamental law of physics prohibits the

focusing of electromagnetic radiation onto an area smaller than a square light

wavelength. Also, the positive refractive index of conventional optical lenses means

that they need curved surfaces to form an image, and fall subject to spherical
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Figure 2.3: A symmetric planar NIM-based lens with two real foci outside and
inside the slab. The source is placed a distance f to the left of the slab at the
origin. The arrows depict the ray paths from the object to the image.

abberations. A negative index of refraction allows a flat slab of a material to

behave as a lens and focus electromagnetic waves to produce a real image, known

as a planar lens [2, 4]. A planar lens with a NIM, ε2 = −ε1, µ2 = −µ1, in

the region acting as the lens does not have reflection from the interface as seen

in Figure 2.3.3. It is noteworthy to mention that planar lenses can only focus

the radiation from a point source at a point, and are not capable of focusing a

collection of rays from infinity as conventional lenses can [2]. When one places a

NIM inside actual concave and convex lenses, with the lenses placed in a vacuum,

the traditional lensing effects are interchanged as concave lenses then converge the

rays and convex lenses diverge.

Pendry was the first to predict and show the extraordinary consequence that

negative refraction provides the possibility of a perfect lens, obtaining an image

resolution that exceeds the traditional diffraction limit as all components of the

source are restored [4]. This application is both exciting and controversial as sub-

diffraction imaging has been shown to amplify the evanescent, non-propagating

components of the radiation that are usually confined to the locality of the source,

known as the near-field. As stated in Ref. [72], the spatial resolution of any

monochromatic optical system can be related to its ability to restore the wave

vector (ky) spectrum emitted by the source. This spectrum contains two funda-

mentally different types of waves. The waves which propagate away from the source

have |ky| < |nω|/c. As the distance between the point of observation and the source

is increased, the relative phase difference between these waves will increase. They
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are known to carry the information about the commonly called “thick” features of

the source with size ≥ λ/|2n|, which can be reconstructed if the phase difference is

reconciled. The other type of waves have |ky| ≥ |nω|/c, decay exponentially away

from the source, and are known as evanescent waves. They contain the information

about the “fine” sub-wavelength structure of the source, or features ≤ λ/|2n|, and

can be directly restored in the near-field only. The far-field reconstruction of these

features is limited by the conventional diffraction limit. The defining boundary be-

tween propagating and evanescent waves depends on both wavelength, λ, and the

index of refraction, n, of the material surrounding the source. Therefore it is pos-

sible to achieve subwavelength far-field resolution when materials with relatively

large index of refraction are used and we will discuss this in Section 3.6 [25].

As Pendry states in Ref. [4] the evanescent waves decay in amplitude but not

in phase as they fall away from the source, so it is their amplification that results

in their transmission. Energy remains conserved because the evanescent waves do

not propagate any energy. The amplification of these waves is due to their coupling

with well-defined surface states existant on the NIM [27, 73, 74].

Electromagnetic resonant states or surface waves known as surface plasmons

are supported in materials obeying Eq. 2.7 with a negative ε at UV to optical

frequencies. These surface plasmons were first reported by Ritchie in 1957 and are

the collective vibrations of an electron gas or plasma surrounding the atomic lattice

sites of a metal. At a metal-dielectric interface, they are longitudinal modes whose

fields decay exponentially into the metal and dielectric on either side, leaving a

surviving charge density wave on the surface with wave vector,

k =
ω

c

√
εmetalεdielectric

εmetal + εdielectric
, (2.19)

where ω is the oscillation frequency and c is the speed of light [24]. Surface plas-

mons can be excited by both electrons and photons (light) but do require a coupling

mechanism such as surface roughness, a grating structure, or a dielectric coupler

because surface plasmons cannot be excited on a perfectly flat surface [24, 75].

By altering the structure of the metallic surface, one can control properties of

surface plasmons, in particular their interaction with light, opening the potential

for developing new types of photonic devices. This has led to a new field of pho-

tonics including miniaturized photonic circuits with length scales that are much
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smaller than those currently achieved, data storage, light generation, microscopy,

and subwavelength imaging [76].

A major advantage of using a planar lens is the lack of a necessary specific

focal length per wavelength. The size of the system can be varied to optimize

the image resolution, but it does not depended specifically on the exactly incident

radiation wavelength. Additionally, these lenses have the near field capacity to

excite short wavelengths. NIM lenses are also lighter, easier to make and have

greater resolution in the near field [3].

Photonic crystals have been used to experimentally observe imaging through a

flat slab of negative index material [36, 77]. Low material absorption is necessary

along with all-angle negative refration in order to focus a diverging beam from a

point source. Parmani et. al. obtained plane-wave negative refraction at specific

incident angles and demonstrated it at microwave frequencies by using a metallic

photonic crystal prism. The microwave point source had a frequency of 9.3 GHz

(wavelength, 3.22 cm) was placed 2.25 cm from a two-dimensional flat lens made

of a photonic crystal fabricated from an array of cylindrical alumina rods. They

published images of their results and claimed that photonic crystals were key to this

advanced observation because they have the necessary dispersion characteristics to

achieve negative refraction over a wide range of angles [36].

Much work has been done researching imaging performed with lenses made of

resonant-based, negative ε-negative µ, NIMs. Podolskiy et. al. have derived a

resolution limit for the “real” absorbing NIM lens and demonstrated that the sub-

diffraction imaging is limited to the near-field, while the far-field resolution gains

no advantage over traditional optics [72]. They have also identified the optimal

configuration for the near-field superlens, and have shown that even these lenses

are impractical when the NIM absorption is greater than 30%. The absorption in

the NIM is measured by the ratio of ε′′ to ε′ [78]. This limitation of NIM lenses

along with a proposed solution of using non-magnetic NIMs to focus subwavelength

signals in the far-field are discussed in further detail in Section 3.6.

2.3.4 Other Reversed Phenomena

Besides Snell’s Law, there are a number of classical physical phenomena which

are reversed in NIMs. The Doppler effect is one such phenomenon. Assuming a
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stationary electromagnetic source with frequency, f0 and a detector moving away

from the source with velocity, v, the shifted frequency measured by the detector is

given by,

f ′ = f0
1 − nv/c

1 + nv/c
, (2.20)

where c is the speed of light [79]. In ordinary, right-handed materials the frequency

is red-shifted or decreased as the distance between the object and the detector

increases, ie. they are moving away from each other. Now suppose the detector

is in a material with −n. This effectively inverts the fraction in Eq. 2.20, causing

the shifted frequency to increase, or blue-shift, as the objects move further apart.

The Vavilov-Cerenkov radiation will also be reversed. Traditionally, this effect

of emitted electromagnetic radiation occurs only when a charged particle passes

through an insulating medium at a speed larger than the phase velocity of the

electromagnetic fields with frequency ω following the relation, v > c√
ε(ω)

[26]. As

the charged particle travels, the local electromagnetic field in the medium is dis-

trupted. Electrons in the atoms of the medium will be displaced and polarized

by the electromagetic field of the passing particle. After the disrupting particle

has passed, photons are emitted as the insulator’s electrons restore themselves to

equilibrium. Usually, the photons interfere with each other destructively and no ra-

diation is detected, but when the charged particle travels faster than light through

the medium, the photons interfere constructively and radiation can be observed.

The characteristic feature of the Cherenkov radiation is its angle of emission. Only

at the specific angle θ, where cos(θ) = c
nv

, does the constructive interference, and

resulting cone shaped emission, occur. This angle is acute in conventional, right-

handed materials, and the radiation interference is see by an observer at rest as a

wavefront in the shape of a cone moving in the same direction of the particle. This

is similar to the “shock” wave effect produced by supersonic aircrafts. However, for

NIMs the angle is obtuse so that θ → π − θ, and the Cherenkov cone of radiation

will be directed backward relative to the moving charged particle [2]. Hence, the

effect is reversed and the power is propagated backward. It has been mathemati-

cally shown that both backward and forward power propagation exist for different

frequencies due to dispersion [80]. Also, a backward-pointing radiation cone has

been experimentally demonstrated in photonic crystals [81].
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2.4 Concluding Remarks

Negative refraction and left-handed materials are a subject of continued rising in-

terest. The concept is counter intuitive and has provoked much controversy in

recent years [82, 83, 84, 85]. The exploration of the controversies has provided a

positive effect on the field as important ideas have been carefully examined and

ironed out. This chapter has unfolded the fundamental concepts of negative index

materials. We started by discussing the difference between right and left-handed

media and how negative index materials can exist. In the following section we

provide the background on different approaches to building negative index meta-

materials, and describe several experiments done using these materials. Lastly we

cover the new physical phenomena that NIMs provide access to, including nega-

tive refraction, reversed Doppler effect and Cherenkov radiation, and planar lenses

and imaging. Imaging beyond the wavelength limit is a very exciting possiblity of

NIMs, which we explore in details later in this work.

Practical applications of NIMs require low-loss materials, causing major con-

cern with many of the current techniques used to build these materials. The

problem lies in obtaining a negative dielectric permittivity and negative magnetic

permeability in the same frequency range. Many current approaches rely heav-

ily on resonance effects which have inherent losses affecting the resolution of the

system. In the next chapter, we propose a new approach utilizing anisotropic

metamaterials inside a planar waveguide to achieve a non-magnetic negative index

material which is low-loss and scalable to a large range of frequencies. We report

numerical simulation results which clarify some of the controversial issues, such a

causality violation.
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Chapter 3 – A Non-Magnetic Anisotropic Waveguide System

This chapter introduces a new approach to producing a negative index material

using nonmagnetic anisotropic materials inside a planar waveguide. Sections 3.1-

3.4 address waveguides with strongly anisotropic dielectric cores, introduce some

of the unique properties of such structures, and consider the effects of real metallic

waveguide walls. In particular, we explain the two types of modes which propa-

gate in our system and introduce the nonmagnetic propagation constant, ν. We

show that these anisotropic waveguides support propagating modes even when

their size is much smaller than the wavelength and that the phase velocity of the

propagating modes is negative. Section 3.5 reviews the fabrication approach of

strongly anisotropic materials desired for the waveguide core. Finally, we reveal

the practical application of far-field planar lens imaging through our system.

3.1 Geometry and Waveguide Propagation

The proposed unique negative-refraction system consists of a two-dimensional pla-

nar waveguide, with boundaries at x = ±d/2, parallel to the (y, z) plane. Un-

bounded propagation is allowed in the y and z directions. We assume a homoge-

neous material inside the waveguide which is nonmagnetic, meaning µ = 1, and

has a uniaxial anisotropic dielectric constant. We have one dielectric constant in

the x direction, (εx = ε⊥), along the optical axis, and one in the (y, z) plane,

(εy = εz = ε‖). The waveguide exterior may either be metal, air, or a dielectric. A

schematic of the system is shown in Fig. 3.1 [1].

Two kinds of waveguide modes are supported in this system. The first kind

of mode polarization is known as a transverse-electric (TE) wave, where the elec-

tric field vector is perpendicular to the optical axis and the propagation direc-

tion lies only in the (y, z) plane. The anisotropy has no effect on these waves as

their propagation depends only on ε‖. The second kind of mode polarization is a

transverse-magnetic (TM) wave, where the magnetic field vector is perpendicular

to propagation, lying in the (y, z) plane, and has a vanishing component along the

optical axis, whereas the electric field does not. The propagation of these elec-
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tromagnetic waves is affected by both ε‖ and ε⊥. These waves, which “feel” the

anisotropy, are essential for obtaining a negative index of refraction in our system.

A helpful depiction of the modes in our system is demonstrated in Fig. 3.2 [1]. As

we show further below, the TE and TM waves in our waveguide are fundamentally

distinct as they have different dispersion relations and refraction properties. We

are most concerned with the TM waveguide modes and the hybrid modes formed

when the TE and TM modes mix. A planar waveguide with perfectly conducting

walls may also support a transverse electromagnetic wave (TEM mode), where

both field components are transverse to the direction of propagation [26]. We do

not consider such modes here because they do not couple to the TE or TM modes

and they are not supported in our left-handed system.

A linear combination of the TE and TM modes can represent any electromag-

netic wave propagating in the system. The {x, y, z} components of TE (E(TE), H(TE)),

and TM (E(TM), H(TM)) waves propagating in (y, z) direction can be represented

by the following expressions:
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Figure 3.1: Illustration of our nonmagnetic negative-refraction system
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Figure 3.2: System schematic showing how TE and TM modes propagate through
the planar waveguide with anisotropic core.

where k = ω/c, and prime (′) denotes the differentiation with respect to x. The

field E
(TM |TE)
0 (x, y, z; t) = E

(TM |TE)
0 (x)e−iωt+ik

(TM|TE)
y y+ik

(TM|TE)
z z is defined from the

wave equation resembling that in Ref. [17],

E
(TM |TE)
0

′′
+ κ

(TM |TE)2E
(TM |TE)
0 = 0. (3.2)

Eq. 3.2 satisfies the conventional boundary condition for tangential (y, z) com-

ponents of the electric field to vanish at the waveguide walls. The above field

equations can be verified outright using Maxwell’s Equations [1].

To begin understanding wave propagation inside the proposed waveguide, we

will consider the case of perfectly conducting waveguide walls and extend this

theory to finite conducting boundaries in Section 3.4. In the ideal, perfectly con-

ducting wall case, the energy of the electromagnetic waves is confined to the core

of the waveguide. The wave equation (Eq. 3.2) produces a series of symmetric

and antisymmetric mode solutions for the x dependence of the fields, E
(TM |TE)
0 (x).

The symmetric modes are of the form cos(κx) with κ = (2j + 1)π/d, while the

asymmetric modes are of the form sin(κx) with κ = 2jπ/d, where j is an inte-

ger mode number in both cases. The standing wave structure of the waveguide

mode in the x direction is disclosed by κ, which in this case only depends on the

waveguide thickness, d, and mode number, j, and is completely independent of the

dieletric properties of the core. Thus, the κ mode parameter scales as the inverse

confinement length of the mode in the x direction and has the same dimension as

the wave vector, k. It is actually independent of the TE or TM waveguide mode
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polarization.

From Ref. [1], each waveguide mode has its own dispersion relation given by:

TM : kx
2

ε||
+ ky

2+kz
(TM)

2

ε⊥
= k2 = ω2

c2
, (3.3)

TE : kx
2

ε||
+ ky

2+kz
(TE)

2

ε||
= k2 = ω2

c2
. (3.4)

Starting from the dispersion relation for the TM mode (Eq. 3.3) in an anisotropic,

non-magnetic (µ = 1) uniaxial crystal, with the x axis defined as the optical axis,

as found in Ref. [86], we can derive the mode-dependant equivalent dispersion

relation for our two-dimensional wave propagating system. Recall that we only

have travelling waves in the y and z directions, so we include the x dependence by

replacing kx with κ. Rearranging terms and factoring out k2 = ω2

c2
we have,

k(TM)
z

2
+ ky

2 = ε⊥k2

(
1 − κ

2c2

ε||ω2

)
, (3.5)

with a similar version for the TE mode using ε|| instead of ε⊥. Now the TM wave

equation can be rewritten introducing a new propagation parameter, ν to include

the x dependence,

kz
(TM)

2
+ ky

2 = ε⊥νk2, (3.6)

where

ν = 1 − κ
2

ε||k2
(3.7)

Note the resemblance here between the new propagation constant, ν, and the

magnetic permeability, µ, from the free space dispersion relation, k2
x + k2

y + k2
z =

εµk2. Just as the case of a free space plane wave, the refractive index is a product

of two mode-specific scalar constants, now ε and ν [1]. The ε used depends on the

given mode; ε|| is used for TE modes and ε⊥ for TM modes. Thus depending on

the waveguide mode, our effective index of refraction is defined as,



32

n(TM) = ±√
ε⊥ν (3.8)

n(TE) = ±√
ε‖ν (3.9)

The TM and TE modes presented here deviate from those of the conventional

waveguide found in common textbooks [17, 26]. The difference lies in the geometry

of the system. Our planar waveguide with anisotropic core is unbounded in the

two-dimensional (y, z) plane, versus the isotropic cylindrical (1D) waveguide, which

has wave propagation only in the z direction. The traditional TE and TM mode

solutions can be found directly as a linear combination of the fields in Eq. 3.1.

As mentioned before, an arbitrary wave inside a planar waveguide can be rep-

resented as a linear combination of waveguide modes, each with a different value

of κ. For the rest of this paper we limit ourselves to the case when only a single

mode is excited initially. This assumption does not restrict the generality of our

approach since (i) it does not limit (y, z) structure of the solutions or their polar-

ization and (ii) different modes of the waveguide do not couple to each other. The

expressions recounted here can easily be generalized for the multimode case [1].

3.2 Strongly Anisotropic Systems

We must now consider all possible solutions for our system depending on the sign

of the ε and ν parameters. Knowing that imaginary values of the wave vector (k)

components correspond to attenuating waves, we need real values for ky and kz to

ensure propagation in the waveguide. This is only possible when ε and ν are of the

same sign. The typical, transmitting, isotropic waveguide is described when both

parameters are positive, (ε > 0; ν > 0). The case of ε < 0; ν > 0 corresponds to a

waveguide with a metallic core, which does not support propagating modes. The

reverse case, when ε > 0 and ν < 0 demonstrates a so-called subcritical waveguide,

which reflects all incoming radiation and again does not support propagating waves

[1, 87]. Similar to light transmission through a thin metallic film, an exponentially

small portion of radiation can penetrate into a finite-sized subcritical waveguide

[88].

Our interest in producing a negative index material, gives explanation for the

focus of this paper being on the case of negative values for both ε⊥ and ν. This case
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is realized only for the TM waveguide mode in anisotropic material, as the TE mode

will decay exponentially in such a waveguide. It should be noted that there are

various sign combinations of ε⊥ and ε‖ for which TM modes exist and propagate

in a waveguide. The only combination where TM mode propagation ceases is

when ε⊥ < 0; ε‖ < 0. The reverse combination where both constants are positive,

(ε⊥ > 0; ε‖ > 0), gives a right-handed waveguide, which is isotropic if ε⊥ = ε‖.

When either ε⊥ or ε‖ is negative with the other positive the dispersion relation

describes a hyperbola. In particular, when ε⊥ < 0 and ε‖ > 0, the hyperbolic

curve is such that the energy flux in the core is antiparallel to the wave vector,

meaning there is a negative index of refraction [86]. We specifically need the case

of ε⊥ < 0 and ε‖ > 0 to obtain a negative ν value as seen in Eq. 3.7.

Figure 3.2 shows the absolute value of the real part of the wave vector, kz

as a function of waveguide size for the three propagating cases of ε‖; ε⊥ combina-

tions. The solid, blue line corresponds to the isotropic conventional waveguide and

demonstrates the “cut-off“ size below which no propagation occurs. The remain-

ing combinations are strongly anisotropic systems with either n > 0 or n < 0 and

both support deep sub-wavelength wave propagation. The green, dashed-dot line

refers to the case of a positive index of refraction (ε‖ < 0; ε⊥ > 0) and is realized

with photonic funnels as in Ref. [88]. Govyadinov and Podolskiy use a tapered

cylindrical waveguide with a photonic crystal core to compress and propagate TM

light waves below the free-space diffraction limit. As the radius of the waveguide

is decreased, the internal wavelength λ/|n| also decreases thus effectively removing

the diffraction limit. Our negative index waveguide system with ε‖ > 0; ε⊥ < 0

is described by the red, dashed line and actually has a “cut-on“ radius for energy

propagation, where propagation does not occur for waveguide sizes on the order

of the incident wavelength but does for deep subwavelength sizes. This size re-

striction comes from the requirement that ν must be negative to obtain a negative

index of refraction.

3.3 Negative Phase Velocity

As mentioned in Section 2.3.1, another important characteristic of having a nega-

tive index material is the resulting negative phase velocity of the electromagnetic

wave inside the material. According to common textbooks, [17, 26], the phase
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Figure 3.3: Mode propagation in several waveguides. The absolute values of the
real parts of the wave vector are shown as a function of waveguide size. The blue
(solid) line is for the conventional isotropic waveguide, the green (dashed-dot) line
is for the anisotropic photonic crystal core, and the red (dashed) line is for our
anisotropic negative index system.

velocity of a travelling wave is defined as,

vp = ω(k)k =
c

n(k)
. (3.10)

From Eq. 3.10 the negative phase velocity of the propagating wave is easily il-

lustrated since we choose a negative index of refraction in Eq. 3.8 from reasons

explained in Sec. 2.3.2. It is this negative phase velocity that enables planar imag-

ing which will be discussed at length later in this chapter.

The negative phase velocity can also be directly derived starting from the defi-

nition of the Poynting vector, S = c
4π

[E×H] [26]. In the proposed system we select

the normal-incidence, propagating, z component of the TM-polarized wave, and

assume a symmetric mode solution of the fields so that E
(TM |TE)
0 (x) = cos(κx).

The TM mode wave vector is given by,

k⊥
2

ε‖
+
k‖

2

ε⊥
=
ω2

c2
(3.11)

The TE mode wave vector is given by,
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k⊥
2 + k‖

2

ε‖
=
ω2

c2
(3.12)

The resulting Poynting vector for the TM mode is:

STM =
c2

4πω

[
k⊥
ε‖
,
k‖
ε⊥
,
k‖
ε⊥

]
(3.13)

b) c)a)

Figure 3.4: Exact numerical calculations of refraction of the mode in a planar
waveguide with perfectly conducting walls done by Podolskiy [1]; κ = k/2. In
all schematics, the right-handed media (z < 0) has ε = µ = 1/2 + 0.0002i, the
angle of incidence is π/10, and red, green, and blue arrows show the direction
of incident, reflected, and refracted waves respectively. (a) Isotropic media with
region 2 (z > 0) having ε = 5, µ = 1. (b) and (c) NIM in region 2 (z > 0) having
ε = 5 + 0.1i, µ = −1. (b) Positive refraction but an unphysical situation to have
the intensity increase in lossy media. (c) Negative refraction with correct physics;
attenuation of intensity over distance.

Thus for the TM wave in the proposed system, where ε⊥ < 0 and ε‖ > 0, the

Poynting vector is not parallel to the wave vector. Note from Eq. 3.13 that S‖ is

antiparallel to k‖ and this is the reason for negative refraction in the system. To

demonstrate, Figure 3.3 shows numerical simulation results for the refraction of a

mode in a planar waveguide with perfectly conducting walls for three cases with

the red, green, and blue arrows representing the energy propagation direction of

incident, reflected, and refracted waves respectively. In (a) isotropic right-handed

media is on both sides of the interface and the rays behave as expected for positive

index materials. The schmatics in (b) and (c) assume an absorbing (ε′′ = µ′′ > 0)

NIM in the positive z/λ region and reveal the only two possible refracted ray

solutions which satisfy the boundary conditions (Eq. 2.14). The solution in (b)
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has positive refraction but is not physical because the intensity increases with

distance in an inherently lossy medium. Thus, (c) is the correct solution satisfying

the boundary conditions with negative refraction and attenuation of wave intensity

over distance.

The Poynting vector can then be simplified using Eqs. 3.1 to:

S(TM)
z =

c

4π

kz

ε⊥

k

κ2
ε2|| sin(κx)2 (3.14)

Note that the z component of the Poynting vector must be a positive value as it

denotes energy flux. We can therefore determine the sign of kz to be negative,

since k, κ, sin2, and ε‖ are all positive values, and ε⊥ is negative in our system.

This negative kz indicates the negative phase velocity of the wave, antiparallel to

the energy flux and group velocity, which in turn leads to the interesting behavior

demonstrated by negative index materials. For the proposed system, this condition

holds only for the TM wave with the condition of extreme anisotropy of the electric

permittivity of the core material, as mentioned above.

3.4 Effect of Finite Wall Conductance

In practice, the materials used to build these waveguide walls will not have per-

fect, infinite conductivity, so here we determine the effect of finite metallic wall

conductance on the waveguide properties, including the mode structure, ν param-

eter, and index of refraction. One can start by deriving the structure of the modes

in the system using a perturbation approach on the case of perfectly conducting

walls. Recall that the z component of the field depends on the x coordinate with

cos(κx) or sin(κx) behavior based on the symmetry of the modes. We assume an

exponential dependence of the field inside the metallic walls, exp(−γx), where −γ
is the inverse of the skin depth and measures how far the wave penetrates into the

metal [79]. As the fields inside the waveguide attenuate, we match the in-plane

(y, z) field components throughout the x = ±d/2 planes to satisfy the conventional

electromagnetic boundary conditions assuming no surface charge or surface current

[17, 26],
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n̂× ( �E − �Em) = 0, (3.15)

n̂ · (ε‖ �E − εm �Em) = 0,

n̂× ( �H − �Hm) = 0,

n̂ · ( �B − �Bm) = 0.

We then combine the dispersion relations for our waveguide modes (Eqs. 3.5)

and the mode in the metal to solve for γ in terms of know variables, ε‖, εm, k, and

κ,

γ(0) = ±
√
k2(ε‖ − εm) − κ

(0)2. (3.16)

Since we require the wave to decay inside the walls, we assign the positive sign

for defining γ. Presuming a symmetric (cos) waveguide mode, we only have to

consider a single boundary when satisfying the boundary conditions above. Using

only the first and third conditions in Eq. 3.15, along with our γ definition, leads to

the relationships in Eq. 3.17 for TM and TE modes respectively. These equations

give the exact value of the mode parameter, κ, for each type of mode within our

planar waveguide made of finite metallic conducting walls. For highly conductive

metals, at near-IR to THz frequencies, the physical mode structure changes little

[25].

TM : tan

(
κ

(TM)d

2

)
= − εmκ

(TM)√
k2ε2‖(ε⊥ − εm) − κ

(TM)2ε‖ε⊥
(3.17)

TE : tan

(
κ

(TE)d

2

)
=

√
k2(ε‖ − εm) − κ

(TE)2

κ
(TE)

3.4.1 Correction for κ Parameter

From the above mode profile equations (Eq. 3.17) we can determine the exact value

of the mode parameter κ. Taking the limiting case of εm → −∞ in the profile

equations above yields the values κ0 = π(2j + 1)/d which match our κ definition

from Section 3.1. These values correspond to the modes having a magnitude of
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zero at the waveguide boundary as in the ideal case. In the limit of sufficiently

large |εm| it is possible to use a Taylor expansion to find the correction to the above

values of the mode parameter κ. Since both κ and εm appear in Eq. 3.17 we will

need the Taylor expansion of two variables. Out to the third term it is given by

[89],

f(a+ x, b+ y) = f(a, b) + x
∂f(a, b)

∂x
+ y

∂f(a, b)

∂y
+

1

2!

[
x2∂

2f(a, b)

∂x2
+(3.18)

2xy
∂2f(a, b)

∂x∂y
+ y2∂

2f(a, b)

∂y2

]
+ ...

We define κ = π(2j + 1)/d + ξ, where ξ is a small correction term. Recall from

Section 3.4 that εm = −1/γ so γ = −1/εm and in the limit εm → −∞; γ → 0.

Thus, we can use both ξ and γ as our parameters approaching zero in Eq. 3.17.

Starting with the inverse of Eq. 3.17, expanding both sides of the equation with a

Taylor series, and solving for κ0 gives,

κ(TM) ≈ κ0

(
1 − 2kε‖

κ2
0d
√−εm

)
(3.19)

κ(TE) ≈ κ0

(
1 − 2

kd
√−εm

)
.

Considering the inverse confinement scale of the κ definition in Section 3.1, the

negative correction in Eq. 3.19 signifies the “mode expansion” into the waveguide

wall region, as illustrated in Fig. 3.5 [25].

3.4.2 Correction for Index of Refraction

Starting from the κ corrections above, we can determine how the propagation

constant, ν, changes as the waveguide mode structure alters due to finite wall

conductivity. We assume ν = ν0 + δ, where δ is a small correction to ν and

ν0 = 1 − κ
2
0

ε‖k2 . Then,

ν = ν0 + δ = 1 − (ξ + κ0)
2

ε‖k2
, (3.20)
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Figure 3.5: The cross-section of the field in the planar waveguide with hollow
d = 0.5 µm-thick core; dashed line corresponds to the case of εm = −∞ (perfect
metal boundary); solid line corresponds to Ag boundaries for λ = 0.85 µm; dots
correspond to κ calculated using Eq. (3.19); TM (a) and TE (b) modes are shown

and the right-hand side can be expanded into a Taylor series as ξ → 0. Solving for

δ and plugging in the kappa corrections in Eq. 3.19 we arrive at the correction to

the ν parameter,

ν(TM) ≈ ν0 +
4

kκ0d
√−εm (3.21)

ν(TE) ≈ ν0 +
4κ0

ε‖k3d
√−εm (3.22)

A similar approach can be taken to find the more revealing modification to the

refraction index, n. starting from n0 +η =
√
ε(ν0 + δ), doing the series expansion,

and solving for the index correction term, η, gives:

n(TM) ≈ ±√
ε⊥ν0

(
1 +

2

k d ν0

√−εm

)
(3.23)

n(TE) ≈ √
ε‖ν0

(
1 +

2κ2
0

k3d ε‖ν0

√−εm

)

As described above, the sign of the refraction index for the TM polarization must

be selected positive for ε⊥ > 0; ν > 0, and negative for ε⊥ < 0; ν < 0. Table 3.1

shows numerically calculated indices of refraction versus those found analytically
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with the correction taken into account. The proximity of the values validates our

analytical calculations.

Mode nTM Modes nTE Modes
Numeric Analytic Numeric Analytic

0 0.56 + 0.002i 0.57 + 0.002i 0.528 + 0.001i 0.533 + 0.002i
1 0.001 + 1.29i 0.001 + 1.29i 0.001 + 1.219i 0.001 + 1.207i
2 0.000 + 2.38i 0.000 + 2.38i 0.001 + 2.23i 0.001 + 2.22i

Table 3.1: Numerically calculated indices of refraction, n, for TM and TE modes
compared to the analytically corrected values accounting for finite waveguide wall
conductance.

This effective refractive index reveals another effect on wave propagation caused

by the mode penetration into the waveguide wall region. Namely, the finite value of

the imaginary part of εm, ε′′m, introduces an additional absorption into the system

besides that of the core material. As a result, the magnitude of a mode will

exponentially decay as it propagates through the system. The imaginary part of the

effective refractive index is related to this attenuation through E ∝ exp(−n′′kzz).

In the limit of small absorption in the metal (ε′′m/|ε′m| � 1) the mode decay due

to the field leakage into the waveguide walls is described by:

n(TM)′′ ≈ 1

kd

√
ε⊥

ν0|εm|
ε′′m
|ε′m|

(3.24)

n(TE)′′ ≈ κ2
0

k3d
√
ε‖ν0|εm|

ε′′m
|ε′m|

It is important to notice that despite the sign of the index of refraction the

system losses are positive, agreeing completely with the causality principle [1, 17].

Assuming a non-absorbing media, we estimate the losses due to silver waveguide

walls for wavelengths λ ≥ 850 nm using Eq. (3.24) to be considerably small (n′′/n �
0.01), as shown in Fig. 3.4.2 [25]. This information gives us a good idea for the

practical size of the system.
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3.5 Metamaterials with Giant Anisotropy

In this section we will consider the fabrication perspectives of the materials with

extreme anisotropy of dielectric constant required to build the NIM waveguides

described in this paper. We need a material with ε‖ and ε⊥ of opposite sign. Natu-

rally occurring homogeneous materials with this necessary anisotropy include thin

Bi and Sapphire films in the THz and far-IR frequencies. The extreme anisotropy

in these systems originates from the anisotropy of the effective electron mass, which

translates into anisotropy of the plasma frequency [90]. However, no known natural

material exhibits anisotropy exceeding 30% in the optical or IR spectral ranges.

Due to the narrow bandwidth of frequencies for which natural strongly anisotropic

materials are available, an approach to fabricating these materials must be con-

sidered. Metamaterials, a new class of nanostructured composites, can be used to

provide the desired EM properties for a broader range of frequencies. Specifically,

we propose using a combination of plasmonic particles (ε < 0) and dielectric media

(ε > 0) to achieve the strong optical anisotropy. If the size and separation of these

inhomogeneities is smaller than the incident radiation wavelength, the metamate-

rial will appear as being homogeneous and will support modes similar to a plane

wave. As explained in Ref. [25] these composites produce effects originating from

the effective medium, or averaged properties. Hence, periodicity of the arranged

particles is not required and only the average concentration of the inhomogeneities

must be controlled during fabrication, indicating a high tolerance to fabrication

defects. Here we will describe two ways to contruct these metamaterials thus

obtaining strong anisotropy in the optical and IR frequencies.

3.5.1 Nanolayered Composites

The first metamaterial technique we consider is a periodic interchanging layers of

dielectric (Si,GaAs) and plasmonic (Ag,Au,Al) materials with dielectric constants

εd > 0, εpl < 0, and thicknesses ad, apl respectively. Figure 3.5.1(a) demonstrates

the layers aligned in the waveguide along the (y, z) plane. The 1D photonic crystal

disperion relation can describe the wave propagation in this system,

cos [κ(ad + apl)] = cos(kdad) cos(kplapl) − γ sin(kdad) sin(kplapl), (3.25)
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where k2
d = εdω

2/c2 − k2
y − k2

z , k
2
pl = εplω

2/c2 − k2
y − k2

z , and the parameter γ

is equal to γTE = 1
2

(
εpl

εd

kd

kpl
+ εd

εpl

kpl

kd

)
and γTM = 1

2

(
kd

kpl
+

kpl

kd

)
for TE and TM

modes respectively [91]. The κ parameter in the above equation is the same as

in Sec. 3.1 and describes the mode in the x direction. In the “quasistatic” limit

of thin layers and a relatively thick subwavelength waveguide |κ (ad + apl) | << 1,

|kd (ad + apl) | << 1, |kpl|(ad+apl) << 1, the dispersion relation above can be further

simplified to the form identical to that of Eq. 3.3, with the effective values of

dielectric constant found with a Taylor expansion to second order as,

ε⊥ =
εdεpl (ad + apl)

adεpl + aplεd
, ε‖ =

adεd + aplεpl

ad + apl
(3.26)

[34, 92].

These values of effective permittivities derived for the photonic crystal system,

are identical to those derived using conventional effective medium theory (EMT)

as shown in Ref. [25, 34]. For sufficiently thin layers, EMT was believed to success-

fully describes quasistatic material properties where the only control parameter is

the average volume concentration of the plasmonic layers, Npl = apl/ (ad + apl),

and the absolute thickness of the individual layers is not important. Note that the

limiting factor of this approach is the condition |κ (ad + apl) | << 1, which defines

the restraint of applying the EMT. Further analysis has revealed that conventional

EMT fails to adequately describe electromagnetic wave propagation in a multilay-

ered nanocomposite system due to nonlocal effects originating from strong field

oscillations across the system [34]. Nonlocal corrections for the derived effective

permittivity are necessary because the length scale of the typical field variation is

less than the free-space wavelength, λ. Expanding Eq. 3.25 to the next nonvanish-

ing term in the Taylor expansion gives new effective permittivites with corrections

as shown in Ref. [34].

3.5.2 Nanowire Composites

Another technique to create strongly anisotropic metamaterials is to use an array

of aligned plasmonic (metallic) nanowires (εpl < 0) embedded in the dielectric (εd)

host as shown in Fig. 3.5.1(b). The exact field structure across the nanowires is

required to calculate the electromagnetic properties of the composite. The prob-
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lem can be addressed with the Maxwell-Garnett approximation for the case of

small plasmonic material concentration [17]. When considering the field inside the

metallic wire inclusions, Ein, to be homogenous and assuming normal incidence

the following effective dielectric constants are found:

ε‖ =
NplεplEin + (1 −Npl) εdE0

NplEin + (1 −Npl)E0
, (3.27)

ε⊥ = Nplεpl + (1 −Npl) εd,

where Ein = 2εd

εd+εpl
E0, and E0 is the excitation field. Validation of the Maxwell-

Garnett approach is shown in Ref. [25], where the numerical simulations agree

closely with analytical results. The effective dielectric constants for some composite

nanowired materials are shown in Fig. 3.8. These wired composites are shown to

have extremely low absorption in the near-IR spectral range, especially compared

to the layered structure above, and hence compensate for a major drawback of the

traditional optical NIM designs [25].

The same nonlocal effects described in the nanolayer section above have been

discovered for nanowire structures as well and are explored in Ref. [93]. Elser

et. al. aim to better understand the optical behavior of nanowire structures with

anisotropic cross sections beyond the conventional, one-parameter EMT by de-

riving an analytical description for the permittivity using the Maxwell-Garnett

approach. The analytical theory is then verified, solving Maxwell’s equations

directly, using numerical three-dimensional simulations done with the commer-

cial finite-element partial differential equations solver, COMSOL MULTIPHYSICS

3.2 [94].

Practical applications of nanowire-based optical composites include high energy

density waveguides, which are subwavelength structures supporting volume modes

[88, 95], polarization-sensitive sensors, and nonmagnetic negative-index systems

such as the one presented in this paper. In the next section we will demonstrate

how these materials can be used as a planar-lens, achieving sub-diffraction far-field

resolution.
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3.6 Planar Lens Optical Imaging

As mentioned in Section 2.3.3, sub-diffraction imaging through a planar slab is

a novel application of negative index materials (NIMs), and is often referred to

as superlensing. The suppression of the evanescent spectrum is the mechanism

behind the resolution limit of an imaging system. In first comparing NIM lenses

to conventional optical lenses it was shown that the realistic ε-µ-based NIM lens

does not obtain an advantageous resolution over existing phase optics lenses for

the far-field. This performance limit originates from the inherent losses present in

real materials, from which an analytical “NIM diffraction limit” was derived [72].

This topic has seen much controversy and recently, Kuhta et. al. in Ref. [74] have

calculated a quantitative measure of superlensing in a planar NIM lens system and

developed a formalism to separate the regimes of superresolution and diffraction

in the far-field. They show that far-field imaging is either governed by diffraction

theory, where for small enough light wavelength the resolution is independent of

absorption, or else by superresolution, which occurs for a critically low absorption.

They identify a universal parameter combining absorption, wavelength, and lens

thickness to describe the transition between the diffraction-limited and superres-

olution regimes [74]. Near-field superresolution has been found both theoretically

and experimentally [72, 96]. For near-field image resolution, the optimal configura-

tion for the superlens has been identified in Ref. [78] to be when the object distance

is equal to the lens width (a = b) versus the conventional superlens design, where

the lens is symmetrically centered between the object and the image (2a = b).

They derive an analytical result for the resolution of the generalized planar lens

and conclude that the optimal configuration minimizes both the field intensity

inside the NIM lens and the total absorption in the imaging system. They also

demonstrate that near-field imaging becomes inapplicable when the absorption in

the NIM region exceeds 30% [78].

In contrast to conventional diffraction-limited, ε-µ NIMs, the proposed non-

magnetic system can be used to image sources in the far-field. This can be achieved

because the effective refractive index |n| is high, in turn reducing the internal

wavelength, λ0/|n|, and effectively postponing the diffraction limit in the far-field.

To demonstrate optical imaging in our system we use a single planar waveguide

containing a slab of anisotropic left-handed material.
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3.6.1 Simulation Approach

We use exact 3D numerical techniques to simulate imaging in our waveguide

system. The electric and magnetic fields are set up as functions as defined in

Sec. 3.1. The positive index material, or right-handed media (RHM), is defined

with isotropic (εRHM
‖ = εRHM

⊥ ) permittivities usually for Si (ε = 13) or air (ε = 1).

The values for ε‖ and ε⊥ in the NIM are found using calculated nanowire metama-

terial permittivites from the equations in Sec. 3.5.2. Absorption may be considered

in the system by adding a small imaginary component to the effective permittivi-

ties of the NIM. We assume the telecom wavelength of λ = 1.5 µm and set the free

space wave vector k = 2π
λ

. The step size, h, is crucial to these simulations as the

parameter, κ, is defined as π
h

in the code. Lastly, ν is defined with separate values

for the positive and negative index materials using Eq. 3.7.

Let us first consider the special case of normal (z) propagation of a TM-

polarized wave as in done by the authors in Ref. [1]. A normal incidence wave

has ky = 0 and because it’s TM polarized, Hz = Hx = 0, therefore, neither re-

fracted nor reflected TE-polarized waves are excited. According to Eq. 3.1, when

ky = 0, the Hy and Ex field components can be related via: Hy = (kε⊥/kz)Ex.

Notice from this equation that since tangential fields must be continuous across

the z = 0 boundary, (HRHM
y = HNIM

y ), kz must have the same sign as ε⊥. Then

for our ε⊥ < 0, ν < 0 region, we have confirmed a negative phase velocity and

left-handed media. Podolskiy et. al. proceed to consider the general, more com-

plicated, case of oblique wave incidence and produce the simulations like those in

Fig. 3.3(c)[1].

We start by modeling the incident emitted radiation as a double-slit source

with slit size w, positioned at w ≤ |y| ≤ 2w, z = 0, and an arbitrary x value,

since we are simulating planar imaging in the (y, z) plane. The ky spectrum of this

monochromatic source is shown in Fig. 3.9 and given by,

A(ky) =
2

ky
[sin(2wky) − sin(wky)] . (3.28)

First we need to define the variables necessary in order to numerically represent

this continuous radiation function using a discrete ky array. The variable dky

defines the periodicity of the double slits, and in this case the occurrence of double
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slits is significant because we don’t want the radiation from neighboring ones to

influence our calculations. Hence, dky = 0.05
w

, to obtain a value smaller than 0.5.

The variable, N , defines the scaled y range which controls the smoothness of the

system. N is generally on the order of 101. Putting these together we create an

array of ky values such that ky ranges from k×−N to k×N in increments of dky.

This system supports both TE and TM modes as discussed in Sec. 3.1 and each

mode type has its own propagation constant, kz, which for this case is an array of

kz values corresponding to each ky. There are M modes for each polarization (TE

and TM), hence 2M waveguide modes total, where M is equal to the length of the

ky array. The TM and TE type kz arrays for both the positive and negative index

regions are assigned by manipulating Eq. 3.6 and solving for kz. The kz array for

the TM mode in the NIM is given by,

kz[i] =
√
εNIM
⊥ νNIMk2 − ky[i]2. (3.29)

To calculate the resulting field distribution we first represent the wavepacket

at the z = 0 plane as a linear combination of the 2M waveguide modes [1, 90].

We then use the first three boundary conditions from Eq. 3.15 at the front and

back interfaces of the NIM region; specifically the fact that Ex is continuous, Ey

is continuous, Dz is continuous, and Hy is continuous. The boundary conditions

are employed as a system of 2M equations and 2M unknowns which we solve

to calculate the reflection and transmission coefficients of individual modes. The

reflection and transmission coefficient values are stored in appropriate arrays with

each index corresponding to a single mode. The solutions of Maxwell equations

are then represented as a sum of solutions for the individual modes [1, 25]. We can

illustrate the imaging of the double-slit source through the NIM lens by calculating

the total �E and �H fields for both the positive and negative index media. The

total fields are found by summing TE and TM fields multiplied by the incident,

transmission, and reflected coefficients depending on the region. We then plot the

intensity of the fields, | �D · �E|, for a specific x value in the (y, z) plane. The results

and performance of imaging through our NIM planar-lens are examined in the

following section.
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3.6.2 Performance of Imaging

To illustrate the imaging performance of our proposed system we first calculated

the propagation of a wave packet formed by a double-slit source through 5 µm long

planar layer of 5% Ag, 95% SiO2 wire-based NIM core described in Sec. 3.5 (see

Fig. 3.8(a,b)) embedded in a Si waveguide. We select the thickness of the dielectric

core to be d = 0.3 µm and assume the excitation telecom wavelength, λ = 1.5 µm.

Combining Eqs. 3.23 and 3.27 yield the following values of the refraction index:

n(+) ≈ 2.6, n(NIM) ≈ −2.6 + 0.05i. To better exemplify the imaging properties of

the system and distinguish between the effects of a negative refractive index and

material absorption, we first neglect losses in the NIM core. Using the simulation

code outlined above, the resulting intensity distribution in the system is shown in

Fig. 3.10. The image formation in the focal plane (z = 10 µm) of the far-field

planar NIM lens in clearly seen.

Next we aim to compare the imaging through the planar NIM lens with and

without the material absorption and demonstrate that although the presence of

weak loss reduces the magnitude of the signal, it does not destroy the far-field

imaging. In order to do this we plot the cross section of the intensity distribution

at the focal plane. In Fig. 3.11(a) we simulate the same Ag, SiO2 system described

above, with slit size w = 0.75 µm. We plot the emitted radiation from our double

slit source with the dashed line, the perfect non-absorbing focal plane field intensity

with the solid line, and the real, absorbing NIM field intensity magnified five

times as shown with the dash-dotted line. For Fig. 3.11(b) we have decreased the

slit size to w = 0.3 µm in order to demonstrate the far-field resolution limit of

the system. The plot shows the emitted radiation with the dashed line and the

intensity of the field with absorbing media with the dash-dotted line. The two

peaks are no longer distiguishable when the intensity in the region between them

is more than half of the the peak intensity [25]. Recall that the index of refraction

for this particular nanowire NIM waveguide core is n(NIM) ≈ −2.6 + 0.05i and

the incident radiation is assumed to be the telecom wavelength, λ = 1.5 µm.

The resolution, ∆, of the non-magnetic NIM structure is limited by the internal

wavelength: ∆ ≈ λin/2 = λ0/|2n| ≈ λ0/5 = 0.3 µm. This result is encouraging

because it is similar to the resolution of any far-field imaging system as mentioned

in Sec. 2.3.3 [17, 72, 90].
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To demonstrate the onset of the diffraction limit in our system using two-

dimensional imaging simulations, we change parameters to utilize the optimal con-

figuration of the planar-lens as mentioned in Sec. 3.6. The incident radiation occurs

at z = 0 and the NIM is now located between z = 2.5 µm and z = 5.0 µm. The

far-field image formation in the focal plane (z = 5 µm) and the appearance of the

diffraction limit can be observed in Fig. 3.6.2. When the slit size is greater than the

resolution limit, λ/2n, two distinct peaks can be seen as in (a) and (b). However,

when w approaches this limit as in (c) the contrast at the focal plane is harder

to recognize. In the last image, w is obviously below the diffraction limit as the

two subwavelength peaks have collapsed into a single diffraction-limited image. To

better illustrate the imaging performance of our system, we neglected the material

absorption when we calculated the images in Fig. 3.6.2.

3.7 Concluding Remarks

In this chapter, we have laid out a novel approach to use a two-dimensional, planar

waveguide with anisotropic dielectric core to build negative index of refraction

materials. Our design is advantageous because it is non-magnetic, homogeneous,

and has low losses. It is also scalable to a large range of frequencies, including

the optical and infrared frequencies, which are important for current practical

applications, such as effectively collecting radiation into small, deep subwavelenth

waveguides, which ultimately may lead to miniaturization of all waveguide devices.

We define and characterize the proposed waveguide system with the propaga-

tion parameter, ν, and use it along with the anisotropic dielectric constant, (ε⊥
or ε‖) to define the index of refraction as in Eq. 3.8. In Section 3.2 we clarified

the necessity of having an anisotropic electric permittivity and how works with

ν to achieve the desired negative index properties. The following section of this

chapter explored the effects of finite conducting walls on the modal structure and

negative refractive index inside the waveguide. Derivations for corrections to κ,

which defines the mode structure, and the index of refraction, n, are examined

along with realistic losses in the system.

This chapter included a section on the strongly anisotropic metamaterials we

use for the NIM region in simulations of our system. We outlined an analytical

description of electromagnetic properties of nanostructured metal-dielectric com-



49

posites, including nanolayered and nanowired metamaterials. The effective dielec-

tric permittivites of these nanocomposites are presented while acknowledging the

nonlocal effects due to field oscillations. The excellent agreement of the developed

theory with results of a numerical solution to Maxwell equations is shown.

Finally, we have demonstrated the low-loss far-field planar NIM lens for λ =

1.5 µm with resolution ∆ ≈ 0.3 µm. A summary of our simulation approach is

given, and we illustrate imaging through a single planar waveguide with a slab of

our anisotropic left-handed media. Our system provides far-field image resolution

better than the conventional, free space limit, λ0

2
. This is due to our higher (> 1)

index of refraction, which effectively delays the diffraction limit to be λ0

2n
. A series

of images displays the performance of our planar NIM lens.
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Figure 3.6: Electric field decay due to absorption of field in finite-conducting waveg-
uide walls.

a) b)
Figure 3.7: (a) Schematic of metamaterial layered structure; (b) Schematic of
metamaterial nanowires structure.



51

Figure 3.8: Real part (a,c) and absorption (b,d) of effective ε⊥ (solid lines) and ε‖
(dashed lines) for wired systems; (a,b): Ag − SiO2 structure (note the relatively
small absorption for the NIM regime); Npl = 0.05; (c,d): SiC − Si structure;
Npl = 0.1.

Figure 3.9: Calculated profile of incident radiation for the double-slit source with
slit size w.
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Figure 3.10: Imaging by a planar NIM-based lens. n > 0 region: Si-filled planar
waveguide; d = 0.3 µm; NIM region: planar waveguide with nanowire core material
described in Fig. 3.5.1(b); The intensity distribution in the system with absorption
losses neglected; the NIM region is between z = 2.5 µm and z = 7.6 µm. The focal
plane corresponds to z = 10 µm (white dashed line); the slit size is w = 0.75 µm.

2 1 1 2
y,µm

I,AU

5x

1 0.5 0.5 1
y, µm
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a) b)

Figure 3.11: Imaging by a planar NIM-based lens. n > 0 region: Si-filled planar
waveguide; d = 0.3 µm; NIM region: planar waveguide with nanowire core material
described in Fig. 3.5.1(b); (a) dashed line: emitted radiation; solid line: focal plane
intensity distribution in system described in Fig. 3.10; dash-dotted line: same as
solid line, but in the case of real (absorbing) NIM. (b) same as (a), but w = 0.3 µm
(corresponding to far-field resolution limit of the system).
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Figure 3.12: Planar waveguide NIM-based lens with absorption losses neglected.
λ0 = 1.5 µm; n > 0 material; Si -filled, ε = 13; nanowire composite (2.5 ≤ 5):
ε‖ = 2.329 + 0.1i; ε⊥ = −3.909 + 0.1i. (a) The intensity distribution in the system
with d = 0.3 µm; focal plane corresponds to z = 5 µm (back of lens); slit size
w = 0.8 µm; (b) same as (a) but with w = 0.6 µm; (c) same as (a), but with
w = 0.3 µm, corresponding to the far-field resolution limit of the system; (d) same
as (a) with with w = 0.15 µm, below the resolution limit of the system.
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Chapter 4 – Coupled NIM Waveguide System

In Chapter 3 we proposed a new approach to making a negative index material

using a nonmagnetic, anisotropic dielectric filling inside a planar waveguide and

demonstrated planar lens imaging through the system. The next logical step is to

take a look at how different sized waveguides couple to our system. The goals are

to find the transmission through and reflection from the system as a function of

waveguide length and thickness, and to explore imaging through the system. This

coupled approach effectively extends our two-dimensional imaging system into a

three-dimensional one, where the imaging cross sections are now planes instead of

one-dimensional lines as explained in Section 4.6. To begin, Section 4.1 consid-

ers a single boundary at the interface of two waveguides; a larger-sized waveguide

with a positive index of refraction coupled to our NIM waveguide. We will refer

to this as a single coupled waveguide system. We develop the algorithm to solve

Maxwell’s equations, match the appropriate boundary conditions, and determine

the fields in all regions. A theory for the reflection coefficients from and trans-

mission coefficients through the single coupled system is developed in Section 4.2.

The theoretical results are compared with those from simulation. Next, we con-

sider the coupled system where a smaller (nanoscale) waveguide is coupled on both

the left and right ends to larger, micron-sized waveguides, referred to as a double

coupled system. A relaxation technique is used to ensure convergence and match-

ing of the fields for a given number of modes as explained in Section 4.3. For this

double-boundary system we present results for the case where all the waveguides

are composed of isotropic right-handed materials, as well as for the case where the

smaller, internal waveguide is our NIM system in Sections 4.4-4.5. Finally, imaging

though these systems is investigated.

4.1 Simulation Design

To calculate the propagation of the electromagnetic fields through the interface of

two or more coupled planar waveguides of varied sizes, we developed the relaxation-

type algorithm described below. The fields are defined in Sec. 3.1, as functions of
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x, y, z, κ, ky, kz, ε‖, and ε⊥. The free space wave vector is k = 2π
λ

, where λ = 1.5 µm,

or the wavelength often used in telecommunications.

To ensure the correct sign of kz for our calculations via equations similar to

Eq. 3.29, it is necessary to explore the standard branch cut used in the complex Z-

plane in order to find
√
kz

2. Various computer algebra software programs use the

conventional branch cut for
√
Z in the complex plane along the negative part of the

real axis (−∞, 0), allowing complex angles valued −π < θ < π. For calculations

manipulating kz we desire a cut in the complex plane along the positive part of

the real axis (0,∞), allowing complex angles 0 ≤ θ < 2π. Hence, when Im(z) ≥ 0

we simply use the standard definition of the square root function and branch cut

accordingly. When Im(z) < 0 we reflect the result of this square root function

across the origin, thereby achieving our desired branch cut along the positive, real

axis. It should be noted that we do not violate causality because we do not use

this branch cut to determine the sign of n or any other computed complex values.

We use it with the sole purpose of enforcing the correct sign for kz.

We start by examining the coupling of an isotropic Si-filled waveguide to our

left-handed metamaterial planar waveguide. Throughout this section, we will de-

note the isotropic waveguide with a minus, (−), superscript and the anisotropic,

negative-index waveguide with a plus, (+), superscript, indicating the left and right

sides of the interface respectively as seen in Fig. 4.1. The electric permittivities for

the isotropic, dielectric-filled waveguide are the same (ε‖ = ε⊥), while the effective

permittivites for the negative index waveguide are specifically determined by the

metamaterials described in Sec. 3.5 where ε‖ 
= ε⊥ and ε⊥ < 0. Absorption in

this system only depends on ε‖′′ and ε⊥′′ because µ = 1. For a single interface,

the only size parameter to consider for the waveguides is their thickness in the x

direction as they are assumed infinite in the y and z directions, surrounded above

and below by an ideal conductor. The thickness of the isotropic waveguide (dout)

is always assumed to be equal to or larger than the anisotropic, NIM waveguide

thickness (din) and both sizes are on the order of microns. Other parameters for

the relaxation code include the number of modes, N , allowed in the waveguides, a

constant wave vector in the y-direction, ky, as well as the parallel and perpendicu-

lar permittivity values, κ arrays, and ν arrays for each waveguide region. Finally,

the kz array values for both TE and TM modes in each region are calculated as

explained in Sec. 3.6.1.
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Figure 4.1: (a) Schematic to show coupling of a larger isotropic waveguide to our
anisotropic NIM waveguide. (b) Direct coupling of planar waveguides. The x− z
cross-section of the system is shown with a single mode incident from an isotropic
micro-scale waveguide to a nanoscale NIM waveguide where additional modes are
excited.

The electric and magnetic fields in each waveguide region are represented as a

combination of incident and reflected TE and TM modes of the form in Eq. 3.1.

We assume a exp(−iωt) time dependence and an amplitude of E
(TM |TE)
0 for all

waves but suppress it in the explicit field expressions below and throughout this

paper. We assume the x dependence of E
(TM |TE)
0 is given by the symmetric (cos)

mode. The z component of the TM �E field can be written as,

E(TM,±)
z =

∑
j

(
T

(TM,±)
j eikyy+ikzz +R

(TM,±)
j eikyy−ikzz

)
cos(κ

(±)
j x) (4.1)

where j is the modal index with range 1..N , and the ± indicates the waveguide re-

gion where the field exists. T
(TM/TE,±)
j and R

(TM/TE,±)
j are 2N -dimensional arrays

containing the transmission and reflection coefficients for each mode polarization,

respectively and depend only on the waveguide region;
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(4.3)

There are a combined total of 8N T and R coefficients, including N TM and N

TE modes for both reflection and transmission in both the (+) and (−) waveguide

regions. Only 4N of these are unknown since we assume the incident radiation

from the left, T (TM/TE,−), and from the right, R(TM/TE,+) for all N modes. The

remaining coefficients are found by matching the electromagnetic fields for each

mode at the boundary of the coupled waveguides to acquire 4N equations which can

be solved, as shown in the following section. Once the coefficients are determined,

all field components can be calculated using Eq. 3.1.

4.1.1 Boundary Conditions

In order to match the fields at the interface between the coupled waveguides, it is

necessary to satisfy the boundary conditions listed in Sec. 3.4. We choose to enforce

the the continuity of �D⊥( �Dz), �H‖( �Hx), and �E‖( �Ex, �Ey) across the interface between

the two waveguides with thicknesses dout and din. The total fields representing these

conditions are,
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The boundary conditions in Eq. 3.15 must be satisfied for the dielectric-dielectric

portion of the interface, but we need to further consider the dielectric-conductor

portion lying directly above and below the smaller waveguide. The boundary con-

ditions are modified for the �D and �H fields on that part of the interface due to the

perfect conductor,

n̂ · �D = σ, (4.8)

n̂× �H = K,

where σ is the surface charge density, and K is the surface current on the conduc-

tor [26]. The normal component of the �D field across dielectric-conductor interface

is satisfied with the surface charge density build up on the conductor. The charges

inside the conductor are assumed to be so mobile as to have an instantaneous

response to changes in the fields, creating a surface charge density, σ, resulting in

a zero electric field inside the conductor. The same is true for the tangential (x)

component of the �H field. The surface charges move, reacting to the tangential

magnetic field, always producing the correct surface current, �K, supporting zero

magnetic field inside the perfect conductor [26]. Thus, both Dz and Hx can exist

outside a perfect conductor but drop to zero abruptly inside and we do not have

to enforce the field continuity over the dielectric-conductor interface like we do for

the tangential �E fields.

To decouple the boundary condition equations we use the orthogonality of the

cos and sin functions. All of the field equations (Eqs. 4.4, 4.5, 4.6, 4.7) contain

either cos(κ
(±)
j x) or sin(κ

(±)
j x) functions so we multiply each equation by a simi-

lar function containing a κ
(±)
l value with a different index, l. When we integrate

these functions over the appropriate din or dout waveguide thickness, the κ param-

eters of the same type ((+) or (−)) with different indices will disappear, leaving

only those with the same indices, thus simplifying the above boundary condition

equations. Overlapping the modes by integrating either cos(κ
(±)
j x) cos(κ

(±)
l x) or

sin(κ
(±)
j x) sin(κ

(±)
l x) over the designated waveguide size, we create the following

square, N ×N , matrices with elements calculated from:
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I
(±)
l,j =

d(in)
2∫

− d(in)
2

cos(κ
(±)
j x) cos(κ

(+)
l x)dx (4.9)

J
(±)
l,j =

d(in/out)
2∫

− d(in/out)
2

sin(κ
(±)
j x) sin(κ

(−)
l x)dx (4.10)

K
(±)
l,j =

d(in/out)
2∫

− d(in/out)
2

cos(κ
(±)
j x) cos(κ

(−)
l x)dx. (4.11)

The I matrix will be substituted into the �Dz and �Hx field equations, the J matrix

into the �Ex field equation, and the K matrix into the �Ey field equation. Note that

the integration for the creation of the I matrix includes a multiplication by a (+)-

side cos mode and goes symmmetrically over only the smaller waveguide thickness,

din. This choice is made because the modified boundary conditions in Eq. 4.8 are

satisfied for the rest of the interface. The integration for the J and K matrices,

satisfying the Ex and Ey continuities respectively, includes a multiplication by a

(-)-side mode, and has integration limits dependent on the side of the interface

in consideration, either din or dout. This is because these fields are tangential to

the interface and must be continuous across the entire boundary, both dielectric-

dielectric and dielectric-conductor portions. It is important to mention that the

cos(κjx) and sin(κjx) functions are only orthogonal for different κ modes in the

same size waveguides. Hence, I
(+)
l,j = I

(+)
l,l , J

(−)
l,j = J

(−)
l,l , and K

(−)
l,j = K

(−)
l,l as they

are diagonal matrices. The remaining matrices are not as nice to work with as

they involve intergrals with modes of both waveguide regions and require numerical

computing.

Including the above orthogonality matrices, I(±), J (±), K(±), the boundary con-

ditions in Eqs.( 4.4, 4.5, 4.6, 4.7) can be simplified,
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4.1.2 Matrix Manipulation

We combine the above boundary condition equations to create eight large matrices,

which can then be multiplied by the reflection and transmission coefficient arrays,

Eqs. (4.2, 4.2, 4.3, 4.3), to arrive at two simplified linearly coupled matrix equations

representing the boundray conditions:
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Eqs. (4.12, 4.13) comprise the first four matrices, 1
(±)
R and 1

(±)
T with the Dz equa-

tions making up the top half of the matrices and the Hx equations the bottom half.

Eqs. (4.14, 4.15) make up the next four, 2
(±)
R and 2

(±)
T with Ex on top and Ey on

bottom. The dimension of each of these matrices is therefore 2N × 2N , with TM

modes in the left column and TE modes in the right column. They follow from:
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‖ I

(±)
l,j ε

(±)
‖

ky

kz,j
(TE,±) I

(±)
l,j

0
k
(TE,±)
z,j

2
+k2

y

kk
(TE,±)
z,j

I
(±)
l,j

⎞
⎟⎠ (4.17)

1
(±)
T =

⎛
⎜⎝ ε

(±)
‖ I

(±)
l,j −ε±‖ ky

k
(TE,±)
z,j

I
(±)
l,j

0 −k
(TE,±)
z,j

2
+k2

y

kk
(TE,±)
z,j

I
(±)
l,j

⎞
⎟⎠ (4.18)

2
(±)
R =

⎛
⎜⎝ i

k
(TM,±)
z,j

2
+k2

y

k
(TM,±)
z,j κ

(TM,±)
j

ε
(±)
‖

ε
(±)
⊥
J

(±)
l,j 0

− ky

k
(TM,±)
z,j

K
(±)
l,j K

(±)
l,j

⎞
⎟⎠ (4.19)

2
(±)
T =

⎛
⎜⎝ −i k

(TM,±)
z,j

2
+k2

y

k
(TM,±)
z,j κ

(TM,±)
j

ε
(±)
‖

ε
(±)
⊥
J

(±)
l,j 0

ky

k
(TM,±)
z,j

K
(±)
l,j K

(±)
l,j

⎞
⎟⎠ (4.20)

Next we algebraically manipulate the system of equations (4.16) to solve for

the desired coefficient arrays R(−) and T (+) in terms of the known arrays, R(+)

and T (−). It is important to keep in mind that matrices 1
(+)
R , 1

(+)
T , 2

(−)
R , and 2

(−)
T

are diagonal and therefore easy to invert, whereas the others are not diagonal

and require numerical computing to invert. We want to avoid inverting these

complicated matrices because of the lengthy computing time involved to perform

the row operations necessary to reduce the matrix. Also, cancellation errors may

occur due to the small complex numbers involved and sometimes just determining

whether or not the matrix is invertible is a computationally intensive process.

Thus, solving the first equation in Eq. 4.16 for T (+),
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T (+) =
1

1
(+)
T

[
1

(−)
R R(−) + 1

(−)
T T (−) − 1

(+)
R R(+)

]
. (4.21)

Putting this into the second equation in (4.16) and solving for R(−) gives,

R(−) =

[
2

(−)
R − 2

(+)
T

(
1

(+)
T

)−1

1
(−)
R

]−1

(4.22)[(
2

(+)
R − 2

(+)
T

(
1

(+)
T

)−1

1
(+)
R

)
R(+) +

(
2

(+)
T

(
1

(+)
T

)−1

1
(−)
T − 2

(−)
T

)
T (−)

]

Figure 4.2: Cross-section plot of Re[Ey] across the interface between a 1 µm thick Si
waveguide and a 600 nm thick nanowire NIM waveguide. The red line represents
the Ey field in the larger waveguide while the green line shows the field in the
smaller waveguide.

The system can be excited with arbitrary electromagnetic modes from either

the left side (T (−) known, R(+) = 0), right side, (R(+) known, T (−) = 0), or more

generally from both directions. Once calculated, the arrays of coefficients above,

along with the known coefficients, T (−) and R(+), are used in summations of the
�E, �H, and �D fields over the number of modes using Eq. 4.1. Summing the fields

over all of the modes obtains the total of each field in each waveguide region.

With the total fields calculated, we can verify that the boundary conditions are

satisfied by plotting a cross section of the the real part of each field component

on either side of the interface to ensure they match. Fig. 4.2 demonstrates the

real part of the Ey field matching across the interface (along the x-direction) of
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a system coupling a 1 µm thick Si waveguide to a 600 nm thick NIM, nanowire

core, waveguide with n = −4.4 + .17i. The first TM mode is assumed incident

with ky = 5 or an incident angle of θ ≈ −0.27. Note that the fields match over the

entire size of the smaller (NIM) waveguide as expected. The red line represents

the Ey field in the Si waveguide and corresponding to the boundary conditions

in Eq. 3.15 this field must go to zero at the interface beyond the dimesnsions of

din as it borders a conductor. The green line represents the Ey field in the NIM

waveguide.

Figure 4.1 (b) shows the single coupling of a 5 µm-sized isotropic air-filled

waveguide to the same as above nanowire-core NIM waveguide which is 500 nm

thick. The intensity of the �D field is plotted for the x − z cross-section at y = 0

with only the first TM mode incident from the left with an angle θ = 0. Additional

modes are excited inside the NIM waveguide due to mode coupling as illustrated

by the X like patterns.

4.2 Theory for Reflection and Transmission Coefficients

As mentioned at the start of this chapter, the goal is to find a theory for transmis-

sion through and reflection from the proposed anisotropic, NIM, planar waveguide

system as a function of the waveguide dimensions. The field of resonant light inter-

action with subwavelength structures has been the focus of research for some time

but has increased recently with the promising applications of lithography, biosens-

ing, and optical data storage and computing. Hans Bethe theoretically studied the

diffraction of electromagnetic radiation by a hole of size smaller than the incident

radiation wavelength in 1944 [97]. His prediction was that the transmission through

the hole in infinitely thin metal was (rλ)4, where r is the radius of the hole. More

recently, near-field optics has moved beyond the simple Bethe theory both theo-

retically [98, 99, 100, 101, 102] and experimentally [103, 104, 105, 106]. Numerical

results have shown that it is possible for the transmission of a subwavelength hole

of a certain size to become as high as 1.8 [100]. Transmission through arrays of

small subwavelength cylindrical holes in thin metallic films has been studied with

results up to twice Bethe’s prediction [104, 107, 108, 109]. Another group reports

on near-field optical transmission through of a large number of subwavelength holes

with microscopically random separation distances, sizes, and shapes in a thin gold
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film [110]. Other experiments have produced extraordinary near-field transmission

with one-dimensional arrays of slits in metal films [99, 103] and flat arrays of metal

films surrounded by periodic dielectrics [32, 105]. All of these periodic structures

obtain enhanced transmission peaks that are generally thought to be the effect

of the coupling of the incident light to surface plasmons using the grating of the

surface for excitation [24, 110]. Although several analytical theories have been de-

veloped proposing that the high transmission is primarily due to waveguide mode

resonance and the diffraction of evanescent waves produced by subwavelength fea-

tures at the surface instead of by surface plasmon excitation [98, 111]. Developing

the theory for transmission and reflection for the proposed NIM coupled waveguide

system will augment this exciting field.

4.2.1 Derivation

Here we consider the transmission and reflection through the single-coupled waveg-

uide system in the limiting case where ky = 0 and din � dout. However, to general-

ize the mode type, we found it convenient and necessary to index our κ parameter

differently from Section 3.1, accounting for both cos and sin modes. Now,

κj
(−) =

jπ

dout

, (4.23)

κj
(+) =

jπ

din

.

Thus, κj
(+) � κj

(−) due to the considered limiting case. Accordingly, the I, J, and

K matrices may be simplified as shown here,

Ilj
(+) =

δlj
2
din (4.24)

Ilj
(−) =

2

κl
(+)

(−1)l+1
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Jlj
(+) = 0 (4.25)

Jlj
(−) � δlj

2
dout

Klj
(+) � Ilj

(−) (4.26)

Klj
(−) =

δlj
2
dout

Putting these into Eqs. (4.17, 4.18, 4.19, 4.20), and separating out the (+) and
(−) matrices there are a total of 8, 2N × 2N dimensional matrices:

1
(−)
R =

⎛
⎝ ε

(−)
‖

2(−1)(l+1)

κl
(+) 0

0
k
(TE,−)
z,j 2(−1)(l+1)

kκl
(+)

⎞
⎠ (4.27)

1
(+)
R =

⎛
⎝ ε

(−)
‖

δljdin

2
0

0
k
(TE,+)
z,j δljdin

2k

⎞
⎠ (4.28)

1
(−)
T =

⎛
⎝ ε

(−)
‖

2(−1)(l+1)

κl
(+) 0

0 −k
(TE,−)
z,j 2(−1)(l+1)

kκl
(+)

⎞
⎠ (4.29)

1
(−)
T =

⎛
⎝ ε

(+)
‖

δljdin

2
0

0 −k
(TE,−)
z,j δljdin

2k

⎞
⎠ (4.30)

2
(−)
R =

⎛
⎝ i

k
(TM,−)
z,j

κ
(TM,−)
j

ε‖(−)

ε⊥(−)

δljdout

2
0

0
δljdout

2

⎞
⎠ (4.31)

2
(+)
R =

(
0 0

0 2
κl

(+) (−1)(l+1)

)
(4.32)

2
(−)
T =

⎛
⎝ −ik

(TM,−)
z,j

κ
(TM,−)
j

ε‖(−)

ε⊥(−)

δljdout

2
0

0
δljdout

2

⎞
⎠ (4.33)
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2
(+)
T =

(
0 0

0 2
κl

(+) (−1)(l+1)

)
(4.34)

While these matrices now look simply 2 × 2 dimensional, they are indeed still

of size 2N × 2N . The entries with δlj are diagonal matrices, while the other non-

zero matrix elements are singular matrices. To continue, we will now consider

the TE and TM modes separately, as the mode polarizations decouple inside the

waveguide. Note that the TEM mode can be considered as a specific TM mode

case when κ = 0 and Ez ∝ sin(κx). Starting with the TE modes, the boundary

condition Eqs. in (4.16) can be rewritten as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
kz,j

(TE,−)2(−1)(l+1)

κl
(+)

(−T (−) +R(−)
)

=
kz,j

(TE,+)δljdin

2

(−T (+) +R(+)
)

δljdout

2

(
T (−) +R(−)

)
=

2(−1)(l+1)

κj
(+)

(
T (+) +R(+)

) (4.35)

When incident radiation is assumed from only the first mode on the left side;

(T1 = 〈1, 0, 0, 0, · · · 〉 ; R(+) = 0) the equations in (4.35) reduce to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
kz,l

(TE,−)(−1)(l+1)

κl
(+)

(−T (−) +R(−)
)

= −kz,l
(TE,+)δljdin

4
T (+)

δlj
dout

4

(
T (−) +R(−)

)
=

(−1)(l+1)

κj
(+)

T (+)

(4.36)

Solving Eq. 4.36 for R
(−)
j gives,

Rj
(TE,−) =

4

dout

[
(−1)(j+1)

κj
(+)

∑
k

Tk
(TE,+)

]
− Tj

(TE,−). (4.37)

Combining Eqs. (4.37, 4.36) obtains,

kz,l
(TE,−)

κl
(+)

(−1)(l+1)
∑

j

[
−2Tj

(TE,−) +
4

dout

∑
k

(−1)(j+1)

κj
(+)

Tk
(TE,+)

]

=
−kz,l

(TE,+)din

4
Tl

(TE,+). (4.38)
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Finally, solving this for Tl
(+) reveals the desired expression for the transmission

coefficients of the TE modes as a function of all the incident modes,

Tl
(TE,+) � 8

kz,l
TE,−

κl
(+)

(−1)(l+1) 1

dinkz,l
(TE,+)

∑
j

Tj
(TE,−) (4.39)

− 16

kz,l
(TE,+)dout

∑
j

(−1)(j+1)

κj
(+)din

∑
k

Tk
(TE,+)

We can analyze this result further by introducing bl and al so that;

al =
16

kz,l
(TE,+)dout

∑
j

(−1)(j+1)

κj
(+)din

, (4.40)

bl = 8
kz,l

TE,−

κl
(+)

(−1)(l+1) 1

dinkz,l
(TE,+)

∑
j

Tj
(−). (4.41)

Now Eq. 4.39 can be written as,

Tl
(TE,+) � bl − al

∑
k

Tk
(TE,+), (4.42)

or written in the more revealing matrix form,

⎡
⎢⎢⎢⎢⎣
a1 + 1 a1 a1 · · ·
a2 a2 + 1 a2 · · ·
a3 a3 a3 + 1 · · ·
...

...
... · · ·

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
T

(+)
1

T
(+)
2

T
(+)
3
...

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
b1

b2

b3
...

⎤
⎥⎥⎥⎥⎦ . (4.43)

Numerically we found the al ≈ 0, leaving Tl
(TE,+) ≈ bl. This is the result we used

to verify the analytic TE transmission and reflection derived coefficients against

the numerically calculated ones in the following section.

Similar analysis for the TM modes indicates that the approximation of J (+)

(4.25) yields a disagreement in the numerical simulations so we reduce the 2
(+)
R
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and 2
(+)
T matrices (Eqs. 4.32, 4.34) to;

2
(+)
R =

⎛
⎝ i

kz,j
(TM,+)

κj
(+)

ε
(+)
‖

ε
(+)
⊥
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(+)
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(+)
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0 2
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⎞
⎠ (4.45)

This alteration does not effect the above TE calculations because the J (+) matrix

is located only in the first column of Eqs. (4.32, 4.34), and therefore is only relavant

for the TM modes. Again assuming that R(+) = 0 for all moes and using the delta

function to simplify things, the boundary conditions in Eq. 4.16 for the TM modes

can be written in equation form as,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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⊥
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Solving for R
(TM,−)
l from the second equation in this system gives,

R
(TM,−)
l = T

(TM,−)
l − κ

(−)
l
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2

dout

ε
(−)
⊥
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(
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(TM,+)
j

)]
.

(4.47)

Again, putting this relationship for the reflection coefficients into the first equation

in Eq. 4.46 and solving for single l mode of transmission, Tl
(+), reveals the desired

expression for the transmission coefficients of the TM modes,

T
(TM,+)
l �

∑
j

8(−1)(l+1)

dinκ
(+)
l

ε
(−)
‖

ε
(+)
‖

(
T
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Again, we found the second term in this expression for the transmission coefficients

to be insignificant and approximate the TM transmission coefficients with the first

term only. The following section compares these analytic results to numerically

calculated results for the transmission and reflection through the proposed system

of single coupled waveguides.

4.2.2 Results: Simulated versus Analytic

We analyze the transmission coefficients of the modes through and reflection co-

efficients from a single coupled waveguide as pictured in Figure 4.1 assuming a

single normally incident mode (either TE or TM). When the radiation is normally

incident the modes decouple and there is no mode mixing. Therefore, with a sin-

gle TM incident mode, multiple TM modes may be transmitted and reflected but

no TE modes will be excited and vice versa. The external waveguide thicknesss

is varied from 2 µm to 50 µm while the internal waveguide thickness (din = 500

nm), the incident radiation wavelength is λ = 1.5 µm, and 60 waveguide modes

remain constant for all the simulations below. The isotropic system considered

has material parameters ε⊥ = ε‖ = 2.0 inside the smaller waveguide coupled on

the left to a vacuum (ε⊥ = ε‖ = 1.0). While the anisotropic, nanowire core NIM

system has electric permittivities ε⊥ = −3.909 + 0.1i, ε‖ = 2.329 + 0.1i and is

coupled to a larger Si waveguide with ε⊥ = ε‖ = 13.0. In all the figures below, the

blue dots display the absolute value, or amplitude, of the numerically simulated

transmission (or reflection) for selected modes, and the red line conveys the same

for the analytical functions derived in Section 4.2.1.

4.2.2.1 Transmission Results

The transmission results can be summarized by three figures. Figure 4.3 contains

plots for the anisotropic (a) and isotropic (b) single coupled waveguide systems

with a single TM mode incident from an external waveguide of thickness 20 µm.

The second TM mode was chosen as it is the first propagating mode inside the

NIM waveguide. The simulation and theory agree nicely. Figure 4.4 shows the

same TM mode transmission from a waveguide of thickness 10 µm. There appears

to be a resonance occurring at about the third mode for both the anisotropic and
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Figure 4.3: Amplitude of TM modal transmission for simulated (blue dots) and
theoretical (red line) data for the single coupled waveguide system, din = 500 nm
and dout = 20 µm, for (a) anisotropic smaller waveguide and (b) isotropic system.

Figure 4.4: Amplitude of TM modal transmission for simulated (blue dots) and
theoretical (red line) data for the single coupled waveguide system, din = 500 nm
and dout = 10 µm, for (a) anisotropic smaller waveguide and (b) isotropic system.

isotropic waveguides. This resonance needs to be further investigated as it only

appears for external waveguide sizes < 20 µm when the coupled waveguide size is

500 nm. The case for TE mode incidence (1st mode chosen) is shown in Figure 4.5

for both systems with external waveguide size (dout) of 10 µm. Once again, the

theory and simulation agree, except for the lowest order modes. This could be due

to the terms we approximated near zero in the expressions for transmission of the

TM and TE modes above.

4.2.2.2 Reflection Results

Similarly, the reflection results are outlined in several figures. Figure 4.7 displays

the amplitude of reflection of the TM modes for an (a) anisotropic and (b) isotropic

single coupled waveguide system with only the second TM mode incident from the

larger wavguide, dout = 10 µm. The results match perfectly for the reflection of the
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Figure 4.5: Amplitude of TE modal transmission for simulated (blue dots) and
theoretical (red line) data for the single coupled waveguide system, din = 500 nm
and dout = 10 µm, for (a) anisotropic smaller waveguide and (b) isotropic system.
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Figure 4.6: Amplitude of simulated TM modal reflection for coupled waveguides
with din = 500 nm and dout = 10, 20, and 30 µm corresponding to the blue, green,
and red lines respectively; (a) anisotropic smaller waveguide and (b) isotropic
system.

second mode but a resonance is apparent for larger modes in the simulated data

for both systems. Inspecting only the TM reflection data from our simulations in

both the isotropic and NIM systems for external waveguide sizes, dout = 10, 20,

and 30 µm, we found the resonance to be size-dependent as seen in Figure 4.6.

The peaks are larger for small waveguides and occur at lower order modes for the

isotropic waveguide system. In the derivation above, the reflection modes depend

on the theoretical transmission modes (Eqs. 4.37, 4.47), hence the resonance peak

is expected as it appeared in the transmission results as well. TE mode reflection

is shown in Figure 4.8 for dout = 10 µm with the first TE mode normally incident.

Here the isotropic results agree except for the first mode, while the anisotropic

results only agree for the first mode. This is suprising for the anisotropic case

because the transmission results disagreed for the lower order modes, but matched
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Figure 4.7: Amplitude of TM modal reflection for simulated (blue dots) and theo-
retical (red line) data for the single coupled waveguide system, din = 500 nm and
dout = 10 µm, for (a) anisotropic smaller waveguide and (b) isotropic system.

Figure 4.8: Amplitude of TE modal reflection for simulated (blue dots) and theo-
retical (red line) data for the single coupled waveguide system, din = 500 nm and
dout = 10 µm, for (a) anisotropic smaller waveguide and (b) isotropic system.

for the higher numbered modes. This behavior should be examined further as it

is probably due to theoretical approximations, although that is not immediately

evident.

4.3 Relaxation Method for Multiple Coupled Waveguides

A practical extension of the above simulations is to calculate the propagation of

the electromagnetic fields from a micron-sized positive index waveguide, through

the proposed nanoscale NIM system, back into another micron-sized positive index

waveguide. In order to calculate the fields transmitting through and reflecting from

multiple interfaces, we developed the relaxation-type algorithm described below.

The (−) and (+) superscripts will still denote the isotropic and anisotropic waveguide

parameters respectively, only now the anisotropic waveguide is sandwiched between
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Figure 4.9: Schematic configuration (side-view) of the non-magnetic NIM waveg-
uide coupled between two larger isotropic waveguides, surrounded above and below
by a perfect electric conductor (PEC). The red double arrows dictate the sizes of
the waveguides, while the blue arrows represent the incoming, reflected, and trans-
mitted wave propagation with correspondingly labeled coefficients.

two isotropic waveguides. A schematic of this system is shown in Fig. 4.9.

The first step is to develop the transfer theory for the second interface, which

is an exact inverse of the coupled interface derived in the previous section. Now

the smaller NIM waveguide is on the left-hand side and the larger, positive-index

waveguide on the right, therefore the known coeffiecient arrays are T (+) and R(−)

for this interface, while the unknown arrays are R(+) and T (−) (see Fig. 4.9). Con-

veniently, the previously developed boundary conditions and the matrices created

to combine the boundary condition equations remain the same for this inverted

coupling. The system of equations in Eq. (4.16) can again be algebraically manip-

ulated to now solve for the unknowns at this interface starting with R(+):

R(+) =
1

1
(+)
R

[
1

(−)
R R(−) + 1

(−)
T T (−) − 1

(+)
T T (+)

]
, (4.49)
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T (−) =
1[

2
(−)
T − 2

(+)
R

(
1

(+)
R

)−1

1
(−)
T

] (4.50)

[(
2

(+)
R

(
1

(+)
R

)−1

1
(−)
R − 2

(−)
R

)
R(−) +

(
2

(+)
T − 2

(+)
R

(
1

(+)
R

)−1

1
(+)
T

)
T (+)

]

where again only the diagonal, easily invertable matrices are necessarily inverted.

To compute the fields through the system we start at the first interface, assum-

ing incident radiation only from the left (R(+) = 0), and calculate the transmission

and reflection coefficients using Eqs. (4.21, 4.22). As the electromagnetic fields

propagate in the z direction through the NIM from the first interface to the sec-

ond, their phase changes accordingly with propagation constant, kz. Therefore it

is necessary to translate the transmission coefficients via a multiplicative mode-

dependant term, exp(ikz,j∆z), where ∆z is the length of the NIM, to achieve

an accurate value before performing calculations at the second interface. After

the R(+) and T (−) coefficients have been determined at the back interface, the

reflection (R(+)) coefficients must be translated back in the −z direction with a

exp(−ikz,j∆z) term. We then use these reflection coefficients from the right side

of the first interface to re-calculate the coefficients at that interface and start the

process over. We continue this loop between interfaces until a convergent solution

to Maxwell’s equations is found. The requirements for convergence are discussed

in the next section.

4.3.1 Convergence of the Relaxation Method

The relaxation scheme presented above is necessary to reconcile the growing and

decaying exponential terms (exp(ikz,j∆z), exp(−ikz,j∆z)) utilized to transfer the

coefficients along the NIM waveguide. Calculations, in particular, sums and dif-

ferences of the these modes that have a relatively large imaginary component of

their propagation constant, k′′z , in the nanoscale waveguide may result in enormous

spreads in magnitude. Such a large magnitude difference in exponentially small

and large terms may lead to a loss in accuracy due to the finite machine precision

of the computer. Therefore, care must be taken to ensure the convergence of the

relaxation method with consideration primarily on two factors: 1) the number of
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times the relaxation loop is excecuted, and 2) using an adequate number of modes

within the system.

The relaxation loop should be iterated through until the absolute values of the

coefficients from the previous run-through match the absolute values of the current

coefficients to within a very small error. To do this, the coefficient values are stored

(Tiold
(+)) before they are translated and compared at the start of the next iteration

with the following expression:

∆T (+) =

∑
i |Tiold

(+) − Ti
(+)|2∑

i |Ti
(+)|2 (4.51)

Once ∆T (+) � 10−25 the iteration loop may be exited. A similar definition and

requirement is used to determine the convergence of the R(+) coefficients at the

second interface. This method guarantees the solution is self-consistent.

Secondly, the total number of modes within the system must be high enough

so that the fields on either side of the interfaces agree, satisfying the required

boundary conditions. To verify that this occurs, we plot the cross-section along

the x direction of the Dz, Hy, Ex and Ey fields at either side of the interface,

with y = 0, for both z locations of the boundaries in question. Typically we find

adequate matching of the fields for as low as N = 20 waveguide modes, but chose

to run the simulations with a total of N = 40, 60, or 80 modes for better accuracy

as determined by energy flux calculations.

4.3.2 Energy Flux Calculations for Validation

Conservation of energy can be used to validate the simulations and relaxation

coding technique described above. We start by calculating the Poynting vector

components separately for TE and TM modes for the incoming, reflected, and

transmitted waves through the system. This is straightforward for the single inter-

face coupling of two waveguides, however for double interface coupling as described

in Section 4.3, we only consider the waves in the far left and far right waveguide

regions and ignore the internal waveguide modes for this calculation. The energy

flux vector components for the TE and TM mode polarizations are given by,
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STM = {− 1
κkz

2 i|Aj |2ε‖k
(
k2

y + k2
z

)
cos(κx) sin(κx), (4.52)

1
ε⊥κ2kz

2 |Aj|2|ε‖|2
(
k2

y + k2
z

)
kky sin(κx)2,(

k2
y + k2

z

) |Aj |2|ε‖|2k2 sin(κx)2

ε⊥kκ2kz
}

STE = {− 1
kkz

2 i|Aj|2κ
(
k2

y + k2
z

)
cos(κx) sin(κx), (4.53)

1
kkz

2 |Aj|2ky

(
k2

y + k2
z

)
cos(κx) cos(κx),

|Aj |2(k2
y+k2

z) cos(κx) cos(κx)

kkz
},

where Aj represents either the transmission or reflection coefficient for a given mode

with index, j. Each component expression in Eqs. (4.52, 4.53) can be simplified

by assigning κ = Mπ
d

where M is an integer and d is the waveguide thickness, and

then integrating the cos and sin functions symmetrically over d. Doing this reveals

the zero x-component flux for both polarizations, as well as a zero y-component

flux when considering normal incidence radiation (ky = 0). Since our interest lies

in the transmission of radiation in the z direction, we focus on the z-component

of the energy flux shown here:

Sz,TM =
|Aj |2|ε‖|2k(k2

y+k2
z)

2ε⊥kzκ2 (4.54)

Sz,TE =
|Aj |2(k2

y+k2
z)

2kkz
. (4.55)

For each mode polarization, we then sum over all modes, using appropriate

coefficients for each waveguide region, to get a total energy flux for both TE

and TM modes. The question arises why we do not consider the cross terms

involving both TE and TM modes. The z component of this cross-term flux

actually disappears. Starting from the total energy flux defined by the Poynting

vector (ignoring constant prefactors), �S = [ �E × �H ] the total flux can be written,

�E × �H = (E(TM) + E(TE)) × (H(TM) +H(TE))∗ (4.56)

= (E(TM) ×H(TM)∗) + (E(TE) ×H(TM)∗)

+(E(TM) ×H(TE)∗) + (E(TE) ×H(TE)∗)
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where the first and last terms are the TM and TE modal fluxes from Eqs.( 4.53, 4.52)

respectively. The z component of the first cross term is easily shown to be zero

from looking at Eq. 3.1 and noting that the x component is zero in both ETE and

HTM . The second cross term z component,

(E(TM) ×H(TE)∗)z = E(TM)
x H(TE)

y

∗ −E(TM)
y H(TE)

x

∗

is slightly trickier but can be shown to cancel out as well. After some algebra

using Eqs.( 3.3, 3.4), keeping in mind that κ(TM) = κ(TE), E
(TM)
0 = E

(TE)
0 = E0,

and assuming E0 ∝ cos(κx) will show a cancellation of terms. Since the cross

terms disappear, we can simply add the summed TE and TM fluxes together in

each waveguide region to obtain a total incident, transmitted, and reflected flux.

Dividing both the total transmitted and reflected flux by the total incoming flux

reveals two ratios that when summed together should equal unity in a lossless

system. These ratios must be multiplied by a factor of the ratio of waveguide sizes

when the sizes differ in the regions of calculated flux, such as for the single coupled

system. This simple calculation determines that the simulations are truly physical

and aids in checking accuracy of the computations.

4.4 Isotropic RHM Results

Since the general behavior of right-handed, conventional media inside a waveguide

is well-known, the following calculations were done with several expectations in

mind. These expectations include finding the transmission through the waveguide

to be cut off as a function of waveguide radius and also that the transmitted field

would fall subject to the diffraction limit.

We consider the isotropic system consisting of a 5 µm long internal waveguide

filled with air (ε‖ = ε⊥ = 1.0), coupled on both sides to a 1 µm-thick silicon outer

waveguide, with electric permittivities ε‖ = ε⊥ = 13.0. Absorption is neglected.

Using 80 waveguide modes and assuming only the first TM mode of radiation

is incident from the left, a series of simulations are done varying the external

waveguide thickness, dout, and the internal (air) waveguide thickness, din. For

each simulation performed, dout is held constant as the relaxation technique is

conducted for values of din ranging from 1 nm to dout in increments of 0.5 nm.
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The total incident flux from the left-most waveguide (region 1 in Fig 4.9), as well

as the transmitted and reflected fluxes from region 3 are exported and stored in

corresponding data files for each simulation.

Compiling the simulation results and plotting the transmission through the

isotropic coupled system as a function of internal waveguide widths reveals noti-

cable transmission values for din greater than 700 nm as shown in (a) of Fig. 4.10.

The plot in Fig. 4.10 (b) shows the optical range of interest, internal waveguide

sizes between 400 nm and 700 nm, where it appears there is no transmission as

expected. Taking a closer look at this range, we find that although the transmis-

sion is near zero, the ln-ln plot of transmission intensity as a function of internal

waveguide size reveals a power-law relationship as shown in Fig. 4.11. Further

work needs to be done to verify the convergence of the values taking into account

numerical precision because transmission values are extremely small.
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Figure 4.10: Transmission through an isotropic coupled planar waveguide system
with an external waveguide size of 1000 nm as a function of internal waveguide
size for (a) the entire dout range and (b) the 500 nm to 700 nm range.

4.5 Anisotropic NIM Results

The more interesting case to study is when the proposed NIM, anisotropic dielectric-

filled waveguide is coupled between a micron-sized silicon waveguide (ε‖ = ε⊥ =

13.0). The calculated permittivities of the nanowired metamaterial inside the

left-handed waveguide include a small absorption; ε‖ = 2.329 + 0.1i and ε⊥ =

−3.909 + 0.1i. The resulting index of refraction, n, depends on both din and the

mode number from κ in the definitions (3.7) and (3.8). The index of refraction

ranges from −9.5 + .33i to −1.4 + .1i for the first TM mode and −5.47 + .2i to

−2.13 + .11i for the second TM mode as din is varied from 1 nm to 1000 nm.
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Figure 4.11: Ln-ln plot of transmission through an isotropic planar waveguide
system as a function of internal waveguide size to reveal a power law relationship
for the transmission.

Assuming only the first TM mode is normally incident (ky = 0) from the left with

wavelength, λ = 1500 nm, a series of simulations are done varying the length of

the NIM waveguide, ∆z, the external waveguide thickness, dout, and the internal

(NIM) waveguide thickness, din. For each simulation performed, ∆z and dout are

held constant as the relaxation technique is conducted for values of din ranging

from 1 nm to dout in increments of .5 nm. Again, the total incident flux from re-

gion 1, and transmitted and reflected flux calculations from region 3 are exported

and stored in corresponding data files for each simulation. We can use this data

to analyze transmission through the coupled NIM waveguide system.

4.5.1 Modal Peaks

Figure 4.12 plots transmission through the system as a function of internal waveg-

uide size. Note that transmission occurs for waveguide sizes smaller than λ/2, in

contrast to the results from the isotropic system studied above. In (a) we suspect

the two peaks to be due to the two most prominant TM modes: the first and sec-

ond order modes. A revealing three dimensional surface plot of the transmission

is shown in (b) of Figure 4.13, where the natural log of the transmission is plotted

as a function of waveguide length, L, and internal waveguide size, din. The peak

ridges are colored accordingly to match those in Figure 4.12 (a). Simulations cal-

culating kz
′′ for the dominate propagating mode of given waveguide sizes indicate
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Figure 4.12: Transmission through the anisotropic NIM internal waveguide as a
function of internal waveguide size. (a) Internal waveguide size of 1000 nm. The
first peak at din ≈ 400 nm is proved to be due to the first TM mode while the
second peak at din ≈ 800 nm is due to the second TM mode. (b) Transmisson peaks
corresponding to internal waveguides sizes of 1000 nm (red), 1500 nm (green), 2000
nm (blue), 2500 nm (turquois), 3000 nm (purple).
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Figure 4.13: (a) The semi-log plot of transmission through the anisotropic NIM
internal waveguide for din = 400 nm (blue) and din = 800 nm (green) as a function
of internal waveguide length. (b) The three-dimensional surface plot of ln(T ) as a
function of L and din where the peaks correspond to the lines in (a).

that the transmission peaks occur at the minima of kz
′′, or when the dissipation

of the wave is smallest. The plot in Figure 4.12 (b) shows the transmission peaks

corresponding to various internal waveguide sizes ranging from din = 1000 nm to

3000 nm in increments of 500 nm. The primary peaks align nicely, while the sec-

ondary peak appears to converge to what we suspect to be the minimum kz
′′ for

the second most dominant TM mode. The relationship between the transmission

peaks and the dissipation minimum should be further explored.
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4.5.2 Exponential Dependence of Transmission

The three dimensional surface plot in Figure 4.13 (b) provides insight to the NIM

waveguide length dependence of the transmission. The linear relationship seen

in the semi-log plot in (a) reveals an exponential relationship between the trans-

mission of the electromagnetic fields through our NIM waveguide as a function of

waveguide length. The slope, m, of the blue (top) line, corresponding to the peak

located at din ∼ 400 nm, is numerically calculated to be −9.0 × 10−4, while the

slope of the green (bottom) line, corresponding to the peak located at din ∼ 800

nm, is −1.1 × 10−3. Since the transmission is proportional to the intensity of the

electromagnetic field, and the intensity is proportional to the square of the field’s

magnitude, simple logarithmic math shows that m /2 of for each line is directly

related to the field decay as a function of waveguide length. The absorption of the

field can be found by inspecting the imaginary part of the propagating wave vector

which in this case is k′′z . In order verify the relationship between slope and field

attenuation, we found the values for k′′z for both the first and second TM modes

inside the NIM waveguide, as we believe the transmission peaks to correspond

to these modes. For the first TM mode, kz,1
′′ = 4.5 × 10−4i and for the second,

kz,2
′′ = 5.5 × 10−4i. It is apparent that these numeric values are almost exactly

equal to half of the slope values, m, listed above for the coinciding modal lines

in the semi-log plot. This result confirms that the transmission peaks correlate

directly to the prominant propagating modes inside the NIM waveguide.

4.6 Imaging through Coupled System

As an extension of the planar lens imaging described in Section 3.6 we model

the imaging through the proposed coupled waveguide system, with the internal

waveguide being a NIM. The problem now becomes three-dimensional as we want

to measure the imaging in multiple y− z planes. We assume an incident mode for

all y values, but only a single x-direction mode. The arrays for kz values as well

as the reflection and transmission coefficients are now two-dimensional. We loop

over the ky values and calculate the 2N × 2N matrices representing the boundary

conditions for each ky. The transmission and reflection coefficients are calculated

and appended to appropriate arrays before the loop is iterated. After a solution
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converges, the fields are calculated in each waveguide region summing over the

transmission and reflection mode coefficients. The field distribution is illustrated

by performing a density plot of the field intensity throughout the system for a single

y − z plane. A particular imaging plane is shown in Figure 4.14 using a single slit

source and 15 waveguide modes for the simulation. The system consists of a 400

nm nanolayer NIM core lens with effective index of refraction, n = −2.084+0.17i,

coupled on either end to a 1 µm thick silicon waveguide.

Figure 4.14: Imaging by a planar NIM-based lens coupled between two 1 µm thick
Si-filled planar waveguides; Single slit source w = 0.25 µm located at z = −7 µm;
NIM region thickness d = 0.4 µm: planar waveguide with nanolayer core material
described in Fig. 3.5.1 with small absorption. The NIM region is between z =
−4 µm and z = 3 µm.

4.7 Concluding Remarks

This purpose of this chapter was to explore the single and double coupling of

micro-scale isotropic planar waveguides to and from the proposed subwavelength

NIM waveguides. We began by describing the details of our simulation design

to calculate the propagation of the electromagnetic fields through the a single
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interface of two different-sized coupled planar waveguides in Section 4.1. Assuming

an existing number of waveguide modes, solving the boundary equations derived

from Maxwell’s equations for each mode, and then summing over all TE and TM

modes, the total field in each region can be constructed. This method includes

large matrices and arrays which become numerically intensive.

Section 4.2 walks through the analytical derivation of expressions for the trans-

mission through and reflection from such a single coupled waveguide system sepa-

rately for the TE and TM modes as they decouple with normal radiation incidence.

We present results of the theory compared to our numerical simulations for a sev-

eral system configurations. The transmission data agrees nicely for higher order

modes for all dout values of both TE and TM cases. For TM transmission with

dout < 20 µm a resonance peak occurs within the lower modes of the simulated

data differing from the derived theory in both the anisotropic and isotropic sys-

tems. This resonance occurs in the higher modes of the TM reflection data while

the lower modes match almost perfectly. Both transmission and reflection of the

lower TE modes disagree with the theory (an exception being the first reflected TE

mode). Further investigation of our theoretical derivations including exploration of

the numerical precision of the approximated term could lead to improved results.

An extension of the single waveguide coupling is to join the nanoscale NIM

waveguide on both sides with isotropic micron-sized waveguides. We developed

a relaxation technique to iterate between the interfaces, satisfying the boundary

conditions at each intereface until a convergent solution for the fields is found.

We verify our solutions are physical with energy flux calculations on either side of

the system. Results are compared for transmission through a completely isotropic

double coupled setup versus the configuration with an internal anisotropic, NIM

waveguide. Transmission through the anisotropic system is 27 orders of magnitude

greater than transmission through isotropic media for smaller (∼ 400 nm) waveg-

uide thickness. Transmission peaks occur at specific internal waveguide sizes and

an exponential dependence of the transmission intensity on waveguide length is

verified. While the location of these peaks vary in din depending on the external

waveguide size chosen, they are strongly linked to the dominant propagating modes

in the NIM waveguide. Lastly, we outline an algorithm for simulating imaging

through a particular NIM coupled waveguide system and produce a corresponding

density plot of the electromagnetic field intensity.
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