BORDERED TRIANGLES

by
Ivan Jackson Cherry

A THESIS
submitted to
OREGON STATE COLLEGE

in partial fulfillment of the requirements for the degree of

MASTER OF ARTS
June 1951

APPROVED:

Dean of Graduate School

Date thesis is presented August 10, 1950
Typed by Aileen Cherry

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. THE DIRECT PROBLEM 2
3. THE INVERSE PROBLEM 13
4. TRIANGLES BORDERED BY SQUARES 20
5. LITERATURE CITED 24

BORDERED TRTANGLES

1. INTRODUCTION

The purpose of this paper is to consider some properties of the triangle. We will consider first the properties of the triangle obtained by constructing triangles on the sides of a given triangle. Next we will consider the triangle formed by corresponding sides of triangles each having a vertex coincident with a vertex of the given triangle. Finally, we will consider some properties of the various triangles formed by bordering a given triangle by squares.

In this paper we will use a system of complex coordinates. The points in the plane will be designated by capital letters and their affixes by the corresponding lower case letters. Numbers known to be real will be designated by Greek letters. Using this system we may write the affix of any point in the plane in terms of the affixes of any other two points of the plane in the following manner:

$$
c=r^{\prime} a+r b
$$

where $r^{\prime}=1-r$ and r is the complex number $k e^{i \ominus}$, Θ being the angle from $A B$ to $A C$, and k the ratio $A C / A B$. $B y ~ A C$ we mean the directed length from point A to point C.

2. THE DIRECT PROBLEM

Upon the sides of a given triangle $A_{1} A_{2} A_{3}$ let us construct triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$, of fixed shapes. In this section we will consider some properties of triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$. The points $\mathrm{B}_{1}, \mathrm{~B}_{2}$, B_{3} have affixes given by

$$
\begin{align*}
& b_{1}=r_{1} a_{2}+r_{1} a_{3}, \\
& b_{2}=r_{2}^{\prime} a_{3}+r_{2} a_{1}, \tag{1}\\
& b_{3}=r_{3}^{\prime} a_{1}+r_{3} a_{2} .
\end{align*}
$$

These equations may be solved for the $r^{\prime} s$, giving

$$
\begin{align*}
& r_{1}=\left(b_{1}-a_{2}\right) /\left(a_{3}-a_{2}\right), r_{1}^{\prime}=\left(b_{1}-a_{3}\right) /\left(a_{2}-a_{3}\right), \\
& r_{2}=\left(b_{2}-a_{3}\right) /\left(a_{1}-a_{3}\right), r_{2}^{\prime}=\left(b_{2}-a_{1}\right) /\left(a_{3}-a_{1}\right), \tag{2}\\
& r_{3}=\left(b_{3}-a_{1}\right) /\left(a_{2}-a_{1}\right), r_{3}^{\prime}=\left(b_{3}-a_{2}\right) /\left(a_{1}-a_{2}\right) .
\end{align*}
$$

LEMaM 2.1. A necessary and sufficient condition that triangles $\mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3}$ and $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ be directly similar is that

$$
\left|\begin{array}{lll}
q_{1} & c_{1} & 1 \\
q_{2} & c_{2} & 1 \\
q_{3} & c_{3} & 1
\end{array}\right|=0
$$

It is evident that a necessary and sufficient condition that the triangles be directly similar is that a homology exist which transforms $\mathrm{Q}_{1} \mathrm{Q}_{2}$ into $\mathrm{C}_{1} \mathrm{C}_{2}$ and $\mathrm{Q}_{2} \mathrm{Q}_{3}$ into $\mathrm{C}_{2} \mathrm{C}_{3}$. Thus, if the triangles are direetly similar, there exists a constant k such that

$$
q_{2}-q_{1}=k\left(c_{2}-c_{1}\right) \text { and } q_{3}-q_{2}=k\left(c_{3}-c_{2}\right)
$$

Then

$$
\begin{aligned}
D & \equiv\left|\begin{array}{lll}
q_{1} & c_{1} & 1 \\
q_{2} & c_{2} & 1 \\
q_{3} & c_{3} & 1
\end{array}\right|=\left|\begin{array}{ccc}
q_{1} & c_{1} & 1 \\
q_{2}-q_{1} & c_{2}-c_{1} & 0 \\
q_{3}-q_{2} & c_{3}-c_{2} & 0
\end{array}\right| \\
& =\left|\begin{array}{ccc}
q_{1} & c_{1} & 1 \\
k\left(c_{2}-c_{1}\right) & c_{2}-c_{1} & 0 \\
k\left(c_{3}-c_{2}\right) & c_{3}-c_{2} & 0
\end{array}\right|=0
\end{aligned}
$$

Conversely, if $\mathrm{D}=0$, there exists a constant k such that

$$
q_{2}-q_{1}=k\left(c_{2}-c_{1}\right) \text { and } q_{3}-q_{2}=k\left(c_{3}-c_{2}\right),
$$

and the triangles are directly similar.

THEOREM 2.2. If on the sides of an arbitrarily chosen triangle $A_{1} A_{2} A_{3}$ triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$, of fixed shapes, be constructed, a necessary and sufficient condition that triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ be directly similar to a given triangle $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$, no matter what triangle $A_{1} A_{2} A_{3}$ is chosen, is that a point D exist such that triangles $B_{1} A_{2} A_{3}$, $\mathrm{B}_{2} \mathrm{~A}_{3} \mathrm{~A}_{1}, \mathrm{~B}_{3} \mathrm{~A}_{1} \mathrm{~A}_{2}$ are directly similar respectively to triangles $\mathrm{DC}_{3} \mathrm{C}_{2}$, $D C_{1} C_{3}, D C_{2} C_{1}$. (4, p.532)

Substituting in D of lemma 2.1 the values for the b's given in (1) we have

$$
D=\left|\begin{array}{lll}
x_{1} a_{3}+r_{1} a_{2} & c_{1} & 1 \\
r_{2} a_{1}+r_{2}^{\prime} a_{3} & c_{2} & 1 \\
r_{3} a_{2}+r_{3}^{\prime} a_{1} & c_{3} & 1
\end{array}\right|=0,
$$

as the condition that triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ be directly similar to triangle $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$. Expanding we have

$$
\begin{aligned}
D & =c_{3}\left(r_{2} a_{1}+r_{2}^{\prime} a_{3}\right)-c_{2}\left(r_{3} a_{2}+r_{3}^{\prime} a_{1}\right)-c_{3}\left(r_{1} a_{3}+r_{1}^{\prime} a_{2}\right) \\
& +c_{1}\left(r_{3} a_{2}+r_{3}^{\prime} a_{1}\right)+c_{2}\left(r_{1} a_{3}+r_{1}^{\prime} a_{2}\right)-c_{1}\left(r_{2} a_{1}+r_{2}^{\prime} a_{3}\right)=0
\end{aligned}
$$

Since this must be true for all triangles $A_{2} A_{2} A_{3}$, we may equate the coefficients of the a's to zero, obtaining

$$
\begin{aligned}
& r_{2}\left(c_{3}-c_{1}\right)+r_{3}^{\prime}\left(c_{1}-c_{2}\right)=0 \\
& r_{3}\left(c_{1}-c_{2}\right)+r_{1}^{\prime}\left(c_{2}-c_{3}\right)=0 \\
& r_{1}\left(c_{2}-c_{3}\right)+r_{2}^{\prime}\left(c_{3}-c_{1}\right)=0
\end{aligned}
$$

Solutions of these for the r^{\prime} s are

$$
\begin{aligned}
& r_{1}=\left(d-c_{3}\right) /\left(c_{2}-c_{3}\right), \\
& r_{2}=\left(d-c_{1}\right) /\left(c_{3}-c_{1}\right), \\
& r_{3}=\left(d-c_{2}\right) /\left(c_{1}-c_{2}\right),
\end{aligned}
$$

where d is an arbitrary complex number. Substituting in these equations the values of the r^{\prime} s found in (2) we obtain,

$$
\left(b_{1}-a_{2}\right) /\left(a_{3}-a_{2}\right)=\left(d-c_{3}\right) /\left(c_{2}-c_{3}\right)
$$

$$
\begin{align*}
& \left(b_{2}-a_{3}\right) /\left(a_{1}-a_{3}\right)=\left(d-c_{1}\right) /\left(c_{3}-c_{1}\right) \tag{3}\\
& \left(b_{3}-a_{1}\right) /\left(a_{2}-a_{1}\right)=\left(d-c_{2}\right) /\left(c_{1}-c_{2}\right)
\end{align*}
$$

These are conditions that triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ be directly similar to triangles $\mathrm{DA}_{3} \mathrm{~A}_{2}, \mathrm{DA}_{1} \mathrm{~A}_{3}, \mathrm{DA}_{2} \mathrm{~A}_{1}$.

COROLLARY 2.3. If, on the sides of an arbitrarily chosen triangle $A_{1} A_{2} A_{3}$, similar triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ of fixed shapes be constructed, a necessary and sufficient condition that triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ be equilateral for any triangle $A_{1} A_{2} A_{3}$ is that triangles $B_{1} A_{2} A_{3}$, $\mathrm{B}_{2} \mathrm{~A}_{3} \mathrm{~A}_{1}, \mathrm{~B}_{3} \mathrm{~A}_{1} \mathrm{~A}_{2}$ be 120° isosceles with vertex angles at $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$.

If triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ is equilateral and the bordering triangles are similar, then the point D of theorem 2.2 must be the centroid of triangle $\mathrm{C}_{7} \mathrm{C}_{2} \mathrm{C}_{3}$. Consequently, the bordering triangles must be 120° isosceles. Conversely, if the bordering triangles are 120° isosceles, triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ must be equilateral. For now

$$
r_{1}=r_{2}=r_{3}=r \equiv e^{i \pi / 6}, r^{\prime}=\bar{r},
$$

whence, setting $t=e^{i \pi / 3}$,

$$
\begin{aligned}
t\left(b_{3}-b_{1}\right) & =\left(a_{1}-a_{2}\right) \bar{r} t+\left(a_{2}-a_{3}\right) r t \\
& =\left(a_{1}-a_{2}\right) r+\left(a_{2}-a_{3}\right)(r-\bar{r}) \\
& =\bar{r}\left(a_{3}-a_{2}\right)+r\left(a_{1}-a_{3}\right) \\
& =b_{2}-b_{1}
\end{aligned}
$$

COROLLARY 2.4. If, on the sides of triangle $A_{1} A_{2} A_{3}$, triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$, of fixed shapes be constructed, a necessary and sufficient condition that points B_{1}, B_{2}, B_{3} be collinear for any triangle $A_{1} A_{2} A_{3}$ is that

$$
\begin{aligned}
& 4 B_{1} A_{2} A_{3}=4 B_{2} A_{1} A_{3}, \\
& 4 B_{2} A_{3} A_{1}=4 B_{3} A_{2} A_{1}, \\
& 4 B_{3} A_{1} A_{2}=4 B_{1} A_{3} A_{2} \quad(4, p .532)
\end{aligned}
$$

Here, by $A B C$, we mean the directed angle from line $A B$ to line $B C$, that is, the positive angle through which line $A B$ must be rotated to coincide with line BC. It follows that directed angles are equivalent if they differ by any integral multiple of . (2, p.12)

If points B_{1}, B_{2}, B_{3} are to be collinear, then points C_{1}, C_{2}, C_{3} must be collinear, and

$$
\begin{aligned}
& \nless D C_{1} C_{3}=\Varangle D C_{2} C_{2}, \\
& 4 D C_{2} C_{1}=\Varangle D C_{2} C_{3}, \\
& 4 D C_{3} C_{2}=4 D C_{3} C_{1}
\end{aligned}
$$

But, by similarity of triangles, we have

$$
\begin{aligned}
& \Varangle B_{1} A_{2} A_{3}=\Varangle D C_{3} C_{2}=4 D C_{3} C_{1}=4 B_{2} A_{1} A_{3}, \\
& \Varangle B_{2} A_{3} A_{1}=\Varangle D C_{1} C_{3}=4 D C_{1} C_{2}=4 B_{3} A_{2} A_{1}, \\
& 4 B_{3} A_{1} A_{2}=4 D C_{2} C_{1}=4 D C_{2} C_{3}=4 B_{1} A_{3} A_{2}
\end{aligned}
$$

The converse readily follows by reversing the above argument.

If we consider the point D collinear with points C_{1}, C_{2}, C_{3}, we have

COROLLARY 2.5. Three points B_{1}, B_{2}, B_{3} on the sides of a triangle $A_{1} A_{2} A_{3}$ are collinear if and only if

$$
\left(B_{1} A_{2} / B_{1} A_{3}\right)\left(B_{2} A_{3} / B_{2} A_{1}\right)\left(B_{3} A_{1} / B_{3} A_{2}\right)=1
$$

This is the theorem of Menelaus (2, p.147). The proof follows from the similarity of triangles, for

$$
\begin{aligned}
& B_{1} A_{2} / B_{1} A_{3}=D C_{3} / D C_{2} \\
& B_{2} A_{3} / B_{2} A_{1}=D C_{1} / D C_{3} \\
& B_{3} A_{1} / B_{3} A_{2}=D C_{2} / D C_{1}
\end{aligned}
$$

whence

$$
\left(B_{1} A_{2} / B_{1} A_{3}\right)\left(B_{2} A_{3} / B_{2} A_{1}\right)\left(B_{3} A_{1} / B_{3} A_{2}\right)=\left(D C_{3} / D C_{2}\right)\left(D C_{1} / D C_{3}\right)\left(D C_{2} / D C_{1}\right)=1
$$

The converse is readily established.

Let us now consider the condition that the lines $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$ be concurrent. The equations of the lines may be written

$$
\begin{aligned}
& \left(\bar{a}_{1}-\bar{b}_{1}\right) z-\left(a_{1}-b_{1}\right) \bar{z}+a_{1} \bar{b}_{1}-\bar{a}_{1} b_{1}=0 \\
& \left(\bar{a}_{2}-\bar{b}_{2}\right) z-\left(a_{2}-b_{2}\right) \bar{z}+a_{2} \bar{b}_{2}-\bar{a}_{2} b_{2}=0 \\
& \left(\bar{a}_{3}-\bar{b}_{3}\right) z-\left(a_{3}-b_{3}\right) \bar{z}+a_{3} \bar{b}_{3}-\bar{a}_{3} b_{3}=0
\end{aligned}
$$

Without loss of generality we may take

$$
a_{1}=a, \quad a_{2}=0, \quad a_{3}=1
$$

Then

$$
b_{1}=r_{1}, b_{2}=r_{2}^{\prime}+r_{2} a, \quad b_{3}=r_{3}^{\prime} a
$$

The condition that the lines be concurrent is that

$$
\left|\begin{array}{ccc}
\bar{r}_{1}-\bar{a} & r_{1}-a & \bar{a} r_{1}-a \bar{r}_{1} \\
\bar{r}_{2}^{\prime}+\bar{r}_{2}^{\prime} \bar{a} & r_{2}^{\prime}+r_{2} a & 0 \\
1-\bar{r}_{3}^{\prime} \bar{a} & 1-r_{3}^{\prime} a & \bar{r}_{3}^{\prime} \bar{a}-r_{3}^{\prime} a
\end{array}\right|=0
$$

Since this must be an identity in a we may equate the coefficients of $a^{2} \bar{a}, a^{2}, a \bar{a}$, and a to zero, obtaining
(4)

$$
\begin{aligned}
& \bar{r}_{1}\left(\bar{r}_{2} r_{3}^{\prime}-r_{2} \bar{r}_{3}^{\prime}\right)+r_{3}^{\prime}\left(r_{2}-\bar{r}_{2}\right)=0, \\
& \bar{r}_{1}\left(\bar{r}_{2}^{\prime} r_{3}^{\prime}+r_{2}\right)-r_{3}^{\prime}\left(\bar{r}_{1} r_{2}+\bar{r}_{2}^{\prime}\right)=0, \\
& r_{1}\left(\bar{r}_{2}^{\prime} r_{3}^{\prime}+\bar{r}_{2}\right)-\bar{r}_{3}^{\prime}\left(\bar{r}_{1} r_{2}+\bar{r}_{2}^{\prime}\right)+\bar{r}_{1}\left(r_{2}^{\prime} \bar{r}_{3}^{\prime}+\bar{r}_{2}\right)-r_{3}^{\prime}\left(r_{1} \bar{r}_{2}+r_{2}^{\prime}\right)=0, \\
& \bar{x}_{1}\left(\bar{x}_{2}^{\prime}-r_{2}^{\prime}\right)+r_{3}^{\prime}\left(\bar{r}_{1} r_{2}^{\prime}-r_{1} \bar{r}_{2}^{\prime}\right)=0 .
\end{aligned}
$$

Suppose one of the r^{\prime} s is real, say r_{1}. Then from (4) ${ }_{4}$ we have

$$
r_{1}\left(\bar{r}_{2}^{\prime}-r_{2}^{\prime}\right)+r_{3}^{\prime}\left(r_{1} r_{2}^{\prime}-r_{1} \bar{r}_{2}^{\prime}\right)=r_{1}\left(\bar{r}_{2}^{\prime}-r_{2}^{\prime}\right)\left(1-r_{3}^{\prime}\right)=0
$$

If none of the $r^{\prime} s=0,1$, then $\bar{r}_{2}^{\prime}=r_{2}^{\prime}$ and r_{2} is real, and from (4)

$$
r_{1}\left(r_{2} r_{3}^{\prime}-r_{2} \bar{r}_{3}^{\prime}\right)=0
$$

whence $r_{3}^{\prime}=\bar{r}_{3}$, and r_{3} is real. Equations $(4)_{2}$ and $(4)_{3}$ reduce to

$$
r_{1} x_{2} r_{3}=r_{1}^{\prime} r_{2}^{\prime} x_{3}^{\prime}
$$

Since all the r^{\prime} s are real, the B^{\prime} s lie on the sides of triangle $A_{1} A_{2} A_{3}$, and the r^{\prime} s are the ratios

$$
\begin{array}{lll}
r_{1}=A_{2} B_{1} / A_{2} A_{3}, & r_{2}=A_{3} B_{2} / A_{3} A_{1}, & r_{3}=A_{1} B_{3} / A_{1} A_{2}, \\
r_{1}^{\prime}=A_{3} B_{1} / A_{3} A_{2}, & r_{2}^{\prime}=A_{1} B_{2} / A_{1} A_{3}, & r_{3}^{\prime}=A_{2} B_{3} / A_{2} A_{1},
\end{array}
$$

and the relation $r_{1} r_{2} r_{3}=r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}$ becomes

$$
\left(B_{1} A_{2} / B_{1} A_{3}\right)\left(B_{2} A_{3} / B_{2} A_{1}\right)\left(B_{3} A_{1} / B_{3} A_{2}\right)=-1 .
$$

Suppose none of the $r^{\prime} s$ is real. Then from $(4)_{1}$ we have

$$
r_{3}^{\prime} / \sqrt{r_{1}}=\left(\bar{x}_{2} r_{3}^{\prime}-r_{2} \bar{r}_{3}^{\prime}\right) /\left(\bar{r}_{2}-r_{2}\right)
$$

Since the right member is equal to its own conjugate, it follows that the left member is a real number. That is

$$
r_{3}^{\prime}=\rho_{3} \bar{x}_{1}, \rho_{3} \text { real. }
$$

Equations $(4)_{1}$ and $(4)_{4}$ become

$$
\bar{r}_{1} \bar{r}_{2}-r_{1} r_{2}+r_{2}-\bar{r}_{2}=0,
$$

and

$$
\bar{r}_{2}^{\prime}-r_{2}^{\prime}+r_{3}^{\prime} r_{2}^{\prime}-\bar{r}_{3}^{\prime} \bar{r}_{2}^{\prime}=0
$$

or

$$
r_{2} r_{1}^{\prime}=\bar{r}_{2} \bar{r}_{1}^{\prime} \quad \text { and } \quad r_{2}^{\prime} r_{3}=\bar{r}_{2}^{\prime} \bar{r}_{3}
$$

Hence the products $\bar{r}_{1}^{\prime} \bar{r}_{2}$ and $\bar{r}_{2}^{\prime} \bar{r}_{3}$ must be real, whence

$$
r_{1}^{\prime}=\left(\bar{r}_{2} \bar{r}_{1}^{\prime} / r_{2} \bar{r}_{2}\right) \bar{r}_{2}=\rho_{1} \bar{r}_{2}, \rho_{1} \text { real, }
$$

and

$$
r_{2}^{\prime}=\left(\bar{r}_{2}^{\prime} \bar{r}_{3} / r_{3} \bar{r}_{3}\right) \bar{r}_{3}=\rho_{2} \bar{r}_{3}, \rho_{2} \text { real. }
$$

Now writing the $r^{\prime} s$ in terms of the $a^{\prime} s$ and $b^{\prime} s$ we have

$$
\begin{aligned}
& \left(b_{1}-a_{3}\right) /\left(a_{2}-a_{3}\right)=\rho_{1}\left(\bar{b}_{2}-\bar{a}_{3}\right) /\left(\bar{a}_{1}-\bar{a}_{3}\right) \\
& \left(b_{2}-a_{1}\right) /\left(a_{3}-a_{1}\right)=\rho_{2}\left(\bar{b}_{3}-\bar{a}_{1}\right) /\left(\bar{a}_{2}-\bar{a}_{1}\right) \\
& \left(b_{3}-a_{2}\right) /\left(a_{1}-a_{2}\right)=\rho_{3}\left(\bar{b}_{1}-\bar{a}_{2}\right) /\left(\bar{a}_{3}-\bar{a}_{2}\right)
\end{aligned}
$$

These are conditions that

$$
\begin{aligned}
& \$ A_{2} A_{3} B_{1}=-\Varangle A_{1} A_{3} B_{2} \\
& * A_{3} A_{1} B_{2}=-\varangle A_{2} A_{1} B_{3} \\
& \$ A_{1} A_{2} B_{3}=-\varangle A_{3} A_{2} B_{1}
\end{aligned}
$$

Thus we have the following theorem. (4, p.534)

THEOREM 2.6. If, on the sides of an arbitrarily chosen triangle $A_{1} A_{2} A_{3}$, triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$, of fixed shapes, are constructed, then a necessary and sufficient condition that $A_{1} B_{1}$, $A_{2} B_{2}, A_{3} B_{3}$ be concurrent, no matter what triangle $A_{2} A_{2} A_{3}$ is chosen, is
(a) if B_{1}, B_{2}, B_{3} lie on the sides $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ of triangle $\mathrm{A}_{2} \mathrm{~A}_{2} \mathrm{~A}_{3}$,

$$
\left(B_{1} A_{2} / B_{1} A_{3}\right)\left(B_{2} A_{3} / B_{2} A_{1}\right)\left(B_{3} A_{1} / B_{3} A_{2}\right)=-1 ;
$$

(b) otherwise,

$$
\begin{aligned}
& 4 A_{2} A_{3} B_{1}+4 A_{1} A_{3} B_{2}=0 \\
& 4 A_{3} A_{1} B_{2}+4 A_{2} A_{1} B_{3}=0 \\
& 4 A_{1} A_{2} B_{3}+\Varangle A_{3} A_{2} B_{1}=0
\end{aligned}
$$

Note that part (a) is the well known theorem of Ceva (2,p.147).

THEOREM 2.7. If the bordering triangles are directly similar to one another, then the centroids of triangles $A_{1} A_{2} A_{3}$ and $B_{1} B_{2} B_{3}$ coincide.

For

$$
\begin{aligned}
3 g_{b} & =b_{1}+b_{2}+b_{3} \\
& =\left(r^{\prime} a_{2}+r a_{3}\right)+\left(r^{\prime} a_{3}+r a_{1}\right)+\left(r^{\prime} a_{1}+r a_{2}\right) \\
& =\left(r+r^{\prime}\right)\left(a_{1}+a_{2}+a_{3}\right)=3 g_{a} .
\end{aligned}
$$

The special case where the bordering triangles are flat (the B's falling on the sides of triangle $A_{1} A_{2} A_{3}$), is very old, appearing in Book VIII of Pappus's Collection. The general case was considered by Brocard, and numerous treatments of it have been given.

THEOREM 2.8. If the bordering triangles are directly similar to one another, then a necessary and sufficient condition for the centroids of the bordering triangles to form an equilateral triangle, no matter what triangle $A_{1} A_{2} A_{3}$ is chosen, is that the bordering triangles themselves be equilateral.

The affixes g_{1}, g_{2}, g_{3} of the centroids of the triangles $B_{1} A_{2} A_{3}$, $B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ are given by

$$
\begin{aligned}
& 3 g_{1}=a_{2}\left(r^{\prime}+1\right)+a_{3}(r+1) \\
& 3 g_{2}=a_{3}\left(r^{\prime}+1\right)+a_{1}(r+1) \\
& 3 g_{3}=a_{1}\left(r^{\prime}+1\right)+a_{2}(r+1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& 3\left(g_{2}-g_{1}\right)=a_{1}(r+1)-a_{2}\left(r^{\prime}+1\right)+a_{3}\left(r^{\prime}-r\right) \\
& 3\left(g_{3}-g_{1}\right)=a_{1}\left(r^{\prime}+1\right)-a_{2}\left(r^{\prime}-r\right)-a_{3}(r+1)
\end{aligned}
$$

In order that triangle $G_{1} G_{2} G_{3}$ be equilateral it is necessary and sufficient that

$$
g_{2}-g_{1}=e^{i \pi / 3}\left(g_{3}-g_{1}\right)
$$

or, equating coefficients of a_{1}, a_{2}, a_{3} on the two sides of the equation, that

$$
\begin{aligned}
& x+1=e^{i \pi / 3}\left(r^{\prime}+1\right) \\
& r^{\prime}+1=e^{i \pi / 3}\left(r^{\prime}-r\right) \\
& r-r^{\prime}=e^{i \pi / 3}(r+1)
\end{aligned}
$$

Solving any of these three equations for r gives $x=e^{i \pi / 3}$.
This theorem is well known and is intimately associated with the Fermat-Torricelli problem and the geometry of the isogonic centers of a triangle ($2, \mathrm{pp} .218-222$).

3. THE INVERSE PROBLEM

The question now arises: Being given triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$, under what conditions does there exist a triangle $A_{2} A_{2} A_{3}$ which is bordered by triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ of fixed shapes? The special case where triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ is equilateral was proposed as early as 1869 by Lemoine, and a number of solutions and discussions of this case have been given (1, p.109). In this section we will develop some theorems related to the general inverse problem.

From (1) we may obtain the following expressions for the affixes of the A's:

$$
\begin{align*}
& a_{1}=\left(-r_{2}^{\prime} r_{3} b_{1}+r_{3} r_{1} b_{2}+r_{1}^{\prime} r_{2}^{\prime} b_{3}\right) /\left(r_{1} r_{2} r_{3}+r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}\right) \\
& a_{2}=\left(r_{2}^{\prime} r_{3}^{\prime} b_{1}-r_{3}^{\prime} r_{1} b_{2}+r_{1} r_{2} b_{3}\right) /\left(r_{1} r_{2} r_{3}+r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}\right) \tag{5}\\
& a_{3}=\left(r_{2} r_{3} b_{1}+r_{3}^{\prime} r_{1}^{\prime} b_{2}-r_{1}^{\prime} r_{2} b_{3}\right) /\left(r_{1} r_{2} r_{3}+r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}\right)
\end{align*}
$$

THEOREM 3.1. Suppose triangle $B_{1} B_{2} B_{3}$ is such that there exists a solution triangle $A_{1} A_{2} A_{3}$ which is bordered by triangles $B_{1} A_{2} A_{3}$, $\mathrm{B}_{2} \mathrm{~A}_{3} \mathrm{~A}_{1}, \mathrm{~B}_{3} \mathrm{~A}_{1} \mathrm{~A}_{2}$ of fixed shapes. If on the sides of triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ triangles $\mathrm{C}_{1} \mathrm{~B}_{3} \mathrm{~B}_{2}, \mathrm{C}_{2} \mathrm{~B}_{1} \mathrm{~B}_{3}, \mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1}$ are constructed directly similar to triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$, then triangle $C_{1} C_{2} C_{3}$ will be directily similar to triangle $A_{1} A_{2} A_{3}$.

The affix of C_{1} is given by

$$
\begin{aligned}
c_{1} & =r_{1}^{\prime} b_{3}+r_{1} b_{2} \\
& =r_{1}^{\prime}\left(r_{3}^{\prime} a_{1}+r_{3} a_{2}\right)+r_{1}\left(r_{2}^{\prime} a_{3}+r_{2} a_{1}\right) \\
& =a_{1}\left(r_{1}^{\prime} r_{3}^{\prime}+r_{1} r_{2}\right)+a_{2} r_{1}^{\prime} r_{3}+a_{3} r_{1} r_{2}^{\prime}
\end{aligned}
$$

Similarly,

$$
c_{2}=a_{1} r_{2} r_{3}^{\prime}+a_{2}\left(r_{2}^{\prime} r_{1}^{\prime}+r_{2} r_{3}\right)+a_{3} r_{2}^{\prime} r_{1}
$$

and

$$
c_{3}=a_{1} r_{3}^{\prime} r_{2}+a_{2} r_{3} r_{1}^{\prime}+a_{3}\left(r_{3}^{\prime} r_{2}^{\prime}+r_{3} r_{1}\right)
$$

Therefore

$$
\begin{aligned}
c_{1}-c_{2} & =a_{1}\left(r_{1}^{\prime} r_{3}^{\prime}+r_{1} r_{2}-r_{2} r_{3}^{\prime}\right)-a_{2}\left(r_{2}^{\prime} r_{1}^{\prime}+r_{2} r_{3}-r_{1}^{\prime} r_{3}\right) \\
& =\left(a_{1}-a_{2}\right)\left(r_{1} r_{2} r_{3}+r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}\right)
\end{aligned}
$$

Similarly,

$$
c_{3}-c_{1}=\left(a_{3}-a_{1}\right)\left(r_{1} r_{2} r_{3}+r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}\right)
$$

Thus triangle $C_{1} C_{2} C_{3}$ is directly similar to triangle $A_{1} A_{2} A_{3}$.
THEOREM 3.2. A necessary and sufficient condition that triangle $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$ be directly similar to a given triangle $\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}$, no matter what triangle $B_{1} B_{2} B_{3}$ is chosen, is that a point F exist such that triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ are directly similar to triangles $\mathrm{FD}_{2} D_{3}, F_{3} D_{1}$, $\mathrm{FD}_{1} \mathrm{D}_{2}$.

From theorem 3.1 we have triangle $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ directly similar to triangle $A_{1} A_{2} A_{3}$, and from theorem 2.2, a necessary and sufficient condition that triangle $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ be directly similar to triangle $\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}$, no matter what triangle $B_{2} B_{2} B_{3}$ is chosen, is that a point F exist such that triangles $\mathrm{C}_{1} \mathrm{~B}_{3} \mathrm{~B}_{2}, \mathrm{C}_{2} \mathrm{~B}_{1} \mathrm{~B}_{3}, \mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1}$ are directly similar to triangles $\mathrm{FD}_{2} \mathrm{D}_{3}, \mathrm{FD}_{3} \mathrm{D}_{1}, \mathrm{FD}_{1} \mathrm{D}_{2}$. But triangles $\mathrm{C}_{1} \mathrm{~B}_{3} \mathrm{~B}_{2}, \mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{~B}_{3}, \mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1}$ are directly similar to triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$. Thus triangles $B_{1} A_{2} A_{3}$,
$B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ are directly similar to triangles $\mathrm{FD}_{2} D_{3}, \mathrm{FD}_{3} \mathrm{D}_{1}, \mathrm{FD}_{1} \mathrm{D}_{2}$.

COROLLARY 3.3. A necessary and sufficient condition that points A_{1}, A_{2}, A_{3} be collinear is that $\varangle B_{1} A_{3} A_{2}=\left\langle B_{2} A_{3} A_{1}, 4 B_{2} A_{1} A_{3}=\right.$ $4 B_{3} A_{1} A_{2}$, and $\psi B_{3} A_{2} A_{1}=4 B_{1} A_{2} A_{3}$.

Since triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ are directly similar to triangles $\mathrm{FD}_{2} \mathrm{D}_{3}, \mathrm{FD}_{3} \mathrm{D}_{1}, \mathrm{FD}_{1} \mathrm{D}_{2}$, corresponding angles must be equal. But, for D_{1}, D_{2}, D_{3} to be collinear, it is necessary and sufficient that $\left\langle\mathrm{FD}_{3} D_{2}=\$ \mathrm{FD}_{3} D_{1}, \quad\left\langle\mathrm{FD}_{1} D_{3}=4 \mathrm{FD}_{1} D_{2}\right.\right.$, and $\left\langle\mathrm{FD}_{2} D_{1}=\Varangle \mathrm{FD}_{2} D_{3}\right.$. This proves the corollary.

If triangles $B_{1} A_{2} A_{3}, B_{2} A_{3} A_{1}, B_{3} A_{1} A_{2}$ are similar isosceles triangles, of fixed shape, with vertices at B_{1}, B_{2}, B_{3}, then the affixes of $A^{\prime} ' s$ are given by

$$
\begin{align*}
& a_{1}=\left(-r \overline{r b} b_{1}+r^{2} b_{2}+\bar{r}^{2} b_{3}\right) /\left(r^{3}+\bar{r}^{3}\right) \\
& \left.a_{2}=\left(\bar{r}^{2} b_{1}-r \overline{r b}_{2}+r^{2} b_{3}\right) / r^{3}+\bar{r}^{3}\right) \tag{6}\\
& a_{3}=\left(r^{2} b_{1}+\bar{r}^{2} b_{2}-r \bar{r} b_{3}\right) /\left(r^{3}+\bar{r}^{3}\right)
\end{align*}
$$

where $r=(1+i \tan \beta) / 2, \beta$ being the base angle of the bordering isosceles triangles.

$$
\text { If } \begin{aligned}
\beta= & \pm 30^{\circ}, \text { then } r=(\sqrt{3} / 3) e^{ \pm i \pi / 6}, \text { and } \\
& r^{3}+\bar{x}^{3}=(\sqrt{3} / 9)\left(e^{ \pm i \pi / 2}+e^{\mp i \pi / 2}\right)=0
\end{aligned}
$$

and the denominators in (6) vanish. The numerators will also vanish if and only if (considering the numerator of (6) $)_{1}$, for example)

$$
\begin{aligned}
0 & =3\left(-\mathrm{rr}_{1}+r^{2} b_{2}+\bar{r}^{2} b_{3}\right) \\
& =-b_{1}+e^{+i \pi / 3} b_{2}+e^{\mp i \pi / 3} b_{3} \\
& =e^{ \pm i \pi / 3}\left(b_{2}-b_{3}\right)-\left(b_{1}-b_{3}\right)
\end{aligned}
$$

that is, if and only if triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ is equilateral. Thus we have the following theorem.

THEOREM 3.4. If triangles $\mathrm{B}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}, \mathrm{~B}_{2} \mathrm{~A}_{3} \mathrm{~A}_{1}, \mathrm{~B}_{3} \mathrm{~A}_{1} \mathrm{~A}_{2}$ are isosceles triangles with base angles equal to 30°, then there exists a solution triangle $A_{1} A_{2} A_{3}$ if and only if triangle $B_{1} B_{2} B_{3}$ is equilateral, in which case there exists an infinite number of solutions. (3, p.9)

In the rest of this section the bordered triangles will be considered as exteriorly constructed, unless explicit mention is made to the contrary. If the bordering triangles are similar isosceles and $x^{3}+\bar{r}^{3} \neq 0$, a necessary condition that a solution exist is that the area of $A_{1} A_{2} A_{3}$, in this order be negative, where we take $B_{1} B_{2} B_{3}$ negative. This can be written

$$
-A^{\prime} \equiv \frac{i}{4}\left|\begin{array}{lll}
a_{1} & \bar{a}_{1} & 1 \\
a_{2} & \bar{a}_{2} & 1 \\
a_{3} & \bar{a}_{3} & 1
\end{array}\right|<0
$$

Substituting the values for the $a^{\prime} s$ in terms of the $b^{\prime} s$, we have

$=1\left|\begin{array}{ll}-b_{1}\left(x^{2}+x \bar{r}\right)+b_{2}\left(x^{2}-\bar{r}^{2}\right)+b_{3}\left(\bar{r}^{2}+r \bar{r}\right) & -\bar{b}_{1}\left(\bar{x}^{2}+r \bar{r}\right)+\bar{b}_{2}\left(\bar{r}^{2}-r^{2}\right)+\bar{b}_{3}\left(x^{2}+x \bar{r}\right) \\ b_{1}\left(\bar{x}^{2}-x^{2}\right)-b_{2}\left(\bar{r} \bar{r}+\bar{x}^{2}\right)+b_{3}\left(x^{2}+x \bar{r}\right) & \bar{b}_{1}\left(\bar{r}^{2}-\bar{r}^{2}\right)-\bar{b}_{2}\left(\bar{x} \bar{r}+x^{2}\right)+\bar{b}_{3}\left(\bar{x}^{2}+x \bar{r}\right)\end{array}\right|$
$=i\left\{x^{2}\left[\left(b_{1}-b_{2}\right)\left(\bar{b}_{2}-\bar{b}_{1}\right)+\left(b_{1}-b_{3}\right)\left(\bar{b}_{3}-\bar{b}_{2}\right)\right]+x \bar{x}\left[\left(b_{2}-b_{1}\right)\left(\bar{b}_{3}-\bar{b}_{1}\right)-\left(b_{3}-b_{1}\right)\left(\bar{b}_{2}-\bar{b}_{1}\right)\right.\right.$
$\left.\left.+\left(\mathrm{b}_{2}-\mathrm{b}_{1}\right)\left(\bar{b}_{3}-\bar{b}_{2}\right)-\left(\mathrm{b}_{3}-\mathrm{b}_{2}\right)\left(\overline{\mathrm{b}}_{2}-\bar{b}_{1}\right)\right]+\bar{x}^{2}\left[\left(\mathrm{~b}_{3}-\mathrm{b}_{2}\right)\left(\overline{\mathrm{b}}_{3}-\bar{b}_{1}\right)+\left(\mathrm{b}_{2}-\mathrm{b}_{1}\right)\left(\overline{\mathrm{b}}_{2}-\bar{b}_{1}\right)\right]\right\}$.
If we denote by B the area of triangle $B_{1} B_{3} B_{2}$ and by k_{1}, k_{2} and k_{3} the
lengths of the sides,

$$
\begin{aligned}
-4 A^{\prime}\left(r^{3}+\bar{r}^{3}\right)^{2} & =i\left[-12 B r^{2} / i+r\left(12 B / i-\sum k_{i}^{2}\right)+\left(-2 B / i+\sum k_{i}^{2} / 2\right)\right] \\
& =-12 B r^{2}+12 B r-2 B+i\left(\frac{1}{2}-r\right) \sum k_{i}^{2} \\
& =B\left(3 t^{2}+1\right)+t \Sigma L_{i}^{2} / 2 \text { where } t=\tan \beta
\end{aligned}
$$

THEOREM 3.5. If the bordering triangles are similar isosceles triangles, a necessary condition that a solution triangle $A_{1} A_{2} A_{3}$ exist is that $B\left(3 t^{2}+1\right)+(t / 2) \sum k_{i}^{2}<0$.

COROLLARY 3.6. If triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ is a right triangle and the bordering triangles are right isosceles triangles, there exists no solution triangle $A_{1} A_{2} A_{3}$.

For $B=a b / 2, t=1$ and our condition is $4 a b / 2+\left(a^{2}+b^{2}+c^{2}\right) / 2<0$, $4 a b+c^{2}<0$, which is impossible.

THEOREM 3.7. If the bordering triangles are isosceles, two of which are directly and one of which is inversely similar to a given triangle, then quadrilateral $A_{i} B_{j} B_{i} B_{k}$, B_{i} being the vertex of the inversely similar triangle, will be a parallelogram. (3, p.4)

Suppose B_{1} is the vertex of the inversely similar triangle. Then $a_{1}-b_{2}=b_{3}-b_{1}, a_{1}-b_{3}=b_{2}-b_{1}$ is a condition that $A_{1} B_{2} B_{1} B_{3}$ be a parallelogram. The affixes of the B 's may be written

$$
\begin{aligned}
& b_{1}=r a_{2}+\bar{r} a_{3} \\
& b_{2}=\bar{r} a_{3}+r a_{1} \\
& b_{3}=r a_{1}+r a_{2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}-b_{2}=a_{1}(1-r)-\bar{r} a_{3}=\bar{r}\left(a_{1}-a_{3}\right) \\
& b_{3}-b_{1}=\bar{r}\left(a_{1}-a_{3}\right)=a_{1}-b_{2} \\
& a_{1}-b_{3}=r\left(a_{1}-a_{2}\right)=b_{2}-b_{1}
\end{aligned}
$$

thus the theorem.

THEOREM 3.8. A necessary condition that a solution triangle $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$ exist for any triangle $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ is that

$$
\begin{aligned}
& \left\{r_{1} \bar{r}_{3}^{\prime}\left[\left(k_{2}^{2}-k_{3}^{2}-k_{1}^{2}\right) i / 2+2 B\right]-\bar{r}_{1} r_{3}^{\prime}\left[\left(k_{2}^{2}-k_{3}^{2}-k_{1}^{2}\right) i / 2-2 B\right]\right. \\
& +r_{2} \bar{r}_{1}^{\prime}\left[\left(k_{3}^{2}-k_{1}^{2}-k_{2}^{2}\right) i / 2+2 B\right]-\bar{r}_{2} r_{1}^{\prime}\left[\left(k_{3}^{2}-k_{1}^{2}-k_{2}^{2}\right) i / 2-2 B\right] \\
& +\bar{r}_{2}^{\prime} r_{3}\left[\left(k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right) i / 2+2 B\right]-r_{2}^{\prime} \bar{r}_{3}\left[\left(k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right) i / 2-2 B\right] \\
& \left.-4 B\} /\left(r_{1} r_{2} r_{3}+r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime}\right)\left(\bar{r}_{1} \bar{r}_{2} \bar{r}_{3}+\bar{r}_{1}^{\prime} \bar{r}_{2}^{\prime} \bar{r}_{3}^{\prime}\right)\right\rangle .
\end{aligned}
$$

Here B is the area of triangle $B_{1} B_{3} B_{2}$ and k_{1}, k_{2}, and k_{3} are the lengths of the sides. In order that a solution triangle $A_{1} A_{2} A_{3}$ exist, A, the area of triangle $A_{1} A_{3} A_{2}$ must be positive. We may write

$$
\begin{gathered}
-A \equiv i / 4\left|\begin{array}{lll}
a_{1} & \bar{a}_{1} & 1 \\
a_{2} & \bar{a}_{2} & 1 \\
a_{3} & \bar{a}_{3} & 1
\end{array}\right|<0 \\
-4 A \equiv i\left|\begin{array}{cc}
a_{1}-a_{3} & \bar{a}_{1}-\bar{a}_{3} \\
a_{2}-a_{3} & \bar{a}_{2}-\bar{a}_{3}
\end{array}\right| \\
=i\left|\begin{array}{ll}
-b_{1} r_{3}+b_{2}\left(r_{1}-r_{3}^{\prime}\right)+b_{3} r_{1}^{\prime} & -\bar{b}_{1} \bar{r}_{3}+\bar{b}_{2}\left(\bar{x}_{1}-\bar{r}_{3}^{\prime}\right)+\bar{b}_{3} \bar{r}_{1}^{\prime} \\
b_{1}\left(r_{2}^{\prime}-r_{3}\right)-b_{2} r_{3}^{\prime}+b_{3} r_{2} & \bar{b}_{1}\left(\bar{r}_{2}^{\prime}-\bar{r}_{3}\right)-\bar{b}_{2} \bar{r}_{3}^{\prime}+\bar{b}_{3} \bar{r}_{2}
\end{array}\right|
\end{gathered}
$$

By a straightforward expansion of this determinant we arrive at theorem 3.8 .

COROLLARY 3.9. If the bordering triangles are isosceles triangles of fixed shapes, a necessary condition that a solution triangle $A_{1} A_{2} A_{3}$ exist for any triangle $B_{1} B_{2} B_{3}$ is that

$$
\begin{aligned}
& \left\{r_{1}\left(4 B+i k_{1}^{2}\right)+r_{3}\left(4 B+i k_{2}^{2}\right)+r_{3}\left(4 B+i k_{3}^{2}\right)-4 B\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)\right. \\
& \left.-\frac{1}{2}\left[i \sum k_{i}^{2}+4 B\right]\right\} /\left(r_{1} r_{2} r_{3}+\bar{r}_{1} \bar{r}_{2} \bar{r}_{3}\right)^{2}<0 .
\end{aligned}
$$

For, if the triangles are isosceles, $\bar{r}_{1}=r_{1}^{\prime}, \bar{r}_{2}=r_{2}^{\prime}, \bar{r}_{3}=r_{3}^{\prime}$ and from theorem 3.9,

$$
\begin{aligned}
& +4 A=i\left\{\left[r_{1}+r_{3}-1\right]\left[\left(k_{2}^{2}-k_{3}^{2}-k_{1}^{2}\right) / 2-2 B / i\right]+\left[r_{1}+r_{2}-1\right]\left[\left(k_{3}^{2}-k_{2}^{2}-k_{1}^{2}\right) / 2\right.\right. \\
& -2 B / i]+\left[r_{2}+r_{3}-1\right]\left[\left(k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right) / 2-2 B / i\right]+4 B\left[r_{1} r_{2}+r_{1} r_{3}+r_{2} x_{3}\right] / i \\
& -4 B / i\} /\left(r_{1} r_{2} r_{3}+\bar{r}_{1} \bar{r}_{2} \bar{r}_{3}\right)^{2} \\
& +4 A=\left[-r_{1}\left(4 B+i k_{1}^{2}\right)-r_{2}\left(4 B+i k_{2}^{2}\right)-r_{3}\left(4 B+i k_{3}^{2}\right)\right. \\
& \left.+4 B\left(r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}\right)+i\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}+4 B / i\right)\right] / 2\left(r_{1} r_{2} r_{3}+\bar{r}_{1} \bar{r}_{2} \bar{r}_{3}\right)^{2}
\end{aligned}
$$

4. TRIANGLES BORDERED BY SQUARES

Suppose on the sides of a given triangle $A B C$ we construct squares $A B A_{2} A_{1}, B C B_{2} B_{1}$, and $C A C_{2} C_{1}$ externally and squares $A B A_{4} A_{3}$, $\mathrm{BCB}_{4} \mathrm{~B}_{3}$, and $\mathrm{CAC}_{4} \mathrm{C}_{3}$ internally. The centers of the externally described squares will be designated by $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime}, and those of the internally described squares by $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$. The affixes of these points are given by

(1)	$a_{1}=(1-i) a+i b$	$a_{3}=(1+i) a-i b$
$a_{2}=-i a+(1+i) b$	$a_{4}=i a+(1-i) b$	
$a^{\prime}=(1-i) a+(1+i) b / 2$	$a^{\prime \prime}=(1+i) a+(1-i) b / 2$	
$b_{1}=(1-i) b+i c$	$b_{3}=(1+i) b-i c$	
$b_{2}=-i b+(1+i) c$	$b_{4}=i b+(1-i) c$	
$b^{\prime}=(1-i) b+(1+i) c / 2$	$b^{\prime \prime}=(1+i) b+(1-i) c / 2$	
$c_{1}=(1-i) c+i a$	$c_{3}=(1+i) c-i a$	
$c_{2}=-i c+(1+i) a$	$c_{4}=i c+(1-i) a$	
$c^{\prime}=(1-i) c+(1+i) a / 2$	$c^{\prime \prime}=(1+i) c+(1-i) a / 2$	

THEOREM 4.1. The centroids of triangles $A B C, A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}$, $A_{3} B_{3} C_{3}, A_{4} B_{4} C_{4}, A^{\prime} B^{\prime} C^{\prime}$, and $A^{n} B^{n} C^{n}$ coincide.

$$
\begin{gathered}
3 g=a+b+c \\
3 g_{1}=(1-i)(a+b+c)+i(a+b+c)-3 g \\
3 g_{2}=-i(a+b+c)+(1+i)(a+b+c)=3 g \\
3 g_{3}=(1+i)(a+b+c)-i(a+b+c)=3 g
\end{gathered}
$$

$$
\begin{aligned}
& 3 g_{4}=i(a+b+c)+(1-i)(a+b+c)=3 g \\
& 3 g^{\prime}=(1-i)(a+b+c)+(1+i)(a+b+c) / 2=3 g \\
& 3 g^{\prime \prime}=(1+i)(a+b+c)+(1-i)(a+b+c) / 2=3 g
\end{aligned}
$$

THEOREM 4.2. The areas of the triangles are given by
$\Delta_{1}=\Delta_{2}=4 \Delta+\sum k_{i}^{2} / 4, \quad \Delta_{3}=\Delta_{4}=4 \Delta-\Sigma k_{i}^{2} / 4, \quad \Delta^{\prime}=\Delta+\Sigma k_{i}^{2} / 8$, $\Delta^{\prime \prime}=\Delta-\Sigma k_{i}^{2} / 8$, where k_{1}, k_{2}, and k_{3} are the lengths of the sides and $\Delta, \Delta_{1}, \Delta_{2}, \Delta^{\prime}, \Delta^{\prime \prime}$ are the areas of triangles $A C B, A_{1} C_{1} B_{1}, A_{2} C_{2} B_{2}$, $A^{\prime} C^{1} B^{\prime}, A^{\prime \prime} C^{\prime \prime} B^{\prime \prime}$.

$$
-4 \Delta_{1} / i \equiv-4 \Delta_{2} / i \equiv\left|\begin{array}{lll}
(1-i) a+i b & (1+i) \bar{a}-i \bar{b} & 1 \\
(1-i) b+i c & (1+i) \bar{b}-i \bar{c} & 1 \\
(1-i) c+i a & (1+i) \bar{c}-i \bar{a} & 1
\end{array}\right|
$$

By the laws of addition of determinants,

$$
\begin{gathered}
-4 \Delta_{1} / i \equiv(1+i)(1-i)\left|\begin{array}{lll}
a & \bar{a} & 1 \\
b & \bar{b} & 1 \\
c & \bar{c} & 1
\end{array}\right|-i(1-i)\left|\begin{array}{lll}
a & \bar{b} & 1 \\
b & \bar{c} & 1 \\
c & \bar{a} & 1
\end{array}\right| \\
+1\left|\begin{array}{lll}
b & \bar{a} & 1 \\
c & \bar{b} & 1 \\
a & \bar{c} & 1
\end{array}\right|+\left|\begin{array}{lll}
b & \bar{b} & 1 \\
c & \bar{c} & 1 \\
a & \bar{a} & 1
\end{array}\right|
\end{gathered}
$$

$$
-4 \Delta_{1} / i=-16 \Delta / i+i \sum k_{i}^{2}, \quad \Delta_{1}=4 \Delta+\sum k_{i}^{2} / 4
$$

$$
-4 \Delta_{3} / i \equiv-4 \Delta_{4} / i \equiv\left|\begin{array}{lll}
(1+i) a-i b & (1-i) \bar{a}+i \bar{b} & 1 \\
(1+i) b-i c & (1-i) \bar{b}+i \bar{c} & 1 \\
(1+i) c-i a & (1-i) \bar{c}+i \bar{a} & 1
\end{array}\right|
$$

$$
\begin{aligned}
& -4 \Delta_{3} / i \equiv(1+i)(1-i)\left|\begin{array}{lll}
a & \bar{a} & 1 \\
b & \bar{b} & 1 \\
c & \bar{c} & 1
\end{array}\right|+i(1+i)\left|\begin{array}{ccc}
a & \bar{b} & 1 \\
b & \bar{c} & 1 \\
c & \bar{a} & 1
\end{array}\right| \\
& -i(1-i)\left|\begin{array}{lll}
b & \bar{a} & 1 \\
c & \bar{b} & 1 \\
a & \bar{c} & 1
\end{array}\right|+\left|\begin{array}{lll}
b & \bar{b} & 1 \\
c & \bar{c} & 1 \\
a & \bar{a} & 1
\end{array}\right| \\
& -4 \Delta_{3} / i=-8 \Delta / i-i \sum k_{i}^{2}-4 \Delta / i-4 \Delta / i \\
& \Delta_{3}=\Delta_{4}=4 \Delta-\sum k_{i}^{2} / 4 \\
& -4 \Delta 1 / i=1 / 4\left|\begin{array}{lll}
(1-i) a+(1+i) b & (1+i) \bar{a}+(1-i) \bar{b} & 1 \\
(1-i) b+(1+i) c & (1+i) \bar{b}+(1-i) \bar{c} & 1 \\
(1-i) c+(1+i) a & (1+i) \bar{c}+(1-i) \bar{a} & 1
\end{array}\right| \\
& -16 \Delta 1 / i=(1+i)(1-i)\left|\begin{array}{lll}
a & \bar{a} & 1 \\
b & \bar{b} & 1 \\
c & \bar{c} & 1
\end{array}\right|+(1-i)^{2}\left|\begin{array}{lll}
a & \bar{b} & 1 \\
b & \bar{c} & 1 \\
c & \bar{a} & 1
\end{array}\right| \\
& +(1+i)^{2}\left|\begin{array}{lll}
b & \bar{a} & 1 \\
c & \bar{b} & 1 \\
\mathrm{a} & \bar{c} & 1
\end{array}\right|+(1+i)(1-\mathrm{i})\left|\begin{array}{lll}
\mathrm{b} & \overline{\mathrm{~b}} & 1 \\
\mathrm{c} & \bar{c} & 1 \\
\mathrm{a} & \bar{a} & 1
\end{array}\right| \\
& \Delta^{\prime}=\Delta / 2+\sum k_{i}^{2} / 8+\Delta / 2=\Delta+\sum k_{i}^{2} / 8 . \\
& -4 \Delta n / i=1 / 4\left|\begin{array}{lll}
(1+i) a+(1-i) b & (1-i) \bar{a}+(1+i) \bar{c} & 1 \\
(1+i) b+(1-i) c & (1-i) \bar{b}+(1+i) \bar{c} & 1 \\
(1+i) c+(1-i) a & (1-i) \bar{c}+(1+i) \bar{a} & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
-16 \Delta n / i & =(1+i)(1-i)\left|\begin{array}{lll}
a & \bar{a} & 1 \\
\mathrm{~b} & \bar{b} & 1 \\
\mathrm{c} & \bar{c} & 1
\end{array}\right|+(1+i)^{2}\left|\begin{array}{lll}
a & \bar{b} & 1 \\
\mathrm{~b} & \bar{c} & 1 \\
c & \bar{a} & 1
\end{array}\right| \\
& +(1-i)^{2}\left|\begin{array}{lll}
b & \bar{a} & 1 \\
c & \bar{b} & 1 \\
a & \bar{c} & 1
\end{array}\right|+(1+i)(1-i)\left|\begin{array}{lll}
b & \bar{b} & 1 \\
c & \bar{c} & 1 \\
a & \bar{a} & 1
\end{array}\right|
\end{aligned}
$$

THEOREM 4.3. The sums of the squares of the lengths of the principal diagonals $A^{\prime} B^{\prime \prime}, B^{\prime} C^{\prime \prime}, C^{\prime} A^{\prime \prime}$, of the hexagon $A^{\prime} A^{\prime \prime} B^{\prime} B^{\prime \prime} C^{\prime} C^{\prime \prime}$ formed by the centers of the squares is equal to twice the sum of the squares of the lengths of the sides of triangle ABC.

$$
\begin{array}{ll}
a^{\prime}-b^{\prime \prime}=(1-i)(a-c) & \bar{a}^{\prime}-\bar{b}^{\prime \prime}=(1+i)(\bar{a}-\bar{c}) \\
b^{\prime}-c^{\prime \prime}=(1-i)(b-a) & \bar{b}^{\prime}-\bar{c}^{\prime \prime}=(1+i)(\bar{b}-\bar{a}) \\
c^{\prime}-a^{\prime \prime}=(1-i)(c-b) & \bar{c}^{\prime}-\bar{a}^{\prime \prime}=(1+i)(\bar{c}-\bar{b}) \\
\left(a^{\prime}-b^{\prime \prime}\right)\left(\bar{a} \prime-\bar{b}^{\prime \prime}\right)+\left(b^{\prime}-c^{\prime \prime}\right)\left(\bar{b}^{\prime}-\bar{c}^{\prime \prime}\right)+\left(c^{\prime}-a^{\prime \prime}\right)\left(\bar{c}^{\prime}-\bar{a}^{\prime \prime}\right) \\
=(1-i)(1+i)(a-c)(\bar{a}-\bar{c})+(b-a)(\bar{b}-\bar{a})+(c-b)(\bar{c}-\bar{b}) \\
=2 \sum k_{1}^{2} .
\end{array}
$$

LITERATURE CITED

1. Fry, Thornton J. Problems for solution, E-170. American mathematical monthly $42: 445,1935$, and 43:108-110, 1936.
2. Johnson, Roger A. Modern geometry. Cambridge, Massachusetts, Houghton, 1929. 319p.
3. Rosenbaum, Joseph. Unpublished manuscript.
4. Wong, Yung-Chow. Some properties of the triangle. American mathematical monthly, 48:530-535. 1941.
