
AN ABSTRACT OF THE THESIS OF

Robert Stephen Cunningham for the degree of Master of

Science in Computer Science presented on March 1, 1982.

Title: On Asymmetric Error-Correcting Codes

Abstract approved:
Redacted for Privacy

Dr. Bella Bose

Historically, coding theory has dealt with binary

codes correcting symmetric errors, in which errors are

made in both 0 and 1 bits with equal likelihood.

Within the past ten years, some study has been made of

asymmetric codes, under the assumption that the only

errors which occur are errors in which 1 becomes 0.

This thesis continues this study.

We first examine systematic asymmetric codes, binary

codes for which information and check portions are in

distinct bit fields. This is a new area of study in

coding theory. We establish that systematic asymmetric

codes can have higher information rates than systematic

symmetric codes, but not too much higher. We also give a

construction for building systematic codes from smaller

ones, with necessary and sufficient conditions for the

codes so built to be systematic asymmetric codes.

Finally, we examine Constantin-Rao codes and their

extension to multiple asymmetric error correction. We

show that such codes are not systematic and describe

conditions under which they are closed under complements.

We also show that the multiple asymmetric error

correcting codes can have higher information rates than

their symmetric counterparts.

On Asymmetric Error-Correcting Codes

by

Robert Stephen Cunningham

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of
Master of Science

Commencement June 1982

APPROVED:

Redacted for Privacy

Assistant Professor of Computer Science in charge of
major

Redacted for Privacy

Chairman of Department of Computer Science

Redacted for Privacy

Dean of Gradu

(5

e' School 6r

Date thesis is presented: March 1, 1982

Typed by Robert Stephen Cunningham

ACKNOWLEDGEMENT

This work was supported in part by
the National Science Foundation under

Grant No. SPI-8013280.

TABLE OF CONTENTS

I. Introduction 1

II. Systematic Asymmetric Codes 4

III. The Constantin-Rao Codes 18

IV. A Code Correcting Multiple Asymmetric Errors 25

V. Bibliography 34

VI. Appendix 36

List of Tables

Table 1: Code Sizes for Given Code Lengths 30

Table 2: Code Sizes for Given Code Lengths 31

Table 3: Element with the Maximal Preimage 32

Table 4: Closure Under Complements 33

On Asymmetric Error-Correcting Codes

I. Introduction

Accurate, reliable computer systems need more than

correct arithmetic and logic to produce valid results.

Particularly now, as computing and telecommunications

become more and more closely related, efficient methods

of ensuring data accuracy are of equal importance. This

is the ground covered by coding theory: to devise

accurate and efficient methods of storing, retrieving,

and transmitting data.

The methods of coding theory involve adding a

certain amount of redundancy to the information content

of data so that should certain errors occur in the data

before it is used, the redundancy will allow the error to

be noticed or corrected before use. The redundancy can

be added in many ways, but combinatoric or algebraic

schemes are usually used. Since encoding and decoding of

data takes time, one goal of coding theory is to find

2

simple techniques which allow the coding to be done in

parallel with the main processing activities.

Since coding methods are designed to be used with

actual computing equipment, shifts in technology lead to

new aspects of coding theory. Most of the results in

coding theory have assumed equal probability of the two

kinds of binary errors: 0 becomes 1, or 1 becomes 0.

This is appropriate to electrical transmissions in wire

or storage in magnetized cores. However, light

transmission in glass cables and storage in semiconductor

memories show much more frequent errors where 1 becomes 0

than conversely, which raises new questions for codes.

Codes which are designed to detect and correct errors of

this sort are called asymmetric codes, and in this thesis

we attempt to deal with these.

This work has two primary directions. The first is

to examine systematic codes, that is, codes in which the

information and check (redundant) portions of the code

are stored in separate portions of the code word. Such

codes allow parallel decoding, with the information part

of the code available for immediate use while checking is

being done, and allowing restart of computation with the

corrected data if an error is found. Systematic codes

are studied for asymmetric error correcting. Such

systematic codes are a very new topic for coding theory,

for while asymmetric codes have been studied for about

3

ten years, they have not been considered from the

systematic point of view. We establish that systematic

asymmetric codes can have information rates exceeding the

best known systematic symmetric codes, but not by a great

deal.

The second direction of this work is in extending

the results on asymmetric codes defined by certain

functions from binary vectors into Abelian groups or

Galois fields. Here our work is not definitive, but is

limited to filling in a few gaps and modifying others'

constructions to obtain results casting additional light

on these codes.

4

II. Systematic Asymmetric Codes

In this chapter we shall set out the basic

definitions and background results on asymmetric codes,

and shall then outline some general results on systematic

asymmetric codes. A particular case is examined in

detail and exact delineations of the possible codes are

made for this case. Finally, we define a structure which

gives necessary and sufficient conditions for

constructions of such codes generally.

2.1. Definitions. Let C be a binary code with

code words of length n.

2.1.1. C is a systematic code if there is a subset

of k bits in the code indices so that the information

portion of the code is contained in the k bits while

the check portion of the code is contained in the

remaining n-k bits. Such a code is called a (n,k)

code. The k information bits comprise the information

symbol of the code word, while the check bits make up the

check symbol.

2.1.2. C is an asymmetric code if C is capable of

detecting or correcting errors in a channel in which

errors where 0 becomes 1 are impossible (such a channel

5

is called the Z-channel) . We will call C a

t-asymmetric code if C can correct t errors in the

Z-channel.

2.1.3. For any two words a, b of C we let

N(a,b) be the number of bit positions in which a

contains 1 and b contains 0.

2.1.4. The asymmetric distance between two words

a, b of C, denoted by Da(a,b), is defined by Da(a,b) =

max(N(a,b), N(b,a)). Further, the asymmetric distance

of a code C is defined to be Da (C) = min{ D
a
(a,b) for

a, b in C).

2.1.5. For words a, b in C, we say a dominates

b, and write a>>b, if b can be made from a by one or

more changes of 1-bits to 0-bits.

2.1.6. If C is a systematic (n,k) code, the

information rate R of the code is defined to be k/n, the

proportion of the code which is used for actual

information.

2.1.7. For a word a of a code C, the weight of

a is the number of 1-bits in the word.

In the same way that codes may be shown to correct

symmetric errors by considering the standard Hamming

distance of the code [7], there is a relation between

asymmetric distance and correction of asymmetric errors.

This relation is given by the following theorem.

6

2.2. Theorem [8]. A binary code C is a

t-asymmetric code if and only if D (C) > t+1.

Proof (sketch). For any code word X of C, let

S(X) be the set of vectors obtainable from X by

replacing l's by 0's in or fewer places. For any two

code words X and Y in C, the code can correct t

asymmetric errors precisely if S(X) and S(Y) are

disjoint. However, it is straightforward to see that

this condition holds precisely if one of N(X,Y) or N(Y,X)

is at least t4.1.

Consider now optimal codes with r check bits.

Since any code which can correct single symmetric errors

can also correct single asymmetric errors, such codes are

1-asymmetric codes. Now the Hamming (n,k) codes with

n = 2
r

- 1 and k = n - r are perfect codes and hence

are optimal for their length. These are the best known

symmetric single error correcting codes with r check

bits; see for example [7], Table 5.4. This establishes

the following floor on the size of possible systematic

1-asymmetric codes.

2.3. Proposition. For any r > 0, there is a

systematic 1-asymmetric code of length 2r - 1 with r

check bits.

On the other hand, an upper bound on the size of

systematic 1-asymmetric codes is given by the following

7

unpublished results of B. Bose.

2.4. Proposition (Bose). Any systematic 1-asymme-

tric code with k information bits must have at least

log2(k +l) check bits.

Proof. Consider the code words whose information

symbols have weight 0 or 1. There are k+1 such

words. If any two of these had the same check symbol

they would have asymmetric distance 1, so the code could

not correct single asymmetric errors by Theorem 2.2. In

order to have the necessary k+1 distinct check symbols,

at least log2(k+1) check bits are needed.

Thus if k > 2
m

, an systematic 1-asymmetric code

with k information bits must have at least m+1 check

bits. Since the Hamming codes with m+1 check bits are

known to be optimal symmetric codes for

k < 2
(m+1) - (m+1), this shows that the Hamming codes are

optimal systematic 1-asymmetric codes for

2
m

< k < 2
(m+1)

- (m+1). The next theorem, however,

extends this range even farther.

2.5. Theorem (Bose). Let C be an systematic

1-asymmetric code with k information bits, where

2m - M + 2 < k < 2m - 1 for m > 3. Then the number of

check bits in C must be at least m + 1.

Proof. Assume by way of contradiction that C has

m check bits. Note first that the code word with

8

information symbol 0 cannot have all its check bits 1,

for there would then be k words with weight-1

information symbols which could not have check symbols of

weight m or m-1. This would leave 2m - m - 1

remaining check symbols, but 2m - m - 1 < k.

By an extension of this argument we have 2m - m

check symbols of weight unequal to m-1, and

Information symbols of weight 1. Since k > 2
m

- m,

some code word in C must have a weight-1 information

symbol and a check symbol of weight m-1; call this word

w. Now consider all the weight-2 information symbols

dominating the information symbol of w. There are k-1

such symbols, and they must have distinct check symbols.

However, there are m-1 check symbols which may not be

used--check symbols formed from the check symbol of w

by changing a single 1 to 0--besides the check symbol

of w itself. Thus there are k-1 information symbols

and 2
m

- m check symbols available, but

2m - m < k - 1. This contradiction established the

theorem.

As a consequence, we see that the Hamming codes are

optimal, even for correcting single asymmetric errors,

for all cases except k = 2m - m and k = 2m - m + 1.

In these two cases, a Hamming code would have r = m+1

check bits, while a systematic 1-asymmetric code could

have r = m check bits. We will now turn our attention

9

to these two cases with r = 3. Although this seems to

be a very small case, no previous results of any kind are

available and we are able to solve this particular

problem completely. Recall that the results above show

that the maximum length for a systematic 1-asymmetric

code with 3 check bits is at least 7 and is less than

10. Thus our question for r = 3 becomes: are there any

(8,5) or (9,6) systematic 1-asymmetric codes? We begin

our answer by establishing the nonexistence of the (9,6)

code.

2.6. Lemma. In a (9,6) systematic 1-asymmetric

code, the information symbol 0 must have check symbol

0.

Proof. Assume this is false. Then the check symbol

associated with the information symbol 0 could have

weight 1, 2, or 3. We shall argue by cases.

Assume the check symbol has weight 3. Then the

check symbols of weights 2 or 3 could not be used for

any weight-one information symbols. Since there are 6

weight-one information symbols and only 4 check symbols

of weight 0 or 1, two weight-one information symbols

would have to have the same check symbol. This is

clearly impossible.

Assume the check symbol has weight 2. Then no

weight-one information symbol can have as check symbol

either that check symbol or either of the two weight-one

10

check symbols it dominates. This leaves 5 check

symbols for the 6 weight-one information symbols, again

an impossibility.

Finally, suppose the check symbol has weight one.

Then no weight-one information symbol can use this check

symbol or 0 as its check symbol. Since this leaves 6

remaining check symbols and none can be repeated among

the 6 weight-one information symbols, one of these must

have a weight-3 check symbol. Now consider the 5

weight-two information symbols which dominate this

particular weight-one information symbol. As argued

above, none of these can have check symbol of weight 2

or 3. Thus we have 4 check symbols available for

these 5 information symbols, which again is impossible.

This establishes the lemma.

2.7. Lemma. In a (9,6) systematic 1-asymmetric code,

there is a one-to-one correspondence between the

weight-one information symbols and the check symbols

having weights 1 or 2.

Proof. As was argued in the previous lemma, no

weight-one information symbol can have a weight-3 check

symbol, and by the lemma none can have check symbol 0.

Since we have six remaining check symbols and six

weight-one information symbols, and no two of these

information symbols can have the same check symbol, the

result is established.

11

2.8. Theorem. There exists no (9,6) systematic

1-asymmetric code.

Proof. Assume that such a code exists. By way of

notation, call a code word c a [m,n1-word if the

information symbol of c has weight m and the check

symbol of c has weight n. Now by Lemma 2.6, there are

3 [1,21-words in C. For each, there are 5 words with

information symbol of weight 2 dominating its information

symbol, and as in the proof of Lemma 2.5, there are 5

check symbols available for them. Thus each of the

[1,21-words must have a [2,01-word whose information

symbol dominates its information symbol. However, if the

information symbol of a [2,0] -word dominates that of a

[1,11-word, an asymmetric distance of 1 results. Thus

the information symbol of a [2,01-word can only dominate

that of a [1,21-word. Thus there must be at least two

[2,0] words in the code whose information symbols

dominate the [1,2] words above. But this forces two

(2,0] words to share a position in which each has a

1-bit, although two such words can have asymmetric

distance only one. This contradicts the assumption of

the existence of the (9,6) code.

We now turn our attention to (8,5) systematic

1-asymmetric codes. We have shown that such codes do

exist, and have generated them by a rather simple-minded

direct computation. An algorithm for this computation is

12

presented below, and a Pascal program implementing the

algorithm is presented in the Appendix.

2.9. Algorithm. This algorithm will compute and

print all (n,k) systematic 1-asymmetric binary codes.

Note that the work is really done in the subprogram,

which uses a recursively backtracking process.

Data Structures: We have two arrays, each with 2
k

rows. One array, INFO, represents the information

symbols and has k columns, while the other, CHECK,

represents the check symbols and has n - k columns.

Processing:

(A) Main Program
(1) load each row of INFO with the binary

representation of the corresponding
information symbol,

(2) invoke the procedure build row below to
determine the code's check symbols,
starting with the first word.

(B) Procedure buildrow(row); build check symbol for
next code word.

if row is larger than 2**k
print out INFO and CHECK for the
successful code

else
set check sum to 0
while the check sum is less than 2**(n-k)
do

load the next row of CHECK with the
binary value of the check sum,

increment the check sum,
compute the asymmetric distance from

the new code word to all previous
code words,

if the distance is at least 2
recursively invoke build_row with
parameter row+1,

end-while
end.

13

2.10. Example. Here we list four of the early (8,5)

codes generated by this algorithm as expressed in the

program sys85 listed in the Appendix. We have been

unable to get the computer time needed for a full

determination of all such codes; there are certainly

several thousand of them. The codes are given in a

highly compressed form, with the information and check

symbols expressed by their decimal equivalents.

information 0 1 2 3 4 5 6 7 8 9 10 11

check 1 0 1 2 3 3 4 5 6 4 5 6 7

check 2 0 1 2 3 4 5 6 7 3 4 5 6

check 3 0 1 2 3 6 7 5 0 5 2 7 4

check 4 0 1 3 4 2 3 6 5 4 2 7 1

information 12 13 14 15 16 17 18 19 20 21 22 23

check 1 7 2 0 1 5 6 7 0 0 1 2 3

check 2 7 2 0 1 5 6 7 0 2 3 1 4

check 3 0 1 2 5 4 5 6 7 1 2 3 4

check 4 5 7 0 2 6 5 0 2 7 0 1 6

information 24 25 26 27 28 29 30 31

check 1 5 6 7 0 0 1 2 3

check 2 0 1 2 3 4 5 6 7

check 3 3 6 0 1 5 3 6 7

check 4 1 3 4 5 2 4 3 7

14

Having been successful in constructing (8,5) codes,

we would like to extend our work to (16,12) and larger

codes. We have not yet been able to do this. Direct

computation as in the (8,5) case has not been possible

because all our work has been done in a 16-bit

minicomputer environment, where very large arrays are not

addressable. However, the experience gained with the

(8,5) case has allowed us to develop some results which

will help us build these larger codes. Our results are

framed in terms of lattices, which are partially-ordered

sets in which each pair of elements have a least upper

bound and greatest lower bound. The set of all binary

vectors of length k forms a lattice, where a is

greater than b if a>>b. The least upper bound of a

and b is the logical join or or of the vectors, while

the greatest lower bound is the meet or and of the

vectors. We say that a is a parent of b if a > b and

there is no c with a > c and c > b, and that a is a

sibling of b if a and b share a common parent. In

the lattice of binary vectors, a is a parent of b if

a dominates b and the weight of a is one more than

the weight of b.

Consider any (8,5) code and separate the information

symbols into two parts: the two high-order bits and the

three low-order bits. If the high-order bits are held

constant, the low-order three bits and check bits form a

15

systematic (5,3) 1-asymmetric code. We thus have four

(6,3) codes labeled by the high-order two bits. Using

the high-order bits to form a four-element lattice, we

can then represent the (8,5) code as

2.11

where A, B, C, and

with 11, 10, 01, and 00

D are the (6,3) codes associated

respectively. Each of these has

asymmetric distance at least two. We shall call A, B, C,

and D the suffix codes and 11, 10, 01, and 00 the prefix

symbols. In the examples in 2.10 above, then, the

information symbols 0-7 give subcode A, 8-15 give subcode

B, 16-23 subcode C, and 24-31 subcode D. As

minimal-distance requirements among A, B, C, and D, then,

we have the following:

(a) N(A,B) > 1 and N(A,C) > 1,
(b) N(B,D) > 1 and N(C,D) > 1,
(c) either N(B,C) > 1 or N(C,B) > 1.

Here, in saying that N(A,B) > 1 is a minimal-distance

requirement we mean that N(A,B) > 1 or N(B,A) > 2. In

fact, these conditions are precisely the conditions we

see met by the codes in example 2.10, while some of the

codes we found meet the stricter condition of A = D.

We are now able to give a similar characterization

for systematic 1-asymmetric (n,k) codes. This should

16

provide a tool for further studies in constructing

systematic 1-asymmetric codes or in disproving their

existence.

2.12. Theorem. Let C be a systematic (n,k) code,

let t be any integer with n > t > n-k, and let

p = n-t. For each of the 2P prefix symbols a of

length p, let C(a) be the suffix code consisting of

all code words in C whose prefix symbol is a. Then C

is a 1-asymmetric code if and only if each suffix code

C(a) has Da(C(a)) > 2 and the following requirements

hold:

(a) if a and b are prefix symbols and a is a parent of

b, then N(C(a),C(b)) > 1 or N(C(b),C(a)) > 2,

(b) if a and b are prefix symbols and a and b are

siblings, then N(C(a),C(b)) > 1 or N(C(b),C(a)) > 1.

Proof. Take any two words x, y of C and write

x = ax', y = by' where a, b are prefix symbols and x'

is in C(a), y' is in C(b). Now C is 1- asymmetric

if and only if Da(x,y) > 2 for all such x and y. We

will examine this condition for each of the four cases

possible for a and b.

(1). If a and b are equal, then for any x and

y we have D,(x,y) > 2 iff D
a
(x',y') > 2 iff

Da(C(a)) > 2.

(2). If a and b are siblings, then N(a,b) =

N(b,a) = 1. Thus Da(x,y) > 2 iff N(x,y) > 2 or

17

N (y,x) > 2 iff N(x',y') > 1 or N(y',x') > 1 iff

N (C(a),C(b)) > 1 or N(C(b),C(a)) > 1.

(3). If one of a or b is a parent of the other,

assume without loss of generality that a is a parent of

b. Then N(a,b) = 1 while N(b,a) = 0. Thus

D
a
(x,y) > 2 iff N(x',y') > 1 or N(y',x') > 2 iff

N (C(a),C(b)) > 1 or N(C(b),C(a)) > 2.

(4). If a and b are not related, then

D
a
(a,b) > 2 already so that Da > 2 automatically.

Thus the conditions we presented are both necessary and

sufficient.

18

III. The Constantin-Rao Codes

A completely different approach to 1-asymmetric

codes was taken by Constantin and Rao [3] and elaborated

by McEliece and Rodemach [5]. This approach is to

consider a certain function from a set of binary vectors

to an Abelian group and define a code as a preimage of a

single group element. Asymmetric errors produce vectors

which give the wrong group element under the function;

the correction is done by noting which group element is

Missing and is needed to produce the correct element.

Thus this method produces a code which is easily

understood and applied. We consider two special results

for these codes. First, we relate Constantin-Rao codes

to our earlier studies of systematic codes by showing

that they are not, in fact, systematic. We then

determine necessary and sufficient conditions for these

codes to be closed under complements, and relate this

result to other results to be given in section IV.

Let V be the set of all binary vectors of length

N, and denote by v[i] the i-th element of a vector v

of V. Let G be an Abelian group of order N + 1 and

denote its elements by go, gl, g2, , gx where go is

19

the group identity and the other group elements are

arbitrary. Denote by o(g) the order of an element g

of G. Define a function T from V to G by:

3.1 T(v) = v[i] g
i=1,N

where v[i] gi = gi if v(i] = 1 and v[i] gi = g0 if

v[i] = 0. For any g in G, then, define

C(g) = v in V such that T(v) = g] . In particular,

define Co = C(g0). We have the following results.

3.2. Proposition ([3], Lemma 7). For any g in G,

the code C(g) is a 1-asymmetric code.

3.3. Proposition ([3], Theorem 9). The order of Co

is at least as large as the order of C(g) for any g in

G. In particular, the order of Co is at least as large

as 2 /(N+1).

Since the code C
0

is thus the largest code which

can be constructed with this process, we will refer to it

as the Constantin-Rao code for a given word length and

group. Note, of course, that there can be many Abelian

groups with the same order, and so there can be many

Constantin-Rao codes with the same word length.

The following theorem determines completely the size

of the Constantin-Rao code for a given group.

20

3.4. Theorem ([5], Theorem 1). For a given word

length N and Abelian group G, the size of the

Constantin-Rao code is given by

1 vt (N/o(h))
N+1 L 2

where the sum is taken over all group elements h of odd

order.

Another type of code is the AN-code, where an

information symbol N is represented by multiplying it

by a constant A and storing the result when the product

is taken modulo another constant M. The AN-codes are

known not to be systematic; see for example [9], Chapter

3. Further, AN-codes are known to be related to

Constantin-Rao codes; see for example [10]. This led us

to investigate whether Constantin-Rao codes are

systematic, with the following result.

3.5. Proposition. If C is a Constantin-Rao code

of length N, where N is not one less than an integral

power of 2, then C cannot be a systematic code with

fewer than log2 (N +1) check bits.

Proof. Assume that C is systematic with r check

bits and k = n-r information bits, where r < log2(n+1).

Assume the code is defined as above by a group G

and a function F, and recall that C = { v in V such

that F(v) = g0 1. Then for any v in C, we have

21

g = E v[i] g + v(i] g .

0 info i cneck

Thus the check bits must generate the group inverses of

the elements of G which are generated by the

information bits. Now the check bits can generate only

2r elements, which is fewer than the number of elements

in G. However, the information bits generate all of G.

For take an arbitrary but fixed element h of G. Then

for any g in G, there is a g' in G such that

g + g' = h. Since r < log2 (n+1) < n/2, we must have

k > n/2. Hence there are two information bits with

indices i and j such that gi + gj = h, so that h is

generated by information bits alone. This contradiction

establishes the result.

The stipulation that N cannot be one less than a

power of 2 is in fact necessary, because a Constantin-Rao

construction can be used to build a full Hamming code

which is, of course, systematic.

As we developed some examples of the Constantin-Rao

codes, we noted that sometimes they had the property that

any vector v in the code also had its bitwise

complement v' in the code. We call this property

closure under complements. Such closure properties are

of some interest, at least in the algebraic sense, and we

have the following characterization of this property for

Constantin-Rao codes.

22

3.6. Theorem. Let C be the Constantin-Rao code of

length N defined by the Abelian group G of order N+1.

Then C is closed under complements if and only if the

sum of the elements in G is the identity.

Proof. Let the code C have n code words, and

let the order of G be n + 1. For any code word v in

C, let v' be the bitwise complement of v. Then

v' [i] = 1-v[i] for each index i. We thus have

v' is in C iff T(v') = 0 iff Z (1-v[i]) g = g
n i 0

iff 5: g - 1: v[i] g = g iff g = g

n i n i 0 n i 0

since T(v) = g .

0

3.7. Corollary. If C is a Constantin-Rao code of

even length, then C is closed under complements.

Proof. Since C is of even length, the group G

used in the code construction must be of odd order. Thus

every non-identity element of G must be of odd order.

Define subsets S and T of G as follows: for any g

in G, g is in S if and only if -g is in T. Then

the intersection of S and T is simply [go}, while

the sum of the elements in S is clearly the inverse of

the sum of the elements in T. However, the sum of S

and T is also the sum of G, thus showing that the sum

of the group elements is g0.

23

Recall that an elementary Abelian 2-group is an

Abelian group in which each element has order one or two.

Such groups are a direct sum of a number of copies of the

group of order two.

3.8. Corollary. If C is a Constantin-Rao code of

length 2
k
-1 defined by an elementary Abelian 2-group,

for k > 1, then C is closed under complements.

Proof. A straightforward computation shows that in

any single component of such a group, there are 2
(k-1)

l's. Since k is greater than 1, the sum in each

component must be 0. Thus the sum of the elements of the

group is g .

3.9. Corollary. If C is a Constantin-Rao code

defined by a group which is the additive group of a

Galois field GF(q), q > 2, then C is closed under

complements.

Proof. Each GF(q) has an additive group which is

either of odd order or is an elementary Abelian 2-group.

The result thus follows from Corollaries 3.7 and 3.8.

This corollary leads us to ask, in the next chapter,

whether codes defined by similar techniques for the

Galois fields are closed under complements.

Finally, we give a class of Constantin-Rao codes

which are not closed under complements.

24

3.10. Corollary. If C is a Constantin-Rao code of

odd length defined by a group which is cyclic of even

order, then C is not closed under complements.

Proof. For such a group, construct the sets S and

T as in the proof of Corollary 3.7. Then the (unique)

element of order 2 in the group lies in both S and T,

and it is quickly seen that the sum of the group elements

is this element of order 2 instead of g0.

25

IV. A Code Correcting Multiple Asymmetric Errors

In this chapter we define a code C which corrects

multiple asymmetric errors. This code is built by a

method which extends those of Constantin and Rao and of

Graham and Sloane [3]. We verify that this code is

t-asymmetric for suitable t. We then show that such

codes do not lend themselves to the clean

characterization of the Constantin-Rao codes, but they do

sometimes provide more code words for a given code length

than standard symmetric codes.

Let q be a prime power integer and GF(q) be the

Galois field with q elements. Write GF(q) = { g0, gl,

g } with p = q-1, and let V be the set of all

binary vectors of length q-1 with a member v of V

written as < vl, v2, vp >. Note that we allow

vectors of any weight, while Graham and Sloane considered

only constant-weight binary vectors. For any k with

0 < k < q define the function Tk from V to GF(q) by

4.1 T (v) = g *g *...*g
k i(1) i(2) i(k)

where the sum is taken over all indices i(1),...,i(k)

with i(1)<i(2)...<1(k) and vi(1)=...=vi(k)=1. Note

26

that T1 is the Constantin-Rao function. Denote by

GFm(q) the direct sum or product of m copies of GF(q),

and define T from V to GFm(q) to be the function

whose coordinate functions are { -k for k ranging

from 1 to m. For any w = < wi, w2, wm > in

GF
m

(q) define Cw = { v in V with T(v) = w } . We shall

show that each of the Cw is an m-asymmetric code and

shall study the properties of these codes.

Before we can establish the fact that such codes are

m-asymmetric, we must have a technical result. For a, b

in V, we define three subsets Q, R, and S of

{ 1..q-1 } as follows: Q = i with ai = bi },

R=liwitha.=land bi =0 I, and S = { i with a. = 0

and bi = 1 }. Denote by a' and b' those elements of

V which have 1-bits precisely for the indices in R and

S, respectively, and let c be the element of V which

agrees with a and b on the bits with indices in Q

but is 0 for all other indices.

4.2. Lemma. If a and b are elements of V such

that T(a) = T(b), then for any positive integer k < m we

have Tk(a') = Tk(b').

Proof. Assume that T(a) = T(b)- We argue by

induction on k. If k = 1, then Ti(a) = T1 (a') + Ti(c)

while Ti(b) = Ti(b') + Ti(c). Thus Ti(a') = T1 (b1)

easily.

Now assume that for every j < k we have

27

Ti (a') = Ti (b'). Write Tk(a) = 5: gi(1)*gi(2)*..*gi(k)

and note that in any such product, certain indices are in

Q and others are in R. Now GF(q) is commutative so

we may reorder and rewrite this product as

Tk (a) = Tj(e)*T(k_j)(c) with the sum taken over all

j from 0 to k, where TO (v) = 1 by the usual logic

of empty products being 1. Similarly, we may write

TOD) :E: T. (b')*T
(k-j)

(c) . Since our inductive

hypothesis gives us Tj (a') = Tj (b') for all j < k, it

follows easily that Tit(e) = Tic(b1).

Note now that R contains N(a,b) elements and S

contains N(b,a) elements. Thus to prove that the

are m-asymmetric codes, we will prove that either R or

S must contain at least m+1 elements.

4.3. Theorem. The code Cw defined by T from V

to GFm(q) is an m-asymmetric code.

Proof. Take any a, b in C with a <> b, and

define R, S, a', and b' as above. Assume both R and

S have fewer than m+1 elements and have unequal sizes;

without loss of generality assume R has n elements

while S has fewer. Then Tia(a') <> 0 while

Tia(b') = 0, which contradicts Lemma 4.2. Hence if R

and S have fewer than m+1 elements, they must have

equal sizes.

28

Now assume each of R and S contains

elements, for n < m. Let R' = { ri,r2,...,rn } and

S' = { s1 ,s2,...,sn } be the subsets of GF(q) which

are the images of the weight-1 vectors whose coordinates

are in R and S, respectively. Denote by ck the

value of the k-th elementary symmetric function on R'.

Since Tk(a') = Tk(b') for all k < n, ck is also the

value of the k-th elementary symmetric function on S'.

Defining c0 = 1, we then see that all of

rl, rn, sl, sn are roots of the polynomial

n i (n-i)
P(X) = E (-1) *c *x

i=0

Thus P(X) is a polynomial of degree n having 2n

roots, which is impossible. Hence one of R or S must

contain at least m+1 elements, so that Da(Cw) > m+1.

Thus C is a m-asymmetric code.

Since Cw is an m-asymmetric code for any w in

GFm(q), we may choose w so that C is maximal. A

simple counting argument establishes the following

corollary. Note that since the BCH codes correcting m

(q-1)
errors contain exactly 2

m
elements, this

corollary shows that our codes have information rates at

least as high as BCH codes.

4.4. Corollary. There exist m-asymmetric codes of

length q-1 and size at least 2
(q-1)

/q
m

for any prime

power q and any m < (q-1)/log2(q). These codes have

29

information rates at least r = 1-m*log2(q)/(q-1).

In fact, the codes C defined here are m-asymmetric

and need not be (m+1)-asymmetric. Let V be the set of

binary vectors of length 6 and consider the code

C = v in V such that T(v) = 0 for T mapping V to

GF
2
(7). This is the largest such 2-asymmetric code,

D
a
(C) = 3 exactly, and C contains 4 elements. This

is slightly better than the lower bound of 2 given in

Corollary 4.4. Moreover, the best code of length 6
I

correcting double symmetric errors contains only two

elements.

Now the m-asymmetric codes we have defined here

extend both the concept and the construction of the

Constantin-Rao 1-asymmetric codes. Thus it is

appropriate to ask how much of the Constantin-Rao theory

extends to these m-asymmetric codes. Specifically, we

ask three questions.

1. Does the m-asymmetric code have a better

information rate than known codes correcting

symmetric errors?

2. Is the maximal m-asymmetric code defined here

the preimage of the zero vector in GB4n(q)?

3. Since the Constantin-Rao codes are closed under

complements for all additive groups of Galois fields, are

these m-asymmetric codes closed under complements?

30

These questions are all examined by constructing

examples of such codes. Our examples are limited

somewhat by the 16bit architecture we have available and

by the computer time available to us.

We constructed a number of the masymmetric codes of

length n for small m and n and measured their

properties; some programs for this are contained in the

Appendix. Specifically, for the values we examined we

first determined the largest code and the particular

elements of GF
m

(q) giving that code. The following

table answers the question of information rates by giving

the size of the largest codes found. The information on

symmetric codes is from [7], page 124.

Code Sizes for Given Code Lengths

length double error correcting

symmetric asymmetric Corollary 4.4

6 2 4 2

7 2 2 2

8 4 6 4

10 8 10 9

12 16 29 25

16 256 231 227

18 512 748 727

22 8192 7946 7929

Table 1

31

triple error correcting

6 n/a 2 1

7 2 2 1

8 2 4 1
J.

10 2 4 1

12 4 6 2

16 32 30 14

18 128 60 39

22 2048 422 345

Table 2

Note that our construction provides codes which

sometimes, but not always, have more code words and hence

a better information rate than the best symmetric codes

for these lengths. This is particularly so for

2-asymmetric codes.

The second question, concerning the elements of

m
GF (q) which give the maximal m-asymmetric codes, is more

difficult. The Constantin-Rao result we quoted as

Theorem 3.3 uses fairly straightforward group properties,

though the McEliece-Rodemach determination of the size of

the code which we quoted as Theorem 3.4 uses the

orthogonality relation among group characters. However,

to answer our question fully would require a knowledge of

precisely which values are taken most often by each of

the symmetric polynomials of degree no larger than m

32

over GF(q); this is a combinatoric question on finite

fields whose answer does not appear to be known. Our

experimental results indicate that there may be no

pattern to this answer, but show quite clearly that the

preimage of the zero vector in GFm(q) is not the maximal

code in general. We summarize our results in the

following table. Note that the element listed may not be

unique; if it is not, we simply list the element which

occurs first lexicographically.

size

Element with the Maximal Preimage

2-asymmetric 3-asymmetric
6 <0,0> <2,5,3>
7 <0,0> <0,0,0>
8 <0,1> <1,2,0>
10 <1,3> <0,5,4>
'12 <1,7> <0,8,9>
16 <0,3> <0,7,11>
18 <0,0> <18,11,5>
22 <1,11> <19,15,16>

Table 3

Finally, we look at the question of closure under

complements. More specifically, we ask about closure for

two such codes: the maximal code and the code which is

the preimage of the zero vector in GFm(q) . Our results

are given in the table below.

33

Closure Under Complements

2-asymmetric 3-asymmetric
size maximal <0,0> maximal <0,0,0>

6 yes yes no n/a
7 yes yes yes yes
8 no yes no n/a

10 no yes no n/a
12 no yes no no

16 no yes no no
18 yes yes no no

22 no yes no no

Table 4

Note that the only cases in which the maximal

2-asymmetric code is closed under complements are those

when it is the <0,0> code. These results indicate that

the <0,0> code may be closed under complements, and we so

conjecture; however, the other codes are not closed under

complements.

34

V. BIBLIOGRAPHY

[1] Bose, B. Theory and Design of Unidirectional Error

Codes, Ph.D. Thesis, Southern Methodist University,

1980.

[2] Constantin, Serban N. and T. R. N. Rao, On the

Theory of Binary Asymmetric Error Correcting Codes,

Information and Control, 40(1979), 20-36.

[3] Graham, R. L. and N. J. A. Sloane, Lower Bounds

for Constant Weight Codes, IEEE Transactions on

Information Theory, IT-26(1980), 37-43.

[4] KlOve, Torliev, A Lower Bound for A(n,4,w), IEEE

Transactions on Information Theory, IT-27(1981),

257-258.

[5] McEliece, Robert 3. and Eugene R. Rodemach, The

Constantin-Rao Construction for Binary Asymmetric

Error-Correcting Codes, Information and Control,

44(1980), 187-196.

35

[6] McEliece, Robert J., Comment on "A Class of Codes

for Asymmetric Channels and a Problem from the

Additive Theory of Numbers", IEEE Transactions on

Information Theory, IT-19(1973), 137.

[7] Peterson, W. Wesley and E. J. Weldon, Jr., Error

Correcting Codes, 2nd edition, MIT Press, Cambridge,

MA, 1972.

[8] Rao, T. R. N. and A. S. Chawla, Asymmetric

Error Codes for Some LSI Semiconductor Memories, The

Annual Southeastern Symposium on System Theory

(1975), 170-171.

[9] Rao, T. R. N., Error Coding for Arithmetic

Processors, Academic Press, New York, 1974.

[10] Shiozaki, Akira, Single Asymmetric Error Correcting

Cyclic AN Codes, to appear.

[11] Varshamov, R. R., A Class of Codes for Asymmetric

Channels and a Problem from the Additive Theory of

Numbers, IEEE Transactions on Information Theory,

IT-19(1973), 92-95.

36

VI. APPENDIX

In this Appendix we present two of the experimental

programs we used in examining systematic asymmetric codes

and m-asymmetric codes. The programs were originally

written in C for the Oregon State University Computer

Science Department's PDP 11/40 running UNIX or in FORTRAN

for the CDC CYBER system. However, the programs

presented are in the form used on the HP-3000 at

Birmingham-Southern College and are in Pascal or FORTRAN.

37

program sys85(input,output);

This is a translation into Pascal of the program
a1185.c which was written at Oregon State during
the summer of 1981. This translation is used in
several experimental studies on systematic codes.

R. S. Cunningham, September 21, 1981.

Bit-shift capabilities in Pascal would improve
this program if they were available.

const NVEC = 32; { number of code words
NINFO = 5; { number of information bits }

CKVAL = 8; { number of check symbols }
NC HECK = 3; { number of check bits

var i, j : integer;
info : array[1..NVEC,1..NINFO] of integer;
check: array[1..NVEC,1..NCHECK] of integer;

'function TTT (j : integer) : integer;

function to compute the value of 2**j.

var k, temp : integer;

begin { TTT }
temp := 1;
for k := 1 to j do temp := temp * 2;
TTT := temp

end;

function checkem(i, j : integer) : boolean;
{

Function which computes the asymmetric distance
between the i-th and j-th code words in a code
being considered and returns either true (the
asymmetric distance is at least 2) or false (the
asymmetric distance is less than 2).

}

}

var a, b, k : integer;
temp check : boolean;

begin { checkem }
a := 0; b := 0; { the one-directional distances

for k := 1 to NINFO do begin
if info[i,k] < info[j,k] then b := b+1;
if info[i,k] > info[j,k] then a := a+1

end;
for k := 1 to NCHECK do begin

if check[i,k] < check[j,k] then b := b+1;
if check[i,k] > check[j,k] then a := a+1

end;
checkem := (a > 1) or (b > 1);

end;

procedure build row(i : integer);

Recursive procedure which prints the check values of
a code if the code has been checked out as valid

past
the end of the code array. This procedure uses a
backtracking method to reach the end of this array
if possible.

{

38

}

This procedure can be modified to check other
asymmetric distances for further experiments.

var j, k, sum, check sum
flag

: integer;
: boolean;

begin { build_row }
if i > NVEC then begin { successful code }

for k := 1 to NVEC do begin
sum := 0;
for j := 1 to NCHECK do

sum := sum + check[k,j] * TTT(NCHECK-j);
write(sum:3)

end;
writeln; writeln;

end
else begin { code not yet finished }

checksum := 0;
while check_sum < CKVAL do begin

for j := 1 to NCHECK do
check[i,j] :=

(check sum div TTT(NCHECK-j)) mod 2;
check sum := check sum + 1;
flag 7= true;
j := 1;
while flag and (j<i) do begin

flag := checkem(i,j);
j := j + 1

end;
if flag then build_row(i +l)

end
end

end; { build row }

39

begin (main program }

writeln('(',NCHECK+NINFO:2,',',NINFO:2,') codes:');
writeln('check symbols are');
writeln;
for i := 0 to NVEC-1 do
write(i:3); I print information symbols }

writeln;
for i := 0 to NVEC-1 do
write(");

writeln; writeln;
for i := 1 to NVEC do

for j := 1 to NINFO do
info(i,j] := ((i-1) div TTT(NINFO-j)) mod 2;

build_row(1)
end.

40

$INTEGER *4
PROGRAM GF17

c*************************w*****************************
C
C PROGRAM TO TEST THE 3-ASYMMETRIC-ERROR-CORRECTING
C CODE DEFINED BY V(16) --> GF(17,3) FOR ITS SIZE
C AND OTHER PROPERTIES.
C ORIGINALLY WRITTEN JULY, 1981 FOR THE OSU CYBER
C SYSTEM; REWRITTEN SEPTEMBER 1981 FOR THE B-SC
C HP3000 FOR GF(11) AND SUBSEQUENTLY MODIFIED FOR
C SEVERAL OTHER CASES.
C
C************************ ** * * * * **

C
IMPLICIT INTEGER (A-Z)
DIMENSION CODE(16),RESULTS(17,17,17),ROWSUM(17,17)
DATA RESULTS/4913*0/
WRITE(6,5)

5 FORMAT(1H1,8X,"EXPERIMENTAL RESULTS :",
& " V(16) 2- AND 3-ASYMMETRIC CODES.",/)
N=16
NP1=N+1
DO 300 I = 0, 2**N-1
VALUE=I
DO 10 J=1,N
CODE(J)=MOD(VALUE,2)
VALUE=VALUE/2

10 CONTINUE
SUM1=0
SUM2=0
SUM3=0
DO 100 J=1,N

IF (CODE(J).EQ.0) GOTO 100
SUM1=MOD(SUM1+J,NP1)
IF (J.EQ.N) GOTO 100
DO 50 K=J+1,N

IF (CODE(K).EQ.0) GOTO 50
TEMP=MOD(J*K,NP1)
SUM2=MOD(SUM2+TEMP,NP1)
IF (K.EQ.N) GOTO 50
DO 20 L=K+1,N

IF (CODE(L).EQ.0) GOTO 20
TEMP=MOD(TEMP*L,NP1)
SUM3 =MOD (SUM3 +TEMP,NP1)

20 CONTINUE
50 CONTINUE

100 CONTINUE

41

RESULTS(SUM1+1,SUM2+1,SUM3+1)=
& RESULTS(SUM1+1,SUM2+1,SUM3+1)+1

300 CONTINUE
WRITE (6, 325)

325 FORMAT(/," VALUE COUNTS FOR CODE DETERMINATION"/
& " ROWS ARE CONSTANT VALUES OF SECOND TERMS"/)
DO 335 I=1,NP1
DO 333 J=1,NP1

ROWSUM(I,J)=0
DO 331 K=1,NP1
ROWSUM(I,J)=ROWSUM(I,J)+RESULTS(I,J,K)

331 CONTINUE
333 CONTINUE
335 CONTINUE

DO 500 I=1,NP1
WRITE(6,350) I-1

350 FORMAT(/," COUNTS FOR PLANE",I3,40X,"ROW SUM")
WRITE(6,400) ((RESULTS(I,J,K),K=1,NP1),

& ROWSUM(I,J),J=1,NP1)
400 FORMAT(17(3X,17I3,3X,I3/))
500 CONTINUE

MAX=0
DO 600 I=1,NP1
DO 570 J=1,NP1

DO 540 K=1,NP1
IF (RESULTS(I,J,K).LE.MAX) GOTO 540
MAX=RESULTS(I,J,K)
SUM1=I
SUM2=J
SUM3=K

540 CONTINUE
570 CONTINUE
600 CONTINUE

WRITE(6,700) MAX, SUM1-1,SUM2-1,SUM3-1
700 FORMAT(/" LARGEST CODE HAS ",I5," WORDS;",

& " COORDINATES ARE: ",314/1H1)
STOP
END

