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In many practical applications of learning systems
to problems of pattern recognition it has been realized
and explicitly noted in the literature that linear discri-
minations are inadequate. On the other hand, it has also
been noted that very little is known about the training
of non-linear systems.

A reasonable compromise between linearity and high
complexity is what is called a 'committee machine,' i.e.

a collection of linear systems each performing a linear
threshold function (subject to adaptation) with an overall
element (as the majority rule) to e:press the final
diagnosis.

In this paper we will present a system of algorithms
which effectively locates a committee machine which uses
majority or veto logic. The algorithms are error-correction
techniques, which in general perform as many adjustments

in training as known algorithms, but with the added feature



that in some cases the algorithms will allow the machine
to misjudge some samples which are deemed to be noisy or
otherwise abnormal without implementing, in relation to
these samples, significant change in the committee members.
Experimental resulfs are presented using artificially
generated data in 2-space, hand-printed letters A and R
(Munson), disconnected-connected 3 x 3 arrays, absence-
presence of the code 1101, and 3 x 3 quasi-randomly

generated arrays (Michalski).
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TEEMAL, AN ADAPTIVE TRAINING PROCEDURE FOR A
TWO LAYER SYSTEM OF LINEAR THRESHOLD ELEMENTS

I. INTRODUCTION

This paper concerns itself with a system of linear
discriminant functions (hyperplanes) which have two states
corresponding to the classes in the two-class problem.
Each function is given equal weight and the state of the
system is determined by a pre-set percentage of the states
of the functions called the logic of the system, i.e. the
system judges a pattern to belong to a category if at
least 'p' percent of the functions judge it so.

In our development of an adaptive, error-correction
technique for locating such a system, we are aware of the
following observations of Nilsson [15].

"A disadvantage results from the fact that

error correction rules never allow an error in

pattern classification without making some

adjustment in the discriminant functions. 1In

many pattern classification tasks, it may be

necessary to tolerate some small number of

classification errors in the training set in

order to classify related patterns with small

probability of error."

Another problem that has been noted is the difficulty
of an algorithm running through cyclic states or remaining
stationary in some configuration, a static state. This
has been evident when the data is presented to the

algorithm in cyclic form [16] and particularly when the

data consists of a small training set [4].



To overcome these handicaps we have devised a system:
of algorithms which by constant transfer of control from
one to the other avoids static and cyclic states. Further
by use of a new and effective error-correction criterion
we have obtained an algorithm which allows for some errors
in training, i.e. samples which the algorithm considers to
be noisy or otherwise abnormal. In such cases the
algorithm will not perform any adjustment of the discrimi-
nant functions.

This system provides the committee a great freedom of
movement in the training phase, and yet the process arrives
at solutions which are quite stable and represent a near
optimal configuration for the given parameters, i.e. the
number of functions and logic. Although this paver is
totally devoted to systems with hyperplanes as their
discriminant functions and judged on the percentage basis,
it is invisioned that some of the basic ideas of error-
correction may be extended to train other systems of

discriminant functions.



ITI. BASIC CONCEPTS
1. Patcern Representation.

In describing patterns for the pattern recognition
problem, a set of (n-1l)-measurements is taken to charac-
terize each pattern to be classified. These measurements
are represented as a (n-1l)-dimensional vector with binary,
integral, or real components depending on the manner in
which the measurements are taken. In addition each of
the (n-1l)-dimensional pattern vectors is augmented by an
additional dimension with the corresponding component

equal to one. Thus a pattern vector X 1is written,

X = (xl, Koy eoer X 97 1l).

In this paper we will deal with sets of patterns
which can be classified into two distinct categories.
It is assumed therefore, that the measurements taken are
so discriminatory that two patterns represented by the
same vector belong to the same category. Thus let S
be the set of patterns to be classified, let A be the
set of patterns belonging to category 1, and let B
those belonging to category 2. The sets A, B, and S

are related as follows,

AUB=8 and AN B = 4.



2. A Threshold Locigal Unit.

We define a simple, automatic linear classifier.

Let W = (wl, Wor sees wn) be a vector in n-space.
Then the set of all vectors X = (xl, Xy vees xn) such
that,

n
x.w, =0
iv"i ’

i=1

defines a hyperplane in n-space through the origin.
This hyperplane divides the space into two parts, corres-
ponding to the positive and negative sides of the hyper-
plane. The vectors belonging to the hyperplane are

arbitrarily assigned to the negative side.

Then if for all vectors X ¢ A,

n
X-W=inwi>0,
i=1

and if for all vectors X ¢ B,

the classes A and B are linearly separable and in
fact are separated by the hyperplane defined by the vector
W. We call this vector defining the hyperplane a weight

vector.



Consider the schematic diagram of figure 1l.1.

*1 Y1
%2 Y2
) ) summer threshold response}—
Xh-1 Ya-1
1 w

n
pattern weight
vector vector

figure 1.1

The summer forms the vector inner product of the
vectors X and W. The threshold compares this inner
product with the real number called the threshold. The
response is a binary output, +1 or -1, corresponding
to the case of the inner product being greater than the
threshold or less than or equal to the threshold. The
representation of the data in n-space has been designed
so that we can always use the threshold of zero. Thus

we can express the response, r, of figure 1.1 as follows,

n

r = sgn X.W,

g z 11
i=1



where,
(+1, for y > 0
sgn(y) = i~
This type of linear classifier is commonly called a

Threshold Logical Unit, TLU [15].

3. The Committee Machine.

Suppose there are K Threshold Logical Units which
have corresponding weight vectors, Wk’ and responses,
rk, for k=1, 2, ..., K. We can consider the output
responses r,r as components of a (K+l)-dimensional

vector with the (K+l1) component, rRel? equal 1.
Thus we have the vector R = (rl, Lor eeer Ty 1).
Using another weight vector U = (ul, Ugr s uK+l)’

we can build another TLU as shown in figure 1.2.

1 %1

T2 Y2

: : summer threshold response}—
'k Yk

1 UR+1

figure 1.2



This second layer of the two layer network again has
a response of +1 or -l. A two layer system of this

type is commonly called a committee machine [10], [15],

[16]. The weight vectors Wy, are called the committee
members. Each component, U of the weight vector U,
represents the importance 6r influence of each committee
member, Wk' in creating the final response of the
machine for a pattern vector X.

In a committee machine there are two sets of parameters
namely the components of the weight vectors Wk and U.
In the machines we shall consider for practical use the
weights wi,k of Wk's are allowed to range over the

real numbers. The weights of U, Uy will be restricted

as follows,

=1, for k=1, 2, ..., K and =K < Up.1 < K. (2.1)

Y
Thus each committee member in our machines will have equal
voting power, with the integer, Upoqr determining the
logic of the machine.

In general committee machines of this type are said
to use plurality logic, i.e. a committee votes correctly
on a pattern if a certain percentage of the members vote
correctly. There are two values for Upil that have

received special attention in the past.

Majority Logic. K 1is odd and Up,q = 0. The

committee votes correctly on a given pattern if and only

if a simple majority of the committee members do.



Veto Logic. u = - (K-1). For X € A all the

K+1

committee members vote correctly. For X € B at least
one committee member votes correctly, i.e. any committee

member has veto power.



III. COMMITTEE MACHINES AND CLASSIFICATION
1. Existence of a Majority Solution.

Besides the adjustable parameters of a committee
machine, namely the components of the weight vectors Wk
and U, there are two other characteristics of a given
machine that greatly effects its capability to solve a
two class problem. They are the value of K, the number
of committee members in the structure of the machine, and
Uppp? the component of U that determines the logic of
the machine. We would like to know the relationship
between the size of a machine and its logic so that we
could choose the most effective combination in solving a

given practical problem. First we present an existence

theorem.

Theorem 1l.1. Given two sets of patterns corres-

ponding to two categories with no pattern belonging to
both categories. Then there exists a committee using
the majority logic that partitions the space so that the

categories are separated without error.

Proof. See [1] and [10].

The proof in [1] is a constructive one which also
provides a method of locating the various committee

members. But as usual a method resulting from a
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constructive proof is not a very efficient way of
performing the task. In particular the size of the
machine resulting from the use of this method may be as

large as the number of original patterns to be classified.

2. Conjectures on the Size and Logic of Committee Solutions.

For a given logic obviously there can be many machines
each of a different size which solve a given classifica-
tion problem. Since K is a finite positive integer
there is a machine of smallest size. If then we have a
machine of minimum size using logic Ly and a machine of
minimum size using logic Y will the minimum be the
same for both? Some conjectures have been made which
provide a partial answer to this question. We present
the following made by Kaylor [10] with some discussion.

Let the patterns be represented, as noted above, by
n-dimensional vectors with binary components. Let K*
be minimum number of committee members required by any
general solution committee, i.e. the components of U
may be real. Let K' be the minimum number of committee

members required by any general solution with Up,1 = 0.

Conjecture 1. There is a committee voting by

majority logic of size K*.
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Conjecture 2. There is a committee machine voting

by plurality logic of size K*.

Conjecture 3. There is a committee machine voting

by majority logic of size K'.

Conjecture 3 has been proven true for N = 2 and
for K' =3 and N arbitrary. In the proofs given in
[4] by Kaylor there is no need for the assumption which
requires the components of the pattern vector to be
binary. Thus we may be led to assume that the conjectures

may be true for real components as well as binary.

Conjecture 1 is false if the pattern vectors are

allowed to have real components.

Proof. Consider the following counter example. Let
set A Dbe the points in two space just inside the inscribed
circle of triangle A of figure 3.1. Let set B be the
points just outside the circumscribed circle of the same
triangle A. The lines formed by the three sides of the
triangle form a boundary between the sets A and B.

If we consider the sides of the lines where the inscribed
circle is located as the positive side, then sets A and
B are effectively separated by the lines, (hyperplanes
in 2-space), using veto logic. Note that three is the

minimum number of lines that will separate set A from B.
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figure 3.1

But no three-line committee will produce a solution using
the majority logic. Q.E.D.

In view of the above we highly suspect that Conjecture
1l is not true for binary components either. However, it
is our belief that Conjectures 2 and 3 are true for

pattern vectors having real or binary components.
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In creating a system for finding the individual
committee members we would prefer a system which lends
itself to application for machines using any of the logic
systems, majority, plurality, or veto, since we maintain
that these machines perform the job of general machines

of the same size.
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IV. EXISTING ALGORITHM FOR LOCATING COMMITTEE MACHINES
1. Error Correction Techniques.

Most of the methods used for locating a solution
committee use error correction techniques. This is an
iterative procedure whereby the pattern vectors are
presented to the committee one by one. As each pattern
is considered by the committee a vote is taken. If the
committee already votes correctly for the pattern under
consideration no change in the committee is made. If,
however, the committee is in error, i.e. it judges the
pattern to belong to the wrong class, some correction
(adjustment) is made in one or more of the committee
members. The members chosen for this adjustment are
usually those whose vote can be most easily changed to
a correct vote. Corrections are made by adding a multiple
of the pattern vector to the weight vector.

The main advantage of this technique is that the
machine looks at one pattern at a time without using any
information from the remaining pattern vectors, except
as these have already exerted their influence on the
machine when they in turn were under consideration by

the committee.



15

2. Algorithms for Committees of Size 1.

The simplest committee machine that we can have is
the one consisting of just one committee member. Much
investigation and study has already been done concerning
this case. ' We would like to present some of the results

here as a goal for development of machines of larger size.

An Algorithm. Suppose we have pattern vectors

X. e AU B, where A -and B are linearly separable.
Let S be a training sequence, i.e. the order in which
the patterns are to be presented to the machine, with

S, = (X;, X

% ..+) where X; € 8. This sequence

2’ LRI N |
is arbitrary, the only requirement is that each pattern
vector Xj € S occur infinitely many times in the

sequence.

Let Sw be the sequence of weight vectors with

Sw = (Wl, WZ' ceey Wi’ «..) where Wl is arbitrary.
If -Xi is theA-ith vector of the training sequence

Sx then,

Wi+l = Wi if Xi-Wi > 0 and Xi € A,
or if X.*W. < 0 and X. € B,

i 71— i
otherwise
W, =W, + c.X. if X.,*W. < 0 and X, € A4,
i+l i i7i i i - i
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or

=W. - ¢c.,X. 1if X.,*W. > 0 and X. & B.
i7i i1 i

Theorem 4.1. = Let sets A and B be linearly

separable categories of pattern vectors in n-space. Let
Sw be the weight vector sequence generated by any valid
training sequence: Sx -using the error correction procedure
of the algorithm above with c; =1 for all i and Wy

arbitrary. Then for some finite index iO’

is a solution vector.

Proof. This theorem has been proved by various
people in sundry ways [21, (31, [131, (141, [151, (171,
and [19].

The hypothesis of the theorem stipulating that,

c; = 1l for all i, is not a necessary condition for
convergence of the algorithm. In practical cases the

following values have been used successfully and their

convergence proven.

1. c; =1 forall i (Theorem 4.1)

2. c¢; = 1/||%4|l, i.e. add or subtract a unit vector
from Wi

3. c, = pWi-Xi/xi-Xi where 0 < p < 2.
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Theoretically the ci's may range over a considerably
larger set. Block [6] proved that the process will con-
verge if the ci's satisfy the following,

cs diverges and the c;'s are bounded.

1

®©
i=
In practical problems encountered in real life the
hypothesis of linear separability is often not satisfied.
The question is, if this is the case what can be said
about the convergence of the algorithm above. Obviously
no solution is possible, but a result conjectured by
Nilsson [15] and proved by Efron [9] states that the
weight vector will not grow indefinitely, more precisely
it is bounded. This assurance is a great help in training

machines of large size, but it also can be a limiting

factor.

3. An Algorithm for Locating a Machine of Size >1.

The following method for training a committee machine
of arbitrary size using the majority logic was first
proposed by Ridgway [18] and then implemented into the
hardware of a learning machine, MINOS II, by Brain et al.
[4] and [5], at Stanford Research Institute. According
to the authors the machine performed creditably well but

suffered from two deficiencies, to wit, (1) for the most
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part there was a marked difference in the percentage error
in the training and the test set, with the training per-
centage of error always significantly lower than in the
test data, and (2) the algorithm had a tendency to get
trapped in cyclic or- static states. Both of these problems

were attributed to the fact that the set was too small.

The Algorithm. Let Sx be a training sequence of

roees)

the sets A and B, with SX = (Xl' X2, “eey Xi

where Xi € AUB and each Xi appears infinitely often
in the sequence.

Let Sx be the weight vector sequences,
Sx = (W?, Wg, «++) Wwhere W? is arbitrary for k =1, 2,
... K and K is the number of weight vectors in the
machine. |

Let Ri be the response vector,

Ri = (ri r;, e, r;, 1) (4.1)
1 if xi-wk > 0
i _
where rk = for Xi £ Sx and

-1 if Xi'wk 20 k=1, ..., K.

Let U be the logic vector, U = (ul, Ugy eeey Ugy 0),
where u, = l, for k=1, 2, ..., K.
Then if Xi is the ith element of Sx and

Xi € A, and if
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R;~U >0, let Wi, , =W, for k=1, 2, ..., K,

but if

then adjust the Wﬁ‘s according to the following rule.

Let N, = IR;-UI- and arrange the weight vectors
such that WrX, < W2+X, < ... < WoeX,. Let
i =T = = "'
kO = (K - 1)/2.
Now let
Wl o= WS+ c,X, for k =k, ko+l K+ (N, +1) /2
i+l i i1 0" "0’ "! 0 i
and
kK .k .
Wi+l = Wi otherwise.
Suppose X, is the ith element of Sx and X, € B.
If
i k
RL.U <0, let Wi, =W: for k=1, 2, ..., K,
but if
RL-U > 0,
X

adjust the WE'S according to the following rule.

Let N. = R;-U and rearrange the weight vectors such

1 2 K
that W;-X, < Wi-X, < ... < W,-X. and let k, = (K-1)/2.
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Now let,
WS o =wKk - c.x. for k = k., k-1 K. - (N.+1)/2
i+l i i1 or "o Tr "1 70 i
and
k - .
Wi+l = Wi otherwise.

The adjustment criterion of the above algorithm can
be stated very briefly. If the machine already votes
correctly by the majority logic nothing is done. 1If,
however, the machine votes incorrectly then a number of
hyperplanes are chosen to be adjusted. The hyperplanes
closest to the pattern vector under consideration are
chosen such that the number of original correct votes
plus- the number of hyperplanes just adjusted would be

just sufficient to achieve a simple majority.

Another algorithm for training committee machines
having veto logic, which is very similar to the preceding
algorithm and also due to Ridgway [18], adjusts hyperplanes
according to the following rule. If Xi e A and the
machine votes correctly nothing is done. If the machine
votes incorrectly then all the hyperplanes which are
wrong are adjusted. If Xi € B and the machine votes
correctly nothing is done. If the machine votes incor-
rectly then the one hyperplane which is closest to the

pattern vector under consideration is adjusted.
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As indicated earlier both of these algorithms have
been used with some success in training committee machines.
The major difficulties they encounter will be lessened by

our new process of training which we now describe.
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V. TEEMAL - A NEW METHOD FOR LOCATING A COMMITTEE
1. Preliminary Remarks.

This method will consist of three main parts.
i. A process for replacing one of the hyperplanes.
ii. An algorithm for adjusting an individual hyper-
plane.

iii. An algorithm for adjusting all the hyperplanes.

In the design of our method all three processes are
used successively with critera of time and success deter-
mining the transfer from one to the other.

As it has been pointed out the difficulties in
training committee machines have been, (i) the tendency
of the machines to get trapped in static or cyclic states,
and (ii) the disparity in the percentage of errors in the
training set versus that in the test set. These phenomena
have been attributed to the use of too small a number of
training samples. -  We believe, however, that the problems
are not that simple, but that the nasty, complex, problems
of prejudice and misplaced samples in training must be
faced.

A limited, for linear machines only, attempt has
been made in allowing misplaced samples in training by
Duda and Singleton [8]. The adjustment criterion used

never allowed errors without making some sort of correction,
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but rather attempted to minimize the effect of misplaced
samples by an averaging technique of intermediate stages
of learning.

Thus a major attempt has been made in the present
method to allow for errors, i.e. misplaced or excessively
noisy samples which may exert undue influence in the
development of the machine by providing misleading and
prejudicial information to the training algorithms. In
addition, the error correction critera were designed in
such a way: that the machine could bail itself out of
static or cyclic states, or better, never get trapped

at all.

2, CREATE - A Method of Creating a New Hyperplane.

Suppose we have a committee machine, C under

K,L'

training which consists of K-hyperplanes and these vote
according to the logic, L. The process, CREATE, replaces
one of the weight vectors defining a hyperplane, say Wk.

Let Ia be the number of elements in set A and Ib

be the number of elements in set B. Let R; be the
response vector in 4.1 with r, = 0. Let

U= (1,1, ..., 1, be the logic vector and without

Ug 1)

loss of generality we assume (K + Ugiq
b

integer. Let s = 8° = 0 be vectors in n-space.

) 1is an odd



Consider X, ¢ A, for i=1, 2, ..., I_.

If R*.U > 0 ,
X

i
If RX~U< o,

let n® = |R*.u| +1 anda s% = s + n%x, .
1 X 1l 1

Consider X, e B, for i =1, 2, .., Ib.
If Ri'U <0,
b _
let S =8 and n;, = o .

i
If RX-U >0 ,

let nb = R*>»u + 1 and Sb = S + npx. .
1 X 1l 1

Now let

a
N® = n? and s2 = Sa/Na

I

|
—

and

Iy
Nb = EZ n? and Sb Sb/Nb .
i=1

Thus we have formed two vectors which represent

weighted centers of mass for some or all the elements
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A and B respectively. The weight factors, n? and

n?, attribute to each vector in A U B some measure of
importance, the importance being the need for the new

committee member to vote correctly on the particular

pattern vector.

Given the vectors thus formed with,

b b b b
s? = (s?, sg, e si) and S = (sl, Sor sees sn)
we define the vector, Wk = (w?, wg, ooy wﬁ), as follows.
k b .
Let w, = s? - sy for i=1, 2, ..., n-1,
and
n-1 n-1
SN
Yn T2 i 2 i’
i=1 i=1
. - k- a- b-
Thus if we denote by X , W , 8 , and 8 as

vectors in the original non-augmented (n-1l)-space, then

the hyperplane defined by the equation Wk-'x- = wﬁ is

the perpendicular bisector of the line connecting the

vectors 52  and sP .

3. ALCONONE - An Algorithm for Adjusting One Hyperplane.

The hyperplane generated by CREATE is usually far
from being the best hyperplane possible to cure the errors

of the machine at time it is generated. It is, however,
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a good beginning, as an initial vector for our error-
correction algorithm, in particular it is far superior
to the random selection of an arbitrary vector.

In order to make max;mum use of the discriminating.
power of the newly created hyperplane, then, it is useful
to adjust it slightly so that pattern vectors just barely
on the wrong side have a change of being accepted on the.
correct side. Yet, we do not want to adjust the hyper-
plane excessively in an attempt to have this one hyper-
plane assume too much responsibility in separating the
two categories. If we consider a new hyperplane as a
line in figure 5.1, a 'good' position this hyperplane to
move, as a committee member, would be between clusters
A and Bl as line Ll' We call such areas, ‘'areas of
local separability.' The adjusting algorithm should not
concern itself too much with the patterns in the cluster
B2, which are at some distance from the hyperplane.
Straight forward use of existing algorithms, whether
fixed or variable increment, would result in locating the
hyperplane in the position of 1line L, in figure 5.1,
cutting through all. the cluster areas. Mengert has
suggested a way of giving weights to the pattern vectors
to achieve a similar result [11].

The algorithm, ALCONONE, by its continuous function
increment adjustment seeks out areas of local separability

and is tolerant of errors, even a significant number.
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The Algorithm. Let s, be a training sequence for

the SetS A and B, with SX = (Xl, X2, ¢ o s g Xi, --o)
where X. €A B and each X. appears infinitely often
in the sequence.
Let S be a weight vector sequence, with
w

|* is the

S, = Wy, Wy, ...) and HW1H* = 1, where

Euclidean norm of the first (n-1l) elements of a vector
in n-space.
Let R; be the response vector in 4.1 and U be

the logic vector described in 2.1.
. th

Let Xi be the - i element in SX.
If Xi e AUB
and R*“U >0 or W,'X, > o,
X i
let Wi+l = Wi;
if X. £ A
1
and R*:U < 0 and W.+X. < o,
: X i 7 o-
let W, =W, + f(di)xi/HXil;
if X. £ B,
1
and REU < 0 or W, -X. < 0,
X 1l 1 -
let Wi+l = Wi;
if X. & B,
1
and R*:U >0 and W.X. > 0,
X 1l 1
let ie1 =W £@OX /X
where d. =W.«X, and £(d) = B + —2 .
1 1 1

op + d2



The parameters o, B, and p of the function f£
play the following roles:
i. 'B' determines the infimum of the function.

lim £(d) = 8.
d-—»w
iji. 'p' determines the maximum of the function.

- 1

iii. 'o'" plays a very important and delicate role
in determining the precise amount of adjustment to be
implemented by the algorithm. If regulates the rate of
decrease of the monotone, decreasing function f£.

In practice since we are always working with finite
sets, B = 0. It has been made part of the function for

the theoretical considerations. 'p' on the otherhand

had a value of around 10.

29

From experiments we found a good value for o should

satisfy the following. Let W be the weight vector

corresponding to the hyperplane which is the pervendicular

bisector of the line joining the centers of mass of A

and B, with |[W] =1. ©Let I_ be the number of

elements in A and Ib the number of elements in B.

Let d0 = 5/ap . If X e A |y B, let Nd be the number
0

of pattern vectors X such that,

dy <|X-W
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Then pick a such that

.02(Ia + Ib) < N < .OS(Ia + I

a ) .

0

In other words Nd should be more than 2 % of
0

the total number of pattern vectors but less than 5 %.

It should be noted that this algorithm satisfies
the generalization of Theorem 4.1 [3]. Thus if the two
classes are linearly separable this algorithm will converge
to a solution. We feel this is an important additional
feature since we may be concerned with subsets of A and
B which may well be linearly separable. A graph of the

function is given in figure 5.2.

Methods for Adjusting All Committee Members Simultaneously

We present two algorithms here for adjusting all the
committee members simultaneously. The first uses the
continuous function technique just described for adjusting

a single committee member.

4, Algorithm I, ALCONTY.

Let SX be a training sequence SX = (Xl, X2, ces)
and Sg be the weight vector sequences,
S& = (WE, Wg,‘...) where k =1, 2, 3, ..., K and HW?H* = 1.



31

1
+ =
e+ 3
B ——————————————————————————————————————————
or—o—o - - . >
0 _\/EE Yo p 2/ap 3vop 4v0p 5V0p
3

figure 5.2 f(d)

i
>w
+



where

where u,
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Let R; be the response vector
R:; = (ri' r;' s 0 rIJi' l)
. 1 if X.-Wk > 0
rt = 1 for X, € S_ .
ko )-1 s xi-wk_<_o X
Let U be the logic vector
U = (ul, Ugy eeer Up uK+l)
=1, for k=1, 2, 3, ..., K and
Ugey < K-
Let Xi be the ith element in the training sequence
and X. & A.
1
Then if:
R:-U > 0
X
let WE+1 =W, k=1, 2, ..., K
If:
i
R,*U < 0
k _ .k k =
let i+l = Wi + f(di)Xi for all k=1, 2, ..., K
and dk <0,
1
where,
d¥ = w*.x, and f£(a) =8 + —% _ .
1 1 1

oap + d2
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If Xi is the ith element of SX and Xi € B,
then:
if R.-U < 0
X —
k _ ok _
let Wi+l —Wi, k - l' 2' * 8 0 K-

But if RX-U > 0

k I k —
let Wi+l = Wi f(di)Xi for k=1, 2, ..., K
k

and di > 0,

where the function f and d? are as above.

Evaluation of Algorithm I

Algorithm I, ALCONTY, has all the desired character-
istics described for the continuous function adjusting
algorithm, ALCONONE. This algorithm has proved effective
in locating a committee and performs as well as the
algorithm due to Ridgway described in Chapter IV. But
to achieve these results some delicate variance was needed
on the parameters o, B, and P of the function f.

Also it was necessary to maintain the norm of the weight
vectors W® near equality, in our case HWkH* =1, To
overcome these handicaps we have devised Algorithm II,

ALVARY, which has all the good characteristics of ALCONTY

without the described sensitivity.
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5. ALVARY - A Second Algorithm for Adjusting All Hyperplanes.

Our second algorithm for adjusting all the committee
members simultaneously uses a 'closeneés' criterion, but
in a very different fashion.

Let Sx and Sx be the pattern sequence and the
weight vector sequence respectively. Without loss of
generality we restrict the component, UK+1' of the

vector U such that (K + u ) 1is an odd integer. Let

K+1

P and P be rational numbers of the form 1/N.

a b
. .th

Suppose Xi is the 1 element of Sx and Xi € A.
i

If R U > 0

let Wk = Wk for k=1, 2, ..., K,

if R-U <0 ana 0<a%ac<p
X & - i a

k k
let W, , =W, + cX. /1%, |l

k k .
and Wi+l W. otherwise

'_l

for k=1, 2, ..., K,

where 0 < ¢ < 2, 4. = W.-X.,
1 1

and d = Zdl.‘, k=1, 2, ..., K.
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Suppose on the other hand X, is the ith element

of SX and Xi € B.

If R*X-U < 0
X —

let WE+1 = WE for k=1, 2, ..., K,

if R;'U >0 and 0 < d?/d < P

k _ kK
let W, . =W, - X, /1%, ||
k k . _
and Wi+l = Wi otherwise for k =1, 2, ..., K,

k _ .k
where 0 < ¢ < 2, di = W, X.,

Qualitative Analysis of ALVARY

The criterion for adjusting used in the algorithm
ALVARY depends on the closeness of the pattern vectors to
hyperplanes. The dependence, however, is relative to the
distances of the pattern vectors from the hyperplanes.
This alloWs for great flexibility in the number of com-
mittee members to be adjusted at a particular step in an
iteration, as well as in the choice of the particular
members to be adjusted. This is in contrast to previous

rules which possess fixed and rigid critera for adjusting.
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We will summarize here what we feel are effective

and original properties for an error-correction technique.

Property 1. There may be no adjustment of any

hyperplane even though the machine votes incorrectly on

a given pattern vector.

Examgle. Let CK,L be a committee machine with

K=5 and L is the majority logic, i.e. the component

] = = L
Upi1 of the vector U 1is 0. Let Pa Pb % .
Suppose CK L votes incorrectly on the pattern X and
14
dl' d2, and d3 are the distances of X from the exactly

three incorrect voting hyperplanes. For simplicity we

assume that dl < d2 < d3 < 0. Let 4 = dl + d2 + d3.
Then dl/d < %
implies 4dl < dl + d2 + d3
implies dl < (d2 - dl) + (d3 - dl)' (5.1)

Thus there will be an adjustment only if dl is
less than the sum of the differences of (dl, d2) and
(dl, d3). If the di's are nearly equal there will be

no adjustment.

Property 2. If all the hyperplanes are close to the

pattern vector, X, there is greater probability that
there will be some adjustment than if they were all far

away.



37

We note equation (5.1) above. If dl is small it

is more likely that the right hand sum will be greater

than dl' The degree of variance possible in the di S
without adjustment occurring decreases as the di's
decrease.

Property 3. If there is any adjustment, one or
more of the hyperplanes closest to the pattern vector
will be adjusted.

Property 4. If more than one hyperplane needs to

have its vote changed for the machine to vote correctly,

then usually more than one hyperplane will be adjusted.

Property 5. If one of the hyperplanes is at a

great distance from the pattern vector in relation to

the others then all the closer hyperplanes will be adjusted.

We note again (5.1). If 4, > 3d2 > 3d then both

3 1
hyperplanes corresponding to dl and d, will be adjusted.

In evaluating the properties just described, Property
1 proves to be very advantageous and is unique for error
correcting techniques. Until now no error correcting
method allowed for errors in the machine without making
some adjustment of the hyperplanes [15]. As noted in
Property 2 the probability of no adjustment occurs when

the distances from the pattern vector to the hyperplanes
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which vote incorrectly are large. These large distances
would indicate, especially in the more advanced stages of
learning, that the pattern vector in question is perhaps
isolated or a rather degenerate and noisy case of an
element in the given class. In either case, we do not
wish for such a pattern vector to have any influence in
locating the committee machine.

Property 3 assures .us ﬁhat the algorithm still
corrects hyperplanes which are closest to being correct
and easiest to change to a proper voting posture.

Property 4 follows the accepted practice that the
more hyperplanes there are that vote wrong the greater
the need for adjusting more hyperplanes.

In Property 5 we have a very interesting and profitable
characteristic. For example if we have a pattern vector
close to two hyperplanes and relatively far away from the
other wrong hyperplanes, and we are to adjust a single
committee member, to choose the closest one is a quite
arbitrary discision since there is a very small difference
between the two close hyperplanes. ALVARY will adjust
both of them in this case. Precisely which one would have
been better to adjust will be determined by future adjust-
ments needed for other pattern vectors. The algorithm by
its action implicitly chooses which hyperplane should
have been adjusted. This added degree of freedom allows the

algorithm to adapt itself to various classification problems.



6. TEEMAL, The Method of

Using the algorithms
together in a process for

solve a general two class

INITIALIZE

Create kth

39

Locating the Machine.

above we will now put them
finding a committee machine to

problem.

weight vector,

Use ALCONONE on kth weight vector for IS iterations,
for k=1, 2, ... K.
k = 0.
Step 1
Call ALVARY.
If no adjusting on iteration go to Step II.
If no errors Stop.
After Ig - iterations go to Step II.
Step II
k =k + 1.
If kX > K, k = 1.
If k <K, k = k.
Create kth weight vector.
Use ALCONONE on kth weight vector for I iterations.

Go to Step I.

S
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Further Elaboration.

Initialization. As stated each weight vector is

created and then adjusted successively until the proper
number is obtained. As each weight vector is created and
adjusted a record is kept of how each one of them votes
on each particular pattern vector.

As the algorithm proceeds in making the decisions
whether to adjust or not, a check is made of the voting
record of the existing weight vectors. If this record
for a particular pattern is already sufficient to achieve
a correct vote according to the logic, L, of the machine

C then no adjustment is performed, even though the

K,L'
weight wvector- under consideration may be voting incorrectly
on the  pattern vector. - Thus only the pattern vectors
needing a correct vote from this weight vector will be
considered for possible adjusting.

The single adjusting algorithm is controlled by an

integer parameter, I which determines the number of

sl
iterations the algorithm shall perform each time it is

used.

Step I. - In general the .adjusting algorithm runs
until there  is- no longer any improvement in the machine.
To implement this criterion an integer parameter, I ,

g
is given the machine. It is at the end of a cycle of
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Ig—iterations that a decision is made whether there is
any improvement decrease in errors. If there is a decrease
in the errors made by the machine another cycle of Ig—
iterations is performed.
If, however, there has been no decrease in the
number of errors after a particular cycle of Ig—iterations
then the algorithm stops and returns to Step II in the
state that has been best so far. - This state is either
the condition of the weight vectors before starting the
latest cycle of iterations, or the state before iterations
of this cycle that has had the fewest adjustments. The
state chosen is the- one that makes the fewer errors.
Theualgorithm»also-stops if there is no adjustment

during seme- particular iteration.

Step II. In Step II each weight vector is replaced
successively from 1 to K. A number of critera have

been tested to determine which of the weight wvectors to
replace. These were such as, the weight vector adjusted
most during the previous cycle of Step I, the vector
adjusted the least, or the vector making the most errors

as a linear machine, committee of one. For the most part
these critera led to cyclic or static states in which the
same individual vectors were being replaced. The para-
meters and critera used for creating and adjusting a weight

vector are the same as those used in the initialization stage.



A number of check points exists in the process which
terminate the algorithm as soon as no errors are made by

the machine CK L being located.
14

42
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VI. EXPERIMENTAL RESULTS

The above method, TEEMAL, of alternating algorithms
and procedures has been applied to various kinds of two-
class problems. . We present a- number here which. involve

different facets and difficulties in classification.

1. Artificially Generated Data in 2-Space.

First we present an example of the performance of
the algorithm, ALCONONE, for adjusting a single hyper-

plane.

Suppose we have the set of letters "a". and "b"
located in 2-space according to figure 6.1, with the a's
belonging to class A and the b's belonging to.class B.
The line, hyperplane- Hp, in the figure 6.1 is. the
perpendicular. bisector of the- line connecting the centers
of mass of the classes A and B.

The parameters of the function f of ALCONONE are
set as follows, B8 =0, o = 0.01, and p = 8.. The
position of the hyperplane, Hp, after each iteration
(one iteration. equals one pass through the data) is
indicated by the lines Hl' H2, ooy H9 in figure 6.1.
ALCONONE was allowed to run for a total of.fifty iterations,

but there was no significant change in the position of

the lines after the second iteration. This position is



considered to be a very effective one for a member of
some committee machine.

As a means of comparison the fixed increment error-
correction algorithm of page (16) was also run with
c = 0.1. The hyperplane wandered from the initial posi-
tion of Hp figure 6.2, through the positions Hl, HZ'

... H These are the positions after each iteration as

9.
in ALCONONE. The algorithm ran through another 50
iterations with the same scattered positioning of the

hyperplane, never reaching anything resembling a stable

or 'good' position.

A Committee Solution

Consider now the set of a's in set A and the set
of b's in set B in figure 6.3. Obviously there is no
linear separation possible, and in addition, there is
no committee solution for a committee méchine of size
less than five. Our experiment attempts to separate
these two sets, A and B, with a committee machine

C where K = 5 and 1L = the majority logic.

K,L’
We will compare the performance of Stage I, the
algorithm ALVARY with the algorithm due to Ridgway des-
cribed in Chapter IV using the majority logic. In both

algorithms the coefficient of adjustment, ¢, was equal

to .1/||X

. For ALVARY, Pa = Pb = 1/5.

44
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b

figure

6.1

Performance

of ALONONE
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figure 6.2 Fix Increment Algorithm
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CASE 1I:

Both algorithms were given the following vectors

generated by the initializing stage.

Wl = (-0.8250, -0.5650, .3005)
Wy = (.7861, .6181, 1.1804)

W3 = (-0.7597, 0.6503, -1.8173)
W4 = (.4602, -0.8878, 4.0328)
W5 = (~-0.0411, .9992, -0.0646)

The intersection of the hyperplanes, determined by
these weight vectors, with the plane, 2z = 1, is pictured
in figure 6.3. These hyperplanes form a partial solution
making 37 errors.

The algorithm ALVARY after 13 seconds, 22 iterations,
and 471 adjustments located a set of hyperplanes making

no errors defined by the following weight vectors.

W, = (-0.9951, -0.0989, -0.3379)
W, = (.8693, -0.4943, 7.4013)
Wy = (-0.1402, -0.9901, -7.3710)
W, = (.5721, -0.8202, 3.7841)
Wo = (.0249, .9997, -0.7574)

Ridgway's algorithm given the same starting position

for the weight vectors after 24 seconds, 32 iterations,
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figure 6.3 Initial Stage
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and 379 adjustments located the following weight vectors

which vote correctly on all the elements of the two sets.

Both of

(-0.9176, -0.1133, -0.3488)

(.2011, -0.0625, 1,5045)

(-0.1111, -0.3216, -1.9526)

(.6477, -0.8826, 4.0033)

(.0114, .6163, -0.5318).

these solutions have the hyperplanes located

in relatively the same positions as seen from figures

6.4 and 6.5.

CASE II:

The two

algorithms were given another set of weight

vectors generated by the initializing stage as follows:

(-0.9994, -0.0344, -0.6268)

(.8941, -0.4478, 2.5590)

(-0.8319, .5549, 2.3090)

(.8632, -0.5049, 3.5920)

(-0.9687, -0.2481, -1.4796)

The hyperplanes determined by these weight vectors

form a partial solution making 61 errors.
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figure 6.4

ALVARY Solution
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figure 6.5 Ridgway Solution
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The algorithm ALVARY after 14 seconds, 31 iterations,.

and 364 adjustments located a complete solution as follows:

W, = (-0.9899, -0.1418, -0.4509)
W, = ( .5633, -0.8262, 4.0524)
Wy = (-0.1214,  .9926, .1975)
W, = ( .8503, -0.5263, 7.0637)
We = (-0.0927, =-0.9957, -7.5338).

Ridgway's algorithm found a complete solution after
23 seconds, 30 iterations, and 282 adjustments. The

weight vectors are as follows:

W, = (-1.2218, -0.0836, -0.5711)
W, = ( .4598, -0.6101, 2.6213)
Wy = (-0.8731, 1.4919, 1.7126)
W, = ( .3918, -0.2472, 3.6811)
We = ( .0417, -0.1619, -1.6506).

As noted by these results ALVARY verforms as
well as Ridgway's algorithm with the advantage of being
faster since the decision making process of ALVARY in
determining precisely which weight vectors to adjust is
simpler. 1In addition, the fact that ALVARY makes more

adjustments in locating the complete solution is an
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advantage since this is part of the decision making

process, as noted in property 4 of ALVARY.

A Partial Solution

Given the sets A . and B 1in figure 6.6, which are
the same as in figure 6.3 except that one of the elements
of set A has been removed, indicated by @ , and has
been replaced by an element of set B, indicated by b'.
Thus there is no committee machine possible which will
separate the two classes. There is, however, the partial
solution which makes just the one error on the element
belonging to both classes. We now investigate the
behavior of TEEMAL and Ridgway's algorithm in their

attempts to locate a solution.

The initial stage located the following weight

vectors.

(-0.8059, -0.5921, -0.5213)

=
I

1
W, = ( .9670, .2548, 2.,9075)
W3 = (-0.6464, -0.7630, -1.0230)
Wy = ( .8732, -0.4873, 5.8161)
W5 = ( .4388, .8986, -1.5830)

The committee defined by these weight vectors makes

34 errors as indicated in figure 6.6.
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figure

6.6

Initial Stage
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For Stage I we set Ig =10 and ¢ = .l/“Xi!.
P? = Pb = 1/5. For Stage II the algorithm ALCONONE has
parameters f =0, a = .01, and p = 8, and Is = 3.

After obtaining control in Stage I, ALVARY located
the committee in the position of the lines indicated in

figure 6.7 which makes one error. The weight vectors are,

Wl = (-0.9895, -0.1443, -0.5481)
W, = ( .9253, -0.3793, 6.9520)
Wy = (-0.0567, -0.9984, -6.9201)
W, = ( .4038, -0.9148, 5.3044)
W = ( .0733, .9973, -1.0009)

It took 20 iterations for ALVARY to reach this state
and since there was no more improvement in the voting
record it transferred control to Stage II. This process
was repeated four times, i.e. weight vectors Wl’ W2, W3,

and W were all successively recreated and adjusted.

4
Each time ALVARY gave control to Stage II the machine
CK,L was in a position that never made more than two
errors, and on transfer from Stage II to Stage I the
committee made an average of four errors. On receiving
control the fifth time ALVARY reached a state where it

no longer made any adjustments on the committee. The

weight vectors of this state are as follows,
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figure 6.7 1 ERROR Using ALVARY
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W, = (-0.9986, -0.0534, -0.8200)
W, = ( .8735, -0.4968, 7.4098)
Wy = (-0.1483, -0.4868, -7.0432)
W, = ( .5092, -0.8606, 4.1149)
We = (-0.0587, .9983, -0.8871).

The only error made by this committee is the
ambiguous one. We note that the distances dl' d2, and
d3 in figure 6.8 - are relatively equal and relatively
large according to Property 2 of ALVARY.

In contrast Ridgway's algorithm with the same starting
position reached the state of one error after 60 iterations.
In further iterations the weight vectors migrated through
positions which made from one to five errors.

We thus arrive at the following conclusions:

i. TEEMAL is stable and is not effected signi-
ficantly by noisy or abnormal samples.
ii. The process CREATE and the algorithm ALCONONE
choose a very good weight vector.

iii. Since in most practical cases we would not

expect to have a possible complete solution, the process

TEEMAL will prove more effective than previous known

algorithms.
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figure 6.8 1 ERROR AFTER 4 calls to Stage
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2. Hand-printed Letters A and R.

Our next example uses real data which consists of
two hand-printed letters of the alphabet, A and R.
The data used was generated by Munson, Stanford Univer-
sity, and consists of the hand-printed characters on a
24 x 24 grid. Thus each sample is represented by a
576-dimensional vector with binary components. Since
use of all the components would envolve a considerable
amount of computer time, which was not available for us,
a reduction- of the number of variables was deemed necessary.

The program ABIOSOFOS, a general learning program of
E. Gagliardo, learned to discriminate A from R on this
same data. In so doing it created a formula using 27 of
the original variables. The ones chosen are indicated on
a 24 x 24 grid in figure 6.9 and are as follows: variables
36, 82, 89, 151, 157, 180, 184, 207, 223, 224, 231, 247,
283, 299, 300, 302, 304, 305, 307, 325, 326, 328, 329,
330, 352, 353, 354. These variables were used in the
same order to form vectors in 28-dimensional space with
the 28th component always equal one as usual. The 240
samples used for training are listed in Appendix I,
Samples Set I, plus 27 samples of each A and R used
for testing.

With the data in this form TEEMAL was directed to

locate a committee, C with K =5 and L equal

K,L'
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27-Variables Selected by ABIOSOFO0S
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to the majority logic. After the initial stage, CK,L
was made up of the weight vectors listed in Appendix I,
Vector-Set I, which made 15 errors on the training data..
On transferring control to Stage I, ALVARY with
parameters P_ =P = 1/5 and c = 01/[[%;]| trained.

for 34 iterations after which C was made up of the.

K,L
weight vectors listed in Appendix I, Vector Set II,

which made 0 errors on the training samples and 7 errors
on the 54 test samples.

The same .configuration of CK,L after the initial
stage was used as a starting position for Ridgway's
algorithm. With the coefficient of adjustment,

c =~.01/HXiH, the same as for ALVARY, after 36 iterations
the algorithm located a machine which made 0 errors on
the training set and 8- errors on the test set. The
weight vectors for this CK,L are listed in Appendix I,
Vector Set III.

To further illustrate TEEMAL's performance on this
data another selection of variables, again due to ABIOSOFOS
of E. Gagliardo, was used. In this case the number chosen
was 19 as indicated on the grid of figure 6.10 and are
enumerated as follows: variables 33, 83, 127, 177, 223,
245, 275, 283, 285, 304, 306, 327, 329, 339, 354, 363,

401, 410, 568. A list of the 240 training samples and

the 54 test samples are listed in Appendix I, Sample Set II.



figure 6.10

The 19 Variables Selected by ABIOSOFOS
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After the initial stage of TEEMAL CK L made 17 errors
14

on the training data. A list of the weight vectors of

Cx 1, at this stage is given in Appendix I, Vector-Set IV..
r

Then with parameters B8 =0, o = .001, p = 8, IS =1,
Ig =10, p_ =P =1/5, and c = .01/||xi|l TEEMAL trans-.

ferred control between Stage I and Stage II five times.
On two occasions TEEMAL transferred control to Stage II
because no adjustments were made on a particular iteration

of ALVARY. This was the case even though C made

from 13 to 15 errors-on the training samples. At the end

of these- five transfers CK L made 15 errors on the
’

training data and 8 errors on the test data. The weight

vectors of this C are listed in Appendix I, Vector-

K,L
Set V.

Again the same initial position of C was

K,L
presented to Ridgway's algorithm with ¢ = .Ol/HXi

.
After 30 iterations CK,L made 8 errors on the training
data and 8 errors on the test data. It's weight vectors
are listed in Appendix I, Vector-Set VI.

On changing the parameters Pa and Pb of ALVARY
such that both were larger, ALVARY performed more adjust-
ments and located a machine which made as few as 7 errors
on the training data. When these same machines were used

on the test data they made at least 8 and some times more

errors. We thus conclude that this further learning, as
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in the case of Ridgway's algorithm, is not discovering
new, general characteristics but rather singular, prejudi-

cial ones.

3. Disconnected-connected 4 x 4 Arrays.

Given a 4 x 4 array of squares with each array
containing seven black squares. An array will be called
disconnected if the seven black squares are neither
face-wise nor corner-wise connected. A disconnected
array will be represented by a l17-dimensional vector with
binary components, a 1 standing for a black square, with

the 17t

component equal to 1 for all samples. Thus a
pattern vector representing a disconnected array would

be the following.

X = = (1,1,0,%1,0,0,0,1,0,0,0,1,1,0,0,1)

An array will be called connected if the seven black
squares are all face-wise connected. Thus a pattern
vector representing a connected array would be the

following.
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= (0,1,0,0,0,1,1,0,0,0,1,1,0,1,1,0,1)

This data was randomly generated by E. Gagliardo.
In the experiment we- have used 240 samples for the training
set and an- equal number- for a test set. A listing of the
pattern vectors is given- in Appendix II, Sample-Set I.

-~ - The- initial stage of TEEMAL located a committee
machine-~CK'L with K =5 and L equal to the majority
logic, whiech made 35 errors on the training set. The
weight vectors for this committee are listed in Appendix
IT, Vector-Set TI.

With parameters g = 0, o = .001, p = 8, Pa = Pb =
1/5, ¢ = -Ol/HXiH, I, =1, and I, = 10 TEEMAL was
allowed to run until-it had gone from Stage I to Stage II
five times. i.e. each weight vector was hired and rehired
once. At this CK,L made 23 errors on the training data
and 47 errors on the test data. That is approximately
10 and 20 percent respectively. The weight vectors of
this machine are listed in Appendix II, Vector-Set II.

Ridgway's algorithm was given the configuration of

weight vectors listed in Appendix II, Vector-Set III
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which make 33 errors on the training set. After 80
iterations the algorithm was trapped in a static position
which make 24 errors on the training set and 70 on the
test set, or 10 and 30 per cent respectively. The vectors
involved in this machine are listed in Appendix II,
Vector-Set 1IV.

From the above then we can see an improvement in
TEEMAL in locating a committee machine. (i) TEEMAL did
not get involved in a trapped state. (ii) The discre-
pancy in the percentage of errors in training and test

sets has been significantly reduced.

4. - Absence-presence of Code 1101.

In this experiment the pattern vectors will consist
of strings of ten binary digits. An element will belong
to Class A if it does not contain the code 1101 in
sequence. If it possesses the code somewhere in the string
then the element will belong to Class B. We have 120
samples of Class A and B for training and an equal number
for testing. A listing of both sets is given in Appendix
III, Sample-Set . As usual the llth component is always
equal to 1.

The initial stage of TEEMAL created a machine CK,L
with K =5 and L equal to the majority logic which

made 79 errors on the training data. The weight vectors
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of this committee are listed in Appendix II, Vector-
Set I.
Then with the parameters B = 0, o = .001, p = 8,

10 TEEMAL

P, =P, =1/5 ¢ = .oz/HxiH, I, = 10, and I
proceeded to use Stage I and Stage II five times, again
each weight vector being regenerated once. At this point
CK,L made 18 errors on the training data and 69 on the
test data, or 8 and 29 percent respectively. The weight
vectors of this machine are listed in Appendix III,
Vector-Set II.

The same initial configuration was also given as a

starting position for Ridgway's algorithm with

. After 150 iterations the machine settled

c = .OZ/HXi
in a trapped state which consisted of the weight vectors
listed in Appendix III, Vector-Set III. This state made
22 errors on the training samples and 97 on the test
samples, or 9 and 40 percent respectively.

Again we note the improvement in the performance of

TEEMAL in the two areas of major concern.

5. 3 x 3 Arrays of Michalski.

Our next experiment involved the data due to
Michalski [12]. The data consists of 3 X 3 arrays with
entries belonging to the integers mod 4. There is a

slight change in the data that we are using and that found



in the paper of Michalski. The Sth element of Fl is.

h element of F0 is

(2,2,2,2,2,2,2,2,2,1) and the 9%
(0,0,0,1,0,1,3,0,3,1) written as 1l0-dimensional vectors
with the 10th component equal to 1. Thus we have the

following sets of vectors:

F1

(0,2,0,3,0,3,1,3,1,1)
(2,1,3,0,3,0,2,1,2,1)
(1,2,1,2,2,2,0,2,0,1)
(1,3,1,2,3,2,1,2,0,1)
(2,2,2,2,2,2,2,2,2,1)
(1,3,3,1,2,2,0,2,3,1)
(1,0,2,0,2,3,2,3,3,1)
(1,1,2,1,2,2,2,3,2,1)
(0,1,3,1,2,3,2,2,2,1)
(1,0,2,0,2,3,2,1,3,1)
(3,2,3,0,3,2,1,0,3,1)
(2,2,3,1,3,1,1,0,3,1)
(1,3,2,0,3,2,1,1,3,1)
(2,2,2,0,2,3,1,0,2,1)
(3,2,3,2,3,2,0,1,0,1)
(2,2,2,1,2,2,0,1,0,1)
(3,2,1,2,3,0,1,1,1,1)
(1,2,3,1,1,3,1,0,1,1)
(2,3,2,1,2,2,1,1,0,1)

(3,2,3,2,1,0,1,0,1,1)

F0

(2,1,1,1,1,0,3,1,2,1)
(,0,1,0,0,1,0,0,1,1)
(2,3,3,2,3,3,3,3,2,1)
(3,0,3,0,3,0,3,2,3,1)
(2,0,3,1,2,1,2,1,3,1)
(0,3,0,3,3,3,0,3,0,1)
(1,2,0,2,2,2,0,2,1,1)
(1,1,1,1,1,1,1,1,1,1)
(0,0,0,1,0,1,3,0,3,1)
(0,0,0,0,0,0,0,0,0,1)
(1,0,0,0,3,0,0,0,1,1)
(1,1,0,1,0,0,0,3,3,1)
(0,1,1,3,0,3,0,0,0,1)

(1,1,1,0,0,0,3,0,3,1)

- (0,0,3,0,1,1,0,0,3,1)

(3,2,1,2,2,3,3,3,2,1)
(2,3,2,3,0,3,0,3,2,1)
(3,1,1,0,3,1,0,3,1,1)
(3,1,3,1,0,0,3,1,3,1)

(2,1,1,1,2,0,2,0,2,1)
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TEEMAL was now directed to locate a committee machine
CK L with K =3 and L the veto logic. It discovered
’
the following weight vectors which serve as a complete

solution to the problem.

W, = (.0912, .5826, .3854, .0126, .4216, .5325,
-0.0762, .1672, -0.0926, -2.6298)

W, = (-0.2417, .2321, .5447, -0.2471, -0.3392,
.0323, .1207, -0.6274, .0754, 1,8668)

Wy, = (-0.5446, .2322, .2269, -0.4616, -0.0196,

00851’ —001846’ _005823’ —0.0642’ 2.7856).

Finally using the five variables selected by the algorithm
of Michalski, (shown in figure 9 of [12]) namely the
variables 3, 4, 5, 6, 7, of the vectors described above,
TEEMAL located another machine of the same size and logic.

Its weight vectors are as follows,

W, = (.3484, .5156, .3684, .5360, .4357, -2.5125)
W, = (.3559, -0.4058, .1056, .1210, .8264, .1162)
W = (—001561’ —001754’ 01243’ 02166’ —0.9394’ 200255).
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APPENDICES

These appendices contain the computer output consisting
of the data and weight vectors used in the learning experi-
ments described in this paper. All the samples are written
as row vectors with binary components. The weight vectors

are written as row vectors with real components.
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