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[1] Numerical solutions to the nonlinear Boussinesq equation, applied to a steeply sloping
aquifer and assuming uniform hydraulic conductivity, indicate that late-time recession
discharge decreases nearly linearly in time. When recession discharge is characterized by
2dQ/dt 5 aQb, this is equivalent to constant dQ/dt or b 5 0. This result suggests that a
previously reported exponential decrease with time (b 5 1) of modeled recession discharge
from a similar sloping aquifer represented by the same equation appears to be an artifact of
the numerical solution scheme and its interpretation. Because the linearly decreasing
recession discharge (b 5 0) is not known from field studies, these findings challenge the
application of a nonlinear Boussinesq framework assuming uniform conductivity and
geometric similarity to infer hydraulic properties of sloping aquifers from observations of
streamflow. This finding also questions the validity of the physical interpretation of the
exponential decline in late time resulting from the commonly used linearized form of the
Boussinesq equation, opposed to the full nonlinear equation, when applied under these
conditions. For this reason, application of the linearized equation to infer hydraulic
properties of sloping aquifers is also challenged, even if the observed recession is consistent
with that of the linearized Boussinesq equation.
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1. Introduction

[2] Following the pioneering recession flow analysis
work by Brutsaert and Nieber [1977], Troch et al. [1993],
and Szilagyi et al. [1998], attempts have been made to use
analytical solutions to (linearizations of) the nonlinear
Boussinesq equation to infer hydraulic properties of sloping
aquifers, e.g., while using the linearized Boussinesq equa-
tion [Huyck et al., 2005], focusing on the rising limb of a
hydrograph [Pauwels and Troch, 2010], or testing a hill-
slope subsurface flow similarity number [Lyon and Troch,
2007]. These attempts make use of the method of hydro-
graph analysis, first introduced by Brutsaert and Nieber
[1977], when considering recession flow from horizontal
aquifers. Brutsaert and Nieber [1977] showed how under
certain initial and boundary conditions, the recession dis-
charge Q(t) from a horizontal Boussinesq aquifer can take
the form

2
dQ

dt
5aQb (1)

where a is a function of the aquifer properties and b is a
constant. For instance, for flat-lying aquifers, characterized
by spatially and vertically uniform saturated hydraulic con-
ductivity k and drainable porosity (or specific yield) f, it
can be shown analytically [Brutsaert and Nieber, 1977]
that after initial effects are dissipated (‘‘late time’’)

a54:8038
k1=2Ld

fA3=2
(2a)

b53=2 (2b)

with A catchment area and Ld/A drainage density.
[3] The direct use of equation (2a) to infer, for instance,

k from recession data and known A, Ld, and f, requires that
b 5 3/2 and that the assumptions underlying the nonlinear
Boussinesq equation hold. Any b 6¼ 3/2 thus raises chal-
lenges for the use of equation (2a) to infer k for flat-lying
aquifers. Indeed, in applications of equation (2a), Brutsaert
and Nieber [1977] and Troch et al. [1993] showed that their
discharge data suggested b 5 3/2 during late time. Eng and
Brutsaert [1999] and Brutsaert and Lopez [1998] found
b 5 1, and consequently replaced equation (2a) with a simi-
lar approach based on the linearized Boussinesq equation,
that does correspond to b 5 1. Using an alternative set of
assumptions, especially a drawdown that is small relative
to saturated thickness, van de Giesen et al. [2005] demon-
strated that solutions to aquifer recession based on the Lap-
lace equation leads to b 5 1 during late time as well.

[4] It bears noting that the use of a similar approach to
infer aquifer properties for sloping hillslopes or catchments
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hinges on the correspondence between observed values of
b, and the valid value of b associated with the version of
the Boussinesq equation and the underlying assumptions
made.

[5] The nonlinear Boussinesq equation for a sloping
aquifer with gradient a is derived by combining the Darcy
equation

q52kh�
@h�

@x�
cos a1sin a

� �
(3)

with the continuity equation

f
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yielding [Brutsaert, 1994]
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where x* is a coordinate along the hillslope (x* 5 0 at the
foot), h* 5 h(x*, t*) is the thickness of the water layer per-
pendicular to the bedrock, and N is the recharge rate.

[6] A generalized variant of equation (5) is due to Rupp
and Selker [2006] who relaxed the assumption of uniform
conductivity, instead allowing conductivity k to vary with
depth as a power-law:
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where kD is the saturated hydraulic conductivity at distance
D perpendicular above the bedrock. The constant n is the
exponent that describes the rate of change in saturated
hydraulic conductivity k with distance perpendicular to the
aquifer base. When n 5 0 (i.e., vertical homogeneity in k),
equation (6) reduces to equation (5).

[7] Application of the method of Brutsaert and Nieber
[1977], i.e., linking recession parameters a and b to aquifer
properties, to sloping aquifers requires analytical solutions
to equation (5) or (6). Daly and Porporato [2004] have pro-
vided the only known exact solutions, which are for special
cases of flow in a homogeneous aquifer that is infinite in
both the up and downslope directions. For more practical
cases in finite aquifers, analytical solutions have mainly
been arrived at by making the kinematic-wave approxima-
tion [e.g., Henderson and Wooding, 1964; Beven, 1981;
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Figure 1. (a) Nondimensional hydrographs and (b) evolution of recession parameter b, for different
spatial difference schemes associated with the diffusion term of the Boussinesq equation (‘‘D-scheme’’)
and the advection term (‘‘U-scheme’’), and optional drying front tracking, using a Steady-State I.C. Note
that individual curves are offset by 0.005 (discharge) or 0.1 (b) to distinguish them. Gray horizontal lines
indicate b 5 0, 1, 3/2.
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Harman and Sivapalan, 2009a] or by linearizing the Bous-
sinesq equation (see review in Rupp and Selker [2006]).

[8] Huyck et al. [2005] showed how an analytical solu-
tion to the linearized form of equation (5) leads to dis-
charge of the form

2
dQ

dt
� aQ (7)

after sufficient time has elapsed following the cessation of
recharge to the aquifer, suggesting that b � 1. Brutsaert
[1994, p. 2762], however, had warned of the (potential)
lack of validity of the late-time result arising from the lin-
earization of equation (5), when applied to steep shallow
aquifers. This is because the linearized equation, unlike the
nonlinear equation, does not permit the lowering water
table, or drying front, to arrive at the impermeable base at
the upslope aquifer boundary and then progress downslope
along the aquifer base [Stagnitti et al., 2004].

[9] Given the above limitations of linearization, Rupp
and Selker [2006] made a closer examination of the late-
time discharge behavior of equation (6) through numerical
solutions of the nonlinear equation. They also arrived at the
result given by equation (7) for n 5 0, though their defini-
tion of the parameter a was different from Huyck et al.

[2005]. Furthermore, Rupp and Selker [2006] concluded
that the late-time discharge could be approximated as

2
dQ

dt
� aQ

2n11
n11 (8)

for n� 0, which also suggest that b 5 1 for the case of a
homogeneous aquifer (n 5 0). This result of b 5 1 is in con-
tradiction to the drainage behavior of steep hillslopes if one
assumes that kinematic-wave assumptions holds. For steep
hillslopes, the term @h/@x in equation (3) becomes small
with respect to sin a, such that q � kh sin a. It has been
shown that under these circumstances (the discharge pre-
dicted by) the kinematic-wave equation is a good approxi-
mation of (the discharge predicted by) the Boussinesq
equation [Henderson and Wooding, 1964; Beven, 1981].

[10] For constant k (n 5 0), the kinematic recession
behavior of such a hillslope will depend on initial conditions,
where two extreme cases can be distinguished [Rupp and
Selker, 2006]. First, prolonged rainfall on initial dry soil
leads to the formation of a wedge-shaped steady state geom-
etry of the saturated zone. For each location along the hill-
slope of length L, q 5 N(L2x), such that h 5 N(L2x)/(k sin
a). During recession, this wedge travels downhill, with con-
stant velocity such that h(t) is linearly decreasing, and dQ/dt
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Figure 2. (a) Nondimensional hydrographs and (b) evolution of recession parameter b, for two types
of initial conditions: Steady state and Saturation. b/100 is plotted in dashed lines to show the full range
of b during recession.
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a constant, such that b 5 0. Second, after a short pulse-like
rainstorm an initial dry soil becomes saturated to some depth
h. During the poststorm recession period, this rectangular
‘‘saturated slab’’ travels downhill. Because h is constant, q is
constant, and therefore dQ/dt 5 0. Solving equation (1) for a
and b yields a 5 0 with b left undetermined. Note that Rupp
and Selker [2006] in their Figure 3 mistakenly list b 5 0
instead of b 5 undefined for the uniform saturation case.

[11] A similar result (q decreasing linearly with time, the
equivalent of b 5 0) for the kinematic-wave approximation
of the Boussinesq equation applied to the case of steep hill-
slopes with shallow soils was reached by [Harman and
Sivapalan, 2009a], while investigating storage-discharge
relationships derived from the Boussinesq equation for a
range of forcing and boundary conditions. However, as
shown above, the value of b that arises from the kinematic-
wave approximation ‘‘long’’ after the cessation of recharge
is dependent upon the profile of the water table at the onset
of recession, which is in turn dependent on the history of
recharge events. Whether the kinematic wave approxima-
tion is an accurate representation of the behavior of the
nonlinear Boussinesq equation, in terms of dQ/dt versus Q,
has not, to our knowledge, been demonstrated.

[12] The aim of this paper is to investigate the behavior
of b in numerical solutions of the nonlinear Boussinesq
equation, to evaluate to what extent the results of b 5 1 in

the literature are due to the physics of the system (in case
of b derived from observations), or caused by numerical
artifacts (in case of b derived from numerical simulations).
These results are relevant for any interpretation of field
observed a and b for steep hillslopes and catchments, anal-
ogous to the application of equation (2a) to flat-lying aqui-
fers. These results are also relevant for our understanding
of the numerical aspects of hydrological models [Kavetski
et al., 2003; Clark and Kavetski, 2010; Kavetski and
Clark, 2010].

2. Methods

[13] Several schemes to nondimensionalize equation (5)
are proposed, which differ mainly in how the vertical
dimension h is scaled. Stagnitti et al. [2004] scale h by an
initial saturated thickness D. This approach is especially
useful in combination with the linearized Boussinesq equa-
tion, because the linearization process involves replacing a
dynamic water table height h with a constant water table
height / D. For the nonlinear Boussinesq equation, this
advantage does not hold, and might even turn into a disad-
vantage if a steady state initial condition is used, and D
loses it original meaning.

[14] The nondimensionalization scheme proposed by
Harman and Sivapalan [2009a] circumvents this problem
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Figure 3. Nondimensional water tables during recession for two types of initial conditions: (a) Steady
state and (b) Saturation.
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by scaling h by the hillslope height L tan a. Although this
removes the need for a potentially arbitrarily chosen D, it
prevents the application to flat aquifers, where L tan a 5 0.

[15] Because we want to illustrate the solutions ranging
from flat aquifers to steep slopes, we follow Stagnitti et al.
[2004] and nondimensionalize equation (5) by defining the
dimensionless distance x, dimensionless water table height
h, and dimensionless time t, defined as

x5x�=L; h5h�=D; t5
Dkcos a

fL2
t� (9)

[16] Combining equations (9) with (5) yields the nondi-
mensional Boussinesq equation
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D
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L2N

D2k cos a
(11)

[17] Equation (10) can be solved numerically by finite
difference models in various ways. In order to ensure that
our result does not depend on a given solution technique,
multiple model variants were tested.

2.1. Diffusion Term

[18] We distinguish between two types of finite differenc-
ing of the diffusion termrðhrhÞ in equation (10). In Type I
the origin of this diffusion term, the gradient of the flux, rq,
is preserved within the finite-differencing scheme:

@

@x
h
@h

@x

� �

� 1

Dx

hr1hi

2

� �
hr2hi

Dx

� �
2

hi1hl

2

� �
hi2hl

Dx

� �� �

� h2
r 1h2

l 22h2
i

2ðDxÞ2

(12)

with hl5hj
i21 (left, downwind), and hr5hj

i11 (right,
upwind). With i the spatial node and j the current temporal
step. This approach is followed by, for example, Stagnitti
et al. [2004]. Alternatively, in Type II the diffusion term is
expanded completely by applying the product rule as
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[19] This approach was applied by Troch et al. [2003]
while developing the hillslope storage Boussinesq model.

2.2. Spatial Derivatives

[20] Spatial derivatives such as @h/@x can be discretized
by using an upwind scheme (applied by, e.g., Rupp and
Selker [2006]), a downwind scheme (apparently applied by

Stagnitti et al. [2004]), or a centered scheme (applied by,
e.g., Beven [1981]; Upadhyaya and Chauhan [2001]). For
advection-dominated problems, such as equation (5)
applied to steep hillslopes, upwind schemes are used more
often than centered or downwind schemes because of their
greater stability [Slingerland and Kump, 2011]. For this
reason downwind schemes were not used in this study,
because they suffer the most from stability problems.

2.3. Temporal Derivatives

[21] A fully explicit Type I upwind scheme is derived as

Hi5hi1
Dt

2 Dxð Þ2
h2

l 1h2
r 22h2

i

� �
1

UDt

Dx
hr2hið Þ1NDt (14)

where Hi5hj11
i . Fully implicit or Crank-Nicolson schemes

are obtained by rewriting equation (14) as a coupled set of
equations

Hi5hi1
Dt

2 Dxð Þ2
H2

l 1H2
r 22H2

i

� �
1

UDt

Dx
Hr2Hið Þ1NDt (15)

and solving these simultaneously for all Hi. In order to
solve the corresponding tridiagonal set of equations, the
three quadratic H terms in equation (15) have to be linear-
ized. We applied the suggestion by Chapman [2005] (their
equation (14)) to use H5h1Dh5h1ðH2hÞ such that

H25h212hðH2hÞ1ðH2hÞ2

� h212hðH2hÞ

� 2Hh2h2

(16)

thus ignoring a (very small) (Dh)2 term.
[22] Centered and Type II schemes are derived in a simi-

lar fashion.

2.4. Boundary Conditions

[23] We use a fixed boundary condition (B.C.) h 5 0 at the
foot of the hillslope (x 5 0), and apply a no-flux condition at
x 5 L. Finite differencing the Darcy equation (3) and solving
for hr results in hr5hl22DxðL=DÞtan a for a centered
scheme and hr5hi2DxðL=DÞtan a for an upwind scheme.

[24] Associated with the upslope boundary is the devel-
opment of a drying front, which can be explicitly tracked
within the model [Stagnitti et al., 2004]. Once a given
hf� 0, all hi�f are optionally fixed at h 5 0.

2.5. Initial Conditions

[25] Two types of initial conditions (I.C.) were used:
‘‘Steady State’’ and ‘‘Saturation.’’ For the ‘‘Steady State’’
I.C., the model starts with an empty aquifer and is sub-
jected to steady recharge N. Once steady state is effectively
achieved (@h/@t 5 0 and q 5 N) recharge is stopped and the
subsequent recession hydrograph is recorded. For the ‘‘Sat-
uration’’ I.C., h 5 1 is set for all x> 0, after which reces-
sion starts.

3. Results

[26] Various combinations of above numerical schemes
and conditions were run, using the following default
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parameters : L 5 100 m; a 5 20%; D 5 1 m; N 5 10 mm/
d; and k 5 5 m/d from which the dimensionless parameters
U 5 20.0 and S 5 20.4 were computed. The model was run
with automatic time step control, using the smaller of Dt �
Dx2=2 (stability criterion of the diffusion component) and
Dt � Dx=U (Courant stability criterion of the advection
component) [Slingerland and Kump, 2011]. Time steps
were decreased by an extra factor of 5 or higher to remove
fluctuations and further constrain truncation errors. Reces-
sion discharge Q was computed from bookkeeping the
water balance, because direct application of equation (3) is
not possible due to the h 5 0 B.C. Instead of fitting the
power-law equation (1) to the whole Q, 2dQ/dt output data
cloud, we applied a more dynamic approach and computed
a and b for every three successive Q, 2dQ/dt output data
points, resulting in the temporal evolution of a and b during
the recession. Note that since evaporation and instream
flows are not included in our model, the suggestion by
Brutsaert and Nieber [1977] to use the lower envelope of
the Q, 2dQ/dt data to correct for evaporation effects
(resulting in higher 2dQ/dt during recession), does not
apply.

[27] The results of various spatial difference schemes
(upwind versus centered, Type I versus Type II), in combi-
nation with optional explicit tracking of the drying front,
are shown in Figure 1. It can be seen that the recession
hydrograph is very slightly concave to linear, until it appa-

rently empties. Note that just before Q 5 0 the hydrographs
makes a gentle bend, i.e., the transition from ‘‘drainage’’ to
‘‘empty’’ is not sharp. This general behavior is reflected in
the evolution of recession parameter b from equation (1). It
is clearly visible that during early recession b starts at high
values (cut off at b 5 3 in Figures 1b, 2b, etc.) after which
b asymptotically approaches b 5 0. Around the time the
aquifer is nearly emptied, and q approaches 0, b rises to
b 5 1. Based on this general behavior, we distinguish peri-
ods: early recession (0< t< 0.01), late recession
(0.01< t< 0.05), and postrecession (t> 0.05). Note that
the timing is dependent on advection parameter U. This
behavior is consistent for all model variants plotted. Note
that the centered Type II variants display slightly unstable
b-behavior (both for Runge-Kutta and for Crank-Nicolson
numerical methods) although the general pattern is still
consistent with the other variants, except for the postreces-
sion values of b � 1.5 (again, both for Runge-Kutta and for
Crank-Nicolson numerical methods).

[28] Because of the similar results for centered and
upwind schemes, the general preference for upwind schemes
for advection-dominated problems [Slingerland and Kump,
2011], and the higher stability of the Type I scheme, subse-
quent simulations are carried out with the upwind Type I
scheme without tracking of the drainage front.

[29] Fully explicit, fully implicit, and Crank-Nicolson
schemes all gave identical results (not shown).
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Figure 4. (a) Nondimensional hydrographs and (b) evolution of recession parameter b, for a range of
slope gradient (0–30%), using a Steady state I.C.
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[30] Figure 2 shows the results for a comparison between
Steady State and Saturation initial conditions. The reces-
sion resulting from initial saturation is more complex, with
b first (highly) positive, then (highly) negative after which
the behavior becomes similar to that of the Steady State
I.C. recession: a period where b � 0 to finally a period
where b � 1 (postrecession).

[31] The behavior of b can be understood if one consid-
ers the hydrograph, and the reasoning put forward in the
discussion of kinematic-wave hillslopes in the Introduction
section. For clarity, water tables for this simulation are
shown in Figure 3. It can be clearly seen that for the Steady
State I.C., the saturated zone takes the general shape of a
wedge (except for the curvature toward h 5 0 at x 5 0 due
to the B.C.) that slides down the hillslope creating b � 0.
The Saturation I.C. starts of with some rapid drainage of
the near-surface areas near x 5 0 and x 5 1 after which a
(rounded) rectangular slab remains that first slides downhill
(resulting in approximately constant q and b fluctuating
around zero) which slowly transforms into a wedge similar
as in the Steady State I.C. case (resulting in similar b evolu-
tion from this point onward).

[32] Figure 4 shows the response of the Boussinesq equa-
tion for a range of slope gradients and the Steady State I.C.
It can be clearly seen that the evolution of b for steep
hillslopes (20–30%) is completely different than that for

flat-lying aquifers. For the latter, we find the classical value
of b 5 3/2 [Brutsaert and Nieber, 1977]. The steeper the
hillslope, the more b approaches 0. This is consistent with
the notion that for steep hillslopes the kinematic terms
dominate, such that the kinematic-wave assumptions
increasingly are being met, which predict b 5 0 (as outlined
in the Introduction).

[33] The steepness of the transition from the late-
recession b � 0 to the postrecession b� 1 regime depends
on the number of nodes used in the finite-differencing
scheme. In Figure 5, the results are shown for number of
nodes ranging from 100 to 5000 nodes. The more nodes,
the steeper the transition. We interpret these results as indi-
cating the inability of numerical approximations of the
Boussinesq equation to make a sharp transition from
‘‘slightly wet’’ to ‘‘completely dry.’’ Extrapolating these
results it may be surmised that an infinite number of nodes
would lead to either an instantaneous transition from b 5 0
to b� 1, or termination of discharge from the model
because the storage is expended. Physical realism dictates
that termination of discharge would be the correct
extrapolation.

[34] Figure 6 shows that the b 5 0 behavior of the model
during normal recession is insensitive for variant parameter
settings. Parameters L and D directly affect the nondimen-
sional advection term U of equation (10), which varies over
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Figure 5. (a) Nondimensional hydrographs and (b) evolution of recession parameter b for a range of
number of nodes (100–2000), using a Steady state I.C.
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a range 10–40, and cause a response in hydrograph timing,
while L, k, D, and N affect source term S and cause a
response in initial steady state discharge, as expected.

4. Discussion and Conclusions

[35] It is shown that for the Boussinesq equation applied
to steep aquifers with constant k, the recession behavior is
dominated by values of b approaching b 5 0. This result is
robust with respect to variety of numerical schemes. The
‘‘late time recession’’ b 5 1 reported earlier [Rupp and
Selker, 2006] has to be considered an artifact of the inabil-
ity of numerical approximations to make the transition
from drainage to complete dryness. In the model output,
this transition is visible as a gentle bend in Q(t) diagrams
when Q approaches Q 5 0. Similar bends are visible in
hydrographs computed with numerical implementations of
the Boussinesq equation as reported in the literature, e.g.,
see [Harman and Sivapalan, 2009a, Figure 2b] or [Basha
and Maalouf, 2005, Figure 3]. Because Q 5 0 is only asym-
potically reached, this bend, while small in terms of Dt,
becomes large in terms of D log Q when plotted in the log
2dQ/dt versus log Q diagram traditionally used to infer a
and b, thus could easily give rise to the misinterpretation of
b 5 1 (though Harman and Sivapalan [2009a] and Basha
and Maalouf [2005] make no mention of this artifact and it
apparently was not a factor in their analyses).

[36] It is suggested that this postrecession b� 1 does not
have physical meaning in a sloping aquifer, both because it
is not supported by groundwater flow theory as represented
by the Boussinesq equation, and because this change from
b 5 0 to b 5 1 due to saturated flow will not occur in actual
porous media. When natural aquifers are subjected to
extensive drainage to the point that saturated zones disap-
pear totally, other (capillary) forces that are not included in
the assumptions underlying the Boussinesq equation will
dominate the hydrological processes.

[37] It is of interest to compare our observations with the
exact analytical solution of Daly and Porporato [2004] for
a spreading mound of water initially concentrated at a point
x 5 x0 in an infinite aquifer. Considering the time following
passage of the mound’s peak at a point x downslope from
x0, it can be shown that the influence of the initial condi-
tions wanes over time and the time rate of change in dis-
charge at x approaches a constant value that is solely a
function of the static aquifer properties:

2
dQ

dt
� k2

9f
tan a sin 2a (17)

which is to say that b approaches a value of 0. Thus, at least
free from any influencing up- or downslope boundary con-
dition, the nonlinear Boussinesq equation does not generate
an exponentially decreasing late-time recession curve
where slope is a significant factor.
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Figure 6. (a) Nondimensional hydrographs and (b) evolution of recession parameter b for doubled
(with respect to the default run) values of parameters L, k, D, and N, using a Steady state I.C.
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[38] The value of b � 0 found here is consistent with
multiple lines of evidence: the numerical results shown
here, the analogy with a kinematic-wave wedge sliding
down a hillslope, and the analytical results for infinite-
length hillslopes Daly and Porporato [2004].

[39] One possible explanation why numerical approxi-
mations to the nonlinear Boussinesq equation display b 5 1
during postrecession is due to properties of hydrographs
than can be derived from the power-law equation (1). Writ-
ing this as

2
1

aQb
dQ5dt (18)

and integrating

2
1

a

ð
Q2bdQ5

ð
dt (19)

one yields

QðtÞ5
c1e2at for b51

ðb21Þðat1c2Þ½ �
1

12b for b 6¼ 1

8><
>: (20)

with c1 and c2 appropriate constants of integration. The
total volume water water draining from a hillslope aquifer,
V is obtained by further integration of equation (20). Three
cases can be distinguished: For b< 1, equation (20) only
has real solutions for t � 2c2=a. When t52c2=a, Q 5 0,
and the entire reservoir is empty, after draining a finite vol-
ume V5

Ð2c2=a
0 QðtÞdt. For 1� b< 2, the integral

V5
Ð1

0 QðtÞdt exists, meaning that a finite volume of water
V drains from a catchment during an infinite recession. For
b� 2 this integral has an infinite solution which implies
that an infinite volume of water drains from this hillslope
during an infinite recession (cf. TOPMODEL [Beven and
Kirkby, 1979], where the exponential k-profile results in
b 5 2 and infinite storage, which is solved by using storage
deficit rather than storage as state variable). This implies
that numerical models that are unable to drain completely
(i.e., in finite time) are not consistent with b< 1 behavior,
suggesting that such models by necessity must adopt b� 1
behavior eventually, which is exactly what we see in all
our model implementations.

[40] The implication of these results is that the nonlinear
Boussinesq equation in combination with the assumption of
constant k is not able to represent late-time behavior for
many steeply sloping experimental watersheds and field
studies, where b is commonly found to be in the range 1–2
[Wittenberg, 1999; Lyon and Troch, 2007; Kirchner,
2009]. This implies that when inferring catchment-scale
aquifer properties using the Brutsaert and Nieber [1977]
method, geometric similarity of a representative, unit-
width, homogeneous, and sloping Boussinesq aquifer is an
improper assumption; real catchments will be composed of
numerous hillslopes and valley bottoms of varying shapes,
sizes, soils, and aquifer materials. It is likely that the
observed values of b reflect vadose zone influences [Chap-
man, 2003; Szilagyi, 2004; Rupp et al., 2009], evapotrans-
piration [Brutsaert, 1982], complex aquifer geometry

[Troch et al., 2003], active stream network morphology
[Biswal and Marani, 2010], and spatial heterogeneity in
catchment properties [Harman and Sivapalan, 2009b; Har-
man et al., 2009]. In particular, heterogeneity would cause
some water to be retained longer in the catchment.

[41] One other implication is that the exponential decline
(b 5 1) in late time resulting from the commonly used line-
arized form of the Boussinesq equation is also an artifact,
although a product of linearization, because this prevents
the formation of a drying front [Stagnitti et al., 2004]. The
absence of a drying front leads to infinite recession and
thus b� 1, as demonstrated above. One consequence is that
the use of this linearized solution at late time to accurately
infer hydraulic properties of sloping aquifers from observa-
tions of streamflow becomes more problematic. This is
because the linearized Boussinesq equation is not able to
adequately approximate the recession behavior, in terms of
b, as simulated by the nonlinear Boussinesq equation,
which is the reference for the linearized equation. This con-
clusion is independent of the fact that values for b 5 1 as
derived from streamflow observations is consistent with
b 5 1 resulting from the linearized Boussinesq equation.

[42] It is suggested that future applications of the Boussi-
nesq equation to real-world data consider alternative
assumptions regarding hydraulic architecture, such as those
that lead to a decrease in aquifer conductivity with decreas-
ing storage, e.g., the exponential decreasing k profile of
TOPMODEL [Beven and Kirkby, 1979] (but see Kavetski
et al. [2003] and Clark and Kavetski [2010] for numerical
issues here), resulting in b 5 2 or the power-law k profiles
of Rupp and Selker [2006], resulting in 1< b< 2. This
would be a worthwhile effort, because verification of the
numerical solution to equation (6) for n> 0, suggest that, if
the recession signal is not dominated by above mentioned
factors, equation (1) could be used to infer hydraulic prop-
erties of aquifers that have power-law-like saturated
hydraulic conductivity profiles, enabling the use of large-
scale conceptual models that do have physical meaning.
Careful consideration, however, still needs to be made of
the scale at which equation (1) is applied, as equation (6) is
strictly for a single hillslope.

[43] Finally, we stress that these results do not invalidate
the general utility of the sloping Boussinesq equation, but
rather some of the assumptions used in applications.
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