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tion, carbon flux, and vegetative gas emissions. The seasonal variation of ecologi-
cal systems are both affected by and have effects upon climatic factors. A quantita-
tive estimate of the seasonal variation of vegetation is required to characterize eco-
logical systems and their interaction with climate. Monitoring the spaliotemporal
variation of foliar biomass density (FBD) over one year will provide a quantitative
estimate of the annual cycle and regional variation of photosynthetic activity. FBD
is a quantitative measure of leafy material per unit of area produced by photosyn-
thetically active vegetation. 'This seasonal variation in FBD is an important param-
eter for global and other large scale investigations of ecological, hydrological, and
biogeochemical systems which require data and expertise from a variety of sources
and disciplines. Therefore, FBD is potentially of great utility for ecologists,

hydrologists, climatologists, and atmospheric scientists.

Recent regional scale investigations of ecological systems concluded that the
repetitive coverage and synoptic view of remotely sensed measurements provide
data to monitor the seasonal variation of biomass. A method to estimate the sea-
sonal variation of FBD at global scales has not been developed. The objective of

this research is to develop a methodology that could be used to estimate the



seasonal variation of FBD for the entire terrestrial biosphere. By coupling global
satellite data, measured field data, and a vegetation classification, a model was

developed to estimate the global spatiotemporal variation of FBD.

Comparisons between literature estimates of FBD and estimated FBD from
this model were made as a means of validation. A more specific comparison was
conducted between grasslands based on work conducted in the Senegalese Sahel
region in Africa. Finally, a sensitivity analysis was performed to characterize the
potential propagation of error associated with the literature FBD estimates used to

drive this model.
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A GLOBAL SCALE ANALYSIS OF THE SPATIOTEMPORAL
DISTRIBUTION OF FOLIAR BIOMASS FOR 1988

CHAPTER 1
Introduction

There are many factors, both of natural and human origin, that determine the
climate of the Earth. The driving energy for weather and climate comes from the
Sun. Of the solar radiation that the Earth intercepts, about one third is reflected
and the rest is absorbed by the components of the climate system (e.g. atmosphere,
ocean, ice, land, and biota). As energy is absorbed from solar radiation it is bal-
anced by outgoing radiation from the Earth and atmosphere. The temperature of

the Earth-atmosphere system results from this balance (Gates, 1980).

There are several natural factors which can change the balance between the
energy absorbed and emitted by the Earth. One of the most important important
factors is the greenhouse effect. Simply, shortwave radiation can pass through a
clear atmosphere relatively unimpeded, but the long wave terrestrial radiation
emitted by the warm surface of the Earth is partially absorbed and then re-emitted
by a number of trace gases in the cooler atmosphere above. However, if this bal-
ance is disturbed then warming or cooling will occur. The main concern over glo-
bal climate change today is the quantity of water vapor, clouds, and trace gases in
the atmosphere and the affect these parameters have upon the mean temperature of

the Earth (Houghton ez al., 1991).

The key greenhouse gases produced by natural and human activities are CO»,
CHy4, N2O, water vapor and ozone. All of these trace gases are determined to
some degree by photosynthetically active foliar biomass, owing their quantities and
locations of sources and sinks in part to the seasonal variation of terrestrial biota.

Water vapor has the largest greenhouse effect but, on a global scale, is not affected



by human sources and sinks. The seasonal variation of terrestrial biota does, how-
ever, play a significant role in the regulation of the global water balance. Ozone
affects incoming solar radiation, but quantifying the climatic effect of ozone
change is not yet accurately defined. It is known, however, that biogenic gas emis-
sions, such as isoprene, can affect the concentrations of tropospheric ozone. The
sources of CHy and N, O are the least well known but can be related to the burning
and decay of biomass. While the anthropogenic sources and magnitudes of CO,
are known, the sources and sinks from the ocean and terrestrial biota are not well
known, but it is recognized that the processes of photosynthesis and respiration fix
and release carbon. In summary, the seasonal variation of photosynthetically
active biota is an important parameter of the global climate system (Rosenzweig

and Dickinson, 1986, and Berger ez al., 1989).

The interaction between vegetation and climate are affected in both the short
and long term. Biophysical processes such as photosynthesis and respiration are
dependent on climatic factors and CO; concentration in the short term. Photosyn-
thesis captures atmospheric CO;, water, and solar energy and stores them in
organic compounds which are then used for subsequent plant growth, animal
growth, and growth of microbes in the soil. All of these organisms release CO, via
respiration into the atmosphere. Most land plants have a system of photosynthesis
which will respond positively to increased atmospheric CO, but the response
varies with species. In the longer term, due to the species response, climate and
CO; are among the factors which control ecosystem structure (i.e. species compo-
sition, either directly by increasing mortality in poorly adapted species, or

indirectly by mediating the competition between species) (Gates, 1980).

Because species respond differently to climatic change, some will increase in

abundance and/or range while others will decrease. Ecosystems will therefore



change in structure and composition. For example, some species may be displaced
to higher latitudes and altitudes, and may be more prone to local or global extinc-
tion whereas other species may thrive. In other words, ecosystem structure and
species distribution are particularly sensitive to the rate of change of climate. As a
result, the rate of temperature change can be deduced from the paleoclimatalogical
records. These paleoclimatalogical records account for the photosynthetically

active seasonal variation of global ecosystems (Rosenzweig and Dickinson, 1986).

A method is needed to characterize present distributions and seasonal varia-
tion of photosynthetically active vegetation because of the importance of account-
ing for this seasonal variation in order to achieve the best possible estimates for the
vegetative component of the global climate system. Field sampling of vegetation is
one way to estimate distribution and seasonal variation but problems of spatial and
temporal sampling are impossible to overcome in the context of global ecosystems.
However, by taking advantage of the same solar radiation characteristics that
determine the temperature of the Earth-atmosphere system, it is possible to monitor
the terrestrial biosphere with satellite instruments that record data in specific spec-
tral windows to retrieve information relevant to the seasonal variation of photosyn-

thetic processes of ecosystems (Rosenzweig and Dickinson, 1986).

Studies which use satellite data to quantitatively characterize the spatial and
temporal variation for the entire terrestrial biosphere have not yet been conducted.
Nevertheless, there has been a great deal of research performed on the
quantification of foliar biomass from watershed to regional scales. These studies,
in general, conclude that: 1) satellite imagery can be qualitatively and quantita-
tively related to foliar biomass, 2) large scale analysis of foliar biomass can be suc-
cessfully conducted over large regions through time, 3) great care must be taken to

normalize and reduce error within the satellite imagery in order that the data



remain reliable through time.

The objective of this study is to develop a methodology that could be used to
model the quantitative seasonal variation of foliar biomass for the entire terrestrial
biosphere. Coupling the satellite imagery with measured field data and a vegeta-
tion ecosystem classification provides the tools for developing a model to estimate
the seasonal distribution of foliar biomass. It is hypothesized that: 1) foliar
biomass density (FBD - a quantitative measure of the amount of foliar biomass per
unit area) can be mathematically estimated with remotely sensed data, 2) these esti-
mates will provide the spatiotemporal distribution of FBD at a monthly time step
for one year, 3) the results will provide a realistic characterization of the seasonal
varations of photosynthetically active foliar biomass for present ecosytems. These
results are compared to other literature based estimates and another model of grass-
lands in order to test the validity of the model. Finally, a sensitivity analysis is per-
formed to characterize the propagation of potential error associated with the foliar

biomass estimates used to drive this model.



CHAPTER 2
Background

The research described in this document presents a model that characterizes
the seasonal variation of FBD for the entire terrestrial biosphere with a one year
time series of global satellite data. The methodology developed for this work was
an extension of previous research that has been conducted to understand the physi-
cal and physiological basis of spectral response as a function of foliar biomass.
The following discussion traces the establishment of both qualitative and quantita-

tive use of these spectral windows for remote sensing of foliar biomass.
Spectral Windows for Vegetative Remote Sensing

Two portions of the electromagnetic spectrum, the red (0.6 - 0.7 pm) and the
near-infrared (NIR, 0.7 - 1.5 um), are known to be highly sensitive to foliar
biomass. The design of remote sensing instruments used to collect data relevant to
vegetation using portions of these spectral windows relies upon the many studies
conducted to analyze spectral response as a function of photosynthetically active

foliar biomass.

Studies concerning vegetation in the 1960’s and 1970’s established the fact
that different response characteristics of the red and NIR spectral windows are
related to photosynthetically active foliar biomass. In one of the earlier studies,
Gates et al. (1965) found that different plants display different spectral properties; a
phenomenon upon which remote sensing of vegetation is based. Knipling (1970)
noticed the spectral differences of plants in the visible (0.4 - 0.7 pm) and the NIR
(0.7 - 1.5 um) and discussed the physical and physiological reasons for the
different spectral responses of plants in these two portions of the electromagnetic
spectrum. The spectral reflectance and transmittance properties of leaves was

researched by Woolley (1971), leading to a better understanding of light interaction



and instrument response. Tucker (1976) analyzed the 0.50 - 1.00 um portion of the
spectrum to report on the asymptotic nature of grass reflectance as a function of
biomass, helping to define appropriate spectral windows for remote sensing pur-
poses. Narrowing the spectral window to 0.750-0.800 pm, Tucker (1977) was able
to distinguish three quantitative classes of grass biomass. The spectral contribution
of post-senescent grass to photosynthetically active grass was conducted by Tucker
(1978), adding further to the foundation of spectral response as a function of pho-
tosynthetically active vegetation. Linear combinations of red and NIR spectral
bands were shown to be highly sensitive to photosynthetically active biomass by
Tucker (1979), who concluded that these combinations could be used to monitor
biomass. Tucker (1979) reviewed remote sensing and other non-destructive tech-
niques and concluded that satellite spectral methods work well for monitoring

foliar biomass and allow for synoptic coverage of large areas.
Spectral Band Ratioing

The spectral windows (bands) recorded for remotely sensed imagery are
analyzed by using digital imagery processing techniques. For an overview of digi-
tal image processing see Jensen 1986. One of the techniques commonly used in
digital image analysis is band ratioing where, based on covariance among the spec-
tral bands, the analyst may wish to ratio these bands together in some mathematical
function. Rouse et al. (1973) was one of the first to ratio the red and the NIR to
digitally distinguish vegetation types. This band ratio became known as the nor-

malized difference vegetation index (NDVI)(equation 1).

NDVI = NIR-RED 1)
NIR+RED

where:



NIR = bandwidth corresponding to near-infrared
RED = bandwidth corresponding to red.

Other band ratios have been used but NDVI is one of the computationally
simplest and least instrument dependent, providing digital values that are highly
correlated and directly related to photosynthetically active FBD. NDVI also
minimizes the spatial heterogeneity of an image due to solar variation and topo-
graphic effects, increasing its utility for time series analysis. These factors make
NDVI a desirable vegetation index. The following research is presented to explain

the factors affecting NDVL

One of the desirable features of the NDVI ratio is the minimization of solar
variation across images through time. NDVI was used to effectively compensate
for the variation in irradiational conditions through time to monitor photosyntheti-
cally active biomass dynamics (Tucker et al. 1979). Kimes (1980) reported on the
spatial variability of vegetation canopy reflectance as a function of solar zenith
angle. This was a key study for multitemporal image analysis, which is described
later in this chapter. The study concluded that diurnal reflectances cannot be
clearly understood until the bi-directional measurements of vegetation are more
commonly known. However, if satellite data are acquired at the same time each
day this problem is minimized. Holben and Justice (1980) used band ratioing as a
means to reduce topographic effects on remotely sensed data. Tucker ef al. (1981)
used simple band ratios, including NDVI, to compensate for variation in solar
intensities through time while estimating crop biomass accumulation. Kimes
(1984) discovered that the NDVI is significantly less sensitive to solar variations
than individual bands for all Sun angles at off-nadir viewing angles of less than

45°,



Quantitative Applications of Remote Sensing Data

The other desirable feature of NDVI is that it can be used to estimate pho-
tosynthetically active foliar biomass. Two measures of foliar biomass are foliar
biomass density (FBD) and leaf area index (LAI). FBD is a measure of the amount
of leafy vegetation per unit area, and LAI is a measure of total leaf area per unit
area. Both measurements quantify the amount of foliar biomass per unit area. The
red and NIR spectral windows used in satellite remote sensing are sensitive to
amount of photosynthetically active foliar biomass per pixel (when digitally
analyzed), where the pixel is a measure of unit area. Clearly, the response charac-
teristics of the red and NIR spectral windows are not changed when a different
measurement is used to quantify foliar biomass. Therefore, these spectral response

characteristics and the NDVI ratio should be similar when related to FBD and LAIL

An early attempt to assess foliar biomass was performed by Jordan (1969),
where in situ measurements of LAI based upon spectral properties of trees were
made. Pearson (1976) was one the first to model the relationship between airborne
spectral remote sensing data and the amount of biomass using a nine band ratio.
The study concluded that the ratio predicted 1.15 times the actual biomass present,
with a coefficient of 0.98 for 26 biomass ground-truthed samples. Wiegand et al.
(1979) reported one of the first succesful uses of NDVI as a quantitative measure
correlating spectral reflectance of biomass to satellite sensors. Holben er al. (1980)
discovered that the most significant correlations existed between NDVI and pho-

tosynthetically active foliar biomass.
Photosynthetically active LAI was estimated from remote sensing data by
Curran (1983) where it was explained that reflectances and radiances in the red are

inversely related to the in situ chlorophyll density and the NIR is directly related

and proportional to photosynthetically active foliar biomass. Wardley and Curran



(1984) also used remote sensing techniques to estimate photosynthetically active
LAI with an accuracy of 50-86% at the 95% confidence level. Conducting a time-
series analysis of spectral measurements, Hatfield (1985) discovered that a simple

NIR/red ratio remained stable through time and at different locations for wheat.
Remote Sensing Analysis of Large Areas Over Time

Remote sensing can be used to characterize seasonal variation of vegetation
provided that the temporal resolution is relatively high. Temporal spectral meas-
urements of crop biomass development were conducted by Tucker et al. (1979)
Kimes et al. (1981), and Markham et al. (1981) where significant relationships
were found between NDVI and crop biomass development and crop chlorosis,
displaying the usefulness of time series NDVI data. Biomass yield variation as a
function of remote sensor response over growing seasons was also modeled by
Tucker et al. (1980). A similar small scale analysis was conducted by Gallo ez al.
(1985) where estimates of photosynthetically active radiation in corn canopies

were calculated, accentuating the utility of multi-temporal analyses.

Most of the studies up to this point were conducted on small areas and for
only one homogeneous vegetation type, such as crops. Temporal analyses had also
been conducted on these small areas and a new research direction to study large
areas was initiated. The National Oceanic and Atmospherice Association (NOAA)
satellites carrying the advanced very high resolution radiometer (AVHRR) pro-
vides remote sensing of large regions at a high temporal resolution compared to
other remote sensing platforms. The choice is narrowed to one satellite platform
when considering a suitable platform for monitoring the seasonal variation within
global vegetation ecosystems where a high temporal frequency is needed along

with synoptic coverage of large regions of the Earth (Table 1).
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Table 1. The satellite and sensor are shown with the corresponding spatial and tem-
poral resolutions and the number of spectral bands associated with the sensor. The
NOAA AVHRR satellite platform has 14.5 orbits per day providing daily global
coverage with some resampling discussed in the data section. The information in
this table came from Jensen (1986).

System Resolutions
. Number

Sensor Spatial of bands Temporal
SPOT Panchrom. 10m 1 26 days
SPOT MSS 20m 3 26 days
Landsat TM 30m 7 16 days
Landsat MSS 79m 5 18 days
NOAA AVHRR 1100m 5 14.5/day

The AVHRR NDVI data were studied to determine if various vegetation types
could be differentiated with the coarse spatial resolution of these data. Norwine
and Greegor (1983) stratified various vegetation types using the AVHRR imagery,
showing the utility of low resolution satellite data to spectrally distinguish vegeta-
tion. Goward (1985) mapped different vegetation types for North America with
AVHRR NDVI imagery supporting previous work. These studies show that while
the spatial resolution is coarse the high temporal resolution more than makes up for

any deficiences the spatial resolution introduces.

A long term regional scale spatiotemporal analysis of portions of Africa using
AVHRR NDVI data began in 1980. It was hypothesized that remote sensing can
provide invaluable ecological data. Tucker er al. 1983 used the AVHRR NDVI
data to statistically model relationships of seasonal variation between the satellite
data and grasslands. Tucker er al. 1985 used an NDVI time series to analyze both
the spatial and temporal variability of grassland biomass. Tucker et al. (1985)
integrated weekly satellite data with respect to time for a twelve month period and
produced a remotely sensed estimate of primary production based upon the density
and duration of foliar biomass. The dynamics of AVHRR data for Tunisia, Africa,

were explained by a combination of vegetation and soil scattering components, and
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the NDVI data were also shown to decrease signal variation (Kimes et al. 1985).

Further remote sensing research in Africa stresses the need for high frequency
temporal satellite data. Tucker and Sellers (1986) estimated primary production
under the limitations of off-nadir viewing and atmospheric conditions. These limi-
tations coupled with the need to measure changing surface conditions emphasized
the need for multitemporal measurements. Townshend and Justice (1986) showed
NDVI response to different vegetative cover types has unique temporal profiles per
vegetation type. An estimate of length of a growing season was made using time
series NDVI in East Africa by Justice et al. (1986) by distinguishing levels of foliar

biomass.

Holben and Fraser (1984) noted that cloud contamination, directional
reflectance, off-nadir viewing, sun-angle, and shadow effects decrease values of
NDVI, leading Holben (1986) to develop the maximum value composite pro-
cedure. The computations in this procedure retain the maximum value on a pixel
by pixel basis for a number of images acquired for the same area of interest on
different dates thereby providing the clearest and least shadowed view of the sur-
face. Justice and Hiernaux (1986) showed the utility of high temporal resolution
for monitoring at regional scales and emphasized the importance of the maximum
value composite procedure. More recently Gutman (1987) reported that the max-
imum value composite procedure for AVHRR NDVI data is useful for minimizing
cloud contamination, atmospheric scattering and absorption, and solar angle effects

in the Great Plains region of the Western U.S.

Prince and Astle (1986) concluded that equations could be constructed to
predict biomass, but only if the satellite data/vegetation relationship is applied to
the same vegetation type by stratifying the region with a vegetation map. Prince

and Tucker (1986) built regression models between the Senegalese grassland
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biomass and NDVI which explained 93% - 99% of the variation in NDVI. A quali-
tative approach suggested that by monitoring rangeland conditions with satellite
data one could identify areas of deficiencies in primary production and provide
synoptic information in support of regional drought monitoring (Tucker et al.
1986). Growing periods were defined by periods of minimum biomass and related
to minimum NDVI values by Henricksen and Durkin (1986), emphasizing the abil-

ity of NDVI to be used to quantify measures of foliar biomass.
Remote Sensing and Ecological Models

More recent studies have revealed the potential of the seasonal variation of
the AVHRR NDVI as an input for ecological models needing spatiotemporal meas-
ures of foliar biomass. Running et al. (1986) reported on the first attempt to meas-
ure LAT of coniferous forests using satellite data. The study concluded that satellite
derived measures of vegetation cover type and LAI may be used to provide more
direct estimates of the carbon content and exchange rates of global vegetation than
are possible with current data. Running (1988) related AVHRR NDVI to pho-
tosynthesis and transpiration of forests in different climates to assess carbon
fixation in relation to the global carbon budget. Simulated photosynthesis and eva-
potranspiration was modeled by coupling the AVHRR NDVI data (used to deter-
mine LAI) with an ecosytem model (Running er al. 1989). Spanner et al. (1990)
was able to monitor the seasonal variation of LAI in coniferous forests with
AVHRR NDVI data. Goward (1989) states that foliar presence determines local
rates of photosynthesis, affects surface albedo, and influences local rates of evapo-
transpiration as well as other elements of surface energy/mass balance. The report
concludes that for the first time, through satellite acquired imagery, a consistent,
global means to directly study interactions between climate and vegetation exists.

The accuracy of the AVHRR NDVI data at a resolution of 1 km was assessed by
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Box er al. (1989), who stated that NDVI data were relatively reliable for primary
productivity except in areas of complex terrain, for seasonal values at high lati-
tudes, and in extreme deserts. The study also concluded that total biomass
(inclusive of woody material) was poorly correlated to the NDVI data. Primary
productivity is associated with the amount of foliage present, lending credence to

the reliability of using NDVI to estimate FBD.
Global Vegetation Index (GVI) Data

The global vegetation index consists of resampled AVHRR NDVI imagery
providing weekly global coverage. Malingreau (1986) determined that the GVI
product provides a large set of useful information on ecosystem dynamics and
cropping practices can be consistently derived from these time series data. Singh
(1988 a,b) found that the GVI data remain reliable for high, medium, and low foliar
biomass with solar zenith angles of less than 80°. The study also concluded that
areas above solar zenith angles of 80° make the GVI data unreliable because the
optical depth increases such that the reflectance in the red and NIR is actually a
measure of the atmosphere and not the land surface. Holben (1986) refered to this
phenomena as the terminator effect. From this fact it was shown that for one GVI
image a multitemporal composite image must be made from about four months of
imagery. However, the areas of high solar angles lie in a hemisphere’s winter dur-
ing which there is little photosynthetic activity. Lloyd (1990) reported that the GVI
data make possible, for the first time, a phenological approach in which classes are
defined in terms of the timing, the duration, and the intensity of photosynthetic
activity which minimizes this problem of reliability if one is interested only the

photosynthetically active foliar biomass.

Goward (1990) cautions against using the GVI data for quantitative purposes

due to reasons that Singh (1988 a, b) addresses, but provides methods and ideas to



14

make the data more reliable. The study stated that it is possible to reduce instru-
ment calibration and off-nadir viewing angle error by approximately 10% with
maximum value composite images of at least a one month time resolution. The
conclusion suggested that if these errors were corrected a global measure of vege-
tation green foliage dynamics can be made within a precision of 10% (+0.1 NDVI)

at a monthly time resolution.

It has been shown that the NDVI ratio can be used to derive information about
photosynthetic activity. The NDVI ratio has been used for both small and large
scale analyses and it has been used successfully for multitemporal remote sensing
studies. The maximum value composite procedure of the NDVI data minimizes
effects of atmosphere and solar variation. There are, however, limitations which
must be considered for large and global scale remote sensing analysis. Neverthe-
less, it is possible to make quantitative estimates of photosynthetic acivity at a glo-

bal scale for the entire terrestrial biosphere.
Foliar Biomass Estimates and Seasonal Variation

These quantitative estimates derived from the GVI data will be compared to
other estimates of global foliar biomass found in the literature. One estimate of the
total amount foliar biomass was found in the literature, and two other global esti-
mates of leaf biomass were calculated by using other global estimates of biophysyi-
cal variables in the literature. Estimates of leaf area and chlorophyll exist (Whit-
taker 1975), as well as relationships between leaf biomass and leaf or leaf area or
chlorophyll for the various biomes considered in this research (Whittaker 1962,
Whittaker 1966, Whittaker and Woodwell 1969, Whittaker et al. 1974, Whittaker
and Niering 1975, Lieth and Whittaker 1975, Blasco and Tassy 1975, Edwards and
Grubb 1977, Edwards 1977, and Grubb 1977).
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One final parameter must be taken into account before building the model.
Most biomes occur in both hemispheres and in the Tropics (with a capital T refer-
ring to the Tropics of Cancer and Capricorn). Biomes which occur in the northern
and southern hemisphere must be analyzed separately by hemisphere because the
seasonal variation is offset (i.e. during January the Northern Hemisphere experi-
ences winter while the Southern Hemisphere is in summer). Further, it is clear that
the tropics display a seasonal variation that is different than extratropical areas.
The geographic classification of tropics is closely aligned with the Tropics due to
characteristics of solar angles. The total amount of solar radiation received at any
place depends on two factors: the duration and the intensity of insolation. Insola-
tion, preciptation, and wind play key roles in the determination of climate, and
hence, the determination of seasonal variation of vegetation within the tropics
(Nieuwolt 1977). Therefore, the biomes will be stratified into a global category
(e.g. Tropics, Northern or Southern Hemisphere) in order to analyze the seasonal

variation of each biome.

The following chapters discuss the methodology to estimate photosyntheti-
cally active FBD by using a yearly time series of GVI, a vegetation map, literature
values of FBD, and a stratification for seasonal variation to estimate photosyntheti-

cally active FBD, as well as validation procedures to assess the results.
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CHAPTER 3
Methodology
Data

The modeling and analysis was performed in a raster based geographic infor-
mation system (GIS). A raster based GIS provides the appropriate environment for
modeling spatial data (Burrough, 1986). The GIS modeling and statistical analysis
of these global data sets required approximately 200 megabytes of on-line memory

and the CPU power to adequately run the algorithms.

The GVI satellite imagery used in this research was acquired from ACE-
CERL in Geographic Resource Analysis Support System (GRASS) (ACE, 1988)
raster format for the year 1988 in a weekly time series. The data originated at the
National Oceanic and Atmospheric Association (NOAA) whose satellites carry the
Advanced Very High Resolution Radiometer (AVHRR) from which daily global
coverage is generated across a 56° viewing track. Spatial resolutions are 1.1 km
local area coverage (LAC), and "4 km global area coverage (GAC). Global daily
coverage is available only through the GAC data that are generated on board the
satellite by resampling the LAC data (Kidwell, 1984), where pixels with greater
than 30° off nadir view are not used (Goward er al., 1990). Further sampling, by
taking the last pixel mapped into the new grid of 15 km or more in size (Townshend
and Justice, 1986), and conversion to the NDVI results in the GVI product as
described by Kidwell (1990). GVI data are spatially restricted to land masses
between 75° north and 55° south with a final nadir resolution of approximately 8.5
minutes (approximately 256 kmz). The GVI ratio uses the red (0.58 um - 0.68 pm)
and NIR (0.725 pm - 1.10 pm) spectral bandwidths from the AVHRR instruments.
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A maximum value compositing procedure (MVC) is used to minimize effects
of topography, solar zenith and azimuth angles, and atmosphere on the NDVI ratio.
The effects of topography, solar zenith and azimuth, and atmosphere have a ten-
dency to reduce the NDVI value (Holben and Fraser, 1984). Therefore, by retain-

ing the maximum value for each pixel these effects are minimized.

The MVC procedure used to compile the GVI data means that the pixel least
affected by cloud or other atmospheric interference is automatically selected for a
given seven day time period (Holben, 1986). Further, the GAC pixel with the
highest value is used to represent the entire GVI pixel. The MVC procedure was
used in this research to obtain monthly GVI images (Figures 1 - 2), to avoid atmos-
pheric interference, and to retain spatial heterogeneity (Gutman, 1987, Goward ez

al., 1990). See Appendix A for all twelve monthly images.

Version WE3.0 of the Olson Database of World Ecosystems was used to disti-
guish different vegetation types in this study, as discussed by Prince and Aslte
(1986). This global vegetation database was chosen over others because it offered
the highest resolution and because of its classification format. The spatial resolu-
tion of 30 minutes is much more coarse than the GVI data, but it offers the needed
description of vegetation types at the highest possible resolution. The Olson
classification is based on landscape and ecosystem while others like Matthews
(1983) are based on potential vegetation excluding anthropogenic influences. The
database consists of fifty-four categories of ecosystem/vegetation types at a resolu-

tion of 30 minutes which covers the entire earth (Olson et al., 1983, Olson 1990).

As discussed, the seasonal variation of foliar biomass is an important parame-
ter to consider when characterizing photosynthetic activity. Because it is impossi-
ble to collect enough field data to characterize the seasonal variation of foliar

biomass for the entire terrestrial biosphere, previous research from others must be
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used. Measurements of FBD for large scale biomes were found in Box (1981)
Cannell (1982), and Webb et al. 1983. The data found in these sources supplied
the maxima and minima of FBD for large scale biomes. This range represents spa-

tial heterogeneity expected of FBD in the biome at peak growth periods.
Approach

The approach taken to model the spatiotemporal patterns of FBD for one year
was to scale the range of FBD values to the range of GVI per biome defined with
the Olson map. A general equation of empirical relationships which describes
NDVI in terms of FBD exist based on regression analyses. There was a similarity
amongst the individual empirical relationships for different vegetation types which
confirms the reliability of NDVI for different vegetation types over time. The fol-

lowing discussion details the methodology of this approach.

Empirical relationships between AVHRR NDVI and FBD or LAI exist (for
examples see: Tucker et al. 1983, Asrar et al. 1984, Wardley and Curran 1984,
Tucker et al. 1985, Hatfield er al. 1985, Running et al. 1986, Peterson et al. 1987,
Running et al. 1989, Spanner et al. 1990). Because FBD and LAI appear spec-
trally similar in the red and NIR bandwidths, they will also appear similar in the
NDVI ratio, and therefore, a regression analysis between FBD, LAI and NDVI will
also be quite similar. Regression analysis of both FBD and LAI in grasslands and

conifer forests display similar response curves (figures 3 - 4).

They also have identical equations with different empirical constants (Tucker et al.
1983, Running et al. 1989). Representing the empirical constants with the vari-

ables a and b, the similarities become more apparent (equations 2a and 2b).

Tucker’s model equation (see figure 3):

Y=alnX-b (2a)
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AVHRR NDVI Relationship to FBD
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Figure 3. Statistical relationship between AVHRR NDVI and the foliar biomass of
grasslands. Modified from Tucker et al. (1983).

Running’s model equation (see figure 4):

X
Y=aln— 2b
anb (2b)

where:
Y =NDVI
X =FBD
a,b = empirical constants.

Comparing the two models, a remains the same while b is negative in Tucker’s
model and a negative In in Running’s model. This implies that different vegetation
types have a similar response curve relating AVHRR NDVI to the similar biophysi-

cal varibles; FBD and LAIL Further, the equation defining the response curve
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Figure 4. Statistical relationship between AVHRR NDVI and LAI of Coniferous
forests. Modified from Running and Nemani (1988).

remains the same while the values for @ and b change. This phienomena suggests
that the mathematical equation describing the response curves remains the same for
FBD of different vegetation types. The empirical constansts, however, will change
and may be thought of as variables in this case. Since the general form of the
model equation remains constant, the equation may be manipulated to estimte FBD
based on the AVHRR NDVI ratio, or GVI. Therefore, derivation of a and b based
upon GVI will provide unique relationships between FBD and GVI for different

vegetation types.

The model presented here is constructed by using the general form of these of
equations which, for simplicity, is taken to be equation (2b). Inverting equation

(2b), the FBD variable becomes dependent, or in other words, it may be predicted
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(equation 3).

X=a exp % 3)
where:
Y =NDVI
X =FBD

a,b = biome specific constants.

As previously discussed, the range of FBD per vegetation type supplies only
the maxima and minima to which the GVI data can be scaled. Derivation of the
biome specific constants must be calculated to define the parameters of the model
on a per vegetation type (biome) basis. Two new equations derived from equation
2 describe the biome specific constants in terms of both the biomass and GVI

minima and maxima (equations 4a and 4b), respectively.

Fmin=a exp N’Zm (4a)
Fmax=a exp Nnbmx (4b)

where;

Fmin = FBD minimum value per biome
Fmax = FBD maximum value per biome
Nmin = GVI minimum value per biome
Nmax = GVI maximum value per biome

a,b = biome specific constants.

In order to solve for the biome specific constants a and b equations 4a and 4b

can be simultaneously solved to create equations 5a and 5b.
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Nmax — Nmin

= 5
In ( Fmax/ Fmin ) (52)
a=Fmax exp —Ngax (5b)

See appendix B for full the solution and appendix C for the biome specific parame-
ters and constants. The model is now calibrated and can be driven by the monthly

GVI images to create monthly FBD surfaces.
Methods

The components of the model are now complete. The seasonal variation and
the vegetation types will be stratified, the literature values of FBD will be used to
parameterize the model, and the range of GVI values will be used to estimate the
spatial heterogeneity of FBD by applying equation 3 on a per biome basis. The
first step, however, is to equate the biomes described in the literature to the Olson
classification. The Olson classification defines fifty-four categories which were

aggregated into eighteen categories representing the literature biomes (Table 2).

The range of FBD in the literature describes the spatial heterogeneity one
may find under normal peak growing conditions (see Chapter 2). Because GVI is
positively related to FBD, the monthly image with the highest GVI values for each
biome can be used to represent the time of peak growth. The month with the max-
imum mean value for each biome was used to represent the highest GVI values.
These months were established by tracking the monthly distributions of GVI for the
year (figure 5). These maximum mean data sets for each biome provided the range

of GVI values to calibrate the model with the FBD values.
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Table 2. The tirst aggregation scheme based soley on literature descriptions of
vegetation type. The second column displays the number of Olson categories
which were aggregated into the global areal extents shown in the last column.

First Aggregation of Olson Categories and their Areal Extent
Aggregated Category Olson Areal Extent | Percent
Names Cats. used in km Area *
Water; no data 1 32,366,200 0.00
Ice 2 1,247,000 1.96
Desert 6 18,406,600 11.97
Tundra 4 10,057,700 13.96
South Temperate BLF 1 714,800 0.51
Grassland 3 21,356,200 14.16
Farms/Towns 2 12,260,700 8.69
Nonpaddy Irrigated Dryland 3 1,579,000 1.07
Forest/Fields/Woods 4 9,196,300 6.60
North Temperate BLF 1 786,900 0.64
Cool Conifer Hardwood 2 3,550,900 2.70
Tropical Montane 1 1,175,400 0.66
Wetlands/Hinterlands/Shore 7 3,578,700 2.60
Woodlands 6 19,902,500 11.62
Warm Conifer 1 399,200 0.28
Paddyland 1 1,994,100 1.19
Taiga 5 11,489,500 12.94
Trop. Seasonal Humid BLF 1 6,173,800 3.47
Trop/Subt Humid BLF 2 4,237,200 2.34
Cool Conifer 1 3,102,100 2.63
Total 454,871,000 100.00

* The water class was excluded from the percentage calculations.
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Figure 5. The temporal profile of GVI for the Northem Temperate Broadleaf

Forest. (see appendix D for the temporal profiles of all the biomes.)

The possibility exists, however, that two or more of Olsons original vegetation
types may have been classified as one due to descriptive ambiguity of the
definitions for the vegetation types. These categories were digitally analyzed to
determine if the classication agreed with a spectral classification using GVI. Histo-
grams of GVI were produced for the fifty-four original Olson categories and the
aggregate biomes (Table 2). These distributions of GVI were used to examine the
original classifications and the aggregates. If the distribution of GVI is clearly
bimodal in the aggregations then the possibility exists that there are two spectrally

distinct vegetation types as defined by the original Olson classification.
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-Bimodality was noticed for the woodlands (figure 6), grasslands, and the

desert biomes suggesting the aggregation scheme incorporated dissimilar biomes.
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Figure 6. The histogram for the Woodlands biome displaying the bimodality

associated two distinct spectral signatures.

Checking these aggregates where bimodality occurred against histograms of the

original Olson biomes, two distinct groups could be separated representing each

mode (figures 7a-b and figures 8a-d).
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Figure 7a. Olson biome number 32, skewed left with a mean of 26.0.
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Figure 8a. Olson biome number 46, skewed right with a mean of 17.4.
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Figure 8b. Olson biome number 47, skewed right with a mean of 16.4.
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Figure 8c. Olson biome number 48, skewed right with a mean of 7.5.

BIOME = (59) Interrupted Dry Woods — Suce thom HEMI=N MONTH =Aug
50 mean = 149
s5° mode = 4

: median = 12
4o-E std = 95

8:45.;

<< %

c 25:

B .

O

Q. 45
10:

E
el || [TTTT] T ——
0246811 111222223333344444556565656
0246802468B02468B02468024680
GV * 100

Figure 8d. Olson biome number 59, skewed right with a mean of 14.9.
The same analysis separated the grassland and desert biomes into two new distinct

classes as well. These new groups were then added to the aggregation scheme
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resulting in the new aggregates (Table 3).

Table 3 . The second aggregation scheme based on the analysis of GVI histograms.
The second column displays the number of Olson categories which were
aggregated.

Second Aggregation of Olson Categories and their Areal Extent
Aggregated Category Olson Areal Extent | Percent
Names Cats. used inkm Area *

Water; no data 1 32,366,200 0.00
Ice 2 1,247,000 2.00
Nonpolar Desert 4 2,252,700 1.93
Polar Desert 2 16,153,900 10.30
Tundra 4 10,057,700 12.14
South Temperate BLF 1 714,800 0.52
Grassland 2 4,084,200 3.41
Shrubland 1 17,272,000 11.06
Farms/Towns 2 12,260,700 8.87
Nonpaddy Irrigated Dryland 3 1,579,000 1.09
Forest/Fields/Woods 4 9,196,300 6.73
North Temperate BLF 1 786,900 0.66
Cool Conifer Hardwood 2 3,550,900 2.76
Tropical Montane 1 1,175,400 0.68
Wetlands/Hinterlands/Shore 7 3,578,700 2.66
Dry Forest and Woodlands 2 11,427,500 6.59
Semi-arid Woodlands 4 8,474,900 5.28
Warm Conifer 1 399,200 0.29
Paddyland 1 1,994,100 1.22
Taiga 5 11,489,500 13.22
Trop. Seasonal Humid BLF 1 6,173,800 3.54
Trop/Subt Humid BLF 2 4,237,200 2.39
Cool Conifer 1 3,102,100 2.69

Total 454,871,000 100.00

* The water class was excluded from the percentage calculations.

The aggregated version of Olson vegetation types was then used to group the GVI

data into unique spatial categories corresponding to the biomes of the literature.

These biomes were then stratified into global categories (e.g. Northern Hemi-
sphere, Southern Hemisphere, or the Tropics) that represent distinct seasonal varia-
tion within each geographic area. The areal extents, by percentage, of biomes in
the northern hemisphere and in the Tropics were used to determine in which

category the majority of the biome occurred (Table 4). The area where the majority
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of the biome occurred was used to calibrate the model by extracting the range of

GVI values from inside the geographic constraints of these global categories.

Table 4 . Percentage of biome located in global categories of unique seasonal
variations.

Percentage of Biome in the Tropics, Northern, and Southern Hemsiphere
Aggregated Category . Northern Southern
gNames s Tropics Hemi. Hemi.
Nonpolar Desert 1.8 66 32.2
Polar Desert 35.7 54.5 0.8
Tundra : 1.1 60.1 38.8
Southern Temperate BLF 0.0 57.7 42.3
Grassland 0.0 96.7 3.3
Shrubland 424 42.8 14.8
Farms/Towns 25.7 63.8 10.5
Nonpaddy Irrigated Dryland 19.8 68.6 11.6
Forest/Fields/Woods 25.3 64.9 9.8
Northern Temperate BLF 0.0 93.8 6.2
Cool Conifer Hardwood 109 82.0 7.1
Tropical Montane 91.2 8.8 0.0
Wetlands/Hinterlands/Shore 42.8 45.6 11.6
Dry Forest and Woodlands 97.1 1.4 L.5
Semi-arid Woodlands 47.1 18.7 34.2
Warm Conifer 5.2 923 2.5
Paddyland 514 48.2 04
Taiga 0.0 100 0.0
Trop. Seasonal Humid BLF 94.6 2.9 2.5
Trop-Subt Humid BLF 99.7 0.3 0.0
Cool Conifer 0.0 100 0.0

For example, 96.7% of the grassland biome is present in the northern hemi-
sphere, therefore, all the GVI data extracted to characterize grasslands was taken
from the northern hemisphere. The stratification allows for a more realistic charac-
terization of seasonal variation rather than arbitrarily dividing the biome at the
equator and analyzing two different data sets. The biomes are now geographically

restricted to one of the global categories for the rest of the calibration procedure.

Again the mean of the GVI values per biome, along with the fifth and ninety-
fifth percentile, were tracked by month for the year to determine the peak growth
period. The fifth and ninety-fifth percentiles were chosen to represent the entire
range of GVI to remove any noise associated with the two distinct boundaries

caused by the resolution differences between the Olson map and the GVI imagery
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(Table 5).

Table 5. The biomes with ranges of GVI values used to calibrate the model. Also, the
global category in which the range occurred is shown as well as the maximum mean GVI
value and the month when the maximum mean occurred.

Biome Global Month of Maximum Sth 95th
Category | Max. Mean Mean %ile | %ile
Nonpolar Desert North Jun 19.5069 5 36
Polar Desert North Mar 8.0313 4 12
Tundra North Jul 21.5753 6 38
Southern TemperateBIf North Jun 31.1673 8 46
Grassland North Jul 26.1649 10 43
Shrubland North Aug 17.0670 4 35
Farms/Towns North Jul 27.6886 9 42
Nonpaddy Irrigated Dryland North Aug 19.4412 4 37
Forest/Fields/Woods North Jun 32.5523 11 46
Northern Temperate Bif North Jun 39.5085 20 50
Cool Conifer Hardwood North Jun 32.2999 11 46
Tropical Montane Tropic Nov 32.0610 15 45
Wetlands North Jul 27.7999 7 42
DryForest and Woodland Tropic Nov 25.7458 10 42
Semi-arid Woodland South Jan 19.5504 8 36
Warm Conifer North Jun 29.7677 14 41
Paddyland North Jul 26.4018 10 38
Taiga North Jul 29.3820 20 40
Trop. Seasonal Humid BLF Tropic Nov 34.6479 22 45
Trop/subt Humid BLF Tropic Dec 34.5576 20 44
Cool Conifer North Jul 33.0470 17 45

Ranges of FBD from the literature (Table 6) were then scaled to the GVI by equa-

tion 2. See appendix C for the derived constants.

For values of GVI that are greater than the value of the 95¢4 percentile, FBD
is set to a constant value in order to eliminate anomalous occurrences of exceed-
ingly high GVI values that would convert to exaggerated FBD values. This upper
FBD limit was specific for each biome. Using the model equation response curves

displaying FBD in terms of GVI were calculated (figure 9).



Table 6. The maximum and minimum values for FBD expressed in kg/mz.

Biome Mimimum | Maximum
FBD FBD
Nonpolar Desert 0.01 0.05
Polar Desert 0.01 0.10
Tundra 0.01 0.05
Southern Temperate BLF 0.2 0.8
Grassland 0.05 0.5
Shrubland 0.1 0.5
Farm/Town 0.1 0.5
Nonpdy Irrigated Dryland 0.1 0.5
Forest/field/woods 0.1 0.8
Northern Temperate BLF 0.3 0.6
Cool Conifer Hardwood 0.3 1.0
Tropical Montane 0.3 0.7
Wetlands 0.1 0.5
Dry Forest and Woodland 0.1 0.5
Semi-arid Woodlands 0.1 0.3
Warm Conifer 0.1 1.0
Paddyland 0.1 0.5
Taiga 0.3 1.5
Trop Seasonal Humid BLF 0.3 0.8
Trop/subt Humid BLF 0.3 1.3
Cool Conifer 0.5 2.0
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Figure 9. The calibration curve for the Cool Conifer boime derived from the

literature. See appendix E for all the calibration curves for the biomes.

These biome specific relationships were used to spatally distribute the
estimates of FBD for each of the monthly GVI images in the GRASS raster GIS
environment. GVI has now been used to estimate FBD values between 75° N and
55° § for the terrestrial biosphere in a monhly time series for twelve months. These
FBD surfaces display values from 0 - 2.0 kg/m2 simulating the seasonal variation
of GVI values (Appendix F).
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CHAPTER 4
Results
Results and Discussion

Spatiotemporal patterns of FBD that follow characteristics of seasonal varia-
tion can be observed for the terrestrial biosphere. The seasonal variation is clear
when comparing the January FBD surface (Figure 10) to the July FBD surface
(Figure 11). For example, the northern hemisphere in the January surface is void
of any high values of FBD while the southern hemisphere and the Tropics contain
the high FBD values. The July surface shows the opposite situation with the equa-

torial region showing high values again.

The MVC procedure used to make these monthly images highlights a problem
caused by solar angles that present a limitation of this procedure. The GVI images
during winter in the northern hemisphere, particularly January (Figure 10) have a
band of high values in the extreme northern latitudes over the terrestrial biosphere.
The solar angles are so low that the optical depth of the atmosphere is increased.
The satellite sensor at this point is essentially recording atmospheric reflectance
rather than surface reflectance. Applying the MVC procedure retains the highest
noise values and creates bogus data in these high latitudes during times of low solar
zenith angles. Holben (1986) referred to this phenomena as the terminator effect.
Because the GVI data are the NDVI ratio, they cannot be broken apart into the ori-
ginal red and NIR values which could be corrected. This is a limitation of using

just the NDVI ratio without having the red and NIR spectral bands to analyze.

The total foliar biomass calculated for the terrestrial biosphere during 1988,
considering the discussed limitations, is 47.7 gigatons (Gt). Assuming maximum
FBD values per biome a global total for foliar biomass was calculated to be 77.9

Gt. Accounting for the seasonal variation of FBD decreases the yearly global
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esimate for foliar biomass, as expected. The next step is to compare these esti-
mates to other global estimates of foliar biomass for validation. Comparison on a
biome specific basis would be advantageous, but the problem of non-comparability

of classification schemes would introduce additional uncertainties.

The one global total of foliar biomass found in the literature was 75 Gt (Box,
1981). Lieth and Whittaker (1975) and Whittaker (1975) provided terrestrial
biome and global totals of leaf area and chlorophyll. Other sources contained rela-
tionships between foliar biomass and leaf area or chlorophyll (using their biome
classification scheme). Foliar biomass/area values were determined from data on
tropical rain forests (Grubb 1977, Edwards and Grubb 1977, Blasco and Tassy
1975, and Tanner 1977), and temperate deciduous forests, temperate evergreen
forest, woodlands, and shrublands (Lieth and Whittaker 1975, Whittaker and Nier-
ing 1975, Whittaker and Woodwell 1969, Whittaker et al. 1974, Whittaker 1966,
Whittaker 1962). The values ranged from 50 tons/km? leaf area to 178 tons/km?
leaf area. A value of 100 tons/km? leaf area was taken as representative for
forests, woodlands, and shrublands. These values were multiplied by the total leaf
area estimates for each biome indicated in the literature to calculate total foliar

biomass of 87.5 Gt for the globe (Table 7).

Another comparison involves converting chlorophyll mass to foliar biomass.
Foliar biomass conversion factors were used only for forests, woodlands and shrub-
lands. These values ranged from 127 g/g (foliar biomass/chlorophy!l mass) to 366
g/g for temperate deciduous forests and woodlands. 250 g/g was taken as represen-
tative for these biomes as well as the tropical rain and seasonal forests. A value of
453 g/g (rounded to 450 g/g) was used for the temperate evergreen forest (spruce-
fir). These were used to calculate total foliar biomass for the forest biomes (Table

8).



40

Table 7. The total foliar biomass for the globe was calculated by converting LAI
into foliar biomass and totalling the leaf biomass of each biome.

Biome Areal Extent | | LAIxArea | Tonskm® | Foliar Biomass
in km? x 108 inkm? x 10% | Leaf Area Gigatons
Tropical Rain Forest 17.0 8 136 100 13.6
Tropical Seasonal Forest 75 5 38 100 38
Temperate Evergreen Forest 5.0 12 60 100 6.0
Temperate Deciduous Forest 7.0 5 35 100 35
Boreal Forest 120 12 144 100 144
Woodland/Shrubland 85 4 34 100 34
Savanna 150 4 60 100 6.0
Temperate Grassland 9.0 35 32 460 14.7
Tundra and Alpine 8.0 2 16 300 4.8
Desert/Semi-desert 18.0 1 18 100 1.8
Extreme Desert 24.0 0.05 12 100 0.1
Cultivated Land 14.0 4 56 250 14.0
Swamp/Marsh 2.0 7 14 100 14
Total Foliar Biomass for the Globe 87.5 Gt

Table 8. The total foliar biomass for the forest biomes was calculated by
multiplying the total chlorophyll per biome by the foliar biomass/chlorophyll mass

values.
Biome Chlorophyll | Foliar biomass/ | Foliar biomass
tons x 100 Chlor. mass Gigatons
Tropical Rain Forest 51.0 250 12.8
Tropical Seasonal Forest 18.8 250 4.7
Temperate Evergreen Forest 17.5 450 7.9
Temperate Deciduous Forest 14.0 250 3.5
Boreal Forest 36.0 450 16.2
Woodland/Shrubland 13.6 250 3.4
Total Foliar Biomass for the Forests 48.5 Gt

The total foliar biomass estimates for these six biomes using the chlorophyll

conversion equalled 48.5 Gt, comparing favorably to the total of 34.2 Gt using the

leaf area conversions for global total foliar biomass estimates considering the

uncertainties associated with the calculations and the potential noncomparability

between the biome classifications.
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These two comparisons produced similar results. Each estimate using leaf
area or chlorophyll conversion is higher than the estimates produced in this
research. Nevertheless, considering the uncertainties associated with conversion
estimates and that the estimates from both conversion calculations and the model
estimates are of the same order of magnitude, the results are considered satisfac-

tory.

In the final validation procedure, the grassland biome described in this study
is compared to a regional analysis of the Senegalese Sahel grassland described by
Tucker er al. (1983) and Tucker et al. (1986). The grassland biome presented in
this study was isolated for this analysis. Tucker’s model (equation 6) was run using
the GVI data for the grassland biome and compared to the grassland model derived

in this analysis (equation 7).

GVI + 1.0107
FBD = exp A+ 10107 6
P 01857 ©)
GVI * 100
FBD = 0.24 L= IO 7
02485 exp = 317 @

GRASS raster (cell) format requires integers, therefore, the GVI data in equation 2
is multiplied by 100. (Consult Appendix C to see all the derived biome specific

coefficients.)

It is not possible to compare both models within the geographic confines of
Tucker’s study area. Tucker describes his study area as grassland while the aggre-
gated Olson classification used in this analysis describes this same geographic area
as 15% Farms/Towns, 26% Nonpaddy Irrigated Dryland, and 59% Dry Forest and
Woodlands.

However, it is possible to apply Tucker’s model to the entire grassland biome

described by Olson for comparison. The resulting estimated range of Tucker’s
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model as applied to the grassland biome is .02 - 0.58 kg/m2 while the range taken
from the literature for this analysis was .05 - 0.5 kg/rnz. Running Tucker’s model at
the same monthly time step produces a global grassland estimate of 0.528 Gt of

FBD for 1988, while this model estimates 0.947 Gt of FBD in 1988.

It appears, however, that this model overestimates grassland with the GVI
data. One explanation is that the entire grassland biome which this model is based
on, likely has different characteristics than the geographically restricted grasslands
of the Senegalese Sahel. This would result in different empirical constants creating
the different results. Another explanation is that the grassland that is described by
Tucker is really what Olson would call Dry Woodland and Forest. Either of these
explanations would account for differences in the results. Considering the limita-
tions of these comparison, it is difficult to say whether the model developed in this
research overesitimates or underestimates foliar biomass. Nevertheless, the results
of this model were always of the same order of magnitude with the validation esti-

mates, lending credence to its validity.

The results of the statistical analysis to isolate biomes of similar seasonal vari-
ations are presented. As previously discussed, the tropical biomes were determined
by the majority of their areal extent with respect to their geographic locations.
Nevertheless, the descriptive statistics of the monthly GVI data sets concerning the
tropical biomes, as defined in this study, were also used to determine and justify

which biomes should be considered tropical (Table 9).

Comparing the months of maximum mean GVI and the coefficient of variation it is
clear that these biomes were similar before being combined into the tropical
category. For example, the Tropical Montane biome has months of maximum
mean and coeffecient of variation for the northern and southern hemisphere of,

November, 0.283, and November, 0.303, respectively. When combined into the
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Table 9 . This table displays some descriptive statistics in order to quantitatively
compare the global categories of seasonal variation of GVI data within the tropical
biomes.

Monthly GVI Data Sets
Descriptive Statistics of Tropical Biomes by Hemispheres
Biome Global Month of Coefficient Sth 95th | Median
Category | Max. Mean { of Variation | %ile | %ile GVI
Trop. Montane North November 0.283 15 44 36
Trop. Montane South November 0.303 13 46 32
Dry Forest/Wdld North August 0.324 7 37 26
Dry Forest/Wdld South December 0.318 12 44 32
Trop. Seas. Frst North November 0.183 24 44 36
Trop. Seas. Frst South December 0.198 22 45 36
Trop/Subt. Frst North December 0.224 19 43 35
Trop/Subt. Frst South December 0.197 22 44 37
Descriptive Statistics of Tropical Biomes by Tropics
Biome Global Month of Coefficient Sth 95th | Median
Category | Max. Mean | of Variation %ile | %ile
Trop. Montane Tropic November 0.293 15 45 33
Dry Forest/Wdld Tropic November 0.375 10 42 26
Trop. Seas. Frst Tropic November 0.205 22 45 36
Trop/Subt. Frst Tropic November 0.209 20 44 36

tropic category the month of maximum mean and the coeffecient of variation are
November and 0.293, respectively. This similarity of all the tropical biomes is an
indication that the arbitrary north-south division is not necessary, and perhaps
wrong. The Dry Forest and Woodland biome displays the greatest variance
because it is located in higher latitudes of the tropics.
Sensitivity Analysis

A sensitivity analysis was performed to characterize the sensitivity of the
model to the maximum and minimum estimates of FBD found in the literature. To
assess the sensitivity of global estimates of foliar biomass, the biome specific FBD
values were arbitrarily changed by +10% around the minima and maxima (Table
10). For each one of the four deviations about the maxima and minima, new

coefficients were derived to run the model. Global totals of foliar biomass were
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calculated to compare the magnitude of change associated with each of these devi-

ations (Table 11).

Clearly, movement about the maxima has the greatest effect on overall quanti-
ties of estimated FBD. A 20% change in the maxima causes about 7 Gt difference
to be estimated while the minima causes approximately 2 Gt of change. The 5.54%
change of foliar biomass associated with +10% maxima shown in table 11 would
be greater if the maximum values of estimated FBD were not held constant to the
maximum limit defined by the 95tA percentile GVI value on a per biome basis (Fig-

ure 9).
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Table 10. The estimates of FBD per biome are shown with a +10% deviation from
the minima and maxima. These percentages in FBD are used to characterize the
potential of error in the estimates of FBD presented in this research.

Ten Percent Change About the Minima and Maxima Foliar Biomass Estimates
Biome Minima | -10% | +10% | Maxima | —-10% | +10%
kgm? | kgm® | kgm? | kgm? | kgm? | kg/m?
Nonpolar Desert 01 .009 011 .05 045 .055
Polar Desert 01 009 011 10 09 A1
Tundra .01 .009 011 05 045 .055
South Temperate BLF 2 18 22 8 72 .88
Grassland 05 045 055 5 45 55
Shrubland d 09 A1 S 45 .55
Farms/Towns 1 09 A1 5 45 55
Nonpaddy Irrigated Dryland 1 .09 A1 5 45 55
Forest/Fields/Woods N 09 11 8 72 .88
North Temperate BLF 3 27 33 6 54 .66
Cool Conifer Hardwood 3 27 33 1.0 9 1.1
Tropical Montane 3 27 33 i .63 a7
Wetlands/Hinterlands/Shore 1 09 11 5 45 55
Dry Forest and Woodlands 1 .09 11 5 45 .55
Semi-Arid Woodlands 1 09 A1 3 27 33
Warm Conifer 1 09 11 1.0 9 1.1
Paddyland 1 09 11 5 45 S5
Taiga 3 27 33 1.5 1.35 1.65
Trop seas Humid BLF 3 27 33 8 72 .88
Trop/subt Humid BLF 3 27 33 13 1.17 143
Cool Conifer 5 45 55 2.0 1.8 22
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Table 11 . This table displays a 10% movement around the maxima and minima
FBD estimates found in the literature. The estimated global totals are shown each
10% change in maxima and minima as well as the percent change.

Change in Global Quantities of Estimated FBD

% Change of
Foliar Biomass

Foliar Biomass
in Gigatons

% Change in
Total Foliar Biomass

Estimated Foliar Biomass
Maxima +10%
Maxima —10%
Minima +10%
Minima -10%

47.7
50.5
43.7
48.8
46.4

0

5.54
8.39
2.86
2.72
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CHAPTER 5
Conclusions

This study represents a first attempt to model the seasonal variation of FBD
across the terrestrial biosphere by quantitatively using global satellite data and
other global vegetation data. The approach has proven useful to capture the gross
spatiotemporal patterns of the distribution of photosynthetically active FBD. The
seasonal variation of GVI was shown to adequately estimate the seasonal variation
of FBD. The model estimates of FBD were sufficient when compared to other esti-
mates of global totals of FBD considering uncertainties involved with both esti-

mates.

The GVI data does, however, have these limitations as presented by Singh
(1988a), Singh (1988b), and Holben (1986). It is suspected that the addition of
snow in the winter months also has a strong effect on the NDVI ratio by decreasing
the GVI values for conifer forests where such a drastic decrease is not expected
(Appendix D).

The division of the Earth into three unique zones of seasonal variation was
shown to be acceptable. The Northern and Southern Hemispheres were obviously
different, but the Tropics were shown to present their own seasonal variation. The
tropical biomes showed little seasonal variation. This can be seen by looking at the
annual time course for the tropical biomes where GVI data and estimated FBD
remained relatively stable. (see appendix G and H for monthly distributions of
GVI and FBD, respectively.) The abitrary equatorial division through the tropical
biomes was statistically shown to be unnecessary and perhaps wrong. Therefore,
the equatorial region should not be divided at the equator and, further, the region
between 23°N and 23°S should isolated for analysis of seasonal variation. Also,

the Northern and Southern Hemispheres should start at 23°N and 23°S,
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respectively, and extend to the poles for analysis of seasonal variation. This pro-
vides three global bands described by latitude that represent three unique zones of

seasonal variation.

The biggest limitation in this approach is the model itself because the model
depends upon scarce data. not the quantitative use of the imagery, but instead the
data on spatial heterogeneity for FBD and on the global vegetation maps. After
scanning the literature for spatial FBD data only the sources documented in this
manuscript were consulted. Other sources were inappropriate or not available,
indicating an extremely low availibility of this kind of vegetation data. Because
there is such a scarcity of global vegetation data, this model was calibrated with
these data, and as a result a high amount of faith was placed in their validity. With
the upcoming EOS platforms researchers may better relationships between biophy-
sical variables and the remotely sensed data. But unless there is future research
undertaken to establish ranges of FBD, LLAI, and other variables and uncertainty
associated with these ranges, quantitative estimates of biophysical variables may

not drastically improve.

A sensitivity analysis was performed on the FBD parameters taken from the
literature in light of the high amount of faith placed in the accuracy of these FBD
ranges. The potential error was characterized in percentages and can be used as a
guide to assess the effect that error may have upon the global totals of FBD that

were estimated by this model.

In the interest of global climate change and tropospheric chemistry, the FBD
surfaces were used as variables in a biogenic gas emissions model. The results of
this research used as an input for an isoprene model yielded favorable results
(Turner et al., submitted). The results are also being input into a water balance

model and a carbon flux model (Marks, submitted, and Gucinski, submitted).
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There is a need to refine the relationships between the satellite data and FBD,
as well as other biophysical variables. The new EOS platforms will provide much
improved data over present systems that will not only provide better relationships
for biophysical variables but will demand that the scientific community clearly

understand concepts associated with all aspects of remote sensing.

To go beyond empirical relationships based on satellite vegetation indices to
physcial relationships based on radiative properties of vegetation is a highly desir-
able research priority that would enhance the quantitative application of satellite
data. Ongoing remote sensing expirements such as FIFE, HAPEX-MOBLY, and
BOREAS may help to establish a more physiologically based model. The more
physiologically based a model becomes the less dependent the model becomes on
vegetation maps and other vegetation data. This is highly desirable for global and
regional remote sensing studies of vegetation where, as previously discussed, there
is a scarcity of physiological data to couple with the remote sensing data, because

one may not have to couple physiological data with remote sensing data.
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APPENDIX A

Monthly Images of GVI, January through December
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APPENDIX B

Derivation of FBD-GVI relationship

Original equation expressed generically:

Y=aln %
where:
Y =NDVI
X =FBD

a,b = biome specific constants

72

(D

Equation 1 must now be manipulated to bring X (FBD) to the outside. The follow-

ing equations show the steps of this process.

Divide both sides by a.
Y_ X
a
Exponentiate the equation.
ex r_x
P a b
Multiply both sides by b.
Y
X = —
aexp

Variable Substitution and further algebraic manipulation.

Set up the equations in order to simultaneously solve for a and b.

)

3

4)
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(the equations are manipulated with the X and Y variables for ease)

X = aexp % 5)
remove the exponent
InX=In [aexp%] (6)
final equation
InX =Ina + Y (7)
Substitute in the known model variables.
InFmax=Ina + N”;ax )
InFrmin=Ing + 2270 9)

where;

Fmin = FBD minimum value per biome
Fmax = FBD maximum value per biome
Nmin = GVI minimum value per biome
Nmax = GVI maximum value per biome

a,b = biome specific constants

Solve for for b.

InFmax =Ilna + Nmax

(10)

InFmin=Ing + 7%

(11
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Subtract equation 11 from equation 10

In { Fmax ] _ Nmax —Nmin (12)

Fmin b

_ Nmax—Nmin
" InFmax |Fmin

Solve for a in terms of b. (leave b as the variable "b").

Nmax

InFmax=Ina (14)

Ina=InFmax—Inb (15)

expontiate

—Nmax
b

a=Fmax (16)

The components of the model are now ready to be solved with the data

presented in the methods section of this manuscript.



APPENDIX C

1) Table of biome specific variables and constants
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Biome Fmax | Fmin | Nmax | Nmin B A
NonpolarDesert 0.05 0.01 33 5 0.0077137 | 19.2614
PolarDesert 0.10 0.01 17 4 0.0031623 3.47438
Tundra 0.05 0.01 37 6 0.0073951 | 19.8827
SouthernTemperateBLF 0.80 0.20 45 8 0.14938 274112
Grassland 0.5 0.05 42 9 0.024885 14.3317
Shrubland 0.5 0.10 39 4 0.081248 19.2614
Farms/Towns 0.5 0.1 42 8 0.064472 20.5041
NonpaddyIrrigatedDryland 0.5 0.1 37 4 0.082277 20.5041
Forest/Fields/Woods 0.8 0.1 45 10 0.05202 16.8314
NorthernTemperate BLLF 0.6 03 50 8 0.18899 43.2809
CoolConiferHardwood 1.0 0.3 46 7 0.20549 29.0704
TropicalMontane 0.7 0.3 45 15 0.1964 35.4067
Wetlands/Hinterlands/Shore | 0.5 0.1 40 7 0.072478 21.7467
DryForestandWoodland 0.5 0.1 42 10 0.060474 19.8827
Semi-aridWoodland 0.3 0.1 33 6 0.073060 254867
WarmConiferForest 1.0 0.1 41 12 0.030303 11.726
Paddyland 0.5 0.1 38 10 0.056282 17.3974
Taiga 1.5 0.3 40 20 0.060 12.4267
TropicalSeas.HumidBLF 0.8 03 45 22 0.1174 23.4495
Trop/Subt.HumidFrst 1.3 0.3 44 20 0.088397 16.3673
CoolConiferForest 20 0.5 45 17 0.21549 20.1977




APPENDIX D

1) Table of Olson categories by number used in the aggregation.

Biome Olson Categories
NonpolarDesert 49526971
PolarDesert 50 51
Tundra 42535463
SouthernTemperateBLF 26
Grassland 40 64
Shrubland 41
Farms/Towns 3031
NonpaddylIrrigatedDryland 3738139
Forest/Fields/Woods 5556 57 58
NorthernTemperateBLF 25
CoolConiferHardwood 2324
TropicalMontane 28
Wetlands/Hinterlands/Shore | 44 45 65 66 67 68 72
DryForestandWoodland 3243
Semi-aridWoodland 46 47 48 59
WarmConiferForest 27
Paddyland 36
Taiga 20216061 62
TropicalSeas.HumidBLF 29
Trop/Subt.HumidFrst 3373
CoolConiferForest 22
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APPENDIX E

Temporal Profiles for Each Biome

77



MEANGVI
60

55 ]
50 ]
a5 3
40
35 ]

20 3
154

5 ]

25

K
[ S I

GV and Olson aggregation data
Al GV values of 0 deleted

Area—weighted mean GVI ve& Month
HEMI =N BIOME = (0) no data

N

T T T T T T T T T

FEB MAR APR MAY JUN JUL AJG SEP oCcT
MONTH

IMEANGWV!
60 4

55 ]
50 1
45 3

35
30 ]
25
20 3
15 3

53

GV and Oison aggregalion data
All GV values of 0 doeleted

Area--weightsd mean GVI v Month
HEMI=N BIOME = (1) Ice

FEB MAR APR MAY JUN JuL AUG SEP OoCT

NOV DEC

78



GV! and Oison aggregation data
All GV values of O deleted
Area—weighted mean GV vs Month
HEMI =N BIOME = (2) Nonpolar Desert

MEANGV!
80 4
55 ]
50 3
45 1
40 ]
35 ]
30 4
25
20 {

JAN FEB MAR APR MAY JUN JUL AUG SEP oCT NOV DEC
MONTH

GV and Oison aggregation data
Al GV values of O deleted

Area—weighted mean GV vs Month
HEMI|=N BIOME = (3) Polar Desert

MEANGMVI
60 4

55

45 4
40
35 ]
30 3
25 3
20 3
15
10

5>’|<>'< """" """" >‘< """" >i< """" * """" * """" >’< """" >’< """" >‘< """"" >K ------- >,< """"" >k

0

T T T T T T T T T T T T
JAN FEB MAR APR MAY JUN JuL AUG SEP OoCT NOV DEC

MONTH

79



IMEANGVI
80

55 4
50 3
45 3
40 3

30 3
25 4
20 3
15 3

53

10:"<" """" >|<>‘< _______ * _____ g

GW! and Oison aggregation data
All GV values of 0 deleted

Area—weighited mean GVI vs Morith
HEME=N BIOME = (4) Tuncira

FEB MAR APR MAY JUN JUL AJG SEP oCcT NOV

DEC

IMEANGVI
60

55 3
50 ]
45
40 3
35 3
30 ]
25
20 ]
15 4

10:,,< ------

51

GV and Oison aggregation data
All GV values of 0 deleted

Area-weighted mean GVt ve Month
HEMI =N BIOME = (5) Southem Temperate Bif

T T T T T T T T T T
FEB MAR APR MAY JUN JUL AUG SEP ocT NOV

MONTH

80



IMEANGWV!
80

55 ]
50 3
45 ]
40 3
a5 3
30 4
254
20
15 4
10 4§

e

GV and Oison aggregation data
All GV values of O deleted

Area—weighled mean GVl vs Month
HEM( =N BIOME = (8) Grassland

IMEANGVI
60 4

50 ]
45 J
40 4
35 1
30 ]
25
20 3
16 3

53
04

GVl and Olison aggregation data
All GV values of 0 deleted

Area—weighted mean GVI vs Month
HEMI =N BIOME = (7) Shrubland

et o

T T T T T T T T T T
FEB MAR APR MAY JUN JuL AUG SEP ocT NOV

MONTH

T
DEC

81



60

55 §
50 4
45 3
40 {
35
30 4
25 4
20 4
15 4

5
04

GVI and Oison aggregalion data
All GV values of O deleted

Area—weighted mean GVl vs Month
HEMI=N BIOME = (8) Farms and Towns

MONTH

SEP ocT -~

DEC

IMEANGVI
60 4

55 4
50 7
45 4
40 4
35 4

GV and Olson aggregation data
All GV values of O deleted

Area—weighted mean GVI ve Month
HEMI=N BIOME = (8) Nonpaday imgated Dryland

APR MAY JUN JUL o
MONTH

SEPoeT Nov

DEC

82



IMEANGVI

GV and Olson aggregation data
All GV values of 0 delsted

Area - weighted mean GVI vs Month

HEMI =N BIOME = (10) Fores!/fFields/Woods

MAY JUN JUL AJG SEP ocT NOV

DEC

MEANGVI
4

55 3
50 3
45 J
40 3
35 ]
30
254
20 3
156 4

1:): >'< _________

GM and Olson aggregation data
All GV values of 0 delsted

Area—weighted mean GV vs Month
HEMI =N BIOME = (11) Northem Jemperato Bit

T T T T T T T
MAY JUN JUL AUG SEP ocT NOV

MONTH

83



IMEANGVI
80

55 J
50 3
45 ]
40 3
35 4

25 1
20 3
15 4

&
104
¥

0

GW! and Oison aggregation data
Al GV! values of O deleted
Area—weighted mean GV vs Month
HEMI =N BIOME = (12) Cool Conifer Hardwood

T T T T
JUL AUG

MONTH

SEP

ocT

NOV

DEC

IMEANGVI
60

55 3
50 3
a5 §
40 3
35 1

25
20 3
15 4

~
104
5 3

GV and Oison aggregation data
All GV1 values of O deleted

Area—weighted mean GVl vs Month
HEMi=N BIOME = (14) Wellands

SEP

ocT

NOV

DEC

84



MEANGVI

GVI and Ofson aggregation data
Al GV1 values of O deleted

Area~weighted mean GVI va Month
HEMI =N BIOME=(17) Warm Conifer Forest

T T T T T T T T T T
FEB MAR APR MAY JUN JUL AUG SEP ocT NOV

MONTH

DEC

IMEANGVI

GV and Oison aggregation data
Al GV values of 0 deleted

Area—weighted mean GVl vs Month
HEMI=N BIOME = (18) Paddyiand

FEB MAR APR MAY JUN JUL AUG SEP ocT NOv
MONTH

DEC

85



IMEANGVI
80 A

55 {
50 3
45 4
40 4
35
30 3
25

15 4

GV and Olson aggregation data
All GV values of 0 deleted

—weighted mean GVl ve Month
HEMI=N BIOME = (19) Taiga

MEANGVI
4

55 1
50 3
a5 ]
40
35 4
30 4
25 3
20 4
15 §

54

10: +< ~~~~~~ *

GV and Olson aggregation data
All GV values of 0 deleted

Area—weighied mean GVI ve
HEMI=N BIOME = {22) Caal C“‘ffevhmﬂoum,

FEB




GV and Ofson aggregation data
Area—weighted, areas are in km**2
All GV values of 0 deleted

Area--weighled mean GVI vs Mortth
HEMI =T BIOME = (13) Tropical Montane Foreat

IMEANGVI
60 4

&5
50
45 -
40 4
35 4

25>,l<_ _______ * _______ >|< >'< _____ ** """" >'< """" >|< ------- >‘< >,</, /,»

20 4
15
10 4
5
04

o] sk

T T T T 4 T T T T T T

JAN FEB MAR APR MAY JUN JUL AUG SEP ocT NOV
MONTH

DEC

GV and Olson aggregation data
Area—weightod, areas are in km**2
Al GVI values of O deleted
Area--weighted mean GVl vs Month
HEMI=T BIOME = (15) Dry Foreet and Woodland

IMEANGVI
50 4

55 J
50 4
45

25 ] p - >k

15
10 4
5
0
T T T T T T T T T T T T
JAN FEB MAR APR MAY JUN JuL AUG SEP ocT NOV DEC

87



GV and Olson aggregation data
Area—weighted, areas are in km**2
Al GV values of O deleted

Area—weighled mean GVl vs Month
HEM! =T BIOME = (20) Trop. Seas. Humid Frat

IMEANGVI
80

85 4
50
45 4
40 4

= P

R A SRS e

20 4
15 4
10 1
5
04

1 T T T T T T T T T T T

JAN FEB MAR APR MAY JUN JUL AUG SEP ocT NOV DEC
MONTH

GW! and Oison aggregalion data
Area—weightod, areas are in km**2
Al GV valuee of 0 deleted
Area—weighted mean GV vs Month
HEMI =T BIOME = (21) Top/subt. Humid Frst

MEANGMVI
60

55 |

45 4
40

35 * """" *
O D ... ) s

25
20
15
10 4
5

JAN FEB MAR APR MAY JUN JuL AUG SEP ocT NOV DEC
MONTH




MEANGVI

GV and Olson aggregation data
Al GV values of 0 deleted

Area~weighted mean GV vs Month
HEMI=8 BIOME = (16) Semi — arid Woodiand

MAR APR MAY JUN JUL AJG SEP ocT NOvV

3y



APPENDIX F

Calibration Curves for Each Biome
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APPENDIX G

Monthly FBD Surfaces, January through December
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APPENDIX H

Monthly Histograms of GVI per Biome
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APPENDIX I

Monthly Histograms of FBD per Biome
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