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Chapter 1: Introduction

Porous materials are ubiquitous in nature and engineering. These multiphase materials often

contain a skeletal solid matrix phase interlaced with fluid filled pores. Even dense materials

such as glass and metal alloys may contain small pores within the solid matrix even though

such materials are usually not classified as being porous [2, 3]. The morphology of the solid

phase controls the transport characteristics of a porous material. For example, pores may

form complicated interconnected networks that tend to inhibit the flow of solutes through a

porous medium. These networks are defined by the diameter of the pore channels, the degree

of straightness of these channels, and the interaction of a solute with the solid matrix to name

a few. In addition to microscopic features, larger structures such as fractures and overall solid

phase composition can significantly alter the flow of fluids through a porous material. While

a mathematical model incorporating all of these effects may be derived, the act of solving

these equations on a domain size relevant to engineering applications is challenging.

In modeling a porous material, two approaches are typically pursued: 1) small, highly

detailed models fully resolved at the microchannel level and 2) macroscale models that implicit

contain microscale information. While explicit, detailed models are highly accurate, only very

small porous domains on the order of centimeters may be solved using such methods. This

is because the geometry of such models is exceedingly complex, requiring three-dimensional

models of the individual microchannels within the material. To accurately solve such a model

with a finite element method, a very fine mesh must be used to resolve the pore network

which may require millions of nodes. As a result, the amount of memory required to store

the mesh and the matrices representing the model equations is extremely large and does

not scale well as the size of the porous domain being modeled is increased. Furthermore,

discretizing the governing differential equations results in extremely large systems of equations

that usually require expensive iterative methods to solve. The cost is especially steep for
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the case of transient and nonlinear transport equations which require many steps to solve.

While sophisticated high performance computational systems exist to solve these types of

models for more physically relevant domain sizes, most research groups do not have access

to such resources. Computational fluid dynamics has been used to develop a highly resolved

model of the fouling of a porous membrane by Blue Indigo dye [4]. The model was able

to predict the fouling pattern of the membrane filter at various feed velocities. Another

approach utilizes the extended Nernst-Planck equations which model solute transport through

nanomembranes [5]. This approach accounts for diffusion, electromigration, and convection of

charged particles due to concentration, electrical potential and pressure gradients across the

membrane. Additionally, the interactions of the solute ions with the membrane matrix were

accounted for using the nonlinear Poisson-Boltzmann equation. The solutions to this model

were shown to agree well with experimental results for a range of solutions containing single

salts, mixed electrolytes, and mixed solutes.

An alternative is to implicitly model the microscopic features of the porous material. This

allows for the porous medium to be represented as a macroscale continuous material without

explicitly modeling the complicated microchannel network. Typically, the effects of the mi-

crochannels are represented by parameter coefficients in the governing differential equation.

A classic example of such a model is Darcy’s law which typically models groundwater flow [6].

Darcy’s law encompasses the effect of the porosity of the microchannels in the porous medium

and the degree of connectedness of the pores through the use of a permeability coefficient.

Because Darcy’s law is applied to a macroscale domain, none of the geometric complexity of

the microchannels is needed to be resolved by a mesh. This decreases the required amount of

computational resources to solve the implicit model at the expense of model accuracy. Fur-

thermore, the accuracy of Darcy’s law relies on the assumption that the porous material is

uniform and that no preferential flow pathways exist within the microchannel network such as

a fracture. Darcy’s law also is deficient at modeling heterogeneous materials such as porous

mediums with large gradients in porosity.

In the past 60 years, many new heterogeneous porous media models have been developed.
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Figure 1.1: Volume averaging replaces a complex multiphase porous diffusion model with an
equivalent single-phase model. The complicated geometry information of the original model
is contained within the effective diffusivity tensor, Deff . Adapted from [1].

The equivalent continuum model is an example of an early implicit model which partitions the

heterogeneities within porous material into smaller continuous domains and then solves for the

resulting macroscale hydraulic properties for each subdomain [7, 8]. Another example is the

dual-porosity model which divides the porous system into two components: the fractures and

the solid matrix [9, 10]. Additionally, two sets of parameters are used to describe the transport

within the fractures and the solid matrix with a coupling term that describes the diffusion of

solutes between the two systems. This model was later generalized by the multiple interacting

continua model which creates nested subdomains to model the hydraulic characteristics of flow

through the fractured material as a function of the distance from the fracture [11]. The dual-

permeability model is similar to the dual-porosity model except that it addresses the main

limitation of the dual-porosity model by accounting for both diffusion and advection between

the fractures and solid matrix [12, 13].
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The method of volume averaging (MVA) [14] combines the best features of these two

approaches. In this approach, an averaging operator is applied to the microscale governing

differential equations for the fluid and solid phase. This produces a single new upscaled gov-

erning equation that is valid over both the fluid and solid fractions of the porous material.

In effect, volume averaging replaces the original multiphase domain with a simple single-

phase model. The geometrical complexities of the original domain are folded into the effective

parameters produced during the averaging process. In developing the upscaled averaged equa-

tion, the microscale concentration is decomposed into an average and deviation component

much like the Reynolds-averaged Navier-Stokes equations. To close the problem, a model

for the deviation component must be created. This model is solved using a highly detailed

representative elementary volume (REV) is that captures the essential microscale information

of the porous material. The solution of this closure model is used to calculate the effective

hydraulic parameters that were produced during the upscaling process. Thus, the upscaled

equation represents the implicit portion of the model and the closure problem solved over the

REV contains the highly detailed explicit model.

This approach is successful because the REV is typically much smaller in size compared to

the original porous material which saves computational resources. Due to this, the quality of

the solution directly depends on the proper selection of the REV. In volume averaging, REVs

are typically developed for disordered and periodic porous materials. While porous materials

occurring in nature typically possess regions of random porous networks interspersed with

ordered regions, a disordered media assumes that the porous network is completely random

or statistically stationary. For a REV to be statistically stationary, it is required that the

REV represent the average configuration of the material over many separate realizations. In

addition to this, the REV must be large so that averaged quantities such as porosity and

concentration fields do not fluctuate significantly between separate realizations of the porous

material. Conversely, periodic porous materials are comprised a unit cell that repeats at

regular intervals in space. The averaged parameters tend to fluctuate periodically across the

unit cell as a result of the highly structured nature of periodic porous materials. In this
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scenario, the REV is typically one unit cell of the periodic material.

While modeling homogeneous porous materials using upscaling techniques such as MVA,

multiple scales [15] and homogenization theory [16] has been extensively studied, adapting

these methods to heterogeneous media remains a challenging problem. Porosity-graded mem-

brane filters are an example of such a material and are increasingly being used in the food and

pharmaceutical industries due to their resistance to fouling. Standard membrane filters with

constant porosity typically only separate contaminants at the surface of the membrane leaving

the filter matrix below the surface under-utilized. Consequently, surface blockage drastically

decreases the performance of the filter. The porosity of graded filters instead decrease across

the membrane which allows for different sized contaminants to be removed at different depths

along the filter. This causes the entire filter media to be utilized which increases the filtration

efficiency and also decreases the occurrence of complete pore blockage. These types of fil-

ters would find extensive applications in kidney dialysis [17], dairy and fruit juice processing

[18], and biopharmaceutical products filtered from blood [19]. Further applications of mod-

eling heterogeneous porous media include nuclear waste disposal performance evaluation [20]

and water treatment within stratified aquifers [21, 22], and intercellular transport within cell

cytoskeletons [23].

In this work, we seek to extend MVA to model such heterogeneous porous materials with

significant porosity gradients. In particular, our model incorporates geometrical properties

such as the porosity and first moment when solving the closure problem and calculating

the effective diffusivity tensor. The accuracy this model is compared against two previously

reported MVA models for four porosity cases. The trends in the results are explained by

examining the convergence of the Taylor series approximation of the molar flux for each

porosity case.
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Chapter 2: Steady-State Diffusion in a Spatially Varying Porous

Medium

2.1 Abstract

The objective of this paper is to derive an upscaled model that well-approximates the mass

transport of a substance through a porous matrix possessing significant porosity gradients.

The method of volume averaging (MVA) is used to develop a model incorporating the mi-

croscale first moment of the porous material to improve accuracy. The model is tested in four

cases: (1) a periodic homogeneous medium, (2) a quasi-periodic heterogeneous medium with

a gradual porosity change, (3) a quasi-periodic heterogeneous material with a discontinuous

jump in porosity, and (4) a disordered heterogeneous porous medium with a discontinuous

jump in the porosity. This model is shown to compare favorably to the direct numerical

simulation (DNS) in all four cases. For heterogeneous materials, the success of the MVA

models are found to depend heavily on the type of weighted average used for the averaging.

To illustrate this, the results using mollified triangle and boxcar functions are presented. No-

tably, the more traditional boxcar weighting function produces unphysical negative values for

the effective diffusivity tensor while the triangle function is observed to successfully simulate

the heterogeneous material. The differences in the performance of the weighting functions is

explained by checking the convergence of the Taylor series that approximates averaged molar

flux through the porous medium. A particularly interesting (and previously unaddressed)

feature of this work is that we illustrate that even for periodic systems more than one unit

cell should be used for closure, of there is no sensible method to compute the average as the

averaging domain translates through one period of the periodic structure.

This work seeks to both expand the utility of MVA to simulating transport in heterogenous

porous material while also exploring the subtle differences in modeling periodic and disorder
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porous media. These results provide valuable insight into both of these areas.

2.2 Introduction

Porous materials with significant gradients in porosity occur for a number of applications.

Examples include graded electrodes in lithium-ion batteries, membrane filters [24, 25], oil

recovery from fractured reservoirs, and many others [21, 22, 26, 27]. Because this problem has

relevance to applications, it has received significant recent interest on the theoretical front [28,

25, 29, 30]. Both the geometry of and transport phenomena within porous materials possess

multiple length and time scales. The pore-scale attributes of the material (e.g., geometry,

pore-space interconnectivity, particle size, microchannel torturosity, etc.) significantly affect

the macroscale transport of quantities such as heat and mass within the porous medium as

a whole. The advent of pore-scale models has greatly advanced the understanding of the

relationship between the microscale and macroscale features and phenomena. However, in

practice, these models are typically limited to domains no larger than a few centimeters due

to the enormous amount of computational degrees of freedom required to directly model every

microchannel within a porous material (especially in three-dimensions).

Various upscaling methods have been developed whose purpose is to capitalize on redun-

dant information in the porous structure so that more compact macroscale models can be

used to simulation processes within a porous material. The method of volume averaging

(MVA) is one such method, and is adopted in this paper for upscaling purposes. Instead of

solving the pore-scale transport equations for a fully resolved porous domain, MVA identifies

a representative elementary volume (REV) which contains a sample of the pore-scale domain

information that well-represents the entire porous material on average. Using the REV, values

for macroscale parameters such as the effective diffusivity tensors may be calculated and used

to model large-scale transport across the porous media. These effective parameters represent

the link between the original pore-scale model and the final macroscale model derived from

the averaging process.

Porous media is typically classified as being either spatially periodic or disordered (stochas-
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tic). Periodic porous media consists of an array of repeating sub-elements that together

comprises the overall periodic system. These materials possess attractive properties such as

increased surface area for heat exchange and surface catalysis applications which increases

process efficiency. Furthermore, since the material is highly structured, the pressure drop of

fluids flowing through periodic porous media has been shown to be much smaller than in dis-

ordered porous materials, thus making these very energy efficient materials [31]. On the other

hand, natural materials tend to be disordered; this, for simulating the transport phenomena

in random packings or natural media, one must generate suitably-prepared realizations of the

appropriate structure. MVA handles these two classes of porous materials similarly with one

notable exception: the choice of the REV. For periodic material, the REV is typically chosen

to be the unit cell of the periodic structure (although, we will re-address such choices in the

material that follows). Choosing the REV for a disordered system is generally more difficult.

Since the REV represents the average configuration of many realizations of the porous media,

it is generally required that the REV is large enough such that the average properties of the

medium are constant over these separate realizations [30]. However, it is also necessary that

the statistics of the transport phenomena be considered because they are not always of the

same scale as the underlying geometry of the media (e.g., this can be the case, for example,

when there is turbulence in porous media).

In this work, we derive averaged macroscale transport equations for mass transport in

quasi-periodic and disordered porous material with large gradients in the porosity. The paper

both compliments and extends existing work by including new corrections for the spatially-

evolving structure.

The paper is organized as follows. In Section 2.3, the macroscale averaged balance equa-

tions are derived using MVA. The properties of the three weighting functions used in this work

are detailed in Section 2.4. The following three sections present the results for the case of a

periodic homogeneous porous material (Section 2.5), a periodic porous material with a jump

in the porosity of various smoothnesses (Section 2.6), and finally, the case of two-dimensional

disordered porous media with a jump in the porosity (Section 2.7). Section 2.8, seeks to
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explain the success of the various models used by comparing the convergence of the Taylor

series approximation of the average flux for many of the cases studied. Finally, we conclude

in Section 2.9 with a short summary of the primary results presented in this study.

2.3 Steady Diffusion in a Heterogeneous Porous Medium

2.3.1 Microscale balances

In the material that follows, we examine the upscaling of both a periodic medium and a

disordered monodisperse medium. Both problems present some interesting complexities in

upscaling despite the simplicity of the geometries. Although volume averaging is usually

applied to the transient form of balance equations, here we will be considering only the

steady-state solution of diffusion in a porous medium. This does not limit the analysis in any

way, but it does allow us to focus on how the media structure influences transport properties

without having to consider transient effects.

We represent the entire averaging volume as V (x) which is referenced by the location of

its centroid, x. Three distinct regions reside within the averaging volume for the two-phase

system studied in this paper, namely, the γ-phase fluid region, denoted by Vγ(x), the κ-phase

solid region, Vκ(x), and the set of γ-κ interfaces separating the two phases, Aγκ(x). Formally,

the averaging volume may be stated as a union of these three subdomains as given by

V (x) = Vγ(x) ∪Aγκ(x) ∪ Vγ(x) (2.1)

Additionally, the boundary of the averaging volume forms a separate exterior interface denoted

as Ae(x). This interface cuts across both γ- and κ-phase regions and is represented by

Ae(x) = Aγe(x) ∪Aκe(x) (2.2)

where Aγe(x) and Aκe(x) represent the parts of the averaging volume boundary that intersects

the γ- and κ-phase, respectively.
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To start, we consider the following problem of pure (dilute) steady diffusion in a periodic

material with finite scale for the period.

∇ · (DAγ∇cAγ(r, t)) = 0, for r ∈ Vγ(x) (2.3)

B.C. 1 −nγκ · (DAγ∇cAγ(r, t)) = 0, for r ∈ Aγκ(x) (2.4)

B.C. 2 cAγ(r, t) = Fγ(r), for r ∈ Aγe(x) (2.5)

This set of equations is applied to the microscale and describes the process of mass transfer

via diffusion (under the dilute solution approximation) everywhere in the fluid phase of the

medium. Although the problem appears to be straightforward, the fluid-solid boundary can

be quite complex, and this boundary subverts the otherwise simple structure of the problem.

Thus, the description of the diffusion process over the entire domain Vγ is a non-trivial

problem.

The goal of volume averaging is to identify and capitalize on statistical or geometric

redundancies in the information content of complex systems. Though we will not pursue

concrete notions of information content in this work, the idea has enough intuitive appeal to

convey the essential features of the upscaling process.

2.3.2 Averaging

The volume average can be defined in a number of ways; here, we adopt a distribution

theory formulation because of its transparency for operations done on averages. Averages are

identified with compact averaging domains (volumes) denoted V (x), where each averaging

volume is identified uniquely by its centroid, x. Typically, we assume that averaging volumes

have a support domain with characteristic length scale r0, which can be represented by, for

example, an integral scale of the correlation structure [32]. Any point in the field can be related

to the centroid by the decomposition r = x+y (Fig. 2.1); this is similar to the approach used

in the multiple-scale method of homogenization theory [?, ]Chp. 7]Cioranescu2000. Note that
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 fluid
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Figure 2.1: The relationship among the position vector, r, the centroid, x, and the displace-
ment vector, y within an averaging volume, V .

we treat the vector y as being embedded in an affine space, so that the displacement vector

y extends from the point x to the point r (or, conversely, y=r-x).

The average of any field property ψ(r) is specified by

〈ψ〉|x =

∫
r∈V (x)

ψ(r)Iγ(r)w(r− x) dV (r) (2.6)

Recalling the relationship y = r − x and the fact that the point x is fixed, we can express

this average equivalently as follows

〈ψ〉|x =

∫
y∈V (x)

ψ(x + y)Iγ(x + y)w(y) dV (y) (2.7)

In both of these expressions, w is a compact C∞ weighting function, and Iγ is an indicator

function defined by

Iγ(r) =

 1, r ∈ Vγ(x)

0, r otherwise
(2.8)
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As part of the upscaling process, we often need to exchange the operations of averaging

with the spatial gradient. To do so, we adopt the use of the spatial averaging theorem

[14, 33, 34]. Taking the gradient with respect to x of both sides of Eq. (2.9), it is easy to

develop the result

〈∇ψ〉|x = ∇ 〈ψ〉|x +

∫
y∈Aγκ(x)

nγκψ(x + y)w(y) dV (y) (2.9)

where nγκ is the vector pointing from the γ to κ -phase (Fig.2.1). Note that we have ∇x =

∇y = ∇r [35, 36], so that it is not necessary to explicitly indicate the variable for differentiation

except for those cases where it is needed for clarity.

To proceed, we apply the averaging operations defined previously to both sides of the

diffusion equation. Upon averaging and applying the spatial averaging theorem we find

∇ ·
(
DAγ 〈∇cAγ〉|x

)
+

∫
y∈Aγκ(x)

nγκ · (DAγ∇cAγ(x + y))w(y) dA(y) = 0

(2.10)

Because of the boundary condition at the fluid-solid interface, this expression is immedi-

ately reducible to

∇ ·
(
DAγ 〈∇cAγ〉|x

)
= 0 (2.11)

Applying the spatial averaging theorem a second time yields the result

∇ ·

[
DAγ∇ 〈cAγ〉|x + DAγ

∫
y∈Aγκ(x)

nγκ(x + y)cAγ(x + y)w(y) dA(y)

]
= 0 (2.12)

To make further progress, it is useful to define the deviation concentration by the sum of the
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mean plus a deviation

cAγ(r) = 〈cAγ〉γ |r + c̃Aγ(r) (2.13)

Note that this average is defined differently from those of Gray [33] and Bear [37], who define

the deviations by subtracting the average concentration defined at the centroid, 〈cAγ〉γ |x.

In the remainder of the paper, we will no longer explicitly list the independent variables

unless they are needed for clarity. Substituting this definition for the concentration decom-

position into the averaged balance equation yields

∇ ·

[
DAγ∇〈cAγ〉+ DAγ

∫
y∈Aγκ(x)

nγκ〈cAγ〉γw(y) dA(y)

+DAγ

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

]
= 0 (2.14)

At this juncture, we can follow the example of [14, Chp. 1] which suggests expanding the

average concentration as a Taylor series, and then adopts a sequence of geometric theorems

to make further simplifications. Typically, the center of mass of the γ-phase is assumed to be

constant. However, for a periodic averaging volume, the center of mass fluctuates across the

course of one period as the location of the γ-phase changes with respect to the centroid of the

averaging volume. Although the conventional order-of-magnitude arguments will not allow us

to simplify the problem (because these arguments are essentially a form of spatial stationarity

criteria for the geometric structure of the γ-phase), we can adopt an alternative approximate

approach. To start, we require that the average concentration across the averaging volume can

be well-approximated by a linear function. Thus, the Taylor series is explicitly approximated

by

〈cAγ〉γ |(x+y) = 〈cAγ〉γ |(x) + y · ∇〈cAγ〉γ |x (2.15)

In the material that follows, it will be convenient to define the following variables related

to the spatial statistics of the indicator function. Recall that y is and affine displacement
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vector defined by the difference y = r− x.

Y0(r;x) = 1 (2.16)

Y1(r;x) = (r− x) (2.17)

Y2(r;x) = (r− x)⊗ (r− x) (2.18)

(2.19)

or, alternatively

Y0(y;x) = 1 (2.20)

Y1(y;x) = y (2.21)

Y2(y;x) = y ⊗ y (2.22)

(2.23)

These definitions then allow us to define the (uncentered) spatial moments by [?]

M0(x) = 〈Y0〉|x =

∫
y∈V (x)

Iγ(x + y)w(y) dV (y) = εγ(x) (2.24)

M1(x) = 〈Y1〉|x =

∫
y∈V (x)

yIγ(x + y)w(y) dV (y) (2.25)

M2(x) = 〈Y2〉|x =

∫
y∈V (x)

y ⊗ yIγ(x + y)w(y) dV (y) (2.26)

Introducing the approximation given by Eq. (2.15) into Eq. (2.14), using the geometric

theorems [14], and converting to the intrinsic average concentration yields the result
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∇ ·

[
εγDAγ∇〈cAγ〉γ − (∇⊗ 〈Y1〉) ·DAγ∇〈cAγ〉γ︸ ︷︷ ︸

non-conventional correction term

+ DAγ

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

]
= 0 (2.27)

This equation is the steady-state version of the result in [14, ?] with a first order correction

arising from the geometrical structure of the porous medium. Physically, 〈Y1〉 represents the

center of mass of γ-phase within the averaging volume.

2.3.3 The Closure Problem

When upscaling microscale balance equations, equivalent effective parameters (in this case the

effective diffusion coefficient) must be calculated by means of a closure problem. The closure

problem accounts for the deviations in the microscale equations. Typically, a simple periodic

REV is created that well represents any deviations generated by the geometrical features of

the porous medium on the microscale. When deriving the closure problem, careful attention

must be paid to the separation of the micro and macro length scales. The first step in deriving

the closure problem for this example requires using the product rule to expand the divergence

operator. Doing this yields the expanded version of Eq. (2.27)

∇ · (DAγ∇〈cAγ〉γ) + ε−1γ ∇εγ ·DAγ∇〈cAγ〉γ

− ε−1γ (∇ · ∇ ⊗ 〈Y1〉) ·DAγ∇〈cAγ〉γ

− ε−1γ ∇⊗ 〈Y1〉 : DAγ∇∇〈cAγ〉

+ ε−1γ ∇ ·

[
DAγ

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

]
= 0 (2.28)

The next step is to recall the decomposition given by Eq.(2.13); this suggests that an equation

for the deviation balance can be found by subtracting the averaged equation ( Eq. (2.28)) from
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the point equation (Eq. (2.3)). The result of this operation is

∇ · (DAγ∇c̃Aγ)− ε−1γ ∇εγ ·DAγ∇〈cAγ〉γ

+ ε−1γ (∇ · ∇ ⊗ 〈Y1〉) ·DAγ∇〈cAγ〉γ

+ ε−1γ ∇⊗ 〈Y1〉 : DAγ∇⊗∇〈cAγ〉γ

− ε−1γ ∇ ·

[
DAγ

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

]
= 0 (2.29)

B.C. 1 −nγκ · (DAγ∇c̃Aγ) = nγκ · (DAγ∇〈cAγ〉γ) , for x ∈ Aγκ (2.30)

B.C. 2 cAγη = Fγ(x, t), for x ∈ Aγe (2.31)

At this juncture, many of the remaining terms depend on the macroscale average concentra-

tions. In order to fully decouple the microscale deviation concentration from the macroscale

equation, constraints are typically defined that the REV must satisfy. Satisfying these con-

straints allows for the full decoupling of the deviation concentration from the average concen-

tration. Generally, the effect of the nonlocal diffusion term is negligible in the closure problem

[32], and it is neglected in further analysis (cf. [14]). While we allow for the gradient of the

average concentration to be significant, we require that the term ∇⊗∇〈cAγ〉γ must be negli-

gible; if it is not, then a third-order derivative term would arise in the macroscale equation,

and this would create conceptual problems because third-order derivatives are not positive

semi-definite operators. Making these assumptions and restrictions yields a final result of the

form

∇ · (DAγ∇c̃Aγ)− ε−1γ ∇εγ ·DAγ∇〈cAγ〉γ

+ ε−1γ (∇ · ∇ ⊗ 〈Y1〉) ·DAγ∇〈cAγ〉γ = 0 (2.32)
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For the conditions explored here, it is clear that the volume diffusive source (involving the

gradients of the porosity) are significant and cannot be neglected. Additionally, it is assumed

that the second derivative of the center of mass is not negligible. This is based on the

observation that the center of mass oscillates linearly as the centroid of the averaging volume

moves across the periodic REV with sections of large local porosity variations as the averaging

volume center crosses over the edges of squares within the periodic array. Thus, the deviations

in the concentration may be characterized by the following governing differential equation

∇2c̃Aγ = ε−1γ ∇εγ · ∇〈cAγ〉γ − ε−1γ (∇ · ∇ ⊗ 〈Y1〉) · ∇〈cAγ〉γ (2.33)

At this juncture, we make the conventional arguments that the second boundary condition

can be approximated, for the purposes of closure, by periodic conditions in the vertical and

horizontal directions.

This leaves two source terms in the problem: one arising from ∇〈cAγ〉γ in the balance

equation, and one arising from ∇〈cAγ〉γ in the boundary condition. Thus the integral solution

for c̃Aγ will involve Green’s functions that generate both area and volume integrals of∇〈cAγ〉γ .

When localized [32], this will produce a solution with a single vector contracted with ∇〈cAγ〉γ .

The localized form of the solution requires that a conventional separation of the length-scales

be valid, i.e., `� r0 � L, where ` is the characteristic length scale for the microscale, L is the

characteristic length scale for the macroscale, and r0 is a measure of the size of the support

for the weighting function [32]. Thus, the localized closure variable takes the form

c̃Aγ = bγ(r) · ∇〈cAγ〉γ |r (2.34)

In volume averaging, mapping functions such as bAγ usually referred to as closure variables.

With this general form for c̃Aγ , we can develop a balance equation for the closure variable

bγ . Substituting Eq. (2.34) into Eq. (2.33) and simplifying gives the following problem
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∇2bγ = ε−1γ ∇εγ − ε−1γ ∇ · ∇ ⊗ 〈Y1〉 (2.35)

B.C. 1 −nγκ · ∇bγ = nγκ, for x ∈ Aγκ

B.C. 2 bγ(r + l) = b(r), for x ∈ Aγe

Substituting Eq. (2.34) into Eq. (2.27) yields

∇ ·

[
εγDAγ(∇〈cAγ〉γ − ε−1γ ∇⊗ 〈Y1〉 · ∇〈cAγ〉γ

+ ε−1γ

∫
y∈Aγκ(x)

nγκ ⊗ bγw(y) dA(y) · ∇〈cAγ〉γ)

]
= 0 (2.36)

Thus, the final closed problem can be put in the form

∇ · (εγDeff · ∇〈cAγ〉γ) = 0 (2.37)

where the expression for the effective dispersion tensor is as follows

Deff = DAγ

(
I + ε−1γ

∫
y∈Aγκ(x)

nγκ ⊗ bγw(y) dA(y)− ε−1γ ∇⊗ 〈Y1〉︸ ︷︷ ︸
correction term

)
(2.38)

2.3.4 Models with Increasing Order of Corrections

Three models are explored, each incorporating a successively higher order correction term to

the diffusion tensor. These models are numbered 0, 1, and 2 which denotes the order of the

term being maintained in the closure problem given by Equation (2.33). For example, the

above model is labeled Model 2 since it neglects the second-order Taylor series term while

including the zero- and first-order terms in the closure problem. The closure problems and
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expressions of the effective diffusivity tensor of the three models are listed as follows

Model 0

∇2bγ = 0 (2.39)

B.C. 1 −nγκ · ∇bγ = nγκ, for x ∈ Aγκ

B.C. 2 bγ(r + l) = b(r), for x ∈ Aγe

Deff = DAγ

(
I + ε−1γ

∫
y∈Aγκ(x)

nγκ ⊗ bγw(y) dA(y)

)
(2.40)

Model 1

∇2bγ = ε−1γ ∇εγ (2.41)

B.C. 1 −nγκ · ∇bγ = nγκ, for x ∈ Aγκ

B.C. 2 bγ(r + l) = b(r), for x ∈ Aγe

Deff = DAγ

(
I + ε−1γ

∫
y∈Aγκ(x)

nγκ ⊗ bγw(y) dA(y)

)
(2.42)

Model 2
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∇2bγ = ε−1γ ∇εγ − ε−1γ ∇ · ∇ ⊗ 〈Y1〉 (2.43)

B.C. 1 −nγκ · ∇bγ = nγκ, for x ∈ Aγκ

B.C. 2 bγ(r + l) = b(r), for x ∈ Aγe

Deff = DAγ

(
I + ε−1γ

∫
y∈Aγκ(x)

nγκ ⊗ bγw(y) dA(y)− ε−1γ ∇⊗ 〈Y1〉︸ ︷︷ ︸
correction term

)
(2.44)

2.4 The Weighting Function

Typically, volume averaging uses a uniform weighting (boxcar) function when calculating

averaged quantities such as the porosity (Fig. 2.2, left). However, the discontinuous boxcar

function is limited in that the resulting averages do not necessarily possess continuous first

derivatives. This presents a problem for closure problems of models 1 and 2 which require

that the porosity and first moment possess continuous first and second derivatives.

The discontinuous boxcar function does not fulfill the requirements for smoothness because

it is not a conventional distribution. Similarly, the indicator function Iγ(r) is also discontin-

uous across the γ-κ interfaces and is also not a conventional distribution. As a result, the

multiplication of the discontinuous boxcar and indicator function in Eq. (2.9) is not a defined

operator according to conventional distribution theory, and this has the potential to create

mathematical inconsistencies. Although there are new extensions of generalized functions that

seek to address this scenario [?, ?], we opt here to remain within the confines of conventional

distribution theory.

A simple method transform the discontinuous boxcar function into a conventional distri-

bution is to convolve it with a mollifying function. The key characteristic of a mollifying

function is that it is smooth or possesses derivatives of all orders. A common mollifier is the
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Figure 2.2: The discontinuous boxcar (left), mollified boxcar (middle), and mollified triangle
weighting functions (right).

“bump function” defined by

m(x) =


exp

(
− ε20
ε20−x2

)
,−ε0 < x < ε0

0, otherwise

(2.45)

In addition to being infinitely differentiable, this function is compactly supported and as a

result of this, the result of the convolution of any function with a mollifier is also a compactly

supported smooth function.

Our initial simulations used a mollified boxcar function, defined by

w�(x) = α�

z=∞∫
z=−∞

B(x− z;x−, x+)m(z)dz = (B ∗m)(x) (2.46)

where the boxcar function is given by

B(x− z;x−, x+) = H(x− x−)−H(x− x+) (2.47)

Here, H is the Heaviside function, and α� is a constant that assures that the area under the

weighting function is unity. The asterisk indicates convolution. The extension to multiple

dimensions is made by multiplying appropriately shifted copies of the boxcar function B.

A particular feature of the mollified boxcar function is that it assigns nearly equal weight-

ing over the entire averaging window (Fig. 2.2, middle). As a result, the mollified boxcar

function acts nonlocally, and tends not to damp oscillations from the averaged quantities.
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In the worst case scenario, these oscillations cause the effective diffusivity tensor to attain

unphysical negative values; this creates a macroscale diffusion equation that is ill-posed (see

the Appendix).

Conversely, previous studies have shown that triangle functions avoid many of these prob-

lems [30]. To explore this further, we adopt a mollified triangle function for weighting the

volume averages (Fig. 2.2, right). The mollified triangle function serves as a filter for high

frequency unphysical oscillations produced by the γ-κ interfaces intersecting the averaging

window but is also a smooth function. Due to both of these attractive qualities, the main

results of this work are produced using a mollified triangle function defined as follows

f4(x) =


1− |x|

r0−ε0 ,−(r0 − ε0) < x < (r0 − ε0)

0, otherwise

w4(x) = α4(f4 ∗m)(x)

(2.48)

where f4(x, y) is the (discontinuous derivative) triangle function, w4(x, y) is the mollified

triangle weighting function, and the integral of the weighting function is again forced to

be unity though the normalization constant, α4. The half-widths of the bump function

and averaging window are represented by ε0 and r0, respectively. Extensions to multiple

dimensions are again done by multiplying appropriately shifted copies of the one-dimensional

function. The mollified triangle was used as the weighting function for the cases 1-4 described

below. For Cases 1-3 the weighting function was in one-dimension, whereas for Case 4 it was

in two-dimensions.

2.5 Case 1: Homogenous Periodic Media

As a first examination of the effects of the corrections represented by model 0, model 1, and

model 2, each of these models were implemented in a periodic array of squares (as illustrated in

Fig. 2.3). In Fig. 2.3, the centroid of each square is located along the line (x, 0); similarly, all

averaging volumes are located this line. Note that any average property, then, is a continuous
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1

2

(0,0)

x1

x1

Figure 2.3: Case 1: a periodic domain averaged using a mollified triangle function (illustrated
above the region to which it is applied) with a width of two periods. The grayed regions
represent two different averaging volumes (with centroids located at x1 and x′1, respectively).
Note that the average is a continuous function, defined for all values of x1.

function of x (and, as defined here, does not depend upon y). The geometric properties of

the system (porosity, gradient of porosity, center of mass, etc.) were calculated using the

mollified triangle function defined over two periods in the x-direction. The triangle function

was mollified using a bump function with a half-width, ε0 equal to 2.5× 10−5 (Fig. 2.4). The

mollified triangle function is constant in the y-direction for reasons described shortly. Each

period was 1[mm] in length in the x- and y-directions. Of special note is the handling of the

domain edges in the x-direction. Since the γ-phase ends at the boundaries of the domain, the

porosity and center of mass experience severe distortions as the averaging volume centroid

approaches the domain boundary. For this work, the problem was handled by “padding” the

domain with additional unit cells that were then truncated to eliminate those cells influenced

by the boundary distortions.

The parameters for the simulations are summarized in Table 2.1. The DNS concentration

profile was calculated by taking the intrinsic average of the solution of the microscale equations

(Eqs. 2.3-2.5) solved over the entire macroscale domain. This average was calculated using

the mollified triangle weighting function. Separately, the closure problem was solved across

the microscale domain using Eq. (2.43). The periodic boundary conditions were enforced

on the outer edges of the rectangular domain. This solution was then used to calculate the

effective diffusion coefficient as a function of x using the mollified triangle function as shown in

Eq. (2.44) with and without the correction term. This approach is novel since the size of the

closure domain is larger than the averaging volume as opposed to being identical in size. This
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allows for the averaging volume to be moved within the closure domain to produce a spatially

varying function for the effective diffusivity coefficient as opposed to a single value. The

effective diffusion coefficients exhibit oscillatory behavior (Fig. 2.4). However, the magnitude

of the fluctuations is much larger for the effective diffusion coefficient calculated using the

MVA with the correction term. The source of these fluctuations stems from the accounting

for the change in the center of mass as the averaging volume slides across the microscale

domain.

Using the effective diffusion coefficients calculated using MVA, Eq. (2.37) was solved on

a one-dimensional domain with Dirichlet conditions determined from the DNS solution at

each boundary. The resulting concentration profiles are shown (Fig. 2.4) over one period

of the domain. Model 2 shows improved accuracy over both Model 0 and 1. Model 1 does

not appear to differ noticeably from Model 0 since the contribution of the zero-order porosity

term is negligible in homogeneous porous media. The improvement of including the first-order

center of mass term in Model 2 is very slight however this provides an example of how the

effective diffusivity tensor may possess strong fluctuations in periodic media.

The reason why this correction is successful is directly tied to ensuring that the average

concentration only changes linearly throughout each averaging volume. For average concen-

tration profiles with large second derivatives, this approach cannot be guaranteed to give an

Table 2.1: The parameters used for Case 1.

Lx 1.2× 10−2[m] Macroscale domain length
Ly 1.0× 10−3[m] Macroscale domain width

cAγ(x = 0, y) 0 [mol
m3 ] Macroscale domain boundary conditions

cAγ(x = Lx, y) 1 [mol
m3 ]

∂
∂y cAγ(x, y = 0) 0 [mol

m4 ]
∂
∂y cAγ(x, y = Ly) 0 [mol

m4 ]

DAγ 10−9[m
2

s ] Microscale diffusion coefficient
εγ 0.4 Periodic cell γ-phase porosity
lκ 8.36̄× 10−4 [m] κ-phase square side length
lp 1× 10−3[m] Period length
r0,x 2× 10−3[m] Averaging volume length
r0,y 1× 10−3[m] Averaging volume width
ε0 2.5× 10−5[m] Mollifying function characteristic length
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Figure 2.4: The effective diffusivity tensor, averaged concentration profiles, and relative errors
of Case 1 (left column, top to bottom) and the porosity, x-component and x-derivative of the
first moment vector (right column, top to bottom).

accurate solution. However, assuming that the constraints stated in this analysis are met, it

should be clear that additional microscale information may be transferred through the up-

scaling process by including the first-order Taylor series expansion term, thus improving the

qualitative and quantitative behavior of the calculated macroscale averaged concentration.
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Figure 2.5: The domains for the Case 2: gradually varying porosity (left) and Case 3: dis-
continuous porosity (right).

2.6 Case 2 and 3: Steady Diffusion in a Spatially Varying Quasi-

Periodic Porous Medium

Cases 2 and 3 represent a slightly more complex for upscaling; in these cases the medium

is envisioned as being infinitely periodic except for a transition in the porosity occurring in

the center of the domain. For Case 2, the change is somewhat gradual as the porosity varies

from 0.9 to 0.4 over a four periodic cells (Fig. 2.5, left). For Case 3 the change happens as

a discontinuity, where the porosity discontinuously jumps from 0.9 to 0.4 at the center of the

domain (Fig. 2.5, right). Because for both Cases 2 and 3 the effective parameters far from the

interface are essentially those described for case 1, we focus here specifically on the effective

parameters near the interface at x = L/2. For both cases, the closure problems (Eqs. 2.39,

2.41, 2.43) are solved using periodic boundary conditions on the outer edges of the rectangular

domain. The global constraint 〈bγ〉 = 0 is added to ensure existence and uniqueness of the

closure solution. This solution was then used to calculate the effective diffusion coefficient for

each model (Eqs. 2.40, 2.42, 2.44) which was then used to solve the macroscale equation (Eq.

2.37).

2.6.1 Case 2

For each model, the microscale equations used are identical to the constant porosity case; the

primary difference arises strictly from the geometry of the domain. For the Case 2, model 0

produces an effective diffusivity tensor that is negative near the interface of the two porous

regions (Fig. 2.6, top-left). This results from the inability of model 0 to account for gradients

in the geometric properties, and thus it inaccurately captures the average flux across the
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Figure 2.6: The effective diffusivity tensor, averaged concentration profiles, and relative errors
of Case 2 (left column, top to bottom) and the porosity, x-component and x-derivative of the
first moment vector (right column, top to bottom).
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Figure 2.7: The effective diffusivity tensor, averaged concentration profiles, and relative errors
of Case 3 (left column, top to bottom) and the porosity, x-component and x-derivative of the
first moment vector (right column, top to bottom)
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porosity change. Both models 1 and 2 fare better for this case. When the effective diffusivity

coefficient from both models 1 and 2 are used to simulate the macroscopic balance equation

for this case, they display excellent agreement with averaged concentration that is predicted

by averaging the DNS solution directly (Fig. 2.6, middle-left).

Although both models 2 and 3 perfrom acceptably well, it is clear that including successive

terms of the Taylor series for the flux reduces the relative error on average by up to a factor of

10 when comparing Model 0 to Model 2 (Fig. 2.6, bottom-left). In the comparison between

models 1 and 2, model 2 show a smaller improvement, but the relative error by a factor of

about 2.

2.6.2 Case 3

The effect of the first moment term is more prominent in Case 3 where the porosity abruptly

changes from 0.9 to 0.4 (Fig. 2.7, top-right). Model 0 produces an effective diffusivity tensor

with negative values across the porosity jump (Fig. 2.7, top-left). This is a non-physical result

that results in the macroscale average diffusion equation to become ill-posed. Models 1 and 2

produce similar diffusivity tensors that only differ significantly in the region of changing poros-

ity. Examining the macroscale average concentration profiles shows that Model 0 completely

fails to produce an accurate solution (Fig. 2.7, middle-left). Instead, the problem becomes

ill-posed over the porosity jump. The situation is improved for model 1, which remains well-

posed, but a large error is incurred due to the porosity interface (Fig. 2.7, bottom-left).

Finally, model 2 outperforms as it closely agrees with the averaged DNS solution at all points

along the averaged domain. In this case, the first moment significantly reduces the relative

error by about a factor of 10 (Fig. 2.7, bottom-right).

In both cases, the use of a proper weighting is required to avoid the introduction of delta

functions in the derivative of the averaged quantities as the averaging window passes over the

interfaces of the γ- and κ-phases. Our studies have shown that a triangle function mollified

with a small bump function smooths the edges and center of the averaging window. This allows

for the averages to belong to the space of C∞ functions. Furthermore, the use of a small bump
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Figure 2.8: Case 4: a disordered porous medium with a 0.5 jump change in porosity.

function largely suppresses any unphysical oscillations in the averaged quantities. We again

emphasize the importance of suppressing unphysical oscillations and refer the reader to the

Appendix for an example of what occurs when the unphysical oscillations are not suppressed.

2.7 Case 4: Steady Diffusion in a Spatially Varying Disordered Porous

Medium

In this section, we examine Case 4, which represents a two-dimensional medium for which

there is a jump discontinuity in porosity. The medium is illustrated in (Fig. 2.8). To generate

the medium, circles of two different radii (44.6 µm and 109 µm) were randomly placed in two

distinct subregions of the large-scale domain using an open-source packing algorithm [38]. The

resulting porous domain contained a horizontal (x-direction) jump in porosity at an interface

along the domain midplane.

As done for the first three cases, the effective diffusion coefficient was predicted from

models 0, 1, and 2, and then these effective coefficients were used to predict the average

concentration by solving the upscaled equation (2.37) over the domain. For comparison, DNS

simulations at the microscale were also conducted, and the average concentration computed

by directly applying the averaging operator to the microscale fields. The results from this

effort are shown in Fig. 2.10. For clarity, the dimensionality of the results have been reduced

by a projection onto the x-axis.

As constructed, the porous domain has a sharp horizontal change in porosity at the center
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Figure 2.9: The xx-component of the effective diffusivity tensor, averaged concentration pro-
files, and relative errors of Case 4 (left column, top to bottom) and the porosity, x-component
and x-derivative of the first moment vector (right column, top to bottom).
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of the domain from εγ = 0.9 to about εγ = 0.4. Specific effort was made to assure that the

averaging volume was sufficiently large enough so that the average values predicted did do

not randomly fluctuate significantly in homogeneous parts of the domain (i.e., sufficiently far

from the interface). Evidence that the size selected was reasonable can be seen in the plots

of the porosity, the x-component of the first moment, and the derivative of the first moment

respect to x (Fig. 2.9). As the averaging volume crosses from the high to low porosity

regions, the x-derivative of the first moment rapidly changes. This rapid change across the

γ-κ interface is due to the most of the γ-phase being located in the highly porous region as

the averaging volume transitions to the less porous subdomain. As a result, the first moment

vector points in the negative x-direction until the averaging volume fully crosses into the less

porous region. This change in the first moment affects both the calculated bγ-field and the

effective diffusivity tensor. Around the interface, the effective diffusivity coefficient rapidly

changes in magnitude. As the averaging volume approaches the interface from the left, the

diffusivity tensor experiences a sharp increase in magnitude. Furthermore, as the averaging

volume crosses to the less porous region, the diffusivity undergoes a sharp decrease until

the averaging volume is sufficiently far away from the interface. These sharp changes in the

diffusivity tensor are directly attributable to the derivatives of the first moment vector. Since

the first moment represents the γ-phase center of mass, upscaling this information to the

macroscale increases the accuracy of the MVA model. This is clearly seen when comparing

the concentration profile generated from Model 2 to Models 0 and 1 (Fig. 2.9, middle-left).

Model 0 exhibits large deviations from the DNS solution over the entire porous medium. This

contrasts to Model 1 which shows good agreement with the DNS solution in the low porosity

region, but deviates in the high porosity region and at the γ-κ interface. Model 2 displays

increased accuracy in the highly porous region of the material compared to model 1. However,

the relative error of model 2 in the low porosity region is comparable to model 1 (Fig. 2.9,

bottom-left). Overall, despite the large jump in the porosity, model 2 reduces the relative

error by a factor of 3 on average compared to model 0. For discontinuous porosity changes

smaller 0.5, the model can be expected to produce better agreement with the DNS solution.
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2.8 Convergence of the Taylor Series Approximation for the Average

Flux

Figure 2.10: The Taylor series average flux approximation for Case 1 (top-left), Case 2 (top-
right), Case 3 (bottom-left), and Case 4 (bottom-right).

In this section, we examine how the additional corrections to the diffusion coefficient

change the convergence of the flux in the system. Recall that when averaging the microscale

diffusion equation, the following nonlocal term containing the integral of the average concen-

tration arises

 nonlocal

term

 =

∫
y∈Aγκ(x)

nγκ〈cAγ〉γw(y) dA(y) (2.49)
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Noting that the Taylor series of 〈cAγ〉γ |x+y is written as

〈cAγ〉γ |x+y = 〈cAγ〉γ |x + Y1 · ∇〈cAγ〉γ |x +
1

2
Y2 : ∇∇〈cAγ〉γ |x + ... (2.50)

we can substitute this expansion into (Eq. 2.8) to give

∫
y∈Aγκ(x)

nγκ〈cAγ〉γw(y) dA(y) = −∇εγ〈cAγ〉γ −∇〈Y1〉 · ∇〈cAγ〉γ −∇〈Y2〉 : ∇∇〈cAγ〉γ − ...

(2.51)

Using this result and Eq. (2.14), the molar flux can be approximated by the following

Jγ |(x+y) = DAγ

(
εγ∇〈cAγ〉γ |(x) −∇〈Y1〉 · ∇〈cAγ〉γ |(x)

− 1

2
∇〈Y2〉 : ∇∇〈cAγ〉γ |(x) − ...+

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

) (2.52)

In this form, the molar flux is presented in a way that the influence of adding successive

corrections arising from the Taylor series change the flux. In particular, one can begin to

assess whether or not the upscaled flux in this representation even converges or not. Note

that if this sequence of partial sums does not converge, it has serious ramifications for the

upscaling process. In effect, it would indicate that no truncation of the series would lead to

an adequate representation of the average flux in the system. The only other choice would

be, then, to explore nonlocal formulations for the flux.

To calculate the partial sums, we solved the microscale PDE (Eq. 2.3) to determine the

pointwise concentration. This solution is then directly averaged with the weighting function to

create the averaged DNS solution. In this section, a mollified triangle weighting function was

used when calculating the averaged quantities. The derivatives of the averaged solution are

then used to evaluate the Taylor series terms. As previously, it is assumed that the y-direction

is quasi-spatially stationary [?, 32] and that the average concentration only depends on the

x-direction. Thus, the Taylor series reduces to a scalar equation for the average flux. The
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following three partial sum approximations of the molar flux for the γ-phase are considered

J0 = DAγ

(
εγ∇〈cAγ〉γ |(x) +

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

)
(2.53)

J1 = DAγ

(
εγ∇〈cAγ〉γ |(x) −∇〈Y1〉 · ∇〈cAγ〉γ |(x) +

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

)
(2.54)

J2 = DAγ

(
εγ∇〈cAγ〉γ |(x) −∇〈Y1〉 · ∇〈cAγ〉γ |(x)

− 1

2
∇〈Y2〉 : ∇∇〈cAγ〉γ |(x) +

∫
y∈Aγκ(x)

nγκc̃Aγw(y) dA(y)

)
(2.55)

For the mollified triangle weighting function, the partial sums appear to be converging

for all four cases considered in this paper (Fig. 2.10). However, the convergence of the

Taylor series is strongly dependent on the particular weighting function used to calculate the

averaged quantities. For the mollified boxcar weighting function, we find that the partial

sums appear to diverge for the periodic cases considered. Interestingly, the sums converge for

the disordered medium of case 4. These results are presented in the appendix.

2.9 Conclusions

The main goal of this study was to derive a MVA model of the transport of mass through a

porous material possessing a change in porosity. Doing this required the proper selection of a

mollified triangular weighting function and developing a suitable REV for the closure problem.

This approach was shown to be suitable for a variety of cases involving both homogeneous and

heterogeneous quasi-periodic porous mediums in addition to the case of a disordered porous

material. The main findings in the this study are summarized as follows.

1. Incorporating the ∇〈Y1〉 · ∇〈cAγ〉γ |(x) term of the Taylor series expansion results in a

significant improvement in the accuracy of mass transport simulations of heterogeneous

porous media. In the case of quasi-periodic porous materials, incorporating this addi-

tional term decreased the error by a factor of 10. For Case 3, the ε−1γ ∇εγ term must be
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included in the closure problem to ensure that the effective diffusivity tensor is positive

definite. However, the accuracy of the MVA model is greatly improve by also including

the −ε−1γ ∇ · ∇ ⊗ 〈y〉 term in the closure problem.

2. Selecting the proper form of the weighting function is paramount in ensuring the conver-

gence of the Taylor series approximation of the average flux of mass through the porous

material. Section 2.8 and A illustrate the effect of using a mollified triangle versus a

discontinuous and mollified boxcar weighting function. Though the mollified boxcar

function more closely represents the uniform weighting function typically used in MVA

for homogeneous materials, it fails to accurately approximate the average flux. This

results in a non-positive definite effective diffusivity tensor at points where the porosity

strongly varies.

3. To ensure the derivatives of the porosity and center of mass term are continuous, the

weighting function must be mollified by an infinitely differentiable function. In this

study, the bump function was convolved with boxcar and triangle functions so that the

resulting averaged properties were sufficiently smooth.

4. The addition of higher order Taylor series terms allows for the utility of MVA to be

expanded to porous materials with porosity jumps as large as 0.5. Our experience

has shown that for even larger porosity jumps, incorporating the ∇〈Y1〉 · ∇〈cAγ〉γ |(x)

term is insufficient to prevent the effective diffusivity tensor from becoming non-positive

definite.

This work represents a first step in expanding the applications of MVA to heterogeneous

porous materials with extreme changes in porosity. The results of model 2 were compared

against an averaged DNS solution and shown to possess a high level of agreement and superior

performance compared to the previous reported models 0 and 1. This shows that our approach

is indeed performing as expected and is able to accurately approximate the average flux of

material across a heterogeneous porous material. Furthermore, the derived model is extremely

general and is able to be applied to both quasi-periodic and disordered materials so long as a
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”sufficient” REV is selected. Additionally, these results are of course just as applicable to the

description of heat transfer through a heterogeneous porous medium. Further investigation

is required to expand this model to handle unsteady-state transport.

2.10 Simulation Files and Data

The simulation files and data (geometrical parameters and concentration profile solutions,

open-source-format meshes, and MATLAB and COMSOL input files) produced from this

study may be found at the following open source electronic archive: https://ir.library.

oregonstate.edu/concern/datasets/9880vw91t.

https://ir.library.oregonstate.edu/concern/datasets/9880vw91t
https://ir.library.oregonstate.edu/concern/datasets/9880vw91t
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Chapter 3: General Conclusions

The main goal of this thesis was to extend the method of volume averaging to the case of

heterogeneous porous materials. The manuscript presented addressed several issues in devel-

oping such a model for both periodic and disordered porous materials possessing large porosity

gradients and investigated the effects of different weighting function on model accuracy. The

main benefit of this technique is the ability to implicitly model large porous domains while

retaining important microscale information such as the first moment of the phases present

within the modeled material. Drawbacks in this approach include the need to still model an

REV that may be computationally expensive.

Future work includes applying this model to the description of transport in stratified

aquifers, oil reservoirs, and biological tissues. Specific next steps would include adapting the

volume averaged equations to include multiphase transport such as the case of extracting

oil from sandstone via water flooding. Our current work is admittedly very simplistic, only

incorporating diffusion. However, to model oil reservoirs, advective effects must be included

in the model. Furthermore, the interactions between oil and water must also be accounted

for. Additionally, determining a suitable REV is necessary in order to capture all of the

relevant information contained within both the sandstone and the fracture networks that

tend to permeate through sandstone. Other applications of this work include the design of

materials possessing gradients in porosity such as asymmetric membrane filters. This future

work could improve the accuracy of using upscaling methods to model transport phenomena

across many length scales.
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Appendix A: Approximating the Average Molar Flux

We depict the importance of choosing a proper weighting function in this section. Commonly,

a uniform weighting function is used for VAT. However, this approach encounters issues as the

averaging window crosses γ-κ interfaces. For example, taking the derivative of the porosity

will generate delta functions when using a uniform weighting function. Case 1 is solved using

the discontinuous boxcar function (Fig. A.1, top-right). The Taylor series is shown to diverge

at the γ-κ interfaces (Fig. A.1, top-left). As a result, the effective diffusivity tensor possesses

negative values at the interfaces for model 2 (Fig. A.1, bottom-left). However, the effective

diffusivity is well-behaved for models 0 and 1 and are in fact identical. Because of the divergent

nature of the molar flux approximation, model 2 becomes ill-posed and performs worse than

models 0 and 1 (Fig. A.1, bottom-right).

Additionally, here we will also show that mollifying the uniform weighting function is not

sufficient to obtain accurate effective parameters for heterogeneous porous media. For this

portion of the study, a two-unit cell wide boxcar function is mollified with a bump function that

is 20% the width of a single unit cell (Fig. A.2, top-right). The resulting weighting function

possesses continuous derivatives of all orders (Fig. A.2). The Taylor series approximation of

the flux was calculated using the DNS solution for Case 1 and 2. The goal of this exercise is to

qualitatively observe whether the Taylor series solution displays divergent behavior (Fig. A.2).

The partial sums using the first three terms of the Taylor series for both the case of constant

porosity and gradual porosity change appear to not be converging where the averaging volume

cross the γ-κ interfaces. This effect is more pronounced in low porous regions. Checking the

partial sums of the first, second, and third Taylor series terms clearly shows that the flux is

not being approximated well using this weighting function for Cases 1 and 2 (Fig. A.2, left

column). Furthermore, compared to the mollified triangle weighting function, the mollified

boxcar function predicted fluxes are an order of magnitude higher in the γ-phase regions
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between the κ-phase. Interestingly, the Taylor series appears to be converging for Case 4,

however the convergence is slower in the low porosity region of the porous material (Fig. A.2,

bottom-right).

Figure A.1: The boxcar function (top-right) and the Taylor series approximated average flux
for the Case 1 (top-left), the effective diffusivity coefficient (bottom-left) and the concentration
profile (bottom-right) using a boxcar weighting function.

For the Case 1, models 0 and 1 produce a non-negative effective diffusion coefficient,

however model 2 gives a diffusion coefficient that is negative whenever the averaging window

crosses a γ-κ interface (Fig. A.3, top-row). Similar problems exist for Case 2. However,

the change in porosity causes the diffusion coefficients of all models are negative in the low

porosity regions (Fig. A.3, middle-row). As a result, none of the models are valid using the

mollified boxcar function for Case 2.

Because the approximation of the flux is not convergent, the effective diffusion coefficient

is unable to be accurately calculated using the mollified boxcar function which causes model

2 to fail in both porosity cases. Though this line of reasoning does not fully explain why
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Figure A.2: The mollified boxcar function (top-right) and the Taylor series approximated
average flux for the Case 1 (top-left), Case 2 (bottom-left) and Case 4 (bottom-right) using
a mollified boxcar weighting function.
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Figure A.3: The effective diffusion coefficient (left column) and average concentration profile
(right column) for Case 1, Case 2, and Case 4 (top to bottom row) for the mollified boxcar
function.
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only model 2 fails for the case of constant porosity. However, if we look at the formula for

the effective diffusion coefficient (Eq. 2.44), it is seen that the term containing the first-order

correction is neglected in models 0 and 1. We have observed that the first-order correction is

particularly prone to over-correcting the model for low porosities when an improper weighting

function is used. Because of this, the magnitude of the first-order correction will determine

whether the effective diffusion coefficient will be positive for all points in space. For the cases

where this is not true, the calculated effective diffusion coefficient will be negative in regions

near the γ-κ interfaces. Since models 0 and 1 ignore the contributions of the first-order

term, both are guaranteed to never produce a negative diffusion coefficient for domains with

constant porosity. This is of course not true when the porosity varies as seen in Fig. A.2.

All of this contrasts to the disordered porous media case in which the Taylor Series does

appear to be convergent (Fig. A.2, bottom). However, the rate of convergence is slow in

the low porosity region which mirrors the degraded accuracy of model 2 in this region. This

suggests that while the mollified boxcar function is admissible as a weighting function for

MVA, the produced results will suffer in terms of accuracy compared to the mollified triangle

weighting function.
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Appendix B: Analysis of Source Terms

In general, the sum of all source terms for a steady-state diffusion on a compact domain with

periodic boundaries must have a spatial average equal to zero; if it is not equal to zero, the

source would generate new mass within the volume for all time, and no steady state would

exist. To start, we examine the sources in model 1

∇2bγ = ε−1γ ∇εγ (B.1)

B.C. 1 −nγκ · ∇bγ = nγκ, for x ∈ Aγκ (B.2)

B.C. 2 bγ(r + l) = b(r), for x ∈ Aγe (B.3)

(B.4)

Integrating both sides of Eq. (B.1), we find

∫
r∈Vγ
∇2bγdV (r) =

∫
r∈Vγ

ε−1γ ∇εγdV (r) (B.5)

Now, using the divergence theorem and the periodicity of the flux, we find

∫
r∈Aγκ(x)

nγκ · ∇bγdV (r) =

∫
r∈Aγκ(x)

nγκdA(r) (B.6)

This result represents the integrated volume source (i.e., the source given on the right-hand

side of Eq. (B.1))

The second source term is the boundary source represented by Eq. (B.2). Integrating both

sides of the expression given by B.C. 2 over the phase interface, we find
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∫
r∈Aγκ(x)

nγκ · ∇bγdA(r) = −
∫
r∈Aγκ(x)

nγκdA(r) (B.7)

From this result, it is clear that the two source terms for model 1 have equal average values,

but with opposite signs. Thus, the net source term in the problem has zero average.

Figure B.1: The first moment source term for Case 1 (top-left), Case 2 (top-right), Case 3
(bottom-left), and Case 4 (bottom-right).

For the additional source associated with model 2 (the term −ε−1γ ∇ · ∇ ⊗ 〈Y1〉), the

analytical analysis is complicated by the fact that it depends upon the value of the first

moment of the medium. This moment is coupled strongly to the geometry, and it is not easily

computed analytically except for the simplest cases.

Regardless, we can compute the value of the additional source term numerically. Noting

that each of the cases examined have variations of the moments only in the horizontal (x−)

direction, it is easy to verify that the source term in this case reduces to the consideration of
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−ε−1γ ∂2〈Y1〉/∂x2.

In Figure B.1, we have plotted the value of −ε−1γ ∂2〈Y1〉/∂x2 as a function of x. The

requirement that the source term have an average of zero was assessed by integrating these

functions as follows. Let M0 = max[abs(ε−1γ ∂2〈Y1〉/∂x2)]

εsource =

∫
x

1

M0
ε−1γ

∂2〈Y1〉
∂x2

(B.8)

The results were as follows: Case 1, εsource = 1.24 × 10−7; Case 2, εsource = −0.005, Case 3,

εsource = −0.003; Case 4, εsource = −0.005. These values are sufficiently small that we may

assume that the criterion for zero average source is met to within numerical error.
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Appendix C: Convergence Analysis

For both macroscale and microscale solutions, the grid convergence index, GCIG, and global

convergence order, PG are reported in Tables C.1-C.4 for the DNS, closure problem, and

upscaled equation solutions [39, 40, 41]. The GCIG provides a percent relative error estimate

of the calculated solutions based upon Richardson’s extrapolation. For each solution the

estimated error is below 3% with typical values on the order of thousandths of a percent.

Table C.1: The global convergence order, PG, global GCI and average element size, h̄ for the
DNS solution, closure problem, and upscaled equations for Case 1

PG GCIG [%] h̄ [m]

cAγ 2.89 1.34× 10−3 4.88× 10−5

bγ,0 2.84 5.13× 10−1 9.98× 10−6

bγ,1 2.80 2.35× 100 9.98× 10−6

bγ,2 2.84 2.26× 100 4.81× 10−5

〈cAγ〉γ0 2.91 1.39× 10−7 1.00× 10−5

〈cAγ〉γ1 2.90 1.38× 10−7 1.00× 10−5

〈cAγ〉γ2 2.69 1.16× 10−6 1.00× 10−5

Table C.2: The global convergence order, PG, global GCI and average element size, h̄ for the
DNS solution, closure problem, and upscaled equations for Case 2

PG GCIG [%] h̄ [m]

cAγ 1.88 2.10× 10−3 1.96× 10−5

bγ,0 1.68 1.66× 10−2 4.86× 10−5

bγ,1 1.40 4.51× 10−2 4.86× 10−5

bγ,2 2.53 4.23× 10−3 3.20× 10−5

〈cAγ〉γ0 N/A N/A N/A
〈cAγ〉γ1 2.65 5.30× 10−5 1.00× 10−5

〈cAγ〉γ2 2.96 8.07× 10−8 1.00× 10−5
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Table C.3: The global convergence order, PG, global GCI and average element size, h̄ for the
DNS solution, closure problem, and upscaled equations for Case 3

PG GCIG [%] h̄ [m]

cAγ 2.48 2.51× 10−3 1.96× 10−5

bγ,0 1.59 3.31× 10−3 1.97× 10−5

bγ,1 1.45 2.15× 10−2 1.97× 10−5

bγ,2 2.56 1.12× 10−5 2.44× 10−5

〈cAγ〉γ0 N/A N/A N/A
〈cAγ〉γ1 2.97 1.25× 10−10 1.00× 10−5

〈cAγ〉γ2 2.85 7.92× 10−13 1.00× 10−5

Table C.4: The global convergence order, PG, global GCI and average element size, h̄ for the
DNS solution, closure problem, and upscaled equations for Case 4.

PG GCIG [%] h̄ [m]

cAγ 2.55 2.54× 10−1 3.90× 10−8

bγ,0 1.63 5.84× 10−1 4.00× 10−8

bγ,1 1.54 1.25× 10−1 4.00× 10−8

bγ,2 1.75 3.38× 10−1 4.00× 10−8

〈cAγ〉γ0 1.86 2.19× 10−4 5.00× 10−5

〈cAγ〉γ1 1.88 1.32× 10−4 5.00× 10−5

〈cAγ〉γ2 1.95 7.04× 10−4 5.00× 10−5
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Nomenclature

Abbreviations

DNS Direct numerical solution

MVA The method of volume averaging

REV Representative elementary volume

Greek Letters

ε0 The half-width of the mollifying function

γ The fluid phase

κ The solid phase

εγ The volume fraction of the γ-phase within the averaging volume

Roman Letters

〈cAγ〉γ The macroscale average concentration of species A in the γ-phase, mol
m3

〈cAγ〉γi The macroscale average concentration of the model excluding the ith Taylor series

term, mol
m3

〈Y1〉 The center of mass of the γ-phase within the averaging volume, m

Ae(x) The outer surface of the averaging volume centered at x, m2

Aγe(x) The exterior surface of the averaging volume belonging to the γ-phase, m

Aγκ Interfacial area between fluid γ-phase and solid κ-phase, m2

Aκe(x) The exterior surface of the averaging volume belonging to the κ-phase, m
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DAγ The microscale diffusion coefficient for species A in the γ-phase, m2

s

Fγ(r) A function for the concentration profile along Aγe(x) in the γ-phase, mol
m3

V (x) Averaging volume centered at x, m3

Vγ(x) The γ-phase volume contained within an averaging volume centered at x, m3

Vκ(x) The κ-phase volume contained within an averaging volume centered at x, m3

Deff Effective diffusivity for the steady-state diffusion model, m2

s

I Unit tensor

c̃Aγ The deviation of the macroscale average concentration from the microscale concentra-

tion of species A in the γ-phase, mol
m3

cAγ The microscale concentration of species A in the γ-phase, mol
m3

Iγ A function indicating the location of the γ-phase within the microscale domain

w(y) The function used to weight the contributions of the properties being averaged within

the averaging volume

bγ A vector field that relates ∇〈cAγ〉 to ˜cAγ , m

Jγ The macroscale molar flux, mol
m2·s

Ji The molar flux including the ith Taylor series term, mol
m2·s

nγκ The unit normal vector pointing from the γ- to the κ-phase, m

y The set of vectors pointing to every point of the γ-phase relative to the centroid of the

averaging volume, m
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