Topotactic Reduction and Reoxidation of Hexagonal \(\text{RCu}_{0.5}\text{Ti}_{0.5}\text{O}_3 \) \((\text{R} = \text{Y, Eu-Lu})\)
Phases

Peng Jiang, Romain Berthelot, Jun Li, A.W. Sleight, and M.A. Subramanian*

*Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA

Email addresses of all authors:

- Peng Jiang: jiangp@onid.orst.edu
- Romain Berthelot: berthelot.rom@gmail.com
- Jun Li: jli100@yahoo.com
- A. W. Sleight: arthur.sleight@oregonstate.edu
- M. A. Subramanian: mas.subramanian@oregonstate.edu

Telephone number for all the authors: 1-541-737-6750
Fax number for all the authors: 1-541-737-2062

Corresponding Author Permanent Address:

M. A. Subramanian
Department of Chemistry,
Oregon State University
153 Gilbert Hall
Corvallis, OR 97331 U.S.A.
1-541-737-8235 or 1-541-737-6750
Email: mas.subramanian@oregonstate.edu
Abstract

Hexagonal AMO$_2$ and AMO$_3$ phases have the same basic structure, and intermediate compositions for this structure have been prepared by topotactic oxidation of AMO$_2$ phases such as RCuO$_2$, where R is a trivalent rare earth cation. We now find that such intermediate phases can also be prepared by topotactic reduction of hexagonal R Cu$_{0.5}$ Ti$_{0.5}$ O$_3$ (R = Y, Tb-Lu) phases. Our TGA and magnetic susceptibility studies indicate a formula of R Cu$_{0.5}$ Ti$_{0.5}$ O$_{2.78}$ for these reduced phases. Topotactic reoxidation occurs on heating these phases to 400°C in air.

KEYWORDS: A. Inorganic compounds, B. Chemical synthesis, D. Crystal Structure Electronic properties, D. Magnetic Properties
1. Introduction

Two structurally related hexagonal AMO$_2$ and AMO$_3$ phases both have an uncommon coordination for the M cation (Fig. 1). The M cation in the AMO$_2$ phases (delafossite structure) is 2-fold linear; thus, the M cation is usually Cu$^{1+}$ or Ag$^{1+}$. The M cation in the structurally related AMO$_3$ phases is trigonal bipyramidal, and M can be Fe, Mn, In, or Ga. The space group for the 2H form of the delafossite structure and the paraelectric form of hexagonal AMO$_3$ is $P6_3/mmc$, the only difference being the oxygen content. The O atom present in both the hexagonal AMO$_2$ and AMO$_3$ structure will be referred to as Oa (axial), and the O atom present only in the hexagonal AMO$_3$ structure will be referred to as Ob (basal plane). A structural variation can occur in both the hexagonal AMO$_2$ and the hexagonal AMO$_3$ structure. For the AMO$_2$ composition a commonly observed different stacking of the layers gives rise to the 3R polymorph, but this stacking sequence is unfavorable for the AMO$_3$ composition. Stacking sequences other than 2H and 3R can occur but are rare [1]. In the case of the hexagonal AMO$_3$ compounds, the extra oxygen relative to AMO$_2$ is usually underbonded, and this leads to a structural distortion and ferroelectricity [2].

As far as we are aware there has been no report of intergrowth of the hexagonal AMO$_2$ and AMO$_3$ structures. Also, there have apparently been no reports of compositions intermediate between hexagonal AMO$_2$ and AMO$_3$ prepared by direct synthesis. However, oxygen intercalation can occur if the A cation is at least as large as Sc. The oxidation of ScCuO$_2$ proceeds up to ScCuO$_{2.5}$ with complete oxidation of Cu$^{1+}$ to Cu$^{2+}$ [3]. The thermodynamically stable form of Sc$_2$Cu$_2$O$_5$ has a completely different structure. In the case of LaCuO$_2$ topotactic oxidation up to LaCuO$_{2.68}$ has been reported [4]. Double substitution into the M site of the hexagonal AMO$_3$ structure gives $RCu_{0.5}Ti_{0.5}O_3$ (R = Y, Tb-Lu) phases [5]. Solid solutions between $YCu_{0.5}Ti_{0.5}O_3$ and YMO$_3$ where M = Mn, Cr, Fe, Al, Ga and In have also been investigated [6].
2. Experimental

For the synthesis of the $\text{RCu}_{0.5}\text{Ti}_{0.5}\text{O}_3$ (R = Y, Tb-Lu) phases, stoichiometric mixtures of powders of rare earth oxides, CuO, and TiO$_2$ were ground together in an agate mortar, pelleted, and heated at at 1050°C for 12 hours in air. Reagents were all at least 99.9% pure. Subsequently, the samples were heated under N$_2$ containing 5% H$_2$ at temperatures ranging from 150°C to 500°C for 4 hrs. X-ray diffraction patterns were obtained at room temperature with a Rigaku Miniflex diffractometer with Cu Kα radiation and a graphite monochromator on the diffracted beam. Data were collected over a 2θ range of 10-95° with a step size of 0.02° with 2s at each step. Refinement of unit cell dimensions utilized fitting of the patterns by the Le Bail method with GSAS software.

Diffuse reflectance spectra of powdered samples were obtained in the region 300-1100 nm with a fiber optics system. In this method, light from a light source is passed through a bifurcated (Y-shaped) optical fiber assembly onto the sample, and back into the bifurcate optical fiber where it is taken to a spectrophotometer. BaSO$_4$ was served as a white reference. The data were transformed into absorbance with the Kubelka-Munk function.

Magnetic data were obtained on a Quantum Design, Physical Property Measuring System over a temperature range of 5 to 320 K. Data were collected with the zero field cooling method with an applied magnetic field of 0.5 T. Diamagnetic corrections were applied for all the samples measured [7]. The Curie and Weiss constants were derived from plots of $1/\chi$ versus T.

Thermogravimetric analysis was performed with a TA Instruments Q50 Thermogravimetric Analyzer. A reduced powder sample of $\text{YCu}_{0.5}\text{Ti}_{0.5}\text{O}_3$ was heated in oxygen at 10°C/min ramp rate and held at 200°C and 400°C for 2h, respectively. The previous reduction of this sample was carried out at 200°C for 12h in 5% H$_2$/N$_2$.

3. Results
For YCu$_{0.5}$Ti$_{0.5}$O$_3$ reduction treatments were conducted at 100, 150, 200, 250, 300, 400, and 500°C. The color and the XRD patterns remained unchanged after the 100 and 150°C treatments. However, the samples turned dark brown or black at treatment at higher temperatures, consistent with our diffuse reflectance spectra (Fig. 2). The XRD patterns (Fig. 3) also changed for the 200°C and higher temperature treatments. The peak positions shifted, the peaks broadened, and the weak peaks resulting from the ferroelectric distortion have disappeared. The peak broadening could be due to crystallite size reduction, inhomogeneity induced strain, or a combination of these two. The disappearance of the ferroelectric distortion is not surprising because it is driven by Ob displacements along the c axis, and the vacancies at the Ob site would disrupt the cooperative interactions necessary for such a transition. The XRD pattern of a sample treated at 500°C under our reducing conditions indicated sample decomposition.

The RCu$_{0.5}$Ti$_{0.5}$O$_3$ (R = Tb-Lu) phases were all subjected to the same reduction treatment at 400°C, and similar color and XRD pattern changes were observed. The unit cell information obtained before and after treatment is given in Fig. 4. For all the RCu$_{0.5}$Ti$_{0.5}$O$_3$ (R = Y, Tb-Lu) phases the reduction resulted in an increase in the a cell edge and a decrease in the c cell edge. In all cases the increase in unit cell volume on reduction is 3-4%.

Results of TGA reoxidation of a reduced YCu$_{0.5}$Ti$_{0.5}$O$_3$ phase are shown in figure 5. The weight gain of 1.82% indicates that the formula before this reoxidation was YCu$_{0.5}$Ti$_{0.5}$O$_{2.78}$. The XRD pattern changes very little during this topotactic reoxidation.

The dramatic drop in the magnetic susceptibility values on reduction of YCu$_{0.5}$Ti$_{0.5}$O$_3$ is shown in Fig. 6. Before reduction the magnetic susceptibility data for both YCu$_{0.5}$Ti$_{0.5}$O$_3$ and LuCu$_{0.5}$Ti$_{0.5}$O$_3$ gave a moment of 2.6 μB/Cu. The spin only value for Cu$^{2+}$ is 1.73 μB, but experimental values for Cu$^{2+}$ are usually higher and attributed to an orbital angular momentum contribution [8,9]. The moment observed
after reduction is reduced to 0.33 μB. Assuming that only Cu$^{2+}$ is reduced and that the orbital angular momentum contribution remains the same, 13% of the Cu$^{2+}$ has not been reduced and the composition would be YCu$_{0.5}$Ti$_{0.5}$O$_{2.78}$, in agreement with our TGA results.

Qualitative conductivity measurements were attempted at room temperature for all samples with the 2-probe method. The resistance was always too high to measure for the oxidized samples, indicating that they are electrical insulators. Resistivities as low as 1 Ω-cm were observed for reduced samples.

4. Discussion

The consistency of the degree of unit cell volume increase for all RCu$_{0.5}$Ti$_{0.5}$O$_3$ (R = Y, Tb-Lu) phases on reduction suggests a similar degree of reduction in all cases. This volume increase on reduction can be attributed to the fact cations always increase in size as they are reduced. The established redox behavior of Cu and Ti would indicate that the Cu$^{2+}$ would oxidize Ti$^{3+}$ to Ti$^{4+}$; thus, we expect no Ti$^{3+}$ in our reduced samples. The dark color of our reduced phases could be attributed to a Cu$^{1+}$-Cu$^{2+}$ intervalence transition. However, both CuNbO$_3$ and CuTaO$_3$ are reported to be black [10], suggesting that the electron transfer from Cu$^{1+}$ to d0 cations such Nb$^{5+}$, Ta$^{5+}$ and Ti$^{4+}$ may be of sufficiently low energy to contribute to this dark color.

Acknowledgement

The work is supported by a grant from National Science Foundation (DMR 0804167).

References

Figure 1. Structure for hexagonal RMO$_2$ and RMO$_3$ compounds where R is green, M is blue, Oa is red, and Ob is magenta. The Ob atoms are missing for the AMO$_2$ composition.
Figure 2. Diffuse reflectance spectra of YCu\textsubscript{0.5}Ti\textsubscript{0.5}O\textsubscript{3} as prepared (left) and reduced in H\textsubscript{2}/N\textsubscript{2} gas mixture (right).
Figure 3. XRD patterns of $\text{YCu}_{0.5}\text{Ti}_{0.5}\text{O}_3$ before (lower) and after (upper) reduction.
Figure 4. Cell edge of a (triangles) and c (circles) versus ionic radius of R^{3+} ($\text{R} = \text{Y, Tb-Lu}$) (open points: initial phase; filled points: reduced phase)
Figure 5. TGA on heating a reduced YCu$_{0.5}$Ti$_{0.5}$O$_3$ sample in oxygen. The reduction was carried out at 200°C in 5%H$_2$/N$_2$ and the reoxidation at 200°C and 400°C in oxygen, respectively.
Figure 6. Magnetic susceptibility versus temperature of YCu$_{0.5}$Ti$_{0.5}$O$_3$ as prepared (green squares) and reduced (black circles).