
Multiworld Augmented Term Rewriting

Masami Takikawa Lawrence A. Crowl

Computer Science Department

Oregon State University
Corvallis, Oregon 97331-3202

Technical Report 94-60-06

November 1994

Abstract

Augmented term rewriting (ATR) is a simple, uniform, and extensible computational model
for constraint programming. Unfortunately, ATR cannot solve combinatorial constraint satisfac-
tion problems (CCSPs). To enable solution of CCSPs, we introduce (don't know) nondeterminism
into ATR via the choice expression, which identi�es a set of possible values that may satisfy the
constraints. The selection of a possible value from the expression represents one of many \possible
worlds" in which the constraints may be satis�ed. We show that our extended ATR, multiworld

augmented term rewriting (MATR), is capable of expressing CCSPs concisely and readably via ex-
amples and via our experience with a signi�cant application. We also show that an implementation
of MATR can use the e�cient constrain-and-generate technique for solving CCSPs, and describe
our prototype implementation.

1 Introduction and Related Work

Augmented term rewriting (ATR) is a computational model for constraint programming developed
by Leler [1988]. ATR extends term rewriting [Huet and Oppen, 1980; Dershowitz and Jouannaud,
1990] with constraints, bindable variables, and typed parameters and variables. In languages based
on ATR, such as Bertrand [Leler, 1988] and Siri [Horn, 1992], simple term rewrite rules uniformly
express how to (algebraically) simplify expressions, how to compose both functions and constraints
(relations), and how to extend the computational domain with new data types and operations.
This simplicity, uniformity, and extensibility are important advantages of ATR languages. The
extensibility is particularly signi�cant because most other constraint languages su�er from a lack of
extensibility. For example, constraint logic programming (CLP) languages [Ja�ar and Lassez, 1987;
Ja�ar and Maher, 1994] have �xed computational domains and extending their domains is di�cult.
In contrast, extending the computational domain of ATR languages is relatively easy, so ATR
languages are better able to support large-scale program development.

Constraints and bindable variables enable ATR languages to express and solve slightly non-linear
simultaneous equations over the real numbers. However, ATR cannot express or solve combinatorial
constraint satisfaction problems (CCSPs). This limitation is signi�cant because CCSPs are an
important application area of constraint programming. Because of this limitation, ATR is regarded
as a tool for implementing new constraint satisfaction mechanisms rather than as a constraint
language itself [Van Hentenryck, 1989].

In this paper we show how to extend ATR's applicability to CCSPs while preserving its ad-
vantages. The result is a simple, uniform, and extensible constraint language for solving both
numerical (continuous) and combinatorial constraint satisfaction problems.

In procedural and functional languages, programmers solve CCSPs by writing code to explicitly
search the space of possible solutions. This places a high burden on the programmer. In exist-
ing constraint and logic languages, however, programmers specify a problem as a set of solution
constraints, and the language system solves the problem by nondeterministic search. For exam-
ple, two representative instances of constraint logic programming languages, Prolog [Bowen, 1981]
and CHIP [Dincbas et al., 1988; Van Hentenryck, 1989], both use a (don't know) nondeterministic
choice of Horn clauses to solve CCSPs.

The introduction of nondeterminism to term rewriting (or functional programming) in gen-
eral is not new. In fact, it has produced a group of languages called functional logic languages
[DeGroot and Lindstrom, 1986; Hanus, 1994] where the major goal is to integrate functional and
logic languages. For example, Fresh [Smolka, 1986] extends functional programming by introducing
uni�cation and nondeterminism.

Our approach to supporting CCSPs in ATR languages is to introduce nondeterminism via a new
linguistic construct called choice expressions. Choice expressions describe multiple possible values
in a solution of the constraints. Choice expressions are a generalization of mathematical expressions
such as �p5=3, which is written as f+p5;�p5g=3. Choice expressions may also describe possible
values among an arbitrary set, e.g. fred, white, blue, greeng. Programmers can use any expression
as a member of a choice expression, not just constants.

When interpreting a choice expression, the language system expands the expression to create
multiple worlds, with each world substituting a di�erent possible value for the expression, and

1

yielding a di�erent con�guration in the search space. We call our extended ATR model the multi-

world augmented term rewriting (MATR) model. Section 2 describes the model and our prototype
language in more detail. We describe our experience with a natural-language driven application for
graphical design in section 3.

CSPs are often NP-hard, and hence solving them is likely to be time-consuming in the general
case. To avoid excessive cost, MATR systems should pursue e�cient execution, by e�cient im-
plementation of primitive operations, by employing e�cient search algorithms, and by exploiting
parallelism. We discuss these issues in section 4.

Our conclusions, in section 5, are that choice expressions provide a simple and e�ective mecha-
nism for extending the applicability of ATR languages into CCSPs. The resulting MATR is both
expressive and e�cient, suggesting that all ATR systems should support choice expressions.

2 MATR and ConPi

In this section, we describe the primary mechanisms of term rewriting (TR), augmented term
rewriting (ATR), and multiworld augmented term rewriting (MATR). Our description also provides
an introduction to ConPi1, a prototype constraint programming system based on MATR. ConPi
is implemented in Lisp, so the syntax is Lisp-like and di�ers from that of other ATR languages,
which use term notations. However, our approach to extending ATR can be applied to other ATR
languages as well. Once the necessary primary mechanisms are described, we then use the N -queens
problem to show how MATR can solve combinatorial constraint satisfaction problems.

2.1 TR: Rewrite Rules, Patterns, and Parameters

Term rewriting programs consist of a set of rewrite rules for transforming appropriate
(sub)expressions into other (sub)expressions. Rules consist of a pattern with which to match
source expressions and a replacement expression. For example, the ConPi rule

(=> (square ^X) (* ^X ^X))

speci�es a pattern, (square ^X), and a replacement, (* ^X ^X). The pattern contains a parameter,
^X, which may match any expression and will appear in the replacement. For example, the above
rule applied to the expression (square 2) yields (* 2 2). Rules may match subexpressions as
well as entire expressions, so the rule applied to (* (square 2) 5) yields (* (* 2 2) 5). As in
standard term rewriting, the pattern in ConPi may not use the same parameter name twice, e.g.
(=> (+ ^X ^X) (* 2 ^X)) is not allowed.

2.2 ATR: Constraints, Bindable Variables, and Typed Variables

Augmented term rewriting, introduced by Leler [1988], extends term rewriting by introducing
constraints, bindable variables, and typed parameters and variables into the rewrite rules.

1ConPi reads \con{�" whose sound resembles a Japanese word for a toast in sentences such as \Here's a toast for

you, Achilles." and \We drank a toast for the glorious future of Mr. Tortoise."

2

Constraints are expressions that are required to reduce to true. Zero or more of them may
appear between the pattern and its replacement. For example, the rule

(=> (/ 0 ^X) (<> ^X 0) 0)

has the constraint (<> ^X 0) and states that the division of 0 by anything rewrites to 0 if the
divisor is not 0. Otherwise, this rule fails and this failure causes the ATR system stop. Note that
this failure is in contrast to conditional term rewriting [Dershowitz and Jouannaud, 1990] in which
conditions are applied before application and hence the rule would not apply.

Variables are scope limited to a single rule. In ConPi, variables must be declared using a var

expression, which is a special form of constraint that always reduces to true. For example,

(var ^pi number 3.1415)

declares a variable whose name is ^pi and whose type is number. (As with parameters, variables
begin with ^.) The third argument is optional and initializes the variable. Variables can be as-
signed at most once. This single assignment semantics preserves the declarativeness and referential
transparency of programs.

When an expression gets assigned to a variable, it replaces all occurrences of the variable in the
subject expression. This mechanism allows slightly-nonlinear, simultaneous equations to be solved.
For example, with the rule in Figure 1, the expression (aSampleEqu) rewrites to 4 as shown in
Figure 2.

(=> (aSampleEqu) | pattern
(var ^X number) (var ^Y number) | constraints (variables)
(= (+ ^X ^Y) 5) (= (- ^X ^Y) -3) | constraints (algebraic)
(* ^X ^Y)) | replacement

Figure 1: Example Simultaneous Equation

(aSampleEqu)

+ | substitute replacement for pattern, remembering constraints
(* ^X ^Y) subject to (= (+ ^X ^Y) 5) (= (- ^X ^Y) -3)

+ | (= (+ ^X ^Y) 5)) (= ^X (- 5 ^Y))) ^X 7! (- 5 ^Y)

(* (- 5 ^Y) ^Y) subject to (= (- (- 5 ^Y) ^Y) -3)

+ | (= (- (- 5 ^Y) ^Y) -3)) (= (* -2 ^Y) -8)) ^Y 7! 4

(* (- 5 4) 4)

+ | algebraic simpli�cation
4

Figure 2: ATR Rewrite Steps

In ATR, parameters can have a type, which restricts the range of matchable expressions. For
example, suppose we have the following rules which de�ne the factorial:

(=> (factorial 0) 1)

(=> (factorial ^N'positive) (* ^N (factorial (- ^N 1))))

3

Here, the typed parameter ^N'positive can only match a positive constant number. For example,
the subject expression (factorial 0) matches the �rst rule, (factorial 3) the second one, while
(factorial true) does not match any of them. The presence of variables in the subject expression
creates an interesting case; because ATR uses one-way matching (not two-way uni�cation), the
subject expression (factorial ^X) does not match any of the above rules. This expression will
only reduce after ^X becomes a constant.

The one-way matching used in ATR de�nes the direction of data
ow and realizes the synchro-
nization needed for constraint propagation, in contrast to uni�cation used by logic and functional
logic languages where an additional mechanism (e.g., freeze in Prolog-II [Colmerauer, 1984]) is
needed for such data driven computation.

2.3 MATR: Choice Expressions

Multiworld augmented term rewriting extends augmented term rewriting with choice expressions,
which introduce nondeterminism to ATR. In ConPi, choice expressions are written as (alt x1
x2 : : : xn) where x1 to xn identify a set of possible expressions that may satisfy the constraints.
Programmers can use any expression as a member of a choice expression.

When interpreting a choice expression, the language system copies the subject expression (of
which the choice expression is a part) to create multiple worlds, with each world substituting a
di�erent possible value for the choice expression. Each world represents a di�erent con�guration in
the search space. For instance, the expression (= ^X (+ (alt 1 2 3) 4)) creates three worlds,
(= ^X (+ 1 4)), (= ^X (+ 2 4)), and (= ^X (+ 3 4)). All worlds have an independent name
space, which entables multiple assignments to the variable ^X. Each worlds will be further reduced
independently of other worlds.

Unlike ATR, the failure of a constraint does not make the system stop, but it makes a world in
which the failure occurs disappear. Only successful worlds survive to become answers. When all
worlds disappear, there is no solution to the problem.

One use of choice expressions is to handle multiple solutions in numerical constraint satisfaction
problems. For example, the rule

(=> (= (square ^X) ^N'positive) (= ^X (alt (sqrt ^N) (- (sqrt ^N)))))

states that if the square of ^X is a positive constant ^N then ^X is either
p
^N or �p^N. This rule

can be used to transform a non-linear equation into a linear (thus easily solvable) equation.

Note that the order in which constraints are written is not important in MATR; changing that
order does not a�ect the meaning of the program or the e�ciency of the execution. This property
of MATR helps the programmers read their programs declaratively and sharply contrasts with
other constraint languages such as CS-Prolog [Kawamura et al., 1987] and CHIP [Dincbas et al.,
1988; Van Hentenryck, 1989]. In these languages, the programmer uses the predicate indomain to
explicitly assign values to domain variables. The order of indomain predicates a�ects the meaning
and e�ciency of programs greatly.

4

2.4 4-Queens Problem

The important use of choice expressions is for expressing combinatorial constraint satisfaction
problems (CCSPs). We illustrate how to solve CCSPs with the 4-queens problem, which consists of
placing 4 queens on a (4� 4) chess board so that no two queens attack each other. (We generalize
to the N -Queens problem later.)

Figure 3 shows a ConPi program to solve the 4-queens problem. The �rst rule, fourQueens,
solves the problem. The second rule, noattack, is a subroutine that prevents two queens from
attacking each other. Each queen is presumed to be on a separate row. The �rst four constraints
in fourQueens de�ne the domain of variables, each of which speci�es the column for a given queen.
The six noattack expressions constrain each pair of queens not to attack each other. Within
noattack, ^X and ^Y are queen column numbers and ^N is the di�erence in row numbers. Finally,
the list of queen columns is the replacement for fourQueens. Given this program, ConPi �nds
an assignment to variables (^Q1 to ^Q4) such that the assignment satis�es all the constraints. An
example assignment is ^Q1 7! 2, ^Q2 7! 4, ^Q3 7! 1, and ^Q4 7! 3.

(=> fourQueens

(var ^Q1 number (alt 1 2 3 4)) (var ^Q2 number (alt 1 2 3 4))

(var ^Q3 number (alt 1 2 3 4)) (var ^Q4 number (alt 1 2 3 4))

(noattack ^Q1 ^Q2 1) (noattack ^Q1 ^Q3 2) (noattack ^Q1 ^Q4 3)

(noattack ^Q2 ^Q3 1) (noattack ^Q2 ^Q4 2)

(noattack ^Q3 ^Q4 1)

(list ^Q1 ^Q2 ^Q3 ^Q4))

(=> (noattack ^X ^Y ^N) (<> ^X ^Y) (<> ^X (- ^Y ^N)) (<> ^X (+ ^Y ^N)))

Figure 3: The 4-queens Problem in ConPi

This program embodies a basic three-part form of CCSP programs, the de�nition of variables
and their domains, the constraints that limit the allowable values of variables, and the expression
composing the answer.

2.5 ConPi: Classes and Higher-Order Constraints

In addition to the simple rewrite rules, ConPi provides programming constructs useful for expressing
problems concisely. Those constructs are expanded by ConPi into the simple rewrite rules and
choice expressions described so far.

ConPi provides object-oriented data abstraction via classes. Classes may have class parameters,
a parent class, typed instance variables, class constraints, and methods. Class parameters provide
the data for instance variables upon creating an object. ConPi provides single inheritance of
instance variables, class constraints, and methods. Instance variables are single-assignment and
preserve referential transparency. Class constraints must be satis�ed by all instances of the class,
and are often the primary source of computation for an object. Methods are functions or constraints
on the instance variables, the method's arguments, and the pseudo variable ^self, which refers to
the receiver of the method. (An example of a class appears later in Figure 4.)

5

In addition to the data abstraction facility provided by classes, ConPi has facilities for higher-
order constraint constructs such as if, and, and for-all. The for-all provides iteration over a
numeric range and has the form: (for-all ^index lower upper constraint) This expression means
that for all integers from lower to upper inclusive, the constraint holds. The variable ^index is the
iteration index. For example, the expression (for-all ^i -1 1 (> ^i 0)) is a concise notation
for (and (> -1 0) (> 0 0) (> 1 0)) which obviously reduces to false.

2.6 N-Queens Problem

We now generalize the example to the N -queens problem to show how concisely a general CCSP
can be solved in ConPi using a class and higher-order constraints.

Figure 4 shows an N -queens program. First, define-class de�nes a new data type nqueens

which is parameterized by the number of queens ^n. Instances of this class correspond to various
sizes ofN -queens problems. The only instance variable in nqueens is ^Q, which contains the column
number for each queen (on separate rows). The next expression de�nes a class constraint, which
must be satis�ed by all instances of the class nqueens, in this case that no queen may attack
another. That is, the class constraint restricts the value of the instance variable to a solution to
the problem. In the class constraint, for-all is used for iteration and field is used for retrieving
a member from the array. Finally, this class has a method called answer which simply returns the
solution as an array.

(define-class | de�ning a class
(nqueens ^n'constant) | class name and typed parameter
() | parent class (none)
(^Q'(array 1 ^n (range 1 ^n)) | instance variable Q, an array 1..n of 1..n
(for-all ^i 2 ^n | class constraint: for each queen except the �rst
(for-all ^j 1 (- ^i 1) | for each queen previous to her

(noattack | ensure not attacking
(field ^Q ^i) | column of �rst queen
(field ^Q ^j) | column of second queen
(- ^i ^j)))) | di�erence in rows

)

(answer | method de�nition for answer
() | method parameters (none)
^Q) | result of method, just the value of variable Q

)

Figure 4: The N -Queens Problem in ConPi

Using this class, the following program solves a 12-Queens problem:

(=> (12Queens) (var ^12Queens (nqueens 12)) (answer ^12Queens))

Our solution to the N -Queens problems depends on two factors, the extensibility of ATR and
MATR systems to de�ne higher-order constructs, and most importantly, the choice expressions of
MATR to permit search among possible answers.

6

3 Application

In this section, we report on our experience using ConPi in a non-trivial application. The ap-
plication is a prototype markup system for graphical designers, called PiMark, developed at BSJ
Technologies, Inc., California. In addition to a graphical interface using a pen-device, this system
provides a natural language interface. (Note that though our examples are in English, the appli-
cation interprets Japanese sentences.) The designer can specify requirements on the page model
using traditional markup sentences. Given a set of markup sentences, PiMark must �rst represent
the meanings of the sentences, and then infer a page model that satis�es those meanings.

PiMark represents the meaning of sentences with ConPi programs. This approach is possible
because markup sentences can be naturally regarded as constraints on the properties and relation-
ships for objects in the page model. For example, \this title uses 24-point font" speci�es a property
(the size of the font) of an object (this title); \this picture needs to �t into that rectangle" states
a relationship (�t into) between two objects (this picture and that rectangle). Our representa-
tion of sentences as constraints has two desirable properties. First, the translation of sentences
to constraint programs is relatively straightforward. Second, we do not need to build a separate
inference engine; the meaning of sentences represented in ConPi can now be directly interpreted
by the ConPi system to produce the speci�ed page model.

Any natural language processing system must share a vocabulary with the system's users. We
map the vocabulary of sentences into the vocabulary of constraint programs: common nouns, such
as rectangle, map to data types, as de�ned by classes; proper nouns, such as rectangle (1), map to
class instances; attributes of an object, such as the width of a rectangle, map to method functions;
and relationships, such as wider, map to constraints. This simple mapping from sentence elements
to program elements makes the translation from sentence to program easy. Furthermore, we rely
on the extensibility of MATR (inherited from ATR) in the computational domain to extend the
vocabulary of the application domain.

The basic entities in the application domain are frames, e.g. text frames and picture frames.
PiMark represents these frames as objects, and represents their properties as method functions
that return the desired value of the property. Since the application entities are all frames, their
corresponding objects share many common properties. All types of frames, including text frames,
inherit their common interface from a single base class. This common interface simpli�es the parser
by delegating all interpretation of properties to ConPi's dynamic method dispatch. The translation
from natural language to constraint program does not interpret properties; the constraint program
does so.

Noun phrases such as \title (1)", \black rectangle", and \the title on the picture (3)" refer to
speci�c frame instances. Note that unlike identi�ers or proper nouns, these references are restrictive
and must be interpreted within a context. In PiMark, that context is the page model, which is
represented as a list of frame instances. Identifying a referenced frame requires searching the page
model for an instance that meets the reference conditions. The search for referents is done by the
higher-order construct (find-all ^Frame ^Page condition constraint: : :) which �nds all instance
frames ^Frame in the page model ^Page such that condition holds. The system is then in a position
to apply any constraints to the referents. Noun phrases are translated into a condition, and verb
phrases into constraints.

Figures 5 and 6 show two examples, each a sentence and its ConPi program. These examples

7

illustrate how classes, methods, and constraints can be combined to capture the great degree of
freedom found in natural language sentences. As an example of specifying properties for referents,
consider the sentence of Figure 5. This sentence speci�es properties (font color and font size) of
the title.

\The font color of the title is either white or blue and its size is either 24 points or 36 points."
(find-all ^V0 ^Page

(and (= (type ^V0) "text") (= (style ^V0) "title")) | the title
(= (fontColor ^V0) | its font color
(alt (white) (blue))) | is white or blue

(= (fontSize ^V0) | its font size
(alt (pt 24) (pt 36)))) | is 24pt or 36pt

Figure 5: Example Sentence Asserting Properties of a Referent

Figure 6 exempli�es a relation. Two nested find-alls are used to specify two objects. The
relationship is then represented as a constraint within the innermost find-all.

\The width of text frame (1) is 3 or 4 cm larger than the height of the black rectangle."
(find-all ^V0 ^Page

(and (= (type ^V0) "text")) | the text frame
(= (name ^V0) "(1)")) | named \(1)"

(find-all ^V1 ^Page

(and (= (color ^V1) (black)) | the black
(= (type ^V1) "rectangle")) | rectangle

(= (width ^V0) | the width of the text
(+ (cm (alt 3 4)) (height ^V1))))) | = height of rectangle + 3 or 4 cm

Figure 6: Example Sentence Asserting a Relationship

PiMark takes advantage of the constraints and extensibility of ATR and MATR systems to
simplify the implementation of its natural-language interface. More importantly, choice expressions
enable PiMark to provide its users with the capability to specify alternative solutions to a graphical
layout, which avoids the need to manually explore alternative designs.

4 Implementation Issues

This section describes implementation issues. We concentrate on three areas: e�ciency of primitive
operations, e�ciency of search, and parallelism.

4.1 E�ciency of Primitive Operations

The primary primitive operation is term rewriting. For fast term rewriting, our system translates
ConPi programs into Lisp programs through the following �ve steps:

8

1. Translate abstraction facilities such as define-class into equivalent rewrite rules.

2. Convert patterns into a table-driven automaton for fast pattern matching.

3. Simplify the body of each rule as much as possible by applying other applicable rewrite rules.
For example, given the de�nitions:

(a) (=> (pi) 3.1416)

(b) (=> (square ^X'constant) (* ^X ^X)

(c) (=> (area ^C'circle) (* (square (radius ^C)) (pi)))

the simpli�ed area rule is

(=> (area ^C'circle) (* (square (radius ^C)) 3.1416))

Note that (square (radius ^C)) is not further simpli�ed because (radius ^C) is not known
a priori to be a constant.

4. Convert the body of each rule into a Lisp function that creates a copy of the body. (The
pattern matching is done by the automata.) For example, the above examples become the
following Lisp functions after simpli�cation and conversion:

(a) (lambda () 3.1416)

(b) (lambda (X) (* X X))

(c) (lambda (C) (list '* (list 'square (list 'radius C)) 3.1416))

Note that most rules are converted into functions such as the third one above that creates a
copy of the body in which parameters are substituted by the actual arguments. The second
function above is an exception in which the converter knows that the actual argument X is
always a constant number, so it outputs a function which directly executes Lisp's multiplica-
tion.

5. Compile each Lisp function with the Lisp compiler to yield more e�cient code.

Because the technology of pattern matching and rule rewrites in ConPi is the same as that of
standard ATR systems, those parts of an ConPi (MATR) program that do not use choice expressions
can as e�cient as standard ATR systems.

4.2 E�ciency of Search

The overall MATR reduction strategy is to reduce all non-choice expressions, make a choice, and
repeat.

Reduction is done using the standard (e�cient) ATR methods while treating choice expressions
as unevaluable terms. Through this reduction, all evaluable constraints are simpli�ed and veri�ed
until no more reduction can be done.

During reduction, some choice expressions can be simpli�ed. For example, if a choice expression
contains only one value, it can be reduced to the value without the need for making a choice.

9

Another simpli�cation removes a value from the domain of a variable when it is obvious that the
value cannot satisfy a constraint. For example, inequality constraints (<>) in the N -queens problem
in Figure 4 can reduce the domain of queens' column variables.

When the subject expression becomes irreducible, the system expands a choice expression to
create multiple worlds, each of which corresponds to a value within the choice expression and
represents a di�erent con�guration in a search space. This expansion creates opportunities for
further rewriting, so the standard ATR again reduces each world independently.

Because all evaluable constraints are tested to prune the search space before making a choice,
this strategy subsumes the constrain-and-generate approach which is an e�cient computational
scheme for combinatorial constraint satisfaction problems [Kumar, 1992], and has been used by
some constraint logic programming languages, e.g. CS-Prolog [Kawamura et al., 1987] and CHIP
[Dincbas et al., 1988; Van Hentenryck, 1989].

There are many variations of our algorithm depending on:

� which expression is chosen from the list of multiple expressions,

� which choice expression is chosen to expand to multiple worlds,

� how many branches are created after expanding choice expressions,

� whether ATR reduction is done sequentially or in parallel,

� whether multiple words are reduced sequentially or in parallel,

� and so on.

For example, if most the recently created expression is chosen from the multiple expression list, the
search process becomes depth-�rst. These issues greatly a�ect the performance of the algorithm.
Further research is necessary to determine the best strategy, which may depend on applications
and machines.

The current implementation of ConPi supports both sequential and parallel depth-�rst search.
The sequential version tries to minimize the space by creating only one branch at a time, while the
parallel version tries to minimize the time by creating more branches (tasks) at a time.

4.3 Parallel Evaluation

Each world has an independent name space, so those worlds can be rewritten simultaneously with-
out any con
icts. This is a source of coarse-grained parallelism; multiple processors can work as
standard augmented term rewriters on di�erent independent expressions. This coarse-grained par-
allelism can lead to an e�cient parallel implementation on both shared-memory multiprocessors
and distributed-memory multicomputers.

This coarse-grained parallelism corresponds to OR-parallelism [Tick, 1991] in logic programming
languages, but the grain size of OR-parallelism is usually �ner than MATR's because in logic
programming languages most predicates are non-deterministic, and because uni�cation is basically
simpler and does less work than ATR.

10

Likewise, there is a source of parallelism that corresponds to AND-parallelism [Tick, 1991] in
logic programming languages | parallelism derived from multiple constraints within a world. This
parallelism comes from the fact that ATR has no prescribed order of evaluation, so expressions can
be rewritten eagerly, lazily, or concurrently. This parallelism is �ne-grained.

Currently, ConPi exploits the coarse-grained parallelism. Our experimental implementation
runs on the Sequent Symmetry, a shared-memory multiprocessor. Our benchmark results show
that good speed-up (14.63 when using 20 processors for all solutions to the 12-queens problem) can
be achieved even at the current early experimental stage.

5 Conclusion

In this paper, we demonstrated that choice expressions provide a simple and e�ective mechanism
for extending the applicability of Augmented Term Rewriting (ATR) into combinatorial constraint
satisfaction problems. The resulting programming model, Multiworld Augmented Term Rewriting
(MATR), is simple, extensible, expressive, and e�cient.

MATR inherits simplicity and extensibility from ATR systems. The simplicity of MATR was
illustrated by examples. The extensibility of MATR was demonstrated by our natural language
application experience where high-level vocabularies, which correspond to natural language words,
can be de�ned so that the task of the parser is simpli�ed. The use of data abstraction and rewrite
rules facilitates the easy extension of computational domain.

MATR is expressive because it allows the programmer to express and solve both numerical
and combinatorial constraint satisfaction problems concisely and readably. Data and higher-order
constraint abstraction provided by our MATR language ConPi further facilitates concise programs.

Finally, we showed that the execution of MATR can be e�cient because (1) its primitive oper-
ations (pattern matching and determinate rewriting) can be e�ciently implemented; (2) its search
mechanism subsumes the e�cient constrain-and-generate technique; and (3) it has many opportu-
nities for parallelization.

Given the large bene�ts and relatively small cost, we believe all ATR systems should adopt
choice expressions.

Acknowledgements

We thank Margaret Burnett and Timothy Budd for their comments on this paper.

11

References

[Bowen, 1981] D. L. Bowen, \DECsystem-10 Prolog User's Manual," Occasional Paper 27, Uni-
versity of Edinburgh, Department of Arti�cial Intelligence, December 1981.

[Colmerauer, 1984] A. Colmerauer, \Equations and Inequations on Finite and In�nite Trees," In
Proceedings of the International Conference on Fifth Generation Computer Systems 1984, 1984.

[DeGroot and Lindstrom, 1986] D. DeGroot and G. Lindstrom, editors, Logic Programming, Func-

tions, Relations, and Equations, Prentice-Hall Inc., Englewood Cli�s, NJ, 1986.

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J.P. Jouannaud, \Rewrite Systems," In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 6, pages
243{320. Elsevier Science Publishers B.V., 1990.

[Dincbas et al., 1988] P. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier, \The Constraint Logic Programming Language CHIP," In Proceedings of the In-

ternational Conference on Fifth Generation Computer Systems 1988, pages 693{702, November
1988.

[Hanus, 1994] M. Hanus, \The Integration of Functions Into Logic Programming: From Theory
To Practice," The Journal of Logic Programming, 19,20:583{628, 1994.

[Horn, 1992] B. Horn, \Properties of User Interface Systems and The Siri Programming Language,"
In B. A. Myers, editor, Languages for developing user interfaces, chapter 13, pages 211{236. Jones
and Bartlett Publishers International, London, England, 1992.

[Huet and Oppen, 1980] G. Huet and D. C. Oppen, \Equations and Rewrite Rules: A Survey," In
R. V. Book, editor, Formal Language Theory: Perspectives and Open Problems, pages 349{405.
Academic Press, New York, 1980.

[Ja�ar and Lassez, 1987] J. Ja�ar and J.-L. Lassez, \From Uni�cation to Constraints," In K. Fu-
rukawa, H. Tanaka, and T. Fujisaki, editors, Proceedings of the Sixth Logic Programming Con-

ference, Lecture Notes in Computer Science, 315, pages 1{18. Springer-Verlag, 1987.

[Ja�ar and Maher, 1994] J. Ja�ar and M. J. Maher, \Constraint Logic Programming: A Survey,"
The Journal of Logic Programming, 19,20:503{581, 1994.

[Kawamura et al., 1987] T. Kawamura, H. Ohwada, and F. Mizoguchi, \CS-Prolog: A Generalized
Uni�cation Based Constraint Solver," In K. Furukawa, H. Tanaka, and T. Fujisaki, editors,
Proceedings of the Sixth Logic Programming Conference, Lecture Notes in Computer Science,
315, pages 19{39. Springer-Verlag, 1987.

[Kumar, 1992] V. Kumar, \Algorithms for Constraint Satisfaction Problems: A Survey," AI

Magazine, 13(1):32{44, September 1992.

[Leler, 1988] W. Leler, Constraint Programming Languages: Their Speci�cation and Generation,
Addison-Wesley Publishing Company, Reading, MA, 1988.

12

[Smolka, 1986] G. Smolka, \Fresh: A Higher-order Language With Uni�cation And Multiple Re-
sults," In D. DeGroot and G. Lindstrom, editors, Logic Programming, Functions, Relations, and

Equations, pages 469{524. Prentice-Hall Inc., Englewood Cli�s, NJ, 1986.

[Tick, 1991] E. Tick, Parallel Logic Programming, MIT Press, Cambridge, MA, 1991.

[Van Hentenryck, 1989] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT
Press, Cambridge, MA, 1989.

13

