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Ozone is recognized as one of the most dangerous

irritants to eyes, throat, lungs and etc.. Chamber studies

consistently have demonstrated adverse effects of ozone on

human lung function. The results of epidemiological studies,

however, have been controversial, partly because there are

many factors that affect human lung function. Thus it has been

difficult to control confounding in epidemiological studies.

Among these factors, retention and ventilation are two of the

more important because of their strong influence on ozone's

physiologically effective dose. This study used a computer

simulation model, utilizing data from the "children's Camp

Study", to analyze the effects of retention factors and

ventilation on ozone's physiologically effective dose. The

results of the simulations indicated appreciable improvement



in the estimated exposure to ozone when inhaled ozone exposure

(effective dose) was included in the model. These results were

consistent with the study's a priori hypothesis (that

incorporating retention and ventilation factors into the model

would improve the estimated exposure to ozone) primarily

because of the greater precision and reduction in bias

associated with the use of heart rate data that were child-and

hour-specific. The study identified three simulation data sets

for which the ozone dose model yielded a more significant

coefficient than did the average

Using the t-statistic, the three

the expected

differences

pattern,

between the

with

ozone concentration model.

models were seen to follow

statistically significant

R2 values (the coefficient of

variation changed from 45.4 to 11.0 when the error term was

0.01). The results of the analyses support the hypothesis that

ventilation and retention factors can be used to increase the

precision of ozone exposure measurement and reduce exposure

assessment errors significantly, thereby sharpening the power

of studies evaluating ozone's acute health effects.
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USING DIFFERENT MODELS TO ANALYZE THE

EFFECTS OF MEASUREMENT PRECISION OF OZONE EXPOSURE

ON PREDICTION OF ACUTE PULMONARY FUNCTION

INTRODUCTION

Ozone (03) is an unstable blue gas with an oxidizing

power that is surpassed only by that of fluorine"). It owes

its name to its characteristic odor, which is derived from the

Greek "Ozein", to smell. In the past, ozone was considered

beneficial in that it was believed to assist in oxygenation of

blood. Now it is recognized as one of the most dangerous

irritants to eyes, throat, lungs and etc.. It damages plants

and even cracks rubber(2) .

Ozone is by far the most ubiquitous oxidant. Within the

past two and three decades, it rose to significance when it

became recognized as a key component in oxidant smog created

by the interaction of hydrocarbons, nitrogen oxides, and

sunlight°). At times, ozone constitutes as much as 90% of the

oxidants in smog. In urban areas, ozone concentrations have

been found to be 0.001 to 0.9 ppm. In Los Angeles smog, the

levels of ozone have been as high as 0.9 ppm(4) . 0.12 ppm is

the national standard for the ambient environment and 0.05ppm

is the maximum allowable concentration (MAC) in industry for

an 8-hour exposure for healthy humans(6). 0.5 ppm is the "first
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alert" level in Los Angeles, California. Man-made sources of

ozone are high voltage electrical equipment, such as X-ray

apparatus, spectrographs, electrical insulators, brushes of

motors, and ultra-violetray quartz lamps. Ozonizing equipment

has been used for purification of water and sugar and for

control of fungi and bacteria in cold-storage plants(5).

In a large number of controlled human studies (chamber

studies) significant impairment of pulmonary function has been

reported, usually accompanied by respiratory and other

symptoms. The ozone exposure was generally to the

concentrations ranging from 200 to 2000mg/m3 and lasted 1-3

hours. In many studies, a pattern of 15 minutes of

intermittent exercise alternating with rest was employed for

the duration of the exposure. Minute ventilation has a

profound influence on the onset and magnitude of response to

ozone exposure. An increased level of exercise results in an

increase in the volume of inhaled ozone and in deeper

penetration of ozone into the periphery of the lung. Changes

in pulmonary function associated with 1-3 hours of ozone

exposure in normal subjects during exercise have been reported

for the following parameters: 1) forced expiratory volume for

1 second decreased, 2) airway resistance increased, 3) forced

vital capacity decreased, and 4) respiratory frequency

increased. The severity of respiratory and other symptoms

parallels the impairment of pulmonary function both in

magnitude and time-scale. Symptoms that have been reported are
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cough, throat dryness, thoracic pain, increased mucous

production, chest tightness, substernal pain, lassitude,

malaise and nausea. Chronic effects were reported in animal

studies. Long-term exposure of rats for 6 weeks or more to

ozone concentrations of 440-160011g/m3 resulted in increased

lung distensibility, increased airway resistance and impaired

stability. Incomplete recovery of monkeys exposed to 1280Ag/m3

for one year was found. During a 3-month recovery period,

static lung compliance had decreased, suggesting ongoing

injury and the development of central and peripheral airway

constriction. Fibrosis has been observed by some

researchers(6).

In chamber studies, effects of ozone on human lung

function have been found frequently. The results in

epidemiological studies, however, have always been

controversial. There are lots of factors which affect human

lung function. It is, if not impossible, very difficult to

control these factors in epidemiological studies(7). Of these

complicated factors, retention factor (R) and ventilation

(Ve) are two important factors because they determine the

effective human exposure to ozone. These two factors are

directly related to the dose of ozone. it is well known that

relating of effective ozone dose to health effects is much

more accurate than just ambient ozone concentration since

concentrations of ozone indoor and outdoor are quite

different, and the amount of ozone into human body depends on
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ventilation and retention factors. Individual minute

volume/ventilation rates can be monitored in chamber studies

or under controlled experimental settings. However, in field

studies involving both children and adults, continuous

monitoring of Ve is impractical. Colucci(8) (1982) and, more

recently Canadian researchers, Mark Raizenne and Douglas

Haines(9) (cf. Raizenne and Spengler 1989) have developed

techniques to continuously monitor heart rate (HR) and then

relate that to ventilation rate. Additionally, Young")) (1977)

reported the penetration or retention factor of ozone in the

nasal tract as a function of concentration and ventilation.

Better understanding of the relationship between exposure

to ozone and observed health responses require prediction of

personal exposures and delivered dose to the human respiratory

trace"). Various models ranging from the simple calculation

of average with effective dose to more complicated

mathematical dose models for ozone have been developed(9) (cf.

Kinney et al. 1986; Raizenne and Spengler 1989; Haines 1990;

Overton and Miller 1987). Most models incorporate ventilation

rate, duration of exposure, and average concentration during

the period of exposure. Some of these models also include an

estimate of the ozone retention or penetration in the

pulmonary airways. However, there are few research studies

which considered ventilation and retention factor at the same

time.

The purpose of my study is to study the relationships
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between ozone exposure and dose and acute effects on human

lung function. In the study, I used different models to

analyze the effects of retention factors and ventilation on

the effective dose of ozone using the "Children Camps Study"

data set. Some experiments have suggested that camps have

provided valuable settings for studies assessing the acute

health effects of ambient air pollution ( M. Lippmann,

1983(12); N. Bock, M. Lippmann, 1985(13)). Camp studies avoid

some of the problems associated with traditional environmental

epidemiology studies, particularly in the area of exposure

assessment. Children attending summer camps spend a large

fraction of time outdoors within a relatively small and well

defined geographical area. They also tend to exercise heavily,

enhancing the uptake of inhaled pollutants. While exercise

levels, and thus minute ventilation, tend to be enhanced on

average, one would expect a high degree of variability in Ve

from child to child and from activity to activity. Minute

ventilation can vary by a factor of 5 or more between rest and

vigorous exercise. If pollution deposition in the respiratory

tract (dose) is proportional to Ve, then variation in Ve could

lead to significant variation in pollution doses across

subjects and activities, even if the exposure concentration

remained constant.

In my study, I used the simulation method, that is, I

simulated FVC data based on an assumed linear relationship

between FVC and ozone exposure. Inhaled exposure with actual
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Camp Care (Canada 1986) ozone measurements was applied to

simulate an effective ozone dose for each subject. Each child

was randomly assigned a heart rate (and thus a ventilation

rate) from an activity-specific normal distribution of heart

rates. Then the total simulated data sets for ozone was

generated. For the created data set, the three models were

fitted for alternative exposure measures. The first regression

of FVC (model 1) used ventilation-retention-weighted inhaled

exposure (dose). The second regression (model 2) used

ventilation-weighted inhaled exposure (doseve) in which the

retention factor was removed. Finally, FVC was regressed on

one hour ozone concentration previous to lung function

measurement (model 3, OH1, typically used to represent

exposure in an epidemiological study). The study results will

show whether there is a consistent pattern of increase in the

significance levels (R2 value) in the models that use the more

precise exposure measures and whether heart rate data support

the notion that such data can be used to reduce exposure

assessment errors significantly, thereby increasing the power

of acute effects studies of ozone.
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DATA SET AND METHODS

1. Data Set:

The Ozone data are from the Camp Care study examining

lung function associations with ozone concentration among a

group of 112 children, 7 to 14 years of age, over the course

of a twelve-day camp in the summer of 1986. The residential

summer camp was located on the north shore of Lake Erie,

Ontario, Canada. Measurements of forced vital capacity (FVC)

were collected twice each day using a spirometer. Ambient

ozone pollution measurements were collected on-site for 2

weeks. The data of heart rate come from a Watertown study in

Massachusetts in 1985. The Watertown study was conducted as

part of the Harvard Air Pollution Health Study, a prospective

epidemiological air pollution study carried out in six United

State cities. The heart rates of the children from this study

are close to normal distribution with a mean of 120 and

standard deviation of 25 beats/minute. Heart rates for the

models are simulated based on the distribution assigning 20%

of each value as standard deviation correspondingly. In order

to smooth the distribution, each child's average of three

heart rates is used for each day. Inhaled exposure simulated

for ozone pollutant is used to simulate FVC data for each

child based on an assumed linear relationship. Then the total

simulated data sets for ozone dose and acute lung function

was created.
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2. Methods:

Simulation Analysis

Realization of random processes are the raw materials of

classical statistical inferences. Most applications of

statistical methods in substantive research require a "random

sample" or a "random assignment". Another, quite different way

in which observations on random processes may be used is in

the development of statistical methods and theory. The

sampling experiment leading W. S. Gosset to discover the

distribution of the correlation coefficient is an early

instance of this latter use of random processes".

Computer simulation is to use random number generator via

equation and algorithm to mimic a real situation and testify

how it changes as a function of other variables. In the actual

world, lots of problems can been resolved by simulation if the

parameters and its relationship can be specified. For

example, a problem that needed to be solved involved which one

of the two equations was better to calculate the mean of a

sample. The equations evaluated are ordinary mean equation and

trimmed mean equation. The conclusion from simulation is that

the first is better if the sample comes from a normal

distribution population and the second will be better if the

sample dose not come from normal distribution.

Simulation is used in the study to generate heart rate,

ventilation and retention factors with a random number
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according to their distribution and create lung function data

(FVC) according to its relationship with ozone exposure and

distribution of error term for the model. The major procedure

included 1) simulation is used to create heart rate,

ventilation and retention factors, thus ozone dose for each

child, 2) the ozone dose is used to generate FVC according to

the linear relationship, and 3) simulated FVC is used to fit

three regression models. The heart rate data is converted to

minute ventilation using the formula(15):

Ve=exp(0.7884+0.016xHR)

(1)

Where Ve: minute ventilation in liters Per minute

HR: heart rate in beats per minute

The penetration (retention factor) depends on ventilation

and ozone concentration, and this relationship is nonlinear.

Young (1977) reported the penetration of ozone in the nasal

tract as a function of concentration and ventilation for seven

male subjects ranging in age from 22 to 48 years. Data from

the Young study was used to simulate retention factor for each

child assuming a uniform distribution with a range between

70% and 130% for each level of ventilation. The value of the

retention factor comes from the formula("):

R=Ve7 0% +uni form (o) x (Ve3 0%-Ve7 0%)

(2)
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One hour average ozone concentration before measurement

(OH1) of child's lung function from Camp Care data is used to

estimate ozone dose. The exposure for each child is computed

as(9):

Dose=17ex0H1xRxT

(3)

Where: OH1: One hour average ozone concentration before

lung function measurement

R: retention factor

T: length of exposure period

The FVC data sets is simulated using equations of the

form(9) :

FVC=Pxdose+e

(4)

Where p : choose -0.0002 as a reference point for

simulating FVC. This p value was selected based on the FVC

regression on a hour-average inhaled ozone exposure presented

by P. L. Kenney(16). The ambient ozone data used in my study

was one hour average ozone concentration before lung function

measurement.

e: the error term, is assumed to be normally distributed

with a mean of zero and std of 0.01, 0,02, 0.03, and 0.04

liters, which are for the sensitive analysis of error term.

The valuer of error term estimated from previous studies was
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ranged from 0.01 to 0.1.

The size of the error term is crucial. The error term can

be estimated from Camp Care data. Since there are not enough

data to estimate the error term for dose of ozone from Camp

Care data (only ambient ozone pollution measurement OH1 was

collected on size), the error term is estimated only for model

3, However through the relationship between model 1 and model

3, the error term can be estimated as the following for models

1 and 2(17):

SSt = SSe + SSm (5)

R 2 = ! _
( SS t SSE ) 1 SSE

SSc SST SSc

(6)

SS,-
1 R2

SSt

(7)

SSe= (1-R2) xSSt

(8)

SSE NI (1-R2) xSSt
std(r) ----re (r) =NI - -n-2 n-2

(9)
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( 1 -R 2!) xSS t
1

std ( rl )
n 1 -2

std ( r3 )

( 1 -R :) xSS t

n -23

3

(10)

SS =SSt
t n i=n 3

std ( rl ) V1 -R t

std ( r3 ) 1 , ED 2
\. 3

(12)

Where SSt: total variation

SSe: variation of residual

SSm: variation of model

Then the regression models are as follows:

Model 1 : FVC =p1 xdose +el

(considering the retention factor and ventilation)

Model 2 : FVC =02 xdoseve +2

(ignoring the retention factor)

Model 3 : FVC =03 x01111 +3
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RESULTS

A total of 20 simulated data sets (dose, doseve, and

FVC), are created for one error term. The simulated FVC is

used to fit three regression models. The first regression is

on ventilation-retention-weighted inhaled exposure (dose). The

second regression is on ventilation-weighted inhaled exposure

(doseve), where the retention factor is ignored. Finally, FVC

is regressed on ozone concentration (0H1), which is typically

used to represent ozone exposure in epidemiological studies.

The results from the regressions of each simulation FVC

on alternative ozone exposure models are shown in Table 1.

Model 1 for each simulation has the best R2 value. The /3 value

is close to -0.0002 for model 1 but not for model 2 and model

3. The standard deviation of heart rate represents its

variation. The larger standard deviation leads to the bigger

R2 value and the difference of R2 between model 1 and model

3 becomes wider. That is to say, Model 1 can explain more

variation than the other models when ventilation of a child

changes to a great extent. For the t value, model 1 also has

biggest t value, then model 2, and model 3. The figures listed

in the last three rows of the table show that different models

have a different mean R2 value, standard deviation, and C.V..

C.V. is the coefficient of variation (standard deviation

divided by mean). The C.V. of 0 for different models are 6.96,
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17.93 and 41.64 respectively. The C.V. of model 1 is obviously

much smaller than other models. This C.V. shows good precision

of p estimation for model 1. The R2 from the first regression

is much larger than those from other regressions. This also

indicates that the model 1 can explain the more of total

variation than other models so that the model 1 is more

accurate. From R2 and C.V. of table 1, it can be seen that

model 2 is better than model 3. As the error terms increased,

the same patterns are shown in table 1 except that the

difference in the C.V. between models becomes smaller.

Figure 1 demonstrates R2 distribution in different models

with different error terms, which make the results in table 1

more apparent. R2 value explains the proportion of the total

variation that is explained by the models. The R2 value of

model 1 is the biggest, then model 2 and model 3 when the

error term is fixed. The bigger the value of error term is,

the smaller the value of R2 it has, the wider the variation

is when the model is fixed. Therefore model 1 is much more

precise than other 2 models, and model 2 is better than model

3.

Figure 2 shows coefficients in the different models with

different errors. It is apparent that the value of the error

term has little influence on the average coefficient for each

model. However, the coefficients of variation of the different

models increase as the error terms become larger. For each

error term, model 1 demonstrates the best results.
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The regression results for the three models are

summarized in Table 2. The P-value is used to estimate the

fitness of the different models. Note that in most cases the

coefficients are statistically significant. The relative

significance of the alternative exposure measurements are of

greater interest. Using different ozone exposure models and

different values for the error term results in different P-

values. When the value of the error term is 0.01, all

coefficients of the 20 regressions are statistically

significant for model 1; 19 coefficients of the 20 regressions

are statistically significant for model 2; and just 15

coefficients of the 20 regressions are positive for model 3.

When the value of the error term increases, the number of

regressions which are statistically significant decreases for

the same exposure model. For example, in model 2, when the

error term is 0.01, the number of significant regressions is

19; when error term is 0.04 the number of significant

regressions is 13. Model 1 and model 3 show the same trends.

This means the size of the error term is crucial. The bigger

the value of the error term chosen, the more variation in the

model and fewer number of significant models it produces. Not

surprisingly, the number of significant regressions does show

a consistent pattern of increase in going to more precise

exposure measures.

Table 3 shows the results from regressions of simulated

FVC on alternative ozone exposure models, and the influence of
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individual variation and the value of the error term. Columns

2-4 and columns 5-7 list the results of regressions for

controlling and non-controlling individual variation

separately. It can be seen that the results of controlling

individual variation are better than that from not-controlling

variation. For example, the R2 value in controlling individual

variation for model 1 is 0.9778, for model 2 is 0.8640, and

for model 3 is 0.5722. But when individual variation is not

controlled, the R2 value for model 1 is 0.9764, for model 2 is

0.8553, for model 3 is 0.3116. Meanwhile, for either

controlling individual variation or not, for either bigger or

smaller values of the error term, the model 1 (dose) has the

best R2 value, model 2 (doseve) has the better R2 value, and

model 3 (OH1) has the smallest R2 value. For example, when the

error term is 0.01, the R2 value of model 1 for not

controlling individual variation is 0.9764, of model 2 is

0.8553, and of model 3 is 0.3116. When the error term is 0.03,

the R2 value of model 1 is 0.8196, of model 2 is 0.7134, and

of model 3 is 0.2852. It also can be seen that the error term

influences the results of the regression. When the value of

the error term increases, the value of R2 for different models

decreases. For example, for model 1, when the value of the

error term is 0.01, the value of R2 is 0.9764; when value of

error term is 0.02, the value of R2 is 0.8938; when error term

is 0.03, the value of R2 is 0.8196; and when the error term is

0.04, the R2 is 0.6738. The same situation occurs for model 2
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and model 3, for controlling and not-controlling individual

variation. In fact, there are three models for which the

ventilation-retention-weighted exposure model yields a more

significant coefficient than do the ventilation-weighted and

average OH1 models. Overall, patterns are most easily seen in

the summary statistics printed in columns four and seven of

the table. From the t value, the three models are seen to

follow the expected pattern, and, when the value of the error

term is fixed on 0.01 the differences between R2 values are

significant with C.V. changing from 11.03 (model 1) to 23.44

(model 2), a 2.13 times change; from 23.44 (model 2) to 45.41

(model 3), a 1.93 times change; and from 11.03 (model 1) to

45.41 (model 3), a 4.12 times change.
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DISCUSSION

In this study, I examined the general application of

quantitative ozone exposure-dose models and assessed the

importance of collecting data on minute ventilation or heart

rate and retention factor in studies of the acute pulmonary

effects of ozone exposure.

It is possible to define an "ozone exposure" equal to the

concentration and exposure duration, which can account for a

large proportion

However, this

other factors

of the observed variation in responses.

concept does not account for the importance of

in determining response°8) . At a given "ozone

exposure," the response is greater when the concentration is

high and Ve low than when concentration is low and Ve high. It

is also important to note that predictions based on ozone

exposure are, at best, useful for the mean population

response. The considerable inter-individual variability in

response means that accurate predictions of health responses

for individuals often are not possible with the existing ozone

data collected by the past health effects studies. The non-

linear relationship between ambient ozone concentration and

the penetration rate of ozone to the lower airways during

various levels of exercise should be considered in

interpreting results from different chamber and field studies

on ozone°9). The definition of ozone exposure in terms of an
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"ozone dose" should be the product of concentration,

ventilation rate, retention factor, and the duration of

exposure, which is straightforward in terms of modeling in my

study.

To examine the influence of Ve variation on the

analytical results of the study, the heart rates of children

in Watertown engaged in various types of camp activities were

used. The data provided an estimate of the mean heart rates

associated with each of the several activities, as well as an

indication of the variation in heart rates within activities.

The approach of simulation is taken in my study, that is, the

simulated acute study data sets of known structure are modeled

after the Camp Care data set. Here, FVC data were simulated

based on an assumed linear relationship with inhaled exposure.

The actual Camp Care ozone measurements was used to simulate

an effective ozone dose for each subject. Each child is

randomly assigned a heart rate (thus a ventilation rate) from

an activity-specific normal distribution of heart rates. The

"true" relationship between ozone dose and lung function

response is known, and the ability of various imperfect

exposure measures to extract the "true" relationship in the

context of regression analysis is tested in my study.

The results of my study (fi=-0.0002) indicate appreciable

change going from the traditional average ozone concentration

to the inhaled exposures (effective dose). Because the heart

rate data is child-and hour-specific, the findings of
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difference and improvement in the precision of the estimates

are expected. My study also found a consistent pattern of

increase in the significance levels in going to more precise

exposure measures. In fact, there were three simulation data

sets for which the ozone dose model yielded a more significant

coefficient than did the average ozone concentration model.

Using the t-statistic, the three models were seen to follow

the expected pattern, and the differences were very

significant with C.V. changing from 11.03 to 45.41, a 4.12

times change (when the error term is 0.01). The results of the

analyses support the notion that ventilation and retention

factor can be used to reduce exposure assessment errors

significantly, thereby sharpening the power of acute health

effects studies. I also chose several other values of g and

got similar results.

The analysis of my study assessed the value of "inhaled"

pollution exposure as compared to the more traditional average

concentration model in assessing acute lung function effects

of air pollution. My analysis considered "true" effective

dose, which required information on penetration and deposition

of air pollution in the lower respiratory tract. The results

suggest that a larger improvement in the precision of the

slope estimate was obtained because the concentration-specific

retention factors in the effective dose calculations had been

used.

Level of activity has been determined to be an important
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factor influencing the change in the ventilation rate and,

consequently, the ozone dose delivered to the respiratory

tract(2°). Use of heart rate measurements, along with subject-

specific adjustments of calibrations have been found to be

useful in predicting ventilation rate. However, the magnitude

and functional form of the retention or penetration factor of

ozone is not yet reliably known. Penetration of ozone beyond

the oropharyngeal region is a complex function of both the

ventilation rate and the ozone concentration. Data on ozone

retention factors for children do not seem to exist. The mode

of breathing (deep or shallow, or nasal or oral) is expected

to influence the amount of delivered dose of ozone to the

lower lungs(21). Subject-specific data on the mode of

inhalation and pattern of dose delivery rate were found to be

among the largest uncertainties of the dose-response

characterization of the acute affects of ozone(22). This is

consistent with my results, in which there is some improvement

in R2 from model 2 to model 1. There is no improvement with

the coefficient precision going from model 2 to model 1,

however. Therefore more studies are needed to explore the

retention rate and its effect on effective ozone dose.



22

SUMMARY AND CONCLUSIONS

In summary, it is important to note that the results of

my study are consistent with the hypothesis that an effective

dose measure will represent an improvement over conventional

concentration-based measures of ozone in the investigations of

acute health effects of ozone. As Raizenne and Spengler (1989)

stated(9), the application of a child-specific dose calculation

is an advantage over the alternative methods for exposure

estimates, judging by the substantial variation in the

calculated dose among the children during a single six-hour

pollution episode. However, during a particular episode,

calculated dose varied from 150gg to 750gg. Sample size

limitations and lack of detailed knowledge on Ve and R for

each child, at each hour, have most likely contributed to the

inconclusive findings (Kenney 1986 and Haines 1989), when more

refined exposure and dose measures for ozone are tested in

health effects investigations. Use of simple effective dose

formulations or more complicated ozone dosimetric models have

provided new insights into the exposure-response relationships

of ozone. The parameter certainties (eg., ventilation) in the

dosimetric models can provide a successful demonstration of

why these more refined measures of exposure or dose are better

in the evaluation of an epidemiologic health data set than the

conventional concentration measures of average exposure. Both
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clinical and field experiments are recommended to develop new

or better information on the specification of the ventilation

and retention rates as a function of a subject's age, sex,

activity level and type, and ozone concentration. Dosimetric

models need to be improved to account for varying patterns and

modes of exposure to ozone. The potential effects of changing

the dose rate can be studied through numerical simulation

studies and animal experiments. It is also worthwhile to re-

analyze the data from past camp studies on the acute effects

of ozone using alternative dosimetric models, which

incorporate parameter uncertainty and temporal tending in the

reported spirometry data.
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APPENDICES



1. TABLES

Table 1 The Results from the Regressions of Simulated FVC on Alternative Ozone Esposure Models
error=0.01

mean std R2

DOSE
t R2

DOSEVE
t R2

OHI

1 91 18 0.9328 -0.00023 -12.40 0.8211 -0.00010 -7.18 0.5925 -0.00078 -4.12
2 120 24 0.9659 -0.00021 -17.69 0.4305 -0.00007 -3.05 0.0520 -0.00046 -1.27
3 140 28 0.9920 -0.00020 -36.98 0.6714 -0.00007 -4.85 0.6644 -0.00173 -4.77
4 137 27 0.9808 -0.00021 -23.76 0.8945 -0.00010 -9.71 0.2297 -0.00168 -2.07
5 125 25 0.9850 -0.00020 -26.87 0.8897 -0.00010 -9.47 0.8470 -0.00189 -7.87

6 89 18 0.7700 -0.00021 -6.15 0.7454 -0.00010 -5.76 0.6692 -0.00079 -4.82
7 137 27 0.9910 -0.00019 -34.75 0.7752 -0.00010 -6.24 0.0876 -0.00105 -0.98
8 104 21 0.9874 -0.00019 -29.34 0.9462 -0.00010 -13.95 0.4400 -0.00132 -3.11
9 107 21 0.8748 -0.00021 -8.82 0.6497 -0.00008 -4.63 0.3575 -0.00080 -2.67

10 141 28 0.9721 -0.00019 -19.59 0.9173 -0.00010 -11.09 0.6398 -0.00181 -4.53

11 86 17 0.5523 -0.00018 -3.82 0.2098 -0.00005 -1.98 0.2315 -0.00033 -2.08

12 137 27 0.9739 -0.00019 -20.28 0.8568 -0.00010 -8.17 0.4629 -0.00215 -3.24

13 124 25 0.9864 -0.00024 -28.22 0.8316 -0.00009 -7.49 0.6142 -0.00189 -4.30
14 104 21 0.8801 -0.00021 -9.04 0.6084 -0.00006 -4.25 0.4922 -0.00075 -3.42

15 128 26 0.9685 -0.00021 -18.41 0.9055 -0.00010 -10.32 0.6240 -0.00152 -4.39

16 121 24 0.9814 -0.00021 -24.10 0.8819 -0.00010 -9.12 0.6997 -0.00179 -5.16

17 121 24 0.8908 -0.00022 -9.53 0.6461 -0.00007 -4.59 0.4242 -0.00086 -3.02

18 121 24 0.9736 -0.00022 -20.17 0.7460 -0.00011 -5.77 0.7310 -0.00194 -5.56

19 112 22 0.9821 -0.00019 -24.61 0.8247 -0.00009 -7.26 0.7503 -0.00169 -5.84

20 141 28 0.9764 -0.00019 -21.36 0.7567 -0.00010 -5.93 0.2423 -0.00109 -2.13

MEAN 0.9308 -0.00020 -19.7945 0.7505 -0.00008 -7.0405 0.4926 -0.00132 -3.7675

STD 0.1026 0.000014 9.042504 0.1759 0.000016 2.871014 0.2236 0.000541 1.654995

C.V. 11.03 -6.96 -45.68 23.44 -17.93 -40.78 45.41 -41.04 -43.93



Table 1 continued error=0.02

mean std R2

DOSE
t R2

DOSEVE
t R2

OHI

1 91 18 0.7715 -0.00040 -6.18 0.3736 -0.00010 -2.75 0.1427 -0.00051 -1.68

2 120 24 0.8345 -0.00019 -7.51 0.7469 -0.00010 -5.78 0.2112 -0.00088 -1.99

3 140 28 0.9650 -0.00021 -17.44 0.6320 -0.00008 -4.46 0.1101 -0.00150 -1.54

4 137 27 0.7914 -0.00016 -6.54 0.7810 -0.00008 -6.34 0.6434 -0.00164 -4.57

5 125 25 0.7305 -0.00017 -5.55 0.6916 -0.00009 -5.07 0.1230 -0.00063 -1.60

6 89 18 0.2397 -0.00017 -2.11 0.1780 -0.00006 -1.84 0.1451 -0.00046 -1.69

7 137 27 0.9648 -0.00021 -17.39 0.9047 -0.00014 -10.27 0.3974 -0.00275 -2.87

8 104 21 0.5826 -0.00015 -4.04 0.7185 -0.00006 -5.39 0.6889 -0.00072 -5.04

9 107 21 0.7842 -0.00020 -6.40 0.6363 -0.00007 -4.50 0.3639 -0.00082 -2.70

10 141 28 0.9252 -0.00023 -11.71 0.7789 -0.00012 -6.31 0.4044 -0.00165 -2.91

11 86 17 0.1778 -0.00013 -1.84 0.1487 -0.00004 -1.71 0.1015 -0.00033 -1.50

12 137 27 0.8885 -0.00018 -9.41 0.6608 -0.00007 -4.74 0.4530 -0.00163 -3.18

13 124 25 0.5056 -0.00013 -3.50 0.2605 -0.00006 -2.21 0.1134 -0.00061 -1.55

14 104 21 0.7089 -0.00020 -5.27 0.7005 -0.00009 -5.17 0.6140 -0.00111 -4.30

15 128 26 0.8056 -0.00021 -6.83 0.7440 -0.00010 -5.74 0.4586 -0.00119 -3.21

16 121 24 0.8543 -0.00017 -8.09 0.6822 -0.00008 -4.96 0.3223 -0.00080 -2.50

17 121 24 0.7236 -0.00015 -5.46 0.7272 -0.00007 -5.51 0.3657 -0.00085 -2.71

18 121 24 0.9093 -0.00022 -10.55 0.8595 -0.00011 -8.26 0.6448 -0.00185 -4.58

19 112 22 0.5449 -0.00015 -3.76 0.4794 -0.00006 -3.34 0.3053 -0.00057 -2.42

20 141 28 0.8996 -0.00023 -9.98 0.8230 -0.00011 -7.22 0.3057 -0.00187 -2.42

MEAN 0.7303 -0.00019 -7.48 0.6263 -0.00008 -5.08 0.3457 -0.00112 -2.75

STD 0.2153 0.000056 4.21 0.2153 0.000024 2.07 0.1898 0.000609 1.09

C.V. 29.48 -28.33 -56.27 34.38 -29.42 -40.68 54.92 -54.29 -39.58



Table 1 continued error=0.03

mean std R2

DOSE
t R2

DOSEVE
t R2

OH1

1 91 18 0.1043 -0.00012 -1.08 0.0512 -0.00003 -0.74 0.0539 -0.0003 -0.75

2 120 24 0.4583 -0.00014 -3.21 0.4122 -0.00006 -2.95 0.3446 -0.0011 -2.61

3 140 28 0.8785 -0.00020 -8.98 0.8219 -0.00009 -7.19 0.8334 -0.0026 -7.49

4 137 27 0.7593 -0.00018 -5.98 0.5955 -0.00006 -4.15 0.5817 -0.0017 -4.04

5 125 25 0.9148 -0.00020 -10.92 0.7094 -0.00010 -5.28 0.3550 -0.0023 -2.66

6 89 18 0.2959 -0.00017 -2.37 0.2280 -0.00007 -2.06 0.3649 -0.0006 -2.71

7 137 27 0.6988 -0.00016 -5.15 0.6799 -0.00008 -4.94 0.4099 -0.0015 -2.94

8 104 21 0.4337 -0.00022 -3.07 0.1967 -0.00007 -1.92 0.2150 -0.0010 -2.00

9 107 21 0.7685 -0.00025 -6.12 0.8070 -0.00014 -6.86 0.5793 -0.0022 -4.02

10 141 28 0.8195 -0.00016 -7.14 0.9095 -0.00005 -4.26 0.4767 -0.0011 -3.32

11 86 17 0.0159 -0.00006 -0.40 0.0293 -0.00003 -0.55 0.0453 -0.0003 -0.69

12 137 27 0.8264 -0.00020 -7.31 0.7941 -0.00011 -6.59 0.6319 -0.0027 -4.46

13 124 25 0.8613 -0.00024 -8.32 0.6636 -0.00010 -4.76 0.2544 -0.0014 -2.18

14 104 21 0.6283 -0.00035 -4.43 0.7107 -0.00015 -5.29 0.4823 -0.0014 -3.35

15 128 26 0.4595 -0.00015 -3.22 0.4091 -0.00007 -2.94 0.1882 -0.0008 -1.88

16 121 24 0.9069 -0.00023 -10.40 0.9030 -0.00014 -10.17 0.7881 -0.0030 -6.47

17 121 24 0.5976 -0.00016 -4.16 0.6357 -0.00007 -4.49 0.3796 -0.0015 -2.78

18 121 24 0.6234 -0.00023 -4.38 0.4615 -0.00009 -3.23 0.2455 -0.0010 -2.14

19 112 22 0.5644 -0.00020 -3.91 0.3721 -0.00010 -2.74 0.1528 -0.0009 -1.73

20 141 28 0.9639 -0.00020 -17.17 0.8915 -0.00014 -9.56 0.3111 -0.0031 -2.44

MEAN 0.6289 -0.00019 -5.88 0.5640 -0.00009 -4.5335 0.3846 -0.00153 -3.03285

STD 0.2614 0.00006 3.82 0.2723 0.00003 2.534916 0.2134 0.00084 1.628176

C.V. 41.57 -29.93 -64.89 48.28 -39.57 -55.92 55.48 -54.86 -53.68



Table 1 continued error=0.04

mean std R2

DOSE
R2

DOSEVE
R2

01-11

13

1 91 18 0.1563 -0.00016 -1.74 0.1675 -0.00006 -1.79 0.0919 -0.0009 -1.45

2 120 24 0.4373 -0.00020 -3.09 0.3323 -0.00007 -2.55 0.0585 -0.0007 -1.30

3 140 28 0.9126 -0.00024 -10.76 0.9020 -0.00013 -10.11 0.6756 -0.0038 -4.89

4 137 27 0.6592 -0.00019 -4.72 0.6339 0.00006 -4.48 0.3469 -0.0012 -2.62

5 125 25 0.6231 -0.00014 -4.38 0.5310 -0.00006 -3.67 0.5522 -0.0013 -3.82

6 89 18 0.0304 -0.00050 -0.56 0.0949 -0.00004 -1.02 0.0749 -0.0037 -0.90

7 137 27 0.7857 -0.00018 -6.43 0.4138 -0.00007 -2.96 0.0729 -0.0012 -1.37

8 104 21 0.1869 -0.00019 -1.88 0.0747 -0.00007 -1.37 0.0486 0.0004 -0.79

9 107 21 0.5876 -0.00017 -4.08 0.6552 -0.00010 -4.68 0.4691 -0.0020 -3.27

10 141 28 0.3697 -0.00022 -2.73 0.0387 -0.00004 -1.20 0.1289 -0.0009 -1.62

11 86 17 0.0565 0.00010 0.77 0.0234 0.00002 0.49 0.0580 0.0004 0.79

12 137 27 0.7749 -0.00026 -6.23 0.6888 -0.00011 -5.03 0.2124 -0.0018 -1.99

13 124 25 0.7253 -0.00021 -5.48 0.6969 -0.00014 -5.13 0.5982 -0.0024 -4.17

14 104 21 0.0750 -0.00006 -1.38 0.1651 -0.00004 -1.78 0.2222 -0.0006 -2.04

15 128 26 0.7632 -0.00021 -6.04 0.7121 -0.00011 -5.31 0.3760 -0.0021 -2.76

16 121 24 0.6966 -0.00019 -5.12 0.6930 -0.00009 -5.08 0.3589 -0.0010 -2.68

17 121 24 0.6029 -0.00021 -4.21 0.4507 -0.00009 -3.17 0.5380 -0.0017 -3.72

18 121 24 0.4614 -0.00018 -3.23 0.6406 -0.00011 -4.54 0.5354 -0.0015 -3.70

19 112 22 0.0737 -0.00010 -1.37 0.0577 -0.00003 -1.29 0.1450 -0.0007 -1.69

20 141 28 0.7594 -0.00023 -5.98 0.7465 -0.00001 -5.78 0.3556 -0.0025 -2.66

MEAN 0.4868 -0.00019 -3.93 0.4359 -0.00007 -3.52305 0.2959 -0.00150 -2.3318

STD 0.2852 0.00010 2.55 0.2829 0.00004 2.313929 0.2050 0.00102 1.328893

C.V. 58.58 -56.11 -64.80 64.90 -55.96 -65.68 69.29 -67.62 -56.99



Table 2 The Number of Statistically Significant Coefficients by

Alternative Ozone Exposure Models

ERROR

0.01 0.02 0.03 0.04

DOSE NO 20 20 20 20

N+ 20 18 18 14

DOSEVE NO 20 20 20 20

N+ 19 17 16 13

OH1 NO 20 20 20 20

N+ 15 13 13 10

NO: sample size
Ni-: number of regressions being statistically significant



Table 3 The Summarized Results from the Regression of Simulated FVC
on Alternative Ozone Exposure Models

Not controlling
individual variation

R2 /3 t

Controlling
individual variation

R2 /3 t

dose 0.9764 -0.00020 -99.34 0.9778 -0.00021 -84.19

ERROR=0.01 doseve 0.8553 -0.00010 -37.61 0.8640 -0.00009 -31.24
OH1 0.3116 -0.00132 -10.45 0.5722 -0.00132 -12.69

dose 0.8938 -0.00021 -44.86 0.9224 -0.00020 -37.00
ERROR=0.02 doseve 0.7794 -0.00010 -29.08 0.8352 -0.00009 -22.99

OH1 0.1698 -0.00110 -7.06 0.6106 -0.00110 -9.87

dose 0.8196 -0.00020 -32.96 0.8309 -0.00020 -27.81

ERROR=0.03 doseve 0.7134 -0.00010 -24.41 0.7392 -0.00010 -20.60
OH1 0.2852 -0.00150 -9.82 0.5220 0.00151 -11.49

dose 0.6738 -0.00019 -22.24 0.7023 -0.00020 -19.59
ERROR=0.04 doseve 0.5942 -0.00009 -18.74 0.6344 -0.00089 -16.49

OH1 0.2366 -0.00134 -8.66 0.4202 -0.00134 -9.52

one simulation for each kid for 12 days
20 kid simulations
/3=-0.0002
fvc =fl* dose +N(0,error)
dose=r*Ve*OH1; doseve=Ve*OH1
Ve=exp(0.7884+0.016*hr)
r:retation rate; hr: heart rate
OH1: ozone conc. one hour before measurement of fvc
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Figure 1 The R2 Variation in Alternative Ozone Exposure Models with Different Error Terms
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Figure 2 The Coefficient Variation in Alternative Ozone Exposure Models with Different Error Terms
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3. LIST OF DEFINITIONS

1. Ventilation Rate: Volume of the air taken in by the

respiratory tract per unit time, eg., minute ventilation.

2. Retention Factor: The proportion of inhaled pollutant

which penetrates to the trachea and get into the circulative

system.

3. Error term: In simple linear regression model, an

observation deviates from the line by a random amount c, The

random deviation is assumed to have a normal distribution with

mean zero and standard deviation , and random deviations for

different observation are assumed independent of one another.

4. Simulation: One of statistical methods which uses an

random number generator via an equation and algorithm to mimic

a real situation and testify how it changes as a function of

other variables.

5. Exposure: Amount of pollutant which is measured or

measurable in the environment.

6. Dose: Amount of pollutant which is delivered to the

organs or tissues where the effect is manifested.

7. FVC: Forced vital capacity.

8. Short-term Effects: Acute biologic response caused by

exposure to a toxic agent in a short period of time.

9. Long-term Effects: Chronic biologic response caused by

exposure to a toxic agent in a long period of time.
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4. SAS PROGRAMS

OPTIONS PS=55;
libname gin 'c: \canada \';

%let hmean=104;
%let hstd=21;
%let kid=8;

DATA A;
SET GIN.CARE1;
WHERE ID=4001;
KEEP ID OH1;
*****************************
DATA GIN.n&kid;
SET A;
k=&kid;
H1=&hmean + &hstd*NORMAL(0);
H2=&hmean + &hstd*NORMAL(0);
H3=&hmean + &hstd*NORMAL(0);
*****************************

H=MEAN(OF H1 -H3);
VE=EXP(0.7884+0.016*H);

R5=0.084+UNIFORM(0)*(0.156-0.084);
R15=0.2478+UNIFORM(0)*(0.4602-0.2478);
R30=0.3178+UNIFORM(0)*(0.5902-0.3178);
R50=0.3752+UNIFORM(0)*(0.6968-0.3752);
IF VE LE 5 THEN R=R5;

ELSE IF VE LE 15 THEN R=R15;
ELSE IF VE LE 30 THEN R=R30;
ELSE R=R50;

DOSE=R*VE*OH1;
DOSEVE=VE*OH1;
err=0.020*normal(0);
fvc=(-0.0002)*dOSE+err;
fvc=fvc*1000;
DROP H1 -H3 R5 R15 R30 R50;

proc reg;
model fvc =dOSE;
run;

proc reg;
model fvc= dOSEVE;
run;

proc reg;
model fvc =OH1;
run;
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goptions device=HPLJ5P2 rotate;
OPTIONS PS=55;
libname gin 'c:\CANADA\YU\';

data Y missover;
input FUNCTION $
XSYS='5'; YSYS='5';
cards;

X Y TEXT $ 28-31;

move 20 83
draw 20 20 /* Y axis from 20% to 83% */

draw 90 20 /* X axis from 20% to 90% */

move 20 20
draw 19 20
move 20 30
draw 19 30
move 20 40
draw 19 40
move 20 50
draw 19 50
move 20 60

draw 19 60
move 20 70
draw 19 70
move 20 80
draw 19 80
label 14 20 0.0

label 14 30 0.2

label 14 40 0.4

label 14 50 0.6
label 14 60 0.8

label 14 70 1.0

label 14 80

DATA DATAD;
SET GIN.R2B;
IF PARA='B' THEN DELETE;
ARRAY UU A1-A3 B1-B3 C1 -C3 D1 -D3;
DO OVER UU;
IF PARA NE 'Ml' AND PARA NE 'M2' THEN UU=UU*50+20;
END;

data PP missover;
input xx $ YY text $ 20-30 size 35-37;

cards;
TOP 70
HIGH 62
MEDIAN 50
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MEAN 53 0.8

LOW 39
BOT 29
M1 19.2 0.8

M2 20
LABEL 14

DATA Al;
MERGE DATAD(KEEP=A1) PP;
Y =A1;
IF XX= 'LABEL' THEN DO; TEXT='Mla';Y=15;END;
DROP Al YY;

DATA A2;
MERGE DATAD(KEEP=A2) PP;
Y=A2;
IF XX= 'LABEL' THEN DO; TEXT='M2a';Y=17;END;
DROP A2 YY;

DATA A3;
MERGE DATAD(KEEP=A3) PP;
Y=A3;
IF XX='LABEL' THEN DO; TEXT='M3a';Y=15;END;
DROP A3 YY;

DATA bl;
MERGE DATAD(KEEP=b1) PP;
Y=b1;
IF XX= 'LABEL' THEN DO; TEXT='Mlb';Y=15;END;
DROP bl YY;

DATA b2;
MERGE DATAD(KEEP=b2) PP;
Y=b2;
IF XX= 'LABEL' THEN DO; TEXT='M2b';Y=17;END;
DROP b2 YY;

DATA b3;
MERGE DATAD(KEEP=b3) PP;
Y=b3;
IF XX='LABEL' THEN DO; TEXT='M3b';Y=15;END;
DROP b3 YY;

DATA cl;
MERGE DATAD(KEEP =cl) PP;
Y=c1;
IF XX= 'LABEL' THEN DO; TEXT='Mlc';Y=15;END;
DROP ci YY;

DATA c2;
MERGE DATAD(KEEP=c2) PP;
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Y=c2;
IF XX='LABEL' THEN DO; TEXT=1M2c';Y=17;END;
DROP c2 YY;

DATA c3;
MERGE DATAD(KEEP=c3) PP;
Y=c3;
IF XX=1LABEL' THEN DO; TEXT=fM3c1;Y=15;END;
DROP c3 YY;

DATA dl;
MERGE DATAD(KEEP=d1) PP;
Y=d1;
IF XX='LABEL' THEN DO; TEXT='Mld';Y=15;END;
DROP dl YY;

DATA d2;
MERGE DATAD(KEEP=d2) PP;
Y=d2;
IF XX='LABEL' THEN DO; TEXT='M2d';Y=17;END;
DROP d2 YY;

DATA d3;
MERGE DATAD(KEEP=d3) PP;
Y=d3;
IF XX= 'LABEL' THEN DO; TEXT= 'M3d';Y =15;END;
DROP d3 YY;

DATA BA1 MISSOVER;
input function $ x XX $;
xsys='5'; ysys='5';
X=X/2.5+21;
N= N ;

cards;
move 1 TOP
draw 3 TOP
move 2 TOP
draw 2 HIGH
move 0 HIGH
draw 4 HIGH
draw 4 LOW
draw 0 LOW
draw 0 HIGH
move 2 LOW
draw 2 BOT
move 1 BOT
draw 3 BOT
move 0 MEDIAN
draw 4 MEDIAN
move 2 M1
draw 2 M2
LABEL 2 LABEL
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draw 2 M2
LABEL 2 LABEL
LABEL 2 MEAN

PROC SORT DATA=BA1 OUT =BA1;
BY XX;
RUN;

PROC SORT DATA=BA2 OUT=BA2;
BY XX;
RUN;

PROC SORT DATA=BA3 OUT=BA3;
BY XX;
RUN;

PROC SORT DATA=a1 OUT =al;
BY XX;
RUN;

PROC SORT DATA=a2 OUT=a2;
BY XX;
RUN;

PROC SORT DATA=a3 OUT=a3;
BY XX;
RUN;

PROC SORT DATA=b1 OUT =bl;
BY XX;
RUN;

PROC SORT DATA=b2 OUT=b2;
BY XX;
RUN;

PROC SORT DATA=b3 OUT=b3;
BY XX;
RUN;

PROC SORT DATA=c1 OUT=c1;
BY XX;
RUN;

PROC SORT DATA=c2 OUT=c2;
BY XX;
RUN;

PROC SORT DATA=c3 OUT=c3;
BY XX;
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RUN;

PROC SORT DATA=d1 OUT=d1;
BY XX;
RUN;

PROC SORT DATA=d2 OUT=d2;
BY XX;
RUN;

PROC SORT DATA=d3 OUT=d3;
BY XX;
RUN;

DATA al;
MERGE al BA1;
BY XX;

DATA a2;
MERGE a2 BA2;
BY XX;

DATA a3;
MERGE a3 BA3;
BY XX;

DATA bl;
MERGE bl BA1;
BY XX;

DATA b2;
MERGE b2 BA2;
BY XX;

DATA b3;
MERGE b3 BA3;
BY XX;

DATA cl;
MERGE cl BA1;
BY XX;

DATA c2;
MERGE c2 BA2;
BY XX;

DATA c3;
MERGE c3 BA3;
BY XX;

DATA dl;
MERGE dl BA1;
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BY XX;

DATA d2;
MERGE d2 BA2;
BY XX;

DATA d3;
MERGE d3 BA3;
BY XX;

PROC SORT DATA =al OUT=a1;
BY N;
RUN;

PROC SORT DATA=a2 OUT=a2;
BY N;
RUN;

PROC SORT DATA=a3 OUT=a3;
BY N;
RUN;

PROC SORT DATA=b1 OUT=b1;
BY N;
RUN;

PROC SORT DATA=b2 OUT=b2;
BY N;
RUN;

PROC SORT DATA=b3 OUT=b3;
BY N;
RUN;

PROC SORT DATA=c1 OUT=c1;
BY N;
RUN;

PROC SORT DATA=c2 OUT=c2;
BY N;
RUN;

PROC SORT DATA=c3 OUT=c3;
BY N;
RUN;

PROC SORT DATA=d1 OUT =dl;
BY N;
RUN;

PROC SORT DATA=d2 OUT=d2;
BY N;
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RUN;

PROC SORT DATA=d3 OUT=d3;
BY N;
RUN;

DATA AA;
SET Al A2 A3;

DATA BB;
SET B1 B2 B3;
X=X+17;

DATA CC;
SET Cl C2 C3;
X=X+17*2;

DATA DD;
SET D1 D2 D3;
X=X+17*3;

DATA TOT;
SET Y AA BB CC DD;

proc gslide annotate=TOT;
TITLE2 h=2 F=CENTX 'Figure 1 The R2 Variations in

Alternative Ozone';
TITLES h=2 F=CENTX 'Exposure Models with different Error
Terms';
run;


