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THE NORMAL VIBRATIONAL ANALYSIS OF POLYACTALDEHYDE

GENERAL THEORY

Introduction

Since 'Wilsonrs work in the 1930's, the analysis of molecular vi-

brations of srnall molecules has developed and forrnaLized itself into

standard rules and procedures. It was first applied only to gaseous

spectra, but was extended in the 1940' s to condensed systerns and in

the 1950ts to polymers or long chain molecules. It will not be within

the scope of this discussion to develop the theory frorn the Newtonian

laws of rnotion but rather to assurne the reader's farnilarity with such

standard texts as'Wilson, Decius and Cross (63), Barrow (2), and

Wu (64) and from this knowledge of the treatrnent of small rnolecules

lead into the more specialized treatrnent of polyrners.

It will be necessary, however, to review briefly the steps in the

solution of the energy levels of polyatornic rnolecules in order to see

the logical extension to polyrner rnolecules. The starting point of any

problern concerning the energy of a rnoleculeis Schrodingerrs farnous

equation,

HV

It is usual to

based on the

= wv. (1)

apply the Born-Oppenheirner separation (4; 4L , p. Z59l

differences in rnagnitude of the various types of energies
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H=HetH..tHr. (z)

The Hamiltonian can be separated into the cornponents of electronic,

vibration and rotation. Since we are concerned here mostly with con-

densed systems, and the infrared spectra, the vibrational component

will be of major interest. H will be used here to be

or to Hv + Hr. Using the harrnonic oscillator-rigid

H=T+V

r = rlzD A?
Ly=rlzDXrof
i

W'here the Q's are the rnass weighted generalized norrnal

equivalent to Hr.

rotor rnodel:

(3)

14)

(5)

displace -

rnent coordinates. In a nonlinear molecule containing N atorns, there

will be 3N - 6 independent coordinates. The secular deterrninant can

be expressed as 3N - 5 equations, if internal coordinates are used to

elirninate the translation and rotation zero rnodes. Wilson (63, P. 73)

has shown that the secular determinant can be put in the form

lcr-E\l -o (6)

-\zr = ) o."J' St bt, l7l
ttr

zv = U F11r s1 s1, (8)

ttt
C-l is called the inverse kinetic energy rnatrix, F is the force con-

stant rnatrix. The capital letter will be used to imply they are fac-

tored, the small g and f signify unfactored rnatrices. The S's are the

syrnrnetry coordinates which are generated from the internal dis-

placernent coordinates by use of therrWigner crank" (63, p. 119) and
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the character tables of group theory. The methods of group theory

perrnit factoring large order secular determinants into blocks corres-

ponding to various species of vibration, i. e. modes which are symrre

tric, antisyrnrnetric or degenerate with respect to the rnaior axis of

syrnrnetry.

The unsymrnetrized (unfactored) g is calculated on the basis of

an assumed geometric structure which deterrnines the choice of inter-

nal coordinates. The nondegenerate syrnrnetry coordinates can be

generated by considering one coordinate at a tirne and operating on it

with the operations of identity, rotation, reflexion, inversion and cn-

binations of these. The appropriate character table is used and the

Wigner crank applied. The degenerate symrnetry species rnust fre-

quently be determined by inspection or analogy with other rnolecules

or simply ingenuity. Tables are included in the appendix for generat-

ing syrnmetry coordinates for molecules with C, type syrnrnetry for

n = 3 to 9. The transforrnation frorn internal cordinates to syrnrnetry

coordinates defines the U rnatrix which is used to syrnrnetrize the g

and f rnatrices.

St, = Urrr."r, (9)

G = IJgUr (I0)

F = Uf U' (11)

The g elernents are then calculated frorn the forrnulas of Decius (8)

or Wilson et aL (63, p. 55-61). A potential field is assurned and



4

transforrned into terrns of the internal coordinates chosen for the g

rnatrix in order to set up the f rnatrix and rnake use of equation 6.

The secular deterrni.nate is now factored into blocks whose nurnber

will equal the riumber of species in the character table used. The

order of each block will be equal to the nurnber of symrnetry coordin-

ates belonging to that particular species. The proof of the factoring,

which will be discussed in rnore detail later, is given in Appendix XII

of Wilson, Decius and Cross (63, p. 347-3491 and is inherent in the

methods of group theory (44). The solution of the secular equations

rnust result in a set of force constants which are consistent with the

infrared frequencies observed.

The critera for infrared activity is that the vibration rnust pro-

duce a change in the dipole moment. It has been shown (63, p. 146 f.

and other textbooks) that only those species will be active which tras-

form in the same rnanner as the translational vectors T*, Ty, and T,

In the character tables of reference 63, p3Z3-340, the species con-

taining these vectors are indicated. It is then a sirnple rnatter to

deterrnine which of the fundamental vibrations are infrared active.

It is not difficult, however, to determine to which species the trans-

lational vectors belong. If the rnajor axis is designated as the z axis,

the x and y axes are perpendicular, application of the syrnmetry oP-

erations will quickly reveal the species of each vector.

Proceeding now to a series of regularly spaced arrays, Halford
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lZZl has shown that for molecular crystals the sarne character tables

may be used, but the group operations rnust be changed slightly. The

so-called space group operations rrray include a translation along with

the operations of the point groups. Thus translation plus identity as

well as the sirnple identity becornes an inva.riant subgroup, transla-

tion plus reflexion becornes a glide plane, translation plus rotation is

a screw axis, This rneans that an operation which sends an atom into

its identical site in the next unit ce1l is considered to leave the atorn

unchanged.

The solution of running waves through an array gives two

branches, the acoustical low frequency branch and the optical high

frequency branch whose values will depend on the wave vector, k,

(11, p. 55). Application of the Born-von Karrnan cyclic conditions

(lI, p. 50; 3) confines k to the region! rtla, where a is the lattice

spacing. The optical branch is cornposed of those frequencies which

result when k is set = 0. In rnolecular crystals the branches corres-

pond to two types of rnotion, the lattice rnodes and the rnolecular

rnodes. The lattice modes are of translatory origin and will corrrpose

the acoustical region of the spectrurn. The prirnary concern here is

with the infrared spectra arising frorn the distortions of the rnolecule

whose center of rnass and principal axes of inertia are at rest, i. e.,

the rnolecular rnodes. Making this separation the usual rnethods of

group theory can be applied to sorne unit of the array. The unit rnay



or may not correspond to an x-ray unit ceIl, but

ment is the assumption of the Born-von Karrnan

periodic repetition of the rnolecular rnotions.

Infinite helical chains

6

implicit in the treat-

cycle -- there is a

There are three basic approaches to the normal vibrational ana-

lysis of infinite helical chains or polyrners. The first approach is to

extrapolate frorn low polyrneric hornologs starting with the rnonorners,

dirners, etc. The rnethod was originally developed by Kirkwood (27)

and extended by Pitzer (42). Zbinden (65), using the concept of cou-

pled oscillators, sets up the Newtonian equations of n oscillators lead

ing to n homogeneous equations whose solution depend on whether the

ends are free or fixed. Since the ends of the chain rnust necessarily

be different frorn the center, the n frequencies (d" can be calculated

ignoring the ends or assuming they are identical to the link;

for fixed ends: ,?= @o * Z c,ttzlt ! cos sr/n * 1) (12)

for free ends: ,2, = oo * Z at'! ! cos s rlnl. (13)

The error is greater the srnaller the chain; Kirkwoodts calculations

through hexane were not good but irnproving with each carbon unit.

Selection rules and intensity depend on whether s is odd or even since

it deterrnines the syrnrnetry. The Glo and g1t ate found by plotting Q?

versus the terrn in Parentheses.

A sirnilar approach but a different plot was used by Snyder and
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Schachtscheider (46). The solution of the secular equation for a linear

array of n identical coupled oscillators can be set up in terms of the

g and f matrices whose elernents are:

o.. = oDll DO

Bi, i+I = BI

Ei,i+z = Ez

with frs substituted for f in the f rnatrix. Generally 93

i. e. interactions beyond the next nearest neighbor are

The matrix H = GF has the elernents
u)

Hj = Hi,i+j = rr*j,i = BsfS * X Uotro+3 + ft<-3)
k=1

The eigenvalues for equation 5 are then

(14)

(1 5)

(16)

73rs are small,

negligible.

(tz1

@

\r., =  ttZ"Z r?o= Ho * zZ Hp cos k Crr, (18)
k=I

where l r,,, the phase difference between adjacent oscillators is given

by

i ,n= rr.Tflr.tl (m = I, Z, 3 . n) (19)

The lr,_is a function of dr, only and the problem is to assign lTI so

that a curve of /rn versu" C* is cornmon to all the bands.

Crystalline infinite chains

Infrared spectra of polyrner rnolecules are of condensed sysbrns

which are hopefully crystalline. It is necessary to take a closer look

at this systern, since it cannot really be considered as isolated rnole-

cules as the first approach would irnply nor it is a rnolecular aystal.
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The following is based on the papers of Liang et aI (30,31, 32) and

Tobin (50, 61).

Assurne that the polyrner molecules are infinitely long and are

arranged in a single crystal. If there are p atorns per repeat unit in

a unit ceIl containing rn rnolecules of n repeat'units each, there will

be 3prnn - 3 fundamentals per unit ce11, since only the rnodes corres-

ponding to the translation of the whole crystal can be subtracted.

Tobin uses a whole unit cell in the analysis of polyethylene. It is then

necessary to rernove the three translational rnotions of the unit ceII

as a whole plus the 3(m-I)lattice vibrations of the polyrner chains

against each other within the unit celI and the rn lattice rotations a-

round the helical axis. The rotations perpendicular to the helical

axis are restricted and becorne internal rnodes. There will then be

a total of 3pmn - 4rn vibrations which may be optically active. If only

one chain in the unit celI is considered, there will be 3pn - 4 (m=1)

vibrations. It is obvious that the factor modes for the single chain

rnust necessarily be the basis for the modes of the unit cell, whose

increased nurnber corresponds to the norrnal vibrations of two or

rrrore chains rnoving in or out of phase with each other.

The rnore usual treatrnent is to consider the polyrner chain as

an infinite one dimensional array and sornehow reduce the infinite

order to a rnore reasonable nurnber such as that of the single chain

unit cell. Frorn this point on the term unit celI will be taken to rnean
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not the usual x-ray unit ce11, but the section of a single chain which is

contained within the x-ray unit cell ignoring all other chains.

The second approach to the norrnal vibrational analysis of the

infinite helical chain was initiated by Higgs (23). trf equations 14 - l8

are developed for the infinite chain, the g rnatrix elements can be re-

presented as

8ta,ub=*.o(m) ?,b=L'z'3'" N (zo)

rl, t = integer

rn=u-t

the interaction between the a coordinate of one unit with the b coordin-

ate of the rnth unit further on. The syrnmetry coordinates

s tdl--(zrr) 1/z3 ,.^"t"' (2I)
a tj-o ta

are obtained from a Fourier transforrn of the internal coordinate s

(zzl
t=o

to the Nth order where N is the nurnber of coordinates. The parallel

modes are obtained from the solution of equation 6 for ( = O, The

perpendicular rnodes are for {= ! 0 where 0 is the internal angle

of rotation. Only these modes are infrared active. The rnodes cor-

responding to { = 1 ZO are Rarnan active. The G and F rnatrices

of the forrn of (ZZl are used in equation 6, and solutions for the appro-

priate values of d are found. Lin and Konig (33) generalize equation

18 without factoring and by proper choice of the Fourier transforrn

which factors

g^all)= i gro(*)"-it"d
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coefficients which is still cornplex manage to factor the secular de-

terrninate without applying the Born-von Karman conditions. Lawson

and Crosby (29) use more than one unit cell in their cycle. Miyazawa

134,35) uses trigometric instead of cornplex functions in order toad-

apt the rnethod of Higgs to high speed cornputers.

The third approach to the problern is the one used in this dis-

sertation. It considers the unit celI as an isolated molecule which in-

teracts at the ends with the adjacent unit cells. Its convenience lies

in the fact that the details are very sirnilar to the treatrnent for small

rnolecules, i. e. equations 1-11 hold with the exception that the U and

Ut differ slightly. In the rnethod of Tadokoro (56 - 58) the character

tables for generating the syrnmetry coordinates separate the degen-

erate species into complex cornponents, and the space group opera-

tions are used in the rrWigner crank. rr The g and f elernents follow

equations L4 - 16 but the end group interaction dernand the following

conditions:

Bn, I=EL,Z Q3l

8n-I, I = 81,3

where n = the last rnonomer unit in the unit cell, i. e. nearest neigh-

bors anywhere in the chain interact with each other identically, and

next nearest neighbors also. This procedure gives an irreducible

representation containing as Erany cornplex species as there are

pairs of degenerate species. Since the solution of the secular
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deterrninants of the orders involved in polyrner rnolecules are Possible

only with cornputers, and since the use of complex numbers slows the

speed of the cornputation appreciably, Tadokoro uses another unitary

transformation UIGUi to recornbine the degenerate species. U1 is

very similar to U but contains trigometric functions of 0, the internal

angle of rotation from one repeat unit into the next repeat unit. The

order of the g and f matrices and the nurnber of syrnmetry coordinates

in this method is equal to 3pn - 4 excluding redundancies.

The use of rectangular U matrices by Schachtschneider and

Snyder (50) rnay be looked uPon as setting up an infinite rnatrix and

truncating it at the two ends of the unit celI. The g and f rnatrix is

extended beyond the unit cell boundaries to include the coordinates in

the adjacent unit cells which interact with the basic unit cell. The

order of the g and f rnatrices will be greater than 3pn - 4. Let the

order be j and let 3pn - 4 = k;

G=U2eUl (?41

sirnilarly for F, where U2 and U1 are k x j rnatrices and f and g are

j x j. U2 is the transforrnation from the total internal coordinates

being considered to the syrnrnetry coordinates of the infinite chain.

U, is the transforrnation only of the unit ce11 internal coordinates and

contains zeros for the internal coordinates outside the unit ce11. The

U rnatrices are always real in this rnethod.

The last approach will be developed further in the following



pages and applied specifically to polyacetaldehyde in

lz

the last chapter.
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FACTORING AND REDUNDANCIES

The unitary transformation

The solvability of the secular deterrninant for srnall rnolecules

will not depend on its factorability, but in practice it is cornrnon to

factor any deterrninant greater than order two. In the case of poly-

rners, it would be irnpossible to solve an infinite order secular de-

terrninant so that the key to the solution lies in the method of factor-

irg.

As stated in the last chapter, the first approach does not in-

volve the secular determinant of the polyrrrer as such. In the second

approach the factoring occurs as a natural result of the Fourier trans-

forrnation and the choice of {, The last approach requires the se-

lection of a U matrix which will properly factor the g and f rnatrices

resulting in the reduction of the final determinant into blocks of lower

order.

It is useful to study more closely the transforrnation used by

Tadokoro et al 156,57) and Schachtschneider and Snyder (50). The

details of the transformation will be studied as they would apply to

polyacetaldehyde, although the example of Tadokoro is polyoxymethy-

lene and that of Schachtschneider and Snyder is polypropylene.

In general,polyrners falI into the space group C(Zrn tr/n) or
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D(Zrn rtln) depending on whether there is a syrnmetry axis perpendi-

cular to the helical axis. There are p atoms in a rnonorner unit and

n rnonorrer units rnaking t turns per unit ceIl. If n is odd there will

be (n-1)/2 E species; if n is even there will be Ll2 - I E species. For

C type syrnrnetry the A and one E species witl be active in the infra-

red; both of these plus another E species will be active in the Raman

spectra. For D type syrnrnetry, the activity of the E species does

not change but the totally syrrrmetric A rnode is active in the Rarnan

and inactive in the infrared while the ,{2 mode which is antisymrnetric

to a rotation around the perpendicular axis is just the opposite.

There are four repeat units in a unit ceIl of polyacetaldehyde.

If the internal coordinates of a chernical repeat unit are chosen, the

g and f matrices of Tadokoro can be rePresented as

$orf= (1)

where o, p, Y, Pt, and yr are subrnatices of order equal to the

number of internal coordinates Per repeat unit and represent the

interaction of a repeat unit with itself ( o ), with its neighbor ( p ),

and with its next nearest neighbor (Y ). The second nearest neigh-

bor interactions are generally negligible and are ignored. Rare1y

are there other than torsion interaction in Y In equation 1, the

o P'Y'
P o P'

YPo
ov P

0

Y,

p'

o
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interaction between the first rrlonorner unit and the last rnonomer unit

within the ceIl is actually the interaction between the first rnonorner

unit of one cell with the last rnonorler unit of the preceding ce11. A

complex unitary transformation UgU' factors g and f into n blocks

with the degenerate E modes split into real and complex blocks. In

order to rnake the equations suitable to machine computation, Tado-

koro perforrns another transforrnation Ur(UgUr)Ul, where U, is real.

The general form of U and U, are shown in Table 1. It should be

noted that themrltiplication bV E is rnisleading as it is shown in the

original paper (55). Since for polyacetaldehyde, U is equal to the

first four rows and columns of the general U, it is necessary to ex-

pand U to the order of the g and f matrix of polyacetaldehyde which

is n times the nurnber of internal coordinates chosen. Thus each Ut3

as it is shown in the table is equal to a submatrix of the sarne order

as o , p, etc. , i. e. for polyacetaldehyde, it equals 23. This is the

rneaning of the multiplication bV E.

Taking a closer look at the transformation, it is easily shown

that if u2 = u1u, the transforrnation can be perforrned in one step

UZ1U|. The U2 rnatrix, which is rather tedious to iternize but is

sirnply the product of the two matrices in Table 1, is very rerninis-

cent of the rnethod of Miyazawa Pal. Since both Ur and Ul are coEI-

plex, the use of complex nurnbers in the calculation is not cornplete-

Iy elirninated.
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Table l.

U matrix

Transformation matrices of Tadokoro(56)

11 I
I€E
I €2 e

2NI I €- e E

I
e
€

..

€

Z

4
6

n-1
2(n- 1

3(n- I

in-i)(n-t)-'2(n-t)'I €n-r e

Ur matrix

rlz Llz
1 cosO
0 sin0

NZ I cos20

Llz
cos20
sinZ 0
cos4€

tlz
cos30
sin3 0

cos6e

rlz
cos(n- I ) 0
sin(n- 1)0

E

1

0

cos(n/ Z-lp .

sin(n/ Z- t )e .

Substitute Ll?\n-Ll f.or nlZ-L if. n is odd
Q =Zrn r.ln
N, and N2 are norrnalization constants
E-= the unit matrix of the proper order
G=eio

cos(n/ Z-1)(n- 1)0
sin(n/ 2- I )(n- t )e
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The rnethod of Schachtschneider and Snyder permits the use of

real numbers exclusively. The transformation of equations I-24 uses

rectangular U matrices which are not unitary in the ordinary sense

but

u2ur, = E

where B- i. th" sarne order

the unit cell or the nurnber

equation 1,

(?-)

the nurnber of internal coordinates of

symrnetry coordinates used. Instead of

as

of

Y,p'

Eorf=

The dotted lines indicate the unit ce11.

The generation of the syrnmetry coordinates of the rnolecule

in this method is analogous to the isolated rnolecule, i. e. application

of the "W'igner crank.'r Since the character tables generally give

cornplex elernents for the E species, the avoidance of cornplex rna-

trices is not achieved unless sorne other way is found to form the

degenerate species. Cornplex nurnbers can always be expressed as

Y,

p'

I

I

I

I

rl
I

I

I

I

I

I

I

I

I

p'

Y,

p'

p'

p

o

p

Y

I

I

I

I

I

I

I

I

I

I

(3)



18

trigornetric functions. For one dimensional species, the degenerate

modes may be expressed as the real Part and the coefficient of the

irnaginary part of the complex nurnber. The tables of Appendix I are

so derived except for the active mode of. C, which is obtained by re-

cognizing that it has a factor mode of Cr. Thus for polyacetaldehyde

which has C4 syrnmetry the internal coordinates of Figure 1 can be

represented by Tabte 2 with the srs oriented as indicated in ttle Cn

table. The equivalence of the internal coordinates applies only to the

generation of the syrnmetry coordinates which can be represented for

c+ bY

SA="t+sZ*s3*s4 (5)

SB = tL - sZ * s3 - s4

SE=sI-s2-sr*sn

SE="L+sz-s3-s4

It is not necessary in using the tables of Appendix I that the re-

peat units be oriented in any fixed way, i. e. the use of the tables is

not dependent on t but only on n. If t is greater than 1, all of the vec-

tors will be changed proportionately and the resultant of each species

will rernain the sarne with respect to each other.

Equation 5 gives only the syrnrnetry coordinates of the unit cell

frorn which U1 rnay be obtained by use of equation I-9. The sarne e-

quation rnay be used to generate Ug but now the syrnrnetry equations

of 5 rnust include the internal coordinates frorn the preceding and
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Table 2. Internal coordinates of polyacetaldehyde for ,g.enerating
symmetry coordinates

"I 'z "3 "4

r RI+RI Rz+R' R3+R! R4+Ri

2 Rl-Ri Rz-RL R3 -R'3 R+-Ri

3 xt+rt,+r'l r2+rt +rt! r3+rt+r'f rn+ttn+rt\

4 2r 
1 

- r', - rrl Zx 2-rt2-rt! Zr 3-x\-x'! Zx4-t\'rtf

5 rl-r'l ,h,-r'L "!-='1 ,L'r'L

6 tr tz t3 t4

Coordinates of equivalent symrnetry type

R- Y =d -T
Rf=yr-7!r-7r
r = o =p
rl = ol= pt
rtt = o"= ptt
t=S=e)=G)r=f-6

Linear cornbinations of r^r and LOt are used in the analysis of
polyacetaldehyde and trioxane in this thesis.
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succeeding ceIls. The coefficient of identical coordinates in adjacent

cells must be identical. Since it is rare for interactions greater than

next nearest neighbors to be effective, the syrnrnetry coordinates to

form lI, of. equation 3 may be expreesed as:

SA=s_3*r-4*sr*sr*sr*"4*"+I+s+Z (5)

SB = s-3 - "-4* "l - "Z 
* "3 - sn* s1L - s+Z

SE - -s-3 + s-4+ sl - sZ- s3-l s4t s+l - s+2

SE,= -s-3 - ,-4t s1 t s2 - s3 - s4 * s1l * s+2

where the subscripted - and * refer to the preceding and succeeding

unit cells respectively. The rnatrix Ua is actually the infinite U, ma-

trix, i. e. Uf -Uf -Ut. In practical application, however, it is

found that the extra coordinates which do not interact with the unit

ce}l do not affect the transforrnation. The order of the g and f rnatrix

is approxirnately 3(n+4)p. The far reaching torsion interactions rnay

increase the nurnber, but the isolated side group coordinates will de-

crease it sornewhat. Thus for polyoxyrnethylene (n=9, P=4),, poly -

acetaldehyde (n=4, p=7) and polypropylene (n=3, p=9), the nurnber of

internal coordinates necessary is between 130 and 140. The nurnber

inC-O chains is less than in C-C because of the insulating effect of

the oxygen which elirninates rnany of the C-C-H angle interactions.

The number wiLl also vary because of the orientation, and judicial

thought can decrease the nurnber by as much as 10. 'When one is

dealing with 130, however, t tO witt not rnake rnuch difference.
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Indeed with machine computation, it is sornetimes wise to have as

rnany as the program will allow to serve as checks, since it will be

impossible to hand check the solution. This leads naturally to the

problern of redundancies.

Before proceeding to that section, however, sornething should

be said concerning the proof of these transforrnations. The first

proof is that they work, i. e. the g and f rnatrices are actually factor-

ed. Neither Miyazawa or Schachtschneider and Snyder justify their

rnethods any further. It should be pointed out, however, that the use

of the character tables insures the factoring because it is inherent in

the theory of groups that the species will not rnix. The U matrices of

Schachtschneider and Snyder are not unitary in the strictest sense but

their inability to rneet all the test of unitary character does not affect

their ability to rneet the reasoning of Appendices XI and XII of 'W'ilson,

Decius and Cross (63, p. 34L-349). Further discussion of this is re-

served for Appendix II.

Redundancies and constraints

In choosing the internal coordinates and generating the syrnrne-

try coordinates and the U matrix, the question of redundancies arises.

This is particularly troublesorne in the case of polyrner rnolecules.

Deciust(9) discussion of cornplete sets and redundancies can be ap-

plied to polyrner rnolecules keeping in rnind that f for the polyrner is
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now 3a - 4 (us'.l.ng the notation of that reference). It is not easy to ac-

count for the redundancy even when it is easy to recognize t};le redun-

dant coordinate.

In the case of the o and p angles of the methyl grouP in poly-

acetaldehyde, the sum is obviously fixed. A linear combination of the

symmetry coordinates of each of these internal coordinates will then

give a zero and a non-zero root, The cornbinations of the 6 , 6 ,

y , and o angles are not so easy. It rnust be remernbered that only

the co not the alr is included in the redundancy here. Many workers

have sirnply elirninated one of the coordinates and perrnitted the ei -

genvectors to adjust accordingly, rather than use curnbersorne linear

cornbinations of a1t these angles. Gold et al (Zl) present a case for

the necessity of linear combinations, i. e. the f and g matrices rnust

possess a si.ngularity for every redundancy. Another way of stating

this is that the UUt rnust equal E whose order is no greater than the

degrees of freedom of the mo1ecule. Their justification is that in a

space of n dimensj.ons, n*l equations cannot be independent. Hubbard

lZ5) f.ortifies their argument by showing that the force constants whid:

have been derived without using singular f and g rnatrices are not

transferable from rnolecule to rnolecule and are not constant for

every U rna.trix transforrnation.

Rigi.na and Godnev 143) present a justification of the rnore corn-

rrron practice of not using singular f and g rnatrices. By use of



24

LaGrangian undeterrnined rnultipliers (7, p. 67) a systern of equations

df/dx, (xl, .2, . xrr) = 0 (7)

may be added to any new conditions of the type

g (xt, *2, fu) = o (8)

if coefficients are inserted to rnake equations 7 and 8 consistent.

Freernan (I7) gives an exarnple of a nonsingular f which is physically

realizabLe but somewhat artificial. But a study of the solution of

such rnolecules as propane shows there is considerable rnixing of the

syrnrnetry coordinates so that fixing the rnethylene angle or any sirni-

lar condition is rnisleading.

The question still remains whether the solution of the secular

deterrninant gives force constants which are dependent on the choice

of the U rnatrix, e.E. the use of singular f and g rnatrices. Syrnrne-

try coordinates of polyacetaldehyde for redundancies of angles around

a single point to satisfy this condition are

SA = Z " +P (e)

sA = I" -p

SA = Dr* y | + y + 4, + { + 6

sA=Izr-vr- y - $r-d+26
with sirnilar combinations for the E species.

tified in Figure 1.

Equations 9 are only applicable to the

The syrnbols are iden-

Schachtschneider and
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Snyder treatrnent. Jt is rnore difficult to handle the redundancies in

the use of the urlitary rnatrices of Miyazawa but relationships analog-

ous to equuations 9 can be derived. The method of Higgs requires

that the redr:ndancies be rernoved before solution. The use of homo-

logous series requires that all of the treatrnent be consistent, i. e. if

the methylene angle is included in one homoLog, it should be in all the

rnolecutres for that series.

The above r:edundancies are tedious but obvious. There exists

other redundancies in the case of polyrner rnolecules and even cyclic

molecuLes which are not so obvious and rnay actually be constraints

(5).

Applying the Decius (9) forrnula to trioxane (CHZO)3 with 12

atorns, f =36 - 6 = 30vibrations. Thenwitha =lZ, b= lZ, )r= L'

dL'= 6, there wiU. be 12 bond stretches, l8 bond angles, and 6 torsion

angles givi.ng six redur:.dant coordinates. trt is irnrnediately obvious

that one of the angJ"es around each carbon atom is redundant, giving

three; but what about the other three? There is a geornetric theorern

which wil.I rnake these clear, i. e. the surn of the angles of a polygon

equals the nurnber of sides rninus 2 times 1800. In other words the

sum of the angles of a polygon is dependent on the nurnber of sides

only. nt shouLd the:r be obvious that it will be irnpossible to increa^se

all the angLes of trioxane without increasing sorne or all of the C-O

bond lengths. Atternpts to decrease the C-O-C angles without
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changing the O-C-O angLes will also change the torsion angles. It is

difficult to combj.ne a,:lgles and stretches, and fortunatel.y it is unnec-

essary. CalcuLations on propane show that the frequencies and force

constan1s are independent of the U rnatrix, if '.:he choice of the internal

coordinates are the same. It is necessary to include all possible

types of internal coordinates in order to have the force constants

transfe rable.

The situa.ij.on is very sirnilar in polymer molecules. Shirnanou-

chi and Mizushirna $al have derived relationships showing that for

the six parameters: bond length (r), bond angl-e ( d), torsion angle

( f), heLical radius (p ), lrrternal rotati.on angle (0 ), and repeat

distance (d), only three are independent. Since the application of the

Born-von Karman cvclic conditions fix 0 and d or rather the surn of

the 0 ts and the surn of the drs, (the unit cel-I cannot increase and

there can be no resuLtant twist around the helical axis), only one

of the other pararneters is independent. The skeletal angles here

are analogous to the ring angtes of trioxane. The torsional angles

of the polyrner are of sorne interest,for these are fiIost sensiti.ve to

the conforrnation of the helix and rnay give inforrnation about the sta-

bility of the crystalline forrn. They have been included, but it will

not be possible to learn very rnuch at this stage of the analysis.
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Surnrnary

The problem of the norrnal vibratj.onal analysis of polymers can

be approached from three basic viewpoints. The use of hornologous

series to extrapolate to infinite chains is ted:i.c;us,demanding much ex-

perirnental data and is frequently impossible since cornplete series

are rarely obtainable. Also the method does not allow for differences

in chain conforrnatj.on nor does it perrnit cornplete analysis of the x-

ray unit cell. The rnethod of Higg" using complex Fourier transfor-

mation of an infinite series is not convenient to rnachine solution and

cannot handle the redundancies. These argufirents are also valid in

the rnethod of Tadokoro, although the solution of the secular deter-

minant has been programed for the cornputer. The rnethod of $nyder

and Schachtschneider is readily adapted to rnachine sol'rtion and is

very similar to the treatment of small rnolecules while perrnitting

extension to all the complexities of polyrner rnolecules. It is also

fairly sirnple to program for rnachine cornputation the construction

of the g matrix and the factoring of the f and g matrices for insertion

into the secuLar deterrninant prograrn usi,ng this rnethod. The details

of these wilL be the subject of the next two chapters.
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THE GEOMETRIC CONFIGURATION AND THE G MATRIX

When a suitable choice of internal coordinates has been rnade

for the unit cell (Figure 1), the g rnatrix elernents rnay be calculated.

Schachtschneider has provided a program to calculate the g elements

by the formulas of Wilson, Decius and Cross (63, p. 55-65) for the

rnatrix of equation II-3. The prograrrr requires only that each atorn

in the polyrner be located in a cornrnon cartesian coordinate systern

and that the rnasses be known. Each internal coordinate is then corn-

puted through the displacement vector:
N
<--\

a=I
where s is the internal coordinate, J i" tfr" associated vector for

the atorn displaced, e t" the cartesian displacernent vector. The B

rnatrix is then defined by:
3N

si= t Bit*t G)
t=1

where the xrs are the cartesian coordinates, and g is cornputed frorn
3N

gtt, = f f, iBtiBt'i t, tr = 1, Z, N (3)
i= I

where N is the total nurnber of internal coordinatest !.r=reduced rnass.

The atorns are numbered in any order. Associated with each

atorn are its three cartesian coordinates which rnake up a 3 by N X

matrix and its rnass. The internal coordinates are nurnbered and

coded as to type (bond stretch, angle bend, etc. ) and atorns involved.

The U rnatrix or rnatrices along with the nurnber of rnodes in each
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symmetry species are necessary,

is all the inforrnation the prograrn

for equation I-5.

if a factored G is desired. This

requires to construct a G rnatrix

The problem becornes a geornetric one, but first it is necessary

to decide how rnany internal coordinates to use of the preceding and

succeeding cells. If the choice of internal coordinates for the cherni-

cal repeat unit of polyacetaldehyde are chosen as shown in Figure I,

the o , p, and y rnatrices can be represented by Tab1e 3a, b, and

c. A study of these tables shows that in the case of the g rnatrix, one

rnonomer unit reacts with 17 internal coordinates of the succeeding

monomer unit (the nurnber of rows containing elernents in the p

rnatrix). Conversely it interacts with nine internal coordinates of

the preceding rnonorner unit (the nurnber of colurnns containing e1e-

rnents in the p rnatrix). A11 of these rnust be included in the calcu-

lations. Also the y matrix interactions of five in the second suc-

ceeding and one in the second preceding rnust be included and any of

the extra f matrix interactions (Table 4a and b). The total in this

case is 125. The f and g rnatrices rnust be of the sarne order. AIt

of the atorns which rnake up these internal coordinates must be inclu-

ded in the calculations.

Shirnanouchi and Mizushirna (5al have derived rnathernatical ex-

pressions for the helical configuration of a polyrner chain as a func-

tion of the angle of rotation, translational distance and distance
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Table 3a. 61 subrnatrix of abbreviated g matrix of polyacetaldehyde

"r tr s, R, Ri ot r Cr 61 Yi t,li all oi Tr d

Syrnrnetric

g indicates non- zero imteraction between coordinates at head of
colurnn and left of row.
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rnatrix of polyacetaldehyde

1 t1 sI Rr Ri ot P1 Cr 61 Yr cJ1 a.ll 01 ?-t ?1
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all other terrns are zero except for the equivalence of the P 2 angles
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between two successive atorns which are permuted into each other by

the screw operation. It is necessary to ernphasize that the two atoms

so related need not be neighboring atorns on the skeletal chain (5) and

that the bond lengths and bond angles as used by Shirnanouchi are not

necessarily the bond length and angle in the chemical sense. The irn-

portance of this derivation is that of the pararneters associated with

atoms arranged in a helical polyrner: r' d, S, e , T, and' 7, (fig-

ure 2) only three are independent. In general it is true that if two

points are related to each other by three independent pararneters, all

other parameters are functions of these first three.

Consider Figure Z, if A can be transforrned in Ar by a rotation

of 0 around the cylinder axis and a translation of d up the sarne axis

then the following applies (54). If X represents the coordinate system

with x directed along the line joining A to Ar, y in the plane of this

line and the line joining A to the preceding At, and z chosen to keep

the systern

Xi- t

A_

!=

Similarly if

tion of point

right-handed then:

=AX.*B1

-cos d -sin C

sin?cos C -cos?cos /
sintsin C -cosTsin/

14)

0

-sin?F
cos 7

;l
ol

E
A

is the coordinate systern with $

to the rylinder axis, ( along the

axis on the projec-

cylinder axis and I
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b ,/'

Figure Z. Identification of helical pararneters.
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chosen to keep the system right-handed then:

g

H - N'g * L
H1-l b{1

(5)

N_

l=

cos 0
sine
0

- sine 0

coso 0

01

0

0

d

Shimanouchi shows that N and A are related to each other by a simi-

larity transformation; therefore, the trace of N = trace A. Thus frorn

Figure Z and equations 4 and 5:

,Z = uZ + d,Z (5)

?' =az + az = ,z r bz 'z'b to'6lz (7)

))aL=z?t\l -coso I (a)

,Z = Z*Z(I _ cos6 )+ d2; ?, = lrZ - d,Zlzll - coso ) (9)

l+Zcos0 =cos7-cos?cosd -"o"d (10)

Equation 9 shows that p is uniquely deterrnined from r, d, and e

Equation 7 canbe rearranged so that # i" a function of g, r, and d;

therefore t in equation 10 is determined when r, d, and I are

fixed. It is possible always to rearrange the equations to solve for

any one of the pararneters in terrns of any other three. Thus, if A

and Ar are successive atorns on a chain, such as carbon atorns, there

will only be one unit ceIl length for any set of r, 0 , and $ tOl,

These equations have been derived without requiring that A and

Ar be two successive carbon atoms joined by a single bond. They are
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equally valid if A is joined to Ar by an intermediate point or atom B.

Consider the chain A-B shown in Figure 3. trf the A-B distance and

the A-B-A angle are equal to the B-A distance and the B-A-B angle,

A and B must lie on the surface of the sarne cyLinder. The A-A dis-

tance must be equal to the B-B distance. A must spiral around a cy-

linder of radius deterrnined by its r, 0 , and *. But if B is related

in the said rnanner to A, it must also lie on a cylinder of the same

rad.ius since it will have the sarne r, 0 , and +.

If the Ats are carbon atorns, the Brs rnay be carbon or oxygen

and the salrre statements would be true. A polyrner having a rnono -

rner unit (-CRZCRZ-) or (-CR2O-)rnust have all of the skeletal atoms

on the surface of the same cylinder, but the screw operation is not

necessarily apfl.icatle in passing frorn one atorn to the next on the

chain.

Now consider a structure having three atorns on the skeletal

chain per rrr.onorner (-CR2CR2CRZ-)as indicated by the dotted lines

in Figure 3. If the first carbon of each unit is on the surface of a

cylinder of radius f , the second carbon can lie on a cylinder g r, and

the third carbon on a cylinder f "; wher. et< e < e". The screw

operation is applicable in passing frorn A to A, but not frorn A to any

atorn in between. If these are carbon atorns, the question of stagger-

ed and trans configuration discussed by Corradini and Pasquon (6)

arises. The 0 angle first discussed rnust still be the angle of rotdion
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Figure 3. Types of helical chains.
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required to transforrn the first carbon of the first rnonomer unit to

the first carbon of the second rnonorner unit; and the r rnust be the

distance between these carbon atorns. The d angle rnust be the angle

between the lines joining the first carbon atorns of three successive

rnonorner units.

If the position of the A type atorns in Figure 3are chosen con-

sistent with the unit cell data, the B type atorns must be determined

by the fact that they are a bond length distance frorn the neighboring

A atorns and lie on the surface of the cylinder on which these carbons

lies.

If there are two or more atorns between the positions of the re-

ference atorns, the problern becornes rnore difficult. A series of e-

quations can be written relating the positions of the interrnediate dcrrrs

to the reference atorns and to each other. since there are 3n para-

rneters for n atorns, and 3n equations necessary to solve the problem

exactly, the solution for rnore than one intermediate atorn is best

solved on a computer.

The problern is simplified for carbon-carbon chains and carbon-

oxygen chains since the bond distance between the atorns is constant

and so is the bond angle. If the unit ceIl length c, the nurnber of turrs

per unit ceIl t,and the nurnber of chernical repeat units are known,

equation 9 can be used to solve for g, where d = c/n and O = Ztf /n.

Let At and Bi be the cartesian coordinates of an axis systern with z
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along the helical axis and x the perpendicular frorn the initial atorn to

t}r.e z axis. The initial atorn A will have the coordinates e, 0, 0.

Then if the prirne refers to the second rnonorner unit;

Att = cosO -sinO 0lA,+ l0 (11)

i=1,

T
i= I

1

sin0 cosO 0l l0
0 d

D (Bi - Ai)z = ni6
i= 1, 3

(Bi- A)z=*.',o

s? = ?'

Rab is the distance frorn A to B and Rrr6 is the distance frorn Ar to B.

The Newton-Raphson iteration (24, p. 447-453) can be used to

prograrrr these equations for cornputer solution.

For an A-B type chain an additional check can be included rnak-

ing use of the cosine law:

t (Ai-BiXAl-Bi) = Rr6R"r6 "o" C (12)
i=lr 3

For A-B-C type chains, the R.r Rb, Rc distances rnust be determined

from knowledge or assumption of the configuration. Since carbon

bonds are generally assurned to be trans or gauche to.the penultimate

preceding bond, only the two distances frorn these configurations need

be considered.

It rnay or rrray not be obvious that there will be two solutions to

the equations even though there are rnore equations than unknowns.

3

,Z
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The solutions will correspond to the B type atorns above and belowthe

line joining the A type atoms (Figure 3). The two positions are re-

lated by a rotation perpendicular to the helical axis.

Cornputer programs in Fortran II for calculating the cartesian

coordinates of the interrnediate atom and the side groups and for gen-

erating the atoms of the successive repeat units from the initial morp-

rner unit are included in Appendix III. These are rneant to serve only

as exarnples. It is a short rnental but laborious rnanual step to wri't-

ing a prograrrr for the construction of the X rnatrix of the Schacht-

schneider programs.

The rnethyl side group is orientated staggered to the polypropy-

lene chain, but it rnay be either staggered or eclipsed in the case of

polyacetaldehyde. The choice of orientation effects the frequencies.

In order to understand these effects, propane was calculated using an

eclipsed configuration of the rnethyl grouPS to the rnethylene group.

The results are discussed in Chapter 5.
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THE POTENTIAL FIELD AND THE F MATRIX

There are three types of potential fields used in norrnal vibra-

tional analyses - the central force field (Cr.f'), the valence force field

(VFf') and the Urey-Bradley force field (UBFf'). The VFF is more

generally popular, because it is in terrns of the internal coordinates

used in the g rnatrix, and because it has proved to be rnore satisfac-

tory than the others in rnost cases. Dr. Schachtschneider has provid-

ed rnachine prograrns for syrnmetrizing the f matrix in VFF terms.

The f matrix is actually entered in the secular deterrninant prograrn

as a vector. This is a prograrnrning technicality which is unirnportant

here.

Frorn Table 4a and b the internal coordinate frorn the preceding

and succeeding cells interacting with the unit cell are deterrnined in

the sarne rnanner as the g rnatrix. Many of these will, of course, be

the same as those in the g rnatrix, but there will generally be addi-

tional ones depending on how far reaching the effect of the field. Inter-

actions between stretches and bond angles have been included for corn-

pleteness. These are frequently undeterrninable since the nurnber of

force constants far exceeds the nurnber of frequencies observed.

Schachtschneider and Snyder (471 have reported transferable force

constants for the n-parafin series, polyethylene and polypropylene (4$

50, 51, 5Zl. Their values have been used as the initial values where
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Table 4a. o submafiix of f matrix of polyacetaldehyde

11 t1 s1 R1 R'1 o1 p1 $Lii6ryryi@rt,,ll01 Irtl

Symmetric

11 K
rlF
rlt F

trK
sl KF
R1 FK
RiF'K
o

Fr

f.

Fr

oi
o'i
Pr
BI

Bl
!i
o

Y1
Yi
Q1
oL
6r
T1
Tl

s2

F,,
pi
p2
f,
!i
\z\i
rn2
@i

H
F

F

H
F

F

fH
fIFH
$FFH
fEFfFH
ffFFFI{
lSFFFFFH

fFhFIFH

FF
FF
FF
FFI
FF
FF
FF'
FF
FF
FI FI

H
H

Tab1e 4b. I submatrix of f matrix of polyacetaldehyde (same column headings)

Frh,c
hu

fll

Fr

h
t
fil

hrhrh
hil hr

hr

F

r
F

F

F

Fr

F

F

Fr

F

fi

hc

hr

fr

Elements must be subscripted with the coordinates of the column and row in which

they appear.
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applicable in the calculations on trioxane and polyacetaldehyde. The

force constants of the carbon-oxygen chain were converted from the

UBFI'force constants of Tadokoro et al (58)using a transformation of

the type indicated in equations 4 and 6 for a systern shown in Figure

4c. These values calculated frorn the relationships listed in Tab1e,5

were used as the initial force constants in the trioxane a:alysis, the re-

sults of which were then the starting values for polyacetaldehyde.

Some discussion concerning the choice of potential fields is in

order, and it will be the purpose of this chapter to justify the choice

of the VFf'used in the analysis. A very practical reason has already

been rnentioned; the coordinates are the sarne as those used in the g

rnatrix. Another practical reason is that the rnachine program availa-

ble could use the f rnatrix in this forrn directly. There are other jus-

tifications which are discussed below.

Consider a charged particle in the field of another charged Par-

ticIe, the potential will vary according to the distance and force of

each of the particles with respect to each other. The central force

field is an expression based on this sirnple classical field. Since the

advent of Schrodinger wave rnechanics, it is postulated that the field

around a neucleus chernically bonded to another will not be isotropic.

The electron density in the region joining the two neuclei will be great-

er than outside this region. If the neucleus is bound to two other neu-

clei, there will be a preferred orientation of the neuclei with respect
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Figure 4. Systerns for potential field consideration
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Table 5. VFF force constants from UBFF force constants

K, = KcH + \czF g11

F\ =HocH+ezFo,

KR = Kco + dz FoH + az{roo + r"6)

H., =KoCo+tzfoo

Ha),=Kcoc+rzr""

Fa{ * ceFg,

FaR = dcFO,

F.fn = deFO,

FR = uzF go

Fh = ^zF q,C

FR, = baFOO

Fh, = baF""

Force constants on left are VFF, on right UBFF, syrnbols are defined
below;UBFF force constants are in mdyn/Ao, VFr. force constants
rnust be converted to rndyn/Ao for stretches, rndyn/rad for stretch-
bond interaction, and mdyn Ao / rad'Z for bending force constants.

a=RcosO /q
b = RZ sinO /q
c=(r*Rcose)/p
d=(R*rcosO)/p
e = Rrsin0 /p

see Figure 4c
0 = tetrahedral angle

Kco = 3' 075
HCOC = 0.55
HOCO = Q.34
Fcc = o' 42
KcH = 3' 95
Foo = o' 80
HOCU = 0. ZZ5
FOH = 0.70

Reference 58
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to each other depending on the type of binding. The valence force field

is an expression of this type of field.

Neither of these alone cornpletely describes the fie1d, however,

since both types of forces are applicable. An atorn in a rnolecule is

subject to the electrostatic potential of every other atorn in the mole-

cule (and indeed to every other atom everywhere) as well as the elec-

tronic forces of the atom(s)to which it is bound. The UBFF expresses

the potential rnore adequately by cornbining the CFF and VFF. The

result of which is to increase the already-too-rrlany force constants.

The UBFF field traditionally uses only the diagonal elements of its f

rnatrix, but it is treated here in a rnanner analogous to the VFF and

CFF.

For the systern in Figure 4a, the potential field can be express-

ed:

VFF = I ar1 LrZ Ao

CFF = I A"t ArZ Aq

UBFF =l Ar I ArZ Ao Aq 
I

Ku
fu
hu
f[

The transforrnation between the fields is

VFF = Tc CFF Tt = Tu UBFF T{l

Kv
fv
hv

KC
fc
ft

arl
6rZ
Ao

Atl
4,,

(1)

(z)

(3)

fv
Kv
h,

fc
Kc
ft

f, h,,
Ku hu
hu Hu
f[ ku

g ene rally

hv
hv
H..

ft
fl
Fc laq
f[ I l^rr
r,i, I la12
t,, I laot"l loo

expre s s ed as

(4)



The transforrnation matrices

um g eornetri c of the systern.

T=c
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is derived frorn the equilibri-

(s)

(6)

(7)

T" and T'

Here

I
0

0

I
0

0

0

I
0

0

I
0

a'rz
'zlt

where ,lZ = bL - ,z

T=u 0

0

1

COS O

"zI = bz rI cos o

t = (r1r2sin61 )/q

tLz
szl
t

llq

)lq

A particular force constant such as the angle bending, Hv, can be used

in the three fields if it is known in one by sirnply deriving the following

relationships based on the invariance of the po tential field:
??

Hr, = t"F" = q, + t"I-u + t\ (8)

It can quickly be shown that this is consistent with a change in o keep

ing r, ar,d r, constant by differentiating the cosine law:

qz = ,? r 
"7. 

- zrlr2cosa (9)

dq = "Izdrl * "ztdr2 t tdo (10)

Exarnining the system shown in Figure 6a rnore closely for a

change in o with 11 and rZ constant, note that a change of o to o +

Ao changes q to q * dq and o too -Ao changes !I to q- Aqt. Corn-

pare these changes.

(q + Aq)Z = ZrZ(1 - cos(o * Ao)) (Il)

(q - Aq'lz = zrz(1 - cos(o - Ao ))
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assuming t1 = t2 = r.

Taking the square root of both sides of the equal sign and adding to ob-

tain

( Aq - Aq' * zql/ (Ztzlr/2 =

(I - cos(o * Ao ll|lz + (1 - cos(o - ao ))Llz (Iz)

Use the sum and difference formulas of the cosine:

cos(o + Ao ) = coso cosAo - sin o sin Ao (I3)

cos(o - Ao) = coso cosao * sino sin Ao

and let u = I - coso cosAo and v = sino sinAo

Substitute for q frorn equation 9 and rearrange

(a,q - Aq')/ lzrz)Llz = (u + v)t/z + (u - v)rlz ' z(1 -co saf lz
(ts1

Expand by the binomial theorern using only the first three terrns

( aq - Aq')/ (zrzlllz = 2.llz - ,zl4u3lz - z(1 - coso;1/z Ool

Rernernbering equation I 3 :

( Aq - Aq')/ \ZrZlLlZ = 2(1 - coso cosAo )LlZ - 2(1 - cos,..yLlZ
-(sino sinao)Z/4(1-cosocosAo)3/z (tll

Since o-0, sinAo - Ao and cosA a - l,

A q' -Aq = (r/8112)ao?(L - cosa lll2 (r8)

The difference then between the differences in the changes of q when

Aois * or -, is second order with respect to Ao and is a function of

r and o , but it is not zero. The purpose of this derivation is to

point out that although it is possible to write down transforrnations

such as equations 5 and 6, the transforrnations are not strictly

( 14)
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applicable. The transformations between the three force fields are

not linear except at the equilibriurn position. It is analogous to map-

ping a spherical world on a flat surface. A Mercades projection has

its usefulness but approaches physical reality only very near the equa-

tor. The three force fields are also useful in handling various Pro-

blerns, but one is probably closer to physical reality than the others.

In our understanding of atorns and rnolecules, the UBFF seems to be

the closest to the potential actually experienced by the rnolecule. The

torsional forces are generally thought to result frorn the repulsion of

atorns in positions analogous to I and 4 in Figure 6b. It is not easy,

however, to relate this distance to known parameters of the molecu1e.

Forrnulas for the g rnatrix elements use the coordinates of the

Vf'F. Since the f rnatrix rnust be in terrns of the same coordinates

as the g rnatrix, it is si.mfl.e$ to set up the potential using the VFF.

The CFF has never been very satisfactory even in triatomic molecules

and is less so in larger rnolecules. The additional pararneters intro-

duced by the UBf'I. are not justified in terrns of the data available.

Use of the sirnplified UBI.F is not as satisfactory in rnany cases as

use of the sirnplified VFF (47). Even in terrns of VFF there are aI-

ways rnore force constants to be determined then observed frequen-

cies for a rnolecule of any size. For each non-bonded pararneter in

UBr.tr., there rnust be at least one additional equation relating it to the

other pararneters and at least four or rrlore additional force constants.
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Then there is the question of which non-bonded parameters to include.

Consider the systern of Figure 6b, if gt3 and qrn are included in the

force fie1d, why not gtS? 'When a rnethyl-type group is staggered to

a rnethylene-type group, what deterrnines the choice of interacting

atoms ? The complexity of the problem increases, if one includes all

possible effective interactions not only because of their nurnber, but

also because of the difficulty of defining their relationship to each

other.
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THE MACHINE PROGRAM AND
SOME INTERESTING FINITE MOLECULES

THE MACHINE PROGRAM

Dr. J. H. Schachtschneider provided a vibrational secular equa-

tion prograrn coded in Fortran II which diagonalizes theG and F ma-

trices separately and then obtains the solution to

Gr.L = LA (I)

L is related to the eigenvectors of the G and F rnatrice". /Li" a dia-

gonal rnatrix whose elernents are the eigenvalues of the secular deter-

minant.

A = \i
Ni = 4tzczc^rilN

(2)

(3)

Generally force constants are assumed and the frequencies cal-

culated frorn thern. It is then necessary to adjust the force constants

to give the best fit of the frequencies observed. The difference

\ou". - \catcd. = A\i $l

can be related to the changes necessary in the force constants by

aNi=t[f lr,otui(Lo)uzwi6 ' (5)
j kl

where Z is the vector form of the F matrix and St s are the force

constants,

Fkl = 4'ur, #i (5)

J

When these changes are incorporated in equation I-6
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G(Fo+AF) - \s =Q (7)

and new \ ""r, 
be calculated. This process is repeated until no sig-

nificant irnprovement in the frequencies is achieved from changes in

the force constants.

A regression routine is also included such that each force con-

stant is entered one at a tirne to test its effect on the fit. If the force

constant has less than a set level of effect, it is dropped. If the effed

is within the given significance level, its variation is tested and the

possible range of values which will rrt significantly affect the frequen-

cies is cornputed. This is printed as the error in the force constant

va1ue.

PROPANE

This rnolecule has been thoroughly studied by Schachtschneider

and Snyder (46, 471 and Gayles (19). The molecule is considered to

have both methyl groups staggered to the methylene group. The ana=

lysis here is to cornpare the differences in the force constants for an

eclipsed configuration of the rnethyl groups for the purpose of under-

standing the effect of differences in the g rnatrix with no change in

symmetry. In light of the disagreement of GoId et al (21) and Rigina

and Godnev (43), a unitary rnatrix with as rrlany singularities as re-

dundancies in the f and g was also used on the staggered configuration

to observe the differences in the resulting force constants. Table 6
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and 7 show the results of this study.

There was no change in the frequencies or force constants re-

sulting frorn a change in the U matrix for the salne f and g rnatrices

of propane. The changes in the frequencies resulting frorn the use of

an eclipsed configuration are worth some discussion.

In the A, species the fourth frequency is rnainly the symrnetric

o angles decreasing. A literal interpretation of this is that the re-

pulsion of the rnethylene group would be greater in the eclipsed con-

figuration and this frequency would increase as it does. There seems

to be no reason for the decrease in the ninth frequency representing

the 1^.; angle decreasing, for a decrease here would also increase the

separation of the methyl and rnethylene hydrogens; but it would also

decrease the distance between the odd hydrogen on each rnethyl grouP.

The increases in the third and fourth frequencies of the Bt

rnodes are again expected as these represent the o and p angles

rnoving in and out of phase. The decrease in the fifth frequency re-

presents the rnethylene hydrogens rnoving toward one of the rnethyl

groups which is now rnore difficult than in the staggered configuration

The sixth and seventh frequencies are a combination of the o , p , and

y which explains the srnall difference from the staggered configura-

tion for the decrease in the repulsion of one pair of hydrogen inter-

actions rnay be off set by the increase in another pair.

The increase in the sixth frequency of the B, modes is expected
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Table 6. Propane frequencies

Observed
A1
I
z
3

4
5

6

I

8

9

2976.73
296L.74
2887. 0Z
1476.00
1462.00
1391.88
I I57. 5t

869. 34
369. Z0

B1
1 2968. 16
z 2887. AZ

3 t464.04
4 1378.01
5 1338.39
6 1053.79
7 921.73

B2
L 2972.6r
z 2968.16
3 L47r. 95
4 1rgt.50
5 748. t3
5

AZ
I
Z

3

4
5

Staggered

2966.4
2882.4
2856.4
r47r. t
1445.8
1377.7
1150.8

870.4
38t. 7

2962.9
288r.7
1464.8
1367. I
r341.8
1045.9

923. 7

2965. z
zgzL. z
1463.9
1184.7

746.9
ZZL. Z

2964.3
1459. 0

1278.8
903.4
200.3

Eclipsed

2970, L

2892.6
2850.9
r 505. g

1443.9
t386. Z

tt57. 3

850.9
350,4

2961. Z

2889. 9

1504,7
1425.4
1273. 9
1028,4

900. 0

?96s.7
2915.3
r456. Z

Ltg3. 9
748.3
362.0

2963.8
1466. l
I230. I
1042.9

346.3

Description

r
r+
d+
o*
o +p +Y + 6
y+6+o
p

R
(J

+p
+y
+p
+p

tY + 6

+>+y
+7

+Y
+y

r
r+
o
o
o
o
p

r
d
o
p

Y
?

r
o

Y +r
F+o
T

Observed frequencies are from Gay1es (19).
Description is for the eclipsed calculation using the notation of
Schachtschneider and Snyder (46r 47) and is sirnilar to that used for
trioxane and polyacetaldehyde.
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Table 7. Force constants for propane calculation.

Description Initial Calculated Gayles

K"
I.r
Kd
F.

Cl
KR
FR
FR/ = FRf
FHr
FR'
H4
Hp
Fp
Hr
FT
lit

Fru-,
Hu)
fe& = ro"F
eLaL?L,A.= lAl'-= lt
t v_t LLAA _ LTQ

bdf = hb'
hi; = hhc
h3 = tlfrr =h7
hh =hf, =h?
H(o

4.703
.038

4.545
. 015

4.745
. 138
. tzl

-.164
. z7g
.541
.606

-. 051
.655

-.0I4
. 0I5

-. 074
.944

-.076
.063
.043
.otz
. 010

.0zz

.0t4

. 5Lg

4.703,i,
. 038':'

4.545,i,
. 0l 5':,

4.745,t,
. 138'l'
. ZL7
.032

r.034
.541,",
. 506':,

-. 05I'l'
.665,t,

- . 014'k
. 0l 5'i'

-. 074;,,

.944't'

.054

. I98
-.150

.018

. tzl

. 030

.0zl

. 51 9'l'

5. r 13684
.o1r006

5.066315
. 05941 t

4.798390
.053900
.250078

.351400

.597881

.665218
-. 045143

. 697 0gz
-. 024204

. o07845
-.014135
1.069890
-.058400

.063744

. r05615
- 105615

. 044853
-. 04307t

.6r8030

,l.fixed in this calculation

The initial force constants are frorn the staggered configuration.
The calculated force constants are for the eclipsed configuration.
Gayles (19) calculated values for the unperturbed frequencies.
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as this represents the t frequency which is favored since any change

in position would tend to decrease the potential energy.

The decrease in the third frequency of the A, rnodes is some-

what unexpected, but rnight be thought of as representing a rotation

of the rnethyl and rnethylene in the sarrre direction. The increases in

the fourth and fifth frequencies are again explainable as the increased

tendency of the hydrogens to rnove away frorn each other.

The overall fit for the staggered configuration is better than

twice as good as for the eclipsed configuration, but the really unac-

ceptable result of the eclipsed calculation is the unreasonable value

for the FRof interaction. One would not expect an off-diagonal force

constant to have a value greater than 0.5. A second calculation hold-

ing no force constants fixed showed no irnprovernent in the frequencies

but changed the Hp to 0.665. The error range was fantastically high.

It is necessary to hold rnajor force constants fixed in turn in order to

obtain reasmable ranges for the errors in the force constants.

SYM- TRIOXANE

Analysis

The vibrational spectra of

Stair and Nielsen (55), who have

both the infrared (gas and liquid

sym-trioxane has been reported by

also assigned the bands observed in

states frorn 3ZOO to 390 crn-I) and
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Rarnan (liquid and crystalline states from 3020 to 300 cm-1) spectra.

The crystalline unit celI contains two rnolecules rotated 60o to each

other. It belongs to the C!,. "n""e group and every fundarnental of the

molecule should be split for the unit ce11. The analysis here uses the

C3r. point group of a single rnolecule and fits to the gaseous spectra

(the 307 Raman line is also included). Using the coordinates desig-

nated in Figure 5, the syrnrnetry species are shown in Table 8.

Table 8. Syrnrnetry species for sym-trioxane.

c3., E zca3 v n1 [r nR.n n ln

A1
Az
E

t
I

-I

8

4
IZ

I
I
Z

z
0

Z

I
I
2

I
0

1

I
0

I

I
0

I

I
I
z

I
-1

0

z
z
4

T,
R,
Tx' T

Using the table C3 of the Appendix I, the species may be represented

AS

sA =st*s2*s3 (8)

sE =z'r -s2-s3

SEt=sZ-s3

Since there are 12 atorns in a single rnolecule of trioxane, the

normal vibrations will have 30 modes consisting of 7Ar, 3Ag, and

10E, The redundancies as discussed in Chapter Two will involve one

for the angles around the C atom and one for the ring stretches, bend-

ings and torsional distortions. Because of the peculiarity of the tor-

sional rnodeg the species containing the minus sign will appear in the
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6\
r, ,l

','"

= torsion around R

= torsion around Rr

T

Tl

Figure 5. Internal coordinates of syrn-trioxane.
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Table 9. Symmetry coordinates for trioxane

A1

51 =A(r-rt)
52=A(r*rt)
53 = .{(6 )

54 = A(Y * Yt -Y*,' -Y ")
55 = A(Y + Yr * Y,i< + Y ")
55 = A(R + Rr)
57=A(-f.r*or)
Sg=A(c,,t *t^rr)
59=A(?-?')

E

SI4=E(r-rr)
sI5=E(R+R')
s18=E(R-Rr)
szo = E(6 )

SZZ= E(V +Y'+Y,r*Y")
SZ+ = E(Y - Yr - Y'k + Y")
52,6=E(V+Yt-Y,l'-Y")
SZg = E( V- Y''+ Y'k -Y ")
S3o=E(o+r,^rr)
S3z = E( c't- crrr)

S34=E(r*r')
s35 = E( T+ ?r)
s38 = E( r- ?r)

Az

StO=A(y -Yr -Y'l'+Yr')
Stt = A(y -y t*y 'r -y ")
SIZ=A(R-Rr)
Sl3 = A(t- ?.')

Sl5=Et(r-rr)
slz=Et(R+R')
sI9=E'(R-R')
szl = E'(6 )

SZ3= O'(y +y'+y'k*y")
SZ5 = Et(Y -Y I - Y'r .+ Y't)
SZ7 = Et(Y + Yr - Y,r -Y ")
SZ9= Et(Y - Yr+Y':'-Y ")
sli = Et(r.r+ cd')
s33 = Et(al - &'t )
535=Er(r*rr)
537 = E'(7+?')
S39 = Er(?- ?')



A, rnodes. By convention (63,

is taken in the clockwise sense

59

60) the increase in the torsion angle

the projections of the bonds, when

p,

of

this is reflexed through the symmetry plane the direction is reversed.

The A1 and E rnodes are both infrared and Rarnan active; the .A2 mo.b.

are inactive.

The abbreviated f rnatrix is shown in Table 10. The initial

force constants used in the calculation were obtained where apprqri-

ate frorn the saturated hydrocarbon force constants of Snyder and

Schachtschneider (47, p. 131) and frorn Tadokoro (58, p. 70?) using

the transformations indicated in Tab1e 5. The final force constants

listed were obtained by fitting to the assignrnents of Stair and Niel -

sen.

Di scus sion

The fit of the first calculation was 4. t\o. The range of error

in the ring stretches and bendings was considerably higher than that

for the other force constants. They also differ quite rnarkedly frorn

the initial force constants which were obtained frorn the transforrna-

tion of the UBFF force constants of Tadokoro. The interaction con-

stants between the ring stretches and bendings were also high. This

is probably because of the interdependency of these force constants

due to the redundancy conditions. The torsional force constant which

was entered as the ethane torsion constant of Schachtschneider and
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Table 10. Abbreviated f matrix for trioxane

r

Kd
Fd
I.
F

F
F
r'

F
F
F
Fr
Fr

Y1R1 ry 6r uJl OI tl
r
rr
R1
Ri
R2
R5
6I
a)1
ol
62
u)
0t3
c)5
Y1

1,i
I

]j\i
\2
YL
Y3
Y5
Y'l:.
',r,1,3

l

K
F

Irr
F
r.
fr

f,
Fr
r.
Fr
F
Fr

K
Fr

r'
r'
Fr
fr

f.

f
Irr
F
I.'
r.
f.

f.

ft
t
t
f
f.

Syrnrnetric

H
r'
t"

H
FHI
hf.

hr
h
Fhr
Ffr
Ff.
Ffr
FT
hf.

ft
hr f.

ft

h

hr

H
Fr
F
f.

hre
hrte
hr
hrrC
hre
6e
hrc
6c

H

coordinates of theThe force constants are subscripted with the
row and colurnn in which they appear.
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Table I 1.

Nurnber

I
2

3

4
5

6

7

8

9
10
1I
TZ

l3
t4
I5
L6

t7
t8
I9
z0
zl
ZZ
Z3
Z4
Z5
Z6
Z7
z8

sym-trioxane

I"iti"1

4.756
.016'l'

4.421
.503
. 550,:.

,539

.473

.540
I. 810
.043,t'

-. LZ4,t,

.906
-. 015'l'
.0?3,t,

1.724
. zg0
.286
.024,'s
.l {<

-, 058'l'
-. 002'r
-.003'l'
. 01 >k

.0lz-";

.01 'l'

Calculated

Force constants of

De s c ription

Kd
r.d

FaR
KR

FR
Hs

rde)
FR,

t'l f

^ Rar Fdr
FRr

H6'1

Fa)
Fn'

HT
tr'?

Fb
H2^,

Fh.,
Fh

Hl
tr'il

-d ^ Rc''l
+b'rd

h9
,Cnrr

,en 6''1

h'f
hi"

4- z9e
.015

-.46r
5.757
. 503
.584

-. 872
.756
. 180

-.473
.540

t.238
.043

-. rz4
.806

-.015
.023

1" 390
.4t5
" 286
.13t
.I

-. 058
0.
0.
.0I

-. 094
0.

'l'from Snyder and Schachtschneider (47)
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Snyder turned out to be closer to the torsional constant of cyclohexane

reported by Takahashi (59). The decrease in the rnethylene force con-

stant and increase in the interaction constants involving the hydrogen

and oxygen coordinates rrray reflect sorne atL.raction between the oxy-

gen and hydrogen which does not occur in the hydrogen and carbon

compounds.

The assignrnents of Stair and Nielsen were based on the shape

of the band envelopes, comparison with cyclohexane, and intuition.

Trioxane is an oblate top with the unique rnornent of inertia greater

than the two equal ones. For this case the p parameter of Gerhard

and Dennison (20) is about -L13. Reference to that work shows that

the only theoretical difference between the shape of the parallel and

perpendicular bands is the spacing between the P and R branch.

Stair and Nielsen calculated a spacing of l5 "*-1 for the perpendicu-

lar bands and 25 for the paraIleI. A difference of l0 cm-1 is difficult

to distinguish. The intensity of the Q branch also shows no large

differences for this type of rnolecule. If then the bands are assigned

on the basis of the calculations, it is possible to irnprove the fit by

about 1%. Some justification for the reassignrnent is found in the

recent work of Snyder and Schachtschneider (52) and Takahashi(s9)

on cyclohexane. Both these papers assign the higher r- frequency

to the A rnode rather than the E. The A rnodes involving the rnethy-

lene rock in cyclohexane differ by about ZOO to 300 cm-l whereas the
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assignrnents of Stair and Nielsen for these rnodes in trioxane differ by

ab'out 500 crn-I. The I477 and 1495 overlap so that the normal vibra-
tional calculation is probably a better criteria than any other for dis-
tinguishing between the A and E modes, Stair and Nielsen suggested

1474 f.or the A rnode which is closer to 1477 tha.n to L496. It is pos-

sible to increase Kr. to 4,546, the value used l:y Schachtschneider and

Snyder, and H, to 1.39, = HL and thereby decrease the interaction
constant F6, to -.4 without changing the goodness of the fit by rnore

than 0. 1%, if the band assignrnents are changed; the error increases

appreciably if the original assignrnents are used. The best criteria
for rnaking band assignrnents would be a polarized spectra of a single

crystal of trioxane, since the difference in polarization is probably

the rnost distinguishing difference between the A and E rnodes. Tab1e

I2 shows the assignrnents of Stair and Nielsen under the heading ob-
served. The calculated frequencies fitted to these are listed in the

second colurnn. The suggested reassignments are in the third column,

the fit is Z.6To here.
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Table 12. Frequencies of syrn-trioxane.

Observed Cal.cuLated Rea s signrner:! De sc ription

AI

2853
zTgz
r496
975
943
752
524

Az

2944.7
2774.7
r476.4
996.7
94A.6
v7t.z
445.4

1379. Z

r r60. 0
ttz7. 0

2939. 0
2767.8
1497. 0
143 r. 0

r335.4
tzt}. z
r003. 5

917. Z

5OZ. L

305.4

3031
2792
t477
r 050
943
752
460

2853
2753
1496
1408
r305
IL75
r072
975
524
307

r
+T'

6

Y +)+co+R
o+\+R+6
c!+ I+ y
r+Y+ a

Y +R
Y

r-
,t

Y

Y

R*1+&)
R+G)
Y+ t
o!r+ T
T

E

3031
2753
1477
1408
I 305
1175
t07z
I 050
460
3 07'l'

,i.Rarnan line
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POLYACETALDEHYDE

Analysi s

Natta et aI (38) reported the x-ray data for polyacetaldehyde

giving the space group as I4r,. with a = ZO.01Ao, c=4.78Ao and four

chains per x-ray unit ceII. Since only a single chain is used in this

analysis, the Cn space group applies. There are ZB atorns in a unit

cell of polyacetaldehyde; 3N-4 for polyrner rnolecules indicates 80

norrrral rnodes divided into I9A + 21B + Z0E. Since we have chosen

23 internal coordinates per rnonomer unit and each rnonomer unit is

displaced for every syrnrnetry operation except the identity, there will

be 23 symrnetry coordinates for each mode generated by substituting

the sets of internal coordinates listed in Table Z into equations II-5

and 6 to obtain U, and U., respectively. There are then four redun-

dances in A, two in B and three in E (each E is doubly degenerate).

Again the redundancies involve the angles around each carbon atorn

and the skeletal stretches, bendings and torsional distortions. The

non-degenerate skeletal redundancies will both appear in the A block

since these are symrnetric with a quarter turn around the helical axis.

They may be thought of as resulting in a twist aroud the axis which is

forbidden in this analysis since it would change the unit cell.

Though there are theoretically 39 infrared active rnodes (A + E),
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there are only l8 observed frequencies reported by Novak and Whalley

\39, 40). The spectra has also been reported by Furukawa et al (18).

Both authors have generously supplied us with full scale copies of

their spectra.

The spectra are of crystalline polyaceta!.dehyde, but it is not

possible to obtain single crystals of polyrner. There will be no clues

as to which are the A and E rnodes frorn the band shapes; and there

will be rnuch overlapping of bands because of the splitting of the

fundamental frequencies and because there are many rnodes sirnilar

to each other. With so few frequencies it was not possible to decrease

the perturbation low enough for the machine program to fit the force

constants to the frequencies. This is probably because of the large

interdependency of the force constants with each other. It is neces-

sary in this case to calculate the frequencies using the best values of

force constants known and rnaking the assignrnents on the basis of

these calculations. Sorne assistance on assignrnents can be obtained

by comparison with polypropylene data (48, 51, 5Zl, Polyacetaldehyde

has a sirnilar relationship to polypropylene as trioxane has to cyclo-

hexane.

The initial force constants are Iisted in Table I3. Nurnbers 6,

'?, Il, 14, 15, 18, 24, 25, 26, 27, and 34 were obtained frorn the tri-

oxane calculation. K, is estimated frorn the value given by Snyder

and Schachtschneider (47) taking iato account the fact that the C-H



13. Force constants used in

ot

the calculation of polyacetaldehyde

No. De sc ription Value

TabIe

No.

I

z

3

4

5

6

7

8

9

IO

l1

IZ

I3

t4

l5

I6

T7

I8

19

zo

Value

4.699

.043

4.726

4.337

. 101

5,7

.503

.54r

.645

-. olz

.805

,, . 667

.900

r" 264

r.:90

. i30

.130

.Z

.z

.Z

Fsr
F
^ sr,
I.-P.F

Fnf

FRr

FR,

rd.,

F.r

Fa)

rf
F+s

E.' ?ro.)

Fi,
Erl^R

Fsr

F5,,

F!,
Ff,

Ff,

FFa,

,Z

,4

.1

.54

.54

,756

.415

-. 0zl

-. 043

-. 041

-. 014

-. 124

-. LZ4

.286

-. LZ

-. TZ

-. tz

-. tz

-. LZ

-. LZ

De s c ription

Kr

F"

Kt

Ks

FRs

KR

FR

H4

HA

Fp

Hc

FIN
D

Hr

H(,

HL

Ha

Ht

I.-sf
F^,

5P

Ii.^s5

zl

ZZ

z3

z4

z5

z6

27

z8

z9

30

3t

3Z

33

34

35

36

37

38

39

40
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stretch in trioxane is lower than for cyclohexane. The C-C-O angle

bending constant was given the C-C-C angle value of that reference.

A11 other valules were obtained or estimated from these authors.

The calculated frequencies are Iisted in Table 14. The observ-

ed frequencies which most closely correspond to the calculated are

listed in the second corlurnn. The description refers to the dorninant

mode in the eigenvector. None of the modes are entirely free of the

others in the calculation. The fit of the calculated frequencies to the

observed is about 3.6%,

The calculations were carried out for the methyl group oriented

both gauche and eclipsed to the skeletal chain in an attempt to decide

whether the calculations would be a criteria for the orientation of the

side chain. The restrlts of both calculations were identical.

Di scus sion

At first it rni,ght be thought that with 39 calculated frequencies

and only 18 observed, it would be difficult not to find a good fit of the

frequencies. This is not entirely true. If the original force constanb

for the polyether coordinates obtained f rorn the transforrnation of the

Urey-Bradley force constants reported by Tadokoro for polyoxyrnethy-

lene are used in the calculations instead of first fitting thern to the

trioxane spectra, the 1380, I335, II87, and 810 frequencies are hard

to assign. These calculations also predict o rnodes in the range of
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Table 14. Frequencies of polyacetaldehyde.

CaLculated A" rl-gr".9. Description Calculated Description
AB
2962.5 Z98o r- 2962.0 r-
2961.4 r- 2961.3 r-
2950.6 2920 t '2946.9 t
2883.9 2860. r+ ZBB|.9 rt
),465"9 a+ #+o- L4t)9.a *+o-
L464.3 o- 1.1,,(.t3.9 o-
1,461.4 1445 o- L463.3 o-
1413. Z t-400 ct+ L416.0 0t
i3i:.0 1331 O+o-+* 1373.5 o+ 6+f
133?.3 1187 6+o-+f ).175.2 P+ 6+R
].1.64.4 1r.30 p+?+(l) 1160.8 p+ 6+o
1108.7 I0B5 6+S 1059.8 P+o
965.8 935 p- 945.4 p+ 6
928.3 845 p- 913.0 P+S
750.4 o- 796. I C
57 6.7 620 o'+ cd 628.7 c,.r + C + r
406.0 490 'r+@+# 466.8 0-+T
369.8 o 308.5 a+T
L6Z.Z GJ r o 206.6 o+ T

rr8.5 T
57.4 T

E
2962.2 ZgeO r-
296\.3 r-
2948.8 2920 t
2883.9 2860 r+
L477.L ++c+o
L464.0 L445 o
1462.5 a
L4LZ.3 1400 o
1363.7 1335 6+o+ #
LZL3.I p+R+?
il4l..3 I13O c+*+6
1089.9 1040 P+o+6
977.8 970 9+ o
912.6 935 P+c
749. O 810 o
635.7 620 o+ t
486.3 450 o+ a, +T
300.9 of 0)
190.9 T
52.4 T
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1500 - I700 which is difficult to accept. Using the fitted force con -

stants frorn trioxane, all of thc obscr',;i-;r.:i rands can be reasonably

assigned. Thc (r mocles iaII in thc irprc:r' L,l 1.10 region vrhich is expected.

At first glance the rnethyl tori;ion. rno.it:s appear to fa1l in the right

range aIso. Fateley and Miiler (I5, 16) pr:et"iict the single rotor CH,

group on acetaldehyde to fall in the 100 - 300 range with the E modes

higher than the A rnode. The rnethyl rotor on CHTCHOCHZ ring is

between 167 - 426 according to these authors. Glancing at Table 14,

one would expect the rnethyl torsion to dorninate the I62, ? in A, 2,06,6

in B, and 300.9 in E. Instead the 750.4 in A, 796, L in B, and 749.,0

in E are predorninately rnethyl torsion with sorne contributions to

other frequencies. It is difficult to decide whether this is because of

the small displacernent approximation inherent in the calculation

which is not nccessarily true for a freely rotating rnethyl side group

or whether the cause is due to the high mixing of the norrnal modes

and the rnethod of defining the torsion coordinates. The torsion an-

gle here is defined as the surn of the torsional displacements of each

of the rnethyl hydrogens with respect to one of the atorns attached to

the skeletal carbon. Since it involves so Elany of the atorns, there

is much interaction of this rnode with the others.

The fact that the calculations for the rnethyl group oriented

gauche to the skeletal chain is identical to the results when the rnethyl

group is eclipsed to the chain is at first surprising. At least in these
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calculations, unlike propane, there can be no criteria frorn which to

judge the orientation of the side group. The methyl group hydrogens

are generally staggered to other hydrogens or carbons but they rnay be

eclipsed to oxygen atorns and forrn hydrogen bonds. It rnight have

been possible, however, if enough confidence in the transferability of

the force constants existed, to fix the rnajor force constants and per-

mit the force constants between the o and p interacting with the 1 ,

6, f, and 6) to perturb to fit the frequencies. Their final values

rnight be a clue to the side group orientation. In these calculations

these force constants were set equal to zero. If time perrnitted it

would have been wiser to first fit the trioxane data to the polyoxy-

rnethylene calculations before attempting the polyacetaldehyde. There

would have been rnore transfer of force constants between the trioxane

and polyrnethylene. This would have given rrlore confidence in the

values of the polyether force constants.

More spectral data either from Rarnan studies or isotopic spec-

tra rnight be helpful at this stage to help deterrnine the significance of

the force constants. Although it would not be possible to rnake the

neat calculations according to the Teller-Redlich product rule (7, p.

Z0Z-204) because of the interrnixing of the rnodes, some calculations

according to the surn rule of Decius and'Wilson (10) would not be too

difficult since isotopic substitution does not change the syrnrnetry.

In any case both rules would give a prediction of the direction of
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change of frequencies and sorne clues to the significance of the force

constant values.

In this calculation it has only been possible to fit the polyacet-

aldehyde spectra only as well as it was possibtre to fit the trioxane

spectra. It could be hoped that a better fit of the trioxane spectra and

rnore certainty of the polyether force constants would give a better

fit of the polyacetaldehyde spectra. The rnethod of carrying out the

analysis is now established; it now remains to obtain enough data to

ascertain the transferability of the force constants.
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SUMMARY

A method for analyzing the normal vibrations of polyrner mole-

cules is developed in detail. The details of the treatrnent are set up

in a manner analogous to the treatment of fini.te rnolecules so that the

sarne cornputer prograrrrs can be used for either systern.

The norrnal vibrational analysis was rnade on propane using a

staggered configuration norrnally assurned for this rnolecule to ascer-

tain the effect of the U rnatrix on the force constants. No change in

the force constants were found whether or not the redundancies are

explicit or irnplici.t in the U matrix as long as the sarrre set of internal

coordinates are used. Calculations were also made on the eclipsed

configuration of the rnethyl group to the rnethylene group to deterrnine

the sensitivity of the frequencies to the g rnatrix. Certain frequencies

were found to change, especially those involving the o modes. The

fit to the observed frequencies was not quite as good, l.6To cornpared

to 0.67To for the staggered configuration. Sorne of the values of the

interaction force constants were unreasonably high, especially the

interaction between the carbon stretch and angle bending.

A normal vibrational analysis was rnade on trioxane to obtain

force constants for the analysis of polyacetaldehyde. The initial poly-

ether force constants for this analysis were obtained frorn a trans-

forrnation of Urey-Bradley force constants used in the calculation
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of polyoxyrnethylene by Tadokoro(58), Other force constants were

obtained or estir:rated frorn Schachtschneider and Snyder (52). The

final fit of the calculated frequencies to.the assi.gnrnents of Stair and

Nielsen (55) was 4.LTo. Sorne of the interactions force constants were

unreasonably high. These could be reduced s,-,rnewhat by reassign-

rnents based on the calculations. The fit of the new calculations to

the reassigned frequencies was Z.golo. Further atternpts to fit the

frequencies would not be fruitful without rrlore certainty of the as-

signments.

The rnethod for cal culating the norrnal vibrations of polyrners

was applied to polyacetaldehyde. It was not possible to fit its observ-

ed frequencies to better than the final fit of trioxane using the poly-

ether force constants obtained frorn that analysis. The calculations

do perrnit assignrnent of all of the reported frequencies (39). It was

not possible in these calculations to distinguish between the staggered

and eclipsed orientation of the rnethyl side group. The validity of the

assignrnents is subject to further verification since the nurnber of

observed frequencies is rnuch less than the nurnber of calculated

fr equencie s.

A discussion of the conforrnation of polyrner chains offers an

approach to determ.ining the Cartesian coordinates necessary in the

calculation of the g rnatrix. Sorne errors in the usual use of the

equations of Shirnanouchi and Mizushirna (54) are pointed out and a
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correction is suggested.

Tab1es for generating real syrnrnetry species of C. type helices

are included for use in polyrner analyses.
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APPENDIX I

Tables for generating syrnrnetry coordinates. The resultant vector

is indicated if the coordinates are oriented in the sarne rrranner as the

accompanying diagrarn. Numbering is counterclockwise. 0 = ZTrln

c4

B

E

c5

Ce sl

I

-1

-1
I

s2

I

cos 0

sin0

cos 20
sin20

s3

I
1

-I
I
.I
I

s3

1

1

s3

1

cos20
sin20

cos0
- sinO

s5

(x)
(v)

s4

-1

I
.I

s4

I

cos20
- sin4

co$
sin0

s5

s2s1

A t

t

I
I

sl

I

I

A

s2 s4

A
B
E1

Ez

I
-l
I
I
-t
-1

I
I
-I
-1
-1
-1

I
-I
I
-1
-1
I

(x)
(v)

I
I
z

Z

I
-1
-z x,

\s1r
(x)
(v)

s5

I

cos0
- sinO

cos20
- sin20

"1

X

l;r *
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c7 s1

A
E1

E2

E3

c8

I
cos 20
sin20
cos30
- sin30
co s0

- sinO

I
cos30
sin30
co s0

- sin0
cos20
sinZ0

s5

I
cos30
- sin30
co s0
sin0
co s20
- sin20

I
cosZ0
- sinZ0
cos3 0

sin30
co s0

sin0

s,7

I
co s0

- sinO
cosZ0
- sin20
cos30
- sin30

s6s4s3s2

tI sz 
"3

I
I

I
co s0
sin0
cos20
sin20
cos30
sin30

s1 s2

t1
z-l

I
cos20 cos40
sin20 sin40
-1 -1
I -1
cos40 coS
sin40 - sinO

c
5

I
I
-1
-1
I
I
-1
-1

s5

1I
-t -1
I -1
cose cos0
- sinO sinO
-l -I
1 -t
cosZ0 cos20
- sinZ0 sin20

(x)
(y)

s6s5s4s3

A
B
El

E2

E3

C9

A
El

Ez

E3

E4

I
I
-I
I
-1
-I
-1
I

,4

I
-I
.I
I
-1

I
-1
-1
-1
I
-I

I
I
I
-t
-I
-t
I
-1

tB

I
-1
t
-1
-1
I

(x)
(v)

(x)
(v)

I
TT

0

I
I
1

I
I
I
I
I

I
-1
I
1

I
-1
0 -tr
-t;

I
2

I
-1
I
co s3e

- sin30
z

cos30
sin30

1

-l
-I
co s30
sin30
Z

co s30
- sin30

I
-1
-1
cos40
- sin4
.I
I
cos0
sirO

t9

I
z

cos20
- sin20
-1
-l
co s40
- sin40

x,

s6 s7

0

JT

"z



84

APPENDIX II

Proof of the reduction of the F and G rnatrices of an infinite chain

The proof will deal with the F rnatrix but applies equally to the G

rnatrix. The potential function is always

?Y = t st,frt,st
ttr

where t and tr = 1, Z, @

and f has the form of equation II-3:

o p' ./r 6r

'P a P' y' 6'

Y P o P' y' 6'

6 Y P o P' ny''

6YP0'P'

.6yt3n

Generally 6 and farther interactions a:"e zero. If equation Z is multi-

plied on the right and left by a row and colurnn vector of the infinite

chain internal coordinates in the forrn srro ".rF "rry s'u,

where the coordinates are grouped so that srro are the internal coor-

dinates of the first rnonorner unit of the nth repeat unit; n = 1, Z,

N, the number of repeat units in the chain. Inspection of the

(l)

f- (z)
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muttiplication shows that thefstwill reduce to a column vector of

which each eleme nt will be a summation involving terrns containing

Y ', p', er p, r1r each multiplied in consecutive order by the srs of

the internal coordinates. The summation of equation I will consists

therefore of

s1rf11rst = N(surn of terms)srr61 * N(sum of terms)srp

* N(sum of terms)s* ,etc.

The number of terms in the parenthesis of equation

how far the neighboring interactions are extended.

terrns on the right side of equation 3 will depend on

monomer units per r:epeat unit.

If syrnrnetry coordinates can be generated such

st, = I u;,ltu
k

si =(tuf,,sp,)'

3 will depend on

The nurnber of

the nurnber of

that

(3)

(4)

(5)
kr

then the infinite rnatrix f is reduced to the order kkrwhich is chosen

to be finite.

(5)

The norrnalization constant of U will be 1/\m; where N is the number

of repeat units above and p is the sum of the squares of the elernents

in a single repeat unit and will differ for each row. A single terrn in

equation 3 will be converted by the unitary transformation into terms

sirnilar to

"uo,=E u11,uL,1f11,

N(1/./5{p sn,y,+ 1/./5,Ip sn,[3, + l/.N-t sno* Uffi sop+ r/ffi sny (z)
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wherenl=n-1.

It is irnrnediately obvious that the terms are independent of the num-

ber of repeat unitq and equation I is equivalent to a multiplication with

t = I to orand tr = I to the total nurnber of internal coordinates in a

repeat unit.

In practice it becornes obvious that all terrns involving coordin;-

ates which do not interact with the repeat unit under consideration

drop out of the final multiplication. The syrnrnetry of I.OU, will be

the same as f6r as long as UplrUL,t = E, the identity rnatrix of the

order k and is not dependent on Ut actually being the transpose of U.

Equation 7 is an actual terrn for the case of four rnonolner units per

repeat unit with 6 = 0.
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APPENDIX III

Prograrns coded in Fortran II for generating the cartesian coordinates

of helical polymers with tetrahedral geometry.

Program to calculate the skeletal atorn positions of A-B type chain

c X, y, z ARE CARTESTAN COORDINATES OF REF ERENCE
C ATOM: AN = NO. OF TURNS PER UNIT CELL; AM = NO.
C OF MONOMER UNITS PER UNIT CELL;D=CELL LENGTH /
C AM; S=BOND LENGTH

DIMENSTON A(3, 3)
LZ READ INPUT TAPE 5, I, X, Y, Z, S, D
1 FORMAT (5r LZ. 6l

READ INPUT TAPE 5, I1, AN, AM
1 r FORMAT (ZE tZ. 6l

r_- 0

B=2. ,i.1. 333333xS:rS
A=B - D>kD

TH= 2.,i,3. L4L59Z7'r (AN/AM)
SINTH= SINF ( TH)
COSTH=COSF(TH)
C=2. (1. - COSTH)
R=SQRTF(A/ C)
PRINT 10, TH, SINTH, COSTH

I0 FORMAT (8H1 TH=FLZ. 6, l0X5HSINTH=FlZ. 6,1OX5HCOS
TH=F lZ. 6l
X2=Rl'COSTH
Y2=R,TSINTH
ZZ=D
wRrTE OUTPUT TAPE 5, ZO, X, Y, Z, S, D, R

zo FoRMAT (1H06(4XFr2. 5))
2 PHI = X,kX-2.'i.Rri.X+RrkR+Y>l(Y+ZrkZ-S;sS

PSI = X>i.X+Y,kY -2. ssY?ssY +YZ>'rYZ+Zr'f Z-2. >'rZZriZ+ZZr?Z?-Sr'fS

- Z. ,!(XZ ,rX+)(Zr'fXZ
CHI = X,kX+Y'kY-R'i<R
I=I* I
wRrTE OUTPUT TAPE 6, 5, r,X,Y, Z

5 FORMAT (r4, 3(3XF LZ. 6ll
rF(ABSF(PHr)- 1. ) 15, t7, t7

t 5 rF (ABSF (PSr)- 1. ) 1 6, 17, 17
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L6 rF (ABSI.(CHr)- r. ) 7 , 17, 17

L7 WRITE OUTPUT TAPE 6, 9, PHI, PSI, CHI
9 FORMAT (5H PHI=F IZ. 6, 5H PSI=F LZ. 6, 6H CHI=F lZ. 6)

GO TO 12
7 A(1, 1) = Z.'i'X-2.1'R

A(1, 2) - Z.'tsY
A(1,3) = Z.'Y Z
A(2, Ll = Z. >k)(-},'k)(Z
A(Z' 2l = ?.'kY -2,'kY?
A(Z' 3) = ?. >i'Z - Z. 'r ZZ
A(3, 1) = 2.'rX
A(3,21 = Z.'kY
A(3,3) = 0
D = A(1, 1),1.A12, 2),kA(3,31+A(?.,1),1.A(3, Z)'kA(1, 3)+A(3, 1),rA(2,
3 ),:.A(1, zl - Al3, 1){.A(2, 2)*A( 1, 3 ) -A(3, ZY,A(Z, 3 I'1.6, l, I )-A(3, 3 )
,i.A(1, Zl,rA(2, ll
DH = - PHI,kA ( 2, 2lr$A\3, 3 ) - PSI*A(3, Z ),1.61 1, 3 ) - CHI,rA(2, 3 )r,.A(
l, Z )+CHI'I.A( 2, 2 )*.6, 1, 3 )+A(3, ?)r,A(?, 3 ),rPHI+A( 3, 3 1,:.41 1, 2 )'r
PSI
DK = -A(1, I )'rPSI,rA(3, 3)-A(2, 1)'l.C HI,I.A(1, 3)-A(3, 1 ),FA(2, 3)
,r.pHr+A(3, 1)>kpsl,rA(1, 3 )+CHL!,.A(Z,3 ),tA(1, 1)+A(3, 3 )>kpHI>kA(
Zr Il
DL = -A(1, l)'kA(z, z)*CHI-A(Z, t1,1613,2),kPFII-A(3, 1),l.PSIr.A(
1, Z )+A(3, I ),1'A( Z, 2 ),l.PHI+A(3, Z1*p5f i.A( l, I )+CH1,:.6 (I, 21,t,j.12,
1)

EH = DH/D
EK = DK/D
EL=DL/D
SUM = EH,kEH+EK,rEK+EL'rEL
rr' (suM-1. E- l zl 5, 5,3

3 rF (I- 100) 4, 4, 5
4 X=X*EH

Y - Y+EK
Z = Z|EL
GOTOZ

5 C = ((R-x){.(XZ-){l-Y,r(Y2-Yl-Z*,(ZZ-Zll/ (S,r.S)

WRITE OUTPUT TAPE 5, 8, X,Y, Z, C
8 I'ORMAT (3H X=F12. 6, 4H Y=F12. 6, 4H Z=FLZ.6, 5H

COS=F IZ. 6)
GO TO 1Z
END



89

Prograrn to calcuLate the positions of atorns attached to skeletal chain:

c x0, Y0, z0 ARE CooRDINATES Or. SKELETAL ATOM TO
C WHICH SIDE ATOMS ARE ATTACHED; Xl, Yl, ZI ARE CO-
C ORDINATES FOR THE PRECEDING SKELETAL ATOM;XZ,
C YZ, ZZ ARE FOR THE SUCEEDING SKELETAL ATOM;X, Y,
C Z ARE THE COORDINATES TO BE CALCULATED;BL IS
C THE BOND LENGTH OF THE SIDE ATOM TO THE SKELE-
C TAL ATOM;BLI IS THE SKELETAL BOND LENGTH;N=I IF
C NEW SKELUAL POSITIONS ARE TO BE READ IN

DIMENSION A(3, 3)
IZ READ INPUT TAPE 5, ZL, N
2r FORMAT (I2)
zz IF (N) t3, t4, 30
30 READ INPUT TAPE 5, 1, X0, Y0, 20, Xl, Yr, Zi.,xz, YZ, ZZ,

BLi
1 FORMAT (5F rZ. 61 4F rz. 6)

13 READ INPUT TAPE 5, 5, X, Y , Z, BL
5 FORMAT (4F rZ. 5l

wRrTE OUTPUT TAPE 6,20, X, Y, Z,BL
zo FoRMAT (lHo 4(3XFt?..6l.l.

I=0
cl = - 0. 333333,liBll* BL
C3=BL'kBL

Z Al1, 1)=X1-;69
A(1, 2)=f 1-Y0
A(I,31=Zl-20
A(Z,I )=X2-X0
A(2, Zl=YZ'Y0
A(Z' 3)=ZZ'20
BX=X -X0
BY=Y- Y0
BZ=Z-20
A(3, I )=2. 'kBX
A(3' Zl=?,. 'i'BY
A(3, 3)=2. ''sBZ
I=I* I
PHI=A( l, I )'r3;q1A( I, ?)xBY+A( l, 3l';37 - 6,
PSI=A(2, I )'kBX+A(2, 2),r3y1A(2., 3l'rBZ-Cl
CllI= BX,kBX+B Y,kB Y +B Z)fB Z - C3
rF (ABSr'(PHr)- r.

15 rI. (ABSF(PSr)- r.
16 rF (ABSF(CHr)- 1.

L5,17, L7
16, L7, L7
7, L7, 17

17 WRITE OUTPUT TAPE 5, 9, PHI, PSI, CHI
9 FORMAT (5H PHI=FI2. 6, 6H PSI=F lZ. 6, 6H CHI=F lZ. 6l



90

GO TO t2
7 D=A(I, 1)>i<A12, z),kA(3, 3)+A(2, 1),rA(3, z),1.A(I, 3)+A(3, 1)xA(2, 3)

,kA( I, z) - A(3, I ),rA( 1, 3 ),r41 2, z ) -A( 3, Z),NA(Z, 3 ),kA( 1, I ) -A(3, 3 ),i.
A(1, 2)'l'A(2, L)
DH= - PHI':.A( 2, Z ),kA( 3, 3 ) - PSI,TA( 3, Z 1,1.41 1, 3 ) - CHI'kA ( Z, 3 ),kA( 1,
Z ) +CHI'kA \2, ?,1t', 61 l, 3 ) +A( 3, 2l,r A(2, 3 ),k PHI+A ( 3, S 1,:.41 1, 2 )'1.p51
DK= -A( 1, I 1':.p5r*A(3, 3 ) -A(2, I )>rQ91,34( 1, 3 ) -A(3, I )>FA( /, I )>F

PHI+A ( 3, I )'I.PSI*A( I, 3 )+CHI,'f A(2, 3 ),1.A ( 1, I )+A(3, 3 )>kp111>rr11 2,
r)
DL= -A( l, I )>rA12, 2),rCHI-A( 2, t 1,1.413, 2 )':.prr-A(3, I ),kPSI,I.A( 1,
Z)+A(3, I )'l'A(2, 2)'kPHI+A(3, 2)'l'pst'l'A( 1, I )+CHI'I'A( 1, Z1xa12, 1 1

EH=DH/ D
EK=DK/ D
EL=DLl D
SUM= EH,k EH+EK,r EK+ EL,kE L
rF (suM- 1. E- L?,1 18,3,3

3 IF (I- 100)4, 4, t8
,4 X=X*E H

Y= Y*EK
Z=Z|EL
wRrTE OUTPUT TAPE 6,6,r,X, Y, Z

5 FORMAT (r3, 3(3XF rZ. 6l)
GOTOZ

18 WRITE OUTPUT TAPE 5, 8, X, Y , Z
8 FORMAT (3H X= F I Z. 6, 4H Y=F I Z. 6, 4H Z=F lZ. 6l

GO TO 12
L4 CALL EXIT

END

C PROGRAM TO GENERATE REPEAT UNITS OF POLYMER
DIMENSION X(20), y(20), 2(20)., MOL(4), ATOM(11)

C X, Y, Z ARE COORDINATES OF ONE ATOM OF T'IRST
C MONOMER UNIT, MOL IS MOLECULE IDENTIT'ICATION,
C ATOM IS ATOM IDENTIFICATION, C IS UNIT CELL LENG
C TH, AN IS NUMBER OI. TURNS PER UNIT CELL, AM IS
C NUMBER OF MONOMER UNITS PER UNIT CELL, IND IS
C 1 IF NEW MOLECULE IS TO BE ENTERED

I READ 2, MOL, C, AN, AM
z FoRMAT (4A5, 3I.tZ.6l
3 PRINT 4, MOL, C, AN, AM
4 FORMAT ( IHI, 4A6, 3F tZ. 6l
5 READ 5, IND, ATOM
5 FORMAT (16, r rA6)

II. (rND) r,7, L
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7 PRINT 70, ATOM
70 FORMAT (1H0, 5X, 1I,4.6)

TH=3. t415gZ7*(AN/AM)
D= C/AM

8 READ g, X(t ), Y(1), Z(I )

9 FORMAT (3r tZ. 6)
SINTH=SINF (TH)
COSTH=COSF(TH)
M=AM*3.

lZ DO 13 I=1, M
X(I+ I )=X(I)'r'COSTH- Y (11'l'511trt,
Y (I+ I )=X(I)'l'SINTH+Y 1t1'r' COSTH

13 Z(I+r )= Z(I)+D
14 PRINT 15, (I, X(I), Y(i), Z(I), I=1, M)
t5 FORMAT (Iro,3r.Z0.6)

GOTO5
END

Note: PRINT = 
'\4rRITE OUTPUT TAPE 6




