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A method of calculating the normal vibrations of polymer mole-
cules is presented in detail. The method is based on that used by
Schachtschneider and Snyder in their analysis of polypropylene but
has not heretofore been published. The factoring of the infinite ma-
trix and reduction to the coordinates of the unit cell is justified in a
manner based on the factoring of finite molecules. It is comparative-
ly simple for anyone familiar with the method of calculating the nor-
mal vibrations of finite molecules to make the extension to polymer
molecules by this method.

The geometry of polymer chains is discussed in connection with
setting up the g matrix for the calculations. Some errors in the use
of the geometric relationships of Shimanouti and Mizushima on the
helical configuration of polymer chains are pointed out and supple -

mentary relationships are presented.



Some arguments in favor of the valence force field for this type
of calculation are discussed. The error inherent in using the equili-
brium transformation between the valence and Urey-Bradley force
field is pointed up and made more obvious in a calculation of the nor-
mal vibrations of trioxane. In this calculation the polyether force
constants reported by Tadokoro for polyoxymethylene gave a very
poor fit of the data. Transference of the valence force constants ob-
tained in the trioxane data to polyacetaldehyde gave as good a fit for
polyacetaldehyde as was obtained in the trioxane calculation.

The method developed in the first chapters of the thesis for the
normal vibrational analysis of polymers is applied to polyacetaldehyde
in the last chapter. It is not possible to adjust the force constants to
fit the observed frequencies because of the large number of calculated
frequencies and force constants compared to the small number of ob-
served frequencies. It appears to be possible to make band assign-
ments in agreement with the calculated frequencies if reasonable

force constants are already available.
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THE NORMAL VIBRATIONAL ANALYSIS OF POLYACTALDEHYDE

GENERAL THEORY

Introduction

Since Wilson's work in the 1930's, the analysis of molecular vi-
brations of small molecules has developed and formalized itself into
standard rules and procedures. It was first applied only to gaseous
spectra, but was extended in the 1940's to condensed systems and in
the 1950's to polymers or long chain molecules. It will not be within
the scope of this discussion to develop the theory from the Newtonian
laws of motion but rather to assume the reader's familarity with such v
standard texts as Wilson, Decius and Cross (63), Barrow (2), and
Wu (64) and from this knowledge of the treatment of small molecules
lead into the more specialized treatment of polymers.

It will be necessary, however, to review briefly the steps in the
solution of the energy levels of polyatomic molecules in order to see
the logical extension to polymer molecules. The starting point of any
problem concerning the energy of a moleculeis Schrodinger's famous
equation,

HY = wV¥. (1)

It is usual to apply the Born-Oppenheimer separation (4i 41, p. 259)

based on the differences in magnitude of the various types of energies



H=H_ +H, +H_. (2)
The Hamiltonian can be separated into the components of electronic,
vibration and rotation. Since we are concerned here mostly with con-
densed systems, and the infrared spectra, the vibrational component
will be of major interest. H will be used here to be equivalent to H,

or to H + H.. Using the harmonic oscillator-rigid rotor model:

H=T+V (3)

T=1/22 Q? (4)
i

v=1/220 N 0QF (5)
i

Where the Q's are the mass weighted generalized normal displace -

ment coordinates. In a nonlinear molecule containing N atoms, there
will be 3N - 6 independent coordinates. The secular determinant can
be expressed as 3N - 6 equations, if internal coordinates are used to
eliminate the translation and rotation zero modes. Wilson (63, p. 73)

has shown that the secular determinant can be put in the form

lGF - ENl =0 (6)
tt!
2V = 20 F 4 S Spr (8)
tt!
Gl is called the inverse kinetic energy matrix, F is the force con-

stant matrix. The capital letter will be used to imply they are fac-
tored, the small g and f signify unfactored matrices. The S's are the
symmetry coordinates which are generated from the internal dis-

placement coordinates by use of the "Wigner crank" (63, p. 119) and



the character tables of group theory. The methods of group theory
permit factoring large order secular determinants into blocks corres-
ponding to various species of vibration, 1. e. modes which are symme-
tric, antisymmetric or degenerate with respect to the major axis of
symmetry.

The unsymmetrized (unfactored) g is calculated on the basis of
an assumed geometric structure which determines the choice of inter-
nal coordinates. The nondegenerate symmetry coordinates can be
generated by considering one coordinate at a time and operating on it
with the operations of identity, rotation, reflexion, inversion and cam-
binations of these. The appropriate character table is used and the
Wigner crank applied. The degenerate symmetry species must fre-
quently be determined by inspection or analogy with other molecules
or simply ingenuity. Tables are included in the appendix for generat-
ing symmetry coordinates for molecules with Cn type symmetry for
n=3to9. The transformation from internal cordinates to symmetry
coordinates defines the U matrix which is used to symmetrize the g

and f matrices.

Sm = UmnS®n (9)
G = UgU! (10)
F =UfU' (11)

The g elements are then calculated from the formulas of Decius (8)

or Wilson et al (63, p. 55-61). A potential field is assumed and



transformed into terms of the internal coordinates chosen for the g
matrix in order to set up the f matrix and make use of equation 6.
The secular determinate is now factored into blocks whose number
will equal the number of species in the character table used. The
order of each block will be equal to the number of symmetry coordin-
ates belonging to that particular species. The proof of the factoring,
which will be discussed in more detail later, is given in Appendix XII
of Wilson, Decius and Cross (63, p. 347-349) and is inherent in the
methods of group theory (44). The solution of the secular equations
must result in a set of force constants which are consistent with the
infrared frequencies observed.

The critera for infrared activity is that the vibration must pro-
duce a change in the dipole moment. It has been shown (63, p. 146 f
and other textbooks) that only those species will be active which trans-
form in the same manner as the translational vectors T, Ty’ and T,
In the character tables of reference 63, p 323-340, the species con-
taining these vectors are indicated. It is then a simple matter to
determine which of the fundamental vibrations are infrared active.
It is not difficult, however, to determine to which species the trans-
lational vectors belong. If the major axis is designated as the z axis,
the x and y axes are perpendicular, application of the symmetry op-
erations will quickly reveal the species of each vector.

Proceeding now to a series of regularly spaced arrays, Halford



(22) has shown that for molecular crystals the same character tables
may be used, but the group operations must be changed slightly. The
so-called space group operations may include a translation along with
the operations of the point groups. Thus translation plus identity as
well as the simple identity becomes an invariant subgroup, transla-
tion plus reflexion becomes a glide plane, translation plus rotation is
a screw axis. This means that an operation which sends an atom into
its identical site in the next unit cell is considered to leave the atom
unchanged.

The solution of running waves through an array gives two
branches, the acoustical low frequency branch and the optical high
frequency branch whose values will depend on the wave vector, k,

(11, p. 55). Application of the Born-von Karman cyclic conditions
(11, p. 50; 3) confines k to the region t 1r/a, where a is the lattice
spacing. The optical branch is composed of those frequencies which
result when k is set = 0. In molecular crystals the branches corres-
pond to two types of motion, the lattice modes and the molecular
modes. The lattice modes are of translatory origin and will compose
the acoustical region of the spectrum. The primary concern here is
with the infrared spectra arising from the distortions of the molecule
whose center of mass and principal axes of inertia are at rest, i.e.,
the molecular modes. Making this separation the usual methods of

group theory can be applied to some unit of the array. The unit may



or may not correspond to an x-ray unit cell, but implicit in the treat-
ment is the assumption of the Born-von Karman cycle -- there is a

periodic repetition of the molecular motions.

Infinite helical chains

There are three basic approaches to the normal vibrational ana-
lysis of infinite helical chains or polymers. The first approach is to
extrapolate from low polymeric homologs starting with the monomers,
dimers, etc. The method was originally developed by Kirkwood (27)
and extended by Pitzer (42). Zbinden (65), using the concept of cou -
pled oscillators, sets up the Newtonian equations of n oscillators lead-
ing to n homogeneous equations whose solution depend on whether the
ends are free or fixed. Since the ends of the chain must necessarily
be different from the center, the n frequencies wg can be calculated

ignoring the ends or assuming they are identical to the link;

(e

W, t2 w'z(l cos str/n + 1) (12)

H

for fixed ends: wg

'+

cos sT/n). (13)

for free ends: wi W, t+ 2 w'z(l
The error is greater the smaller the chain; Kirkwood's calculations
through hexane were not good but improving with each carbon unit.
Selection rules and intensity depend on whether s is odd or even since
it determines the symmetry. The W, and w' are found by plotting wé
versus the term in parentheses.

A similar approach but a different plot was used by Snyder and



Schachtscheider (46). The solution of the secular equation for a linear
array of n identical coupled oscillators can be set up in terms of the

g and f matrices whose elements are:

gii = 8o (14)
gi,i+1 = 81 (15)
gi,i+2 = 82 (16)

with f's substituted for f in the f matrix. Generally g; 73'5 are small,
i. e. interactions beyond the next nearest neighbor are negligible.

The matrix H = GF has the elements

e 9}
Hy = Hj 345 = Hitj,i = gofj * f?l Bty * fie-j) (17)
The eigenvalues for equation 6 are then
o
)\m:41'r2‘c2y$n=Ho+22 Hy cosk‘/’m (18)
k=1

where ¢m’ the phase difference between adjacent oscillators is given

by
¢m:m1r/n+1 (m=1,2,3.....n) (19)

The w,, is a function of ¢m only and the problem is to assign m so

that a curve of Vm versus ¢m is common to all the bands.

Crystalline infinite chains

Infrared spectra of polymer molecules are of condensed systems
which are hopefully crystalline. It is necessary to take a closer look
at this system, since it cannot really be considered as isolated mole-

cules as the first approach would imply nor it is a molecular crystal.



The following is based on the papers of Liang et al (30, 31, 32) and
Tobin (60, 61).

Assume that the polymer molecules are infinitely long and are
arranged in a single crystal. If there are p atoms per repeat unit in
a unit cell containing m molecules of n repeat units each, there will
be 3pmn - 3 fundamentals per unit cell, since only the modes corres-
ponding to the translation of the whole crystal can be subtracted.
Tobin uses a whole unit cell in the analysis of polyethylene. It is then
necessary to remove the three translational motions of the unit cell
as a whole plus the 3(m-1) lattice vibrations of the polymer chains
against each other within the unit cell and the m lattice rotations a-
round the helical axis. The rotations perpendicular to the helical
axis are restricted and become internal modes. There will then be
a total of 3pmn - 4m vibrations which may be optically active. If only
one chain in the unit cell is considered, there will be 3pn - 4 (m=1)
vibrations. It is obvious that the factor modes for the single chain
must necessarily be the basis for the modes of the unit cell, whose
increased number corresponds to the normal vibrations of two or
more chains moving in or out of phase with each other.

The more usual treatment is to consider the polymer chain as
an infinite one dimensional array and somehow reduce the infinite
order to a more reasonable number such as that of the single chain

unit cell. From this point on the term unit cell will be taken to mean



not the usual x-ray unit cell, but the section of a single chain which is
contained within the x-ray unit cell ignoring all other chains.

The second approach to the normal vibrational analysis of the
infinite helical chain was initiated by Higgs (23). If equations 14 - 18
are developed for the infinite chain, the g matrix elements can be re-
presented as

gta, ub = gap ™) a,b=1,2,3 ..N (20)

u, t = integer

m=u -t
the interaction between the a coordinate of one unit with the b coordin-
ate of the mth unit further on., The symmetry coordinates
s (h-em Y s (21)

ta
t=-00
are obtained from a Fourier transform of the internal coordinate s

which factors
[0'0)

m) -im®
g (F)= 20 gap e (22)
t=00

to the Nth order where N is the number of coordinates. The parallel
modes are obtained from the solution of equation 6 for # = 0. The
perpendicular modes are for $=16 where 0 is the internal angle
of rotation. Only these modes are infrared active. The modes cor-
responding to # =120 are Raman active. The G and F matrices
of the form of (22) are used in equation 6, and solutions for the appro-

priate values of ¢ are found. Lin and Konig (33) generalize equation

18 without factoring and by proper choice of the Fourier transform
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coefficients which is still complex manage to factor the secular de-
terminate without applying the Born-von Karman conditions. ILawson
and Crosby (29) use more than one unit cell in their cycle. Miyazawa
(34, 35) uses trigometric instead of complex functions in order toad-
apt the method of Higgs to high speed computers.

The third approach to the problem is the one used in this dis-
sertation. It considers the unit cell as an isolated molecule which in-
teracts at the ends with the adjacent unit cells. Its convenience lies
in the fact that the details are very similar to the treatment for small
molecules, i.e. equations 1-11 hold with the exception that the U and
U! differ slightly. In the method of Tadokoro (56 - 58) the character
tables for generating the symmetry coordinates separate the degen-
erate species into complex components, and the space group opera-
tions are used in the "Wigner crank.' The g and f elements follow
equations 14 - 16 but the end group interaction demand the following

conditions:

gn,l = gl’z (2‘3)

8n-1,1 " 81,3

where n = the last monomer unit in the unit cell, i.e. nearest neigh-
bors anywhere in the chain interact with each other jdentically, and
next nearest neighbors also. This procedure gives an irreducible
representation containing as many complex species as there are

pairs of degenerate species. Since the solution of the secular
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determinants of the orders involved in polymer molecules are possible
only with computers, and since the use of complex numbers slows the
speed of the computation appreciably, Tadokoro uses another unitary
transformation U;GUj to recombine the degenerate species. Uj is
very similar to U but contains trigometric functions of 0, the internal
angle of rotation from one repeat unit into the next repeat unit. The
order of the g and f matrices and the number of symmetry coordinates
in this method is equal to 3pn - 4 excluding redundancies.

The use of rectangular U matrices by Schachtschneider and
Snyder (50) may be looked upon as setting up an infinite matrix and
truncating it at the two ends of the unit cell. The g and f matrix is
extended beyond the unit cell boundaries to include the coordinates in
the adjacent unit cells which interact with the basic unit cell. The
order of the g and f matrices will be greater than 3pn - 4. Let the
order be j and let 3pn - 4 = k;

G=U,gUj : (24)
similarly for F, where U, and U; are k x j matrices and f and g are
j xj. Upis the transformation from the total internal coordinates
being considered to the symmetry coordinates of the infinite chain.

U1 is the transformation only of the unit cell internal coordinates and
contains zeros for the internal coordinates outside the unit cell. The
U matrices are always real in this method.

The last approach will be developed further in the following



12

pages and applied specifically to polyacetaldehyde in the last chapter.
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FACTORING AND REDUNDANCIES

The unitary transformation

The solvability of the secular determinant for small molecules
will not depend on its factorability, but in practice it is common to
factor any determinant greater than order two. In the case of poly-
mers, it would be impossible to solve an infinite order secular de-
terminant so that the key to the solution lies in the method of factor-
ing.

As stated in the last chapter, the first approach does not in-
volve the secular determinant of the polymer as such. In the second
approach the factoring occurs as a natural result of the Fourier trans-
formation and the choice of ¢ . The last approach requires the se-
lection of a U matrix which will properly factor the g and f matrices
resulting in the reduction of the final determinant into blocks of lower
order,

It is useful to study more closely the transformation used by
Tadokoro et al (56, 57) and Schachtschneider and Snyder (50). The
details of the transformation will be studied as they would apply to
polyacetaldehyde, although the example of Tadokoro is polyoxymethy-
lene and that of Schachtschneider and Snyder is polypropylene,

In general,polymers fall into the space group C(2m 1r/n) or
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D(2m T/n) depending on whether there is a symmetry axis perpendi-
cular to the helical axis. There are p atoms in a monomer unit and
n monomer units making t turns per unit cell. If nis odd there will
be (n-1)/2 E species; if n is even there will be n/2 - 1 E species. For
C type symmetry the A and one E species will be active in the infra-
red; both of these plus another E species will be active in the Raman
spectra. For D type symmetry, the activity of the E species does
not change but the totally symmetric A mode is active in the Raman
and inactive in the infrared while the A, mode which is antisymmetric
to a rotation around the perpendicular axis is just the opposite.

There are four repeat units in a unit cell of polyacetaldehyde.
If the internal coordinates of a chemical repeat unit are chosen, the

g and f matrices of Tadokoro can be represented as

a pB'y' O
1 1
gorf= Poo By (1)
y B a B
0 v B a
where a, B, vy, B', andy' are submatices of order equal to the

number of internal coordinates per repeat unit and represent the
interaction of a repeat unit with itself (a ), with its neighbor (B ),
and with its next nearest neighbor (Y ). The second nearest neigh-
bor interactions are generally negligible and are ignored. Rarely

are there other than torsion interaction in vy . In equation 1, the
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interaction between the first monomer unit and the last monomer unit
within the cell is actually the interaction between the first monomer
unit of one cell with the last monomer unit of the preceding cell. A
complex unitary transformation UgU' factors g and f into n blocks
with the degenerate E modes split into real and complex blocks. In
order to make the equations suitable to machine computation, Tado-
koro performs another transformation U, ( UgU')U'l, where U, is real.
The general form of U and Ul are shown in Table 1. It should be
noted that the mmltiplication by E is misleading as it is shown in the
original paper (56). Since for polyacetaldehyde, U is equal to the
first four rows and columns of the general U, it is necessary to ex-
pand U to the order of the g and f matrix of polyacetaldehyde which
is n times the number of internal coordinates chosen. Thus each Uij
as it is shown in the table is equal to a submatrix of the same order
as a, P, etc., i.e. for polyacetaldehyde, it equals 23. This is the
meaning of the multiplication by E.

Taking a closer look at the transformation, it is easily shown
that if U, = U U, the transformation can be performed in one step
UzgUJ. The U, matrix, which is rather tedious to itemize but is
simply the product of the two matrices in Table 1, is very reminis-
cent of the method of Miyazawa (34). Since both U' and U'2 are com-
plex, the use of complex numbers in the calculation is not complete-

ly eliminated.



Table 1. Transformation matrices of Tadokoro(56)

16

U matrix

1 1 1 5 1 3 1 ]

1 € € e "

2 4 € 6 2(n-1)

1 € 3 € 6 € 63 _
N, 1 € € €’ e 3(m-1) E

1 'E'n-l ‘6'2(n71)' ' 'e'(x{-l')(n-l)
U] matrix

1/2 1/2 1/2 1/2 1/2

1 cos@ cos2h cos30 cos{n-1)}86

0 sin © sin26 sin36 sin(n-1)6 _
Ny, 1 cos20 cos40 cosb@ E

i ;:os(n/Z-l)B
0 sin(n/2-1)0 .

Substitute 1/2(n-1) for n/2-1 if nis odd

0 =2m n/n

N1 and NZ are normalization constants
E = the unit matrix of the proper order

€ = el

-----

cos(n/2-1)(n-1)0
sin(n/2-1)(n-1)0
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The method of Schachtschneider and Snyder permits the use of
real numbers exclusively. The transformation of equations I-24 uses
rectangular U matrices which are not unitary in the ordinary sense
but
U,Ul = E (2)
where E is the same order as the number of internal coordinates of

the unit cell or the number of symmetry coordinates used. Instead of

equation 1,

a p! Y'
P T T T T T T T T
B | a B! y' |
| |
Y :B a B' v
gorf= [ : (3)
!v p a ﬁ': Y
I i
l. v B o, p
Y g a

The dotted lines indicate the unit cell.

The generation of the symmetry coordinates of the molecule
in this method is analogous to the isolated molecule, i. e. application
of the "Wigner crank.' Since the character tables generally give
complex elements for the E species, the avoidance of complex ma-
trices is not achieved unless some other way is found to form the

degenerate species. Complex numbers can always be expressed as
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trigometric functions. For one dimensional species, the degenerate
modes may be expressed as the real part and the coefficient of the
imaginary part of the complex number. The tables of AppendixIare
so derived except for the active mode of C9 which is obtained by re-
cognizing that it has a factor mode of C;. Thus for polyacetaldehyde
which has C4 symmetry the internal coordinates of Figure 1 can be
represented by Table 2 with the s's oriented as indicated in the C4
table. The equivalence of the internal coordinates applies only to the
generation of the symmetry coordinates which can be represented for
Cy by

_Sl+Sz+S3+S4 (5)

wn
>
|

SBZSl-Sz+S3-S4

92}
Il

E sl-sz-s3+s4

S]_+SZ-S3-S4

wn
=
H

It is not necessary in using the tables of Appendix I that the re-
peat units be oriented in any fixed way, i.e. the use of the tables is
not dependent on t but only on n. If tis greater than 1, all of the vec-
tors will be changed proportionately and the resultant of each species
will remain the same with respect to each other.

Equation 5 gives only the symmetry coordinates of the unit cell
from which U may be obtained by use of equation I-9. The same e-
quation may be used to generate U, but now the symmetry equations

of 5 must include the internal coordinates from the preceding and



Figure 1.

s?

Q

torsion of methyl side group around S

torsion around Cl'ol bond

7' = torsion around Ol—C2 bond

The internal coordinates of a monomer unit of
polyacetaldehyde.

19



Table 2. Internal coordinates of polyacetaldehyde for generating

symmetry coordinates

1 2 3 4
1 R;+R} R,tR} R3+R'3 R4+R21
2 R,-Rj} R,-R} R3-R'%; Ry-RY
3 r1+r'l+r'i r2+r'2+r”2 r3+r§+r'é r4+r}1+r'£‘l
4 Zrl—r'l-r“l 2rpy-rh-r') 2ra-rh-1'} 2rg-rh-1'}
5 r'l-r'i r'z-r”z ré-r'é r}L-r';l
6 tl tZ t3 t4

Coordinates of equivalent symmetry type

R=Y=¢=17

R =Y'= @' =7
r:a:ﬁ

r' = a'= B!

r" = a'= B"
t:S:w: w':d‘:6

Linear combinations of wand W' are used in the analysis of
polyacetaldehyde and trioxane in this thesis.
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succeeding cells. The coefficient of identical coordinates in adjacent
cells must be identical. Since it is rare for interactions greater than
next nearest neighbors to be effective, the symmetry coordinates to
form U2 of equation 3 may be expressed as:

S =s_3+s_4+sl+sz+s3+s4+s+1+s+2 (6)
SB:s_3- s 4ty - S, T s3-84ts4y -8,

Sp =-s_3ts_gts)-s8sy-s3tsgtsy) -84

SE' =-8_3-8_4°*t syt sy - 83 =54 % 541+ sy
where the subscripted - and + refer to the preceding and succeeding
unit cells respectively. The matrix U2 is actually the infinite U1 ma-
trix, i.e. U,;-U_-U.. . . In practical application, however, itis
found that the extra coordinates which do not interact with the unit
cell do not affect the transformation. The order of the g and f matrix
is approximately 3(nt4)p. The far reaching torsion interactions may
increase the number, but the isolated side group coordinates will de-
crease it somewhat. Thus for polyoxymethylene (n=9, p=4), poly -
acetaldehyde (n=4, p=7) and polypropylene (n=3, p=9), the number of
internal coordinates necessary is between 130 and 140. The number
in C-O chains is less than in C-C because of the insulating effect of
the oxygen which eliminates many of the C-C-H angle interactions.
The number will also vary because of the orientation, and judicial
thought can decrease the number by as much as 10. When one is

dealing with 130, however, T 10 will not make much difference.
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Indeed with machine computation, it is sometimes wise to have as
many as the program will allow to serve as checks, since it will be
impossible to hand check the solution. This leads naturally to the
problem of redundancies.

Before proceeding to that section, however, something should
be said concerning the proof of these transformations. The first
proof is that they work, i.e. the g and f matrices are actually factor-
ed. Neither Miyazawa or Schachtschneider and Snyder justify their
methods any further. It should be pointed out, however, that the use
of the character tables insures the factoring because it is inherent in
the theory of groups that the species will not mix. The U matrices of
Schachtschneider and Snyder are not unitary in the strictest sense but
their inability to meet all the test of unitary character does not affect
their ability to meet the reasoning of Appendices XI and XII of Wilson,
Decius and Cross (63, p. 341-349). Further discussion of this is re-

served for Appendix II.

Redundancies and constraints

In choosing the internal coordinates and generating the symme-
try coordinates and the U matrix, the question of redundancies arises.
This is particularly troublesome in the case of polymer molecules.
Decius'(9) discussion of complete sets and redundancies can be ap-

plied to polymer molecules keeping in mind that f for the polymer is
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now 3a - 4 (using the notation of that reference). Itis not easy to ac-
count for the redundancy even when it is easy to recognize the redun-
dant coordinate.

In the case of thea and g angles of the methyl group in poly-
acetaldehyde, the sum is obviously fixed. A linear combination of the
symmetry coordinates of each of these internal coordinates will then
give a zero and a non-zero root. The combinations of the 5, &,

Y , and @ angles are not so easy. It must be remembered that only
the w not the ' is included in the redundancy here. Many workers
have simply eliminated one of the coordinates and permitted the ei -
genvectors to adjust accordingly, rather than use cumbersome linear
combinations of all these angles. Gold et al (21) present a case for
the necessity of linear combinations, i.e. the f and g matrices must
possess a singularity for every redundancy. Another way of stating
this is that the UU' must equal E whose order is no greater than the
degrees of freedom of the molecule. Their justification is that in a
space of n dimensions, n+l equations cannot be independent. Hubbard
(25) fortifies their argument by showing that the force constants which
have been derived without using singular f and g matrices are not
transferable from molecule to molecule and are not constant for
every U matrix transformation.

Rigina and Godnev (43) present a justification of the more com-

mon practice of not using singular f and g matrices. By use of
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LaGrangian undetermined multipliers (7, p. 67) a system of equations

df/dxi (Xl’ oy v oov0 o Xy) = 0 (7)
may be added to any new conditions of the type

g(xl,xz,.......xn)=0 (8)
if coefficients are inserted to make equations 7 and 8 consistent.
Freeman (17) gives an example of a nonsingular f which is physically
realizable but somewhat artificial. But a study of the solution of
such molecules as propane shows there is considerable mixing of the
symmetry coordinates so that fixing the methylene angle or any simi-
lar condition is misleading.

The question still remains whether the solution of the secular
determinant gives force constants which are dependent on the choice
of the U matrix, e.g. the use of singular f and g matrices. Symme-

try coordinates of polyacetaldehyde for redundancies of angles around
a single point to satisfy this condition are
Sy = 2o o +B (9)
SA = Z a -f
SA = wH Y'+Y + g1+ B+ b
SA = z w -5
Sp=2 2w -y '-vy - - ¢ +28
with similar combinations for the E species. The symbols are iden-
tified in Figure 1.

Equations 9 are only applicable to the Schachtschneider and
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Snyder treatment. Itis more difficult to handle the redundancies in
the use of the unitary matrices of Miyazawa but relationships analog-
ous to equations 9 can be derived. The method of Higgs requires
that the redundancies be removed before solution. The use of homo-
logous series requires that all of the treatment be consistent, i.e. if
the methylene angle is included in one homolog, it should be in all the
molecules for that series.

The abcve redundancies are tedious but obvious. There exists
other redundancies in the case of polymer molecules and even cyclic
molecules which are not so obvious and may actually be constraints
(5).

Applying the Decius (9) formula to trioxane (CHO)5 with 12
atoms, f = 36 - 6 = 30 vibrations. Then with a =12, b = 12, M= 1,

a) = 6, there will be 12 bond stretches, 18 bond angles, and 6 torsion |
angles giving six redundant coordinates. It is immediately obvious
that one of the angles around each cérbon atom is redundant, giving
three; but what about the other three? There is a geometric theorem
which will make these clear, i. e. the sum of the angles of a polygon
equals the number of sides minus 2 times 180°. In other words the
sum of the angles of a polygon is dependent on the number of sides
only. It shouid then be obvious that it will be impossible to increase
all the angles of trioxane without increasing some or all of the C-O

bond lengths. Attempts to decrease the C-O-C angles without
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changing the O-C-0O angles will also change the torsion angles. It is
difficult to combine angles and stretches, and fortunately it is unnec-
essary. Calculations on propane show that the frequencies and force
constants are independent of the U matrix, if the choice of the internal
coordinates are the same. It is necessary tc include all possible
types of internal coordinates in order to have the force constants
transferable.

The situation is very similar in polymer molecules. Shimanou-
chi and Mizushima (54) 'have derived relationships showing that for
the six parameters: bond length (r), bond angle ( @), torsion angle
( 7), helical radius ((p ), internal rotation angle (6 ), and repeat
distance (d), only three are independent. Since the application of the
Born-von Karman cyclic conditions fix 8 and d or rather the sum of
the 0 's and the sum of the d's, (the unit cell cannot increase and
there can be no resultant twist around the helical axis), only one
of the other parameters is independent. The skeletal angles here
are analogous to the ring angles of trioxane. The torsional angles
of the polymer are of some interest,for these are most sensitive to
the conformation of the helix and may give information about the sta-
bility of the crystalline form. They have been included, but it will

not be possible to learn very much at this stage of the analysis.
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Summary

The problem of the normal vibrational analysis of polymers can
be approached from three basic viewpoints. The use of homologous
series to extrapclate to infinite chains is tedicus,demanding much ex-
perimental data and is frequently impossible since complete series
are rarely cbtainable. Also the method does not allow for differences
in chain conformation nor does it permit complete analysis of the x-
ray unit cell. The method of Higgs using complex Fourier transfor-
mation of an infinite series is not convenient to machine solution and
cannot handle the redundancies. These arguments are also valid in
the method of Tadokoro, although the solution of the secular deter-
minant has been programed for the computer. The method of Snyder
and Schachtschneider is readily adapted to machine solution and is
very similar to the treatment of small molecules while permitting
extension to all the complexities of polymer molecules. Itis also
fairly simple to program for machine computation the construction
of the g matrix and the factoring of the f and g matrices for insertion
into the secular determinant program using this method. The details

of these will be the subject of the next two chapters.
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THE GEOMETRIC CONFIGURATION AND THE G MATRIX

When a suitable choice of internal coordinates has been made
for the unit cell (Figure 1), the g matrix elements may be calculated.
Schachtschneider has provided a program to calculate the g elements
by the formulas of Wilson, Decius and Cross (63, p. 55-65) for the
matrix of equation II-3. The program requires only that each atom
in the polymer be located in a common cartesian coordinate system
and that the masses be known. Each internal coordinate is then com-
puted through the displacement vector:

N — —
Si - Z Sia . P a (1 )
a=1 _
where s is the internal coordinate, s is the associated vector for
the atom displaced, Eis the cartesian displacement vector. The B

matrix is then defined by:

3N
s;= 2. Bipx (2)
t=1
where the x's are the cartesian coordinates, and g is computed from
3N
gt = 2 B iByByy L th=1L2 ... N (3)
i=1

where N is the total number of internal coordinates:p=reduced mass.
The atoms are numbered in any order. Associated with each
atom are its three cartesian coordinates which make upa 3 by N X
matrix and its mass. The internal coordinates are numbered and
coded as to type (bond stretch, angle bend, etc.) and atoms involved.

The U matrix or matrices along with the number of modes in each
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symmetry species are necessary, if a factored G is desired. This
is all the information the program requires to construct a G matrix
for equation I-6.

The problem becomes a geometric one, but first it is necessary
to decide how many internal coordinates to use of the preceding and
succeeding cells, If the choice of internal coordinates for the chemi-
cal repeat unit of polyacetaldehyde are chosen as shown in Figure 1,
the a, B, and y matrices can be represented by Table 3a, b, and
c. A study of these tables shows that in the case of the g matrix, one
monomer unit reacts with 17 internal coordinates of the succeeding
monomer unit (the number of rows containing elements in the
matrix). Conversely it interacts with nine internal coordinates of
the preceding monomer unit (the number of columns containing ele-
ments in the B matrix). All of these must be included in the calcu-
lations. Also the y matrix interactions of five in the second suc-
ceeding and one in the second preceding must be included and any of
the extra f matrix interactions (Table 4a and b). The total in this
case is 125. The f and g matrices must be of the same order. All
of the atoms which make up these internal coordinates must be inclu-
ded in the calculations.

Shimanouchi and Mizushima (54) have derived mathematical ex-
pressions for the helical configuration of a polymer chain as a func-

tion of the angle of rotation, translational distance and distance
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[}

a submatrix of abbreviated g matrix of polyacetaldehyde

a

By &1

6 vy W Wi o1 1 M

et S
0Q 0Q 0Q 0o O0Q OQ

0o 0Q QQ

o

0 o

gQ g 0Q 0 0Q O 0o gQ 0o 0q OQ Ju O

gQ ga o0Q

0Q 0Q O 0Q 0Q 0Q 0. OR 0Q O O0Q O] Orv 0o O] OQ

oo ga ga o

0Q 0Q O0Q 02 O0Q O0Q O] gQ 02 OQ O0Q O” QOQ

610}

g o

gQ 0Q 0Q 00 0 OQ

go 0Q g 0 gu O0”

go 0Q 0Q 0Q 0] 0Q 0. 0. OQ 0. O0Q 0. OQ

oo 0Q gQ 0Q O] O] 01 gu 0. OQ

Symmetric

0Q 0Q OQ 0Q 0Q 0o OQ O 0Q
0Q 0Q OQ O0Q 0Q 0. OQ
oQ 0Q 0Q 0Q 0.
0 0 0 0Q
o

o
oQ
oQ

g indicates non-zero interaction between coordinates at head of
column and left of row.
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Table 3b. 3 submatrix of abbreviated g matrix of polyacetaldehyde

oty Sp Ry Ry ap B ¢ 8 VI w1 wil oo 1 M

t2 g g g g
S, g g g g
R g g g g
R g
2 g g g g

$, g g g g 8 g g8 g &
¢, g g g g
62 g g g g
Y2 g g g & g & g ¢g
Y5 g g g g
W) g g g g g g g g &g
W2 g g g g
62 g g g g g g g g ¢g
T2 g 8 g g 8 8 8 8 &g
5 g g g g

Table 3c. Yy submatrix of abbreviated g matrix of polyacetaldehyde
the column headings are the same as above

$3 g
L g
W3 g
G 3 g
7'3 g

all other terms are zero except for the equivalence of the [, angles
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between two successive atoms which are permuted into each other by
the screw operation. Itis necessary to emphasize that the two atoms
so related need not be neighboring atoms on the skeletal chain (6) and
that the bond lengths and bond angles as used by Shimanouchi are not
necessarily the bond length and angle in the chemical sense. The im-
portance of this derivation is that of the parameters associated with
atoms arranged in a helical polymer: r, d, 4’, 6 , 7™, and (o, (Fig-
ure 2) only three are independent. In general it is true that if two
points are related to each other by three independent parameters, all
other parameters are functions of these first three.

Consider Figure 2, if A can be transformed in A' by a rotation
of ® around the cylinder axis and a translation of d up the same axis
then the following applies (54). If X represents the coordinate system
with x directed along the line joining A to A', y in the plane of this
line and the line joining A to the preceding A', and z chosen to keep

the system right-handed then:

X, | = AX, + B (4)
A= |-cos¢ -sin ¥ 0
sin*cos® -cosTcos® -sinT

sinTsin® -cosTsin® cos T

B = r
0
0

Similarly if E is the coordinate system with § axis on the projec-

tion of point A to the cylinder axis, C along the cylinder axis and y



Figure 2.

Identification of helical parameters.
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chosen to keep the system right-handed then:

M =N= . +L (5)
—i-1 1

N = [cos® -sinB 0

sing cosO 0

0 0 1

L= 10
0
d

Shimanouchi shows that N and A are related to each other by a simi-
larity transformation; therefore, the trace of N = trace A. Thusfrom

Figure 2 and equations 4 and 5:

r2 = a2 + 44 (6)
p2=b2+d2:r2+b2-2rbcos¢/z (7)
a2 =2p%(1 - cosb ) (8)
r2=2p2(1 - cos® )+d2;92=(r2-d2/2(1-cose) (9)
1+ 2cos® =cosT - cosTcosP - cos ¢ (10)

Equation 9 shows that e is uniquely determined from r, d, and 0 .
Equation 7 can be rearranged so that ¢ is a function of e, 1t and d;
therefore 7T in equation 10 is determined when r, d, and @ are
fixed. It is possible always to rearrange the equations to solve for
any one of the parameters in terms of any other three. Thus, if A
and A' are successive atoms on a chain, such as carbon atoms, there
will only be one unit cell length for any set of r, 8 , and b (6).
These equations have been derived without requiring that A and

A' be two successive carbon atoms joined by a single bond, They are
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equally valid if A is joined to A' by an intermediate point or atom B.
Consider the chain A-B shown in Figure 3. If the A-B distance and
the A-B-A angle are equal to the B-A distance and the B-A-B angle,
A and B must lie on the surface of the same cylinder. The A-A dis-
tance must be equal to the B-B distance. A must spiral around a cy-
linder of radius determined by its r, 6 , and ¢. Butif B is related
in the said manner to A, it must also lie on a cylinder of the same
radius since it will have the same r, § , and $.

If the A's are carbon atoms, the B's may be carbon or oxygen
and the same statements would be true. A polymer having a mono -
mer unit (-CR,CR3-) or (-CR20-) must have all of the skeletal atoms
on the surface of the same cylinder, but the screw operation is not
necessarily appicable in passing from one atom to the next on the
chain,

Now consider a structure having three atoms on the skeletal
chain per monomer (-CRCR,CR,-) as indicated by the dotted lines
in Figure 3. If the first carbon of each unit is on the surface of a
cylinder of radius e ,the second carbon can lie on a cylinder e', and
the third carbon on a cylinder (3”; where P'< e < p". The screw
operation is applicable in passing from A to A, but not from A to any
atom in between. If these are carbon atoms, the question of stagger-
ed and trans configuration discussed by Corradini and Pasquon (6)

arises. The® angle first discussed must still be the angle of rotation



Figure 3.

Types of helical chains.
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required to transform the first carbon of the first monomer unit to
the first carbon of the second monomer unit; and the r must be the
distance between these carbon atoms. The % angle must be the angle
between the lines joining the first carbon atoms of three successive
monomer units.

If the position of the A type atoms in Figure 3are chosen con-
sistent with the unit cell data, the B type atoms must be determined
by the fact that they are a bond length distance from the neighboring
A atoms and lie on the surface of the cylinder on which these carbons
lies.

If there are two or more atoms between the positions of the re-
ference atoms, the problem becomes more difficult. A series of e-
quations can be written relating the positions of the intermediate atams
to the reference atoms and to each other. Since there are 3n para-
meters for n atoms, and 3n equations necessary to solve the problem
exactly, the solution for more than one intermediate atom is best
solved on a computer,

The problem is simplified for carbon-carbon chains and carbon-
oxygen chains since the bond distance between the atoms is constant
and so is the bond angle. If the unit cell length c, the number of turns
per unit cell t,and the number of chemical repeat units are known,
equation 9 can be used to solve for 6), where d = ¢/nand @ = 2tTr/n.

Let A; and B, be the cartesian coordinates of an axis system with z
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along the helical axis and x the perpendicular from the initial atom to
the z axis. The initial atom A will have the coordinates e, 0, 0.

Then if the prime refers to the second monomer unit;

A'l = cos0 -sin® 0 Ai + 0 (11)
sin® cos® 0 0]
0 0 1 d

i i
i=1,3
> 2
(B; - A{)7 = Ry,
i=], 3 5 5
Bl = e
i=1, 2

R}, is the distance from A to B and R, is the distance from A' to B.

The Newton-Raphson iteration (24, p. 447-453) can be used to
program these equations for computer solution.

For an A-B type chain an additional check can be included mak-
ing use of the cosine law:

Y., (A;-B;)(Al-B,) = RypR,iy, cos # (12)

i=1,3
For A-B-C type chains, the R,, Ry, R, distances must be determined
from knowledge or assumption of the configuration. Since carbon
bonds are generally assumed to be trans or gauche to.the penultimate
preceding bond, only the two distances from these configurations need
be considered.

It may or may not be obvious that there will be two solutions to

the equations even though there are more equations than unknowns.
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The solutions will correspond to the B type atoms above and below the
line joining the A type atoms (Figure 3). The two positions are re-
lated by a rotation perpendicular to the helical axis.

Computer programs in Fortran II for calculating the cartesian
coordinates of the intermediate atom and the side groups and for gen-
erating the atoms of the successive repeat units from the initial morno-
mer unit are included in Appendix III. These are meant to serve only
as examples. Itis a short mental but laborious manual step to writ-
ing a program for the construction of the X matrix of the Schacht-
schneider programs.

The methyl side group is orientated staggered to the polypropy-
lene chain, but it may be either staggered or eclipsed in the case of
polyacetaldehyde. The choice of orientation effects the frequencies.
In order to understand these effects, propane was calculated using an
eclipsed configuration of the methyl groups to the methylene group..

The results are discussed in Chapter 5.
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THE POTENTIAL FIELD AND THE F MATRIX

There are three types of potential fields used in normal vibra-
tional analyses - the central force field (CFF), the valence force field
(VEFF) and the Urey-Bradley force field (UBFF). The VFF is more
generally popular, because it is in terms of the internal coordinates
used in the g matrix, and because it has proved to be more satisfac-
tory than the others in most cases. Dr. Schachtschneider has provid-
ed machine programs for symmetrizing the f matrix in VFF terms.
The f matrix is actually entered in the secular determinant program
as a vector. This is a programming technicality which is unimportant
here,

From Table 4a and b the internal coordinate from the preceding
and succeeding cells interacting with the unit cell are determined in
the same manner as the g matrix. Many of these will, of course, be
the same as those in the g matrix, but there will generally be addi-
tional ones depending on how far reaching the effect of the field. Inter-
actions between stretches and bond angles have been included for com-
pleteness. These are frequently undeterminable since the number of
force constants far exceeds the number of frequencies observed.
Schachtschneider and Snyder (47) have reported transferable force
constants for the n-parafin series, polyethylene and polypropylene (48§

50, 51, 52). Their values have been used as the initial values where
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Table 42, Q submatrix of £ matrix of polyacetaldehyde

vy t; S; Ry Ry 6y By oy @1 6, v,y W w 0 T

rq K

ri F

bl F

t K

Sy K F

Ry F K

1 F' K Symmetric

a H

aj F

a'i F

B1 F F H

i F F F

'1' F F F

' F P f H

$i F F f F H
6 F F £ F F H
Y F F £ F £ F H
Y F F F £ £ F F F H
(AN F F f # F F F F F H
W] FF F' F f F h F F H
G1 H
] H
T H

Table 4b. f submatrix of f matrix of polyacetaldehyde (same column headings)

Sy F'
R, F

B, F

B F

Py F

£, F n'¢ ¢ F'
¢ |2 F! At h'

6 , F fof

Y > ff F ' h h F
.Y I2 Fl hll hl

() f F h' ! f
w '2 £ M

Elements must be subscripted with the coordinates of the column and row in which
they appear.
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applicable in the calculations on trioxane and polyacetaldehyde. The
force constants of the carbon-oxygen chain were converted from the
UBFF force constants of Tadokoro et al (58) using a transformation of
the type indicated in equations 4 and 6 for a system shown in Figure
4c, These values calculated from the relationships listed in Table:b
were used as the initial force constants in the trioxane analysis, the re-
sults of which were then the starting values for polyacetaldehyde,

Some discussion concerning the choice of potential fields is in
order, and it will be the purpose of this chapter to justify the choice
of the VFF used in the analysis. A very practical reason has already
been mentioned; the coordinates are the same as those used in the g
matrix. Another practical reason is that the machine program availa-
ble could use the f matrix in this form directly. There are other jus-
tifications which are discussed below.

Consider a charged particle in the field of another charged par-
ticle, the potential will vary according to the distance and force of
each of the particles with respect to each other. The central force
field is an expression based on this simple classical field. Since the
advent of Schrodinger wave mechanics, it is postulated that the field
around 2 neucleus chemically bonded to another will not be isotropic.
The electron density in the region joining the two neuclei will be great-
er than outside this region. If the neucleus is bound to two other neu-

clei, there will be a preferred orientation of the neuclei with respect



Figure 4,

Systems for potential field consideration
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Table. 5. VFF force constants from UBFF force constants

K, = Koy + 2¢2F oy

} 2
H, =Hpcute“Fonu

_ 2 2
Kp = Kgo + d2Fgp +224(Fgo + F
_ 2
H, = Koco * P°Foo
_ 2
Hyr = Kegoc t P Fc

Fgr = deFop

F¢r = deFOH

Frp  =2%Foo
Fp =a'Fgg
Fre = baFog
Fro = P2Fcc

44

Force constants on left are VFF, on right UBFF, symbols are defined

below;UBFF force constants are in mdyn/A®, VFF force constants
must be converted to mdyn/A° for stretches, mdyn/rad for stretch-
bond interaction, and mdyn Ao/rad2 for bending force constants.

a =R cosf /q
b = R2 sing /q
c=(r+ Rcosd )/p
d=(R +rcosb )/p
e = Rrsing /p

see Figure 4c
6 = tetrahedral angle

KCO = ? 075
HCO.C = 0. 55

HOCO = 0, 34

FCC = 0,42
Koy = 3. 95
Fopo =0.80
HOCH = 0. 225
FOH =0.70

Reference 58
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to each other depending on the type of binding. The valence force field
is an expression of this type of field.

Neither of these alone completely describes the field, however,
since both types of forces are applicable. An atom in a molecule is
subject to the electrostatic potential of every other atom in the mole-
cule (and indeed to every other atom everywhere) as well as the elec-
tronic forces of the atom(s) to which it is bound. The UBFF expresses
the potential more adequately by combining the CFF and VFF. The
result of which is to increase the already-too-many force constants.
The UBFF field traditionally uses only the diagonal elements of its {

matrix, but it is treated here in a manner analogous to the VFF and

CFF.
For the system in Figure 4a, the potential field can be express-
ed:
VFF = | ar; ar, ac | |k, £, h, |ar (1)
f,, K hy, 4Qr,
h, h,, H, Qg
CFF = | &r; Ar, aq | K¢ feo 138 Aary (2)
f? K'c 138 irz
e 138 F. q
UBFF =| Ar; Ar, Ad Aq | | Ky f, by fl:l Ar-l (3)
fu Ku hu fu Ary
h, hy Hy ky||4a
£l i ky Fyull|Aq

The transformation between the fields is generally expressed as

VFF = T_ CFF T, = T, UBFF T} (4)
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The transformation matrices T, and T is derived from the equilibri-

um geometric of the system. Here

T, = 1 0 $12 (5)
521
0 0 t
1 0 521
0 0 1 t
where s;, = (r; - r, cosa Y q (7)
S,1 ® (r2 - rj cosa )/ q

t = (rjrysing Y/ q
A particular force constant such as the angle bending, H_, can be used
in the three fields if it is known in one by simply deriving the following
relationships based on the invariance of the potential field:
H_ =t’F_ = H, +t°F  +
v_t C_Hu. tFy tku (8)
It can quickly be shown that this is consistent with a change in a keep-

ing r, and r, constant by differentiating the cosine law:

q2 = r% +r% - 2ryrycosa (9)
dq = sy,dr; + s;,dr, + tda (10)

Examining the system shown in Figure 6a more closely for a
change in a with r) and r, constant, note that a change of a to a +
Aa changes qtoq+4q and o toa -Aa changes qto gq- Aq'. Com-
pare these changes.

(q + Aq)2 = 2r2(1 - cos(a + ODa)) (11)

(q - Aq')2 = 21‘2(1 - cos(a - Aa))
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assuming ry = rp = r.
Taking the square root of both sides of the equal sign and adding to ob-
tain

(B8q - Aq' +2q)/(2r2)1/2 =

(1 - cos(a +aa)?+ (1 - cos(a - aa NL/? (12)
Use the sum and difference formulas of the cosine:
cos{a +Aa ) = cosa cosAa - sina sin Aa (13)
cos(a - Aa) = cosa cosdaa + sina sin Aa
and letu =1 - cos@ cosda and v = sina sin Aa (14)

Substitute for q from equation 9 and rearrange

(Aq - Aq')/(.?.rz)l/2 = (u+ v)l/2 + (u - v)l/2 -2(1-cosa )1/2
(15)

Expand by the binomial theorem using only the first three terms
(Aq - Aq')/(Zrz)l/z = 2ul/2 _ v2/4u3/2 - 2(1 - cosa)l/z (16)

Remembering equation 13:

2(1 - cosa cosbha )1/2 - 2(1 - cos 0.)1/2
-(sina sinAc).)2/4(1—cosc1cosAo.)?’/2 (17)

(Aq - aq')/(2r2)1/2
Since a~0, sinAa~ Aa and cosAa ~ 1,

AqQ' -AqQ= (r/81/2)pa 2(1 - cosa y1/2 (18)
The difference then between the differences in the changes of q when
Aais + or -, is second order with respect to Aa and is a function of
r and a , but it is not zero. The purpose of this derivation is to

point out that although it is possible to write down transformations

such as equations 5 and 6, the transformations are not strictly
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applicable. The transformations between the three force fields are
not linear except at the equilibrium position. It is analogous to map-
ping a spherical world on a flat surface. A Mercades projection has
its usefulness but approaches physical reality only very near the equa-
tor. The three force fields are also useful in handling various pro-
blems, but one is probably closer to physical reality than the others.
In our understanding of atoms and molecules, the UBFF seems to be
the closest to the potential actually experienced by the molecule. The
torsional forces are generally thought to result from the repulsion of
atoms in positions analogous to 1 and 4 in Figure 6b. It is not easy,
however, to relate this distance to known parameters of the molecule.

Formulas for the g matrix elements use the coordinates of the
VFF. Since the f matrix must be in terms of the same coordinates
as the g matrix, itis simplest to set up the potential using the VFF,
The CFF has never been very satisfactory even in triatomic molecules
and is less so in larger molecules. The additional parameters intro-
duced by the UBFF are not justified in terms of the data available,
Use of the simplified UBFF is not as satisfactory in many cases as
use of the simplified VFF (47). Even in terms of VFF there are al-
ways more force constants to be determined then observed frequen-
cies for a molecule of any size. For each non-bonded parameter in
UBFF, there must be at least one additional equation relating it to the

other parameters and at least four or more additional force constants.
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Then there is the question of which non-bonded parameters to include.
Consider the system of Figure 6b, if d;3 and q4 2re included in the
force field, why not q15? When a methyl-type group is staggered to
a methylene-type group, what determines the choice of interacting
atoms? The complexity of the problem increases, if one includes all
possible effective interactions not only because of their number, but
also because of the difficulty of defining their relationship to each

other.
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THE MACHINE PROGRAM AND
SOME INTERESTING FINITE MOLECULES

THE MACHINE PROGRAM

Dr, J. H. Schachtschneider provided a vibrational secular equa-
tion program coded in Fortran II which diagonalizes theG and F ma-
trices separately and then obtains the solution to

GFL = L/ (1)
L is related to the eigenvectors of the G and F matrices. .A.is a dia-

gonal matrix whose elements are the eigenvalues of the secular deter-

minant.
N = N (2)
A= 4Tr2c2wiz/N (3)

Generally force constants are assumed and the frequencies cal-
culated from them. It is then necessary to adjust the force constants
to give the best fit of the frequencies observed. The difference

)\obs. = Acaled. = BN (4)

can be related to the changes necessary in the force constants by

AN =ZJ?2kj ’QI?_(Lo)ki(Lo)hzklj ¢, (5)
where Z is the vector form of the F matrix and ¢'s are the force

constants,

F = Z Zyy; ¢j (6)
j

When these changes are incorporated in equation I-6
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G(F, +AF) - NE =0 (7)
and new A can be calculated, This process is repeated until no sig-
nificant improvement in the frequencies is achieved from changes in
the force constants.

A regression routine is also included such that each force con -
stant is entered one at a time to test its effect on the fit, If the force
constant has less than a set level of effect, it is dropped. If the effect
is within the given significance level, its variation is tested and the
possible range of values which will nt significantly affect the frequen-
cies is computed. This is printed as the error in the force constant

value.
PROPANE

This molecule has been thoroughly studied by Schachtschneider
and Snyder (46, 47) and Gayles (19), The molecule is considered to
have both methyl groups staggered to the methylene group. The ana-
lysis here is to compare the differences in the force constants for an
eclipsed configuration of the methyl groups for the purpose of under-
standing the effect of differences in the g matrix with no change in
symmetry, In light of the disagreement of Gold et al (21) and Rigina
and Godnev (43), a unitary matrix with as many singularities as re-
dundancies in the f and g was also used on the staggered configuration

to observe the differences in the resulting force constants, Table 6
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and 7 show the results of this study.

There was no change in the frequencies or force constants re-
sulting from a change in the U matrix for the same f and g matrices
of propane. The changes in the frequencies resulting from the use of
an eclipsed configuration are worth some discussion.

In the A1 species the fourth frequency is mainly the symmetric
a angles decreasing. A literal interpretation of this is that the re-
pulsion of the methylene group would be greater in the eclipsed con-
figuration and this frequency would increase as it does. There seems
to be no reason for the decrease in the ninth frequency representing
the w angle decreasing, for a decrease here would also increase the
separation of the methyl and methylene hydrogens; but it would also
decrease the distance between the odd hydrogen on each methyl group.

The increases in the third and fourth frequencies of the B1
modes are again expected as these represent the a and f angles
moving in and out of phase. The decrease in the fifth frequency re-
presents the methylene hydrogens moving toward one of the methyl
groups which is now more difficult than in the staggered configuration
The sixth and seventh frequencies are a combination of thea , B ,and
Y which explains the small difference from the staggered configura-
tion for the decrease in the repulsion of one pair of hydrogen inter-
actions may be offset by the increase in another pair,

The increase in the sixth frequency of the B, modes is expected



Table 6. Propane frequencies

A Observed Staggered Eclipsed Description
11 2976. 73 2966. 4 2970. 1 r”

2 296l1. 74 2882. 4 2892. 6 rt

3 2887.02 2856. 4 2860. 9 d*

4 1476.00 1471. 1 1505. 9 a + ;
5 1462.00 1445. 8 1443, 9 a+P +y+6
6 1391.88 1377.7 1386.2 Yy+6+a
7 1157.51 1150. 8 1157.3 §]

8 869. 34 870. 4 850, 9 R

9 369.20 381. 7 350, 4 W

B,

1 2968.16 2962.9 2961. 2 r-

2  2887.02 2881.7 2889.9 rt

3 1464.04 1464, 8 1504, 7 a +B +y+ 6
4 1378.01 1367.1 1425, 4 o +y

5 1338.39 1341.8 1273.9 a +f + vy
6 1053.79 1045, 9 1028. 4 a +B + v
7 921.73 923.7 900, 0 B

B2

1 2972, 61 2965, 2 2965, 7 r

2 2968.16 2921. 2 2915.3 d

3 1471.95 1463.9 1456, 2 a

4 1191.50 1184, 7 1193.9 B +7™+ v
5 748.13 746.9 748. 3 Yy +7

6 221.2 362.0 T

A

1 2964, 3 2963, 8 r

2 1459. 0 1466. 1 a

3 1278.8 1230, 1 v+ 7T

4 903. 4 1042.9 B+a

5 200. 3 346. 3 ™

Observed frequencies are from Gayles (19).

Description is for the eclipsed calculation using the notation of
Schachtschneider and Snyder (46,47) and is similar to that used for
trioxane and polyacetaldehyde.



Table 7. Force constants for propane calculation.

Description Initial Calculated Gayles
K, 4.703 4.703% 5.113684
F, . 038 . 0385 . 011006
Ky 4. 545 4. 545% 5. 066316
Fg4 . 015 . 015% . 059411
KR 4. 745 4, 745% 4.798390
FRr . 138 . 138% . 063900
Frg = Fry . 120 . 217 . 250078
Ry - . 164 . 032

Frow . 279 1. 034 . 351400
Hgy . 541 . 541% . 597881
Hg . 606 . 606 . 665218
Fj -. 051 -. 051% -. 045143
Hy . 665 . 665% . 697092
Fyp -.014 -. 014% -. 024204
Fl . 015 . 015% . 007845
Frw -. 074 -. 074% -. 014135
Hy . 944 . 9445 1. 069890
fo8 = fr8 -. 076 . 054 -. 058400
£ = f4r = £,.° . 063 .198 . 063744
fad = £ . 043 -.160 . 106615
hi€ = h!S . 012 . 018 . 106615
S = hiS . 010 121

h$ = hgy =h$ . 022 . 030 . 044853
hg = hg = h$ . 014 . 021 -. 043071
Hg . 519 . 519% . 618030

*fixed in this calculation

The initial force constants are from the staggered configuration.
The calculated force constants are for the eclipsed configuration,
Gayles (19) calculated values for the unperturbed frequencies.
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as this represents the 7" frequency which is favored since any change
in position would tend to decrease the potential energy.

The decrease in the third frequency of the A2 modes is some-
what unexpected, but might be thought of as representing a rotation
of the methyl and methylene in the same direction. The increases in
the fourth and fifth frequencies are again explainable as the increased
tendency of the hydrogens to move away from each other.

The overall fit for the staggered configuration is better than
twice as good as for the eclipsed configuration, but the really unac-
ceptable result of the eclipsed calculation is the unreasonable value
for the FRre interaction. One would not expect an off-diagonal force
constant to have a value greater than 0.5, A second calculation hold-
ing no force constants fixed showed no improvement in the frequencies
but changed the HB to 0. 665, The error range was fantastically high.
It is necessary to hold major force constants fixed in turn in order to

obtain reasmable ranges for the errors in the force constants.
SYM-TRIOXANE
Analysis

The vibrational spectra of sym-trioxane has been reported by
Stair and Nielsen (55), who have also assigned the bands observed in

both the infrared (gas and liquid states from 3200 to 390 cm-1) and
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Raman (liquid and crystalline states from 3020 to 300 cm-1) spectra.
The crystalline unit cell contains two molecules rotated 60° to each
other. It belongs to the Cg’v space group and every fundamental of the
molecule should be split for the unit cell. The analysis here uses the
C;, point group of a single molecule and fits to the gaseous spectra
(the 307 Raman line is also included). Using the coordinates desig-
nated in Figure 5, the symmetry species are shown in Table 8.

Table 8. Symmetry species for sym-trioxane.

C3v E 2C3 3 v D0 N, np n n n n 'n

Ay 1 1 1 8 2 1 1 2 1 1 1 TZ

A, 1 1 -1 4 0 1 0 2 0 1 R,

E 2 -1 0 12 2 2 1 4 1 1 2 Tx’ Ty’Rx’ RY

Using the table C3 of the Appendix I, the species may be represented
as

Sy =sptspts3 (8)

SE =28y - 8 - 83

SE' = s, - 83

Since there are 12 atoms in a single molecule of trioxane, the
normal vibrations will have 30 modes consisting of 7A,, 3A2, and
10E., The redundancies as discussed in Chapter Two will involve one
for the angles around the C atom and one for the ring stretches, bend-
ings and torsional distortions. Because of the peculiarity of the tor-

sional modes the species containing the minus sign will appear in the



Figure 5.

* -

7' = torsion around R!

torsion around R

Internal coordinates of sym-trioxane.
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Table 9.

A

Sy = A(r - r')

S, = A(r + r')

Sz = A(%)

S4=A(Y + Y -Y* -y ")
Sg = A(Y+ Y +y*+Yy")
56 = A(R + R")

S, =Al~wt ')

58 s Alwtw")

S = A(T - M)

E

514 = E(r - r')

S16 = E(R + R')

S18 = E(R - R'")

S20 = E(5)

Sz = E(y +y'+y*x+vy")
Spq4 = E(¥Y - Y' - ¥*x +Y")
Sp6 = E(V + Y -v % - y")
Spg = E(Y- Y'+yx -y
S309 = E(w+ w')

S;, = E(w- w')

S34 = E(r + r')

S3¢ = E( T+ ™)

538 = E( T- T')

Symmetry coordinates for trioxane

A2

Sjo=Aly -y' -y *+y")
Spp=Aly -y 'ty *-y")
S12 = A(R - R')
S13 = A(T-T")

Sig = E'(r - r')
S;7 = E(R +R'")
S19 = E'(R - R')
S,1 = E'(58)
S23 = E'fy ty'+ty*+y'")
Sp5 = EY(Y -Y ' - Y* +Y")
Sp7=EYY +Y!' - y¥x -y ")
529 = E'(Y -Y'+H YR -y ”)
S31 = EY(w+ w!')
S33 = E'(w - w')

35 = E'(r + r')

S37 = E'(T+7‘")
S39 = EY(T-T7T)

58
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A, modes. By convention (63, p. 60) the increase in the torsion angle
is taken in the clockwise sense of the projections of the bonds, when
this is reflexed through the symmetry plane the direction is reversed.
The A; and E modes are both infrared and Raman active; the A, modes

are inactive.

The abbreviated f matrix is shown in Table 10. The initial
force constants used in the calculation were obtained where appropri-
ate from the saturated hydrocarbon force constants of Snyder and
Schachtschneider (47, p. 131) and from Tadokoro (58, p. 707) using
the transformations indicated in Table 5. The final force constants
listed were obtained by fitting to the assignments of Stair and Niel -

sen.

Discussion

The fit of the first calculation was 4. 1%. The range of error
in the ring stretches and bendings was considerably higher than that
for the other force constants. They also differ quite markedly from
the initial force constants which were obtained from the transforma-
tion of the UBFF force constants of Tadokoro. The interaction con-
stants between the ring stretches and bendings were also high. This
is probably because of the interdependency of these force constants
due to the redundancy conditions. The torsional force constant which

was entered as the ethane torsion constant of Schachtschneider and



Table 10. Abbreviated f matrix for trioxane

T Rl
1" Kd
r Fd
R; F K
R'1 F F
R,
R F!
6 ¥ F
AN F F
wy F !
w2
w2
0)3 f!
wh F F
Y F F
Y F F!
1
Y joll F
Yl:ll Fl F!
1
V2
e
v
tt
2
Y3
¥ f
i
Y3 f
7.

Rll

5

fl

L s T e W e Y

W,

o R

I I

.

hl

w Y1
Symmetric

Hl

f

hl

hl

f! H

f F!

f! F

f f

f ht'€

£ hne

f h'

f! hnC
h'€
he
h'¢
hC

H

The force constants are subscripted with the coordinates of the
row and column in which they appear.

60



Table 11. Force constants of sym-trioxane

Number Description
1 Kq
2 Fq
3 Far
s ory R
R
6 Hg
7 Faw
Rw
10 F gy
11 FRry
12 Hy
13 Fo
14 Fyw
15 Hy
16 Fy
Y
w
19 FRa _
0 Fk
21 Hy
o, R
rw
24 h$
25 h$%
26 h
27 h'p
28 h!f

#*from Snyder and Schachtschneider (47)

Initial

4. 756
. 016

4,421
. 503
. 550%

. 539

. 473
. 540
1.810
. 043%
-.124%
. 906
-. 016%
. 023%

1. 724

. 290

. 286

. 0243
.1 B
-. 058
-. 002%
-, 0033
.01 *
.012%
.01 *

Calculated

4.298
. 016
-. 461
5. 757
. 503
. 584
-. 872
. 756
. 180
-.473
. 540
1.238
. 043
-. 124
. 806
-.016
. 023
1.390
. 415
. 286
. 131
.1
-. 058

.01
-. 094

61
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Snyder turned out to be closer to the torsional constant of cyclohexane
reported by Takahashi (59). The decrease in the methylene force con-
stant and increase in the interaction constants involving the hydrogen
and oxygen coordinates may reflect some attraction between the oxy-
gen and hydrogen which does not occur in the hydrogen and carbon
compounds,

The assignments of Stair and Nielsen were based on the shape
of the band envelopes, comparison with cyclohexane, and intuition.
Trioxane is an oblate top with the unique moment of inertia greater
than the two equal ones. For this case the p parameter of Gerhard
and Dennison (20) is about -1/3. Reference to that work shows that
the only theoretical difference between the shape of the parallel and
perpendicular bands is the spacing between the P and R branch.

Stair and Nielsen calculated a spacing of 15 cm-! for the perpendicu-
lar bands and 25 for the parallel. A difference of 10 cm~! is difficult
to distinguish. The intensity of the Q branch also shows no large
differences for this type of molecule. If then the bands are assigned
on the basis of the calculations, it is possible to improve the fit by
about 1%. Some justification for the reassignment is found in the
recent work of Snyder and Schachtschneider (52) and Takahashi(59)
on cyclohexane. Both these papers assign the higher r~ frequency

to the A mode rather than the E. The A modes involving the methy-

lene rock in cyclohexane differ by about 200 to 300 cm-1 whereas the
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assignments of Stair and Nielsen for these modes in trioxane differ by
about 500 cm=~1, The 1477 and 1496 overlap so that the normal vibra-
tional calculation is probably a better criteria than any other for dis-
tinguishing between the A and E modes. Stair and Nielsen suggested
1474 for the A mode which is closer to 1477 than to 1496, It is pos-
sible to increase K, to 4.546, the value used by Schachtschneider and
Snyder, and H,, to 1.39, = H{, and thereby decrease the interaction
constant F 4., to -.4 without changing the goodness of the fit by more
than 0.1%, if the band assignments are changed; the error increases
appreciably if the original assignments are used. The best criteria
for making band assignments would be a polarized spectra of a single
crystal of trioxane, since the difference in polarization is probably
the most distinguishing difference between the A and E modes. Table
12 shows the assignments of Stair and Nielsen under the heading Ob-
served. The calculated frequencies fitted to these are listed in the
second column, The suggested reassignments are in the third column

the fit is 2. 6% here.
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Table 12. Frequencies of sym-trioxane.
Observed Calculated Reassignment Description
Al
2853 2944.7 3031 r”
2792 2774. 7 2792 rt
1496 1476. 4 1477 6
975 996, 7 1050 v +7+tw+ R
943 940. 6 943 wW+Y +R+0
752 711, 2 752 w+ T+ vy
524 445, 4 460 T+ Y+ W
Az
1379. 2 Y
1160.0 vy + R
1127.0 Y
E
3031 2939. 0 2853 r-
2753 2767. 8 2753 rt
1477 1497.0 1496 &
1408 1431. 0 1408 y
1305 1335, 4 1305 Y
1175 1210. 2 1175 R+y +W
1072 1003. 6 1072 R+w
1050 917.2 975 Y+ 7
460 502.1 524 w+
307% 305.4 307 >

*Raman line
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POLYACETALDEHYDE
Analysis

Natta et al (38) reported the x-ray data for polyacetaldehyde
giving the space group as 141/a with a = 20. 01A®, c=4. 78A° and four
chains per x-ray unit cell. Since only a single chain is used in this
analysis, the C4 space group applies. There are 28 atoms in a unit
cell of polyacetaldehyde; 3N-4 for polymer molecules indicates 80
normal modes divided into 19A + 21B + 20E, Since we have chosen
23 internal coordinates per monomer unit and each monomer unit is
displaced for every symmetry operation except the identity, there will
be 23 symmetry coordinates for each mode generated by substituting
the sets of internal coordinates listed in Table 2 into equations II-5
and 6 to obtain U1 and U2 respectively. There are then four redun-
dances in A, two in B and three in E (each E is doubly degenerate).
Again the redundancies involve the angles around each carbon atom
and the skeletal stretches, bendings and torsional distortions. The
non-degenerate skeletal redundancies will both appear in the A block
since these are symmetric with a quarter turn around the helical axis.
They may be thought of as resulting in a twist aroud the axis which is
forbidden in this analysis since it would change the unit cell.

Though there are theoretically 39 infrared active modes (A + E),



66
there are only 18 observed frequencies reported by Novak and Whalley
(39, 40). The spectra has also been reported by Furukawa et al (18).
Both authors have generously supplied us with full scale copies of
their spectra.

The spectra are of crystalline polyacetaldehyde, but it is not
possible to obtain single crystals of polymer. There will be no clues
as to which are the A and E modes from the band shapes; and there
will be much overlapping of bands because of the splitting of the
fundamental frequencies and because there are many modes similar
to each other. With so few frequencies it was not possible to decrease
the perturbation low enough for the machine program to fit the force
constants to the frequencies. This is probably because of the large
interdependency of the force constants with each other. Itis neces-
sary in this case to calculate the frequencies using the best values of
force constants known and making the assignments on the basis of
these calculations. Some assistance on assignments can be obtained
by comparison with polypropylene data (48, 51, 52). Polyacetaldehyde
has a similar relationship to polypropylene as trioxane has to cyclo-
hexane.

The initial force constants are listed in Table 13, Numbers 6,
7, 11, 14, 15, 18, 24, 25, 26, 27, and 34 were obtained from the tri-
oxane calculation. Kt is estimated from the value given by Snyder

and Schachtschneider (47) taking iato account the fact that the C-H



Table 13.

No. Description Value
1 K. 4.699
2 F. . 043
3 K, 4, 726
4 KS 4. 337
5 FRrs . 101
6 KR 5.7
7 FR . 503
8 Hy . 541
9 Hg . 645

10 Fe -. 012

11 Hy . 805

12 Hg .667

13 H, . 900

14 H, 1. 264

15 H', 1.390

16 H, . 130

17 Ha . 130

18 FSﬁ .2

19 FS¢ .2

20 F .2

No. Description Value
21 Fgy .2

22 FSw .4

23 FR/3 o1

24 FR¢ . 54
25 Fry . 54
26 FRw 756
27 FR!w . 415
28 Fy . 021
29 Fe . 043
30 F¢ . 041
31 Fgg . 014
32 Frw . 124
33 Fyw .124
34 Fi{ . 286
35 Fgy .12

36 Fg .12
37 F:Sw .12
38 Fgyp .12
39 F¢w .12
40 Fiw .12

67

Force constants used in the calculation of polyacetaldehyde
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stretch in tricxane is lower than for cyclohexane. The C-C-O angle
bending constant was given the C-C-C angle value of that reference.
All other values were obtained or estimated from these authors.

The calculated frequencies are listed in Table 14. . The observ-
ed frequencies which most closely correspond to the calculated are
listed in the second column. The description refers to the dominant
mode in the eigenvector. None of the modes are entirely free of the
others in the calculation. The fit of the calculated frequencies to the
observed is about 3. 6%.

The calculations were carried out for the methyl group oriented
both gauche and eclipsed to the skeletal chain in an attempt to decide
whether the calculations would be a criteria for the orientation of the

side chain. The results of both calculations were identical.
Discussion

At first it might be thought that with 39 calculated frequencies
and only 18 observed, it would be difficult not to find a good fit of the
frequencies. This is not entirely true. If the original force constants
for the polyethei' coordinates obtained from the transformation of the
Urey-Bradley force constants reported by Tadokoro for polyoxymethy-
lene are used in the calculations instead of first fitting them to the
trioxane spectra, the 1380, 1335, 1187, and 810 frequencies are hard

to assign. These calculations also predict a modes in the range of
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Table 14. Frequencies of polyacetaldehyde.

Calculated Assigned Description Calculated Description
A B

2962.5 2980 r- 2962. 0 r-
2961.4 r- 2961, 3 r-

2950, 6 2920 t 2946, 9 t
2883.9 2860. rt 2885.9 rT
1465,9 at+ ¢+o 1499, 0 ¢+
1464, 3 a” 1463.9 a”
1461, 4 1445 a- 1463, 3 a”
1413.2 1400 at 1416.0 a™
i371.0 1330 b+o+ ¢ 1373.5 a+ 6+ ¢
1337.3 1187 6§+ o+ ¢ 1175.7 B+ 6+ R
1164, 4 1130 B+ T+ w 1160, 8 B+ 6+a
1108, 7 1085 5§+ S 1059. 8 B+ a
965. 8 935 B- 945, 4 B+ &
928. 3 845 B- 913.0 B+S
750, 4 G 796. 1 lox

576.7 620 O+ w 628, 7 W+ P+T
406.0 490 THtw+ P 466.8 o+ T
369. 8 a 308. 5 a+ T
162.2 W+ a 206. 6 W+ T

118.5 T
57. 4 T

E

2962.2 2980 r-

2961, 3 r”

2948, 8 2920 t
2883, 9 2860 rt

1477.1 $+0 ta

1464, 0 1445 a

1462.5 a

1412, 3 1400 a

1363,7 1335 6§+ a+ ¢

1213,1 B+ R+T

1141.3 1130 G+ P+ 6

1089.9 1040 B+a+ b

977.8 970 B+ a

912, 6 935 B+ O

749. 0 810 o

635, 7 620 a+ T

486, 3 450 at+w+T

300.9 a+ w

190.9 T
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1500 - 1700 which is difficult to accept. Using the fitted force con -
stants from trioxane, all of the observaed bands can be reasonably
assigned. Thc¢ a modes fall in theupper 1400 region which is expected.
At first glance the methyl torsion mowuces appear to fall in the right
range also. Fateley and Miller (15, 16) predict the single rotor CH3
group on acetaldehyde to fall in the 100 - 300 range with the E modes
higher than the A mode. The methyl rotor on CH3CHOCH2 ring is
between 167 - 426 according to these authors. Glancing at Table 14,
one would expect the methyl torsion to dominate the 162, 2 in A, 206, 6
in B, and 300.9 in E. Instead the 750,4 in A, 796.1 in B, and 749.0
in E are predominately methyl torsion with some contributions to
other frequencies. It is difficult to decide whether this is because of
the small displacement approximation inherent in the calculation
which is not necessarily true for a freely rotating methyl side group
or whether the cause is due to the high mixing of the normal modes
and the method of defining the torsion coordinates. The torsion an-
gle here is defined as the sum of the torsional displacements of each
of the methyl hydrogens with respect to one of the atoms attached to
the skeletal carbon. Since it involves so many of the atoms, there
is much interaction of this mode with the others.

The fact that the calculations for the methyl group oriented
gauche to the skeletal chain is identical to the results when the methyl

group is eclipsed to the chain is at first surprising. At least in these
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calculations, unlike propane, there can be no criteria from which to
judge the orientation of the side group. The methyl group hydrogens
are generally staggered to other hydrogens or carbons but they may be
eclipsed to oxygen atoms and form hydrogen bonds. It might have
been possible, however, if enough confidence in the transferability of
the force constants existed, to fix the major force constants and per-
mit the force constants between the a andp interacting with the v ,

6, ‘ﬁ, and @) to perturb to fit the frequencies. Their final values
might be a clue to the side group orientation. In these calculations
these force constants were set equal to zero. If time permitted it
would have been wiser to first fit the trioxane data to the polyoxy-
methylene calculations before attempting the polyacetaldehyde. There
would have been more transfer of force constants between the trioxane
and polymethylene. This would have given more confidence in the
valﬁes of the polyether force constants.

More spectral data either from Raman studies or isotopic spec-
tra might be helpful at this stage to help determine the significance of
the force constants. Although it would not be possible to make the
neat calculations according to the Teller-Redlich product rule (7, p.
202-204) because of the intermixing of the modes, some calculations
according to the sum rule of Decius and Wilson (10) would not be too
difficult since isotopic substitution does not change the symmetry.

In any case both rules would give a prediction of the direction of
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change of frequencies and some clues to the significance of the force
constant values.

In this calculation it has only been possible to fit the polyacet-
aldehyde spectra only as well as it was possible to fit the trioxane
spectra. It could be hoped that a better fit of the trioxane spectra and
more certainty of the polyether force constants would give a better
fit of the polyacetaldehyde spectra. The method of carrying out the
analysis is now established; it now remains to obtain enough data to

ascertain the transferability of the force constants,
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SUMMARY

A method for analyzing the normal vibrations of polymer mole-
cules is developed in detail. The details of the treatment are set up
in a manner analogous to the treatment of finite molecules so that the
same computer programs can be used for either system.

The normal vibrational analysis was made on propane using a
staggered configuration normally assumed for this molecule to ascer-
tain the effect of the U matrix on the force constants. No change in
the force constants were found whether or not the redundancies are
explicit or implicit in the U matrix as long as the same set of internal
coordinates are used. Calculations were also made on the eclipsed
configuration of the methyl group to the methylene group to determine
the sensitivity of the frequencies to the g matrix. Certain frequencies
were found to change, especially those involving the ¢ modes. The
fit to the observed frequencies was not quite as good, 1..6% compared
to 0. 67% for the staggered configuration. Some of the values of the
interaction force constants were unreasonably high, especially the
interaction between the carbon stretch and angle bending.

A normal vibrational analysis was made on trioxane to obtain
force constants for the analysis of polyacetaldehyde. The initial poly-
ether force constants for this analysis were obtained from a trans-

formation of Urey-Bradley force constants used in the calculation
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of polyoxymethylene by Tadokoro(58). Other force constants were
obtained or estimated from Schachtschneider and Snyder (52). The
final fit of the calculated frequencies to the assignments of Stair and
Nielsen (55) was 4.1%. Some of the interactions force constants were
unreasonably high., These could be reduced somewhat by reassign-
ments based on the calculations. The fit of the new calculations to
the reassigned frequencies was 2.8%. Further attempts to fit the
frequencies would not be fruitful without more certainty of the as-
signments.

The method for cal culating the normal vibrations of polymers
was applied to polyacetaldehyde. It was not possible to fit its observ-
ed frequencies to better than the final fit of trioxane using the poly-
ether force constants obtained from that analysis. The calculations
do permit assignment of all of the reported frequencies (39). It was
not possible in these calculations to distinguish between the staggered
and eclipsed orientation of the methyl side group. The validity of the
assignments is subject to further verification since the number of
observed frequencies is much less than the number of cal culated
frequencies.

A discussion of the conformation of polymer chains offers an
approach to determining the Cartesian coordinates necessary in the
calculation of the g matrix, Some errors in the usual use of the

equations of Shimanouchi and Mizushima (54) are pointed out and a
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correction is suggested.
Tables for generating real symmetry species of C, type helices

are included for use in polymer analyses.
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The resultant vector

is indicated if the coordinates are oriented in the same manner as the

accompanying diagram.

Numbering is counterclockwise. & = 2Tr/n

C3 s1 s, S3
A 1 1 1 81
E 2 -1 -1 (x)
1 -1 (y)
C4 Sl SZ S3 S4
)
A 1 1 1 1 1
B 1 -1 1 -1
E 1 -1 -1 1 (x)
1 1 -1 -1 (y)
C5 s1 Sp S3 S4 Sg
A 1 1 1 1 1 51
E, 1 cos® cos20 cos20 cosf (x)
sin® sin26 -sin20  -sin® (y)
E, 1 cos20 cosB cosB cos®
sin26 -8in0 sin® -sin20
Cé s] s2 s3 S4 sg Sg
A 1 1 1 1 1 1 \/
B 1 -1 1 -1 1 -1 51
E; | 2 1 -1 -2 -1 1 A
1 1 -1 -1
E, | 2 -1 -1 2 -1 -1
-1 -1 1
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C7 s1 sp s3 S4 Sg sg 57
A 1 1 1 1 1 1
Ey cos® cos20 cos30 cos30 cos29 cosO (x)
sin® sin20 sin30 -sin30 -sin20 -sin® (y)
EZ 1 cos28 cos30 cosb cosb cos30 cos20
sin2® -sin30 -sin® sinb sin36 -sin26
E3 1 cos30 cosB cos20 cos20 cosb cos36
sin30 -sin® sin20 -sin20 sind -s5in30
51
51
C8 s1 sy s3 S4 Sg Sg so sg
A 1 1 1 1 1 1 1 1
B 1 -1 1 -1 1 -1 1 -1
El 1 1 -1 -1 -1 -1 1 1 (x)
1 1 1 1 -1 -1 -1 -1 (y)
E> 1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
Es3 1 0 -1 2 -1 0 1 -2
1 N 0 -1 2~ -1 0
Cg s;] S S3 S4 Sg S¢ So Sg s9
A 1 1 1 i 1 1 1 1 1
E}| 2 2 -1 -1 -1 -1 -1 -1 2 (x)
1 1 1 -1 -1 -1 (y)
EZ 1 cos20 cos40 cos3P cosb cos@ cos30 cosd40 cos2H
sin20 sin4d -sin3® -sin® sinb sin30 -sind -sin26
E3 2 -1 -1 2 -1 -1 2 -1 -1
1 -1 1 -1 1 -1
Eyl 1 cos40 cosD cos30 cos20 cos?®P cos30 cosO cos406
sin4® -sin® sin30 -sin20 sin® -sin30 sind -sin4b
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APPENDIX II

Proof of the reduction of the F and G matrices of an infinite chain

The proof will deal with the F matrix but applies equally to the G

matrix. The potential function is always

2V= > sy TN (1)
tt!
wheretandt'=1, 2, ... .. . ©

and f has the form of equation II-3:

a B! '\/' §!

£= | : (2)

. ) Y g a

Generally 6 and farther interactions are zero. If equation 2 is multi-
plied on the right and left by a row and column vector of the infinite
chain internal coordinates in the form s S B Sny Smgr v v -
where the coordinates are grouped so that s, are the internal coor-

dinates of the first monomer unit of the nth repeat unit; n=1, 2, . .

N, the number of repeat units in the chain. Inspection of the
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multiplication shows that thefs' will reduce to a column vector of
which each element will be a summation involving terms containing
Y ', B', a, B, y, each multiplied in consecutive order by the s's of
the internal coordinates. The summation of equation 1 will consists
therefore of

st'ftt'st = N(sum of terms)sn(1 + N{sum of terms)snp

+ N(sum of terms)s etc. (3)

ny
The number of terms in the parenthesis of equation 3 will depend on
how far the neighboring interactions are extended. The number of
terms on the right side of equation 3 will depend on the number of
monomer units per repeat unit.

If symmetry coordinates can be generated such that

S Z Ut'k (4)

sp = § UgierSicr)' (5)

then the infinite matrix f is reduced to the order kk' which is chosen

i

to be finite.

%’,: Uy Ukt £ o (6)

The normalization constant of U will be l/s/N_; where N is the number
of repeat units above and p is the sum of the squares of the elements
in a single repeat unit and will differ for each row. A single term in
equation 3 will be converted by the unitary transformation into terms

similar to

N(l/\ﬁp Sty ! + 1/‘NP 5htp + I/JN; Snc,+ 1/~/N_p srﬁ+ 1/‘1_1\_1; Sn\/ (7)
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wheren' =n - L.

It is immediately obvious that the terms are independent of the num -
ber of repeat units; and equation 1 is equivalent to a multiplication with
t=1to cw,and t' = 1 to the total number of internal coordinates in a
repeat unit.

In practice it becomes obvious that all terms involving coordin:-:
ates which do not interact with the repeat unit under consideration
drop out of the final multiplication. The symmetry of Fkk‘ will be
the same as fi1 as long as Uy Uiy = E, the identity matrix of the
order k and is not dependent on U' actually being the transpose of U.

Equation 7 is an actual term for the case of four monomer units per

repeat unit with 6 = 0,
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APPENDIX III

Programs coded in Fortran II for generating the cartesian coordinates

of helical polymers with tetrahedral geometry.

Program to calculate the skeletal atom positions of A-B type chain

aaaan

11

10

15

X, Y, Z ARE CARTESIAN COORDINATES OF REFERENCE
ATOM: AN = NO. OF TURNS PER UNIT CELL; AM = NO.
OF MONOMER UNITS PER UNIT CELL;D=CELL LENGTH /
AM; S=BOND LENGTH

DIMENSION A(3, 3)

READ INPUT TAPE 5, 1, X, Y, Z,S, D

FORMAT (5F12. 6)

READ INPUT TAPE 5, 11, AN, AM

FORMAT (2F12. 6)

I1=0

B=2. *1, 333333%S%S

A=B-D*D

TH=2. *3. 141592 7%(AN/AM)

SINTH=SINF (TH)

COSTH=COSF(TH)

C=2. (1. - COSTH)

R=SQRTF(A/C)

PRINT 10, TH, SINTH, COSTH

FORMAT (8H1 TH=F12.6, 10X6HSINTH=F12. 6, 10X6HCOS
TH=F12. 6)

X2=R#*COSTH

Y2=R*SINTH

Z2=D

WRITE OUTPUT TAPE 6, 20, X, Y, Z,S,D, R

FORMAT (1HO06(4XF12. 6))

PHI = X*X-2. *R*X+R*R+Y*Y+Z*Z-S%S

PSI = X*X+Y*Y-2. % Y24 Y +Y24 Y2+ 2% Z-2, %Z2%Z+Z2%Z2-S%S
-2, *X2 % X+X2%X2

CHI = X*X+Y*Y-R*R

I=I+1

WRITE OUTPUT TAPE 6,6, I, X, Y, Z

FORMAT (I4, 3(3XF12.6))

IF(ABSF(PHI)-1.) 15,17, 17

IF (ABSF(PSI)-1.) 16,17, 17
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IF (ABSF(CHI)-1.) 7, 17,17

WRITE OUTPUT TAPE 6, 9, PHI, PSI, CHI

FORMAT (5H PHI=F12.6, 6H PSI=Fl12.6, 6H CHI=F12. 6)
GO TO 12

A(1, 1) = 2. %X-2. %R
A(l,2) = 2. %Y

A(1,3) = 2.%2Z

A(2, 1) = 2. %X-2, *X2
A(2,2) = 2. %Y-2,%Y2
A(2,3) = 2. %Z - 2. * Z2
A(3,1) = 2. %

A(3,2) = 2. %Y

A(3,3) =0

D = A(l1, 1P*A(2, 2)*A(3, 3)+A(2, 1)+A(3, 2)*A(1, 3)+A(3, 1)*A(2,
3)*A(19 2)'A(3: 1)*A(29 2)*A(1: 3)'A(3, 2)*A(2: 3)*A(l: 1)'A(3’ 3)
#A(1, 2)*A(2, 1)

DH = -PHI*A(2, 2)*A(3, 3)-PSI*A(3, 2)*A(1, 3)-CHI*A(2, 3 )*A(
1, 2)+CHI*A(2, 2)*A(1, 3)+A(3, 2)*A(2, 3)*PHI+A(3, 3)*%A(1, 2)*
PSI

DK = -A(l, 1)*PSI*A(3, 3)-A(2, 1)*CHI*A(1, 3)-A(3, 1) *A(2, 3)
*PHI+A(3, 1)*PSI*A(1, 3)+CHI*A(2, 3)*A(1, 1)+A(3, 3)*PHI*A(
2, 1)

DL = -A(l, 1)*A(2, 2)*CHI-A(2, 1)*A(3, 2)*PHI-A(3, 1 )*PSI*A(
1, 2)+A(3, 1)*A(2, 2)*PHI+A(3, 2)*PSI*A(1, 1)+CHI*A(1, 2)*A(2,

1)

EH = DH/D
EK = DK/D
EL = DL /D

SUM = EH*EH+EK*EK+EL*EL
IF (SUM-1.E-12) 5,5, 3

IF (I-100) 4, 4, 5

X = X+EH

Y = Y+EK

Z = Z+EL

GO TO 2

C = ((R-X}*(X2-X)-Y*(Y2-Y)-Z%(Z2-2))/(S*S)
WRITE OUTPUT TAPE 6, 8, X, Y, Z, C
FORMAT (3H X=F12.6, 4H Y=F12.6, 4H 2Z=F12.6, 6H
COS=F12. 6)

GO TO 12

END

i}
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Program to calculate the positions of atoms attached to skeletal chain:

X0, YO, Z0 ARE COORDINATES OF SKELETAL ATOM TO
WHICH SIDE ATOMS ARE ATTACHED; X1, Y1, Z1 ARE CO-
ORDINATES FOR THE PRECEDING SKELETAL ATOM;X2,
Y2, Z2 ARE FOR THE SUCEEDING SKELETAL ATOM;X, Y,
Z ARE THE COORDINATES TO BE CALCULATED;BL IS
THE BOND LENGTH OF THE SIDE ATOM TO THE SKELE-
TAL ATOM;BL1 IS THE SKELETAL BOND LENGTH;N=1 IF
NEW SKELETAL POSITIONS ARE TO BE READ IN
DIMENSION A(3, 3)
12 READ INPUT TAPE 5, 21, N
21 FORMAT (I2)
22 IF (N) 13,14, 30 o
30 READ INPUT TAPE 5, 1, X0, Y0, Z0, X1, Y1, Zi, X2, Y2, Z2,
BL1
1 FORMAT (6F12. 6/4F12. 6)
13 READ INPUT TAPE 5,5,X%, Y, Z, BL
5 FORMAT (4F12. 6)
WRITE OUTPUT TAPE 6, 20,X, Y, Z, BL
20 FORMAT (1HO0 4(3XF12. 6))

SHONONONONONSNS!

1=0
Cl1=-0.333333*%*BL1*BL
C3=BL*BL

2 A(l,1)=X1-X0

A(1,2)=Y1-YO
A(l,3)=21-20
A(2, 1)=X2-X0
A(2,2)=Y2-Y0
A(2,3)=22-20
BX=X -X0
BY=Y-YO0
BZ=Z-Z0
A(3, 1)=2. *BX
A(3, 2)=2. *BY
A(3, 3)=2. *BZ
I=I+1
PHI=A(1, 1)*BX+A(L 2)*BY+A(1, 3)*BZ-Cl
PSI=A(2, 1)*BX+A(2, 2)*BY+A(2, 3)*BZ-Cl
CHI=-BX*BX+BY#*BY+BZ*BZ-C3
IF (ABSF(PHI)-1.) 15,17, 17

15 IF (ABSF(PSI)-1.) 16,17,17

16 IF (ABSF(CHI)-1.)7,17,17

17 WRITE OUTPUT TAPE 6, 9, PHI, PSI, CHI

9 FORMAT (5H PHI=F12. 6, 6H PSI=F12.6,6H CHI=F12.6)
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GO TO 12
D=A(1, 1)*A(2, 2)*%A(3, 3)+A(2, 1)*A(3, 2)*A(1, 3)+A(3, 1)*A(2, 3)
*A(1, 2)-A(3, 1)*¥A(1, 3)*A(2, 2)-A(3, 2)%A(2, 3)*A(1, 1)-A(3, 3)*
A(1, 2)%A(2, 1)

DH=-PHI*A(2, 2)*A(3, 3)-PSI*A(3, 2)*A(1, 3)- CHI*A(2, 3)*A(l,
2)+CHI*A(2, 2)*A(1, 3)+A(3, 2)*A(2, 3)*PHI+A(3, 3)*A(1, 2)*PSI
DK=-A(1, 1)*PSI*A(3, 3)-A(2, 1)*CHI*A(L, 3)-A(3, 1)*A(2, 3)*
PHI+A(3, 1)*PSI*A(1, 3)+CHI*A(2, 3)*A(1, 1)+A(3, 3)*PHI*A(2,
1)

DL=-A(1, 1)*A(2, 2)%*CHI-A(2, 1)*A(3, 2)*PHI-A(3, 1)*PSI*A(l,
2)+A(3, 1)*A(2, 2)*PHI+A(3, 2)*PSI*A(L, 1)+CHI*A(1, 2)*A(2, 1)
EH=DH/D

EK=DK/D

EL=DL/D

SUM=EH*EH+EK*EK+EL*EL

IF (SUM-1.E-12) 18, 3,3

IF (I-100)4, 4, 18

X=X+EH

Y=Y+EK

Z=Z+EL

WRITE OUTPUT TAPE 6,6,1,X, Y, Z

FORMAT (I3, 3(3XF12. 6))

GO TO 2

WRITE OUTPUT TAPE 6,8,X, Y, Z

FORMAT (3H X=F12. 6,4H Y=F12.6,4H Z=F12.6)

GO TO 12

CALL EXIT

END

PROGRAM TO GENERATE REPEAT UNITS OF POLYMER
DIMENSION X(20), Y(20), Z(20), MOL(4), ATOM(11) .
X,Y,Z ARE COORDINATES OF ONE ATOM OF FIRST
MONOMER UNIT, MOL IS MOLECULE IDENTIFICATION,
ATOM IS ATOM IDENTIFICATION, C IS UNIT CELL LENG
TH, AN IS NUMBER OF TURNS PER UNIT CELL, AM IS
NUMBER OF MONOMER UNITS PER UNIT CELL, IND IS
1 IF NEW MOLECULE IS TO BE ENTERED

READ 2, MOL, C, AN, AM

FORMAT (4A6,3F12. 6)

PRINT 4, MOL, C, AN, AM

FORMAT (1HI, 4A6,3F12. 6)

READ 6, IND, ATOM

FORMAT (16, 11A6)

IF (IND) 1, 7,1
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13
14
15

Note:

PRINT 70, ATOM
FORMAT (1H0, 5X, 11A6)
TH=3, 1415927%(AN/AM)
D=C/AM

READ 9, X(1), Y(1), Z(1)
FORMAT (3F12. 6)
SINTH=SINF (TH)
COSTH=COSF(TH)

M=AM+3.

DO 13 I=1,M
X(I+1)=X(I)*COSTH- Y(I)*SINTH
Y (I+1)=X(I)*SINTH+Y(I)*COSTH
Z(I+1)=Z(I)+D

PRINT 15, (I, X(I), Y(I), Z(1), I=1, M)
FORMAT (110, 3F20. 6)

GO TO 5

END

PRINT = WRITE OUTPUT TAPE 6

91





