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Researchers rely on bioeconomic models to guide research and generate fishery management advice for 

commercial fisheries. Due partly to a paradigm shift towards ecosystem based fishery management, 

increasing complexity in the characteristics of the problems has meant that bioeconomic simulation models 

are becoming more prevalent in the fisheries literature. However in many of these models the economic 

behavior of fishermen is either omitted, or incorporated using a model that is not based on an economic 

theory of human behavior. This dissertation comprises three essays that make contributions to advancing 

the art and science of bioeconomic simulation modeling. The first essay illustrates how a model of 

fisherman behavior can be incorporated into a bioeconomic harvest-control-rule assessment model of a 

complex multi-species, multi-fleet fishery. Insights for rebuilding stocks based on different assessment 

techniques and fleet strategic behavior are discussed. The second essay introduces a novel method for 

distributing fishing effort across space and time in bioeconomic simulation models based on game theory. 

A comparison between this method and more traditional methods for modeling fleet fishing behavior are 

analyzed and the implications and the relative strengths of the game theoretic approach discussed. The third 

essay describes a bioeconomic simulation model of the Oregon Dungeness crab fishery. A novel application 

of duration analysis to describe the in-season exit behavior of fishermen is combined with a zero-inflated 

Poisson model to determine how fishing effort is allocated by different fleets under alternative fishery 

conditions. A stock dynamics model is then incorporated into a Monte Carlo simulation to assess how 

changes in season closure dates affect the amount of discard mortality in the fishery, and how these changes 

affect operating profits in the fishery. 
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1. INTRODUCTION  

Fisheries management in the United States has historically been centered on a single objective-managing 

and conserving the biological stock. In parallel, a significant amount of effort has been exerted in 

developing biological modeling techniques, collecting and analyzing data, and disseminating model results 

to the scientific and policy-making communities, all focused on describing the behavior and population 

dynamics of the biological resource. However, over the last several decades there has been a gradual 

paradigm shift in fisheries management-the adoption of an ecosystem based approach which includes the 

human dimension (Essington and Punt 2011; Gaichas 2008; Botsford, Castilla, and Peterson 1997). As well 

as wider ecological impacts, economic efficiency concerns and the distribution of economic impacts among 

various sectors of the economy have become more important than in the past. The response to these 

concerns has been manifested in, among other things, the increased use of property rights systems in 

fisheries and fishery management plans that give social, economic, and ecological considerations more 

weight (PFMC 2016). Along with this revised focus is a need to increase investment in economic research 

into fisheries, including the development of economic theory, modeling techniques, and greater collection 

of data that can be applied in such models. The rationale for including economic considerations in fishery 

management decisions is that fishery management systems exist precisely because of economic influences 

on fisheries and the ecosystems they are a part of. People derive benefits from fishing that in some cases 

can be measured, such as a commercial fishing vesselôs ex-vessel revenue, or a consumerôs seafood 

consumption, but in many other cases cannot, such as the utility gained from the satisfaction of seeing a 

fish stock protected. Analyzing and predicting the behavior of fishermen necessarily calls for an economic 

framework. Even if the goal of some individuals is solely to protect particular components of the marine 

ecosystem, these concerns arise because of anthropogenic influences. Economics is therefore a critical tool 

for informing the public, fishermen, and fishery managers when decisions on how to make best use of a 

resource, and what that best use is, need to be made.  

The application of economic theory and methods to fisheries problems has a rich and varied history, starting 

with the seminal works of Gordon (1954), Schaefer (1954), and Scott (1955). Since then, significant 

progress has been made in determining and studying the main causes of the major fishery problems of our 

time, such as the common property nature of fisheries leading to economic inefficiency through capital 

stuffing and supply gluts, which lead to processing and other value chain inefficiencies. This progress has 

been paralleled in the biological and ecological disciplines, especially in the development of knowledge 

regarding the reproductive and growth capacity of fishes, and how these processes are affected by 



2 

 

 

population pressures caused by fishing, or greater environmental influences. An important recent example 

of this is the discovery that older female rockfishes, which sometimes live more than 100 years, have a 

disproportionately beneficial influence on reproductive success than younger animals (Berkeley et al. 

2004). If a goal of fishery management is population sustainability, removing an older fish from a 

population therefore has different implications for reaching this goal than removing a younger one. 

However, without modeling the component of the fishery system that determines which individual is 

removed, the ability to form management advice that can translate into real world progress towards 

sustainability is limited. Examples such as this are widespread, but even so fishery issues are rarely 

examined using an interdisciplinary framework.  

Bioeconomic models of fisheries are important: fish and fishermen interact in ways that are complex and 

not intuitive to fishery managers.  Bioeconomic models are not new; for example, the early works of Gordon 

(1954) and Schaefer (1954) included both biological and economic components and significant progress 

has been made in exploring fisheries through analytical models. For example, Sanchirico and Wilen (1999) 

and Sanchirico and Wilen (2005) showed that the equilibrium characterizing a spatial bio-economic fishery 

system is as dependent on economic parameters as stock characteristics. Sanchirico and Wilen (2001) show 

that the ability of a marine reserve to create value depends as much on assumptions regarding economic 

behavior and parameters as biological factors. Despite the importance of simultaneously considering 

economic and biological processes in fishery models, this practice is not pervasive in fisheries science 

(Carruthers et al. 2014), and in cases where economic factors are included in the analysis, the biological 

component is generally given much greater attention in terms of both data input and rigor of analysis (van 

Putten et al. 2012; Barclay 2012). Nevertheless, bioeconomic models that combine the salient components 

of fisheries in order to investigate the potential impacts of management actions have become increasingly 

numerous. While analytical fisheries models are important in gaining key insights over a global range of 

parameter values can be derived from closed form solutions, these models quickly become intractable as 

the number of parameters and dimensions increase. This limitation, and the need to perform policy analysis 

for complex real world situations has shifted the analysis of fishery systems using numerical optimization 

and simulation techniques (Pelletier and Mahévas 2005a; Powers and Abeare 2009).  

In many fishery bioeconomic simulation models, fishing effort is assumed to be determined exogenously 

to the model (van Putten et al. 2012), and in ways that are not supported by microeconomic theory and/or 

econometric analysis (Dalton and Ralston 2004). This occurs despite the aspiration of the analyst to 

realistically represent fishermen behavior. Even so, bioeconomic simulation models have become 
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increasingly complex over the last several decades, partly due to advances in modeling and computation 

techniques, and the need to explore new, more complex issues as our knowledge of fishery systems 

improves. While this complexity comes at a cost, the interpretability of results quickly becomes difficult as 

the number of model inputs increases.  Incorporating a realistic level of detail into models provides a 

framework with which to explore alternative hypotheses about the fishery (Hilborn and Walters 1987), and 

encourages new ways of thinking about the interaction between fishermen and the resource they depend 

on. Bioeconomic simulation models that incorporate a realistic level of detail in both the bioeconomic and 

economic components are therefore useful tools to encourage thinking and foster learning about the 

interactions between fishermen and the stock and provide directions for future research in both the 

biological and economic disciplines.  

Three broad issues in modeling fisheries that have important implications for fishery management are 

addressed in this set of essays: 1) multi-species interactions, 2) spatial interactions, and 3) population 

process interactions. Multi-species interactions occur, for example, when several species are either targeted 

or caught incidentally.  While management measures may focus on each species separately, fishermen treat 

the species as a catch complex. In these cases, a management action that is established in the interests of a 

single species may have effects on other species in the fishery that are often not well understood and are 

potentially undesirable (Salas and Gaertner 2004).  In many cases the behavior of fishermen is ignored or 

poorly modeled and the impacts of management measures are difficult to predict without considering 

realistic fisherman and fish behavior simultaneously (Wilen et al. 2002; Fulton et al. 2011).  

Spatial interactions occur when the behavior of fishermen and/or fish stocks have a spatial component that 

at least partly determines population processes, catch, and profit in the fishery. As a simple example, if the 

price of older female rockfish is higher than that of younger fish in our previous discussion, and these fish 

are found in particular fishing areas, effective policy advice can only be reliably formed by simultaneously 

considering biological and economic factors. In general, fishermenôs behavior determines the spatial pattern 

of fishing mortality in a fishery, and this behavior depends on economic factors (Wilen et al. 2002). 

Population process interactions occur when some aspects of the behavior of the fish population interact 

either temporally or spatially with harvesters. For example crustaceans, as part of their growth processes, 

are in a softshell state for some periods during a year. Being in this state has implications for the price that 

fishermen receive for harvesting the animal, which in turn affects fishing behavior. Models that can examine 

these interactions in order to inform policy makers are necessarily bioeconomic in nature. These 

bioeconomic considerations form the basis for the material in the research which follows.  
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This thesis consists of three essays that describe endeavors to make contributions to the existing fisheries 

bioeconomic literature. All essays are based on bioeconomic fisheries simulation models that were designed 

in order to examine contemporary issues in fisheries research. The first essay illustrates the utility of 

integrating economics into a model that assesses the performance of a data-poor harvest control strategy, 

an area of research that traditionally does not take fishermen behavior into account. The model is applied 

retrospectively to a complex, multi-species fishery in order to demonstrate how the economics of a complex 

fishery may be incorporated into biological models, and to gain economic insights about the challenges 

inherent in rebuilding stocks using alternative harvest control rules.  The second essay makes a contribution 

to the examination of spatial interactions in fisheries by presenting a novel method, based on the tenets of 

game theory, of spatially distributing fishing effort in bioeconomic simulation models. This method is then 

compared to several contemporary methods for distributing effort in such models. The third essay describes 

the design and implementation of a simulation model of the Oregon Dungeness crab fishery in order to 

examine the potential interactions between moulted crab which are in a soft shell state, and the temporal 

distribution of fishing effort in the fishery. The first application of an economic duration model to the in-

season exit behavior of fishermen is combined with a bioeconomic representation of the Oregon Dungeness 

crab fishery using a Monte Carlo simulation framework designed to evaluate the potential impacts of 

adjusting the season closure date in the fishery.
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2. COMBINING FISHERIE S MANAGEMENT EVALUAT ION WITH 

FISHERMAN BEHAVIOR: A RETROSPECTIVE ANAL YSIS OF A U.S. 

WEST COAST ROCKFISH 

2.1 Abstract 

The effects of a management action that reduces the total allowable catch of a single species in a multi-

species fishery often has unpredictable consequences on the economics of the fishery. These potentially 

important effects can be explored using bioeconomic models that couple biological processes with a 

representation of fleet behavior that together determine expected biological and economic impacts that may 

result from a management change. When analyzing or testing fishery assessment methods or management 

tools it is important to account for economic incentives that drive fleet behavior, as fisherman behavior 

ultimately determines the level and distributions of mortality in a fishery. We applied a bioeconomic 

simulation framework to a complex multi-species fishery in order to illustrate that including a realistic 

economic component to a fisheries assessment model can provide important management and policy 

insights. We used a retrospective approach to take advantage of the available historical data on fleet 

behavior and economics, thereby reducing the guess-work inherent in predictions of human behavior in 

traditional forward-looking modeling approaches. We employed a novel method of characterizing the 

historical structure of the U.S. west coast groundfish trawl fleet and analyzed changes in fishing behavior 

that could have resulted from a changing catch constraint on a single species, canary rockfish (Sebastes 

pinniger). We categorized the range of fishing behavior that affected canary rockfish using different fishing 

óstrategiesô, each one varying in hypothetical effect on canary rockfish mortality by age and sex, as well as 

other speciesô catch composition. Because each mixed stock fishing strategy utilizes different gear types 

and fishing locations, the canary rockfish selection-at-age varies across strategies, which in turn affects the 

age composition of the catch. Biological information from the age-structured assessment model created 

allowable catch, but the actual catch and its age structure each year were determined by the optimum catch 

strategies from the economic model. These values often differed from the expected biomass and age 

structure of the catch that was predicted by the biological model alone, and were fed back into the 

assessment model for each annual update. While the retrospective model results are somewhat speculative, 

we showed that catch limits informed by data-rich and data-deficient single-stock assessment techniques 

led to potentially beneficial fishing behavior for many species within a multi-species fishery, but had 

detrimental effects on two currently overfished species in the same stock complex.  We also demonstrated 

that a ódata moderateô assessment technique (DB-SRA) resulted in foregone operating profits on the order 
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of $5.5 million, not including the management and monitoring costs of implementing the assessment 

method. Incorporating simple fleet behaviors into assessment simulations can help identify optimum and 

likely fishing strategies when resources are constrained, and should be considered in evaluation of 

alternative management strategies. 

2.2 Introduction  

Fisheries assessment and management in the United States is centered on biologically-based performance 

measures. While these measures are essential for the long-term sustainability of the fisheries resource, they 

do not address important social and economic factors (Sylvia and Enriquez 1994) or wider ecological 

considerations (Essington and Punt 2011; Gaichas 2008; Botsford, Castilla, and Peterson 1997). The 

Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA; NOAA 2007), mandates an 

integrated consideration of both biological and socio-economic factors in fisheries-related decision making. 

However, it does not provide guidance on the extent to which these different factors have to be taken into 

account, especially when setting total allowable catches (TACs), or designing stock rebuilding plans in the 

case of overfished species (Larkin et al. 2006). Even when economic factors are included in analyses, such 

as bio-economic fishery management models, the biological component is generally given much greater 

attention than economic factors in terms of both data and rigor of analysis (van Putten et al. 2012; Barclay 

2012).  

Although including multi-species considerations in fishery models increases their complexity, multi-

species models are necessary to transition towards ecosystem-based fisheries management (Plagányi et al. 

2014; Essington and Punt 2011; Field and Francis 2006; Cochrane 1999). However, the impacts of 

management measures in multi-species fisheries are difficult to predict without explicitly considering 

fisherman behavior (Wilen et al. 2002; Fulton et al. 2011). Although many models allow for interactions 

between multiple species, e.g. Punt et al. (2010), accounting for interactions between the multiple species 

in a biological model and fleet behavior predicated on economic theory is not as common. Bioeconomic 

modeling is an approach that allows us to meet biological management goals while simultaneously taking 

social and economic factors into consideration (Larkin et al. 2011). Bioeconomic models are particularly 

well suited for shedding light on the impacts of alternative management scenarios on a fishery.  Fish and 

fishermen interact in ways that are often not intuitive to fishery managers, and models that illustrate these 

interactions are essential for implementing responsible fishery management plans (van Putten et al. 2012; 

Pelletier and Mahévas 2005; Hilborn and Walters 1987). For example, when setting TACs for a single 



7 

 

 

species in a multi-species fishery, the complex interactions between fishermen and the portfolio of harvest 

options is often neglected (Pelletier et al. 2009). As a result, a management action established to achieve 

optimal yield of a single species may have effects on other species in the fishery that are often not well 

understood and are potentially undesirable (Salas and Gaertner 2004). For example, Mackinson, Sumaila, 

and Pitcher (1997) showed that ignoring fishermenôs targeting behavior for pelagic schooling fishes caused 

significant under-predictions of stock depletion rates, significantly increasing the risk of stock collapse 

above that expected by fisheries managers. In analytical models, Sanchirico and Wilen (1999) and 

Sanchirico and Wilen (2005) demonstrated that the equilibrium characterizing a spatial bio-economic 

fishery system is as dependent on economic parameters as stock characteristics. Sanchirico and Wilen 

(2001) show that the ability of a marine reserve to create value depends as much on assumptions regarding 

economic factors and economic behavior as biological factors. For example, the level of fishing effort in 

multi-species fisheries can remain high, and fishing profitable, even if one or more of the stocks are nearing 

depletion (Burgess, Polasky, and Tilman 2013). Despite these examples, the consideration of social and 

economic factors in fisheries management models is not widespread (Carruthers et al. 2014). 

The importance of including social and economic factors in models for fisheries management is highlighted 

by a number of Management Strategy Evaluations (MSEs; Butterworth and Punt 1999; Holland, Bentley, 

and Lallemand 2005; Smith et al. 2009; Dichmont et al. 2010). However, most studies either do not include 

a behavioral economic component, or specify it in such a way that may not recognize the interactions 

between physical fishery characteristics and fishermen. For example, in an MSE of a range of harvest limits 

for the Australian northern prawn fishery, Wang and Wang (2012) assume that the number of fishing days 

per year is fixed, and that a fixed proportion is allocated to the different prawn fisheries. Dichmont et al. 

(2006) were among the first to include effort dynamics due to input controls (effort limits) in a MSE with 

fleet targeting behavior changing relative to endogenous fishery biomass. In an MSE of rock lobster in New 

Zealand, fleet size changed in response to both catch and catch limits in the fishery, but effort per vessel 

remained constant (Holland, Bentley, and Lallemand 2005). Maravelias, Pantazi, and Maynou (2014) 

evaluated alternative fishing input restrictions (effort and trawl net mesh size) in a Mediterranean trawl 

fishery, but the authors used a fixed level of effort and did not model how vessels would react to these 

management measures. Punt et al. (2010) include fixed and variable costs of fishing in a MSE of the 

Australian northern prawn fishery, as well as price fluctuations due to changes in size composition of the 

prawn populations. However, fishing effort is treated as a variable in a calculation to maximize the net 

present value of the fishery, and not as a behavioral component of the model. 
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Implementation uncertainty is one model component that potentially represents the behavioral response of 

fishermen to a management action, for example, the uncertainty of whether actual catch in the fishery will 

fall short of, meet, or exceed the catch limit set by managers. Implementation uncertainty is commonly 

blamed for the failure of management actions to achieve their stated biological goals (Cochrane 1999; 

Levontin et al. 2011), however it is not always easily incorporated into assessment models. For example, 

Punt and Ralston (2007) conducted an MSE of alternative rebuilding rules for Pacific rockfish species and 

set model catch equal to the policy recommendation. Cooke (1999), in a comparison of various harvest 

control rules, assumed that catch in the model is exactly equal to the catch limit set by the assessment model, 

although the author implements an upper bound on effort. When implementation uncertainty is incorporated 

into simulation models it is normally done by specifying an error term with an associated probability 

distribution (Punt, Dorn, and Haltuch 2008). Simulation exercises that incorporate a range of possible 

fishing effort levels or catches in this fashion can be useful for comparing the theoretical performance of 

alternative assessment techniques. However, we argue that a reason for including implementation error in 

these situations is to compensate for not including a behavioral model that explains how implementation 

error is produced. Whatever the management strategy or assessment technique being evaluated, models are 

designed to be applied in the real world- where fishermen behave in ways that may not be accurately 

represented by implementation error based on a distributional assumption. In the case of evaluating stock 

assessment techniques, it is also possible that fishermenôs behavioral response to management actions will 

interact with assessment methods, changing the results of the comparison (Carruthers et al. 2014). 

Considerations of implementation uncertainty and fishermen/fleet behavior are of particular importance in 

the evaluation of alternative methods for designating total allowable catch (TAC). With the majority of the 

worldôs fisheries in a data-deficient state, where little or no information that can be used to formulate a 

prediction of stock status exists (Costello et al. 2012), data-intensive stock assessment methods which are 

generally catch-at-age models fit to fishery-dependent and independent data, are not feasible for a large 

number of fisheries (Smith et al. 2009). As a result there has been much recent interest in the development 

and testing of data-deficient methods for setting acceptable catch limits (Dick and MacCall 2011; Wetzel 

and Punt 2011; Carruthers et al. 2014; Arnold and Heppell 2015). However, most of the evaluations of data-

deficient methods do not incorporate a model to describe the dynamics of fisherman behavior as described 

by fishing effort, even though the spatial and temporal distribution of effort in a fishery defines the pattern 

of fishing mortality (Wilen et al. 2002). Fisherman behavior has been largely ignored in the evaluation of 

fishery assessment techniques (Plagányi et al. 2014). The complexity of assessments and their reviews prior 
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to advising management requires enormous time and effort; thus, it is not too surprising that economic data 

and changes in fishing behavior have not been fully incorporated into the assessment process.  

Due to the complexity of many fisheries, bioeconomic models often take a forward-looking simulation-

based approach, e.g. Dichmont et al. (2006), with a range of alternative scenarios projected under different 

environmental or economic conditions. But retrospective analyses can also be a useful way to examine how 

the interplay of fish and fisheries might have changed if alternative management strategies had been 

employed. For example, Marsden, Martell, and Sumaila (2009) analyzed how the profitability of the Fraser 

river sockeye fishery could have changed with the implementation of several different control rules. 

Martell, Walters, and Hilborn (2008) conducted a retrospective analysis of what could have happened in 

the Bristol Bay and Fraser river sockeye fisheries given current knowledge of the mean stock-recruitment 

relationships and variation in past recruitment. The main advantage of a using a retrospective approach is 

that we know with relative certainty what did happen in a fishery, and can use that as a benchmark to 

compare what might have happened under different conditions (Arnold and Heppell 2015). Although there 

is often a high degree of uncertainty regarding stock biomass and distribution, the fisheries catch by year 

and economic variables such as fish prices, fuel prices, and revenues and costs are all known (albeit with a 

certain degree of observation error). This provides the researcher with a set of pseudo-experimental 

conditions under which the potential effects of management actions can be evaluated in order to inform 

future management.  

We set out to explore the integration of behavior, economics, and biology in the management of a multi-

species fishery with a retrospective bio-economic model that captures known elements of the past as data 

to inform current management scenarios. We analyzed fleet behavior in response to a data-rich management 

scenario and a data-deficient management scenario. Our goal is to illustrate one method of incorporating 

fleet dynamics into biological models that is simple to implement and based on sound economic theory. 

With historical data on fleet behavior in the U.S. west coast groundfish trawl fishery, we applied two 

management scenarios to the canary rockfish stock (Sebastes pinniger), a data-rich and data-deficient 

scenario. We chose canary rockfish due to its historical importance to the fishery and severe decline leading 

to an overfished designation in the 1990s and constraining effect on the multi-species groundfish trawl 

fishery for more than two decades.  
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2.2.1 RETROSPECTIVE CASE STUDY: CANARY ROCKFISH 

The U.S. west coast groundfish trawl fishery (hereafter groundfish fishery) is complex, and over its history 

has included thousands of vessels of different gear types. Spatial and temporal variability in the distribution 

of fishing effort is high, harvesting more than 90 species of groundfish as either a targeted fishery, as by-

catch, or incidental catch. Long-lived rockfish species are particularly important in the fishery, not only 

because of their economic market values, but also because of historic overfishing (PFMC 2011). Rebuilding 

plans for some species have resulted in significantly reduced catch limits that affect multiple fisheries. 

Because rockfish are caught by fishermen targeting a range of species using a variety of gears, the effect of 

a constraining catch limit has had serious impacts on the groundfish fishery (Field and Francis 2006). These 

impacts have led to changes in fishing strategies and targeting behavior, but those effects have not been 

fully examined.  

Historical catches of canary rockfish reached 5500 metric tons in the early 1980s. The history of 

exploitation has been characterized by a period of overfishing followed by stock collapse and the 

implementation of a rebuilding plan in the early 2000s (Stewart 2009). A revision of rockfish productivity 

estimates, declining catches of rockfish species, and reauthorization of the Magnuson Act as the Sustainable 

Fisheries Act of 1996 (NOAA 1996), led to tightening controls on trawl vessels. However, by 2000 the 

fishery was in a state of ódisasterô (Hanna 2001). Several species of rockfish were designated as overfished 

and stringent rules were adopted in an effort to rebuild these stocks. These included bocaccio rockfish 

(Sebastes paucispinis), yelloweye rockfish (Sebastes ruberrimus), widow rockfish (Sebastes entomelas), 

darkblotched rockfish (Sebastes crameri), cowcod (Sebastes levis), and Pacific Ocean perch (Sebastes 

alutus). During the rebuilding period, canary rockfish was a highly constraining species in the fishery; low 

catch limits coupled with their harvest by alternative fleets and gear types has compelled fishermen to 

actively avoid canary rockfish in the fear that reaching the catch limit would cause the fishery to be shut 

down. Currently, a transferable quota system for groundfish trawl fisheries requires strict bycatch limits by 

vessel, which continues to affect fishing strategies.  

The more than 90 species that are included in the Groundfish Fishery Management Plan (FMP; PFMC 

2016) are required by the Magnuson-Stevens Act to have annual catch limits (ACL) established using the 

óbest scientific adviceô Given the data requirements, human expertise, and time requirements necessary to 

conduct full stock assessments that estimate management reference points, including the ACL, less than 

40% of the 90+ groundfish species included in the FMP have been fully assessed. Under current budgetary 
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restrictions approximately eight stock assessments are completed each assessment cycle, in addition to 

updates for overfished stocks that are managed under rebuilding plans. 

2.2 Material s and Methods 

The bio-economic model consisted of a population dynamics model of canary rockfish and an economic 

model simulating fleet behavior. The bio-economic model follows an iterative process that passes total 

allowable catch (TAC) from the population dynamics model to an economic model that calculates actual 

catch, accounting for fleet behavior, and passes actual catch back to the population dynamics model on a 

yearly time step (Fig. 2.1). The economic component was parameterized on historical fleet data such as 

revenues, costs, fleet capacity and fleet structure. The biological model begins in the year 1980 with the 

canary rockfish stock at levels estimated by the 2009 stock assessment (Stewart 2009). The population was 

projected forward through 2006 under a data-rich management scenario (DR) and a data-moderate 

management scenario (DM). In addition to the DR and DM management scenarios, a base case simulation 

was conducted keeping canary catch per trip and TAC at historical levels.  

 

Figure 2.1 Iterative process of the bio-economic model. For each year, Total Allowable Catch (TAC) was 

calculated from the population dynamics model and passed to the economic model. Actual 

catch was calculated by the economics model and passed back to the population dynamics 

model. 
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2.2.1 POPULATION DYNAMICS MODEL 

The population dynamics model is age- and sex-structured with recruitment defined by the Beverton-Holt 

(Beverton and Holt 1957) form of the stock-recruitment relationship: 
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    ὉήȢςȢρ 

 

Where Ny,s,a is the number of fish of sex s and age a at the start of year y; x is the maximum age in the 

model, treated as a plus group (an age cohort accounting for all fish of age x and higher); Ms,a is the 

instantaneous rate of natural mortality for fish of sex s and age a, assumed constant through time; Ss,a,STG is 

the selectivity of the fishing strategy (STG) on fish of sex s and age a. Strategies are categories of fishing 

behavior that are based on gear type, fishing depth, and target species and are discussed fully in section 

2.2.2. Selectivity is assumed constant through time, but varies by fishing strategy. Fy is the fully selected 

fishing mortality rate in year y and Ry is recruitment during year y: 

Ὑ
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Where h is the steepness of the stock-recruit curve (the fraction of unfished recruitment, R0, expected when 

spawning biomass, SB, is 20% of unfished spawning biomass, SB0). Sigma R, ůR, and the recruitment 

deviation in year y, Rdevy, are error terms for each year defined by the 2009 stock assessment (Stewart 

2009). SBy is the spawning biomass in year y defined by the sum of mature female biomass from age 2 to 

the plus group, amax: 

Ὓὄ ὴὔ ȟύ ȟ                                                    ὉήȢςȢσ 

Where Nfem,a is the number of females at age a, wfem,a is the sex-specific weight-at-age, and pa is the 

proportion mature at each age, characterized by a logistic equation: 
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Where a50 is the age at which 50% of the females are mature and ɗ is 4x the slope of the maturity curve at 

a50. Weight-at-age is an allometric function of length-at-age defined by: 

ύ ὢὒ                                                                             ὉήȢςȢυ 

Length-at-age (La) is defined by the Von Bertalanffy growth model: 

ὒ ὒ ᶻρ Ὡ                                                           ὉήȢςȢφ 

Where Linf is the average asymptotic length, k is the growth coefficient and a0 is the theoretical age at zero 

length. Population and life history parameter values used in the simulation were taken from the most recent 

stock assessment of canary rockfish (Stewart 2009), and are given in Table 2.1. 

Table 2.1: Input Parameters for the Population Dynamics Model 

Parameter Value Description 

Population  

R0 3,335  unfished recruitment  

SB0 25,574  unfished spawning stock biomass 

h 0.511  stock recruit curve steepness 

ůR 0.5  recruitment deviation 

Life History  

 Female Male  

M 0.6 ages < 7 

linear ramp ages 

7-15 

0.097 ages 15+ 

0.06 natural mortality 

a50 8  age at which 50% of females are mature 

ɗ 0.25  4x slope of maturity curve at a50 

X 0.000016  parameter for weight at age 

Y 3.03  parameter for weight at age 

Linf 60 52 average asymptotic length 

K 0.131 0.170 growth coefficient 

a0 0.102 0.202 age at zero length 

 

Catch in year y was calculated using the Baranov catch equation (Baranov 1918) to determine the catch at 

age, sex, and strategy such that:   
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Equation 2.7 was incorporated into the objective function in an optimization model that searched for the 

values of FSTG resulting in a value of Cy equal to the total catch passed from the economic model.  The 

model was constrained to values of F for each strategy that resulted in a catch-per-strategy equal to the 

proportions given by the economic model. 

2.2.1.1 Management Scenarios  

Two management scenarios, one where fishery independent, age-structured data were available on an 

annual basis (the ódata-richô scenario) and the other where only an estimate of stock size was available on 

an annual basis (the ódata-moderateô scenario), were used to calculate the total allowable catch (TAC) 

passed to the economic model.  The data-rich scenario is modeled on the harvest control rule (HCR) defined 

by the Pacific Fisheries Management Council (PFMC) for groundfish TAC.  This HCR sets catch based on 

estimates of current spawning biomass, SBy, and unfished spawning biomass, SB0, following the 

formulation described in Punt and Ralston (2007):  
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Where ɓ is the threshold reference point and Ŭ is the stock size below which target catch is 0. In this study, 

the alpha and beta parameters were set to 0.10 and 0.40, respectively, following management practice on 

the U.S west coast (PFMC 2016). Above the threshold reference point, expected catch is determined by a 

proxy of the fishing mortality rate that produces maximum sustainable yield, FMSY. The expected catch for 

year y corresponding to a fishing mortality rate of FMSY is calculated as: 

ὅὊ ύȟὔȟȟ
ὛȟὊ
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The FMSY proxy used in this study was the constant fishing mortality rate that reduces the lifetime egg 

production, LEP, of a stock to x% of that in the unfished condition, Fx% (Clark 1991, 2002). Consistent with 

the PFMC FMSY proxy for rockfish defined in the 2011 Fishery Management Plan (PFMC 2011) we chose 
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F50%. LEP is a function of the proportion mature at age, pa, the relative fecundity at age, ūa, and female 

survival from age 1 to age a, such that: 

ὒὉὖ 
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                                   ὉήȢςȢρπ 

For the data-moderate scenario, the TAC was defined by the overfishing limit (OFL) calculated by 

Depletion-Based Stock Reduction Analysis (DB-SRA; Dick and MacCall 2011). DB-SRA generates 

probability distributions of the maximum sustainable yield (MSY) and was implemented in this study using 

a delay-difference production model: 

ὄ ὄ ὖὄ ὅ                                                         ὉήȢςȢρρ 

Where Bt is biomass at time t, P is latent annual production (based on a preceding parental biomass), and a 

is the age at reproductive maturity. The latent production function used in this analysis is the alternative 

hybrid Schaefer-PTF model developed by Dick and MacCall (2011) that approximates a Beverton-Holt 

stock-recruitment relationship without restricting peak productivity to one-half of the unfished biomass. 

DB-SRA requires the catch time series and five input parameters: (1) an estimate of stock status, (2) the 

biomass at MSY relative to the unfished state (BMSY/K), (3) the ratio of FMSY to M, (4) M, and (5) the age of 

50% maturity.   

2.2.2 ECONOMIC MODEL 

The economic model simulated changes in historical fishing behavior in response to an annually varying 

constraint (TAC of canary rockfish) on a multi-species fishery. Fleet behavior defined the difference 

between the TAC and the actual catch, creating a more realistic evaluation of assessment scenarios than 

assuming actual catch is equal to the value of the constraint, or setting the difference between TAC and 

catch with an error term. The interaction of the economic model with the biological model through 

differential selectivities also caused differences in the age structure of the removal from the population. 

Because different fleets also had different selectivities due to where and how they fish, the actual catch 

could have a different age structure than expected from a purely biological model. The major challenge in 

this modeling exercise was determining how best to model the complex U.S. west coast trawl fishery in a 

way that preserved the historical structure of the fishing fleet while allowing the model to respond to 

changes in the TAC for canary rockfish, without markedly increasing overall model complexity.  
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Historically, the U.S. west coast trawl fleet was composed of thousands of vessels, differing in size and 

horsepower, with significant heterogeneity in fishing behavior. Using vessel-level fish ticket information 

collected by the west coast states and maintained by the Pacific States Marine Fisheries Commission 

(PSMFC), we defined six mutually exclusive fishing strategies (Table 2.2) that encompassed the entire 

range of fishing behavior displayed by the west coast trawl fleet during the modeling period, and which are 

similar to those used by Babcock and Pikitch (2000). These strategies are defined using the gear type 

indicated on the fish ticket, and the species composition of the catch. We assumed that a single fish ticket 

corresponded to one ótripô and assigned a óstrategyô to every fish ticket collected within the modeling period. 

Our strategies are somewhat analogous to the concept of óm®tiersô discussed by Ulrich et al. (2002), which 

categorize fishing behavior in terms of a target species and area fished. 

Table 2.2: Fishing strategy definitions for the economic model       

Code Strategy Description Notes 

DT Dover/Thornyhead

/Sablefish (DTS 

complex) 

 If a fish ticket record shows "any 

other trawl" gear is used and 

DTS >= 33% revenues for the trip. 

Deep water fishing on the 

continental slope 

SR shelf rockfish If a fish ticket record shows "any 

other trawl" gear is used and DTS 

< 33% revenues and rockfish 

complex > 50% revenue 

Shallow water fishing 

with roller gear on rocky 

habitat 

PW Pacific whiting  If a fish ticket record shows 

"midwater trawl" gear is used and 

whiting >= 50% revenue for the 

trip 

Mid-water trawling, no 

roller gear, exceedingly 

low bycatch 

PY pelagic rockfish  If a fish ticket record shows 

"midwater trawl" gear is used and 

whiting < 50% revenue for the trip 

Mid-water trawling for 

pelagic rockfish species 

SH shrimp  If a fish ticket record shows any 

"shrimp trawl" gear is used. 

Small mesh size nets on 

mud/sand bottoms, often 

shallow water. 

NF nearshore mixed 

species 

 If a fish ticket record shows "any 

other trawl" gear is used and DTS 

< 33% revenues and rockfish 

complex < 50% revenue. 

Main targets are 

roundfish and flatfish- 

bottom trawl gear used, 

often with small roller 

gear. 
 

Examination of the data showed that some vessels exclusively pursued one strategy in a given year, while 

others switched between strategies throughout the year. In order to impose a historical structure on the 
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model, we created ósub-fleetsô composed of all vessels in the fishery that pursued a particular set of 

strategies in a given year. For example, vessels which pursued the DT strategy exclusively were grouped 

into a sub-fleet, and vessels that pursued only strategies DT, SR, and PY in a given year were grouped into 

another sub-fleet. With a possible number of combinations in each year of 720 (6!), a maximum of 38 sub-

fleets in 1994, and a minimum of 21 sub-fleets in 2006 characterized the fleet. Using vessel logbook data 

from 1987 to 2006 (the years in which logbook data were available) we calculated average length of trip 

(measured in days) by strategy in each year.  For the years 1981-1986 (in which logbook data were 

unavailable) we used the average of the trip lengths in 1987 and 1988 as an estimate. The capacity of each 

sub-fleet in each year (y), defined as number of trip days, was calculated as: 

ὅὥὴὥὧὭὸώρȢπυϽ ὔόάὦὩὶ έὪ ὸὶὭὴί άὥὨὩ ὒὩὲὫὸὬ έὪ ὸὶὭὴ Ὠὥώί                ὉήȢςȢρς 

Where j is strategy and f is sub-fleet. Our capacity calculation assumed that vessels would exert a maximum 

effort equal to what was observed historically, while allowing total effort to increase by a nominal 5% in 

each year. This assumption precludes the ability of vessels to exert a total amount of effort much beyond 

historical levels.  

2.2.2.1 Selectivity-by-Strategy 

In addition to gear type, target species, and catch composition, strategies are associated with different 

selectivity curves for canary rockfish. Selectivity curves are used in the equations for survival (Eq. 2.1), 

and catch (Eq. 2.7) to account for differential fishing mortality by age. Since each strategy was defined by 

different gear types and fishing depths, and the depth distribution and vulnerability to gear of canary 

rockfish is age-specific, the selectivity curves vary by strategy according to the hypothesized vulnerability 

of canary rockfish to a strategy. The DT, PY, and SR strategies were defined by asymptotic selectivity 

based on the selectivity curve of the Oregon trawl fleet, as defined by the 2009 assessment (Stewart 2009). 

The PW strategy was also asymptotic and based on the at-sea whiting selectivity curve in the 2009 

assessment. The highly domed-shape selectivity curve of the NF strategy was based on the southern 

California trawl fleet selectivity curve (Stewart 2009). Finally, the SH strategy was defined by an 

exponential-logistic selectivity curve: 
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Where 1/Ŭ is the scale, ɓ the peak, and  ‎ is the shape parameter. Alpha (female: 2.0, male: 2.1) beta (female: 

5, male: 5) and gamma (female: 0.2, male: 0.14) were chosen to create a hypothetical, biologically realistic, 

curve describing the selectivity of canary rockfish to the shrimp fishery. Given that a shrimp trawl operates 

with fine mesh nets over soft bottom, and young canary rockfish settle in shallower water before moving 

deeper (Love, Yoklavich, and Thorsteinson 2002), the younger age classes are more likely available to the 

shrimp trawl vessels. Selectivity time blocks were used to model management actions that required gear 

modifications, specifically, footrope restrictions which removed the bottom trawl fleet from high-relief 

rocky habitat. Selectivity is assumed constant through time for the PW, DT, PY, NF, and SH strategies. 

Selectivity for the SR strategy switches from asymptotic to dome-shaped in 1995 and changes again in 2000 

(figure 1).  Time blocks for the SR strategy are based on the 2009 canary rockfish stock assessment (Stewart 

2009). 

 

Figure 2.2: Canary rockfish selectivity curves by strategy. Males (dotted line) and female rockfish (solid 

line). 

All species caught in the fishery were assigned to 11 species groups (Table 2.3). Canary rockfish formed 

its own species group and all other species were formed into groups of economic and strategy-specific 

relevance. For example, the Dover sole/Thorny-head rockfish/Sablefish (DTS) complex was composed of 

these three species and is a common target group for trawlers in the west coast fishery. This complex made 

up a significant portion of the catch in the DT strategy. Pacific whiting and shrimp are main targets for 
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pelagic trawlers and shrimp trawlers respectively and make up the majority of catch in the PW and SH 

strategies.  

Table 2.3: Species groupings for the economic model 

Code Species 

CAN Canary rockfish 

DTS Dover sole, Thornyheads, Sablefish 

OFF All other flatfish 

ORF All other rockfish 

OOF All other roundfish 

SHS Sharks and skates 

PWH Pacific whiting 

SHR Shrimp 

PEL Pelagic species 

HMS Highly migratory species 

OTH All other species 

 

Using fish ticket revenue data in each year we calculated average annual price per species group by dividing 

total revenues per species group by delivered weight. We found significant differences in species group 

prices between strategies, possibly due to 1) a different mix of species caught in each strategy which leads 

to price differentials 2) different volumes of species delivered, 3) seasonal market conditions, or 4) 

perceived quality differences in the catch between strategies. We calculated catch per trip of each species 

group as the trip average of the total catch by strategy in each year, and revenue per strategy trip was 

calculated as the product of this and the calculated price by species group, which included strategy-specific 

differences.   

2.2.2.2 Economic model output: actual catch  

For the economic model to return actual catch to the biological model, we had to define the historical 

relationship between canary rockfish biomass and catch rates in the fishery. We estimated log-log 
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transformed linear regressions for the relationship between observed catch (from fish ticket data) and total 

biomass (as estimated in the 2009 stock assessment for canary rockfish (Stewart 2009)). We conducted 

separate regressions for the DT, SR, PY, and NF strategies (j). Canary catch was extremely low in the SH 

and PW strategies and we assumed that catch in these strategies did not change with canary stock status.  

The estimating equations took the form: 

ÌÎÃÁÎÁÒÙ ÃÁÔÃÈ ÐÅÒ ὸὶὭὴ‍ ‍ ÌÎὧὥὲὥὶώ ὦὭέάὥίί‐                      ὉήȢςȢρφ  

The results of these regressions are shown in Table 4.  In the simulation we used the beta coefficients and 

estimates of canary rockfish biomass derived from the biological model to calculate canary rockfish catch 

per trip in each year for each strategy.  Catch per trip of the other 10 species groups were assumed to remain 

at historical levels.  The actual catch of canary rockfish was calculated as the product of catch per trip by 

strategy (kg) and the level of effort exerted (trips).   

Table 2.4: Regression coefficients used to estimate actual catch per trip by strategy.  

Strategy ɓ1 (CONSTANT) ɓ2  (lnBIOMASS)  

DT 2.2478  0.3277 * 

SR 3.3517 * .3734 * 

PY -17.021 * 2.0102 * 

NF -1.2576  .5216 * 

* indicates significance at 5% level. 

 

The purpose of the economic model was not to arrive at a perfectly accurate retrospective estimation of 

fleet profitability, but rather to evaluate changes in fishing behavior due to the constraints on harvest of a 

single species in a multi-species fishery. We did not include a detailed measure of fleet profitability (e.g., 

fixed costs) with which we could evaluate welfare effects. We did, however, include a proxy for variable 

costs. In deciding on a particular fishing strategy at any point in time, profit-maximizing fishermen will 

decide on the action that maximizes vessel profits, and in doing so maximizes crew share, which is normally 

paid on the lay system (PSMFC 1999). While crew compensation is the main component of variable cost, 

we did not include a measure of it as vessel behavior is hypothesized to respond to changes in net revenue 

over alternative strategies, of which crew share is a simple proportion. The second largest component of 

variable costs, which we hypothesized may have an effect on fishermenôs choice of strategy, is fuel costs 
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(an average of 13% of total variable costs) (PSMFC 1999). Fuel costs vary according to the length of time 

that the vessel takes to make a trip, how far away from port the vessel fishes, and the particular activity that 

the vessel is engaged. To calculate average fuel consumption per trip, we used data on average gallons of 

fuel consumed per hour by fishing activity from an economic survey conducted by the Pacific States Marine 

Fisheries Commission (PSMFC 1999). Of the vessels in the survey, fuel consumption averaged 13.15 

gallons per hour while trawling, 11.06 gallons per hour while shrimping, 11.58 gallons per hour while 

steaming fully loaded, and 9.96 gallons per hour while steaming empty. Using vessel logbook data on length 

of trip by strategy, we assumed that a vesselôs trip time was spent equally between trawling (or shrimping 

in the SH strategy), steaming-fully loaded, and steaming-empty. We then combined average fuel 

consumption per trip by strategy with a price series of average cost of #2 diesel fuel in U.S. west coast ports 

from 1981 to 2006 (EIA 2009) to arrive at an estimate of fuel consumption per trip by fishing strategy.  

As our model was a short-run model of fleet behavior, and entry and exit into the fishery were effectively 

captured in our time series data on fleet capacity, we did not include entry/exit behavior endogenously in 

the model. The implicit assumption is that the change in the stock status and availability to the fishermen 

of canary rockfish would not have affected a fishermanôs entry or exit decision within a particular year. As 

a result, fixed costs were not included in the model. Using our calculated historical prices, trip fuel costs, 

and estimates of actual catch per trip, we conducted an optimization procedure in each year using GAMS 

(GAMS Development Corporation.2013), in which the decision variable was the number of trips made in 

each strategy by sub-fleet. The objective function for each year, y, is: 

ὓὥὼὔὉὝ ὙὉὠὉὔὟὉ ὢ Ͻ Ὑ ὢ Ͻὄ                     ὉήȢςȢρχ 

Where i=species, j=strategy, f=sub-fleet, Xfj is the number of trips made per sub-fleet in each strategy, Rij is 

revenue per trip for each species per strategy, and Bjf is fuel cost per trip per strategy. 

Equation 2.17 was maximized subject to constraints on catch (equation 2.18) and effort (equation 2.19), 

which varied according to sub-fleet: 

ὢ Ͻὅ  Ὁ                   ᶅ  Ὥȟώ                                            ὉήȢςȢρψ 
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And 

ὢ ϽὈ   Ὃ                            ᶅ Ὢȟώ                                           ὉήȢςȢρω 

Where Cij is catch per trip by species in each strategy, Ei is TAC by species group, Dj is length of trip by 

strategy, and Gf is the historical capacity of each sub-fleet. Note that while effort could not exceed that 

observed historically, it was free to vary below that limit. 

The fishery was modeled from a sole owner perspective that allowed us to arrive at an outcome that 

provided a óbest-caseô scenario with which to evaluate possible changes to the fishery. As well as capacity 

constraints (canary rockfish TAC) on the sub-fleets in each year, sub-fleets were limited to a maximum 

allowable catch of various species.  We relaxed the constraints on the ñsharks and skatesò (SHS), ñpelagicò 

(PEL), ñhighly migratoryò (HMS), and ñother speciesò (OTH) species groups, by setting these TACs to 

levels that would not be reached before other species became constraining in the model. These species 

groups have not historically been subject to catch limits. As Pacific whiting and shrimp were the main 

drivers of catch in the PW and SH strategies, and canary rockfish were rarely present in these catches, we 

set the TACS for these species equal to the amount of fish actually caught historically. Canary rockfish was 

a significant component of the catch in all other strategies and in order to allow some flexibility in the 

model we increased TACs for DTS, OFF, ORF, and OOF species groups by 5% above actual historical 

catch.  We therefore treated historical catches as pseudo catch-limits in our model, albeit with flexibility 

built-in.    

2.3 Results 

2.3.1 MODELED CATCH 

Under the DR and DM management scenarios, canary rockfish TACs were set far below the level of catch 

observed historically from 1981-1993, with an initial decrease of 43% and 64%, respectively (Fig. 2.3).  

After this initial period, TACs increased above the level observed historically, and remained above the 

historical catch as the modeled canary population never became overfished. The DM scenario was more 

restrictive than the DR scenario during the first 10 years of the modeling period, but this relationship 

reversed thereafter. Canary rockfish catches were generally equal to the TAC until 2000, and then fell below 

the TAC level thereafter due to other species in the model becoming constraining on fishing effort.   
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Figure 2.3: Canary rockfish TACs and modeled catch. 

2.3.2 FLEET BEHAVIOR 

To maximize total fishery profits, fleets switched between strategies depending on historical prices, catch 

rates of all species groups, and the constraints on catch of species groups. A fundamental pattern emerged: 

when canary TACs were reduced to levels significantly below historical catches, fleets exerted increased 

levels of effort in the pelagic rockfish (PY) strategy and decreased effort in the shelf rockfish (SR) strategy 

(Fig. 2.4). Switching behavior was not as evident (although still present) between the other strategies, and 

effort levels in these strategies remained largely the same as historical levels. The non-SR and PY strategies 

were associated with significantly lower catch rates of canary rockfish and were less affected by changes 

in the catch limits for this species. 
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Figure 2.4:  Number of fishing trips (effort) per strategy. 

2.3.3 OPERATING PROFITS 

As a result of the reduced TACs and catches through the 1990s, model-generated operating profits were far 

below the level observed historically during this time period (Fig. 2.5). After 1998, due to a combination 

of increased TACs and increased catch per trip of canary rockfish, operating profits increased above the 

level observed historically, and remained there for the remainder of the simulation period. At a 5% discount 

rate, and looking retrospectively at the cumulative value of the operating profits in the fishery, the historical 

value in the west coast trawl fishery from the base simulation was calculated as $943.63 million. Under DR 

and DM assessments, that value was reduced to $928.57 million and $923.1 million, respectively. This 

represents a discounted difference of $15.06 million for the DR scenario, and $20.53 million for the DM 

scenario, or 1.6% and 2.2%, respectively.  
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Figure 2.5: Change in operating profits (the difference between total revenues and variable costs) relative 

to historical profits for the data-rich and data-moderate scenarios. The dashed line represents 

the level of operating profits calculated using the base scenario 

2.3.4 MARGINAL VALUES 

In our model canary rockfish TACs were constraining on the fleet from 1981-1999 for the two management 

scenarios, and until 2006 for the base scenario (Fig. 2.6).  The marginal value of canary rockfish for each 

management scenario, is interpreted as the value to the objective function (total fishery operating profits) 

of relaxing the catch constraint on canary rockfish by a marginal amount. In the base run, canary rockfish 

are extremely constraining towards the latter end of the modeling period with a maximum marginal value 

of $22.19 in 2004 (Fig. 2.6). In each of the management scenarios, canary rockfish were a constraining 

species in the model until 1999, after which other species became constraining (Fig. 2.7). As a result, 

modeled catches of canary rockfish failed to reach the level of the TAC in these later years.  
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Figure 2.6: Marginal value of canary rockfish for each management scenario. The marginal value 

represents the value to the objective function (total fleet operating profits) of relaxing the 

catch constraint on canary rockfish by one kg. 

 

 

Figure 2.7: Marginal values of Other Species Groups in the Model. Marginal values for the óOther 

Roundfishô group were in the $2-$5 range between 1995 and 2005. 
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2.4 Discussion 

Our bioeconomic model illustrates how an economic model of fishing behavior can be incorporated into an 

assessment evaluation model. We also demonstrate a method for representing the behavior of 

heterogeneous fishermen in a complex, multi-species fishery based on their portfolios of multiple strategies. 

Our results showed that under two management scenarios (based on the 40-10 and DB-SRA models), the 

stock status of canary rockfish could have remained at a level that was above the management target. Total 

operating profits in the fishery for all species, however, would likely have decreased significantly 

throughout the modeled time period due to the constraining nature of decreasing allowable catches of canary 

rockfish. In addition, altered targeting behavior of fishermen could have had potentially serious 

consequences for other stocks in the fishery. Our model shows that fishermen are likely to have changed 

their behavior significantly, and in such a way that would have significant impacts on the other stocks in 

the fishery, including currently other overfished stocks.  The main switching behavior that occurred under 

both alternative management scenarios was between the shelf rockfish (SR) strategy and the pelagic 

rockfish (PY) strategy. The main component of catch in both the SR and PY strategies was the rockfish 

(ORF) complex, although catches of canary rockfish were almost exclusively higher in the SR strategy than 

the PY strategy. The pelagic stocks of rockfish, which are mainly composed of yellowtail rockfish (Sebastes 

flavidus) and widow rockfish (Sebastes entomelas) (two species that are or recently have been subject to 

rebuilding plans), would have been exposed to more fishing pressure. Decreased pressure in the SR strategy 

has important implications for pressure exerted on species associated with this strategy. Many of the species 

designated as overfished in the early 2000s by the Pacific Fisheries Management Council (PFMC) have 

historically been caught by fishermen employing this strategy. These species include the Pacific ocean 

perch (Sebastes alutus), yelloweye rockfish (Sebastes ruberrimus), bocaccio rockfish (Sebastes 

paucispinis), darkblotched rockfish (Sebastes crameri), yellowtail rockfish (Sebastes flavidus), cowcod 

(Sebastes levis), and lingcod (Ophiodon elongatus). Our results suggest that decreasing the binding TAC 

for canary rockfish would have meant decreased pressure on a number of species that were designated as 

overfished in the early 2000s, while increasing pressure on others. 

We showed that after a period when canary rockfish catches (and TACs) would have been far below their 

historical levels, eventually harvest could have superseded the historical catch.  This pattern of lower, less 

variable catch followed by steadily increasing catches in the later part of the modeling period translated 

into operating profits that followed the same pattern. While operating profits were shown to gradually 

supersede the level observed historically, profits were significantly lower in the early stages of the modeling 
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period. From a retrospective perspective, and given a 5% discount rate, the foregone value of operating 

profits (revenues minus fuel costs) in the fishery between 1981 and 2006 amounted to $15.06 million for 

the 40-10 scenario, and $20.53 million for the DB-SRA scenario, or 1.6 and 2.2% of total discounted profits, 

respectively. This was due to the decreased TACs for canary rockfish in the early stages of the simulation 

which caused vessels to switch from the relatively profitable SR strategy to the less profitable PY strategy. 

In addition, total effort levels in the fishery decreased significantly relative to historical levels between 1981 

and 1985 due to the constraining nature of the canary TAC. Total effort was reduced by an average of 3.3% 

for the 40-10 scenario, and 5% for the DB-SRA scenario during this early time period. After this initial 

period, total effort levels agreed relatively well with historical levels and changes in operating profits were 

due mainly to switching behavior, illustrating the potential flexibility that fishermen have in responding to 

catch constraints.  

In terms of discounted future value of operating profits, the 40-10 harvest control rule out-performed the 

DB-SRA method.  However, without accounting for the difference in costs of completing assessments and 

management actions under the two scenarios, it is unclear which scenario would have resulted in higher 

benefits to the fishery. The 40-10 harvest control rule relies on a more accurate estimate of stock status in 

each year. These estimates are generally derived from complex assessment models that make use of both 

fishery independent data (mainly collected through an annual west coast trawl survey), and fishery 

dependent data (such as catch and effort data). Currently, full stock assessments are conducted for 

approximately 8 species per year due to resource constraints. DB-SRA is classified as a ódata-poorô method, 

and relies on a time-series of fisheries catch as the main input, although initial estimates of stock status and 

biological parameters are required. Given that no fisheries independent data are required for implementation 

of DB-SRA, it is relatively less expensive than a 40-10 approach that requires full assessments. Depending 

on the costs of assessments, our results suggest that a DB-SRA approach could be more economically 

efficient than other TAC-setting approaches that require full stock assessments.  

Maintaining a healthy population of canary rockfish would have meant significant changes to the fishery 

starting in 1981.  Management capabilities of state and federal agencies in the early 1980s were in a 

development phase- strict enforcement of catch limits and the prevention of discarding would have proven 

difficult. In addition, stock assessment techniques were still being developed and there was limited 

knowledge of the life history of rockfish species. As is true for any model that attempts to capture the salient 

features of a complex fisheries system, the assumptions restrict the applicability of our results and 

conclusions that we may draw from them (Carruthers et al. 2014). For example, trip limits for canary 
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rockfish were not instituted until the mid-1990s, although trip limits for the Sebastes complex (of which 

canary are a component) were introduced starting in the mid- 1980s. These trips limits changed frequently 

in response to many factors such as in-season catch rates and assessments. Modeling how these trip limits 

were set in response to these factors was an unrealistic task and as a result we imposed a fleet-wide TAC 

which served as the maximum amount of each species that each vessel could catch. In estimating the 

relationship between catch per trip of canary rockfish and the biomass of the stock, we used the best 

available estimate of stock biomass through time. These estimates were derived from the most recent stock 

assessment for this species (Stewart 2009). Whereas catch, revenue, and effort data are observable and are 

known with certainty (minus measurement error), stock status at any moment in time is not.  Fish are not 

directly observable and any information regarding the status of the stock has to be inferred from fitted 

population dynamics models based on samples from the population. Estimates of the status of the canary 

population are thus likely to be uncertain. Catch and revenue data are also subject to reliability issues. 

Although the trend through time is one of greater collection of data on a species level, in the early years of 

the modeling period estimates of individual species catch were restricted to a few commercially important 

species. Catch reconstructions based on species composition sampling conducted by state agencies make 

up a significant portion of historical catch by-species-data. However, given these caveats, our model does 

illustrate implications of managing one species in a multi-species fishery.   

The capacity constraint that we employed- in which sub-fleets were restricted to the ómixô of strategies and 

total effort levels consistent with historical patterns allowed a historical structure to be imposed on the 

model. This method may prove useful for characterizing fishing fleets in future work. The main assumption 

in using this approach was that the influence of a changing TAC of only one species would not be enough 

to cause significant capacity changes in the fishery in a given year. In addition, we assumed that within a 

year, vessels that historically did not target a particular óstrategyô would not change their targeting behavior 

due to a change in the TAC of canary rockfish. Employing these assumptions allowed us to examine 

potential fishing fleet behavior in a way that preserved the historical characteristics of the west coast trawl 

fleet.  

The U.S. west coast trawl fishery is extremely complex with many heterogeneous vessels, a substantial 

geographic range, and many species. Modeling this type of complex fishery is a challenge and requires 

some simplifying assumptions. In some ways the retrospective approach simplified this task because instead 

of predicting variables such as fish prices, fuel costs, and fleet size and structure into the future, these 

variables were available from publicly accessible databases and were known with a relative amount of 
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certainty. What was left was to predict how fishermen would have made decisions when faced with a change 

in fishery conditions, such as an initial reduction in the allowable catch of a currently overfished rockfish 

species. This task is arguably easier than predicting how fishermen would make decisions in the future 

given the high levels of uncertainty surrounding many aspects of the fishery.  As such, a retrospective 

approach has value in predicting the effects of management actions in complex fisheries situations, a value 

which may then potentially be used to inform future management. However, any results gleaned from a 

retrospective analysis may have limited applicability to current fisheries management in that our results do 

not tell us what the best course of action is, and what we are left with are useful insights on how a fishery 

may potentially respond to management actions.     

2.5 CONCLUSION 

The effects of a management action that reduces the total allowable catch of a single species in a multi-

species fishery often has unpredictable consequences on the economics of the fishery. We have explored a 

retrospective approach to modeling a complex multi-species fishery and showed that historical data can be 

used to reduce the number of ópredictionsô that must be made compared to a traditional óforward lookingô 

approach. We employed a novel fleet-strategy method of characterizing the historical structure of the west 

coast groundfish trawl fleet and used this structure to analyze the potential changes in fishermen behavior 

that could have occurred due to changing catch constraints for canary rockfish. While it is difficult to state 

precisely what ówould have happenedô, we showed that starting from a time when it was considered a 

healthy stock, if  canary rockfish had been managed using two contemporary methods for setting fisheries 

catch limits, fishing behavior is likely to have changed in such a way that would have had potentially 

beneficial stock effects on many threatened rockfish species commonly caught in a óshelf-rockfishô strategy, 

and potentially detrimental effects on two other species that are currently subject to rebuilding plans. 

Finally, we demonstrated that if the DB-SRA method had been used to set canary TACs throughout the 

simulation period, instead of the 40-10 method, foregone operating profits are likely to have been on the 

order ~2% of actual operating profits, not including the management and monitoring costs of implementing 

each method. As DB-SRA is likely a less expensive option than conducting full, data-rich, assessments, 

further research examining the full cost of conducting stock assessments could shed light on the relative 

economic benefits of these two approaches.  
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3. METHODS FOR THE SPATIAL DISTRIBUTION OF FISHING 

EFFORT IN BIOECONOMI C SIMULATION MODELS:  A 

COMPARISON  

3.1 Introduction 

Bioeconomic models that combine the salient components of fisheries in order to investigate the economic 

and biological impacts of management actions have become increasingly common over the last several 

decades (Larkin et al. 2011). Gordon (1954) and Schaefer (1954) were the early pioneers of this field, 

depicting a single-species fishery targeted by a homogeneous fleet, and at static bioeconomic equilibrium. 

In the sixty years since these seminal papers were published, a significant literature has developed on 

integrated biological and economic fishery models (see Prellezo et al. (2012) and  Knowler (2002) for 

reviews). In the development of these integrated models, relatively little attention has been paid to the 

subject of fisherman behavior and fleet dynamics, while far more attention has been paid to describing the 

spatial and temporal dynamics of fish stocks (van Putten et al. 2012; Pelletier and Mahévas 2005a). In most 

fishery bioeconomic simulation models, fishing effort is assumed to be determined exogenously to the 

model (van Putten et al. 2012), and in ways that are not supported by microeconomic theory and/or 

econometric analysis (Dalton and Ralston 2004). 

Many authors have emphasized that understanding harvester response in fisheries is critical for managing 

fisheries in ways that provide both economic and ecological benefits and avoid unintended management 

outcomes e.g. (Holland and Sutinen 1999; Hilborn and Walters 1987; Marchal et al. 2013; Fulton et al. 

2011; Salas and Gaertner 2004). These authors have emphasized the importance of including spatial 

interactions between the fisherman and the stock in fishery models. Models that assume that fishing effort 

is spatially distributed in relation only to biological factors such as stock abundance, and that do not take 

economic factors into account, may lead to erroneous results in predicting the pattern of fishing mortality. 

The pattern of fishing mortality (on both temporal and spatial scales) depends on fishermenôs short term 

effort decisions (Sampson 1991; Pelletier and Magal 1996; Wilen et al. 2002a; Pelletier and Mahévas 

2005a). As a simple example, if a fish stock at the beginning of a fishing season is homogenously distributed 

across several areas, vessels will tend to favor those areas closer to port ceteris paribus, as costs involved 

with travelling to and from the fishing grounds are lower. Disregarding spatial behavior in this simple 

example leads to over-predicting fishing effort in areas that are farther away from port, and under-predicting 

impacts on stock biomass in areas that are closer to port. In perhaps the seminal paper on this topic, 

Sanchirico and Wilen (2005) show that the optimal management of a fish stock depends on the ability to 
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distribute fishing effort over space and time in ways that recognize and integrate spatial biological processes 

such as dispersion, and factors that affect the spatial distribution of profits, such as area population levels. 

Spatial fishery models have also shed light on the welfare implications of spatially delineating fishing rights 

in a rights based management system. For example, Costello and Deacon (2007) show how non-spatial 

rights may constitute incomplete ownership of the resource, and how the spatial delineation of fishing rights 

can alleviate inefficiencies that arise from inter-vessel competition for high-valued patches. In addition to 

economic and social implications, understanding the spatial behavior of fishermen is also important for 

informing fishery managers on the status of the stock they are managing. The use of fishery dependent data 

(such as Catch per Unit Effort (CPUE)) in informing stock assessments is widespread, and often the only 

biomass indicator when fishery independent surveys are not undertaken. Failure to take the spatial behavior 

of fishermen into account leads to problems in relating CPUE to a measure of stock abundance (Gillis 2003; 

Gillis, Peterman, and Tyler 1993). For example, the movement of vessels from areas in which stock 

abundance has been depleted to areas where abundance is still high keeps CPUE high even though the 

overall stock level is being reduced (Hilborn and Walters 1987). In response to this issue some authors have 

suggested that the spatial distribution of fishing effort is a better predictor of stock distribution than CPUE 

( Gillis, Peterman, and Tyler 1993). Failure to accurately predict how the level and the distribution of fishing 

effort will change as a result of a management decision therefore has potentially serious implications for 

policy analysis. 

Because of the increased recognition of the importance of space in fisheries, the explicit treatment of spatial 

interactions in fishery models, while not new e.g. Caddy (1975), has seen a significant increase in recent 

years (Pelletier and Mahévas 2005a; Sanchirico and Wilen 2005; Powers and Abeare 2009). While 

analytical models of spatial fishery processes are important, especially for gleaning important results about 

a theoretical system, they become intractable fairly quickly when the number of dimensions increases 

(stocks, age classes, spatial areas, time periods). For example, Tahvonen (2009) develops a two age class 

model to show how age-structure and endogenous recruitment influence the optimal steady state population 

and harvest of the resource. Skonhoft, Vestergaard, and Quaas (2012) develop an age-structured model of 

a fishery where two fishing fleets target two different age classes of the stock, with one cohort not yet 

recruited into the fishery and investigate optimal harvesting under different assumptions regarding fleet 

fishing selectivity. The number of results these authors glean from the model is limited, however, as 

understanding the interactions of the economic and biological forces at work in the model proved difficult.  

Instead, the authors show that optimal harvesting essentially depends on the various biological and 
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economic parameters in the model. These considerations, and the need to perform policy analysis for 

complex real world situations has limited the use of analytical models. Bioeconomic fishery systems are 

now generally analyzed using simulation techniques (Pelletier and Mahévas 2005a; Powers and Abeare 

2009).  

Bioeconomic simulation models have become increasingly complex due to advances in modeling and 

computation techniques. This complexity, however, comes at a cost since the interpretability of results 

quickly becomes difficult as the number of model inputs increases (Hilborn and Walters 1987) and 

sensitivity analyses quickly become impractical given the number and range of parameter values (Marchal 

et al. 2013). Unlike in analytical models, general results that apply over the full range of parameter values 

cannot be derived easily from simulation models where no explicit mathematical statement is evaluated as 

a closed form solution. However, one of the main advantages of simulation models is that they encourage 

exploration of alternative hypotheses -- something that is true even for very simple simulation models 

(Hilborn and Walters 1987). Bioeconomic fishery simulation models generally require an endogenous 

calculation of the level and spatial distribution of effort exerted in a fishery. In many of these models the 

level of effort is either set at: 1) historically observed values (e.g. (Kaplan, Holland, and Fulton 2014; 

Walters and Bonfil 1999), 2) at a user-defined constant level (e.g. Mahévas and Pelletier (2004), or 3) at a 

management-prescribed level (such as the effort required to attain a target fishing mortality rate e.g. 

(Holland and Herrera 2012). The distribution of effort is then determined according to a rule or algorithm 

that prescribes how effort should be distributed according to stock, fleet, and other characteristics. Methods 

that have been used to distribute effort spatially in bioeconomic fisheries models include the gravity model 

e.g. Caddy (1975), models based on the Ideal Free Distribution (IFD) (e.g. Powers and Abeare (2009)), 

models based on the Random Utility Model (RUM) framework (e.g. Holland and Sutinen (1999)), the 

sequential model (e.g. Hilborn and Walters (1987)), arbitrary-type methods such as distributing effort 

equally among areas (e.g. Pelletier and Magal (1996); Mahévas and Pelletier (2004)), and game theoretic 

models (e.g. White and Costello (2011); Holland and Herrera (2012)). However, most bioeconomic 

simulation models rely on very simplistic methods for distributing fishing effort (Pelletier and Mahévas 

2005a).Whatever the method of distributing fishing effort between areas, at a fundamental level they all 

aspire to realistically represent fishermenôs spatial effort decisions, often in response to changes in fishery 

conditions.  

Economic theory predicts that the spatial distribution of fishing effort will be determined by the expected 

net returns of fishing in different locations (Gordon 1954). The theory is that if fishermen are homogeneous 
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and have perfect information, when net returns (including the costs of moving) are higher in alternative 

locations, vessels will move between grounds until profit rates are equal across grounds (Holland and 

Sutinen 2000). The basic intuition is that fishermen will change their effort distribution until the marginal 

net benefit of doing so falls to zero, which results in equalized marginal net revenues between areas. 

However, the assumptions underlying this theory are easily violated in real life situations and a variety of 

factors can impact the spatial distribution of fishing effort (Pelletier and Mahévas 2005a). Individual vessel 

heterogeneity (such as a vesselôs physical characteristics (e.g. size, horsepower), and fishermenôs attitudes, 

abilities, and habitual behavior) interact with conditions in the fishery (such as weather, the distribution of 

other vesselsô effort, and the heterogeneous distribution of the resource in relation to port location) and 

result in violations of the predictions of Gordonôs theory (Pelletier and Mahévas 2005a; Holland and 

Sutinen 1999; Abrahams and Healey 1990; Caddy 1975). Predicting the spatial distribution of effort in a 

fishery is therefore no simple task and is often a source of uncertainty for fishery managers and policy 

makers (Dalton and Ralston 2004). 

This economic theory for how fishermen distribute effort over space has a parallel in the theory of the Ideal 

Free Distribution (IFD) (after Fretwell and Calver (1969)), which derives from the ecological literature on 

foraging theory. The IFD provides a testable null hypothesis for how fishermen distribute themselves in 

space (Gillis, Peterman, and Tyler 1993). While originally applied to describe the spatial distribution of 

birds in their habitat, when applied in a fishery setting the theory predicts that if 1) fishermen are of equal 

ófitnessô, 2) interference competition between fishermen exists, 3) movement costs are zero, and 4) 

information on resource and fishermenôs distribution is unrestricted, vessels will move between areas until 

the average net revenue per unit effort is equalized between areas (Gillis, van der Lee, and Walters 2012). 

Recently there has been increasing interest in applying models based on the theory of the IFD to fishery 

situations, although rarely in a computational bioeconomic framework (Gillis 2003; Gillis, Peterman, and 

Tyler 1993; Powers and Abeare 2009; van der Lee et al. 2014; Gillis, van der Lee, and Walters 2012; 

Abernethy et al. 2007).  

In the classical formulation of the theory, and in the cases in the literature where it has been applied to 

fisheries, the strategic interaction that gives rise to the IFD is a result of interference competition between 

agents. Competition between fishermen can take two forms- interference competition and exploitation 

competition (Boyce 1992; Gillis and Peterman 1998). Interference competition occurs as a result of the 

reduction in fishing success due to physical interactions between fishing vessels and/or their gear, as well 

as impacts on fish stock behavior;  however the underlying processes giving rise to it are poorly understood 
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(Rijnsdorp et al. 2011; van Putten et al. 2012). For example, Dalton and Ralston (2004) find evidence of 

vessel crowding externalities in an econometric analysis of a subset of the California groundfish trawl fleet 

but do not describe how it occurs. Interference competition can occur in all fisheries, but is thought to be 

prevalent in fisheries where the resource is renewing (generally through fish movement) throughout a 

fishing period, or in geographically small fishery areas. This type of competition occurs, for example, in 

the Prince William Sound salmon purse seine fisheries in Alaska.  In these fisheries, fishermen have a 

tendency to set their nets near geographic features, such as a point, that may concentrate the flow of salmon 

interacting with the gear. In some cases fishermen wait several hours for a turn at fishing the ópointô.  

Exploitation competition, on the other hand, occurs when the fishery resource is locally depleted by the 

impact of fishing gears, which affects the catch rate for other vessels in the fishery. Exploitation 

competition, apart from being a logical process in all fisheries where catch is taken, is thought to be 

especially prevalent in fisheries where the resource is non-renewing during a fishing period; for example in 

sedentary abalone and geoduck fisheries (Gillis and Peterman 1998). Both exploitation and interference 

competition  are likely to exist in most fisheries, but the difficulty in distinguishing between the two types 

of competition will remain a continuing problem until increased levels of information regarding the spatial 

distribution, abundance, and behavior of both fish stocks and fishing vessels are generated (Gillis and 

Peterman 1998; Gillis 2003). For example, if a fishery resource is non-renewing during a single time period, 

catch rates may increase in an area after a decrease in the number of vessels fishing due to reduced 

interference competition. However, if the resource is renewing during a time period, catch rates could 

increase with a decrease in the number of vessels fishing even in the absence of interference competition. 

In general, if catch rates are observed to decline with an increase in fishing effort in an area it is an extremely 

difficult task to ascertain whether the reduction in catch rates is a function of gear and vessel interactions, 

or the localized depletion of the resource. In many cases both processes may be at work (Gillis and Peterman 

1998). 

The application of the IFD to fisheries has been criticized as too simplistic (Holland and Sutinen 1999) or 

inadequately justified (Abernethy et al. 2007; Allen and McGlade 1986). In addition its inclusion in an 

operational simulation model is complicated by the fact that the theory of the IFD does not make any 

assumptions regarding how the distribution is attained (Wilson 1982). However, empirical evidence of its 

appearance has been presented in cases where the assumptions that underpin the theory have been relaxed 

(Gillis, van der Lee, and Walters 2012). The IFD has been shown to constitute a Nash equilibrium (Nash 

1951), a situation where all óplayersô in a game of strategic interaction (in our case competition between 
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fishermen) cannot be made better off by deviating from the IFD (Quijano and Passino 2007). It is therefore 

intuitively appealing to economists. In addition, in situations when the various assumptions hold, the end 

predictions of the IFD and Gordonôs economic theory are the same -- that average net revenue (or profit) 

per unit effort are equalized among areas in which fishing occurs. What is different is how this distribution 

is achieved- the IFD relies on interference competition between vessels, while Gordonôs theory relies on 

exploitation competition.  

The purposes of this paper are as follows. First, we discuss the theoretical basis and review the practical 

applications of several of the most common methods for distributing effort in spatially explicit bioeconomic 

simulation models. Second, we introduce a game theoretic method (the óBaranov-Nashô (B-N) model) for 

resolving the spatial distribution of fishing effort in a bioeconomic simulation model. The method is based 

on the well-known Baranov catch equation (Baranov 1918), the assumption that competition exists between 

vessels, and that a Nash Equilibrium (NE) spatial distribution of fishing effort can arise. An algorithm for 

solving the model and tests for NE existence under effort and catch constraints are provided. Third, given 

the often ad hoc decision of choice of sub-model with which to distribute fishing effort, and the fact that it 

is not clear how the predictions made by each type of model differ, we simulate the short term effort 

distributions that result from their use in a simple stylized model of a fishery and compare these to the 

predictions of the B-N model. We simulate a simple model of a fishery to examine the predictions of each 

model under different economic and biological conditions, and determine the conditions under which 

systematic differences exist. 

3.1.1 CURRENT METHODS FOR DISTRIBUTING FISHING EFFORT IN 

BIOECONOMIC SIMULATION MODELS 

Apart from distributing effort evenly across space, several methods that have been applied in bioeconomic 

simulation models exist. All of the methods for distributing fishing effort in simulation models that are 

discussed calculate the distribution of fishing effort in a model. The level of fishing effort is not endogenous 

to any of the frameworks explored. A separate calculation or assumption on fishing effort level must be 

made, often on the basis of an exogenous input from the user (e.g. (Ulrich et al. 2007; Hilborn and Walters 

1987).  
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3.1.1.1 Gravity Model 

The gravity model, while employed previously in recreational site choice models (see Hunt (2005) for a 

discussion), was originally employed in the fisheries literature by Caddy (1975). The gravity model 

provides a mechanism for distributing fishing effort between areas in a fishery in proportion to the relative 

óattractivenessô of each area.  The general form of the model is:  

ὴ  
ὥ

Вὥ
                                                                                        ὉήȢσȢρ 

Where pi is the proportion of effort in fishing ground i (of j grounds), and ai is the attractiveness of that 

ground. Attractiveness is generally linked to expected net revenue or expected catch of fishing in that 

ground.  For example, Walters and Bonfil (1999) included a gravity model in a spatial fisheries assessment 

model for the British Columbia trawl fleet in order to test possible spatial management measures. They 

modeled a single fleet and defined the proportion of effort in each ground to be equal to relative average 

gross income per unit effort on each ground, weighted by the costs of fishing in each ground. Seijo and 

Caddy (2008) utilized the proportion of the previous periodôs profits in each area to allocate effort in a 

bioeconomic metapopulation simulation model. Walters, Hilborn, and Parrish (2007) use a gravity model 

to distribute fishing effort in a bioeconomic simulation model designed to assess the effectiveness of the 

design of marine protected areas where attractiveness is measured by the logarithm of stock size in each 

area, and prices and costs of fishing are not included. ECOSPACE, a spatially explicit simulation model 

for policy evaluation (Walters, Pauly, and Christensen (1999)), also utilize the basic gravity model to 

spatially distribute fishing effort, where fishing effort is distributed in proportion to relative net revenue 

rates among areas.   

Some authors have observed that fishing effort appears to be more concentrated than what the basic gravity 

model predicts (Pelletier and Mahévas 2005a). In addition, the basic model does not take into account 

factors such as information flow between fishermen, so the basic model has been augmented in various 

ways. For example, Caddy (1975) re-weighted the measure of attractiveness by incorporating information 

on historical habits. Walters et al. (1993) amended the basic gravity model to include a parameter describing 

relative distance from port, and included a óconcentration parameterô to increase the attractiveness of the 

already attractive areas. For high values of the concentration parameter, the model approximates the 

sequential model (see next section). The gravity model has been amended in other ways. Allen and McGlade 

(1986) modified the attractiveness parameter to incorporate information exchange between fishers. The 
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authors re-specified the attractiveness parameter as the exponent of the product of expected net rate of 

return and an information quality parameter. Exponentiating this product also results in a high concentration 

of effort into more attractive areas.   

The gravity model, and variations of it, are attractive because of its simplicity and have been widely used, 

even though it has been criticized as not founded on any theory of fisherman behavior (Hunt 2005), and its 

progenitor in the fisheries literature states in the original paper that ñthis approach to the sub-allocation of 

effort is artificial although perhaps more reasonable than assuming that effort and abundance are 

independently distributedò (Caddy 1975, pg.1314). The literature suggests that the gravity model has not 

been tested using fisheries data.  

3.1.1.2 Random Utility and Discrete Choice Models  

Random utility models (RUMs) based on McFaddenôs (McFadden 1973) discrete choice framework have 

been relatively successful at identifying the factors that influence fishermenôs decision on where and when 

to fish, and at providing estimates of each factorôs importance (van der Lee et al. (2014)). The motivation 

for this class of models is the idea that fishermen will choose to fish in a particular discrete area if his or 

her expected utility from fishing in that area exceeds that of the other areas. Utility for each individual, i, 

of fishing in area j, is composed of an observable component (Vij), generally linked to the expected monetary 

benefit of fishing as well as other factors, and an unobservable component (‐  : 

Ὗ  ‍ὢ ‐                                                                        ὉήȢσȢς 

The observable component of utility is generally specified as a linear combination of explanatory variables 

and a vector of parameters (‍) that may be specific to an individual (i) or a choice (j).  In the multinomial 

logit model only individual specific characteristics are modeled, while choice specific attributes are 

included in the conditional logit model.  The nested logit model is useful in cases where the random 

component of utility is potentially correlated within particular groups of alternatives (Holland and Sutinen 

1999; Wilen et al. 2002a). Another variation of the logit model is the mixed logit model, which allows for 

both individual and choice-specific variables (see van der Lee et al. (2014) for an example of its application 

to a fishery situation). These models have been extensively discussed in the literature. For a good overview 

of discrete choice models based on the RUM framework see Train (2009). 
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While the assumptions regarding model structure vary between the different manifestations of the 

multinomial logit model, when included in a bioeconomic simulation model the choice probabilities that 

are the output of the regression analysis need to be translated into a distribution of fishing effort among 

areas. This is generally conducted by multiplying the choice probabilities of fishing in a particular area 

(which sum to unity over all areas), by a total level of effort to be distributed in a time period. For example, 

Holland (2000) estimates a nested logit model where fishermen first choose a fishery and zone combination 

(nest), and then choose an area within that nest, as part of a bioeconomic simulation model to explore 

possible economic and ecological effects of imposing permanent marine sanctuaries on Georges Bank, New 

England. The calculated probabilities of vessels participating in each fishery/area were then multiplied by 

an observed total effort level to derive a spatial distribution of fishing effort in the model. Andersen et al. 

(2010) estimate the parameters of a conditional logit model and incorporate these parameters into a gravity 

model- type of effort distribution model where effort is distributed in proportion to the relative probabilities 

of fishing in each area. The utility of fishing in each area (represented using a combination of value per unit 

effort and past effort levels) was used as a measure of óattractivenessô instead of an abundance measure. 

Hutton et al. (2004) apply a conditional logit model to estimate how factors such as value per unit effort, 

trip length, and catch affect the probability of vessels fishing in a particular area. These results were then 

combined into a simulation model of fleet behavior where displaced effort (from area closures) was 

redistributed according to the relative benefits of fishing in each area- in much the same way as in the 

gravity model.  

Using discrete choice statistical models to identify and measure the factors that affect a fishermanôs spatial 

location choice and then to include these predictions in bioeconomic simulation models allows the spatial 

distribution of effort to be empirically grounded, rather than to be based only on ad hoc descriptions of 

fishing behavior (Hutton et al. 2004). However, there are situations where this class of methods is 

undesirable and other methods may be preferred. Including an econometric model into a simulation model 

can sometimes be subject to mismatches in modeling scale and data limitations (Ulrich et al. 2007). The 

definition of areas using biological considerations (such as benthic substrate type or current system 

characteristics) may not naturally synchronize with area definition from an econometric standpoint, which 

should represent, as closely as possible, actual choices that a fisherman makes (Holland and Sutinen 1999). 

For example, Hutton et al. (2004) found that after estimating their well-specified RUM, only some of the 

results could be incorporated into the overall simulation model due to mismatches between the estimating 

and simulation model scales. Ulrich et al. (2007) find similar restrictions when designing a generic spatial 
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bioeconomic simulation model for evaluating management measures. Short term effort is distributed by 

multiplying calculated choice probabilities by an overall effort level. However, the set of explanatory 

variables that could be included in the model inputs was restricted by the fact that biological information 

was available at a much coarser scale than information on fleet behavior. These scale considerations forced 

the authors to use a reduced set of explanatory variables to generate bioeconomic model predictions.  

Parameters estimated using data for a particular fishery over a specific time period reflect the behavior of 

fishermen over that particular time period and fishery, and are based on the economic, social, and biological 

structure of the fishery at the time. Economists believe that an advantage of using econometric models 

based on behavioral micro-economic models is that the response of individuals to policies can be predicted 

even if the policies were not in place during the period modeled (Wilen et al. 2002b; Hutton et al. 2004). 

While the performance of these models in such a situation is likely to be better than using average behavior 

in an unrelated fishery situation, and the direction (sign) of the results may be found to be consistent with 

economic theory, the magnitude of the parameter estimates may not be easily generalizable to other 

fisheries or even for the same fishery in the future. Given that utilizing any model for policy reform is often 

contentious in fisheries, structural changes such as management system changes, stock characteristics, or 

fleet characteristics will determine the modelôs predictive capabilities. 

 3.1.1.3 Sequential Model 

The sequential model of spatial effort allocation (Hilborn and Walters 1987), takes a different approach to 

the gravity and RUM models in that effort is allocated spatially in a series of sub-time-steps.  For example, 

if a gravity model were to allocate effort on an annual basis, the sequential model would split this annual 

time step into numerous smaller time steps in which an effort distribution calculation is conducted. The 

basic structure of the model is that at the beginning of each time step, a fleetôs available effort (in that time 

step) is allocated to the area where the net revenue rate is highest.  Between time steps, abundance, and 

hence net revenue rates, are updated, and effort is distributed with the updated area-specific net revenue 

rates for the next period. In one application of the use of the sequential model, Tanaka, Tanaka, and 

Hasegawa (1991) modified the model to accommodate multiple heterogeneous fleets in order to simulate 

how fishermen made effort distribution decisions in a bioeconomic model of a flatfish fishery. They found 

that their estimates of effort distribution in the fishery were significantly correlated with actual observations. 

Although further examples of its use in fisheries bioeconomic models are rare, Stouten et al. (2008) utilize 

a sequential-type model in a simulation model of Belgian fleet dynamics. Abstracting away from stock 
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dynamics, they allocate effort for portions of the fleet within a time period to the area with the highest catch 

per unit effort for that fleet. 

While the sequential model has not been extensively applied in a simulation setting, perhaps as a result of 

a perceived added complexity compared to the gravity model, it has an intuitive appeal in that it is based 

on the idea that, unlike the gravity model, individual fishing vessels maximize expected profits when 

distributing fishing effort.  

3.1.1.4 Game Theoretic Models and the Ideal Free Distribution 

Game theory is a mathematical tool for analyzing strategic interaction, which occurs when all agents in a 

model are affected by the actions of all other agents (Sumaila 1999). Earlier fishery studies focused mainly 

on deriving analytical results in relatively simple cooperative and non-cooperative games (Munro 1979; 

Levhari and Mirman 1980; Dockner, Feichtinger, and Mehlmann 1989). For example, Dockner, 

Feichtinger, and Mehlmann (1989) represent the fishery resource as a single homogenous biomass and 

examine the market externality created when the price of fish depends on the quantity of fish supplied and 

the fishermen act as an oligopoly. Clark (1980) considers a limited access fishery as an n person, non-zero 

sum game to examine the dynamic stock externality created when a single population of fish is exploited 

by a finite number of fishers. In his seminal paper, Munro (1979) examined the optimal management of a 

trans-boundary resource jointly owned by two states, and how differences in discount rates, consumer 

preferences, and fishing effort costs can affect the strategic responses of the resource owners. Bischi and 

Kopel (2002) model a commercial fishery as a duopoly to study the effects on a population of fish over 

time of economic variables. They find that higher fishing costs increase the likelihood of a large stock size. 

In all of these cases simplifying assumptions regarding the structure of space, dynamics of effort, and the 

representation of the biological resource were necessary in order to achieve analytical results, which are 

generally difficult to derive for game theoretic models (Levhari and Mirman 1980). More recently, White 

and Costello (2011) incorporate a game theoretic component into a bioeconomic model of the size of 

Territorial Use Right for Fishing (TURF) in relation to the scale of stock dispersal. The strategic aspect of 

the problem related to choosing a harvest level that would maximize an agentôs yield given the harvest (and 

thus impact on dispersal) of the other agents in the fishery. The authors compared this non-cooperative 

solution to the sole owner scenario and found that, strategic responses by fishermen, represented by the 

simultaneous maximization of each fishermanôs profit, in the non-cooperative solution reduced fishery 

yield. Holland and Herrera (2012) distribute effort in a bioeconomic simulation model of a theoretical 
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spatial fishery by equalizing marginal net revenue rates subject to catch constraints. The authors use a 

modified Baranov equation in their model which incorporates exploitation competition. 

Although game theoretic models are particularly intuitive for incorporation into bioeconomic frameworks 

(van Putten et al. 2012), relatively little progress has been made in this area in incorporating game theoretic 

components into bioeconomic simulation models. One example is Merino, Maynou, and García-Olivares 

(2007), who construct a model of the red shrimp fishery in Spain. The authors model a single fleet that is 

heterogeneous in catchabilities and model the amounts of effort each vessel exerts in a fishing season in a 

non-cooperative Nash equilibrium versus a cooperative sole-owner solution. They found that vessels with 

higher catchability coefficients exerted more effort than other vessels in the sole-owner solution, while in 

the Nash equilibrium everyoneôs effort was equal.  

IFD models predict the distribution of agents in an environment, but do not describe how these patterns 

arise (Cosner 2005). Its inclusion as a component of a dynamic bioeconomic model is therefore difficult. 

Perhaps the closest application of the IFD in a computational bioeconomic model is made by Powers and 

Abeare (2009). These authors develop a class of simulation models based on IFD assumptions where the 

suitability of an area decreases as the number of vessels fishing in that area increases. An equilibrium 

distribution of effort was then resolved, assuming that catch rates declined with an increase in fishing effort, 

and the results applied in a model of spatial area closures in the Gulf of Mexico and Atlantic Ocean. While 

the model was built under the assumption of interference competition between vessels, if the form of 

competition was assumed to be exploitation the same results would have been generated. 

Operationalizing the principles of game theory and the concept of the Nash equilibrium in spatial fishery 

models is intuitively appealing; maximizing each vessel or fleetôs profits given the actions of all fishermen 

may be more realistic than either maximizing fishery-wide profit or distributing effort in other ways, such 

as with the gravity model. One of the fundamental equations of fisheries science provides a mechanism for 

doing so. The Baranov catch equation (Baranov 1918) is perhaps the most used equation that relates catch 

to effort in fisheries modeling (Quinn 2003), and is a useful construct for incorporating a game theoretic 

component into fisheries models. The equation gives catch as a function of a population size at the 

beginning of the time period and instantaneous rates of fishing (F) and natural mortality (M) which are 

assumed constant over time (Xiao 2005). While the assumptions of constant F and M are violated in many 

real world situations, the Baranov equation has been shown to be a relatively good approximation even 

when these assumptions are violated (Liu, Heino, and Hilborn 2013). Importantly, another assumption of 
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this equation is that the catch rate is a function of all effort in a fishery -- when effort increases, ceteris 

paribus, catch rate decreases. The mechanism for this is stock exploitation -- the more effort applied to a 

fishery in time, the higher the catch, resulting in fewer fish in future time periods to exploit. This mechanism 

can also be interpreted as the strategic interaction that is a component of all game theoretic models where 

the optimal level and distribution of effort for an individual vessel depends on the actions of all other vessels 

in the fishery. In the next section we present our ñBaranov-Nashò model for spatially distributing fishing 

effort in integrated bioeconomic simulation models.   

3.2 Baranov-Nash Model 

The model is structured spatially with j=1,é,J areas that are treated independently within a time period. 

Time periods are discrete and no movement of fish occurs in or out of areas within a time period. This is 

similar to the meta-population approach to describing the spatial structure of fish populations (Gilpin and 

Ilkka 1997), with inter-relationships (migration, diffusion) between local populations resolved between, 

and not during, time periods. There can be any number of species (Kj) in each area.  Predator-prey 

relationships and other interactions do not occur within a time period.  There are i=1,é..,I fleets, where a 

fleet is made up of one or more vessels with identical fishing technology and variable costs.   

Strategic interaction in this model is derived from the Baranov catch equation (Baranov 1918). Given a 

positive catchability coefficient (qi), rate of natural mortality (Mj), and biomass (Nj), the first partial 

derivative of the catch function with respect to own effort is positive, while the first partial derivative of 

catch with respect to other fleetsô effort is negative, implying that effort is a strategic substitute (Hicks, 

Horrace, and Schnier 2012). The catchability coefficient (qi) represents the relationship between the fleet 

specific fishing mortality rate and the effort exerted by that fleet. The catchability coefficient can account 

for differences in the type of gear employed by a fleet, as well as a fleetôs relative fishing efficiency. The 

natural mortality rate (Mj) and biomass (Nj) are area-specific and fixed within each time period. The 

Baranov equation can be applied to spatially structured populations if we assume that the distribution within 

each area is homogenous (Caddy 1975). 

Catch (Cijk) of species k for fleet i in area j in a given time period is: 

ὅ  
ή ẗὪ

ὓ В ή ϽὪ
ὔ ρ Ὡὼὴὓ ή ẗὪ                      ὉήȢσȢσ 
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The net revenue function (Ⱬij ) is the product of price (pk) and catch for each species, less the costs of fishing. 

Here, the variable costs of fishing (vij) are fleet and area specific, and are incurred linearly with effort (fij). 

Fleet specific differences in costs may represent distance from a fleetôs homeport to a particular area, vessel 

size, engine efficiency, crew size, and other costs.    

The net revenue function (“ ) for fleet i in area j is: 

“ ὅ Ͻὴ  Ὢẗὺ                                                       ὉήȢσȢτ 

We assume that each fleet is a profit maximizer and takes the actions of all fleets into account when making 

its decision on the level and distribution of fishing effort to exert. In addition, each fleet possesses perfect 

information of the distribution of the resource, as well as the costs and catchability coefficients of the other 

fleets. At the beginning of a time period each fleet makes a decision on the level and distribution of fishing 

effort to exert.  This is a one shot, simultaneous move game implying that the distribution, size, and 

characteristics of fish stocks are known ex ante. While we employ the assumption that harvesters have 

perfect information on the distribution of the resource as well as the technological capabilities of the other 

harvesters, our formulation allows vessels to be differentiated, and heterogeneous variable costs of fishing 

to be explicitly incorporated into the model.   

In the absence of constraints on effort or catch, each fleetôs objective function is: 

άὥὼ “ ὪȟὪ                                                                 ὉήȢσȢυ 

Where: fi is the focal fleetôs effort vector and f-i represents all other fleetôs effort vectors. 

The first order conditions are: 

 ỄỄỄ  π ᶅ ὮḊ Ὢ π                                        ὉήȢσȢφ  

A Nash equilibrium in this model is collection of I J*1 vectors (f*) of feasible effort levels such that if any 

fleet were to deviate from this solution, that fleet would not be made better off by such a change: 
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άὥὼ
ώ  • ὪȟȣȢȢȟώȟȣȢὪ ȿ• ὪȟȣȢȢȟώȟȣȢὪ  ‭ Ὑ             ὉήȢσȢχ 

Where R is the set of real numbers. 

In the unconstrained case, the first own partial derivatives of each fleetôs net revenue function with respect 

to effort (evaluated at f*) are identically zero in those areas where a positive level of effort is exerted. In 

areas where a fleet exerts no effort, these derivatives are non-positive. In a strictly concave, n-player game 

such as this, a unique Nash equilibrium has been shown to exist (Rosen 1965). Given that each area in our 

model is independent it follows naturally that a unique unconstrained Nash equilibrium exists in each area. 

The Nash equilibrium point in our model represents a spatial distribution of fishing effort that is determined 

in advance of any fishing activities, and from which no fleet has an a priori incentive to deviate. 

In practice, effort is an inherently bounded variable. Measured in fishing days, the maximum effort that a 

vessel can exert in a year is 365, and negative effort values are not feasible. A constraint on effort will be 

necessary in most cases in order to bound the model within a realistic value space. In addition many fisheries 

are managed using constraints on the amount of fish available for harvest. These constraints can either be 

in the form of Total Allowable Catches (TACs) that operate on the fleet as a whole, or as individual catch 

limits as are the case in Individual Fishing Quota (IFQ) fisheries. We will focus on individual limits on 

effort and catch.   

In the case of a fleet-specific constraint on the maximum amount of effort to be exerted (Ei), we can 

represent the objective of fleet i as the Lagrangian: 

fl Ὢȟ‗ “ ὪȟὪ   ‗ Ὢ Ὁ                                         ὉήȢσȢψ 

With first order conditions: 

‬fl

‬Ὢ
 
‬“

‬Ὢ
‗ π    ᶅὮ 

‗
fl
‗В Ὢ  Ὁ π                                                       ὉήȢσȢω  
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‬fl

‬‗
 Ὢ  Ὁ π         ᶅὭ 

‗ π   ᶅ Ὥ 

 

At an effort constrained equilibrium, each fleetôs first own partial derivatives of their net revenue functions 

with respect to effort are equalized across areas in which they exert some effort.  For areas in which no 

effort is exerted by a fleet, the first own partial derivatives are no greater in value than those representing 

areas where effort is exerted. Intuitively, the allocation of effort between areas canôt be improved upon if 

the constraint is binding, and the marginal benefit of exerting effort is equal among areas. 

In the case where fleet- and species-specific catch constraints exist (denoted Hik), the Lagrangian function 

for each fleet is: 

fl Ὢȟ‘ “ ὪȟὪ   ‘ ὅ Ὄ  ỄỄ  ‘ ὅ Ὄ            ὉήȢσȢρπ 

With first order conditions: 

‬fl

‬Ὢ
π    ᶅὮ 

‘ ὅ  Ὄ ỄỄ ‘ ὅ  Ὄ π                        ὉήȢσȢρρ 

‬fl

‬‘
 ὅ  Ὄ  π   ᶅ Ὧ 

‘  π   ᶅ Ὧ 

A catch constrained Nash equilibrium is a collection of I J*1 vectors (fC*) of feasible effort levels such that 

if any fleet were to deviate from this solution, that fleet would not be made better off by such a change: 
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Where D is the catch constraint set and R is the set of real numbers. 

Apart from the trivial case where two species are binding at the same time, in general only one of the µik 

will be greater than zero, reflecting one binding species in a fishermanôs catch portfolio. At a catch 

constrained Nash equilibrium the Lagrangian multipliers on the binding species are equalized across those 

areas where effort is exerted. Intuitively, this reflects the idea that the marginal net benefit of relaxing the 

constraint on catch is equal across areas, and that a fleet cannot improve their situation by re-allocating 

effort. 

3.2.1. SOLUTION METHOD 

Solving for equilibrium points in this model is carried out by iterating the effort distributions of each fleet 

until there is no change in the total distribution of effort.  The process is detailed below: 

Iterative Process for resolving an equilibrium spatial distribution of effort (I fleets, J areas): 

Step 1: Assign a vector of initial effort levels to each of the I fleets.   

Step 2: Starting with fleet 1 maximize net revenue given initial effort distribution of all other fleets, and 

subject to any constraints on effort or catch.  The result is an optimal level of effort for fleet 1 given the 

initial effort levels of all other fleets.  Update the effort vector with these optimal values. 

Step 3: Repeat for the other I-1 fleets, updating each fleetôs effort vector. 

Step 4: Repeat steps 2-3 until the stopping rule (see below) is met. 

Step 5: Check the resulting distribution of effort using equilibrium tests (see below). 

Stopping Rule: 

Although the stopping rule can be absolute or relative, and apply to changes in any of the effort-dependent 

functions in the model (such as catch or net revenue), we suggest using a relative change in effort rule that 
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determines whether a distribution is óclose enoughô to the final equilibrium distribution.  For fleet i, area j, 

and iteration s, the stopping rule is: 

 ὭὪȡ  άὥὼ
ȟȟ ȟȟ

ȟȟ
 ᶅ ὭȟὮ  ὶὸέὰ Ḋ ὛὝὕὖ                                 ὉήȢσȢρσ 

In other words, if the maximum of the absolute relative differences in effort levels between two iterations 

satisfies a user-defined relative tolerance (rtol) level, then a candidate equilibrium point has been reached.  

In general, given computational time, there is a tradeoff between the size of rtol, and the precision with 

which an equilibrium is described.    

3.2.2. EQUILIBRIUM TESTS: 

After a candidate equilibrium point has been reached, a test can be carried out to determine if that point is 

a Nash equilibrium.  These tests depend on whether the problem is unconstrained, effort constrained, or 

catch constrained. 

3.2.2.1 Unconstrained equilibrium test 

An unconstrained equilibrium is characterized by a distribution of effort that no fleet has an incentive to 

deviate from. Intuitively, if there is a positive marginal net benefit to exerting an additional unit of effort in 

any area, the system is not in equilibrium. For fleet i, and area j, the following conditions should be met: 

  
‬“

‬Ὢ
π     ᶅ ὭȟὮȡ Ὢ π                                                           ὉήȢ  σȢρτ 

And 

‬“

‬Ὢ
π   ᶅ  Ὦȡ Ὢ π                                                              ὉήȢσȢρυ 

3.2.2.2 Effort constrained equilibrium test: 

In an effort-constrained equilibrium, each fleetôs effort distribution is such that there is no net benefit to re-

allocating effort between areas, subject to the constraint on a fleetôs total effort. This situation is 

characterized by the first derivatives of the net revenue function being equalized among areas for each fleet. 

This rule only applies for a fleet in those areas where a positive level of effort is applied.  In the areas where 
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a fleet does not exert effort, the first own derivatives of the net revenue function are less than the values in 

the areas where effort is exerted. An effort constrained equilibrium satisfies the following conditions: 

Ὢέὶ ὩὥὧὬ ὪὰὩὩὸ Ὥȟ
‬“

‬Ὢ
 
‬“

‬Ὢ
    ᶅ ὥὶὩὥί άȟὲȡ ὪȟὪ π                       ὉήȢσȢρφ 

, and 

Ὢέὶ ὩὥὧὬ ὪὰὩὩὸ Ὥȟ
‬“

‬Ὢ

‬“

‬Ὢ
   ᶅ ὥὶὩὥί ίȡ Ὢ π ȟᶅ ὥὶὩὥί ὴȡὪ π                     ὉήȢσȢρχ 

3.2.2.3 Catch constrained equilibrium test: 

In a catch constrained equilibrium where one or more species are constraining on the final effort distribution 

of all fleets, the species-specific Lagrangian multipliers reflect the contribution to a fleetôs net revenue of 

relaxing the constraint by a marginal unit. If a constraint is binding, the multipliers associated with this 

constraint will be equalized across areas in which a fleet exerts effort. If the constraint is not binding, or if 

no effort is exerted by a fleet in a particular area, the associated multipliers may not be equalized across 

areas, and will be lesser in value than those representing binding combinations.  Intuitively, this reflects the 

fact that at a Nash equilibrium no fleet can adjust their effort distribution and levels for gain, while satisfying 

their constraints.  For fleets i, areas j, and species k, the Lagrangian multiplier is calculated as the ratio of 

marginal net revenue to marginal catch: 

‘    

‬“
‬Ὢ

‬ὅ
‬Ὢ

                                                                            ὉήȢσȢρψ 

For each constraining species k, a catch constrained equilibrium satisfies the following conditions: 

Ὢέὶ ὩὥὧὬ ὪὰὩὩὸ Ὥȟ ‘ ‘       ᶅ ὥὶὩὥί Ὦȟὰ ίόὧὬ ὸὬὥὸ ὪȟὪ π                ὉήȢσȢρω 

The equilibrium distribution of effort that characterizes the solution to the model is such that there are no 

potential gains to any fleet from deviating from their equilibrium strategy. For a unique equilibrium we 

require that each fleet is, at least slightly, differentiated in terms of catchability and/or variable costs of 

fishing.  If two fleets were exactly the same, their effort distributions and levels would also be the same, 

and a unique equilibrium would be impossible to ascertain. Rosen (1965) showed that if the joint strategy 
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space in a concave, n-player game is convex and compact, and if each playerôs payoff function is 

continuous, and concave throughout the strategy space, an equilibrium exists. In a theoretical development 

of a class of models where location decisions are based on individual and choice specific characteristics, 

Bayer and Timmins (2005) show that a unique equilibrium can only be guaranteed in the presence of a 

congestion effect, which is analogous to our case of effort being a strategic substitute. The most relevant 

proof of equilibrium uniqueness is presented in Laye and Laye (2008). The authors show that in a multi-

market Cournot competition game with linear demand in each market, and capacity constraints that operate 

over several markets, a unique equilibrium exists. This situation is analogous to our model setup, with 

ómarketsô relating to fishery areas, and ócapacity constraintsô analogous to constraints on the total amount 

of fishing effort exerted across areas. While a proof of equilibrium uniqueness is beyond the scope of this 

paper, extensive sensitivity analyses have, so far, failed to uncover a single case of multiple equilibria in 

the model. 

3.3 Model Comparisons 

In this section we conduct a numerical comparison of several methods for spatially distributing effort in 

bioeconomic simulation models. We compare the Baranov-Nash model, the sequential model (Hilborn and 

Walters 1987), the gravity model (Caddy 1975), and a model of a sole owner fishery where total fishery 

profits are maximized. We do not include a RUM in the comparison, due to the operational similarities 

between the gravity model and the RUM when applied in bioeconomic simulations, and the difficulty in 

conducting an empirical comparison of all methods. We also do not include an IFD model as a 

computational framework that describes how the IFD is formed is lacking. Instead, we will examine the 

conditions under which the manifestation of an IFD (equalized average net revenues between areas) may 

be predicted by the models in the comparison. The setting is a hypothetical single-species fishery with 2 

fishing fleets and 3 fishing areas- one close to port, one far from port, and one area in between. In order to 

focus on the short term distribution of effort we simplify the biological component of the model and do not 

represent recruitment or growth. Each area has an equal biomass of fish to start the season, and the rate of 

natural mortality is not area-specific. We assume that there is no movement of fish and all fleets have perfect 

information regarding the technology of the other fleets as well as the variable costs of fishing. Fleets are 

composed of a group of 10 homogenous vessels Fishing effort is distributed on a weekly basis in a 52 week 

season and fishing effort is measured in the number of days each fleet fishes. We bound effort for each fleet 

to be non-negative and capped at the number of days in the week multiplied by the number of vessels in the 

fleet. We first investigate differences in the spatial distributions of effort predicted by each of the three 
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models in a base parameterization where the fleets are identical. We then determine how model predictions 

are affected by different assumptions regarding model parameters and variables. We then examine how 

model predictions are affected when fleets are heterogeneous in fishing power, and in cost structure. All 

simulations are conducted in R (R Core Team 2015).  

3.3.1 STOCK 

The stock is assumed to be subjected to two processes- natural mortality and fishing mortality. No growth, 

recruitment, or movement between areas occurs within the season. Stock size at the end of time t in area j 

is: 

ὔȟ  ὔȟ ÅØÐ ὓȟ Ὂȟ                                              ὉήȢ  σȢςπ 

Where Nj,t-1 is the stock size at the end of time t-1in area j, Mj,t is the instantaneous (weekly) rate of natural 

mortality in time t and area j, and Fj,t is the instantaneous rate of fishing mortality in time t and area j. 

The instantaneous rate of fishing mortality, Fj,t, is the product of a catchability coefficient, qi, and effort, fijt, 

summed over the fleets, i: 

Ὂȟ  ήὪ                                                                   ὉήȢσȢςρ 

Note that catchability is fleet specific but constant over time and space, while the effort exerted by each 

fleet i, can vary over time and space. Catch, C, for each fleet depends on the stock size in each time period, 

the amount of effort each fleet exerts in each area, and the amount of effort the other fleet exerts: 

ὅ  
ήẗὪ

ὓ В ήϽὪ
ὔ ρ Ὡὼὴὓ ήẗὪ                           ὉήȢσȢςς 

Defining Zjt as the instantaneous rate of total mortality for the portion of the stock in area j at time t as: 

ὤ  ὓ ήϽὪ                                                              ὉήȢσȢςσ 

And the survival rate, Sjt, as: 
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Ὓ ÅØÐὤὮὸ                                                              ὉήȢσȢςτ 

The first derivative of Cijt with respect to fleet iôs effort, which depends on other fleetsô effort in the fishery, 

can be shown to equal: 

‬ὅ

‬Ὢ
 ὔ Ͻ

ή

ὤ
 ρ Ὓ  

Ὂ

ὤ
 
Ὂ

ὤ
 ϽὛ Ὂ ϽὛ                       ὉήȢσȢςυ 

Net revenue (NR) in each time period is price, p, multiplied by catch minus costs, with costs entering as a 

constant cost per day fishing, vi: 

ὔὙ ὴϽὅ  Ὢ Ͻὺ                                                 ὉήȢ  σȢςφ 

The first partial derivative of NRijt with respect to fleet iôs effort is then: 

‬ὔὙ

‬Ὢ
ὴϽ
‬ὅ

‬Ὢ
 ὺ                                                  ὉήȢσȢςχ 

3.3.2 MODELS AS IMPLEMENTED IN THE SIMULATION 

The Baranov-Nash model is implemented using the following algorithm: 

1. Assign a vector of initial effort levels to each fleet corresponding to each area 

2. Maximize NR for fleet 1 subject to the constraint that total effort must be non-negative and canôt 

exceed the maximum effort constraint. Update the effort vector for fleet 1.  

3. Repeat step 2 for fleet 2. 

4. Repeat steps 2 and 3 until the maximum absolute change in effort for all areas for both fleets is less 

than .0001, which is the relative tolerance level we define for the comparisons. 

5. Check that the resulting distribution of effort is a constrained Nash equilibrium by checking that 

the first derivatives are equalized across all areas where a positive level of effort is exerted, and for 

each fleet (equation 3.28): 

‬ὔὙ

‬Ὢ
 
‬ὔὙ

‬Ὢ
    ᶅ ὥὶὩὥί Ὦ ὥὲὨ ὪὰὩὩὸί Ὥȡ Ὢ π                         ὉήȢσȢςψ 



58 

 

 

For the gravity model we define the óattractivenessô of an area for a fleet as the marginal net revenue in 

that area (at zero effort) at the beginning of the time period. Relative attractiveness is attractiveness divided 

by the sum of marginal net revenues for that fleet over all areas. If marginal net revenue for a fleet in an 

area is negative that area is not included in the attractiveness calculation and effort is set to zero. Relative 

attractiveness of each area is then multiplied by the fleetôs upper constraint on effort to arrive at that fleetôs 

effort distribution: 

Ὢ  Ὁ Ͻ

‬ὔὙ
‬Ὢ

В
‬ὔὙ
‬Ὢ

           ᶅ ὮȟὭȡ 
‬“

‬Ὢ
π                              ὉήȢσȢςω 

The sequential model that we use in the comparisons assigns all available effort for a fleet during a sub-

time period to the area where that fleetôs first derivative of net revenue (Eq. 3.27) is highest. The derivative 

is evaluated before effort is exerted, i.e. at zero effort levels. Effort for the area with the highest marginal 

net revenue is set to the effort limit, while effort in the other areas is set to zero. For the simulations, the 

weekly time period is split into 7 day periods which is the level that the sequential model makes effort 

calculations. Daily effort predictions are then aggregated into weekly statistics to facilitate the comparisons. 

The sole owner model maximizes the sum of net revenue for both fleets with the constraint that each fleetôs 

effort in each time period cannot exceed an effort limit, Ek. The Lagrangian to be maximized is: 

ÍÁØfl Ὢ ȟ‗ В ὴϽὅ  Ὢ Ͻὺ ‗ В Ὢ Ὁ  ‗ В Ὢ Ὁ          ὉήȢσȢσπ  

Where Cijt is shown in equation 3.22. Note that the first derivative of Cijt with respect to own effort is 

positive. In terms of other fleetsô effort the effect is negative. The Kuhn-Tucker conditions are: 

‬fl Ͻ
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‬‗
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‗ π     ȟ            Ὥ ρȟς 

The first derivative of the objective function for the sole owner model includes both the positive marginal 

impact on a fleetôs net revenue function of increasing that fleetôs effort in an area, as well as the negative 

marginal impact on that fleetôs net revenue function of increasing the other fleetôs effort in that area. The 

necessary first order conditions for the B-N model, in comparison, only include the positive marginal impact 

of a fleet increasing its effort in an area. The impact of the other fleetôs effort on net revenue in the B-N 

model is incorporated in the iterative solution technique. 

3.3.3 BASE PARAMETERS 

While many different parameter values were explored we chose a set of base parameters such that even if 

all effort was concentrated in one area for the entire season, net revenue rates would still be positive at the 

end of the season, i.e. stocks would not be depleted to a level where it was not profitable to fish in a given 

area. This could be induced in the model by decreasing starting stock size, increasing costs, increasing 

catchability, increasing natural mortality, or increasing the weekly effort limit. Base parameters are shown 

in table 3.1: 

Table 3.1: Base set of parameters used in the simulations 

Variables Area 1 Area 2 Area 3 Fleet 1 values Fleet 2 values 

Starting stock size by area (tons) 60,000 60,000 60,000   

Natural mortality per week .04 .04 .04   

Parameters  

Catchability by fleet  .00025 .00025 

Cost per fishing day by area $100 $150 $200 same same 

Price of fish per ton  $200  $200  

Effort limit per week period  70 days  70 days 

 

3.4 Results 

The predictions of the gravity model conform to general findings in the literature -- effort is spread out 

among all areas throughout the season. The only difference between areas at the beginning of each season 
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is costs of fishing, and the óattractivenessô of each area in this model is defined at a vector of zero effort 

levels. Therefore the impact of changes in the value of parameters on the gravity model predictions depends 

on that parameterôs effect on marginal revenue in each area (the first term on the right hand side of equation 

3.32), on that areaôs relative attractiveness to the other areas in the model. When areas and fleets are 

homogenous, marginal revenue increases with an increase in each of stock size, catchability, and price and 

increases in the relative values of these parameters relative to area costs will cause the gravity model to 

predict a more even distribution of fishing effort over areas. This is due to differences in attractiveness (aj) 

between areas diminishing. An increase in the effort limit does not affect marginal revenue directly, but 

rather through a dynamic stock depletion effect. As effort in an area is increased, the stock is depleted more 

than it would have been with a lower effort limit. This lowers the available stock in the next time period, 

and causes the gravity model to concentrate effort more in low cost areas as the season progresses, even 

with no differences in the exploitation rate between areas.  
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Equation 3.32 is also evaluated in the sequential model although in this model all of a fleetôs effort for a 

single sub-period (in our case a fishing day) is allocated to the area with the highest attractiveness, aj. The 

sequential model therefore does not take other fleetsô predicted behavior into account directly. The fact that 

the sequential decision is made 7 times in the space of a week (compared to once for the other models) 

means that dynamic stock depletion effects are implicitly taken into account- the attractiveness of each area, 

after each dayôs mortality has occurred is re-evaluated on a daily basis, which alludes to a brute force profit 

maximization procedure. 

The sole owner model maximizes total fleet profit in each time period by adjusting the distribution of effort 

over all areas without regard to whether or not this distribution is optimal for each individual fleet. Equation 

3.33 illustrates the necessary first order conditions for maximum fleet profit in each time period. The 

positive effect on each fleetôs marginal revenue of (1) is balanced against the negative effect on the other 

fleetôs marginal revenue of exerting effort (2).   
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In contrast the B-N model follows an algorithm where each fleetôs optimal distribution is calculated by 

explicitly taking the other fleetôs best response (BR) into account (equation 3.34). A fleetôs best response 

in this case is a fleetôs effort distribution that results in maximum net revenue given the effort distribution 

of the other fleet. Fleets are therefore treated as individual profit maximizers and not overall profit 

maximizers as in the sole owner scenario. 
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3.4.1 HOMOGENOUS FLEETS 

In the base parameterization where both fleets are identical, the Baranov-Nash (B-N), sole owner, and 

sequential models all make similar predictions to each other, exerting effort first to the areas with the highest 

rate of net return (the closest area to port), and switching to the other areas once stock levels became 

depleted enough to equalize rates of net return between areas (figure 3.1). The sequential model makes 

similar predictions to the sole owner and B-N models but effort is allocated coarsely- in whole day 

increments (a total of 10 fishing days allocated per model day due to a fleet size of 10 vessels). Most effort 

is exerted in area 1 at the beginning of the season, and as stocks are depleted, effort spreads out into areas 

where fishing costs are higher, but stocks are higher. Table 3.2 shows aggregate effort predictions by area 

throughout the season.   
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Figure 3.1: Predicted effort distributions under the base parameterization where fleets are identical in 

costs and catchability. 

Table 3.2: Aggregate predictions of effort under the base parameterization 

 Gravity  Sequential Sole Owner B-N 

FLEET:  Low High Low High Low High Low High 

Area 1 1239.335 1239.335 1290 1290 1288.949 1288.906 1289.178 1288.841 

Area 2 1213.315 1213.315 1210 1210 1212.373 1212.416 1212.385 1212.397 

Area 3 1187.35 1187.35 1140 1140 1138.679 1138.679 1138.437 1138.762 

 

After the initial distribution of effort into the higher cost areas (by week 3 in this parameterization), the 

predicted levels of effort in the low cost area increase gradually, while predicted effort in the far areas 

decrease. This gradual reallocation of effort to low cost areas is due to the fact that as stock size in the high 

cost area decreases, the impact of area-specific fishing costs has a stronger negative effect on the marginal 

net benefit of fishing in that area.  This stock depletion effect reduces marginal net benefits of fishing in 

high cost (far away) areas at a faster rate than in the closer areas causing effort to concentrate in the area 
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that is closest to port. This can also be seen from equation 3.32- as stock size decreases in an area the 

attractiveness of that area decreases. However, for successively lower stock sizes, the (negative) slope of 

the first derivative of revenue decreases, and this is manifested in a gradual reallocation of effort towards 

low cost areas as the season progresses. To illustrate this effect, in the base case scenario the share of effort 

predicted by the gravity model in area 1 is 33.92% and 32.75% in area 3. By the end of the season the shares 

have changed to 34.07% and 32.6%, respectively. If the simulation is extended for a total of 10 seasons 

these shares change to 54.5% and 12.36%, respectively, and this occurs even though the stock size at the 

end of 10 seasons in area 3 is 15.94% bigger than that in area 1, compared to .004% bigger at the end of the 

first week of the first season. 

When fleets are homogeneous the predictions of the B-N, sole owner, and sequential models are essentially 

the same and changes in price, initial biomass, catchability, and costs, affect each modelôs predictions in a 

similar fashion.  

For higher levels of initial biomass, ceteris paribus, marginal revenue rates increase for all areas while 

marginal costs remain the same. The differences in marginal net revenue between areas therefore decrease 

and the overall predictions of the gravity model and the other three models become more similar. The effect 

of increases in price have the same effect on model predictions as that of an increase in initial biomass, and 

the mechanism is the same -- a higher price implies a higher marginal net revenue due to increases in 

marginal revenue while marginal costs remain the same. This implies that the differences in marginal net 

revenue between areas decreases at a faster rate as price increases, and overall model predictions become 

more similar. The effects of increases in the catchability coefficient are similar -- an increase in catchability 

increases the marginal revenue component of attractiveness for all areas, but does not affect the marginal 

cost component. Costs therefore become less important when determining relative attractiveness of each 

area, and effort distributions become more spread out and greater effort is exerted in the high cost areas. 

This implies that, in these models, fleets that have a higher catchability coefficient tend to spread their effort 

out more than fleets that have lower coefficients. As the level of catchability increases, marginal catch rates 

increase, ceteris paribus. This implies that stock levels in areas that are fished first are depleted faster, 

bringing marginal revenue rates in these areas down to the level of marginal revenue rates in high cost areas 

at a faster rate. Higher catchability coefficients imply that the differences in solutions between the gravity 

model, the Baranov-Nash, sole owner, and the sequential model will decrease as populations are fished 

down to levels that equate marginal net revenue between areas at a faster rate, decreasing differences 

between the gravity model predictions and the predictions of the other models.  
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Changes in the level of fishing costs, as long as the differences in costs between areas do not change, do not 

make any difference to the predicted distribution of fishing effort in the B-N, sequential, and sole owner 

models, as long as net benefits of fishing are still positive in all areas throughout the season. For the B-N, 

sequential, and sole owner models, when fishing cost differences between areas do not change relative 

marginal net benefits of fishing also do not change, and there is no change to predicted effort distributions. 

However, in the gravity model, as the level of costs increases, the denominator term in equation 3.32 

decreases, causing the relative differences in net revenue rates between areas to increase. This makes the 

low cost areas relatively more attractive in this model, and relatively more effort is exerted in these areas. 

In other words a higher proportional level of fishing costs for all areas causes the gravity model predictions 

to be more concentrated in the low cost areas. 

3.4.2 HETEROGENEOUS FLEETS 

The B-N and sole owner modelsô predictions are highly affected by heterogeneity in catchability, and in 

ways that are non-intuitive. While changes in the costs of the other fleets do not appear explicitly in each 

fleetôs net revenue function for each of these models other fleetsô catchability coefficients do (equation 

3.25). The B-N model takes other fleetsô catchability coefficients into account through an a priori 

calculation of the other fleetôs best response to arrive at their own best response, and eventually a Nash 

equilibrium. The sole owner model does not account for the fact that each fleet is a profit maximizer and 

the optimal effort schedule from a sole ownerôs perspective will therefore reflect the fact that overall fleet 

profit can be higher by distributing each fleet in ways that are sub-optimal from an individual perspective. 

The sequential modelôs predictions conform closely to those of the sole owner model when fleets are 

heterogeneous in catchability. Given that each fleet allocates each dayôs effort to the area that provides the 

highest expected net revenues one would expect a solution similar to the B-N model. However, the 

competitive interaction of exploitation competition, which acts as a dispersive force are not taken into 

account a priori in the sequential model and effort predictions align with those of the sole owner model. 

The gravity model evaluates the marginal net revenue rates at the beginning of the time period, at zero effort 

levels and the characteristics of other fleets are not taken into account when effort is distributed. Figure 3.2 

shows model predictions for a low catchability fleet with the catchability coefficient fixed at the base level 

(.00025) and a high catchability fleet with a catchability coefficient of .0003. Table 3.3 shows the sum of 

effort for the season by fleet and area. The gravity model predicts effort that is spread out evenly across all 

of the areas. 
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Figure 3.2: Predicted effort distributions with heterogeneous catchability.  The catchability coefficient for 

the óhighô fleet is increased to .0003, all other parameters at base levels. 

Table 3.3: Aggregate effort predictions for the scenario in figure 3.2 

 Gravity Sequential Sole Owner B-N 

FLEET:  Low High Low High Low High Low High 

Area 1 1240.581 1234.414 2780 30 2785.378 29.69756 2201.237 512.0598 

Area 2 1213.315 1213.315 860 1500 853.7504 1503.876 1179.765 1239.001 

Area 3 1186.105 1192.272 0 2110 0.871328 2106.426 258.9981 1888.939 

 

Costs of fishing are affected by many things in practice, including fuel and lube prices, number of crew on 

board, vessel maintenance, and vessel depreciation. In our simple model we include costs as a constant 

amount per fishing day relating to each area with the implicit assumption that higher costs for the areas that 

are farther away from port arise from increased travel costs, including fuel and lube costs. We investigate 

how differences in both the level of costs between fleets, which could be attributed to differences in a fixed 

cost (such as license fees) between vessels, and the difference in costs between areas, which could represent 



66 

 

 

differences in fuel consumption between fleets, affect our model predictions. When fleets are homogeneous, 

as long as the differences in costs of fishing between areas remained the same, and if costs remained below 

the level that would drive net revenue rates to zero, a change in the overall level of costs had no impact on 

the effort distributions predicted by the B-N and sole-owner models, while the gravity modelôs predictions 

are affected by any kind of change in the costs of fishing. When fleets are heterogeneous in costs this result 

holds as long as the differences in costs between areas are the same for all fleets, i.e. there is no change in 

effort distributions with an increase in the level of costs. However, when the costs of fishing in a particular 

area changes in a way that preserves the ordering of costs, but causes a change in the difference between 

area-specific costs, model predictions are affected significantly. However, the sole owner, sequential, and 

B-N predictions are similar. Figure 3.3 shows model predictions for a low cost fleet with the base cost 

structure, and a high cost fleet with fishing costs of $200, $400, and $600 per day for areas 1, 2, and 3, 

respectively. Table 3.4 shows the sum of effort over the season for each fleet in each area 

 

Figure 3.3: Predicted effort distributions with the heterogeneous costs.  Fishing costs for the óhighô fleet 

increased to $200, $400, and $600 per day in areas 1,2, and 3 respectively. All other 

parameters at base levels. 
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Table 3.4: Aggregate effort predictions for the scenario in figure 3.3 

 Gravity  Sequential Sole Owner B-N 

FLEET:  Low High Low High Low High Low High 

Area 1 1225.705 1346.724 40 2850 34.01179 2855.571 51.46322 2830.797 

Area 2 1213.192 1213.163 1480 790 1481.683 784.4293 1464.575 809.2031 

Area 3 1201.103 1080.113 2120 0 2124.305 0 2123.962 0 

 

When fleets are heterogeneous in costs the B-N, sequential, and sequential models predict that both fleets 

will operate in the low cost area at the beginning of the season. However, the low cost fleetôs profit 

maximizing strategy is to stop fishing in area 1 after the first week. In the case of identical fleets one would 

expect this fleet to keep exerting some effort in area 1. However, the relatively high cost of fishing in area 

2 means the high cost fleet exerts more effort in area 1. This added exploitation competition results in a 

lower rate of marginal net revenue for the low cost fleet in area 1 and causes it to exert more effort in area 

2, and consequently in area 3 at a much earlier time. This illustrates a possible mechanism for the 

observation that vessels with high fishing efficiency spread their effort out more than other vessels 

(Abrahams and Healey 1990). 

3.4.3 IFD PREDICTIONS 

A corollary to our comparison is to examine the conditions under which the average net revenue rates in all 

areas are predicted to be equal, which represents the outcome that is described by the Ideal Free Distribution 

(IFD). When fleets are homogeneous, average net revenue rates are predicted to equalize for the sequential, 

Baranov-Nash, and sole owner models throughout the range of parameters tested. However, the gravity 

model does not make the IFD prediction under any set of parameters. Figure 3.4 shows average net revenue 

per unit effort for the base model setup. In these simulations effort is exerted in area 1 first, then into area 

2 as the stock in area 1 is depleted to the point which equalizes marginal net revenue in area 2 with that of 

area 1. Eventually effort is exerted in area 3 and net revenue rates are equalized between areas.   
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Figure 3.4: Ideal Free Distribution predictions for each model with parameters at base levels. 

When fleets are heterogeneous, an IFD distribution is predicted by the Baranov-Nash, sequential, and sole 

owner models only when the heterogeneity is in fishing costs, and when the difference in costs between 

areas is the same for all fleets. This is an important result for future empirical analyses of IFD formation in 

fisheries. If the difference in costs is different for each fleet, the IFD prediction is not made. Similarly, when 

fleets are heterogeneous in catchability, none of the models we examine make an IFD prediction. Figure 

3.5 shows the case for 2 fleets that are heterogeneous only in catchabilities.  
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Figure 3.5: Ideal Free Distribution predictions with the catchability coefficient for the óhighô fleet 

increased to .0003 All other parameters at base levels. 

3.5 Discussion 

The results of our simple comparison illustrates the potential modeling implications of utilizing a method 

for spatially distributing fishing effort in bioeconomic simulation models that is not based on an explicit 

theory of how fishermen behave on the spatial dimension. In a simple comparison of the gravity model, 

which is not based on any explicit economic theory of behavior, to the Baranov-Nash (B-N) model, and 

two other methods for distributing fishing effort in simulation models, we show that the predictions of the 

gravity model differ in systematic ways to those of the other 3 models in the comparison. As indicated 

previously, the gravity model spreads effort out among areas in ways that do not make intuitive economic 

sense (Pelletier and Mahévas 2005). When fleets are homogeneous, the overall predictions made by the B-

N, sole owner, and sequential models were very similar over a wide range of parameter values, with the 

caveat that the sequential model makes ócoarseô effort predictions compared to the continuous predictions 

of the other models. The degree to which these modelsô predictions differed from those of the gravity model 

depended on the degree of heterogeneity between areas. In general, the more heterogeneous fishing areas 

were either in terms of stock size or distance from port, the more disparate the gravity predictions were 

from those of the other three models. In extreme cases area characteristics caused effort to distribute to all 

areas in the gravity model in relatively equal proportions while effort in the other models was predicted to 
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remain in only one area. This illustrates the potential erroneous predictions made by the gravity model if 

fleets do not distribute their effort in proportion to marginal profit in each area. The levels of the parameters 

in the model affect the similarity of the gravity predictions to the predictions of the other models. Keeping 

everything else constant, the higher the levels of catchability, stock size, and price, the more quickly 

differences in the marginal net revenues between areas decreased, and the faster effort spread to all areas 

in the model. While the gravity model is attractive partly due to its simplicity of use, in cases where areas 

and vessels are heterogeneous, theoretical justification for its use may be limited. 

The predictions of the Baranov-Nash, sole owner, and sequential models were generally consistent with 

each other in that fishing effort was exerted in the highest valued patches first then move to the other 

patches. This behavior is consistent with predictions in the literature e.g. Gillis and Peterman (1998), and 

reinforces the idea that fleet movement acts as an averaging force, reducing economic differences between 

areas (Sanchirico and Wilen 2005; Smith, Sanchirico, and Wilen 2009). We show that when fleets are 

homogenous, predictions made by the three behavioral models are generally similar under a wide range of 

parameter values. This observation holds even when fishing vessels are heterogeneous in terms of their cost 

structure. When the costs of fishing differ between fleets, these differences lead to different predictions of 

effort distributions only when the fleets have heterogeneous differences in costs between areas. (see Fig. 

3.3). When the difference in costs between areas is the same for two fleets, such as is the case with one 

vessel having a higher fixed cost (such as quota leasing cost) with variable costs of fishing (such as fuel 

costs) the same for the two fleets, all of the models predict that each fleetôs effort distribution will be 

identical to the other. When the cost structure is such that the difference in costs of fishing between areas 

is different for the fleets, differences between the fleetsô effort distributions predicted by each of the models 

occur. When one óhigh costô fleet has a relatively higher difference in fishing costs between areas than a 

ólow costô fleet, we find that the behavioral models (B-N, sole owner, and sequential) predict that the low 

cost fleet will exert more effort in higher cost areas and the high cost fleet will exert more effort in the low 

cost areas. The mechanism is that the high cost fleet changes its behavior relative to the base case and 

maintains a high level of effort in the low cost area. This added exploitation competition causes marginal 

net revenues for the low cost fleet to drop much faster, with marginal net revenues in the other areas 

becoming more attractive at relatively earlier times. These dynamics are not captured by the gravity model. 

When fleets are heterogeneous in terms of their relative fishing power (catchability coefficient in our 

models), their predictions diverge and model results differ in ways that are not intuitive. While the gravity 

model still predicts a relatively even distribution of fishing effort over all areas and throughout the season, 
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the behavioral models make different predictions to each other. If a óhigh powerô fleet has a higher 

catchability coefficient than a ólow powerô fleet all of the behavioral models predict that the high power 

fleet will distribute their effort in higher cost areas, where reduced exploitation competition outweighs the 

extra costs involved in fishing in those areas. This observation provides a possible mechanism to explain 

the observations of Abrahams and Healey (1990), who observed that vessels with better fishing ability 

distributed effort over more areas than their less-able counterparts. In the case of heterogeneous 

catchabilities the sole owner model óplays offô the fleetsô exploitative abilities to arrive at a distribution of 

effort where total profits are maximized, while the B-N model arrives at a distribution of effort that is a 

Nash equilibrium -- one that neither fleet has an incentive to deviate from, and which is optimal from each 

individual fleetôs perspective. In all of the simulations the sole owner modelôs predictions resulted in at 

least one of the fleetôs profits in a time period being lower than in the Nash solution. This has important 

implications in models where distributional impacts among fishermen are calculated. The behavioral 

assumptions made in using the sole owner model and the B-N model differ.  The sole owner modelôs 

assumptions do not necessarily abide by individual utility or profit maximizing axioms, in that each fleet 

does not maximize its own profits, while the B-N model does agree with individual profit maximizing 

behavior. The sole owner model may be useful as a benchmark in deriving the socially optimal solution 

(assuming no supply effecting consumer surplus) with which to compare other distributions.  It may also  

provide a way of describing the gains of cooperation between fleets (Merino, Maynou, and García-Olivares 

2007). The sequential model is also based on an explicit theory of individual fisherman behavior that 

explains why fleets will choose one area in which to fish for a given time period based on the characteristics 

of the area at the beginning of that time period and its own technical parameters. However, the sequential 

model has seen very little use in the published literature even though it has clear theoretical advantages 

compared to the gravity model. While intuitive, this method can only be resolved at as fine a temporal scale 

as is defined in the model- unlike the other models in the comparison, no fractions of weeks can be allocated 

between areas. We suggest that one of the main reasons that the sequential model has not been applied more 

widely in the literature is because of a perceived complexity of implementation compared to the gravity 

model. In our experience, however, the sequential model was relatively simple to incorporate into model 

code. Compared to the gravity model, we assert that the main drawback of its use lies in the granularity of 

its predictions, and in cases where the time it takes to reach a solution are important, provides a good 

alternative.  
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While the general pattern of the behavioral models predicting that the vessels with better fishing ability will 

distribute to more areas in the model agrees with observations in the literature (Abrahams and Healey 1990), 

the opposite predictions is made in the case of the theory of the Ideal Free Distribution (IFD). In IFD studies, 

vessels with a higher competitive ability are shown to generally be more prevalent in the better patches (in 

our case the low cost areas) (Sutherland and Parker 1985; Voges, Gordoa, and Field 2005). While a 

mechanism for this observation has not been established, a conceptual difference is that our models rely on 

exploitation competition, i.e., the depletion effect on the resource as a measure of competitive ability, while 

the IFD relies solely on interference between vessels. A strong competitor in interference competition refers 

to the ability of that vessel to interfere with the effectiveness of other vesselsô fishing activity with no 

exploitation effect. The mechanism that would result in these vessels being more prevalent in higher value 

patches is unclear. When an IFD occurs in fisheries, it represents a situation where average net revenues 

are equalized across the areas in the fishery. Gillis and Peterman (1998) showed that when fleets are 

homogenous and the main source of fish abundance decline is exploitation, the presence of even a small 

amount of interference competition is enough to equalize catch rate among grounds even when area 

characteristics are different. We have shown that when fleets are homogenous and areas are heterogeneous, 

a distribution of effort that is identical to that predicted by the IFD can occur when the sole source of 

competition is exploitation competition. Through our simulations, we have also shown that when fleets are 

heterogeneous, this distribution can occur, but only in cases where the differences between areas for each 

vessel in the fishery are similar. This has important implications for future research on IFD formation in 

fisheries. 

In many models the question of how much effort to exert in a fishery is often decoupled from the question 

of where to exert it. The Baranov-Nash method can be used to calculate a level of effort in each area in the 

absence of a binding total effort limit. We did not demonstrate this in the simulations as the goal was to 

make the models as directly comparable as possible. However, this is an avenue for future work.  

While models based on a statistical analysis of fishermenôs behavior, such as a RUM, offer a defensible 

approach to distributing effort in a simulation model that is based on historical fishery conditions, these 

approaches are often time consuming, and theoretically difficult to grasp for non-economists. We argue that 

the B-N method is intuitively sensible, less time- and data-intensive than models based on the random utility 

framework, and, of the models in our comparison, is the most attractive from a theoretical economic 

standpoint. However, it is the most time intensive to incorporate into model code and computer resource 

intensive when solving. It should be noted that while time to compute solutions was relatively short for all 
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solutions (a few milliseconds for the gravity and sequential model, a few seconds for the sole owner and B-

N models), when incorporated into models of greater complexity, which bioeconomic simulation models 

generally are, this difference in computation time is inevitably magnified, and can have serious implications 

for modeling projects. Computation time therefore becomes a non-trivial consideration when deciding on 

a choice of model, especially when results of two competing models are similar. We show the conditions 

under which the predictions made by the gravity model are likely to be similar to the three behavioral 

models in the comparison. When all vessels are treated as homogenous, and the differences in stock size or 

costs of fishing between areas is relatively small the gravity model is a simple method of distributing effort 

in a simulation model that may result in predictions that are similar to those made by behavioral models. 

However, when significant heterogeneity in the vessels exists, and areas characteristics are different, the 

gravity model may make effort predictions that diverge from predictions based on economic theory. The 

main assumptions underlying the B-N model are that all fishermen have complete knowledge regarding the 

other fleetsô technological characteristics and the distribution of the resource stock. While clearly untenable, 

increased technology for imaging and finding fish stocks, as well as the use of satellite navigation and 

improved vessel communications may mean that these assumptions are no longer as strong. If one of the 

goals of bioeconomic simulation modeling is to realistically represent fishermenôs decisions in time and 

space in order to examine the possible interactions between fishermen and resource dynamics, a model that 

is based on an individual profit maximizing theory arguably takes us further along the road to achieving 

that goal. 

Simulation exercises such as the one we present are useful for exploring the behavior of models that are 

analytically intractable. Our simulation exercise is simple and abstracts from reality significantly, but its 

simplicity is also its strength. We abstracted away from stock dynamics and focused instead on the behavior 

of the fishermen explicitly and we generated results that are easier to interpret and to identify effects than 

if we had incorporated a higher degree of órealityô into the model. To paraphrase Hilborn and Walters 

(1987), even very simple simulations can help us to better understand the dynamics of fisheries. 

3.6 Conclusion  

While the implications of including spatial fisherman behavior in fishery models for model predictions has 

been noted for many years, most bioeconomic simulation models of fisheries do not incorporate a method 

for spatially distributing fishing effort that is based on an explicit theory describing how fisherman behave 

in space. In this paper we introduce a novel method for spatially distributing fishing effort in bioeconomic 
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simulation models that is based on a theory of individual maximizing behavior. We show, through the lens 

of simulation, the possible implications of distributing effort using a model that is not based on a theory of 

individual behavior (the gravity model), and compare results to predictions made by our game theoretic 

method as well a sole owner model and the sequential model. The gravity model is attractive partly because 

of its simplicity, it is easy for non-economists to grasp, and is relatively easy to code into simulation models. 

However, the degree to which predictions made by the gravity model differ to predictions of the behavioral 

models depends on the degree of heterogeneity in the fishery. In general, as heterogeneity increases, the 

degree to which the gravity predictions conform to the other modelsô predictions diverges. We also show 

the general conditions under which the predictions of the three behavioral models diverge. If vessels are 

homogenous, these three models make very similar predictions. However, if vessels are heterogeneous in 

fishing ability, the choice of behavioral model has significant implications for effort predictions. Finally, 

we show that under exploitation competition only, a distribution of effort that mimics that of an Ideal Free 

Distribution is predicted by the behavioral models, and show that this prediction holds even if fleets are 

heterogeneous in cost structure, albeit only if cost differences between fishing areas for all vessels do not 

exist.  
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4. THE BIO ECONOMICS OF SOFT SHELL CRAB: EVALUATING  THE 

IMPACTS OF CHANGING SEASON LENGTH IN OREGONôS 

DUNGENESS CRAB FISHERY. 

4.1 INTRODUCTION  

Fishery management measures that specify restrictions on the sex or size characteristics of retainable catch 

are generally designed to protect a stockôs reproductive potential, a stockôs growth potential, or both. The 

intuition is that undersize animals that grow at a high rate, or large animals and females that have a high 

reproductive value to the overall population, can be released back into the population and provide future 

economic benefits (Coggins et al. 2007). However, the extent to which this mechanism works depends on, 

among many other factors, the ability of the released animal to survive capture, handling, and post-

discarding stress. Demersal fish caught in trawl nets, and those species of fish that are prone to barotrauma 

are thought to suffer relatively high levels of discard and handling mortality and mandates to discard these 

species are often designed under the assumption that none of these animals will survive discarding 

(Broadhurst, Suuronen, and Hulme 2006). However, other species such as crab and lobster caught using 

traps are thought to be fairly resilient to handling discarding stress, and regulations to discard certain 

components of the catch are designed under the assumption that many of these animals will survive and 

contribute to the future growth of the population and hence potential catch (Bunnell and Miller 2005).  

In some crab fisheries a consideration that is not related to sex or size and that has the potential to determine 

both discard levels and the likelihood that an animal will survive handling is that of body condition due to 

stage of growth. While a crabôs soft tissue grows continuously, its exoskeleton does not. Moulting is the 

process by which crab grow in shell size- shedding the old shell and revealing a new, larger, and 

(temporarily) ósoftô shell underneath. Soft shell crab are thought to suffer significantly higher rates of 

discard mortality than their hard shell counterparts (Kruse, Hicks, and Murphy 1994). In some cases, such 

as the blue crab fishery in Chesapeake bay, soft shell crab command a higher price and managers try to 

encourage fishermenôs access to the resource at this stage, rendering increased handling mortality of soft 

shell legal sized animals largely irrelevant (Bunnell, Lipton, and Miller 2010; Huang et al. 2015). However, 

in other cases, such as the Dungeness crab fishery on the west coast of the U.S., soft shell crab are lower in 

meat quality and density and processors generally do not purchase these crab; management actions are 

designed to restrict fishermenôs access to the resource at this stage of growth (Didier 2002). Increased 

handling mortality of soft shell crab is therefore an important consideration when designing management 

regulations in these fisheries, and given that handling mortality rates in any fishery are rarely estimated 
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(Benoît et al. 2012), represents a significant source of uncertainty to fishery managers, and one which has 

potentially important implications for the sustainability and profitability of fisheries (Davis 2002). 

Management actions designed to address handling mortality concerns in crustacean fisheries are widespread 

and tend to focus on season length and timing restrictions which ostensibly reduce the probability that a 

soft shell animal will interact with the fishing gear in the first place. For example, the spiny lobster fisheries 

in New Zealand have relatively long restricted seasons in order to reduce pot related mortality (Breen and 

Kendrick 1997), and the Dungeness crab fisheries on the west coast of the U.S. have implemented seasonal 

closures since the mid-20th century to address soft shell mortality concerns (Didier 2002).  

 In Oregon, there has been renewed interest in examining the potential economic and biological impacts of 

further adjusting season length in the Dungeness crab fishery in order to protect soft shell crab which have 

little sale value (ODCC 2015). While some research has focused directly on the population effects of 

handling mortality (Coggins et al. 2007), and other research has indirectly examined the economic and 

biological impacts of discard mortality by comparing a range of alternative management strategies that have 

differential effects on mortality (Breen and Kendrick 1997; Bunnell, Lipton, and Miller 2010; Huang et al. 

2015), we are aware of no research that has attempted to explicitly evaluate the economic and biological 

tradeoffs involved in implementing management measures designed to reduce discard mortality in a crab 

fishery.  

The purpose of this paper is to develop a bioeconomic simulation model of the commercial Oregon 

Dungeness Crab (ODC) fishery to examine how changes in the season closure date may affect the level and 

distribution of profits in the fishery, and to determine how changes in the amount of soft shell crab mortality 

affect these profits. To the best of our knowledge, the ODC fishery has not been examined from a 

bioeconomic perspective. There is a reasonable level of knowledge regarding the biology of the Dungeness 

crab, including research on handling mortality rates (e.g. Yochum et al (in press)), that may be used to 

parameterize a representation of the biological dynamics of the stock. However, without a fishery 

independent estimate of the stock size or a rigorous examination and representation of the population 

dynamics of Dungeness crab, we are unable to make predictions of the level of economic impacts that may 

result from adjusting the season closure date. We focus our attention, therefore, on identifying a season 

closure date that maximizes economic performance in the fishery in a base representation of the model 

which is calibrated using the best available information from the literature, and then compare how this 
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closure date is affected by changes in fishery conditions such as recruitment size, timing of the moult, and 

handling mortality rates.  

The overall simulation model combines a 3 cohort representation of the ODC stock where recruitment is 

determined by exogenous environmental forces, with a fleet dynamics model of the ODC fleet, where the 

amount of effort exerted in the fishery responds to changes in the abundance and cohort structure of the 

crab stock as well as economic conditions in the ODC fishery and other fisheries that ODC fishermen 

participate in. A realistic range of variability in recruitment is included in the model and the model is run 

over a range of model conditions in order to determine its sensitivity to model parameters. In the next 

section we give an overview of the economics and ecology of Oregonôs Dungeness crab fishery and in 

sections 4.2 and 4.3 we present the biological and economic sub-models, respectively.  In section 4.4 we 

present the combined bioeconomic simulation model and in section 4.5 we apply the model to hypothetical 

early season closure dates. We examine how changes in season closure dates affect both the level and 

distribution of economic impacts in the fishery, and how assumptions regarding the rate of handling 

mortality and the timing of the moulting process affect these impacts. 

4.1.1 OREGONôS DUNGENESS CRAB FISHERY 

Dungeness crab (Cancer magister) are a commercially important crustacean ranging from southern 

California to the Bering Sea, Alaska and are generally targeted by commercial fishermen using crab ópotsô, 

which are baited metal traps. Since the first commercial landings were recorded in San Francisco bay in the 

1840s the fishery has evolved to become the most valuable fishery, in ex-vessel value terms, in the 

California Current system (Rasmuson 2013; Dewees et al. 2004). The first commercial landings in the 

Oregon Dungeness Crab (ODC) fishery were recorded in 1889 (Demory 1990) and over the last several 

decades Oregon has contributed approximately 30% of the total coast-wide catch. Between December 2006 

and August 2015, annual ex-vessel landing values of Dungeness crab in Oregon have ranged between 

$29.43 million and $50.15 million, making it consistently the most valuable fishery in the state of Oregon. 

Hitherto unregulated, between 1948 and 1996 the management of the ODC fishery evolved to include 

seasonal closures to protect recently moulted crab, a moratorium on the retention of all female crab and 

under-size male crab (<159mm carapace width), and the inclusion of an escape hatch on all pots to allow 

crab in lost (óghostô) pots to escape (Didier 2002). While there was limited concern regarding the ability of 

the crab stock to replenish during this time, these management measures were intended to safeguard the 

reproductive and growth ability of the stock. As the fishery intensified towards the end of the 20th century, 



84 

 

 

the órace for fishô that is characteristic of many open access fisheries led to significant overcapitalization in 

the fishery, high levels of occupational hazard from fishing in unsafe conditions, and conflict between 

different user groups, such as trawlers and crabbers (Demory 1990). This competitive behavior led to 

market gluts at the beginning of the season and poor product recovery rates which amplified inefficiencies 

in the fishery (Dewees et al. 2004). Another symptom of the race for crab was that while catch peaked in 

March and April prior to 1960, this peak gradually shifted towards the beginning of the season with the 

result that most of the seasonôs catch is landed during the first 4-6 weeks of the season (Demory 1990; 

Dewees et al. 2004; Hackett et al. 2004).  

As a response to these efficiency concerns, a limited entry program was established in 1996 which restricted 

the total amount of vessels that could operate in the fishery in a given season (Didier 2002). In 1998 a limit 

on the amount of crab that could be landed in a week period between June 15th  and August 15th was 

implemented partly to protect soft shell crab from excessive handling mortality (Furman 2001). Finally, in 

2006 a pot limit system was implemented which restricted the total amount of pots that vessels could use. 

The pot limit system was introduced as a tiered system where vessels were assigned a limit on the total 

number of pots they could use at a given time of either 200, 300, or 500 pots. The allocations for the limited 

entry and pot limitation programs were based on historical participation and fishing effort.   

Since 2006 the management structure in the ODC fishery has been relatively stable.  The fishery is managed 

cooperatively between the states of Washington, Oregon, and California with significant opportunities for 

input from stakeholders. The fishery is managed on a ó3-Sô (size, sex, season) system: only crab greater 

than 159mm carapace width are retainable, only male crab are retainable, and the season closes between 

August 14th and December 1st each year to protect moulting crab. In the last 8 years, the majority of the 

catch has been taken in the first 4 weeks of the season (figure 4.19), presumably when abundance of legal 

size males is high, which leads to high catch rates. In general, catch rates in the fishery are highest at the 

beginning of the season, and decrease towards the end of the season. While the traditional opening date of 

the ODC fishery is December 1st, the opening may be delayed if crab condition assessments made during 

pre-season tests indicate that the proportion of crab with meat recovery rates of less than 25% is higher than 

an acceptable level. 

The ODC fishery has been certified as sustainable by the Marine Stewardship Council (Marine Stewardship 

Council 2010), and is commonly held up as an example of how to sustainably manage a crustacean fishery 

(Rasmuson 2013). The ODC fishery also allows significant input from stakeholders through the Oregon 
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Dungeness Crab Commission (ODCC). The ODCC was formed in 1977 as part of the Oregon Department 

of Agricultureôs commodity commission program. This program allows ógrowersô to tax themselves in 

order to increase their commodityôs value, recognition and use, which in the case of the ODCC has resulted 

in a commitment to increase the profitability of the industry through ñpromotion, education, and researchò 

(ODCC 2016a). The ODCC works closely with the Oregon Department of Fisheries and Wildlife (ODFW), 

the state agency responsible for ODC fishery management. The apparent sustainability of the ODC stock 

under the current ó3-Sô management paradigm, high ex-vessel revenues, and fishermenôs participation in 

fishery management decisions through the ODCC have resulted in widespread faith in the current 

management structure and a reluctance to change among ODC fishermen. However, a very limited amount 

of research has been conducted on either the economics of the ODC fishery, or on the population size, 

structure, and dynamics of the crab stock. There is therefore a high level of interest among ODC fishermen, 

and the ODCC, in improving the state of knowledge regarding the fishery. While much of this desire for 

information discovery stems from feelings of resource stewardship among ODC fishermen, there is also 

interest in exploring ways that profitability in the fishery can be increased, particularly in ways that do not 

significantly change the existing management structure (ODCC 2015).  

While there are few concerns regarding the sustainability of the ODC fishery, this is not driven by a rigorous 

assessment of their stock status and a formal assessment of the Dungeness crab stock in Oregon has not 

been undertaken to date. Rather, this optimism derives from the fact that while total fishery landings 

fluctuate from year to year, there has been no sustained downward trend in total fishery landings (Dewees 

et al. 2004). Landings of Dungeness crab in Oregon is often taken as a proxy of stock size and it is a common 

assertion that approximately 90% of the legal size male crab on the West coast of the U.S. are removed 

from the fishery each year (Dewees et al. 2004; Rasmuson 2013). Landings of Dungeness crab in Oregon 

and other west coast states fluctuate widely from year to year in a generally cyclical pattern that peaks 

approximately every 10 years (Hankin 1985; Demory and others 1990; Didier 2002; Dewees et al. 2004). 

While many explanations have been proposed for the cause of these fluctuations in abundance (see Hankin 

(1985) for a discussion), there is widespread consensus among fishery scientists that these fluctuations are 

due to changes in the abundance of crab that are recruited to the fishery and not changes in the dynamics 

of fishing effort (Hankin 1985; Heppell, Thompson and Price 2009).  

In many fishery models a stock-recruitment relationship is specified which relates recruitment of new 

individuals in the population to the fishery as a function of the size and characteristics of the existing 

population. In the ODC fishery, however, it is thought that environmental influences during the larval stage 
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of a crabôs life cycle may have the greatest influence in determining future crab abundance (Heppell, 

Thompson and Price 2009; Rasmuson 2013). In Oregon, Dungeness crab mate in the spring at the moment 

that mature female crab undergo moulting (ODFW 2016). Most male Dungeness crab then moult after the 

female moulting period in the late spring to summer although some moulting occurs throughout the year 

(Rasmuson 2013). After the initial moult the exoskeleton hardens over a period of two to three months, 

during which time they are in a soft shell state, and more susceptible to injury from handling (WDFW 

2016). In Oregon, eggs hatch approximately 6 months after the female moult in January to March, and crab 

spend approximately 4 months as larvae before settling in the nearshore environment (Rasmuson 2013). 

During the larval phases survival rates and dispersion patterns are highly influenced by oceanographic 

conditions, including water temperature, current patterns, and availability of nutrients (Dunn and Shanks 

2012). The current thinking is that the timing and pattern of currents in the California current system, which 

follow a cycle known as the Pacific Decadal Oscillation (PDO), is the main determinant of crab recruitment 

(Rasmuson 2013). The theory is that during a negative phase of the PDO, greater nutrient levels and cooler 

water temperatures result from stronger cool water currents flowing south as the California current (and 

weaker northward flows as the Alaska current). Both of these factors are thought to increase the survival of 

Dungeness crab larvae. Extremely high larval mortality rates coupled with extremely high numbers of crab 

larvae means that even a small improvement in larval stage survival rates can translate into a potentially 

huge increase in recruitment to the fishery (Hankin 1985). While there are likely to be many causes of the 

fluctuations in crab abundance between years, Shanks and Roegner (2007) showed that larval survival rates 

explained approximately 90% of the variability in the adult Dungeness crab population between San 

Francisco and Washington. 

While much is known about the biology and life cycle of the Dungeness crab there is very limited 

information regarding its stock dynamics, partly because much of the information that is required to conduct 

a rigorous stock assessment has not been collected (Heppell, Thompson and Price 2009). For example, size 

and sex composition of the catch, and an accurate measure of the total number of pots used in the fishery 

were not collected until the recent change in management to reduce overcapitalization. (Didier 2002). 

However, starting in 2008 all ODC fishery participants are required to record fishing locations as well as 

other trip level information in vessel logbooks. While there has been no rigorous estimate of the size and 

age structure of the Oregon Dungeness crab stock, the fact that fishery catch has recovered to high levels 

within a few years of any drop in levels is indicative of a highly resilient population (Heppell, Thompson 

and Price 2009). In addition, there is no empirical evidence that suggests that the moratorium on retaining 
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females and small male crab has led to a sex and size distribution that significantly impacts female mating 

success (Hankin, Hackett, and Dewees 2005; Rasmuson 2013). In fact, some authors have suggested that 

the fishery is under-utilized and that the male size limit could be reduced and some females allowed to be 

retained without a significant effect on the reproductive potential of the population as a whole (Heppell, 

Thompson and Price 2009). 

Currently, one of the main concerns in the fishery is the potential impact of fishing towards the end of the 

season on recently moulted (soft-shell) crab, which are generally not retained for sale (ODCC 2015). Most 

male crab in Oregon moult between April and September (Rasmuson 2013), and while they are in a soft 

shell state they are highly susceptible to handling mortality through being captured in pots, brought on deck, 

then released (ODCC 2015). The concern is that these removals from the population towards the end of a 

season are due to handling mortality and have a significant effect on the catch levels of saleable, hard-shell 

crab in subsequent seasons. While concern over handling mortality of soft shell crab is not new and 

regulations have been in place to reduce softshell harvests and mortality (e.g., the weekly catch limit of 

crab in the summer months and an August 14th season closure), no assessment of the potential impacts of 

ósummerô fishing has been conducted to date. Such an assessment is complicated by the fact that very little 

is known regarding either the timing of the moult, the distribution and behavior of soft shell crab, the ways 

these crab interact with fishing gear, or mortality rates from either handling or natural causes. In addition, 

the population levels of the stock, including the proportion of animals in a soft shell state, are not known 

for any particular time. While the biological impacts of summer fishing are important, the real issue is how 

these biological impacts translate into economic impacts i.e., the level, distribution, and sustainability of 

profits. Vessels in the ODC fishery are heterogeneous.  These vessels hail from different ports, have 

different cost structures and physical characteristics, and catch different amounts of crab at different times 

throughout the season. The impact of summer fishing is therefore experienced asymmetrically on the fleet, 

and any management actions that are introduced to address such concerns are likely to result in both winners 

and losers.  

A management measure that is commonly discussed to address concerns surrounding the handling mortality 

of soft shell crab is that of closing the season earlier than the traditional August 14th date (ODCC 2015; 

ODCC 2016b; Kelly Corbett 2016). This is a contentious issue- some fishermen traditionally fish into the 

summer months, although most do not (ODCC 2015). Closing the season earlier than the traditional date 

will likely have a negative impact on these fishermen, while potentially benefiting those who do not fish in 

the summer months. However, it is also possible that an early season closure will have such beneficial 
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effects on the crab population as a whole that catch amounts for all fishermen, including the group of 

summer fishermen, will increase to the point where everyone is better off from a profit perspective, even if 

profits are concentrated earlier  season. Examining these tradeoffs necessitates the use of a bioeconomic 

modeling framework, which we now describe. 

4.2 Biological Sub-Model 

We focus the biological component of the model on the part of the Dungeness crab stock that is either 

recruited to the fishery, or will recruit to the fishery during the next moult (at least age 3). The effects of 

retaining only large males on the population of crab is not thought to result in a size or sex distribution that 

significantly affects female mating success (Hankin, Hackett, and Dewees 2005; Heppell, Thompson and 

Price 2009; Rasmuson 2013). In addition, adult recruitment into the fishery is not thought to depend heavily 

on the existing population of crab, but rather on oceanographic and other environmental conditions during 

the larval phase 4 years previous to recruitment (Rasmuson 2013). We argue that it is reasonable, therefore, 

not to explicitly include female crab and male crab that are younger than age 3 in the model, and to represent 

recruitment to the SL cohort as an exogenous process.  

There are three cohorts in the biological sub-model:  

¶ ñSLò cohort: Male sub-legal hard shell crab (< 159mm carapace width) that will moult into legal 

crab (>159mm carapace width) during the next moult. 

¶ ñLHò cohort: Male legal size hard shell crab (> 159mm carapace width). 

¶ ñLSò cohort: Male legal size soft shell crab (> 159mm carapace width).  

While there are varying degrees of hardness of crab carapaces, we define soft shell crab as those crab that 

are not normally retained due to the softness of their carapace, and hard shell crab as those crab with a shell 

condition that would not cause fishermen to discard them based on carapace hardness alone. 

We specify a discrete time step with each interval, t, representing a 7 day period. Week 1 in the model starts 

on December 1st, and week 52 ends on November 30th, which reflects how a crab óseasonô is normally 

prosecuted. We represent the recruitment process as an exogenous input of sub-legal (SL) crab (the ógiftô) 

which occurs after the last week of the previous season and before the first week of the current season. Both 

the sub-legal hard shell (SL) and legal hard shell (LH) cohorts moult throughout the season into the legal 
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soft shell (LS) cohort. The moulting process is represented as a probability that an individual hard shell crab 

will ómoultô during a given time period. For each cohort, a, the probability of moulting during a week 

period, t, is mat. As Dungeness crab are thought to remain in a soft shell state for approximately 3 months 

after the initial moult, after 12 model óweeksô, the crab that moulted 12 weeks previously are introduced 

into the LH cohort. Note that this later introduction into the LH cohort is composed of crab that originated 

both in the SL and LH cohort, after deaths due to natural causes or fishing are accounted for. 

Two sources of crab mortality are represented in the model which, within a time period, are accounted for 

after the moulting processes occur: natural mortality and fishing mortality. Natural mortality, Ma, is time 

independent but cohort specific and represents the instantaneous rate of mortality for each cohort that arises 

from non-fishing factors. The instantaneous rate of fishing mortality, Fat, is time dependent and cohort 

specific and represents mortality arising from all fishing activity. There are several known sources of fishing 

mortality of Dungeness crab. Apart from retention for sale these include handling mortality, cannibalism in 

pots, ghost fishing, and mortality from other fisheries, such as the bottom trawl fishery (Rasmuson 2013). 

Handling mortality is the incidental mortality that occurs when a crab is captured in a pot, brought on deck, 

and released. Cannibalism in pots arises from crab being trapped in a pot with larger or more voracious 

crab, and is thought to be a significant source of crab mortality. Ghost fishing occurs when pots are lost at 

sea, and either not recovered, or recovered after the escape hatch has opened. Deaths from ghost fishing 

may be due to starvation, octopus predation, and/or cannibalism. The bottom trawl and recreational fisheries 

in Oregon are also thought to be a significant source of crab mortality (Didier 2002). 

For the purposes of this paper, we combine all sources of fishing mortality, apart from mortality from other 

fisheries and ghost fishing, into a single percentage rate, ha, which represents the probability that an 

individual crab will be killed by fishing activities, conditional on the crab being captured by the gear. The 

instantaneous rate of fishing capture, Ca,t , is the product of a catchability coefficient, qa, and total fishing 

effort, ft, in time period t: 

ὅȟ  ήϽὪ                                                                          ὉήȢτȢρ                                                              

The instantaneous rate of fishing mortality, Fat, is the product of the rate of fishing capture and the 

percentage mortality rate:  

Ὂȟ  ὬϽὅȟ                                                                         ὉήȢτȢς                                                               
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The instantaneous rate of total mortality, Zat, is the sum of the rates of fishing mortality and natural 

mortality, Mat: 

ὤȟ Ὂȟ ὓ ȟ                                                                      ὉήȢτȢσ   

The biomass of each cohort, a, at time t, is ὔȟ. Within a season, the initial biomass of soft-shell crab in 

time t, before deaths are accounted for, is the sum of the biomass of soft shell crab at the end of time t-1, 

plus the introduction of newly moulted crab (from the SL and LH cohorts), minus the outflow of hardened 

crab:  

ὔ ȟ ὔ ȟ  ὔȟ
ȟ

Ͻά ȟ  ὔ ȟ ϽὩὼὴ ὤ ȟ                       ὉήȢτȢτ 

The biomass of the LH and SL cohorts after the moulting process has occurred but before mortality in each 

time period is: 

ὔȟ ὔȟ Ͻ ρ ά ȟ   ὔȟ ϽὩὼὴ ὤȟ           Ὢέὶ ὥ ὒὌȟὛὒ                  ὉήȢτȢυ 

Total biomass killed due to fishing of cohort a, at the end of time period t is: 

 
Ὂȟ

Ὂȟ ὓ
 ὔȟρ Ὡὼὴὓ Ὂȟ                                                    ὉήȢτȢφ 

Total biomass dying due to natural causes of cohort a, at the end of time period t is: 

 
ὓ

Ὂȟ ὓ
 ὔȟρ Ὡὼὴὓ Ὂȟ                                                ὉήȢτȢχ 

Biomass of each cohort at the beginning of the subsequent period, t+1, and before moulting and hardening 

takes place is then: 

ὔȟ ὔȟϽÅØÐ Ὂȟ ὓ                                                        ὉήȢτȢψ 
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4.3 Economic Sub-Model 

The level and temporal distribution of fishing effort in the ODC fishery determines the amount of fishing 

mortality over time. Given population abundance, effort drives vessel profit through its determination of 

catch and the level of variable costs vessels incur. It is therefore the key variable in the bioeconomic 

simulation model and the focus of this section. We considered total fishing effort to be determined by two 

separate decisions made by ODC fishermen: 

1) whether or not to participate in the fishery in a given time period (vessel participation), and  

2) how much effective effort a vessel should exert in a given time period, conditional on participating 

in that time period  

These two considerations formed both the basis of our estimation strategy, and the structure for the 

economic fleet component of the bioeconomic model.  

4.3.1 VESSEL PARTICIPATION 

Vessels in the ODC fishery exhibit remarkably stable temporal patterns of fishery participation. In general, 

vessels enter the fishery on the day the season opens to take advantage of extremely high catch rates in the 

first weeks of the season, and then exit the fishery at some point before the season closes on August 14th of 

the subsequent year. Figure 4.1 shows the week of entry to the ODC fishery and the week of exit to the 

ODC fishery aggregated over the 2007-2014 seasons. Week 1 corresponds to the opening week of the 

season- generally Dec 1st- and week 37 corresponds to August 14th in each year- the traditional closure date. 
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Figure 4.1: Entry and Exit weeks of ODC vessels aggregated over the 2007-2014 seasons.  

Due to the high costs of both moving gear from the fishing grounds to a storage facility and moving pots 

back to the fishing grounds from the storage facility, once a vessel óexitsô the ODC fishery, re-entry 

generally does not occur until the next season (ODCC 2015). The main exception to this pattern occurs 

with vessels concurrently holding either a Washington (WA) state Dungeness crab permit or California 

(CA) state Dungeness crab permit. These vessels will generally fish in each state at least once per year to 

keep the permits active (Kelly Corbett 2016). In these cases vessels will either start the season in another 

fishery then enter the ODC fishery after the season has opened, or will exit the ODC fishery earlier than 

they would have if they did not possess multiple permits. While the data on ODC vesselsô participation in 

the WA/CA Dungeness crab fisheries were not available to us, the numbers of ODC vessels that participate 

in these fisheries is thought to have been relatively small, especially in recent years. In addition, the ODC 

fleet has remained remarkably stable over the last 8 years, with minimal variation in total vessel numbers 

or composition of the fleet by tier permit. The tier permit level specifies the maximum number of pots that 

a vessel can deploy at one time and is positively correlated with vessel length. Table 4.1 shows the total 

number of vessels participating in the ODC fishery by season, as well as the total number of active vessels 

(vessels that actually participated in the fishery) by permitted pot tier.  
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Table 4.1: Number of vessels by pot tier license by season. 

season total vessels 200 tier 300 tier 500 tier 

2007 335 53 145 137 

2008 312 51 134 127 

2009 307 53 128 126 

2010 325 58 137 130 

2011 341 62 142 137 

2012 319 60 139 120 

2013 318 56 139 123 

2014 315 50 137 128 
 

The particular characteristics of the ODC fishery including the fact that the season structure has been 

relatively consistent over the last decade and that individuals generally exit the fishery only once in each 

season,  provides a rare opportunity to apply a duration model to the in-season exit behavior of fishermen. 

Duration analysis, also known as survival analysis in the health sciences, or failure time analysis in 

engineering fields, is a method for analyzing ótime to eventô data (Singer and Willett 2003), where an 

óeventô is a measurable, discrete, outcome. In economics and the social sciences, duration modeling is 

commonly used to model spells of unemployment, with the first known application in the early 1970s 

(Lancaster 1972). Since then duration models have been applied widely in such diverse applications as 

timing of hurricane evacuation by individual households (Hasan, Mesa-Arango, and Ukkusuri 2013), the 

adoption of conservation practices by farmers (DôEmden, Llewellyn, and Burton 2006), the effects of social 

context on the initiation of cigarette use  (Reardon, Brennan, and Buka 2002), and the investigation of 

factors affecting highway project time delays (Anastasopoulos et al. 2012). See Hosmer Jr and Lemeshow 

(1999) and Klein and Moeschberger (2005) for good overviews of the models and techniques used in 

regression modeling of time to event data. 

Two fundamental concepts in duration analysis are the survival probability and the hazard probability. The 

survival probability at a particular time, t, refers to the proportion of an initial group or population that has 

not experienced the óeventô up until that time interval, with a survival function the set of these probabilities. 

The hazard probability in time interval t refers to the probability that individuals in a population will 

experience the event in that time interval conditional on those individuals not having experienced the event 

up to that time. The hazard function refers to the pattern of these hazard probabilities over time (Singer and 

Willett 2003; Singer and Willett 1993), and is the main focus of regression modeling (Greene 2000). 

Duration models are generally characterized as non-, semi-, or fully-parametric, depending on the 

assumptions made regarding the distribution of duration times. Non-parametric models, the most common 
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of which is the Kaplan-Meier estimator (Kaplan and Meier 1958), are commonly used for exploring suitable 

forms of the hazard function before covariates are added to the model, or when no covariates are specified. 

In these models survival and hazard are calculated empirically. Semi-parametric hazard models generally 

assume that hazard is composed of two parts: a part that depends on individual characteristics, and a part 

that does not depend on individual characteristics. In these models no functional form for a baseline hazard 

is assumed- baseline hazard is fully general- and the effects of covariates are then seen as proportional shifts 

away from this baseline hazard. The most famous of these, the Cox Proportional Hazards (PH) model (Cox 

1972) has seen rich use in the economic literature (Ran, Keithly, and Yue 2014). Parametric models of 

hazard, also known as Accelerated Failure Time (AFT) models, allow covariates to accelerate (or 

decelerate) the survival function, for which a distributional assumption is made. Fully parametric models 

make more efficient use of the data than semi-parametric methods as they do not ignore the effects of 

covariates in time periods where no events are observed (DôEmden, Llewellyn, and Burton 2006), but also 

constrain the form of the baseline hazard function to fit the distributional assumption. Common 

distributional assumptions for the distribution of duration times are the Gompertz, exponential, and Weibull 

distributions, depending on the shape of the observed hazard probability profile over time (Greene 2000). 

While a rich and varied literature exists on the application of duration models to economic issues, they have 

rarely been applied to fisheries, and never (to the best of our knowledge) to model the in-season exit 

behavior of fishermen. Smith (2004) contributed the first application of duration modeling to fishermen 

behavior to analyze the factors influencing fleet attrition in the California red sea urchin fishery. Attrition 

was modeled as a long-term decision to permanently leave the fishery, and the time to event was the length 

of time that passed between fishery entry and exit. The author found that both individual characteristics of 

the fisherman and policy variables such as season length were significant determinants of fishermenôs 

decisions on whether to exit the fishery or not, thereby illustrating the modelôs policy relevance. Holloway 

and Tomberlin (2006) conducted a duration analysis on the California commercial salmon fishery in order 

to demonstrate its use in fisheries analysis. They found that physical vessel characteristics as well as the 

length of time vessels had operated in the fishery were significant factors explaining the probability of 

vessels leaving the fishery. More recently, Ran, Keithly, and Yue (2014) estimated a duration model 

combined with a model of reference dependent preferences to investigate the factors affecting the length of 

single fishing trip in the Gulf of Mexico shrimp fishery. The most recent application of a duration model to 

commercial fisheries analyzed the effects of fishery subsidies on the decision to exit the Spanish purse seine 

fleet (Cordón Lagares and García Ordaz 2015).  
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None of these studies examined the in-season exit behavior of fishermen, focusing instead on either long-

term exit (the decision to leave the fishery for good), or micro-term exit (the decision to end a fishing trip). 

This is perhaps due to the fact that the nature of most fisheries precludes the use of duration analysis for 

determining in-season exit. For example, many fisheries are characterized by seasons that are so short that 

all vessels exit the fishery at the same time e.g. the Pacific Halibut fishery in Oregon. In other cases seasons 

are long but barriers to re-entry (such as gear re-deployment costs) are minimal resulting in fishermen 

entering and exiting the fishery several times throughout the season. Many fisheries are characterized by 

some form of property rights regime where vessels are free to fish at any time during the year and exit, in 

most cases, when their quota portfolio becomes constraining. In all of these cases the application of duration 

analysis is complicated by structural characteristics of the fishery and multiple entry/exit decisions. In these 

cases multinomial choice models based on the random utility framework (after McFadden and others 1973) 

are perhaps better suited to the analysis. In contrast, in the ODC fishery vessels generally enter the fishery 

at the same time and make an exit decision which is not reversed (due primarily to significant costs of gear 

redeployment and decreasing catch per unit effort as the season progresses (ODCC 2015)), and provides a 

unique opportunity for applying seasonal duration type models.  

4.3.1.1 Empirical Duration Exploration 

While all vessels enter the fishery at roughly the same time, the shape of their empirical survival functions 

differs according to the portfolio of alternative fisheries that a vessel participates in. For example, ODC 

vessels that also participate in the shrimp fishery have a much higher hazard rate at the beginning of the 

season, and do not generally participate in the ODC fishery after April in each year. As part of the initial 

duration exploration we divided vessels into initial groups based on participation in alternative fisheries in 

order to determine if the behavior of these groups differed in a systematic fashion, and if so, could they be 

modeled as separate ósub-fleetsô.  In order to accomplish this we categorized all possible alternate fisheries 

that ODC vessels participated in into several groups and identified groups of vessels that shared similar 

alternate fishery participation portfolios. Table 4.2 shows the alternative fisheries identified and figure 4.2 

shows the average revenues throughout each season of all of the fisheries that were included in the analysis. 
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Table 4.2: List and description of the alternative fisheries that ODC fishermen participate in. 

Alternative Fishery Description Season Dates 

Shrimp trawl gear targeting shrimp  (March- December) 

Limited Entry (LE) 

groundfish 

LE permitted vessels targeting the groundfish 

complex  

(year-round) 

Open Access (OA) 

groundfish 

OA permitted vessels targeting the groundfish 

complex  

(year-round) 

Salmon  salmon trolling  (March- October) 

Tuna albacore tuna trolling  (June-September) 

Other all other fisheries (e.g. whiting, halibut, sardine)  (various times) 
 

 

Figure 4.2: Average weekly revenue per vessel in the alternative fisheries for the 2008-2014 seasons. 

Using all fish tickets for those vessels that participated in the ODC fishery between the 2007 season (Dec 

2006-Aug 2007) and the 2014 season (Dec 2013-Aug 2014), vessels were characterized into ógroupsô based 

on the portfolio of alternative fisheries each vessel participated in. A hierarchical methodology was 

followed based on both the season timing and value of the alternative fishery. We posited that, most of the 

time, vessels would exit the ODC fishery for their next best economic opportunity. The Limited Entry 

groundfish (LE) fishery and the shrimp fishery are the next most valuable fisheries (in revenue terms) on 

average after the ODC fishery so after placing all vessels that did not participate in an alternative fishery in 

a ócrabô group, groups were defined for vessels that participated in the shrimp fishery (óshrimpô), and those 

that participated in the LE fishery (óleô). A óshrimpleô group was defined for those vessels that participated 

in both the shrimp and LE fisheries. The Open Access groundfish (OA) fishery is open year round but has 
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a relatively low value. Those vessels that participated in just the OA fishery were placed into an óoaô groups, 

and two more groups, óoasalmonô and óoatunaô were created for vessels that participated in the OA and 

salmon fisheries and OA and tuna fisheries, respectively. Finally, groups of vessels that participated in the 

salmon (ósalmonô) and tuna (ótunaô) fisheries were defined. These groups are mutually exclusive: vessels 

in a given season may not belong to more than one sub-fleet, and all vessels are represented by a sub-fleet. 

Table 4.3 shows the initial groupings by alternative fishery participation and all possible fisheries that 

vessels participated in: 

Table 4.3: Initial groups for the empirical survival estimation. 

Main Vessel Grouping 
Group 

Code 

All vessels in group also 

participate in these fisheries: 

 Vessels may participate in 

these fisheries: 

crab only crab none none 

LE groundfish le LE groundfish  OA groundfish, salmon, 

tuna, other  

OA groundfish oa OA groundfish OA groundfish  

OA groundfish/salmon oasalmon OA groundfish + salmon OA groundfish, salmon, 

tuna, other 

OA groundfish/tuna oatuna OA groundfish + tuna OA groundfish, tuna, other 

salmon salmon salmon salmon, tuna, other 

tuna tuna tuna Other 

shrimp shrimp shrimp tuna, other 

shrimp/LE groundfish shrimple shrimp + LE groundfish tuna, other 
 

Empirical survival functions were estimated using the Kaplan-Meier method (Kaplan and Meier 1958) for 

each of the main fleet groupings as: 

Ὓὸ  
ὔόάὦὩὶ έὪ ὺὩίίὩὰί ὶὩάὥὭὲὭὲὫ Ὥὲ ὸὬὩ ὪὭίὬὩὶώ ὥὸ ὸὭάὩ ὸ

ὔόάὦὩὶ έὪ ὺὩίίὩὰί Ὥὲ ὸὬὩ ὪὭίὬὩὶώ ὥὸ ὸὬὩ ίὸὥὶὸ έὪ ὸὬὩ ίὩὥίέὲ
                ὉήȢτȢω 

While the simplicity of the Kaplan Meier method is one of its strongest qualities it cannot be effectively 

used to determine the quantitative effects of covariates on survival time. It is useful in this case for both 

determining the average duration behavior of the initial groupings in order to identify óaggregated groupsô, 

that is those groups that behave relatively similarly and can be represented by statistical models of hazard 

determination. Subfleets were defined for each season and these subfleets were aggregated before the 

empirical survival functions were estimated. The estimated survival functions are plotted in figure 4.3.  
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Figure 4.3: Kaplan-Meier survival functions for the initial sub-fleet groups. Data were aggregated over 

the 2007-2014 seasons. 

It is immediately apparent that there appear to be 4 aggregated groups that behave fairly similarly, which 

we now define as ósub-fleetsô for modeling purposes. Wilcoxon tests for differences between the 9 survival 

curves imply that there is no statistical difference between the curves for three sets of groups: 1) ócrabô, 

óleô, 2) óoaô, óoasalmonô, óoatunaô, and 3) ósalmonô, ótunaô. These sets formed 3 separate sub-fleets- 

ócrableô, óoaô, and ósaltunô respectively. A Wilcoxon test for differences between the óshrimpô and 

óshrimpleô survival curves rejects the null hypothesis that there is no significant difference between the 

curves.  However, given that these curves follow the same general pattern and because of a limited number 

of observations for these two groups, they were combined to form a separate óshrimpô sub-fleet.  Results of 

Wilcoxon tests for differences between initial sub-fleets are presented in table 4.4. 

Table 4.4: Results of the Wilcoxon tests for differences in the Kaplan-Meier survival functions. The 

comparisons are between the initial sub-fleet groupings aggregated into 4 groups. 

Test for Difference between: ɢ2 statistic (df) p-value 

oa, oasalmon, oatuna 3 (2) .223 

salmon, tuna 0 (1) .917 

crab, le .2 (1) .659 

shrimp, shrimple 20.8(1) 5.16e-06 
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Table 4.5: Final sub-fleets combined from the initial sub-fleet groups.  

Original Groups Combined: Sub-fleet names 

ócrabô + óleô ócrableô 

óshrimpô + óshrimpleô óshrimpô 

óoaô + óoasalmonô + óoatunaô óoaô 

ósalmonô + ótunaô ósaltunô 
 

The null hypotheses that there is no difference between the Kaplan Meier survival curves of the aggregated 

sub-fleets are rejected by Wilcoxon tests at the p=.001 level (Table 4.6) 

Table 4.6: Wilcoxon tests for differences between the final sub-fleetôs Kaplan-Meier survival functions. 

ɢ2 statistic oa saltun crable shrimple 

oa     

saltun 62.5 (2.66e-

15)***  

   

crable 193 (0)*** 92.5 

(0)***  

  

shrimp 511 (0)*** 555  

(0)***  

191 

(0)***  

 

 

Kaplan-Meier estimates of the survival functions for the aggregated sub-fleets are presented in figure 4.4. 

 

Figure 4.4: Kaplan-Meier survival functions for the final sub-fleet groupings. 
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These 4 sub-fleets, characterized by historical behavior of alternative fishery participation in each season, 

form the main fleet structure in the bioeconomic simulation model. Predicting exit times on a sub-fleet basis 

incorporates a level of realism that would be difficult to represent if all vessels were modeled as a single 

fleet. In addition predicted economic impacts on a sub-fleet basis arguably enables us to represent a measure 

of distributional impacts in the fishery. For example, the óoaô fleet was composed mainly of smaller vessels 

with a 200 pot limit while the óshrimpô fleet was composed of large trawl-capable vessels, most with 500 

pot limits. While sub-fleet composition changes from year to year, this change is relatively modest. 

4.3.1.2 Discrete Time Hazard Model  

We implemented a Discrete Time Hazard (DTH) duration model (Singer and Willett 1993) where the event 

we modeled is an individual vessel exiting the ODC fishery (when a vessel makes its last delivery for the 

season), and the time to event is the length of time that passes from the date the season opens until an 

individual vessel exits. We did not assume a distributional form for the baseline hazard, instead allowing it 

to be estimated fully generally. This was partly due to the issue of ótiesô, which arises through the coarseness 

of the data. A tie occurs when two individuals experience the event at the same time, and a large number 

of ties can lead to bias in parameter estimates when using continuous time methods (Hertz-Picciotto and 

Rockhill 1997). Ties are pervasive in discrete time specifications, and raise no significant issues in the 

estimation procedure (Singer and Willett 2003). Another reason for choosing a discrete time specification 

was that there are many discrete events throughout the course of a season which potentially have a 

significant effect on hazard such as the timing of alternative fishery openings. Capturing these effects using 

a functional specification for time (as is the case with fully parametric models), is problematic given the 

number of potential events. However, including a set of discrete time dummy variables in a fully general 

specification of time is relatively straightforward and as holidays fall in the same time period in each year, 

and other annual events (such as timing of alternative fishery openings) are generally consistent, the average 

of these effects is captured conveniently in the parameter on the time dummy. Finally, specifying discrete 

time for the duration model estimation meant that the results could be easily synchronized with the 

biological sub-model in the simulation framework, which simplified the overall modeling task.  

Hazard, the focus of the regression model, can be thought of as a function relating covariates that represent 

fishery conditions to the probability that a vessel will exit in a given time period. The value of hazard in 

any time period must therefore lie in the open interval (0, 1). Performing an odds transformation on the 

hazard probabilities ensures that hazard is bounded in this interval. However, as odds are bounded below 
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by 0, linear predictions of odds hazard could theoretically lead to negative predictions. Logit transforming 

(also known as log-odds) hazard ensures that that all possible predictions from a linear regression model 

leads to values of hazard that lie on the unit interval (Singer and Willett 2003, Jaeger 2008). 

The logit transformation of raw hazard for individual i in time t is the log of the odds ratio (inside 

parentheses): 

ὰέὫὭὸ Ὤὸ ÌÎ
Ὤὸ

ρ Ὤὸ
                                                  ὉήȢτȢρπ 

Transforming logit hazard into raw hazard is accomplished using the inverse logit (logit-1) transformation:  

Ὤὸ
ρ

ρ Ὡὼὴ  
                                                          ὉήȢτȢρρ 

The general specification of the model is to specify logit hazard for each vessel in each time period as a 

function of 1) a set of time dummies for each week period, d1- d37, 2) a set of k time invariant covariates, 

Xik, and 3) a set of m time varying covariates Zimt (Equation 4.11). 

ὰέὫὭὸ Ὤὸ ‌Ὀ ‌Ὀ Ễ ‌ Ὀ   ‍ ὢ Ễ ‍ ὢ ‏ ὤ ȣ ‏ ὤ    ὉήȢτȢρς 

The set of dummies and their respective parameters define the óbaseô logit hazard function for each fleet, 

which is the logit hazard function for a theoretical vessel that has zero values for all time invariant and time 

varying variables. The theoretical effect of the time invariant variables is therefore to shift the base logit 

hazard function in each time period proportionally according to the value of the parameter- the 

ñproportional logit hazardô assumption (Singer and Willett 1993). The interpretation of the effects of the 

time varying variables on logit hazard is more complicated -- while the value of time varying variables 

changes over time, the effect of the parameter on logit hazard is assumed to be constant over time, but the 

overall effect on hazard is time-varying (Singer and Willett 2003). While the proportional logit hazards 

assumption may seem overly restrictive, given that each vessel has unique values of time-varying 

covariates, each vessel theoretically has a unique logit hazard function. In addition, while the effect of 

parameters is linear (proportional) on the logit scale, this translates into non-linear proportionality on the 

probability scale.  
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An important implication for our estimation strategy was that while some vessels only participated in the 

ODC fishery for one season the majority of vessels participated in several seasons. Observations on the 

same vessel between seasons are therefore likely to be non-independent as unobserved heterogeneity on the 

individual vessel level and may affect the timing of vessel exit. The implications of this unobserved 

heterogeneity to our model (if untreated) is to possibly introduce bias into the estimates of the standard 

errors of the parameter estimates, and the parameter estimates themselves. In both standard linear 

regressions with a continuous and unbounded dependent variable, and regressions with a binary dependent 

variable, the presence of unobserved heterogeneity leads to incorrect statistical inferences as the standard 

errors of the estimates are biased (Agresti and Kateri 2011; Beck, Katz, and Tucker 1998). In general, 

standard errors are underestimated, leading to overly optimistic statistical inferences. To see why, note that 

the denominator in the formula for calculating the standard error of a parameter estimate in a standard 

regression model is the square root of n, the number of observations. Implicit in this formula is the 

assumption that each individual observation contributes an equal amount of information to the model. 

However, if observations for the same vessel are correlated, each observation does not contribute the same 

amount of information as outcomes for the same vessel are likely to be relatively similar over the years 

(Miles 2016). In this case, the standard error estimate is inflated, leading to overly optimistic statistical 

inferences. The standard treatment is to correct the estimates of the standard errors for clustering (on 

individual vessels in our case) by dividing the number of observations in the standard error calculation by 

a variance inflation factor, which corrects for intra-group correlation (Hanley et al. 2003; Hosmer Jr, 

Lemeshow, and Sturdivant 2013). Another option is to use a robust estimator of the covariance matrix such 

as Huber-Whiteôs sandwich estimator, which is currently implemented in most statistical programs. For an 

overview of this estimator, see Freedman (2012) and STATA corp. (2016). 

While in a standard linear regression the parameter estimates remain consistent when observations are non-

independent, and standard errors can then just be corrected for clustering, the consequences of unobserved 

(and untreated) heterogeneity in a logistic regression are to introduce duration bias into the parameter 

estimates (Barber et al. 2000; Hausman and Woutersen 2014; Rodriguez 2016). In our model, there is 

potential for bias in both our estimates of baseline hazard and the estimates of the time invariant and time 

varying parameters. The same vessels are likely to display similar exit behavior across seasons but the 

estimator of baseline hazard reflects the average hazard over all vessels in the fleet. The base hazard 

parameters will therefore reflect the behavior of only a subset of vessels later in the season. This issue is 

also reflected in the estimates of the coefficients on the other variables in the model. For example, vessels 
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that stay in the fishery later due to unobserved characteristics (such as a deep love for crab fishing), may 

bias the population estimates of the effects of observed variables (such as crab revenue) on the probability 

of fishery exit in a given time period. It is important to account for unobserved heterogeneity in duration 

models for these reasons (Hausman and Woutersen 2014; Barber et al. 2000). Two major model 

specifications that account for unobserved heterogeneity in duration models are the fixed effects model and 

the random effects model.  

Fixed effects models effectively include a separate intercept for each group, where a group is defined such 

that observations are correlated within a group but uncorrelated between groups. They are popular for 

analyzing panel data as they make it possible to control for group characteristics, and the reason why one 

may assume conditional independence of the observations (Allison and Christakis 2006; Rodriguez 2016). 

Implementing the fixed effects model in a logistic regression, however, is complicated by the fact that 

consistency of the Maximum Likelihood (ML) estimators requires that the number of parameters be fixed 

as n increases (Agresti and Kateri 2011). This implies that simply adding a dummy variable to the model 

for every vessel might cause inconsistency of the parameter estimates. Instead, using the conditional logit 

fixed effects estimator allows consistent estimation of the model with the drawback that time invariant and 

group-specific effects canôt be estimated as group effects are ódifferencedô out of the model (Agresti and 

Kateri 2011). Another drawback of the conditional fixed effects estimator is that, when working with 

discrete time data, these models fail when covariates are a monotonic function of time so no control for 

time itself can be introduced (Allison and Christakis 2006).  

An alternative specification is a random effects model where the unobserved heterogeneity is treated as a 

random variable and can be thought of as allowing the intercept for each group to vary randomly. Instead 

of a parameter for each group, a parametric assumption for the distribution of the unobserved heterogeneity 

over all groups is made and the parameters of the distribution are estimated. Population average 

probabilities from the random effects model can then be obtained by averaging the group-specific 

probabilities over the random intercept distribution. Random effects models also have the benefit that time 

invariant effects can be estimated. However, random effects models assume that the random effects are 

independent across vessels, or in other words uncorrelated with observed vessel specific covariates. 

Essentially this means that if there are unobserved vessel specific factors that affect covariates such as a 

vesselôs revenue in a given week and the decision of whether or not to exit (which seems highly likely), the 

parameters of a random effects logit model are likely biased. 
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Given these issues, we estimated the pooled logistic regression model for each sub-fleet separately and  

corrected the estimated standard errors for non-independence by clustering on individual vessels using 

Whiteôs sandwich estimator (Freedman 2012). Kasperski (2015) took a similar approach, conducting 

separate estimations for effort level predictions for different classes of vessels in their bioeconomic 

simulation of a multi-species fishery. The fact that sub-fleets were defined based partly on historical exit 

behavior implies that they are natural ógroupsô for a fixed effects model. By performing the estimation on 

each sub-fleet separately, however, we account for the effects of at least some of the unobserved 

heterogeneity by allowing the baseline hazard function and other parameters to be calculated separately for 

each group of vessels. We introduce additional fixed effects into each model by including dummy variables 

to indicate the class of pot tier that a vessel was licensed for and the season that each observation is from. 

Pot tier is highly correlated with vessel length, which is commonly used as a proxy for fishing power or 

capacity and the assumption is therefore that observations are independent between groups. Another benefit 

of specifying the estimation in this way is to partially relax the proportional logit hazards assumption 

(Singer and Willett 2003), which would have constrained the logit hazard curves for two vessels differing 

in only a single characteristic, such as their participation in the shrimp fishery, to be proportional in each 

time period. A more reasonable assumption would be that vessels that share the same set of behavioral 

characteristics (such as their portfolio of other fisheries participation) share a common óbaseô logit hazard 

function, and the proportional logit hazards assumption operates on vessel characteristics such as pot limit 

(which is a rough proxy for vessel size), and vessel revenues and costs (Reardon, Brennan, and Buka 2002).  

The explanatory variables that would theoretically affect the probability of a vessel exiting the ODC fishery 

during a given week included variables that measured economic and biological conditions in the ODC 

fishery as well as vessel specific variables. While weather conditions theoretically affect the probability of 

a vessel exiting the fishery in a given time period, the inclusion of the time dummies effectively includes 

average weather effects. Fixed effects for season were included as a dummy variable corresponding to the 

season the observation was from. The pot tier license that vessels held in a given year was included as a set 

of dummy variables. Vessel specific weekly revenue in the ODC fishery, as reported on fish tickets was 

included. To include the effects of opportunity costs of participating in the ODC fishery on the probability 

of vessel exit the ratios of average weekly revenue in all of the alternative fisheries to vessel specific weekly 

revenue in the ODC fishery were included. A dummy variable for participation in these alternative fisheries 

was included and multiplied by the revenue ratio measure- as a result, the revenue ratios only appeared in 

the dataset for those vessels that historically participated in the alternate fisheries. Historically vessels that 
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make up the shrimp fleet have not participated in the ODC fishery after week 20 so time dummies after that 

week were omitted. There were also very few observations for the shrimp fleet after week 13 of each year 

so the predictive power of the model for this fleet is limited after this time. Table 4.7 describes all variables 

included in the estimation procedure. 

Table 4.7: Description of the variables used in the discrete time hazard model 

Variable Description 

di, i=1,..,37 di = 1 if observation is in week i, where i the number of weeks from December 1st. 

tier200 dummy=1 if vessel held a 200 tier license 

tier300 dummy=1 if vessel held a 300 tier license 

tier500 dummy=1 if vessel held a 500 tier license 

seasons dummy if observation was in season s 

revenue sum of a vesselôs weekly ODC revenue ($) 

rev SH weekly ratio of average shrimp revenue to a vesselôs ODC revenue 

rev LE weekly ratio of average LE revenue to a vesselôs ODC revenue 

rev OA weekly ratio of average OA revenue to a vesselôs ODC revenue 

rev SA weekly ratio of average salmon revenue to a vesselôs ODC revenue 

rev TU weekly ratio of average tuna revenue to a vesselôs ODC revenue 

rev OT weekly ratio of average other fishery revenue to a vesselôs ODC revenue 

fuel price weekly average price of #2 diesel for Oregon ports (PacFIN extraction) ($) 
 

The log-likelihood equations for the pooled logistic regression are: 

ὰὲὒὭὯὩὰὭὬέέὨ  ὉὢὍὝϽÌÎὬὸ ρ ὉὢὍὝϽÌÎρ Ὤὸ                ὉήȢτȢρσ 

where i is an individual vessel, h(tit) is logit hazard (given in Eq. 4.11), nj is the number of vessels in each 

fleet j, Ti is the total number of time periods that each vessel participates in, and EXITit is an indicator that 

takes the value 1 if a vessel exits during time period t, and 0 otherwise. 

This function expresses the log probability that we would actually observe the exact pattern of events, given 

the values of our covariates. In effect our model specifies a logistic regression procedure, the only difference 

being the presence of a dummy variable for each time period. Each individual, i, therefore contributes Ti 

terms to the log likelihood function. The regressions were conducted omitting the model intercept in order 

to include all 37 time dummies. Fleet effects are relative to the 200 tier class of vessel for each fleet, apart 

from the shrimp fleet (which had no 200 tier vessels) where the base group was the 300 tier vessel class. 

All estimations were conducted in Stata 14 (StataCorp and others 2007).  
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The parameters on the week dummies were significant for all fleets and negative until the last week. A 

predicted base hazard of 0 on the logit scale implies an exit probability of 50% in that time period, and this 

generally was not the case until the last week of the season. If there were no exit events in a particular week 

for a fleet the effect of the parameter could not be estimated, which was the case for some weeks early in 

the season for the open access (OA) and salmon/tuna (saltun) fleets, and late in the season for the shrimp 

fleet. The parameter on ODC revenue was significant and negative for all fleets except for the crable fleet. 

A negative sign on the parameter of a time-varying variable such as ODC revenue implies a negative 

marginal effect of that variable on the probability that a vessel exits. To calculate the effect of that variable 

in a given time period on logit hazard the level of the variable is multiplied by the parameter to give the full 

effect on logit hazard. The parameters on the ratio of other fisheries revenue to ODC revenue were mostly 

insignificant at the 5% level, suggesting that vessels may not take revenue in other fisheries into account 

when exiting the ODC fishery, and rather respond to revenues in the ODC fishery. The two exceptions were 

the ratio of OA revenue to crab revenue for the crable fleet, and the ratio of óotherô revenues to crab revenue 

for the saltun fleet. The parameter on fuel price was significant and positive for the oa and saltun fleets, 

implying that vessels in these fleets, which were on average smaller boats, responded to changes in the 

price of fuel when making exit decisions. There was no difference in base logit hazard between the 200 tier 

and 300 tier fleets for the crable and oa fleets based on asymptotic standard errors. However, the Akaike 

Information Criterion (AIC; Akaike 1998)) decreased when this distinction was removed from the saltun 

fleet estimation so it was retained in the specification for input into the simulation model. The shrimp fleet, 

which has no 200 tier vessels, is composed mainly of 500 tier vessels. There was no significant difference 

in exit behavior, holding revenue differences constant, between the 300 and 500 tier vessels of the shrimp 

fleet. Parameters that were significant at the 5% level, or caused a decrease in model fit as measured by the 

AIC were included in the final specification. These parameters, as well as their estimates and asymptotic 

standard errors are presented in table 4.8.
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Table 4.8: DTH results. Parameter estimates, asymptotic standard errors and p-values for the final model 

specifications. 

Parameter Est. ASE P-value Est. ASE P-value Est. ASE P-value Est. ASE P-value

d1 -3.6750 0.4375 0.0000 -3.3805 1.1349 0.0030

d2 -3.2589 0.2635 0.0000 -3.7469 1.1105 0.0010 -4.9739 1.0250 0.0000 -3.0857 0.8561 0.0000

d3 -3.9087 0.3576 0.0000 -4.5829 0.8530 0.0000 -3.5849 0.8270 0.0000

d4 -4.6943 0.5010 0.0000 -3.7589 0.8226 0.0000 -5.3846 0.7727 0.0000 -4.3907 1.0169 0.0000

d5 -3.4327 0.2194 0.0000 -4.5553 1.0421 0.0000 -4.7113 0.5948 0.0000 -3.4806 0.6242 0.0000

d6 -3.3705 0.2401 0.0000 -5.2489 0.8556 0.0000 -2.6959 0.4828 0.0000

d7 -3.0693 0.2285 0.0000 -4.8533 1.0821 0.0000 -5.6153 0.7547 0.0000 -1.7476 0.3369 0.0000

d8 -2.9181 0.2022 0.0000 -4.9076 1.0715 0.0000 -5.3681 0.6714 0.0000 -1.5617 0.3440 0.0000

d9 -2.9237 0.1944 0.0000 -4.4274 0.7796 0.0000 -5.2471 0.6007 0.0000 -1.3490 0.3006 0.0000

d10 -3.1089 0.2109 0.0000 -4.2554 0.7265 0.0000 -4.2279 0.4469 0.0000 -1.2403 0.3108 0.0000

d11 -3.0812 0.2423 0.0000 -4.5269 0.8246 0.0000 -4.4260 0.4290 0.0000 -1.2075 0.2923 0.0000

d12 -2.5431 0.1694 0.0000 -3.9159 0.6415 0.0000 -4.4447 0.4837 0.0000 -0.6531 0.2848 0.0220

d13 -2.5985 0.1970 0.0000 -5.3658 1.1145 0.0000 -4.4535 0.4620 0.0000 -1.0682 0.3042 0.0000

d14 -2.6878 0.1996 0.0000 -3.5669 0.5405 0.0000 -4.4428 0.4371 0.0000 -0.3245 0.3151 0.3030

d15 -2.5321 0.2013 0.0000 -3.3944 0.5370 0.0000 -4.1531 0.4381 0.0000 -0.3849 0.4457 0.3880

d16 -2.7741 0.2193 0.0000 -3.7862 0.5509 0.0000 -3.5368 0.3873 0.0000 -1.4082 0.6178 0.0230

d17 -2.4321 0.1807 0.0000 -5.4632 1.0842 0.0000 -3.4811 0.3701 0.0000 -0.3019 0.3569 0.3980

d18 -2.1793 0.1972 0.0000 -3.0906 0.5238 0.0000 -3.1607 0.3865 0.0000 -0.7834 0.4764 0.1000

d19 -2.3806 0.1775 0.0000 -2.7952 0.4924 0.0000 -3.1341 0.3668 0.0000 -0.4066 0.3893 0.2960

d20 -2.0604 0.1740 0.0000 -2.8386 0.5226 0.0000 -3.1169 0.3822 0.0000 -0.3044 0.5173 0.5560

d21 -2.1987 0.2049 0.0000 -3.8555 0.6091 0.0000 -3.1340 0.3721 0.0000 - - -

d22 -2.0585 0.1864 0.0000 -2.9596 0.5020 0.0000 -2.7606 0.3706 0.0000 - - -

d23 -1.9137 0.1951 0.0000 -3.1550 0.5055 0.0000 -2.9344 0.3551 0.0000 - - -

d24 -2.2134 0.2108 0.0000 -2.6479 0.5274 0.0000 -3.0257 0.3816 0.0000 - - -

d25 -2.0485 0.2217 0.0000 -3.1126 0.5467 0.0000 -2.9077 0.3800 0.0000 - - -

d26 -1.6750 0.2000 0.0000 -2.4067 0.4745 0.0000 -2.9526 0.3939 0.0000 - - -

d27 -1.5154 0.2038 0.0000 -2.1317 0.4572 0.0000 -2.4759 0.4070 0.0000 - - -

d28 -1.4792 0.2241 0.0000 -2.7153 0.4872 0.0000 -2.6695 0.3834 0.0000 - - -

d29 -1.6395 0.2685 0.0000 -2.3763 0.4968 0.0000 -2.5582 0.3841 0.0000 - - -

d30 -1.7682 0.2507 0.0000 -2.6421 0.5276 0.0000 -2.6362 0.4077 0.0000 - - -

d31 -1.9750 0.2851 0.0000 -2.3454 0.4755 0.0000 -2.5446 0.4260 0.0000 - - -

d32 -2.0989 0.3413 0.0000 -2.2716 0.4995 0.0000 -2.8661 0.4557 0.0000 - - -

d33 -1.4739 0.2346 0.0000 -2.4134 0.5361 0.0000 -2.4835 0.4387 0.0000 - - -

d34 -1.8616 0.3459 0.0000 -2.3184 0.5442 0.0000 -2.6919 0.4739 0.0000 - - -

d35 -1.3692 0.2544 0.0000 -1.6780 0.4362 0.0000 -2.8785 0.4815 0.0000 - - -

d36 -0.8236 0.2217 0.0000 -1.0640 0.4196 0.0110 -1.8514 0.4264 0.0000 - - -

d37 4.4122 0.9809 0.0000 5.2851 1.1159 0.0000 - - -

revenue -9.990E-06 0.0000 0.1770 -5.088E-04 0.0001 0.0000 -1.985E-04 0.0000 0.0000 -2.450E-05 0.0000 0.0330

fuel price - - - 0.1891 0.0827 0.0220 0.2247 0.0726 0.0020 - - -

tier300 - - - 0.3800 0.3025 0.2090 0.6255 0.2410 0.0090 - - -

tier500 0.3152 0.1281 0.0140 0.9156 0.3599 0.0110 0.7517 0.2880 0.0090 - - -

rev OA 0.1085 0.0275 0.0000 - - - - - - - - -

rev OT - - - - - - 0.0047 0.0018 0.0100 - - -

(omitted)

(omitted)

(omitted)

CRABLE FLEET OA FLEET SALTUN FLEET SHRIMP FLEET

(omitted)

(omitted)
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4.3.2 EFFECTIVE EFFORT 

The duration model predicts how endogenous and exogenous changes in fishery conditions (catch rates, 

input/output prices, and opportunity costs) affect the number of vessels participating in the fishery during 

a given time period. In order to estimate total effective fishing effort, which is the main input into the 

biological module, it was necessary to combine our duration model estimates of fleet participation in each 

time period with an estimate of effective effort per vessel in each time period.  

Two characteristics of the ODC fishery aided us in defining effective effort. First, vessels generally utilize 

the maximum number of pots they are permitted to use over the entire course of the season i.e., their pot 

ótierô (ODCC 2015). For example, this implies that a vessel with a 300 pot limit will generally have 300 

pots deployed on the fishing grounds throughout the course of the season. While this is not strictly true, 

especially for vessels in the 200 tier class, information on the total number of pots used is not collected 

(Didier 2002; Kelly Corbett 2016).This characteristic also implies that the soak time of each pot per week 

is a week! Secondly, pots are generally rebaited every time they are ópulledô and re-deployed, and pots are 

most effective in the first 12-24 hours after rebaiting, and relatively ineffective after that time frame (ODCC 

2015). We therefore defined effective effort (EEit) for each vessel i in each week period, t, as the number 

of pots deployed (NPit) per vessel multiplied by the proportion of those pots that were tended (pots pulled 

(PPit) divided by NPit), or just number of pots pulled: 

ὉὉ ὔὖᶻ
ὖὖ

ὔὖ
 ὖὖ                                                         ὉήȢτȢρτ  

In modeling effective effort, one consideration was that it should include a measure of number of trips made 

per vessel where a trip is defined as a vessel leaving port, exerting fishing effort, and returning to port. 

Defining trips is important as many variable vessel costs are incurred on a trip level. For example, 

significant fuel costs are incurred steaming between port and the fishing grounds at the beginning and end 

of trips and taking this granularity into account is important for simulating vessel profits. An issue that 

presented itself when trying to measure the number of trips in the fishery was that our two main data sources 

-- vessel logbooks and fish tickets -- did not provide an accurate measure of number of trips made. Logbook 

data were provided as órecordsô, which were effectively one page of a logbook (pertaining to a óstringô of 

pots), and it is unclear how the number of strings pulled pertain to trips. The number of fish tickets is a 

more accurate measure of trips made than individual logbook records as a fish ticket is generated each time 

a vessel delivers to a first receiver. It is rare for vessels to make more than one trip per day (ODCC 2016b), 
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but in some cases multiple fish tickets will be generated for a single trip, such as in the case where a vessel 

delivers to more than one first receiver or uses two different gear types in the same trip. We decided that 

aggregating fish tickets on a vessel/day basis was the most accurate method for defining trips. Even if 

multiple fish tickets were generated for the same trip, they were likely generated on the same day, and that, 

except in extremely rare circumstances, vessels did not make more than one trip per day (ODCC 2016b).  

A priori, our expectation was to perform an estimation procedure on the number of trips a vessel takes in a 

given week of the season conditional on having not exited the fishery, and then to estimate how the number 

of pots pulled per trip is affected by changes in fishery conditions, conditional on taking a trip. However, 

while a reliable estimate of the number of trips could be made using fish ticket data, defining the number 

of pots pulled per trip was hampered by the characteristics of the logbook data, which contained the 

information on pots pulled. Logbook data were problematic for a number of reasons. First, logbooks were 

only required to be filled out starting from the 2008 season, and compliance was relatively low for the first 

several years of this requirement. Compliance, as measured by the percentage of total fish tickets (which 

we assume to have a 100% reporting rate) captured by the logbook data, was approximately 68%, 78% and 

90% for the 2008, 2009, and 2010 seasons, and averaged 93.5% between the 2011 and 2014 seasons (Kelly 

Corbett 2016). It is unknown if logbook data were incomplete in a systematic or random fashion, but it is 

reasonable to assume that whether or not a vessel captain completed their logbooks, logbooks was 

correlated with factors that may also affect fishing behavior and which may cause sampling bias. In addition 

there is a relatively low level of trust in the accuracy of the reported data, particularly for the first few years 

of the new logbook reporting requirements (ODCC 2016b). Secondly, due to resource limitations, starting 

from the 2012 season, only 30% of the total logbook órecordsô were transcribed into an accessible database 

on a stratified sampling basis. Each month 30% of all records for each port in Oregon were randomly 

selected to be transcribed and it is unknown whether each vesselôs records in these years reflected all of 

their weekly effort. This meant that later in each season, when the number of vessels participating decreased 

significantly, data coverage on a sub-fleet basis was relatively poor. Taking these data limitations into 

account we decided that it was impractical to estimate how the number of pots per trip changed in response 

to fishery conditions. Rather, in order to examine how weekly effort responds to fishery conditions we 

calculated the average number of pots pulled per trip for each vessel on a sub-fleet basis and averaged over 

the 2008-2014 seasons, and then combined this metric with a statistical model of number of trips made per 

week to arrive at the total number of pots pulled per week.  
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4.3.2.1 Weekly Number of Trips Estimation 

We estimated how the number of trips a vessel takes per week varied throughout each season, and in 

response to fishery conditions such as catch rates, crab prices, fuel costs, and opportunity costs. While log 

transformed linear regression models have been used in the past to model count data there are various 

drawbacks to doing so, including biased and inefficient parameter estimates and a limited ability to handle 

zero counts (Pradhan and Leung 2006; Rijnsdorp, Daan, and Dekker 2006). Count models are generally 

estimated using either a Poisson model, negative binomial model, or one of many derivatives (see Hilbe 

(2014) for a good overview; Long and Freese 2006).  

Before we could proceed in specifying a suitable count model the dataset was amended in a number of 

ways. First, the fish ticket data only contained records for those vessels that actually made a delivery in a 

given week. It was relatively common for a vessel to fail to deliver Dungeness crab during one or more of 

the weeks before its week of exit. Reasons for this could include severe weather, a vessel participating in 

other fisheries in between tending its crab gear, or simply because of a fishermanôs normal fishing behavior. 

Including these ózeroô records is an important step as these records contribute valuable information to the 

model, and preclude the use of a truncated distribution for the counts when one is not needed. Following 

Smith (2002), additional data records were created specifying a zero trip count and maintaining all pertinent 

information for all missing weeks including any weeks prior to a vesselôs week of first delivery. Note that 

while the vast majority of vessels entered the fishery in week 1 of each season (figure 4.1), this procedure 

meant that we created records pertaining to weeks prior to a vesselôs entry into the fishery in some cases. 

As discussed previously, vessels that participated in Washington or California Dungeness crab fisheries 

made up the vast majority of late entrants, of which there are relatively few (0-10% per season). In addition, 

severe weather, mechanical breakdowns, or crew issues are other causes of late entry (ODCC 2015). 

Variables that were not vessel-specific (such as fuel prices) and vessel specific but non time-varying (such 

as the pot tier license held) were easily carried over into the new ózeroô records. The time varying and 

vessel- specific variables were all based on weekly revenue of each vessel. For missing values of revenue 

we imputed the average of revenue in that week and season of all other vessels holding the same pot tier 

license. For missing values of the revenue ratio variables (ratios of other fisheriesô revenues to ODC 

revenue), the average value of that variable was also imputed on a pot tier basis, but the variables were 

multiplied by an indicator of whether or not a vessel participated in the alternative fisheries in that season. 

Finally, these revenue based variables were lagged by one week to avoid simultaneity -- the value in week 

1 became the lagged value for week 2, and so on. 
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Perhaps the most well-known count model specifies the count as a Poisson distributed random variable. 

Following (Hilbe 2014) the Poisson distribution can be expressed as: 

Ὢώȿ‗  
Ὡὼὴ‗

ώȦ
                                                              ὉήȢτȢρυ 

Where y is the count variable which can take on any positive integer value in the interval [0,Ð), and ɚ is the 

expected mean of the distribution of y. When incorporating covariates into a Poisson regression a common 

formulation is: 

‗ ÅØÐὢ‍                                                                  ὉήȢτȢρφ 

Where ɚi is the expected number of occurrences of the count variable for that individual, Xi is a matrix of 

covariates, and ɓ is a vector of parameters, the focus of our estimation. The exponential form guarantees a 

non-negative value for the predicted mean of the distribution. 

It is important to introduce a scale variable to recognize either the possible range of values that a count may 

take, the length of time, or the area of space that a count is measured over. In our case the scale variable 

refers to the maximum number of trips that a vessel can make. Given our definition of a trip using fish 

ticket data, the minimum number of trips a vessel could take in a week period was 0, and the maximum 

number 7. We effectively reformulated the count equation taking into account the scale variable ti, which 

in our case is just the scalar 7. If the expected value of the rate is ɚi the expected value of the count is ɚi 

multiplied by ti. In this case the count equation becomes (Pradhan and Leung 2006): 

‗ὸ ÅØÐὢ‍ ὰὲὸ                                                     ὉήȢτȢρχ 

The Poisson distribution exhibits equi-dispersion i.e. the mean of the distribution is equal to its variance. If 

this assumption is violated the result is consistent but inefficient parameter estimates and is considered the 

main issue in count models when fitting models (Long and Freese 2006; Hilbe 2014). This assumption of 

equi-dispersion can be violated in several ways, including measurement error and the presence of excess 

zero observations on the dependent variable (Greene 1994). Overdispersion occurs when the variance of 

the data is greater than the mean, and underdispersion occurs when the opposite is true. The most common 

remedy for overdispersion is to estimate a negative binomial model, which includes an extra dispersion 

parameter, although this model is inappropriate when underdispersion exists (Hilbe 2014). Again following 

Hilbe (2014), the negative binomial probability distribution can be expressed as: 
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Where y is the count variable which can take on any positive integer value in the interval [0,Ð), Ŭ is the 

dispersion parameter, and ɚ is the expected mean of y. In this case the variance of the distribution is equal 

to: ɚ + Ŭɚ2. A common test for overdispersion in a Poisson model is conducted by estimating a negative 

binomial model and evaluating the dispersion parameter. If the dispersion parameter is not significantly 

different to zero then a Poisson model is preferred as it is more efficient (Hilbe 2014; Pradhan and Leung 

2006).  

When count data contain a substantial number of zero observations, conventional Poisson and negative 

binomial models fail to describe the data well, often under-predicting the zero observations (MacNeil, 

Carlson, and Beerkircher 2009; Poston Jr and McKibben 2003). For example, Minami et al. (2007) suggest 

that the negative binomial model may overestimate parameters when fitted to data with many zero values. 

In addition, overdispersion can be indicated if the number of zeros in the data are greater than what a regular 

count model would predict (Greene 1994). In these cases using a model that explicitly accounts for a high 

number of zeros in the dataset is called for. Hurdle models, such as the two part delta lognormal model 

(Maunder and Punt 2004) split the dataset into two parts- one part containing only the zero observations, 

and another part containing the records with all of the positive counts. The two subsets of the data are 

estimated using different models. Mixture models, such as the Zero-Inflated Poisson (ZIP) model (after 

Lambert (1992)), assume that observations are governed by two different processes -- a Bernoulli process 

that generates just zero values, and a Poisson or negative binomial process that generates a regular 

distribution of counts, which includes zeros (Hilbe 2014). In this case the zeros are the product of two 

random terms, only the product of which are manifested in the data and are estimated concurrently (Greene 

1994). The choice of using a hurdle or mixture model to account for excess (or structural) zeros should be 

based on theory.  If the zero observations are generated by a separate mechanism to the positive counts then 

it may be appropriate to use a hurdle model. If the process generating structural zeros is intertwined with 

the process generating the óregularô zeros and positive counts then a mixture model is more appropriate 

(Hilbe 2014). 

For reasons discussed below we included the ZIP model specification in our analysis but did not include 

the Zero Inflated Negative Binomial (ZINB) specification. We therefore do not present the ZINB modelôs 
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theoretical specification, but for a good overview, see Hilbe (2014). The Zero-Inflated Poisson model has 

two separate components. First, a binary component estimates the probability that a count is a structural 

zero, commonly using logistic regression (Lambert 1992; Greene 1994; Hilbe 2014). The count component 

of the model then models all of the counts, including the zeros, as the manifestation of a Poisson process. 

Using a logit specification, the probability of observing a structural zero, denoted by ɗ, is then: 

—  
ρ
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                                                                        ὉήȢτȢρω 

Where Z is a matrix of explanatory variables for the generation of zero counts, and ɔ is the vector of 

parameters to be estimated. 

The probability of observing a count of zero, is therefore: 

ὖὶέὦώ π  — ρ —Ὡὼὴ                                                   ὉήȢτȢςπ 

The probability of observing a non-zero count is:  
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Count models have seen widespread use in the fisheries economics literature. For example, (McConnell, 

Strand, and Blake-Hedges 1995) combine a random utility model of site choice with a Poisson model of 

anglersô expected catch at each of these sites. Gillig, Ozuna Jr, and Griffin (2000) combine a Poisson model 

for estimating the number of trips that fishermen take with a demand model to estimate the value of the red 

snapper fishery in the Gulf of Mexico. Scrogin et al. (2004) use a ZIP model to examine anglersô 

expectations of catch in a combined random utility model of fishing location choice. Kasperski (2015) 

conducts a Poisson regression for vessel decisions on the number of trips to take and combined the results 

with a bioeconomic model of inter-dependent fish stocks. Smith (2002) modeled fishermenôs participation 

decision, and given participation their fishing location choice by combining a negative binomial model of 

number of trips taken with a Seemingly Unrelated Regression model of location choice. Pradhan and Leung 

(2006) used both a Poisson model and a negative binomial specification to explore the factors affecting sea 

turtle interactions in the Hawaiian pelagic longline fishery and applied each model to different target species 

types based on whether the data exhibited overdispersion or not. 
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Recently there has been much interest in comparing the performance of different modeling specifications, 

generally evaluated in terms of a model fit statistic such as the Akaike Information Criterion (AIC) (Akaike 

1998). For example, MacNeil, Carlson, and Beerkircher (2009) compare a range of Generalized Linear 

Models (GLMs), hurdle models, and mixture models in the analysis of shark depredation rates in the 

Atlantic pelagic longline fishery. There was a high preponderance of zeros in the data and the authors found 

that the hurdle and mixed models outperformed the GLMs. Vaudor, Lamouroux, and Olivier (2011) 

compare the performance of the Poisson, NB, ZIP, and ZINB when estimating the abundance of 12 

freshwater fish species. They found that the negative binomial model worked well for a wide range of 

sample characteristics, the ZIP and Poisson models worked best when mean and variance were relatively 

low, and ZINB worked best when the mean was very high. Lewin et al. (2010) compare regular count 

models, hurdle models, and mixture models in their ability to deal with zero inflated datasets and found that 

when the dataset included a large number of zero counts only hurdle and mixture models could be reliably 

applied.   

Given the dataset we used for the count data model was based on the same dataset used for the duration 

model estimation, our data potentially exhibited non-independence between observations on the same 

vessels. When dealing with longitudinal data the same suite of models that are used in logistic regression 

can be used in Poisson regression analysis including fixed effects and random effects (and many more) 

models (Cameron and Trivedi 2013). However, including a dummy variable for each vessel/year 

combination would have resulted in several thousand extra parameters so the fixed effects estimator was 

unfeasible. Using a conditional fixed effects specification is again an option but estimating the effect of 

time invariant variables using this model is not possible. Specifying a random effects model would be to 

assume that the random effects are independent across vessels, or in other words uncorrelated with observed 

vessel specific covariates. Essentially this means that if there are unobserved vessel specific factors that 

affect covariates such as a vesselôs revenue in a given week and the decision of how many trips to take in 

that week (which seems probable), then the parameters of a random effects logit model are likely biased. 

In addition to the theoretical limitations of the use of these panel models, a practical consideration was that 

the results were destined to be incorporated into a forward-looking bioeconomic simulation model. A 

mechanism for incorporating results of, for example, a random effects panel model into the simulation 

would have been considerably more complicated to incorporate in the model than the pooled model 

specification.  
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We therefore take a similar approach to Kasperski (2015), and to the estimation of the duration model in 

section 4.3.1, by conducting separate regressions for each sub-fleet separately and including fixed effects 

for the different pot tier levels. This approach is also somewhat similar to Pradhan and Leung (2006), who 

presume that there may be vessel specific effects that affect the probability of sea turtle interaction. They 

incorporate this effect using a dummy variable for a vesselôs previous history of sea turtle interactions, but 

not for each vessel per se. To account for the potentially correlated error structure we estimate the models 

using robust standard errors clustered on individual vessels using Huber-Whiteôs robust variance estimator 

(Freedman 2012; STATA corp. 2016).  

In deciding on the exact model specification we examined the mean and variance of the counts of number 

of trips per week for each of the 4 sub-fleets. It appears that overdispersion was limited in all 4 datasets, 

with significant underdispersion in the shrimp dataset. Table 4.9 shows the mean and variance of the counts 

of number of trips per week for each of the 4 sub-fleets. 

Table 4.9: Characteristics of the amended dataset used in the effective effort estimation. 

Sub-Fleet Number of Observations Mean Variance 

crable 23723 .934915 1.189339 

OA 11123 1.060865 1.277629 

saltun 16180 1.003337 1.066062 

shrimp 3094 .840659 .518088 
 

Given the way we amended the fish ticket data set we decided that the most suitable model a priori  to model 

the number of trips fishermen take in a week was a mixture model- either a ZIP model or a Zero-Inflated 

Negative Binomial (ZINB). The reason for this was that the zeros in the dataset were generated by a mixture 

of processes including one process where fishermen donôt take a trip in a given week period, and another 

one where the fisherman has not entered yet and zero records were created by a separate data generating 

process. While negative binomial and ZINB models are suitable when the dataset exhibits overdispersion 

due to the presence of some high counts (Lewin et al. 2010), our data did not exhibit high counts and an 

examination of the mean and variance statistics indicate that overdispersion was limited. Vaudor, 

Lamouroux, and Olivier (2011) showed that the ZINB model works best when the means of the count 

variable are very high. Given this, and the fact that the ZINB failed to converge for several of the alternative 

specifications tested we did not use the ZINB model in our analysis. We estimated the regular Poisson, 

negative binomial, and the zero-inflated Poisson model and compared model fit using the AIC. As negative 

binomial models are unsuitable when underdispersion is present (Hilbe 2014), we did not estimate these 
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models for the shrimp sub-fleet.  A commonly used test for whether a zero-inflated model is appropriate 

was proposed by (Vuong 1989). However, the statistic relies on the true likelihood function and as our use 

of a robust covariance matrix means we are estimating quasi-likelihoods, tests that rely on the true 

likelihood, such as the likelihood ratio test or Vuong test, are not valid (Hilbe 2014).  

In our model specification we included fixed effects for the particular week of the season and the pot tier 

license that each vessel held. Lagged weekly revenue, the average price of fuel, and the opportunity costs 

of making a trip, represented by the ratio of other fisheriesô weekly revenues to ODC weekly revenues were 

included. The inflation portion of the ZIP model was conditioned on dummy variables representing the first 

6 weeks of the season. Covariates are described in table 4.10: 

Table 4.10: Description of the variables used in the ZIP model. 

Variable Description Inflation?  Poisson?  

di, i=1,..,37 di = 1 if observation is in week i  d(inf)1-d(inf)6 x 

tier200 dummy=1 if vessel held a 200 tier license  x 

tier300 dummy=1 if vessel held a 300 tier license  x 

tier500 dummy=1 if vessel held a 500 tier license  x 

seasons dummy if observation was in season s   x 

lagrev sum of a vesselôs weekly ODC revenue ($) in the previous week.  x 

SH ratio of average weekly revenue in the shrimp fishery to a vesselôs 

ODC weekly revenue. 

 x 

LE 

 

ratio of average weekly revenue in the LE fishery to a vesselôs ODC 

weekly revenue. 

 x 

OA ratio of average weekly revenue in the OA fishery to a vesselôs ODC 

weekly revenue. 

 x 

SAL ratio of average weekly revenue in the salmon fishery to a vesselôs 

ODC weekly revenue. 

 x 

TUN ratio of average weekly revenue in the tuna fishery to a vesselôs ODC 

weekly revenue. 

 x 

OTH ratio of average weekly revenue in all other fisheries to a vesselôs 

ODC weekly revenue. 

 x 

offset a column of 7s was included as the offset variable to reflect the 

maximum value of the count 

 x 

 

The estimation was conducted for the 4 sub-fleets separately using the Poisson, negative binomial, and ZIP 

model specifications. In all cases the AIC indicated that ZIP was the preferred model. Parameters that were 

not significant at the 5% level using a Wald test, and did not cause a decrease in the AIC when removed, 

were removed from the model and the model re-estimated.  
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The parameter estimates on the week dummies were all significant, picking up a time trend showing the 

average number of trips per week decreasing slightly throughout the season. For each sub-fleet, a parameter 

estimate on at least one of the revenue ratio variables were significant and negative, indicating a negative 

marginal effect of that variable on the number of trips a vessel takes. For the crable fleet, the parameter on 

the ratio of LE groundfish revenue to ODC revenue was significant, for the OA fleet the parameter on the 

ratio of OA revenue to ODC revenue was significant, for the saltun fleet the parameter on salmon revenue 

was significant, and for the shrimp fleet the parameter on shrimp revenue was significant. This suggests 

that the average number of trips each sub-fleet makes in a week period decreases when opportunity cost of 

participating increases. Lagged revenue was a significant positive predictor for the number of trips taken 

per week for the OA and saltun fleets although this effect was not significant for the crable and shrimp 

fleets. This indicates that the higher a vesselôs revenue in the previous time period, the more likely the 

vesselôs captain was to increase the number of trips he/she took in the next time period. The fixed effects 

on pot tier were mostly insignificant predictors of number of trips taken. The exception was the shrimp fleet 

where vessels who had a 500 pot tier license took less trips on average than 300 tier vessels (there were no 

200 tier vessels in the shrimp fleet). This suggests that pot tier does not have a significant effect on the 

number of trips that vessels take in a week period. Although vessels with higher pot tiers exert more effort, 

this higher effort is reflected in the number of pots each vessel pulls per trip (see figure 4.6). The 

interpretation of the parameters is in the opposite direction for the inflation part of the model. A positive 

parameter indicates a positive effect of that variable on the probability that an observation was a zero count. 

The dummy variables for the first 6 weeks of the season were significant and indicated that, on average, 

zero observations were more likely to occur in week 1 of the season, then week 2, and so on. Final model 

specifications and parameter estimates are shown in table 4.11. 



118 

 

 

Table 4.11: Zero-Inflated Poisson model results. Parameter estimates, asymptotic standard errors, and 

associated p-values for the final model specifications.  




















































































































