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1.INTRODUCTION

Fisheries management in the United States has historically been centered on a single-oigaatyegy

and conserving the biological stock paralle] a significant amount of effort has been exerted in
developingbiologicalmodeling techniques, collecting and analyzing data, and disseminating model results

to the scientific and polieynaking communities, all focused on describing the behavior and gimwul
dynamics of the biological resource. However, over the last several decades theeerhasgoadual
paradigm shift irfisheries managemetite adoption oin ecosystem based approach which includes the
human dimension (Essington and Punt 2011; Gai@®08; Botsford, Castilla, and Peterson 1997). As well

as wider ecological impacts, economic efficiency concerns and the distribution of economic impacts among
various sectors of the economy have become more important than in the past. The resp@see to th
concerns has been manifested in, among other things, the increased use of property rights systems in
fisheries and fishery management plans that give social, economic, and ecological considerations more
weight (PFMC 2016). Along with this revised fodasa need to increase investment in economic research

into fisheries, including the development of economic theory, modeling techniques, and greater collection
of data that can be applied in such models. The rationale for including economic considirisbesy
management decisions is that fishery management systems exist precisely because of economic influences
on fisheries and the ecosystems they are a part of. People derive benefits from fishing that in some cases
can be measured, such as a commexd fishiwgseessealehnae, or a ¢c¢co
consumption, but in many other casesnmnsuch as the utility gained from the satisfaction of seaing

fish stock protected. Walyzing and predicting the behavior of fishermen necessatily for an economic
framework. Eren if the goal of some individuals is solely to protect particular components of the marine
ecosystem, these concerns arise because of anthropogenic influences. Economics is therefore a critical tool
for informing the pubt, fishermen, and fishery managers when decisions on how to make best use of a

resource, and what that best use is, need to be made.

The application of economic theory and methods to fisheries problems has a rich and varied history, starting
with the sermal works of Gordon (1954), Schaefer (1954), and Scott (1955). Since then, significant
progress has been made in determining and studying the main causawajbttishery problems of our

time, such as the common property nature of fisheries leadiagotwomic inefficiency through capital
stuffing and supply gluts, which lead to processing and other value chain inefficiencies. This progress has
been paralleled in the biological and ecological disciplines, especially in the development of knowledge

regading the reproductive and growth capacity of fishes, and how these processes are affected by



2

population pressures caused by fishing, or greater environmental influences. An important recent example
of this is the discovery that older fale rockfishes, wich sometimedive more than 100 years, have a
disproportionately benefidianfluence on reproductive succesan youngeranimals (Berkeley et al.

2004). If a goal of fishery management is population sustainability, removing an older fish from a
populaton therefore has different implications for reaching this goal than removing a younger one.
However, without modeling the component of the fishery system that determines which individual is
removed, the ability to form management advice that can trarigtateeal world progress towards
sustainability is limited. Examples such as this are widespread, but even so fishery issues are rarely

examined using an interdisciplinary framework.

Bioeconomic models of fisheries are importdigh and fishermen intecain ways that are complex and

not intuitive to fishery manager8ioeconomianodels are not nevior examplethe early works of Gordon

(1954) and Schaefer (1954) included both biological and economic componeigrafidantprogress

has been made exploring fisheries through analytical models. For example, Sanchirico and Wilen (1999)
and Sanchirico and Wilen (2005) showed that the equilibrium characterizing a spagiebanic fishery

system is as dependent on economic parameters as stockatgies. Sanchirico and Wilgd@001) show

that the ability of a marine reserve to create value depends as much on assumptions regarding economic
behavior and parameters as biological factors. Despite the importance of simultaneously considering
economicand biological processes in fishery models, this practice is not pervasive in fisheries science
(Carruthers et al. 2014), and in cases where economic factors are included in the analysis, the biological
component is generally given much greater attentiderims of both data input and rigor of analysis (van
Putten et al. 2012; Barclay 2012). Nevertheless, bioeconomic models that combine the salient components
of fisheries in order to investigate the potential impacts of management actions have beca@smghere
numerous. While analyticdisheriesmodels are importanin gaining key insights over global range of
parameter values can be derived from closed form solutions, these models quickly become intractable as
the number of parameters and dimensiongease. Thifimitation, and the need to perform policy analysis

for complex real world situatiortzas shifted the analysis of fishery systems using numerical optimization

andsimulation techniques (Pelletier and Mahévas 2005a; Powers and Abeare 2009).

In manyfishery bioeconomic simulation models, fishing effort is assumed to be determined exogenously
to the model (van Putten et al. 2012), and in ways that are not supported by microeconomic theory and/or
econometric analysis (Dalton and Ralston 2004jis Bcecurs despite the aspiration of the anatgst

realistically represent fishermen behavior. Even so, bioeconomic simulation models have become
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increasingly complex over the last several decades, partly due to advances in modeling and computation
techngues, and the need to explore new, more complex issues as our knowledge of fishery systems
improves. Whilehis complexity comes at a coste interpretability of results quickly becomes difficult as

the number of maal inputs increases Incorporating aealistic level of detainto models provides
framework with which to explore alternative hypotheses about the fishery (Hilborn and Walters 1987), and
encourages new ways of thinking about the interaction between fishermen and the resource they depend
on. Bioeconomic simulation models that incorporate a realistic level of detail in both the bioeconomic and
economic components are therefore useful toolsnoouragethinking and foster learningbout the
interactions between fishermen and the stock awdige directions for future research in both the

biological and economic disciplines.

Three broad issues in modeling fisheries that have important implications for fishery management
addressed in thiset of essaysl) multispecies interactions, 2patial interactions, and 3) population
process interactions. Mul§pecies interactions occur, for example, when several species are either targeted
or caught incidentally While management measures may focus on each species separately, fishermen treat
the species as a catch complextHasecasesa management action that is established in the interests of a
single species may have effects on other species in the fishery that are often not well understood and are
potentially undesirable (Salas and Gaert2004). In many cases thieehavior of fishermeis ignored or

poorly modeled andhe impacts of management measuasesdifficult to predict without considering

realisticfisherman and fish behavior simultaneously (Wilen et al. 2002; Fulton et al..2011)

Spatial interactions occur when the behavior of fishermen and/or fish stocks have a spatial component that
at least partly determines population processes, catch, and profit in the fishery. As a simple example, if the
price of older female rockfish isdher than that of younger fish in our previous discussion, and these fish
are found in particular fishing areas, effective policy advice can only be reliably formed by simultaneously
considering biological and e caviordetarminedthe spatalipatern | n g e
of fishing mortality in a fishery, and this behavior depends on economic factors (Wilen et al. 2002).
Population process interactions occur when some aspects of the behavior of the fish population interact
either tempaally or spatially with harvesters. For example crustaceans, as part of their growth processes,
are in a softshell state for some periods during a year. Being in this state has implications for the price that
fishermen receive for harvesting the animal,ahahin turn affects fishing behavior. Models that can examine
these interactions in order to inform policy makers are necessarily bioeconomic in nature. These

bioeconomic considerations form the basis for the maiarthke research which follows.
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This thesis consists of three essays that describe endeavors to make contributions to the existing fisheries
bioeconomic literature. All essays are based on bioeconomic fisheries simulation models that were designed
in order to examine contemporary issues indigds research. The first essay illustrates the utility of
integrating economics into a model that assesses the performance opaatdtarvest control strategy,

an area of research that traditionally does not take fishermen behavior into accounvd€hes mpplied
retrospectively to a complex, mulipecies fishery in order to demonstrate how the economics of a complex
fishery may be incorporated into biological models, anddim economidnsightsabout the challenges
inherent in rebuilding stockssing alternative harvest control ruldhe second essay makes a contribution

to the examination of spatial interactions in fisheries by presenting a novel method, based on the tenets of
game theory, of spatially distributing fishing effort in bioeconoaiimulation models. This method is then
compared to several contemporary methods for distributing effort in such models. The third essay describes
the design and implementation of a simulation model of the Oregon Dungeness crab fishery in order to
examinethe potential interactions between moulted crab which are in a soft shell state, and the temporal
distribution of fishing effort in the fishery. The first application of an economic duration model to the in
season exit behavior of fishermen is combindth @wibioeconomic representation of the Oregon Dungeness
crab fisheryusinga Monte Carlosimulation framework designed to evaluate the potential impacts of

adjusting the season closure date in the fishery.



2. COMBINING FISHERIE S MANAGEMENT EVALUAT ION WITH
FISHERMAN BEHAVIOR: A RETROSPECTIVE ANAL YSIS OF A U.S.
WEST COAST ROCKFISH

2.1 Abstract

The effects of a management action that reduces the total allowable catch of a single species-in a multi
species fishery often has unpredictable consequences on timmace of the fishery. These potentially
important effects can be explored using bioeconomic models that couple biological processes with a
representation of fleet behavior that together determine expected biological and economic impacts that may
result flom a management change. When analyzing or testing fishery assessment methods or management
tools it is important to account for economic incentives that drive fleet behavior, as fisherman behavior
ultimately determines the level and distributions of maygtdh a fishery. We applied a bioeconomic
simulation framework to a complex mu$ipecies fishery in order to illustrate that including a realistic
economic component to a fisheries assessment nuashelprovide important management and policy
insights. We used a retrospective approach to take advantage of the available historical data on fleet
behavior and economics, thereby reducing the gwesk inherent in predictions of human behavior in
traditional forwardlooking modeling approaches. We employedoaeh method of characterizing the
historical structure of the U.S. west coast groundfish trawl fleet and analyzed changes in fishing behavior
that could have resulted from a changing catch constraint on a single species, canary Reaibfistes
pinniger). We categorized the range of fishing behavior that affected canary rockfish using different fishing
6strategiesd, each one var yi mpralityybyaheyapdoséxhas wellasal e f
ot her speciesd cat chthmixedostogkdishingtsiraegy.utiliZésediffarensgear typec

and fishing locations, the canary rockfish stiteeat-agevaries across strategies, which in turn affects the

age composition of the catch. Biological information from the-sigectured assesgnt model created
allowable catch, but the actual catch and its age structure each year were determined by the optimum catch
strategies from the economic model. These values often differed from the expected biomass and age
structure of the catch that wasedicted by the biological model alone, and were fed back into the
assessment model for each annual update. While the retrospective model resoitearneaspeculative,

we showed that catch limits informed by détd and dataleficient singlestock asessment techniques

led to potentially beneficial fishing behavior for many species within a ‘spécies fishery, but had
detrimental effects on two currently overfished species in the same stock complex. We also demonstrated

t hat a 0da tessmemdedhmiqua (DBRA) resslted in foregone operating profits on the order
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of $5.5 million, not including the management and monitoring costs of implementirgsseesment
method. Incorporating simple fleet behaviors into assessment simulationdgaaehdfy optimum and
likely fishing strategies when resources are constrained, and should be considered in evaluation of

alternative management strategies.

2.2 Introduction

Fisheries assessment and management in the United States is centered oalliddaged performance
measures. While these measures are essential for theelomgustainability of the fisheries resource, they
do not address important social and economic fag¢®yb/ia and Enriquez 1994)r wider ecological
considerations Essington and Punt 2011; Gaichas 2008; Botsf@aktilla, and Peterson 1997he
MagnusonrStevens Fishery Conservation and Management Act (MSFQWGYWA 2007) mandates an
integrated considation of both biological and socegconomic factors in fisherigglated decision making.
However, it does not provide guidance on the extent to which these different factors have to be taken into
account, especially when setting total allowable catch&€§J, or designing stock rebuilding plans in the
case of overfished speci@sarkin et al. 2006)Even when economic factors are included in analyses, such
as biececonomic fishery management models, the bioldgiomnponent is generally given much greater
attention than economic factors in terms of both data and rigor of an@ysi®uten et al. 2012; Barclay
2012)

Although including multispecies considerations in fishery models increases their complexity; multi
species models are necessary to transition towards ecodyasenh fisheries managemé¢nhtaganyi et al.

2014; Essington and Punt 2011; Field and Fea2006; Cochrane 1999However, the impacts of
management measures in mgipecies fisheries are difficult to predict without explicitly considering
fisherman behaviofWilen et al. 2002; Fulton et al. 201Blthough many models allow for interactions
between multiple species, eRunt et al. (201Q)accainting for interactions between the multiple species

in a biological model and fleet behavior predicated on economic theory is not as common. Bioeconomic
modeling is an approach that allows us to meet biological management goals while simultaneously taking
social and economic factors into consideratioarkin et al. 2011) Bioeconomic models are particularly

well suited for shedding light on the impacts of alternative management scenarios on a fishery. Fish and
fishermen interact in ways that are often not intuitive to fishery masaged models that illustrate these
interactions are essential for implementing responsible fishery managemer(vptafatten et al. 2012;

Pelletier and Mahévas 2005; Hilborn and Walters 19B@) example, when setting TACsr fa single
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species in a mul$pecies fishery, the complex interactions between fishermen and the portfolio of harvest
options is often neglectg®elletier et al. 209). As a result, a management action established to achieve
optimal yield of a single species may have effects on other species in the fishery that are often not well
understood and are potentially undesirglalas and Gaertner 2004or exampleMackinson, Sumaila,

and Pitcher (1999 howed t hat ignoring fishermenébés targeting
significant undepredictionsof stock depletion rates, significantly increasing the risk of stock collapse
above that expected by fisheries managers. In analytical mdghghirico and Wilen (1999) and
Sanchirico and Wilen (2005Jemonstrated that the equilibrium characterizing a spatiabdnoomic

fishery system is as dependent on economic parameters as stock charactasticsico and Wilen
(2001)show that the ability of a marine reserve to create value depends as much on assumptions regarding
economicfactors and economisehavioras biologicalfactors. For example, the level of fishing effort in
multi-species fisheries can remain high, and fishing profitable, even if one or more of the stocks are nearing
depletion(Burgess, Polasky, and Tilman 201Bjespite these examples, the consideration of social and

economic factors in fisheries management models is not wideqi@aeadthers eal. 2014)

The importance of including social and economic factors in models for fisheries management is highlighted
by a number of Management Strategy Evaluations (MBE&erworth and Punt 1999; Holland, Bentley,

and Lallemand 2005; Smith et al. 2009; Dichmont et al. 204@)ever, most studies either do not include

a behavioraleconomic component, or specify it in such a way that may not recognizeteheciions
between physical fishery characteristics and fishermen. For example, in an MSE of a range of harvest limits
for the Australian northern prawn fishekang and Wang (2012ssume that the number of fishing days

per year is fixed, and that a fixed puastion is allocated to the different prawn fisherieezhmont et al.
(2006)were among the first to include effort dynamics due to input controls (effort limits) in a MSE with
fleet targeting behavior changing relative to endogenous fishery biomass. In an MgkElobster ifNew
Zealand, fleet size changadresponse to both catch and catch limits in the fishery, but effort per vessel
remained constarHolland, Bentley, and Lallemand 200®laravelias, Pantazi, and Maynou (2014)
evaluated alternative fishing input restrictions (effort and trawl net meshisizeMediterranean trawl
fishery, but the authors used a fixed level of effort and did not model how vessels would react to these
management measurd3unt et al.(2010)include fixed and variable costs of fishing in a MSE of the
Australian northern prawn fishery, as well as price fluctuations due to changes in size composition of the
prawn populations. However, fishing effort is treatechasriable in a calculation to maximize the net

present value of the fishery, and not as a behavioral component of the model.
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Implementation uncertainty is one model component that potentially represents the behavioral response of
fishermen to a managenteaction, for example, the uncertainty of whether actual catch in the fishery will

fall short of, meet, or exceed the catch limit set by managers. Implementation uncertainty is commonly
blamed for the failure of management actions to achieve their stiatedital goals(Cochrane 1999;

Levontin et al. 2011)however it $ not always easily incorporated into assessment models. For example,
Punt and Ralston (200€pnducted an MSE of alternative rebuilding rules for Pacifi&fish species and

set model catch equal to the policy recommendattmuke (1999)in a comparison of various harvest

control rules, assumed that catch in the model is exactly equal to the catch limit set by the assessment model,
although the author implements@per bound on effort. When implementation uncertagitycorporated

into simulation models it is normally done by specifying an error term with an associated probability
distribution (Punt, Dorn, and Haltuch 2008%imulation exercises that incorporate a range of possible
fishing effort levels or catches in this fashion can be useful for comparing the theoretical performance of
alternative assessment tedunes. However, we argtieat areasorfor including implementation error in

these situations is to compensate for not including a behavioral model that explains how implementation
error is produced. Whatever the management strategy or assessment technique being evaluatads models
designed to be applied in the real wenhere fishermen behave in ways that may not be accurately
represented by implementation error based on a distributional assumption. In the case of evaluating stock
assessment techniques, it is also possilbléth f i sher mends behavi or al respon

interact with assessment methods, changing the results of the comp@dsmthers et al. 2014)

Considerations of implementation uncertainty and fishermen/fleet behavior are of particutdamegm

the evaluation of alternative methods for designating total allowable catch (TAC). With the majority of the
wor |l doés f i s-theBicrent statewhere littee ordna infarmation that can be used to formulate a
prediction of stock status estg(Costello et al. 2012)Yataintensive stock assessment methods which are
generallycatchatage models fit to fisherglependent and indep#ent data, are not feasible for a large
number of fisherie§Smith et al. 2009)As a result there has been much recent interest in the development
and testing of datdeficient methods for setting acceptable catch lifidisk and MacCall 2011; Wetzel

and Punt 2011; Carruthers et al. 2014; Arnold and Heppell 28b8)ever, met of the evaluations of data
deficient methods do not incorporate a model to describe the dynamics of fisherman behavior as described
by fishing effort, even though the spatial and temporal distribution of effort in a fishery defines the pattern
of fishing mortality (Wilen et al. 2002)Fisherman behavior has been largely ignored in the evaluation of

fishery assessment techniqBtaganyi et al. 2014The complexity of assessments and their reviews prior
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to advising management requires enormous time and;dffas, it is not too surprising that economic data

and changes in fishing behavior have not been fully incorporated into the assessment process.

Due to the complexity of many fisheries, bioeconomic models often take a faekidg simulation

based pproach, e.gdichmont et al. (2006with a range of alternative scenarios projected under different
environmental or economic conditions. But retrospective analyses can also be a useful way to examine how
the interplay of fish and fisheries might have changeadltédrnative management strategies had been
employed. For exampl&)arsdenMartell, and Sumaila (200@nalyzed how the profitability of the Fraser

river sockeye fishery could have changed with the implementation of several different control rules.
Martell, Walters, and Hilborn (200&8pnducted a retrospective analysis of what could have happened in
the Bristol Bay and Fraser river sockeye fisheries given current knowledge of the mearestodinent
relationships and variation in past recruitment. The main advantage of a using a retrospective approach is
that we know with relative certainty wheid hgopen in a fishery, and can use that as a benchmark to
compare what might have happened under different cond{gonsld and Heppell 2015Although there

is often a high degree of uncertainggarding stock biomass and distribution, the fisheries catch by year
and economic variables such as fish prices, fuel prices, and revenues and costs are all known (albeit with a
certain degree of observation error). This provides the researcher witho& pstudeexperimental
conditions under which the potential effects of management actions can be evaluated in order to inform

future management.

We set out to explore the integration of behavior, economics, and biology in the management of a multi
speciedishery with a retrospective bieconomic model that capturksown elements of the pass data

to inform current management scenarios. We analyzed fleet behavior in response-tich detaagement
scenario and a datieficient management scenario.r@uoal is to illustrate one method of incorporating

fleet dynamics into biological models that is simple to implement and based on sound economic theory.
With historical data on fleet behavior in the U.S. west coast groundfish trawl fishery, we applied two
management scenarios to the canary rockfish st8ebdstes pinniggra datarich and dataleficient
scenario. We chose canary rockfish due to its historical importance to the fishery and severe decline leading
to an overfished designation in the 19988 @onstraining effect on the mu$ipecies groundfish trawl

fishery for more than two decades.
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2.2.1 RETROSPECTIMEASE STUDY: CANARYORCKFISH

The U.S. west coast groundfish trawl fishery (hereafter groundfish fishery) is complex, and over its history
has included thousands of vessels of different gear types. Spatial and temporal variability in the distribution
of fishing effort is high, harvesting more than 90 species of groundfish as either a targeted fishery, as by
catch, or incidental catch. Los#iyed rockfish species are particularly important in the fishery, not only
because of theeconomianarket values, but also because of historic overfisR$1C2011) Rebuilding

plans for some species have resulted in significantly reduced catch limits that affect multiple fisheries.
Because rockfish are caught by fishermen targeting a range of species using a variety of gears, the effect of
a constraining calclimit has had serious impacts on the groundfish fis{féigld and Francis 2006 hese

impacts have led to changes in fishing strategies and targeting behavior, but those effects have not been

fully examined.

Historical catchesof canary rockfishreacled 5500 metric tons irthe early 1980s. The history of
exploitation has been characterized by a period of overfishing followed by stock collapse and the
implementation of a rebuilding plan in the early 200®®wart 2009)A revision of rockfish productivity
estimates, declining catches of rockfish species, and reauthorization of the Magnuson Act as the Sustainable
Fisheries Act of 1996NOAA 1996) led to tightening controls on trawl vessels. However2@§0 the
fishery was i n(Hana2a0RSeecralspecias df rosklsh weeerdésignated as overfished
and stringent rules were adopted m effort to rebuild these stock$hese included bocaccio rockfish
(Sebastes paucispifjsyelloweye rockfish $ebastes ruberrimyswidow rockfish Gebastes entome)as
darkblotched rockfishSebastes cramé@ricowcod Gebastes levisand Pacific Oceangoch Gebastes
alutug. During the rebuilding period, canary rockfislasa highly constraining species in the fishery; low
catch limits coupled withheir harvest by alternative fleets and gear typ&s compelled fishermen to
actively avoid canary roclgh in the fear that reaching the catch limit would cause the fishery to be shut
down. Currently, a transferable quota system for grountfisti fisheries requires strict bycatch limits by

vessel, which continues to affect fishing strategies.

The more thn 90 species that are included in the Groundfish Fishery Management PlanRFME;

2016)are required by the Magnus@tevens Act to have annual catch limits (ACL) established using the
Obest scientific adviced Given the data requireme
conduct full stock assessments that estimate manageefergnce points, including the ACL, less than

40% of the 90+ groundfish species included in the FMP have been fully assessed. Under current budgetary
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restrictions approximately eighgtock assessments are completed each assessment cycle, in addition to

updates for overfished stocks that are managed under rebuilding plans.

2.2 Material s and Methods

The bioeconomic model consisted of a population dynamics model of canary rockfish and an economic
model simulating fleet behavior. The Boonomic model follws an iterative process that passes total
allowable catch (TAC) from the population dynamics model to an economic model that calculates actual
catch, accounting for fleet behavior, and passes actual catch back to the population dynamics model on a
yearly ime step (Fig. ). The economic component was parameterized on historical fleet data such as
revenues, costs, fleet capacity and fleet structure. The biological model begins in the year 1980 with the
canary rockfish stocht levels estimatebly the 200%tock assessme(Btewart 2009)The population was
projected forward through 2006 underdatarich management scenario (DR) and a datalerate
management scenario (DM). In addition to the DR and DM management scenarios, a base case simulation

was conducted keeping canary catch per trip and TAC at historical levels.

POPULATION
DYNAMICS
MODEL
' CANARY TAC
data-rich

‘ ACTUAL CATCH BY STRATEGY

AN /

ECOMONMIC
MODEL: FLEET
BEHAVIOR

data-moderate

Figure 2.1 Iterative ppocess of the bi@economic modelFor each year, Total Allowable Catch (TAC) was
calculated from the population dynamics model and passed to the economic model. Actual
catt was calculatethy the economics model and passed back to the population dynamics
model.



12
2.2.1POPULATION DYNAMICMODEL

The population dynamics model is agad sexstructured with recruitment defined by the Bevetittoit

(Beverton and Holt 1957prm of thestockrecruitment relationship:
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Where N;s.ais the number of fish of sexand agea at the start of yeay; x is the maximum age in the

mode| treated as a plus group (an age cohort accounting for all fish of age higher);Ms . is the
instantaneous rate of natural mortality for fish of sex s and age a, assumed constant throughstiie; S

the selectivity of the fishing strategy (ST@®) fish of sexs and agea. Strategies are categories of fishing
behavior that are based on gear type, fishing depth, and target species and are discussed fully in section
2.2.2. Selectivityis assumed austant through time, but variéy fishingstrategy Fy is the fully selected

fishing mortality rate in yeay andRy is recruitment during yeat
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Whereh is the steepness ofdlstockrecruit curve (the fraction of unfished recruitmery, expected when
spawning biomassSB is 20% of unfished spawning bioma&). Sigma R,(g, and the recruitment
deviation in year, Rdey, are error terms for each year defined by the 2@0& sassessmeriStewart
2009) SB is the spawning biomass in yeadefined by the sumfanature female biomass from age 2 to

the plus groupamax

YO no rO  § O

Where Nem,a is the number of females at agewem,a iS the sexspecific weightatage, andp, is the

proportion mature at eache@gharacterized by a logistic equation:
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Whereaso is the age at which 50% of the females are maturef@dx the slope of the maturity curve at
aso. Weightat-age is an allometric function of lengélrage defined by:
0 0 Ok
Lengthatage () is defined by the Von Bertalanffy growth model:
0 0 zp Q (o] :: 4

WhereLiy is the average asymptotic lengitis the growth coefficient anab is the theoretical age at zero
length. Population and life history parametalues used in the simulation were taken from the most recent

stock assessment of canary rockf{iSkewart 2009)and are given in Tab1.

Table 2.1: Input Parameters for the Population Dynamics Model

Parameter | Value Description

Population
Ro 3,335 unfished recruitment
SB 25,574 unfished spawning stock biomass
h 0.511 stock recruit curve steepness
Ur 0.5 recruitment deviation

Life History

Female Male

M 0.6 ages<7 0.06 natural mortality
aso 8 age at which 50% of females are mature
d 0.25 4x slope of maturity curve ata
X 0.000016 parameter for weight at age
Y 3.03 parameter for weight at age
Lint 60 52 average asymptotic length
K 0.131 0.170 growth coefficient
ay 0.102 0.202 ace at zero length

Catch in year y was calculated using the Baranov catch eqBacanov 1918jo determine the catch at

age, sex, and strategy such that:
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Equation2.7 wasincorporated intahe objective function in an optimization model thadrsbed for the
values of kre resulting in a value of {Cequal to the total catch passed from the economic model. The
model was constrained to values of F for each strategy that resulted in -paettiategy equal to the

proportions given by the econarnmodel.

2.2.11 Management Scenarios

Two management scenarios, onbere fishery independenagestructureddata were available on an
annual bagiix h(t hae thé difaetvh@rgonly an estimate of stock size was available on
an annuab asi s (nohdee r (ad aetdavere used ta caiculate the total allowable catch (TAC)
passed to the economic model. The datiascenarigs modeled on the harvest control rule (HCR) defined
by the Pacific Fisheries Management Council (PFMC) fougdfish TAC. This HCR sets catch based on
estimates of current spawning bioma&g, and unfished spawning biomasSp, following the

formulation described iRunt and Ralston (20Q7)
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Wherebi s t he threshold ref er elowavbichpameét catchisntiisstidyi s t he
the alpha and beta parameters were set to 0.10 and 0.40, respectively, following management practice on
the U.S west coagPFMC 2016) Above the threshold reference point, expected catch is determined by a
proxy of the fising mortality rate that produces maximum sustainable yiglek The expected catch for

yeary corresponding to a fishing mortality rateFafsvis calculated as:
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The Fusy proxy used in this study was the constant fishing mortality tlaét reduces the lifetime egg
production LEP, of a stock to x% of that in the unfished conditiBbg,(Clark 1991, 2002). Consistent with
the PFMCFwusy proxy for rockfish defined in the 2011 Fishery Management @&MC 2011)we chose
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Fsos LEP is a function of the proportion mature atape, t he r el ati veaniferoalendi t vy

survival from age 1 to age such that:
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For the datamoderate scenario, the TAC was defined by the overfishing limit (OFL) calculated by
DepletionBased Stock Reduction Analysis (BERA; Dick and MacCall 2011)DB-SRA generates
probability distributions of the maximum sustaif@yield (MSY) and was implemented in this study using

a delaydifference production model:
6 O 0O 0 o p

WhereB: is biomass at timg P is latent annual pradttion (based on a preceding parental biomass)aand

is the age at reproductive maturity. The latent production function used in this analysis is the alternative
hybrid SchaefePTF model developed yick andMacCall (2011)that approximates a Bevertbfolt
stockrecruitment relationship without restricting peak productivity to-bak of the unfished biomass.
DB-SRA requires the catch time series and five input parameters: (1) an estimate of stocil¥tiues, (
biomass aMSYrelative to the unfished statBysvK), (3) the ratio oFusyto M, (4) M, and (5) the age of

50% maturity.

2.2.2ECONOMIC MODEL

The economic model simulated changes in historical fishing behavior in response to an annually varying
constraint (TAC of canary rockfish) on a mwdpecies fishery. Fleet behavior defined the difference
between the TAC and the actual catch, creating a more realistic evaluation of assessment scenarios than
assuming actual catch is equal to the value efctbnstraint, osettingthe difference between TAC and

catch with an error term. The interaction of the economic model with the biological model through
differential selectivities also caused differences in the age structure of the removal from théqgmopula
Because different fleets also had different selectivities due to where and how they fish, the actual catch
could have a different age structure than expected from a purely biological model. The major challenge in
this modeling exercise was determigiinow best to model the complex U.S. west coast trawl fishery in a

way that preserved the historical structure of the fishing fleet while allowing the model to respond to

changes in the TAC for canary rockfish, without markedly increasing overall modplecaiy.
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Historically, the U.S. west coast trawl fleet was composed of thousands of vessels, differing in size and
horsepower, with significant heterogeneity in fishing behavior. Using visaalfish ticket information

collected by the west coast swtand maintained by the Pacific States Marine Fisheries Commission
(PSMFC), we defined six mutually exclusive fishing strategies (T2Blethat encompassed the entire

range of fishing behavior displayed by the west coast trawl fleet during the modsiiog, gpnd which are

similar to those used bgabcock and Pikitch (2000hese strategies are defined using the gear type
indicated on the fish ticket, and the species coiitipasof the catch. We assumed that a single fish ticket
corresponded to one O6tripb6 and assigned a 6stratec
OQur strategies are somewhat anal Olgcbetal (2002)whidhe conc

categorize fishing behavior in terms of a target species and area fished.

Table 22: Fishing strategy definitions for the economiodel

Code Strategy Description Notes

DT Dover/Thornyhead If a fish ticket record shows "any Deep water fishing on th
/Sablefish (DTS  other trawl" gear is used and continental slope
complex) DTS >= 33% revenues fone trip.

SR shelf rockfish If a fish ticket record shows "any Shallow water fishing

other trawl" gear is used and DT¢ with roller gear on rocky
< 33% revenues and rockfish habitat
complex > 50% revenue

PW  Pacfic whiting If a fish ticket record shows Mid-water trawling, no
"midwater trawl" gear is used anc roller gear, exceedingly
whiting >= 50% revenue for the low bycatch
trip

PY pelagic rockfish If a fish ticket record shows Mid-water trawling for
"midwater trawl" gear is usedhd pelagic rockfish species
whiting < 50% revenue for the trij

SH shrimp If a fish ticket record shows any Small mesh size nets on
"shrimp trawl" gear is used. mud/sand bottoms, ofter

shallow water.
NF nearshore mixed If a fish ticket record shows "any Main targets are

species other trawl!" gear is used and DT¢ roundfish and flatfish
< 33% revenues and rockfish bottom trawl gear used,
complex < 50% revenue. often with small roller
gear.

Examination of the data showed that sorassels exclusively pursued one strategy in a given year, while

others switched between strategies throughout the year. In order to impose a historical structure on the
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model |, we fcreattedl odeommposed of al | v e dicularlsst ofi n t he
strategies in a given year. For example, vessels which pursued the DT strategy exclusively were grouped
into a sukfleet, and vessels that pursued only strategies DT, SR, and PY in a given year were grouped into
another sulfleet. With a posible number of combinations in each year of 720 (6!), a maximum of 38 sub

fleets in 1994, and a minimum of 21 sfldéets in 2006 characterized the fleet. Using vessel logbook data

from 1987 to 2006 (the years in which logbook data were available) wdatattaverage length of trip

(measured in days) by strategy in each year. For the years12881(in which logbook data were
unavailable) we used the average of the trip lengths in 1987 and 1988 as an estimate. The capacity of each

subfleet in each yeaty), defined as number of trip days, was calculated as:

8ONOOQPEW G 6 & ORI BNERQ b QRS @ ®i O C

Whergj is strategy andlis subfleet. Ou capacity calculation assumed that vessels would exert a maximum
effort equal to what was observed historically, while allowing total effort to increase by a nominal 5% in
each year. This assumption precludes the ability of vessels to exert a total afreftort much beyond

historical levels.

2.2.21 Selectivityby-Strategy

In addition to gear type, target species, and catch composition, strategies are associated with different
selectivity curves for canary rockfisBelectivity curves are used in tequations for survival (Eq. 2.1),

and catch (Eq. 2.7) to account for differential fishing mortality by Sgee each strategy was defined by
different gear types and fishing depths, and the depth distribution and vulnerability to gear of canary
rockfishis agespecific, the selectivity curves vary by strategy according to the hypothesized vulnerability

of canary rockfish to a strategy. The DT, PY, and SR strategies were defined by asymptotic selectivity
based on the selectivity curve of the Oregon tréadtf as defined by the 2009 assessr®tewart 2009)

The PW strategy was also asymptoéind based on the-sg¢a whiting selectivity curve in the 2009
assessment. The highly dorrglthpe selectivity curve of the NF strategy was based on the southern
California trawl fleet selectivity curvgStewart 2009) Finally, the SH strategy was defined by an

exponentialogistic selectivity curve:

AoBIT &
p [ p AGPBr Y

oxp o



18

Where 1/ U i s t he issheshhpe paraimeter. Algha flemaek 2.0, naale:®.1) beta (female:
5, male: 5) and gamma (female: 0.2, male: 0.14) weween to create a hypothetical, biologically realistic,
curve describing the selectivity of canary rockfish to the shrimp fishery. Given that a shrimp trawl operates
with fine mesh nets over soft bottom, and young canary rockfish settle in shallowebefatermoving
deeperLove, Yoklavich, and Thorsteinson 20Q2he younger age classes are more likely available to the
shrimp trawl vessels. Selectivity time blocks were used to model management actions that required gear
modifications, specifically, footrope restrictions which remoteel bottom trawl fleet from highelief

rocky habitat. Selectivity is assumed constant through time for the PW, DT, PY, NF, and SH strategies.
Selectivity for the SR strategy switches from asymptotic to delma@ed in 1995 and changes again in 2000
(figurel). Time blocks for the SR strategy are based on the 2009 canary rockfish stock as¢Stmwaant

2009)
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Figure 2.2: Canary rockfish selectivityurves by strategyMales (dotted line) and female rockfigholid
line).
All species caught in the fishery were assigtedl1 species groups (Talle8). Canary rockfish formed
its own species group and all other species were formed into groups of economic and-setiigy
relevance. For example, the Dover sole/Thdmegd rockfish/Sablefish (DTS) complex was compaxed
these three species and is a common target group for trawlers in the west coast fishery. This complex made

up a significant portion of the catch in the DT strategy. Pacific whiting and shrimp are main targets for
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pelagic trawlers and shrimp trawlerspectively and make up the majority of catch in the PW and SH

strategies.

Table 2.3: Species groupings for the economiodel

Code Species

CAN Canary rockfish

DTS Dover sole, ThornyheadSablefish
OFF All other flatfish

ORF All other rockfish

OOF All other roundfish

SHS Sharks and skates

PWH Pacific whiting

SHR Shrimp

PEL Pelagic species

HMS Highly migratory species
OTH All other species

Using fish ticket revenue data in eadaywe calculated average annual price per species group by dividing
total revenues per species group by delivered weight. We found significant differences in species group
prices between strategies, possibly due to 1) a different mix of species cagmth strategy which leads

to price differentials 2) different volumes of species delivered, 3) seasonal market conditions, or 4)
perceived quality differences in the catch between strategies. We calculated catch per trip of each species
group as the tripweerage of the total catch by strategy in each year, and revenue per strategy trip was
calculated as the product of this and the calculated price by species group, which includedsgteaiéigy

differences.

2.2.2.2 Economic model output: actual catch

For the economic model to return actual catch to the biological model, we had to define the historical

relationship between canary rockfish biomass and catch rates in the fishery. We estimétgd log
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transformed linear regressions for the relationshipvdenh observed catch (from fish ticket data) and total
biomass (as estimated in the 2009 stock assessment for canary r@@8tdisart 2009) We conducted
separate regressions for the DT, SR, PY, and NF strat@gi€afary catch was extremely low in the SH
and PW strategies and we assumed that catch in these strategies did not changenyigiak status.

The estimating equations took the form:
1 TAAT AAMAED "Qnf Tl ibde @i a @i i O ¢

The results of these regressions are shown in Table 4. In thetgimuba used the beta coefficients and
estimates of canary rockfish biomass derived from the biological model to calculate canary rockfish catch
per trip in each year for each strategy. Catch per trip of the other 10 species groups were assumed to remain
at historical levels. The actual catch of canary rockfish was calculated as the product of catch per trip by

strategy (kg) and the level of effort exerted (trips).

Table 2.4: Regression coefficients used to estimate actual catch per trip by strategy

Strategy b1 (CONSTANT) b2 (INBIOMASYS)
DT 2.2478 0.3277 *

SR 3.3517 * 3734 *

PY -17.021 * 2.0102 *

NF -1.2576 5216 *

* indicates significance at 5%vel.

The purpose of the economic model was not to arrivepatrf@ctly accurate retrospectiestimaton of

fleet profitability, but rather to evaluate changes in fishing behavior due to the constraints on harvest of a
single species in a mukpeciedishery.We did not include a detailed measure of fleet profitabittg.(

fixed costs) with which we could evaluate welfare effects. We did, however, include a proxy for variable
costs. In deciding on a particular fishing strategy at any point in pnedif-maximizing fishermen will

decide on the action that maximizes vessel profits, and in doing so maximizes crew share, which is normally
paid on the lay systefPSMFC 199). While crew compensation is the main component of variable cost,

we did not include a measure of it as vessel behavior is hypothesized to respond to changes in net revenue

over alternative strategies, of which crew share is a simple proportion. Tdreddargest component of

variable costs, which we hypothesized may have an
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(an average of 13% of total variable co$B3MFC 1999)Fuel costs vary according to the length of time

that the vessel takes to make a trip, how far away from port the vessel fishes, and the particular activity that
the vessel is engaged. To calculate average fuel consumption per trip, watased average gallons of

fuel consumed per hour by fishing activity from an economic survey conducted by the Pacific States Marine
Fisheries CommissioPSMFC 1999) Of thevessels in the survey, fuel consumption averaged 13.15
gallons per hour while trawling, 11.06 gallons per hour while shrimping, 11.58 gallons per hour while
steaming fully loaded, and 9.96 gallons per hour while steaming empty. Using vessel logbooketagt on

of trip by strategy, we assumed that a vessel b6s t
in the SH strategy), steamifiglly loaded, and steamirgmpty. We then combined average fuel
consumption per trip by strategy with a priegiss of average cost of #2 diesel fuel in U.S. west coast ports
from 1981 to 200QEIA 2009)to arrive at an estimate of fuel consumption per trip by fishing strategy.

As our model was a shemin model of fleet behavior, and entry and exit into the fishery were effectively
captured in our time series data on fleet capacity, we did not incluggegittbehavior endogenously in

the model. The implicit assumption is that the change in the stock status and availability to the fishermen

of canary rockfish would not have affected a fish
a resul, fixed costs were not included in the model. Using our calculated historical prices, trip fuel costs,

and estimates of actual catch per trip, we conducted an optimization procedure in each year using GAMS
(GAMS Development Corporation.2013) which the decision variable was the number of tripslenin

each strategy by stfteet. The objective function for each yewris:

D O 0O YOMOU YO O O Y o B O X

Wherei=speciesj=strategyf=subfleet, X is the number of trips made per didget in eachtsategy,R; is
revenue per trip for each species per strategyBaigifuel cost per trip per strategy.

Equation2.17 was maximized subject to constraints on catch (equatl@®) and effort (equatio£.19),

which varied according to stfteet:

w D 0 I " o Y
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And

w 30 O I "o O w

Where Cj is catch per trip by species in each strat&gys TAC by species grouf; is length of trip by
strategy, ands; is the historical capacity of each sfldet. Note that while effort could not exceed that

observed historically, it wasde to vary below that limit.

The fishery was modeled from alsmwnerperspective that allowed us to arrive ata@utcome that

provi dedase®besdeanari o with which to evaluate possi
constraints (canargockfish TAC) on the sulfleets in each year, stfteets were limited to a maximum

all owabl e catch of various species. We relaxed t|
(PEL) , Ahighly migratoryo ( HM&JQups, bg setlingthese TAECsto speci
levels that would not be reached before other species became constraining in the model. These species
groups have not historically been subject to catch limits. As Pacific whiting and shrimp were the main
drivers of catchin the PW and SH strategies, and canary rockfish were rarely present in these catches, we

set the TACS for these species equal to the amount of fish actually caught historically. Canary rockfish was

a significant component of the catch in all other sgiate and in order to allow some flexibility in the

model we increased TACs for DTS, OFF, ORF, and OOF species groups by 5% above actual historical
catch. We therefore treated historical catches as pseudalicgitshin our model, albeit with flexibility

built-in.

2.3 Results
2.3.1 MODELED CATCH

Under the DR and DM management scenarios, canary rockfish TACs were set far below the level of catch
observed historically from 1981993, with an initial decrease of 43% and 64%, respectively 23).

After this initial period, TACs increased above the level observed historically, and remained above the
historical catch as the modeled canary population never became overfished. The DM scenario was more
restrictive than the DR scenario during the first 10 yezrthe modeling period, but this relationship
reversed thereafter. Canary rockfish catches were generally equal to the TAC until 2000, and then fell below

the TAC level thereafter due to other species in the model becoming constraining on fishing effort.
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Base — DRTAC - DM TAC ---- DR Catch -~ DM Catch ---

Canary Rockfish Catch,TAC (M

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
Year

Figure 2.3: Canary rockfish TACs and modeled catch

2.3.2FLEET BEHAVIOR

To maximize total fishery profits, fleets switched between strategies depending on historical prices, catch
ratesof all species groups, and the constraints on catch of spggoigss. A fundamental patteemerged
whencanary TACs were reduced to levels significantly below historical catches, fleets exerted increased
levels of effort in the pelagic rockfish (PY)ategy and decreased effort in the shelf rockfish (SR) strategy
(Fig. 2.4). Switching behavior was not as evident (although still present) between the other strategies, and
effort levels in these strategies remained largely the same as historical legeisriBR and PY strategies

were associated with significantly lower catch rates of canary rockfish and were less affected by changes

in the catch limits for this species.
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base scenario — DR scenario ---- DM scenario ——

PY SR

4000

48]
o
o
o

2000 ‘\

Effort (number of trips)

-

o

o

o
L

1985 1990 1995 2000 2005 1985 1990 1995 2000 2005
Year

Figure 2.4: Number of fishing trips (effort) per strategy

2.3.30PERATING PROFITS

As a result of the reduced TACs and catches through the 1990s;geoéehted operating profits were far
below the level observed historicalijuring this time period (Fig. 2)5After 1998, due to a combination

of increased TACs and increased catch per trip of canary rockfish, operating profits increased above the
level observed historically, and remained there for the remainder of the simulation period. At a 5% discount
rate, and loking retrospectively at the cumulative value of the operating profits in the fishery, the historical
value in the west coast trawl fishery from the base simulation was calculated as $943.63 million. Under DR
and DM assessments, that value was reduce®28.%7 million and $923.1 million, respectively. This
represents a discounted difference of $15.06 million for the DR scenario, and $20.53 million for the DM

scenario, or 1.6% and 2.2%, respectively.
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DR scenario — DM scenario ---
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Figure 2.5: Change in operating profi{the difference between total revenues and variable costs) relative
to historical profits for the datach and datanoderate scenarios. The dashed line represents
the level of operating profits calculated usingltlase scenario

2.3.4AMARGINAL VALUES

In our model canary rockfish TACs were constraining on the fleet from1982 for the two management
scenarios, and until 2006 for the base scenario 28y. The marginal value of canary rockfish for each
managemet scenario, is interpreted as the value to the objective function (total fishery operating profits)
of relaxing the catch constraint on canary rockfish by a marginal amount. In the base run, canary rockfish
are extremely constraining towards the latted ehthe modeling period with a maximum marginal value

of $22.19 in 2004 (Fig2.6). In each of thenanagemenscenarios, canary rockfish were a constraining
species in the model until 1999, after which other species became constrainingAFiés a reult,

modeled catches of canary rockfish failed to reach the level of the TAC in these later years.
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Figure 2.6: Marginal value of canary rockfish for each management sceffdmgomarginal value

represents the value to the objective function (total fleet operating profits) of relaxing the

catch constrainon canary rockfish by one kg
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2.4 Discussion

Our bioeconomic model illustrates how an economic model of fishing behavior carolmorated into an
assessment evaluation model. We also demonstrate a method for representing the behavior of
heterogeneous fishermen in a complex, raggcies fisherjpased on their portfolios of multiple strategies.

Our results showed that under tw@nagement scenarios (based on thé@and DBSRA models), the

stock status of canary rockfish could have remained at a level that was above the management target. Total
operating profits in the fishery for all species, however, would likely have dedresgnificantly
throughout the modeled time period due to the constraining nature of decreasing allowable catches of canary
rockfish. In addition, altered targeting behavior of fishermen could have had potentially serious
consequences for other stockghe fishery. Our model shows that fishermen are likely to have changed
their behavior significantly, and in such a way that would have significant impacts on the other stocks in
the fishery, including currentlgtheroverfishedstocks. The main switchindgpehavior that occurred under

both alternative management scenarios was between the shelf rockfish (SR) strategy and the pelagic
rockfish (PY) strategy. The main component of catch in both the SR and PY strategies was the rockfish
(ORF) complex, although tzhes of canary rockfish were almost exclusively higher in the SR strategy than

the PY strategy. The pelagic stocks of rockfish, which are mainly composed of yellowtail roSkfsist{es

flavidug and widow rockfish $ebastes entome)a@wo species thare or recently have been subject to
rebuilding plans), would have been exposed to more fishing pressure. Decreased pressure in the SR strategy
has important implications for pressure exerted on species associated with this strategy. Many of the species
designated as overfished in the early 2000s by the Pacific Fisheries Management Council (PFMC) have
historically been caughty fishermen employing thistrategy. These species include the Pacific ocean
perch Gebastes alutlis yelloweye rockfish $ebastes uberrimug, bocaccio rockfish §ebastes
paucispini3, darkblotched rockfishSebastes crame@riyellowtail rockfish Gebastes flavidjiscowcod
(Sebastes levisand lingcod Qphiodon elongatys Our results suggest that decreasing the binding TAC

for canay rockfish would have meant decreased pressure on a number of species that were designated as

overfished in the early 2000s, while increasing pressure on others.

We showed that after a period when canary rockfish catches (and TACs) would have beenvftrenel
historical levels, eventually harvest could have superseded the historical catch. This pattern of lower, less
variable catch followed by steadily increasing catches in the later part of the modeling period translated
into operating profits thatoflowed the same pattern. While operating profits were shown to gradually

supersede the level observed historically, profits were significantly lower in the early stages of the modeling
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period. From a retrospective perspective, and given a 5% discountheaferegone value of operating

profits (revenues minus fuel costs) in the fishery between 1981 and 2006 amounted to $15.06 million for
the 4010 scenario, and $20.53 million for the B3R A scenario, or 1.6 and 2.2% of total discounted profits,
respectiely. This was due to the decreased TACs for canary rockfish in the early stages of the simulation
which caused vessels to switch from the relatively profitable SR strategy to the less profitable PY strategy.
In addition, total effort levels in the fishetgcreased significantly relative to historical levels between 1981

and 1985 due to the constraining nature of the canary TAC. Total effort was reduced by an average of 3.3%
for the 4010 scenario, and 5% for the BERA scenario during this early time peticAfter this initial

period, total effort levels agreed relatively well with historical levels and changes in operating profits were
due mainly to switching behavior, illustrating the potential flexibility that fishermen have in responding to

catch constints.

In terms of discounted future value of operating profits, thé@l@arvest control rule oyerformed the

DB-SRA method. However, without accounting for the difference in costs of completing assessments and
management actions under the two sdesait is unclear which scenario would have resulted in higher
benefits to the fishery. The 4M harvest control rule relies omareaccurate estimate of stock status in

each year. These estimates are genedaltivedfrom complex assessment modelattmake use of both

fishery independent data (mainly collected through an annual west coast trawl survey), and fishery
dependent data (such as catch and effort data). Currently, full stock assessments are conducted for
approximately 8 species per year tlmeesource constraints. BBRA i s c¢cl aspiobr édmas ha d¢
and relies on a timeeries of fisheries catch as the main input, although initial estimates of stock status and
biological parameters are required. Given that no fisheries indepeladaaire required for implementation

of DB-SRA, it is relatively less expensive than aldDapproach that requires full assessments. Depending

on the costs of assessments, our results suggest thatSiRBREpproactcould be more economically

efficient than other TAGsetting approaches that require full stock assessments.

Maintaining a healthy population of canary rockfish would have meant significant changes to the fishery
starting in 1981. Management capabilities of state and federal agencies inlyh&988s were in a
development phasstrict enforcement of catch limits and the prevention of discarding would have proven
difficult. In addition, stock assessment techniques were still being developed and there was limited
knowledge of the life historyf@ockfish species. As is true for any model that attempts to capture the salient
features of a complex fisheries system, the assumptions restrict the applicability of our results and

conclusions that we may draw from thé@arruthers et al. 2014)or exarple, trip limits for canary
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rockfish were not instituted until the mikP90s, although trip limits for th8ebastesomplex (of which

canary are a component) were introduced starting in thel®80s. These trips limits changed frequently

in response to amy factors such as-season catch rates and assessments. Modeling how these trip limits
were set in response to these factors was an unrealistic task and as a result we imposeida Tla&

which served as the maximum amount of each species thatvesstl could catch. In estimating the
relationship between catch per trip of canary rockfish and the biomass of the stock, we used the best
available estimate of stock biomass through time. These estimates were derived from the most recent stock
assessmetrior this specie¢Stewart 2009)Whereas catch, revenue, and effort data are obseasdblare

known with certainty (minus measurement error), stock status at any moment in time is not. Fish are not
directly observable and any information regarding the status of the stock has to be inferred from fitted
population dynamics models based omghkes from the population. Estimates of the status of the canary
population are thus likely to beéncertain.Catch and revenue data are also subject to reliability issues.
Although the trend through time is one of greater collection of data on a speeieil¢he early years of

the modeling period estimates of individual species catch were restricted to a few commercially important
species. Catch reconstructions based on species composition sampling conducted by state agencies make
up a significant poivn of historical catch bgpeciesdata. However, given these caveats, our model does

illustrate implications of managing one species in a rspkticies fishery.

The capacity constraint that we employgdwhichsubf | eet s wer e r e Bstrategiestireld t o t
total effort levels consistent with historical patterns allowed a historical structure to be imposed on the
model. This method may prove useful for characterizing fishing fleets in future work. The main assumption

in using this approach wahat the influence of a changing TAC of only one species would not be enough

to cause significant capacity changes in the fishery in a given year. In addition, we assumed that within a
year, vessels that histor iocadoluyl ddindo tn octh atnagreg etth ea rj
due to a change in the TAC of canary rockfiEmploying these assumptions allowed us to examine

potential fishing fleet behavior in a way that preserved the historical characteristics of the west coast trawl

fleet.

The U.S. west coast trawl fishery is extremely complex with many heterogeneous vessels, a substantial
geographic range, and many species. Modeling this type of complex fishery is a challenge and requires
some simplifying assumptions. In some ways étspective approach simplified this task because instead

of predicting variables such as fish prices, fuel costs, and fleet size and structure into the future, these

variables were available from publicly accessible databases and were known witlve ashatunt of
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certainty. What was left was to predict how fishermenld havanade decisions when faced with a change

in fishery conditions, such as an initial reduction in the allowable catch of a currently overfished rockfish
species. This task is ardulg easier than predicting how fishermen would make decisions in the future
given the high levels of uncertainty surrounding many aspects of the fishery. As such, a retrospective
approach has value in predicting the effects of management actions inxdisipdes situationsavalue

which may then potentially be used to inform future management. However, any results gleaned from a
retrospective analysis may have limited applicability to current fisheries management in that our results do
not tell us whathe best course of action is, and what we are left with are useful insights on how a fishery

may potentially respond to management actions.

2.5CONCLUSION

The effects of a management action that reduces the total allowable catch of a single rsjpegiakti

species fishery often has unpredictable consequences on the economics of the fishery. We have explored a
retrospective approach to modeling a complex raécies fishery and showed that historical data can be
used to reduce cttheonswWmbédratofmuspgr eéodei made compared
approach. We employed a nofielet-strategymethod of characterizing the historical structure of the west

coast groundfish trawl fleet and used this structure to analyze the potbatigks in fishermen behavior

that could have occurred due to changing catch constraints for canary rockfish. While it is difficult to state
precisely what 6would have happened®é, we showed |
healthy stockif canary rockfish had been managed using two contemporary methods for setting fisheries
catch limits, fishing behavior is likely to have changed in such a way that would have had potentially
beneficial stock effects on many threatened rockfish speciesaorhnyo ¢ a u g hrto d knf ias W& h<tl rf a
and potentially detrimental effects on two other species that are currently subject to rebuilding plans.
Finally, we demonstrated that if the EEBRA method had been used to set canary TACs throughout the
simulatian period, instead of the 40 method, foregone operating profits are likely to have been on the

order ~2% of actual operating profits, not including the management and monitoring costs of implementing

each method. As DBBRA is likely a less expensive omti than conducting full, datach, assessments,

further research examining the full cost of conducting stock assessments could shed light on the relative

economic benefits of these two approaches.
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3. METHODS FOR THE SPATIAL DISTRIBUTION OF FISHING
EFFORT IN BIOECONOMI C SIMULATION MODELS: A
COMPARISON

3.1 Introduction

Bioeconomic models that combine the salient components of fisheries in order to investigate the economic
and biological impacts of management actions have become increasingly common over the last several
decadeqLarkin et al. 2011)Gordon (1954)and Schaefer (1954yvere the early pioneers of this field,
depicting a singlspecies fishery targeted by a homogeneous fleet, and at static bioeconomic equilibrium.
In the sixty yearsisce these seminal papesgere published, a significant literature has developed on
integrated biological and economic fishery models @esdlezo et al. (2012) and Knowler (20G2)
reviews). In the development of these integrated models, relatively little attention has beentpaid t
subject of fisherman behavior and fleet dynamics, while far more attention has been paid to describing the
spatial and temporal dynamics of fish stopkan Putten et al. 2012; Pelletier and Mahévas 200%a)ost

fishery bioeconomic simulation models, fishing effort is assumed to berdeésl exogenously to the

model (van Putten et al. 2012pnd in ways that are not supported by microecondhdory and/or

econometric analysi®alton and Ralston 2004)

Many authors have emphasized that understanding harvester response in fisheries is critical for managing
fisheries in ways that provide both economic and ecological benefits and avoid unintended management
outcome e.g.(Holland and Sutinen 1999; Hilborn and Walters 1987; Marchal et al. 2013; Fulton et al.
2011; Salas and Gaertner 200Fhese authors have emphasized the importance of including spatial
interactions between the fisherman and the stock in fishery mddiadiels that assume that fishing effort

is spatially distributed in relation only to biological factors such as stock abundance, and that do not take
economic factors into account, may lead to erroneous results in predicting the pattern of fishinggymortalit
The pattern of fishing mortality (on both tempor a
effort decisiongSampson 1991; Pelletier and Magal 1996; Wilen et al. 2002a; Pelletier and Mahévas
2005a) As a simple example, if a fish stock at the beginning of a fishing seasamagiénously distributed

across several areas, vessels will tend to favor those areas closerceig@tparibusas costs involved

with travelling to and from the fishing grounds are lower. Disregarding spatial behavior in this simple
example leads toverpredicting fishing effort in areas that are farther away from port, and-pneeicting

impacts on stock biomass in areas that are closer to port. In perhaps the seminal paper on this topic,

Sanchirico and Wilen (2005how that the optimal management of a fish stock depends on the ability to
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distribute fishimg effort over space and time in ways that recognize and integrate spatial biological processes
such as dispersion, and factors that affect the spatial distribution of profits, such as area population levels.
Spatial fishery models have also shed lightwwtelfare implications of spatially delineating fishing rights

in a rights based management system. For exar@pistello and Deacon (2008how how norspatial

rights may constitute incomplete ownership of the resource, and how the spatial delineation of fishing rights
can alleviate inefiiencies that arise from inteessel competition for highalued patches. In addition to
economic and social implications, understanding the spatial behavior of fishermen is also important for
informing fishery managers on the status of the stock theypanaging. The use of fishery dependent data
(such as Catch per Unit Effort (CPUE)) in informing stock assessments is widespread, and often the only
biomass indicator when fishery independent surveys are not undertaken. Failure to take the spatial behavior
of fishermen into account leads to problems in relating CPUE to a measure of stock ab(@itlen2e03;

Gillis, Peterman, and Tyler 1993for example, the movement of vessels from areas in which stock
abundance has been depleted to areas where abundance is still high keeps CPUE high even though the
overall stock level is being reducédilborn and Walterd 987) In response to this issue some authors have
suggested that the spatial distribution of fishing effort is a better predictor of stock distribution than CPUE

( Gillis, Peterman, and Tyler 199%ailure to accurately predict how the level and the distribution of fishing
effort will change as a resutf a management decision therefore has potentially serious implications for
policy analysis.

Because of the increased recognition of the importance of space in fisheries, the explicit treatment of spatial
interactions in fishery models, while not nevg. Caddy (1975)has seen a significant increase in recent
years (Pelletier and Mahévas 2005a; Sanchirico and Wilen 2005; Powers and Abeare \R008)
andytical models of spatial fishery processes are important, especially for gleaning important results about
a theoretical system, they become intractable fairly quickly when the number of dimensions increases
(stocks, age classes, spatial areas, time priédr exampleTahvonen (2009levelops a two age class
model to show how aggtructure and endogenous recruitment influence the optimal steady state population
and harvest of the resour@&konhoft, Vestergaard, and Quaas (2@&)elop an agstructured model of

a fishery where two fishing fleets targeto different age classes of the stock, with one cohort not yet
recruited into the fishery and investigate optimal harvesting under different assumptions regarding fleet
fishing selectivity. The number of results these authors glean from the modelted)itnowever, as
understanding the interactions of the economic and biological forces at work in the model proved difficult.

Instead, the authors show that optimal harvesting essentially depends on the various biological and
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economic parameters in the nebdThese considerations, and the need to perform policy analysis for
complex real world situations has limited the use of analytical models. Bioeconomic fishery systems are
now generally analyzed using simulation technigiiletier and Mahévas 2005a; Powers and Abeare
2009)

Bioeconomic simulation models have become increasingly complex due to advances in modeling and
computation techniques. This complexity, however, comes at a cost since the interpretability of results
quickly becomes difficult as the number of model inputs increfidésorn and Walters 1987and
sensitivity analysequickly become impractical given the number and range of parameter {fdiarehal

et al. 2013) Unlike in analytical models, general results that apply over the full range of parameter values
camotbe derived easily from simulation modalkere no explicit mathematical statement is evaluated as

a closed form solution. However, one of the main advantages of simulation models is that they encourage
exploration of alternative hypothesessomething that is true even for very simple simulatioodels
(Hilborn and Walters 1987)Bioeconomic fishery simulation models generally require an endogenous
calculation of the level and spatial distribution of effort exerted in a fishery. In many of these models the
level of effort is either set at: 1) historically observed values (@&gplan, Holland, and Fulton 2014;
Walters and Bonfil 1999R) at a usedefined constant leveé(g. Mahévas and Pelletier (200d) 3) at a
managemenrprescribed level (such as the effort required to attain a target fishing mortality rate e.qg.
(Holland and Herrera 2012) hedistribution of effort is then determined according to a rule or algorithm

that prescribes howffert should be distributed according to stock, fleet, and other characteristics. Methods
that have been used to distribute effort spatially in bioeconomic fisheries models include the gravity model
e.g. Caddy (1975)models based on the Ideal Free Disttion (IFD) (e.g.Powers and Abeare (2009)
models based on the Random Utility Model (RUM) framework (dajland and Sutinen (1999)the
sequentiaimodel (e.g.Hilborn and Walters (198Y) arbitrarytype methods such as distributing effort
equally among areas (eelletier and Magal (1996); Mahévas and Pelletier (20@)d game theoreti

models (e.g.White and Costello (2011); Holland and Herrera (2D1B)owever, most bioeconomic
simulation models rely on very simplistic methods for distributing fishing effetletier and Mahévas
2005a)Whatever the method of distributing fishing effort between areas, at a fundamental level they all
aspire to realistically represent fishermends spa

conditions.

Economic theory predicts that the spatial distribution of fishing effort will be determined by the expected

net returns of fishing in different locatio(Sordon 1954)The theory is that if fishermen are homogeneous
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and have perfect information, when net returns (including the costs of moving) are higher in alternative
locations, vessels will move between grounds until profit rates are equal govassis(Holland and

Sutinen 200Q)The basic intition is that fishermen will change their effort distribution until the marginal

net benefit of doing so falls to zero, which results in equalized marginal net revenues between areas.
However, the assumptions underlying this theory are easily violatedlifife situations and a variety of

factors can impact the spatial distribution of fishing effBdlletier and Mahévas 2005#&)dividual vessel
heterogeneitys uch as a vessel 6s pé hossepoveefanddishermeadcst eastitsittiucdse
abilities and habitual behavipmteract with conditions in the fishefguch as weather, the distribution of

other vesselsdé effort, and the heterogempamdis di st
result inviolations oft he pr edi ct i on s(Petietier dhad Mahévas®805at Hokaondr apd

Sutinen 1999; Abrahams and Healey 1990; Caddy 1%#8&ylicting the spatial distribution of effort in a

fishery is thereforano simple task and is often a source of uncertainty for fishery managers and policy
makerg(Dalton and Ralston 2004)

This economic theory for how fishermen distribute effort over space has a parallel in the theory of the Ideal
Free Distribution (IFD)after Fretwell and Calver (1969)yhich derives from the ecological literature on
foraging theory. The IFD provides a testable null hypothesis for how fishermen distribute themselves in
space(Gillis, Peterman, and Tyler 1993)Vhile originally applied to describe the spatial distribution of
birds in their habitat, when applied in a fishery setting the theory predicts that if 1) fishermen are of equal
6fitnesso, 2) interference competition between f
i nformati on on r es o utiorcieunrestricted,fvassels will moee dveeendiieas untili b
the average net revenue per unit effort is equalized between(@ikiasvanderLee,and Walters 2012)
Recently there has been increasing interest in applying models based on the theory of the IFD to fishery
situations, although rarely in a computational bioeconomic frame{@iHis 2003; Gllis, Peterman, and

Tyler 1993; Powers and Abeare 2009; van der Lee et al. 2014; Gilliglevhre, and Walters 2012;
Abernethy et al. 2007)

In the classical formulation of the theory, and in the cases in the literature where it has been applied to
fisheries, the strategic interaction that gives rise to the IFD is a result of interfeoemuetition between

agents. Competition between fishermen can take two foimterference competition and exploitation
competition(Boyce 1992; Gillis and Peterman 1998jterference competition occurs as a result of the
reduction in fishing success due to physical interactions between fishing vessels and/or their gear, as well

as impacts on fish stock behayidrowever the uderlying processes giving rise to it are poorly understood
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(Rijnsdorp et al. 2011; van Putten et al. 20R)r exampleDaltonand Ralston (2004)nd evidence of

vessel crowding externalities in an econometric analysis of a subset of the California groundfish trawl fleet
but do not describe how it occurs. Interference competition can occur in all fisheries, but is thought to be
prevalent in fisheries where the resource is renewing (generally through fish movement) throughout a
fishing period, or in geographically small fishery areas. This type of competition occurs, for example, in
the Prince William Sound salmon purse seinbdifes in Alaska. In these fisheries, fishermen have a
tendency to set their nets near geographic features, such as a point, that may concentrate the flow of salmon

interacting with the gear. In some cases fishermen wait several hours for aturn@t fithihe o6 poi nt 6.

Exploitation competition, on the other hand, occurs when the fishery resource is locally depleted by the
impact of fishing gears, which affects the catch rate for other vessels in the fishery. Exploitation
competition, apart from being adal process in all fisheries where catch is taken, is thought to be
especially prevalent in fisheries where the resource iserwing during a fishing period; for example in
sedentary abalone and geoduck fishefi@dlis and Peterman 1998Both exploitation and interference
competition are likely to exist in most fisheries, but the difficulty in distinguishing between the two types
of competition will remain @ontinuing problem until increased levels of information regarding the spatial
distribution, abundance, and behavior of both fish stocks and fishing vessels are gd@latezhd
Peterman 1998; Gillis 2003yor example, if a fishery resource is rremewing during a single time period,

catch rates may increase in an area after a decrease in the number of vessels fishing due to reduced
interference competition. However, if the resource is renewing during a time period, catch rates could
increase with aetrease in the number of vessels fishing even in the absence of interference competition.
In general, if catch rates are observed to decline with an increase in fishing effort in an area it is an extremely
difficult task to ascertain whether the reductinrtatch rates is a function of gear and vessel interactions,

or the localized depletion of the resource. In many cases both processes may béGitlisahd Petenan

1998)

The application of the IFD to fisheries has been criticized as too simgHtiand and Sutinen 1999y
inadequatelyustified (Abernethy et al. 2007; Allennd McGlade 1986)In addition its inclusion in an
operational simulation model is complicated by the fact that the theory of the IFD does not make any
assumptions regardifgpwthe distribution is attaine@Vilson 1982) However, empirical evidence of its
appearance has been presented in casag Wieassumptions that underpin the theory have been relaxed
(Gillis, vanderLee, and Walters 2012The IFD has been shown to constitute a Naghlibrium (Nash

1951) a situation where al/l O0pl ayersd in a game of
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fishermen) cannot be made better offdeyiating from the IF§Quijano and Passino 200T)is therefore

intuitively appealing to economists. &udition, in situations when the various assumptions hold, the end
predictions of the | FD and Gothatdwernge setreverua(oripiofit) t he o
per unit effort are equalized among areas in which fishing occurs. What is diffehenv this distribution

is achievedt he | FD relies on interference competition b

exploitation competition.

The purposes of this paper are as follows. First, we discuss the theoretical basis and rquiagtithé
applications of several of the most common methods for distributing effort in spatially explicit bioeconomic
simulation models. Second, we int-Noghi)enpdr)farame t h
resolving the spatial distributiaf fishing effort in a bioeconomic simulation model. The method is based

on the welknown Baranov catch equati(Baranov 1918)the assumption that competition exists between
vessels, anthat a Nash Equilibrium (NE) spatial distribution of fishing effort can arise. An algorithm for
solving the model and tests for NE existence under effort and catch constraints are provided. Third, given
the often ad hoc decision of choice of sabdel withwhich to distribute fishing effort, and the fact that it

is not clear how the predictions made by each type of model differ, we simulate the short term effort
distributions that result from their use in a simple stylized model of a fishery and compardahbe
predictions of the BN model. We simulate a simple model of a fishery to examine the predictions of each
model under different economic and biological conditions, and determine the conditions under which

systematic differences exist.

3.1.1CURREN METHODS FOR DISTBUTING FISHING EFFOR IN
BIOECONOMIC SIMULATON MODELS

Apart from distributing effort evenly across space, several methods that have been applied in bioeconomic
simulation models exist. All of the methods for distributing fishing efforsimulation models that are
discussed calculate thiéstributionof fishing effort in a model. Thievelof fishing effort is not endogenous

to any of the frameworks explored. A separate calculation or assumption on fishing effort level must be
made, ofen on the basis of an exogenous input from the usel(\(Brgh et al. 2007; Hilborn and Walters

1987)
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3.1.1.1Gravity Model

The gravity model, while employed previously in recreational site choice modelklse€2005)for a
discussion), was originally employed in the fisheries literatureChgldy (1975) The gravity model

provides a mechanism for distributing fishing effort between areas in a fishery in proportion to the relative

6attractivenessd forinofehe mddel s:r e a . The gener al
‘ @ or
IR 1§

Wherep; is the proportion of effort in fishing grouridof j grounds), andy is the attractiveness of that
ground. Attractiveess is generally linked to expected net revenue or expected catch of fishing in that
ground. For exampl&Valters and Bonfil (1999ncluded a gravity model in a spatial fisheries assessment
model for the British Glumbia trawl fleet in order to test possible spatial management measures. They
modeled a single fleet and defined the proportion of effort in each ground to be equal to relative average
gross income per unit effort on each ground, weighted by the colishiofy in each groundseijo and

Caddy (2008ut i | i zed the proportion of the previous per
bioeconomic metapopulation simulation mod#&klters, Hilborn, and Parrish (200d3e a gravity model

to distribute fishing effort in a bioeconomic simulation model designed to assess the effectivehess of
design ofmarine protected arsavhere attractiveness measured by the logarithm of stock size in each
area, and prices and costs of fishing are not included. ECOSPACE, a spatially explicit simulation model
for policy evaluation(Walters, Pauly, and Christensen (199%@so utilize the basic gravity model to
spatially distribute fishing effort, where fishing effort is distributed in propo to relative net revenue

rates among areas.

Some authors have observed that fishing effort appears to be more concentrated than what the basic gravity
model predictgPelletier and Mahévas 20054dh addition,the basic model does not take into account

factors such as information flow between fishermen, so the basic model has been augmented in various
ways. For exampleCaddy (1975ye-weighted the measure of attractiveness by incorporating information

on histaical habitsWalters et al. (1993)mended the basic gravity model to include a parameter describing
relative distance from port, and included a 6éconc
already attractive areas. For high values of the concentration parameter, the model approximates the
sequential model (see next section). The gyamitdel has been amended in other wAllen and McGlade

(1986) modified the attractiveness parameter to incorporate information excliatgyeen fishers. The
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authors respecified the attractiveness parameter as the exponent of the product of expected net rate of
return and an information quality parameter. Exponentiating this product also results in a high concentration

of effort into moe attractive areas.

The gravity model, and variations of it, are attractive because of its simplicity and have been widely used,
even though it has been criticized as not founded on any theory of fisherman b@tantd005) and its
progenitor in the fisheri es tHisiappmackato thersaehllosatioadfe s i n
effort is artificial although perhaps more reasonable than assuming thatt effat abundance are

i ndependent (Caddydlo7, tpg.13b4ihe Btaetabure suggests that the gravity model has not
been tested using fisheries data.

3.1.1.2Random Utility and Discrete Choice Models

Random utility models (RUMSs) based on McFadd (MeFadden 1973}liscrete choice framework have

been relatively successful at identifying the factors that influence fisheém® deci si on on wher
to fish, and at provi di ng (venderiLemattale(3014yHie metimatidn f act o
for this class of models is the idea that fishermen will choose to fish in a particular discrete area if his or

her expected utility from fishing in that area exceeds that of the other areas. Utility for each indiyvidual,

of fishing in areq, is composed of an observable compon¥)t §enerally linked to the expected monetary

benefit of fishing as well as othfactors, and an unobservable component ¢

Yo e - (o] :=rc

The observable component of utility is generally specified as a linear combination of explanatory variables
and a vector of paranmes { ) that may be specific to an individu@ ¢r a choicejj. In the multinomial

logit model only individual specific characteristics are modeled, while choice specific attributes are
included in the conditional logit model. The nested logit maslalseful in cases where the random
component of utility is potentially correlated within particular groups of alternafiveland and Sutinen

1999; Wilen et al. 2002afnother variation of the logit model is the mixed logit model, which allows for
both individual and choiespecific variables (sean der Lee et al. (201#)r an example of its application

to a fishery sitation). These models have been extensively discussed in the literature. For a good overview

of discrete choice models based on the RUM frameworK isee (2009)
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While the assumptions regarding model structure vary between the different manifestations of the
multinomial logit model, when included in a bioeconomic simulation model the choice probabilities that
are the output of the regression analysis need to bdateehsnto a distribution of fishing effort among

areas. This is generally conducted by multiplying the choice probabilities of fishing in a particular area
(which sum to unity over all areas), by a total level of effort to be distributed in a time paricakample,

Holland (2000kstimates a nested logit model where fishermen first choose a fishery and zone combination
(nest), and then choose an area within that nest, as part of a bioeconomic simulation model to explore
possible economic and ecological effects of imposing permarsaitie sanctuaries on Georges Bank, New
England. The calculated probabilities of vessels participating in each fishery/area were then multiplied by
an observed total effort level to derive a spatial distribution of fishing effort in the nfottdrsen et al.
(2010)estimate the parameters of a conditional logit model and incorporate these parameters into a gravity
model type ofeffort distribution model where effort is distributed in proportion to the relative probabilities

of fishing in each area. The utility of fishing in each area (represented using a combination of value per unit
effort and past effort levels) was used aseasur e of O6attractivenesso6 i nst
Hutton et al. (2004apply a conditional logit model to estimate how factors such as value per unit effort,
trip length, and catch affect the probability of vessels fishing in a particular area. These restltgenvere
combined into a simulation model of fleet behavior where displaced effort (from area closures) was
redistributed according to the relative benefits of fishing in each areauch the same way as in the

gravity model.

Using discrete choice statista | model s to identify and measure the
location choice and then to include these predictions in bioeconomic simulation models allows the spatial
distribution of effort to be empirically grounded, rather than tdo&sed only orad hocdescriptions of

fishing behavior(Hutton et al. 2004) However, there are situations where this class of methods is
undesirable and other methods may be preferred. Including an econometric model into a simulation model
can sometimes be subject to misaohas in modeling scale and data limitati¢dgich et al. 2007) The
definition of areas using biological considerations (sashbenthic substrate type or current system
characteristics) may not naturally synchronize with area definition from an econometric standpoint, which
should represent, as closely as possible, actual choices that a fisherma(Huolded and Sutinen 1999)

For example, Hutton et al. (2004) found that after estimating theirspetified RUM only some of the

results could be incorporated into the overall simulation model due to mismatches between the estimating

andsimulation model scalesllrich et al. (2007¥ind similar restrictions when designing a generic spatial
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bioeconomic simulatiomodel for evaluating management measures. Short term effort is distributed by
multiplying calculated choice probabilities by an overall effort level. However, the set of explanatory
variables that could be included in the model inputs was restricted lfgcththat biological information

was available at a much coarser scale than information on fleet behavior. These scale considerations forced

the authors to use a reduced set of explanatory variables to generate bioeconomic model predictions.

Parametersstimated using data for a particular fishery over a specific time period reflect the behavior of
fishermen over that particular time period and fishery, and are based on the economic, social, and biological
structure ofthe fishery at the time. d®nomistsbelieve that an advantage of using econometric models
based on behavioral miceronomic models is that the response of individuals to policies can be predicted
even if the policies were not in place during the period mod#léign et al. 2002b; Hutton et al. 2004)

While the performance of these models in such a situation is likely to be better than using average behavior
in an unrelated fishery situation, and the direction (sign) of the results may be found to be consistent with
economic theory, the magnitude of the parameter estimates may not be easily generalizable to other
fisheries or even for the same fishery in theife. Given that utilizing any model for policy reform is often
contentious in fisheries, structural changes such as management system changes, stock characteristics, or

fl eet characteristics wil!/ determine the model 6s

3.1.1.3Sewential Model

The sequential model of spatial effort allocat{bflilborn and Walters 1987jakes a different approach to

the gravity and RUM models in that effort is allocated spatially in a series -tiihsedsteps. For example,

if a gravity model were to allocate effort on an annual basis, the sequential model would split this annual
time step into numerous smaller time steps in which an effort distribution calculation is conducted. The
basic structure of the models t hat at the beginning of each ti me
step) is allocated to the area where the net revenue rate is highest. Between time steps, abundance, and
hence net revenue rates, are updated, and effort is distribittethes updated arespecific net revenue

rates for the next period. In one application of the use of the sequential Madaka, Tanaka, and
Hasegawa (199Inodified the modl to accommodate multiple heterogeneous fleets in order to simulate

how fishermen made effort distribution decisions in a bioeconomic model of a flatfish fishery. They found
that their estimates of effort distribution in the fishery were significanthetaied with actual observations.
Although further examples of its use in fisheries bioeconomic models arStaungen et al. (2008)tilize

a sequentiatype model in a simulation model of Belgilaet dynamics. Abstracting away from stock
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dynamics, they allocate effort for portions of the fleet within a time period to the area with the highest catch

per unit effort for that fleet.

While the sequential model has not been extensively appliednnuéation setting, perhaps as a result of
a perceived added complexity compared to the gravity model, it has an intuitive appeal in that it is based
on the idea that, unlike the gravity model, individual fishing vessels maximize expected profits when

distributing fishing effort.

3.1.1.4Game Theoretic Models and the Ideal Free Distribution

Game theory is a mathematical tool for analyzing strategic interaction, which occurs when all agents in a
model are affected by the actions of all other agg&hmaila 1999)Earlier fishery studies focused mainly

on deriving analytical results inlegively simple cooperative and naooperative game@viunro 1979;

Levhari and Mirman 1980; Dockner, Feichtinger, and Mehlmann 198B6) example,Dockner,
Feichtinger, and Mehlmann (1988)present the fishery resource as a single hontagehiomass and
examine the market externality created when the price of fish depends on the quantity of fish supplied and
the fishermen act as an oligopoGlark (1980)considers a limited access fishery as an n persorzeron

sum game to examine the dynamic stock externality created when a single pomilésb is exploited

by a finite number of fishers. In his seminal papéunro (1979)examined the optimal management of a
transboundary resource jointly owned by two states, and how differences in discount rates, consumer
preferences, and fishing effort costs can affeetstrategic responses of the resource owBésshi and

Kopel (2002)model a commercial fishery as a duopoly to study the effects on a population of fish over
time of economic variables. They fingbtt higher fishing costs increase the likelihood of a large stock size.

In all of these cases simplifying assumptions regarding the structure of space, dynamics of effort, and the
representation of the biological resource were necessary in order to aahédytecal results, which are
generally difficult to derive for game theoretic modglsvhari and Mirman 1980More recentlyWhite

and Costello (2011incorporate a game theoretomponent into a bioeconomic modelthg size of
Territorial Use Right for Fishing (TURF) in relation to the scale of stock dispersal. The strategic aspect of
the problem related to choosing a harveawdst@evel 1t 1|
thus impact on dispersal) of the other agents in the fishery. The authors compared-tuepsyative

solution to the sole owner scenario and found that, strategic responses by fishermen, represented by the
simultaneous maximization of each § her man 6 s p-coodenative solution redutes fishevyn

yield. Holland and Herrera (2012jistribute effort in a bioeconomic simulation model of a theoretical
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spatial fishery by equalizing marginal net revemates subject to catch constraints. The authors use a

modified Baranov equation in their model which incorporates exploitation competition.

Although game theoretic models are particularly intuitive for incorporation into bioeconomic frameworks
(van Putten et al. 201 2elatively little progress has been made in this area in incorporating game theoretic
componets into bioeconomic simulation models. One exampMeasino, Maynou, and Garci@livares

(2007) who construct a model of the red shrimp fishery in Spdie. authors model a single fleet that is
heterogeneous in catchabilities and model the amounts of effort each vessel exerts in a fishing season in a
norcooperative Nash equilibrium versus a cooperative@ateer solution. They found that vessels with

higher catchability coefficients exerted more effort than other vessels in thevawode solution, while in

the Nash equilibrium everyoneobds effort was equal

IFD models predict the distribution of agents in an environment, but do not describe how thass patt
arise(Cosner 2005)Its inclusion as a component of a dynamic bioeconomic model is therefore difficult.
Perhaps the closest application of the IFD in a computational bioeconomic model is nfamieeby and

Abeare (2009)These authors develop a class of simulation models based on IFD assumptions where the
suitability of an area decreases as the number of vessels fishing in that area increases. An equilibrium
distribution of effort was then resolved, assuming that catch rates declined with an increase in fishing effort,
and the results applied in a model of spatial area closures in the Gulf of Mexico and Atlantic Ocean. While
the model was built under the assuiop of interference competition between vessels, if the form of

competition was assumed to be exploitation the same results would have been generated.

Operationalizing the principles of game theory and the concept of the Nash equilibrium in spatial fisher
models is intuitively appealingna x i mi zi ng each vessel or fleetds pr
may be more realistic than either maximizing fisheigle profit or distributing effort in other ways, such

as with the gravity model. One oftiundamental equations of fisheries science provides a mechanism for

doing so. The Baranov catch equat{Baranov 1918js perhaps the most used equation that relates catch

to effort in fisheries modelingQuinn 2003) and is a useful construct forcorporating a game theoretic
component into fisheries models. The equation gives catch as a function of a population size at the
beginning of the time period and instantaneous rates of fishing (F) and natural mortality (M) which are
assumed constant ovime (Xiao 2005) While the assumptions of constant F and M are violated in many

real world situations, the Baranov equation has been shown to be a relatively good approximation even

when these assumptions are violateds, Heino, and Hilborn 2013)mportantly, another assumption of
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this equation is that the catch rate is a function of all effort in a fishevien effort ircreasesceteris

paribus catch rate decreases. The mechanism for this is stock exploitatienmore effort applied to a

fishery in time, the higher the catch, resulting in fewer fish in future time periods to exploit. This mechanism

can also be interpted as the strategic interaction that is a component of all game theoretic winelels

the optimal level and distribution of effdar an individual vessalepends on the actions of all other vessels

in the fishery. I n t Baranovlas hd emodo®ih fwer psepateinal low

effort in integrated bioeconomic simulation models.

3.2Baranov-Nash Model

The model is structured spatially with= 1 , afeasithat are treated independently within a time period.
Time periods areidcrete and no movement of fish occurs in or out of areas within a time period. This is
similar to the metgopulation approach to describing the spatial structure of fish populé&ips and

llkka 1997) with interrelationships (migration, diffusion) between local populations resolved between,
and not during, time periods. There can be any nurmbespecies ;) in each area. Predatprey
relationships and other interactions do not occur within a time period. There=afe, feets, where a

fleet is made up of one or more vessels with identical fishing technology and variable costs.

Straegic interaction in this model is derived from the Baranov catch equ@&amanov 1918)Given a

positive catchability coefficientq(), rate of natural mortalityM;), and biomassN,), the first partial

derivative of the catch function with respect to own effort is positive, while the first partial derivative of
catch with respect to other fleetsd eff @Hicks, i s n e
Horrace, and Schnier 2012he catchability coefficienty() represents the relatioripthetween the fleet

specific fishing mortality rate and the effort exerted by that fleet. The catchability coefficient can account

for differences in the type of gear employed by a
natural morthty rate (M;) and biomassN;) are areapecific and fixed within each time period. The

Baranov equation can be applied to spatially structured populations if we assume that the distribution within

each area is homogenoi@addy 1975)

Catch Cik) of speciesk for fleeti in areg in a given time periogs:

0 m . — U Qwno t°Q O d
5 B 1 00 P n n 1o
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The net revenue functioZ{) is the product of pricepf) and catch for each speciesslése costs of fishing.
Here, the variable costs of fishing) are fleet and area specific, and are incurred linearly with effprt (
Fl eet specific differences in costs may represent

size engine efficiency, crew size, and other costs.

The net revenue functiof () for fleeti in areg is:

6 Qto O 8

We assume that each fleet is a profit maximizer and takes the actions of all fleets intb\aheounaking

its decision on the level and distribution of fishing effort to exert. In addition, each fleet possesses perfect
information of the distribution of the resource, as well as the costs and catchability coefficients of the other
fleets. At the bginning of a time period each fleet makes a decision on the level and distribution of fishing
effort to exert. This is a one shot, simultaneous move game implying that the distribution, size, and
characteristics of fish stocks are knoex ante While we employ the assumption that harvesters have
perfect information on the distribution of the resource as well as the technological capabilities of the other
harvesters, our formulation allows vessels to be differentiated, and heterogeneous variabldislistg of

to be explicitly incorporated into the model.

In the absence of constraints on effort or catch,

adow “ hQ O id
Wherefii s t he focal flieepdiesehfteortal VvVeothrerahdeet 6s e
The first order conditions are:
— BEEE — mw®Q O io®

A Nash equilibrium in this model is collection lad*1 vectors {*) of feasible effort levels such that if any

fleet were to demate from this solution, that fleet would not be made better off by such a change:
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WhereR is the set of@al numbers.

In the unconstrained case, the first own partial
to effort (evaluated &t) are identically zero in those areas where a positive level of effort is exerted. In
areas where a fleekerts no effort, these derivatives are-paositive. In a strictly concave;player game

such as this, a unique Nash equilibrium has been shown tqRag#n 1965)Given that each area in our

model is independent it follows naturally that a unique unconstrained Nash equilibratsneeach area.

The Nash equilibrium point in our model represents a spatial distribution of fishing effort that is determined

in advance of any fishing activities, and from which no fleet has @nori incentive to deviate.

In practice, effort is amherently bounded variable. Measured in fishing days, the maximum effort that a
vessel can exert in a year is 365, and negative effort values are not feasible. A constraint on effort will be
necessary in most cases in order to bound the model withilisticealue space. In addition many fisheries

are managed using constraints on the amount offiallable for harvesiThese constraints can either be

in the form of Total Allowable Catches (TACSs) that operate on the fleet as a whole, or as indiziclial ¢
limits as are the case in Individual Fishing Quota (IFQ) fisheries. We will focus on individual limits on
effort and catch.

In the case of a fleapecific constraint on the maximum amount of effort to be exeBgdwe can

represent the objectiwa fleet i as the Lagrangian:

With first order conditions:

L _B M 0O = O 180
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At an effort constr ai ne dartakgderivativiedofthein mat revenaedunctidnd e et 6
with respect to effort are equalized across areas in which they exert some effort. For areas in which no
effort is exerted by a fleet, the first own partial derivatives are no greater in value tharefiresenting

areas where effort is exerted. Intuitively, the a

the constraint is binding, and the marginal benefit of exerting effort is equal among areas.

In the case where fleedind speciespeciic catch constraints exist (denoteg), the Lagrangian function
for each fleet is:

fl "Cof “ChQ : 0 O EE 0 "0 Opd 1
With first order conditions:
,;l m!lQ
: 6 O EE o) O Tt oD p
% 6 O mn!
‘ nm!lQ

A catch constrained Nash equilibrium is a collection of | J*1 vecfefsdf feasible effort levels such that

if any fleet were to deviate from this solution, that fleet would not be made better off by such a change:
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Where D is the catch constraint set and R is the set of real numbers.

Apart from the trivial case where two species are binding at the same time, in general only onexof the p

wi || be greater than zero, reflecting one bindin
constrained Nash equilibrium the Lagrangian miiéip on the binding species are equalized across those

areas where effort is exertddtuitively, this reflects the idea that the marginal net benefit of relaxing the
constraint on catch is equal across areas, and that a fleet cannot improve thiein $ifuetallocating

effort.

3.2.1.SOLUTION METHOD

Solving for equilibrium points in this model is carried out by iterating the effort distributions of each fleet

until there is no change in the total distribution of effort. The process is detailed below
Iterative Process for resolving an equilibrium spatial distribution of effort (I fleets, J areas):
Step 1 Assign a vector of initial effort levels to each of tHieets.

Step 2 Starting with fleet 1 maximize net revenue given initial effort digtrdn of all other fleets, and
subject to any constraints on effort or catch. The result is an optimal level of effort for fleet 1 given the

initial effort levels of all other fleets. Update the effort vector with these optimal values.

Step 3 Repeat fothe othel-1f | eet s, updating each fleetbs effort
Step 4 Repeat steps-2 until thestopping rulg(see below) is met.

Step 5 Check the resulting distribution of effort usieguilibrium test{see below).

Stopping Rule:

Although the stopping te can be absolute or relative, and apply to changes in any of thedeffemdent

functions in the model (such as catch or net revenue), we suggest using a relative change in effort rule that
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determines whet her a di s tarequbibriani destributiors Far fleBtarege e nou g
and iteratiors, the stopping rule is:
Qe v G i o OaYO 0 0D o
hh
In other words, if the maximum of the absolute relative differences in effort levels between two iterations
satisfiesa userdefined relative tolerancet¢l) level, then a candidate equilibrium point has been reached.

In generalgiven computational timehere is a tradeoff between the sizertof, and the precision with

which an equilibrium is described

3.2.2.EQUILIBRIUM TESTS:

After a candidate equilibrium point has been reached, a test can be carried out to determine if that point is
a Nash equilibrium. These tests depend on whether the problem is unconstrained, effort constrained, or

catch constrained.

3.2.21 Unconstrained equilibrium test

An unconstrained equilibrium is characterized by a distribution of effort that no fleet has an incentive to
deviate from. Intuitively, if there is a positive marginal net benefit to exerting an additional unit of effort in

any area, the system is not in equilibrium. For fieahd area, the following conditions should be met:
— T} GqQ n OBoD T

And

re o, o~
T n! dQ n O v

3.2.2.2Effort constrained equilibrium test:

Inaneffotc onstrained equilibrium, each fleetods -effort
all ocating effort bet ween areas, subject to the
characterized by the first derivatives of the net revenue function being equalized among areas for each fleet.

This rule only applies for a fleet in those areas where a positive level of effort is applied. In the areas where



54

a fleet does not exert effothe first own derivatives of the net revenue function are less than the values in
the areas where effort is exerted. An effort constrained equilibrium satisfies the following conditions:
T 113 T 113
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3.2.2.3Catch constrained equilibrium test:

In a catch constrained equilibrium where one or more species are constraining on the final effort distribution

of all fleets, the speciesspeci fi ¢ Lagrangian mul ti pl i eavenuerofef | ect
relaxing the constraint by a marginal unit. If a constraint is binding, the multipliers associated with this
constraint will be equalized across areas in which a fleet exerts effort. If the constraint is not binding, or if

no effort is exerted bw fleet in a particular area, the associated multipliers may not be equalized across
areas, and will be lesser in value than those representing binding combinations. Intuitively, this reflects the
fact that at a Nash equilibrium no fleet can adjust &féart distribution and levels for gain, while satisfying

their constraints. For fleetsareag, and speciek, the Lagrangian multiplier is calculated as the ratio of

marginal net revenue to marginal catch:

‘
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For each constraining speciesa catch constrained equilibrium satisfies the following conditions:
"¢ D AN WD O ‘ ol Qi 0@D QR0 T O w

The equilibrium distribution of effort that characterizes the solution to the model is such that there are no
potential gains to any fleet from deviating from their equilibrium strategy. For a unique equilibrium we
require that each fleet is, at least slightly, differentiated in terms of catchability and/or variable costs of
fishing. If two fleets were exactly themame, their effort distributions and levels woaldo be the same,

and a unique equilibrium would be impossible to ascerRmsen (19653howed that if the joint strategy
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space in a concave;ml ayer game is convex and compact, and
continuous, andoncave throughout the strategy space, an equilibrium exists. In a theoretical development

of a class of models where location decisions are based on individual and choice specific characteristics,
Bayer and Timmins (200%how that a unique equilibrium can only be guaranteed in the presence of a
congestion effect, which is analogous to our case of effort being a strategic substitute. The most relevant
proof of equilibrium uniqueness isgeented irLaye and Laye (2008 he authors show that in a muilti

market Cournot competition game with linear demand in each market, and capacity constraints that operate
over seeral markets, a unigue equilibrium exists. This situation is analogous to our model setup, with
O6marketsd relating to fishery areas, and O6capacit
of fishing effort exerted across areas. While @opiof equilibrium uniqueness is beyond the scope of this

paper, extensive sensitivity analyses have, so far, failed to uncover a single case of multiple equilibria in

the model.

3.3Model Comparisons

In this section we conduct a numerical comparison wérs¢ methods for spatially distributing effort in
bioeconomic simulation models. We compare the Bard®sh model, the sequential mo@dilborn and

Walters 1987)the gravity mode(Caddy 1975)and a model of a #owner fishery where total fishery

profits are maximized. We do not include a RUM in the comparison, due to the operational similarities
between the gravity model and the RUM when applied in bioeconomic simulations, and the difficulty in
conducting an epirical comparison of all methods. We also do not include an IFD model as a
computational framework that describes how the IFD is formed is lacking. Instead, we will examine the
conditions under which the manifestation of an IFD (equalized average netiesveetween areas) may

be predicted by the models in the comparison. The setting is a hypotheticalspegikes fishery with 2

fishing fleets and 3 fishing areamne close to port, one far from port, and one area in between. In order to
focus on the gbrt term distribution of effort we simplify the biological component of the model and do not
represent recruitment or growth. Each area has an equal biomass of fish to start the season, and the rate of
natural mortality is not aregpecific. We assume thidiere is no movement of fish and all fleets have perfect
information regarding the technology of the other fleets as well as the variable costs of Fideigare
composed of a group of 10 homogenous ve$3stsng effort is distributed on a weeklgdis in a 52 week

season and fishing effort is measured in the number of days each fleet fishes. We bound effort for each fleet
to be noAnegative and capped at the number of days in the week multiplied by the number of vessels in the

fleet. We first invegate differences in the spatial distributions of effort predicted by each of the three



56

models in a base parameterization where the fleets are identical. We then determine how model predictions
are affected by different assumptions regarding model pagasnand variables. We then examine how
model predictions are affected when fleets are heterogeneous in fishing power, and in cost structure. All

simulations are conducted in(R Core Team 2015)

3.3.1STOCK

The stock is assumed to be subjected to two procassesal mortality and fishipmortality. No growth,
recruitment, or movement between areas occurs within the season. Stock size at the ertdroateag

is:
O0p Ofp AGDPO; QG Oog 1

WhereN; 1 is the stock size at the end of titaén aregj, M;; is the instantaneous (weekly) rate of natural

mortality in timet and areg andF;; is the instantaneous rate of fishing mortality in tinraed areq.

The instantaneous rate of fishing matyalF;:, is the product of a catchability coefficieqgt,and effortfi:,

summed over the fleets,

G nQ Oy p

Note that catchability is fleet specific but constant over time and space, while the effort exerted by each
fleet i, can vary over time angace. CatchC, for each fleet depends on the stock size in each time period,
the amount of effort each fleet exerts in each area, and the amount of effort the other fleet exerts:

ntQ
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Defining Z as the instantaneous rate of total mortality for the portion of the stock ipairemet as:

W 0 n 9Q Oog o

And the survival rate§;, as:



57

Y A@DNOQo O MR T

The first derivative oCj; with respecttofleab s ewhioah ,depends on ot her fl ee

can be shown to equal:

0 53, v 2 25v ooy ok
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Net revenueNR) in each time period is price, multiplied by catch minus costs, with costs entering as a
constant cost per day fishing; v

oY QD QD O1Bog @
The first partial derivative diRywi t h respect to fleet i06s effort is
roy 16 ‘ on
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3.3.2MODELS AS IMPLEMENTE IN THE SIMWATION

TheBaranov-Nash modelis implemented using the following algorithm:
1. Assign a vector of initial effort levels to each fleet corresponding to each area

2. Maximize NRfor fleet 1 subject to the constraint that total effort mustbemeng at i ve and ¢

exceed the maximum effort constraint. Update the effort vector for fleet 1.
3. Repeat step 2 for fleet 2.

4. Repeat steps 2 and 3 until the maximum absolute change in effort for all areas for both fleets is less

than .0001, which is the relative tolerance lave define for the comparisons.

5. Check that the resulting distribution of effort is a constrained Nash equilibrium by checking that
the first derivatives are equalized across all areas where a positive level of effort is exerted, and for

each flee{equaton 3.28)
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For thegravity modelwe define the O6dattractivenessd neefin an ar
that area (at zero effort) at the beginning of the time period. Relative attractiveness is attractiveness divided

by the sum of marginal net revenues for that fleet over all areas. If marginal net revenue for a fleet in an
area is negative that arsanot included in the attractiveness calculation and effort is set to zero. Relative
attractiveness of each area is then multiplied by

effort distribution:

M 0 >——r J ﬁ'@IrT n O pg W

Thesequential modelthat we use in the comparisons assigns alll@viai effort for a fleet during a sub
time period to the area wher e t h7aidhighebtelrbetdérisative i r st
is evaluated before effort is exerted, i.e. at zero effort levels. Effort for the area with the higlygisaim

net revenue is set to the effort limit, while effort in the other areas is set to zero. For the simulations, the
weekly time period is split into 7 day periods which is the level that the sequential model makes effort

calculations. Daily effort piictions are then aggregated into weekly statistics to facilitate the comparisons.

Thesole ownermodema xi mi zes the sum of net revenue for bot

effort in each time period cannot exceed an effort ligit,;TheLagrangian to be maximized is:

i A QR B A Q® _B Q O _B Q@ © O & Tt

WhereCi; is shown in equation 32 Note that the first derivative of;Cwith respect to own effort is

positive. I n terms of ot hThe KKulinTuekertcanditiorsfiré:or t t he ef
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The first derivative of the objective function for the sole ownedehincludes both the positive marginal

i mpact on a fleetds net revenue function of incre
mar gi nal i mpact on that f | ee pthesf | neeett 6rse veef nflioer tf ui nnc tt
necessary first order conditions for thé\Bnodel, in comparison, only include the positive marginal impact

of a fleet increasing its effort in an area. The

model is incorporated in the raive solution technique.

3.3.3BASE PARAMETERS

While many different parameter values were explored we chose a set of base parameters such that even if
all effort was concentrated in one area for the entire season, net revenue rates would still beaptisitiv

end of the season, i.e. stocks would not be depleted to a level where it was not profitable to fish in a given
area. This could be induced in the model by decreasing starting stock size, increasing costs, increasing
catchability, increasing natunanortality, or increasing the weekly effort limit. Base parameters are shown

in table 3.1:

Table 3.1 Base set of parameters used in the simulations

Variables Area 1l | Area 2 | Area 3 | Fleet 1 values| Fleet 2 values|
Starting stock size by area (ton 60,000| 60,000| 60,000
Natural mortality per week .04 .04 .04
Parameters
Catchability by fleet .00025 .00025
Cost per fishing day by area | $100 [ $150 [$200 |[same same
Price of fish per ton $200 $200
Effort limit per week period 70 days 70 days
3.4 Results

The predictions of the gravity model conform to general findings in the literateféort is spread out

among all areas throughout the season. The only difference betweeatdhealseginning of each season
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i s costs of fishing, and the 6attractivenessod of
levels. Therefore the impact of changes in the value of parameters on the gravity model predictions depends
ontat parameterds effect on mar gi ngotthand fide & equationi n e a «
3.32 , on that areads relative attractiveness to t|
homogenous, marginal revenue increases witimerease in each of stock size, catchability, and price and
increases in the relative values of these parameters relative to area costs will cause the gravity model to
predict a more even distribution of fishing effort over areas. This is due to ddésrénattractiveness;

between areas diminishing. An increase in the effort limit does not affect marginal revenue directly, but
rather through a dynamic stock depletion effect. As effort in an area is increased, the stock is depleted more
than it woutl have been with a lower effort limit. This lowers the available stock in the next time period,

and causes the gravity model to concentrate effort more in low cost areas as the season progresses, even

with no differences in the exploitation rate betweeraar

T0Y
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Equation3.2i s al so evaluated in the sequential anodel a
single sukperiod (in our case a fishing day) is allocated to the area with the highest attractigeiéss,
seqguenti al model therefore does not take other f 1l
the sequential decision is maddimes in the space of a week (compared to once for the other models)

means that dynamic stock depletion effects are implicitly taken into aetemttractiveness of each area,

after each dayds mavaluatadon a dgily basighichalludes to a beutk foicesprofit e

maximization procedure.

The sole owner model maximizes total fleet profit in each time period by adjusting the distribution of effort
over all areas without regard to whether or not this distribution is optimaldbiirdividual fleet. Equation
3.33llustrates the necessary first order conditions for maximum fleet profit in each time period. The
positive effect on each fleetds margi nal revenue

f | eet oareverae of exerting effort (2).
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In contrast the BN model follows an algorithm where eadhé et 6 s opt i mal di stribut
explicitly taking t hB® inotadtamt (edubtieB34 6 s Abddteen &dsp bresd
in this case is a fleetbds effort distri thuiohon t ha

of the other fleet. Fleets are therefore treated as individual profit maximizers and not overall profit
maximizers as in the sole owner scenario.
T O Té6 QO6'Y
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3.4.1HOMOGENOUS FLEETS

In the base parameterization where both fleets are identical, the BdtasbBN), sole ower, and

sequential models all make similar predictions to each other, exerting effort first to the areas with the highest
rate of net return (the closest area to port), and switching to the other areas once stock levels became
depleted enough to equalizates of net return between areas (figure 3.1). The sequential model makes
similar predictions to the sole owner andNBmodels but effort is allocated coarselg whole day
increments (a total of 10 fishing days allocated per model day due to a fieet sz vessels). Most effort

is exerted in area 1 at the beginning of the season, and as stocks are depleted, effort spreads out into areas
where fishing costs are higher, but stocks are higher. Table 3.2 shows aggregate effort predictions by area

througlout the season.
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Figure 3.1 Predicted effort distributions under the base parameteriaatiere fleets are identical in
costs and catchability.

Table 3.2 Aggregde predictions of effort under the base parameterization

Gravity Sequential Sole Owner B-N
FLEET: | Low High Low | High | Low High Low High
Areal | 1239.335| 1239.335| 1290| 1290 | 1288.949| 1288.906| 1289.178| 1288.841
Area 2 | 1213.315| 1213.315| 1210| 1210| 1212.373| 1212.416| 1212.385| 1212.397
Area3 | 1187.35 | 1187.35 | 1140| 1140| 1138.679| 1138.679| 1138.437| 1138.762

After the initial distribution of effort into the higher cost areas ek 3 in this parameterization), the

predicted levels of effort in the low cost area increase gradually, while predicted effort in the far areas

decrease. This gradual reallocation of effort to low cost areas is due to the fact that as stock dimghin the

cost area decreases, the impact of-apeific fishing costs has a stronger negative effect on the marginal

net benefit of fishing in that area. This stock depletion effect reduces marginal net benefits of fishing in

high cost (far away) areas afester rate than in the closer areas causing effort to concentrate in the area
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that is closest to port. This cafso be seen from equation 3.23 stock size decreases in an area the
attractiveness of that area decreases. However, for successivelystoalesizes, the (negative) slope of

the first derivative of revenue decreases, and this is manifested in a gradual reallocation of effort towards
low cost areas as the season progresses. To illustrate this effect, in the base case scenario tliftoghare of e
predicted by the gravity model in area 1 is 33.92% and 32.75% in area 3. By the end of the season the shares
have changed to 34.07% and 32.6%, respectively. If the simulation is extended for a total of 10 seasons
these shares change to 54.5% and@Pa,3espectively, and this occurs even though the stock size at the

end of 10 seasons in area 3 is 15.94% bigger than that in area 1, compared to .004% bigger at the end of the

first week of the first season.

When fleets are homogeneous the predictionlseB N, sole owner, and sequential models are essentially
the same and changes in price, i nitial bi omass, c

similar fashion.

For higher levels of initial biomasseteris paribus marginal revene rates increase for all areas while
marginal costs remain the same. The differences in marginal net revenue between areas therefore decrease
and the overall predictions of the gravity model and the other three models become more similar. The effect
of increases in price have the same effect on model predictions as that of an increase in initial biomass, and
the mechanism is the samea higher price implies a higher marginal net revenue due to increases in
marginal revenue while marginal costs remaingdme. This implies that the differences in marginal net
revenue between areas decreases at a faster rate as price increases, and overall model predictions become
more similar. The effects of increases in the catchability coefficient are sind@laincease in catchability
increases the marginal revenue component of attractiveness for all areas, but does not affect the marginal
cost component. Costs therefore become less important when deterralativg attractivenessf each

area, and effort distrilions become more spread @utd greater effort isxerted in the high cost areas.

This implies that, in these modellgets that have a higher catchability coefficient tend to spread their effort

out more than fleets that have lower coefficients. Aseel of catchability increases, marginal catch rates
increaseceteris paribus This implies that stock levels in areas that are fished first are depleted faster,
bringing marginal revenue rates in these areas down to the level of marginal revennéhigtesast areas

at a faster rate. Higher catchability coefficients imply that the differancgslutionsbetween the gravity

model, the Baraneilash, sole owner, and the sequential model will decrease as populations are fished
down to levels that equatmarginal net revenue between areas at a faster rate, decreasing differences

between the gravity model predictions and the predictions of the other models.
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Changes in thkevelof fishing costs, as long as tbi#ferencesn costs between areas do noaebe, do not

make any difference to the predicted distribution of fishing effort in ti Bequential, and sole owner

models, as long as net benefits of fishing are still positive in all areas throughout the season. #gr the B
sequential, and sole ownmodels, when fishing cost differences between areas do not crelatiee

marginal net benefits of fishing also do not change, and there is no change to predicted effort distributions.
However, in the gravity model, as the level of costs increasegleti@minator term in equation 3.32
decreases, causing the relative differences in net revenue rates between areas to increase. This makes the
low cost areas relatively more attractive in this model, and relatively more effort is exerted in these areas.

In other words a higher proportional level of fishing costs for all areas causes the gravity model predictions

to be more concentrated in the low cost areas.

3.4.2HETEROGENEOUS FLEETS

TheBN and sole owner model sd& pr e dditcin datohabsity, anmdén hi g hl
ways that are nemtuitive. While changes in the costs of the other fleets do not appear explicitly in each

fl eetds net revenue function for each (¢efuatbrhese m¢
3.25. TheB-N model takes ot her fleetsd catcharwoil ity c
calculation of the other fleetds best response to
equilibrium. The sole owner model does not account fordbethat each fleet is a profit maximizer and

the optimal effort schedule from a sole ownerodés p
profit can be higher by distributing each fleet in ways that areptilmal from an individual pspective.

The sequenti al model 6s predictions conform cl osel
het erogeneous in catchability. Given that each f|
highest expected net revenues onauld expect a solution similar to the-NB model. However, the

competitive interaction of exploitation competition, which acts as a dispersive force are not taken into
accounta priori in the sequential model and effort predictions align with those ofdlieecsvner model.

The gravity model evaluates the marginal net revenue rates at the beginning of the time period, at zero effort
levels and the characteristics of other fleets are not taken into account when effort is distributed. Figure 3.2
shows model pudictions for a low catchability fleet with the catchability coefficient fixed at the base level
(.00025)and a high catchability fleet with a catchability coefficient of .0003. Table 3.3 shows the sum of

effort for the season by fleet and area. The gramiigel predicts effort that is spread euenly across all

of the areas.
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Table 3.3 Aggregate effort predictions for the scenario in figure 3.2

. 0003,

Gravity Sequential Sole Owner B-N
FLEET: | Low High Low | High | Low High Low High
Areal | 1240.581| 1234.414) 2780| 30 2785.378| 29.69756| 2201.237| 512.0598
Area 2 | 1213.315| 1213.315| 860 | 1500 | 853.7504| 1503.876| 1179.765| 1239.001
Area3 | 1186.105| 1192.272| 0 2110 | 0.871338 | 2106.426| 258.9981| 1888.939

a

Costs of fishing are affected by many things in practice, including fuel and lube prices, number of crew on

board, vessel maintenance, and vessel depreciation. In our simple model we include costs as a constant

amount per fising day relating to each area with the implicit assumption that higher costs for the areas that

are farther away from port arise from increased travel costs, including fuel and lube costs. We investigate

how differences in both the level of costs betwiegts, which could be attributed to differences in a fixed

cost (such as license fees) between vessels, and the difference in costs between areas, which could represent



differences in fuel consumption between fleets, affect our model predictions. Watsrafiehomogeneous,

as long as the differences in costs of fishing between areas remained the same, and if costs remained below
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the level that would drive net revenue rates to zero, a change in the overall level of costs had no impact on
t he

the effort distrbutions predicted by the-R and soleo wn e r

are affected by any kind of change in the costs of fishing. When fleets are heterogeneous in costs this result

m

odel s, whil e

holds as long as the differences in costs between aredlse same for all fleets, i.e. there is no change in

grav

effort distributions with an increase in the level of costs. However, when the costs of fishing in a particular

area changes in a way that preserves the ordering of costs, but causes a charntlifeiretioe between

areaspecific costs, model predictions are affected significantly. However, the sole owner, sequential, and

B-N predictions are similar. Figure 3.3 shows model predictions for a low cost fleet with the base cost
structure, and a high doleet with fishing costs of $200, $400, and $600 per day for areas 1, 2, and 3,

respectively. Table 3.4 shows the sum of effort over the season for each fleet in each area
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Table 3.4 Aggregate effort gedictions for the scenario in figure 3.3

Gravity Sequential Sole Owner B-N
FLEET: | Low High Low | High | Low High Low High
Area 1l | 1225.705| 1346.724) 40 | 2850 | 34.01179| 2855.57 | 51.46322| 2830.797
Area 2 | 1213.192| 1213.163| 1480| 790 | 1481.683| 784.4293| 1464.575| 809.2031
Area3 | 1201.103| 1080.113| 2120| O 2124.305| O 2123.962| 0
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When fleets are heterogeneous in costs tig Bequential, and sequential models predict that both fleets

wi ||

operate i

n

t he

ow

cost

ar ea

at

t he

begi nni

maximizing strategy is to stop fishing in area 1 after the first week. In the case of identical fleets one would

expect this fleet to keep exerting sonfi@r in area 1. However, the relatively high cost of fishing in area

2 means the high cost fleet exerts more effort in area 1. This added exploitation competition results in a

lower rate of marginal net revenue for the low cost fleet in area 1 and datosesert more effort in area

2, and consequently in area 3 at a much earlier time. This illustrates a possible mechanism for the

observation that vessels with high fishing efficiency spread their effort out more than other vessels
(Abrahams and Healey 1990)

3.4.3IFD PREDICTIONS

A corollary to our comparison is to examine the conditions under which the average net revenue rates in all

areas arpredicted to be equal, which represents the outcome that is described by the Ideal Free Distribution

(IFD). When fleets are homogeneous, average net revenue rates are predicted to equalize for the sequential,

BaranovNash, and sole owner models throughiat range of parameters tested. However, the gravity

model does not make the IFD prediction under any set of parameters. Figure 3.4 shows average net revenue

per unit effort for the base model setup. In these simulations effort is exerted in aredhefirstto area

2 as the stock in area 1 is depleted to the point which equalizes marginal net revenue in area 2 with that of

area 1. Eventually effort is exerted in area 3 and net revenue rates are equalized between areas.
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Figure 3.4 Ideal Free Disthution predictions for each model with parameters at base levels.

When fleets are heterogeneous, an IFD distribution is predicted by the Balagmsequential, and sole

owner models only when the heterogeneity is in fishing costs, and when the difference in costs between
areas is the same for all fleets. This is an important result for future empirical analyses of IFD formation in
fisheries. If thalifference in costs is different for each fleet, the IFD prediction is not made. Similarly, when
fleets are heterogeneous in catchability, none of the models we examine make an IFD prediction. Figure

3.5 shows the case for 2 fleets that are heterogemabus catchabilities.



69

Near Area = — Middle Area ©- — FarArea « —

\ \ \ \ \ , \ \ , \ \ \
sequential sole owner

ay ($)
- N W
o © g O
S © © ©
S & oS o
T T T T T T

gravity nash

average net revenue per day ($

[

4 8 12 16 20 24 28 32 36 40 44 48 52 4 8 12 16 20 24 28 32 36 40 44 48 52
week

Figure35 |1 deal Free Distribution predictions with th
increased to .0008Il other parameters at base levels.

3.5Discussion

The results of our simple comparison illustrates the potential modeling implications of utilizing a method

for spatially distributing fishing effort in bioeconomic simulatimodels that is not based on an explicit

theory of how fishermen behave on the spatial dimension. In a simple comparison of the gravity model,
which is not based on any explicit economic theory of behavior, to the Bakastv(BN) model, and

two other metods for distributing fishing effort in simulation models, we show that the predictions of the
gravity model differ in systematic ways to those of the other 3 models in the comparison. As indicated
previously, the gravity model spreads effort out amongsaie ways that do not make intuitive economic
sensgPelletier and Mahévas 200%Yhen fleets are homogeneous, the overall predictions made by the B

N, sole owner, and sequential models were very similar over araigdge of parameter values, with the
caveat that the sequenti al mo d e | makes O6écoarsed e
of the other models. The degree to which these moc
depeneéd on the degree of heterogeneity between areas. In general, the more heterogeneous fishing areas
were either in terms of stock size or distance from port, the more disparate the gravity predictions were
from those of the other three models. In extremesasea characteristics caused effort to distribute to all

areas in the gravity model in relatively equal proportions while effort in the other models was predicted to
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remain in only one area. This illustrates the potential erroneous predictions maeéegbgvity model if

fleets do not distribute their effort in proportion to marginal profit in each aredeVdisof the parameters

in the model affect the similarity of the gravity predictions to the predictions of the other models. Keeping
everything ede constant, the higher the levels of catchability, stock size, and price, the more quickly
differences in the marginal net revenues between areas decreased, and the faster effort spread to all areas
in the model. While the gravity model is attractive lyadue to its simplicity of use, in cases where areas

and vessels are heterogeneous, theoretical justification for its use may be limited.

The predictions of the BarandVash, sole owner, and sequential models were generally consistent with

each other inhat fishing effort was exerted in the highest valued patches first then move to the other
patches. This behavior is consistent with predictions in the literatgr&illis and Peterman (1998and

reinforces the idea that fleet movement acts as an averaging force, reducing economic differences between
areas(Sanchirico and Wilen 2005; Smith, Sanchirico, and Wilen 2008 show that when fleets are
homogenous, predictions made by the three behavioral models are gesierigdr under a wide range of

parameter values. This observation holds even when fishing vessels are heterogeneous in terms of their cost
structure. When the costs of fishing differ between fleets, these differences lead to different predictions of
effort distributions only when the fleets have heterogeneifieyencesn costs between areas. (see Fig.

3.3). When the difference in costs between areas is the same for two fleets, such as is the case with one
vessel having a higher fixed cost (such as gleztsing cost) with variable costs of fishing (such as fuel
costs) the same for the two fleets, al | of the m
identical to the other. When the cost structure is such that the difference in digighgfbetween areas

is different for the fl eets, di fferences between t
occur . When one 6high costdé fleet has a relativel
61 ow eetwefidd thatithe behavioral modelsNBsole owner, and sequential) predict that the low

cost fleet will exert more effort in higher cost areas and the high cost fleet will exert more effort in the low

cost areas. The mechanism is that the high ftest changes its behavior relative to the base case and
maintains a high level of effort in the low cost area. This added exploitation competition causes marginal

net revenues for the low cost fleet to drop much faster, with marginal net revenues ihethareas

becoming more attractive at relatively earlier times. These dynamics are not captured by the gravity model.

When fleets are heterogeneous in terms of their relative fishing power (catchability coefficient in our
models), their predictions divezgand model results differ in ways that are not intuitive. While the gravity

model still predicts a relatively even distribution of fishing effort over all areas and throughout the season,
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the behavioral models make different predictions to each other. f6 hi gh power 6 fl eet
catchability coefficient than a o6l ow powerdé fl eet
fleet will distribute their effort in higher cost areas, where reduced exploitation competition outweighs the
extracosts involved in fishing in those areas. This observation provides a possible mechanism to explain

the observations oAbrahams and Healey (1990)ho observed that vessels with better fishing ability
distributed effort over more areas than their dg@ske counterparts. In the case of heterogeneous
catchabilities the sole owner model 0 pstrilugos of o f f 6t
effort where total profits are maximized, while theNBmodel arrives at a distribution of effort that is a

Nash equilibrium- one that neither fleet has an incentive to deviate from, and which is optimal from each
individual tfiveet dsn @meédsmdc t he simulations the sol
|l east one of the fleetds profits in a time peri od
implications in models where distributional impacts among fisherare calculated. The behavioral
assumptions made in using the sole owner model and -thentddel differ Thes ol e owner mod e
assumptions do not necessarily abide by individual utility or profit maximizing axioms, in that each fleet

does not maximizets own profits, while the BN model does agree with individual profit maximizing

behavior. The sole owner model may be useful as a benchimdekiving the sociallyptimal solution

(assuming no supply effecting consumer surpligf) which to compare ot distributions It may also

provide a way of describing the gains of cooperation between fidetino, Maynou, and Garcialivares

2007) The sequerdl model is also based on an explicit theory of individual fisherman behinabr

explains whyfleets will choose one area in which to fish for a given time period based on the characteristics

of the area at the beginning of that time period and its ealmical parameters. However, the sequential

model has seen very little use in the published literature even though it has clear theoretical advantages
compared to the gravity model. While intuitive, this method can only be resolved at as fine a teraforal s

as is defined in the modelnlike the other models in the comparison, no fractions of weeks can be allocated
between areas. We suggest that one of the main reasons that the sequential model has not been applied more
widely in the literature is becagiof a perceived complexity of implementation compared to the gravity

model. In our experience, however, the sequential model was relatively simple to incorporate into model
code. Compared to the gravity model, we assert that the main drawback of iks us¢he granularity of

its predictions, and in cases where the time it takes to reach a solution are important, provides a good
alternative.
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While the general pattern of the behavioral models predicting that the vessels with better fishing ability will
distribute to more areas in the model agrees with observations in the litéfdtiaeams and Healey 1990)

the opposite predictions is madédtie case of the theory of the Ideal Free Distribution (IFD). In IFD studies,
vessels with a higher competitive ability are shown to generally be more prevalent in the better patches (in
our case the low cost areg§utherland and Parker 1985; Voges, Gordoa, and Field 205)e a
mechanism for this observation has not been established, a conceptual difference is that our models rely on
exploitation competitioni.e.,thedepletion effect on the resource as a measure of competitive ability, while

the IFD relies solely on interference between vessels. A strong competitor in interference competition refers

to the ability of that vessel to interfere with the effectiveness ofher vessel s6 fishing
exploitation effect. The mechanism that would result in these vessels being more prevalent in higher value
patches is unclear. When an IFD occurs in fisheries, it represents a situation where average net revenues
are equalized across the areas in the fish@lis and Peterman (199&howed that when fleets are
homogenous and the main source of fish abundance decline is &imhoithe presence of even a small

amount of interference competition is enough to equalize catch rate among grounds even when area
characteristics are different. We have shown that when fleets are homogenous and areas are heterogeneous,
a distribution ofeffort that is identical to that predicted by the IFD can occur when the sole source of
competition is exploitation competition. Through our simulations, we have also shown that when fleets are
heterogeneous, this distribution can occur, but only in cakege thadifferencesetween areas for each

vessel in the fishery are similar. This has important implications for future research on IFD formation in

fisheries.

In many models the question lméw mucheffort to exert in a fishery is often decoupled frtma question
of whereto exert it. The BaraneMashmethod can be used to calculateslof effort in each area in the
absence of a binding total effort limit. We did not demonstrate this in the simulations as the goal was to

make the models as dirgctomparable as possible. However, this is an avenue for future work.

Whil e models based on a statistical analysis of f
approach to distributing effort in a simulation model that is based on histfisioaty conditions, these
approaches are often time consuming, and theoretically difficult to grasp fecooomists. We argue that

the BN method is intuitively sensible, less tingad datantensive than models based on the random utility
framework,and, of the models in our comparison, is the most attractive from a theoretical economic
standpoint. However, it is the most time intensive to incorporate into model code and computer resource

intensive when solving. It should be noted that while timeotopute solutions was relatively short for all
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solutions (a few milliseconds for the gravity and sequential model, a few seconds for the sole owner and B
N models), when incorporated into models of greater complexity, which bioeconomic simulation models
gererally are, this difference in computation time is inevitably magnified, and can have serious implications
for modeling projects. Computation time therefore becomes drivial consideration when deciding on

a choice of model, especially when resultsvad competing models are similar. We show the conditions
under which the predictions made by the gravity model are likely to be similar to the three behavioral
models in the comparison. When all vessels are treated as homogenous, and the differenkesza sto

costs of fishing between areas is relatively small the gravity model is a simple method of distributing effort
in a simulation model that may result in predictions that are similar to those made by behavioral models.
However, when significant berogeneity in the vessels exists, and areas characteristics are different, the
gravity model may make effort predictions that diverge from predictions based on economic theory. The
main assumptions underlying theNBmodel are that all fishermen have cdetp knowledge regarding the
other fleetsd technological characteristics and
increased technology for imaging and finding fish stocks, as well as the use of satellite navigation and
improvedvessel communications may mean that these assumptions are ncaesigeng. If one of the
goal s of bioeconomic simulation modeling is to
space in order to examine the possible interactions betiigtermen and resource dynamics, a model that

is based on an individual profit maximizing theory arguably takes us further along the road to achieving
that goal.

Simulation exercises such as the one we present are useful for exploring the behavialetmobddre
analytically intractable. Our simulation exercise is simple and abstracts from reality significantly, but its
simplicity is also its strength. We abstracted away from stock dynamics and focused instead on the behavior

of the fishermen explidif andwe generated resultkat are easier to interpret and to identify effects than

if we had incorporated a higher deHibora end Wdltersor e al i

(1987) even very simple simations can help us to better understand the dynamics of fisheries.

3.6 Conclusion

While the implications of including spatial fisherman behavior in fishery models for model predictions has
been noted for many years, most bioeconomic simulation mode&hefiés do not incorporate a method
for spatially distributing fishing effort that is based on an explicit theory describing how fisherman behave

in space. In this paper we introduce a novel method for spatially distributing fishing effort in bioeconomic

t

r

€
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simulation models that is based on a theory of individual maximizing behavior. We show, through the lens
of simulation, the possible implications of distributing effort using a model that is not based on a theory of
individual behavior (the gravity modend compare results to predictions made by our game theoretic
method as well a sole owner model and the sequential model. The gravity model is attractive partly because
of its simplicity, it is easy for neeconomists to grasp, and is relatively easyttednto simulation models.
However, the degree to which predictions made by the gravity model differ to predictions of the behavioral
models depends on the degree of heterogeneity in the fishery. In general, as heterogeneity increases, the
degreetowhich he gravity predictions conform to the oth
the general conditions under which the predictions of the three behavioral models diverge. If vessels are
homogenous, these three models make very similar predidtomgever, if vessels are heterogeneous in
fishing ability, the choice of behavioral model has significant implications for effort predictions. Finally,

we show that under exploitation competition only, a distribution of effort that mimics that of airideal
Distribution is predicted by the behavioral models, and show that this prediction holds even if fleets are
heterogeneous in cost structure, albeit only if cost differences between fishing areas for all vessels do not

exist.
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4. THE BIOECONOMICS OF SOFT SHELL CRAB: EVALUATING THE
IMPACTS OF CHANGING SEASON LENGTHINOREGONG®G S
DUNGENESS CRAB FISHERY.

4.1 INTRODUCTION

Fishery management measures that specify restrictions on the sex or size characteristics of retainable catch
are generally designed to pr ot e owthpatensat, ar bokhdThe r epr o
intuition is that undersize animals that grow at a high rate, or large animals and females that have a high
reproductive value to the overall population, can be released back into the population and provide future
economic berfis (Coggins et al. 2007However, the extent to which this mechanism works depends on,
among many other faars, the ability of the released animal to survive capture, handling, and post
discarding stress. Demersal fish caught in trawl nets, and those species of fish that are prone to barotrauma
are thought to suffer relatively high levels of discard and hagadiortality and mandates to discard these
species are often designed under the assumption that none of these animals will survive discarding
(Broadhurst, Suuronen, and Hulme 2Q08pwever, other species such as crab and lobstehicasimg

traps are thought to be fairly resilient to handling discarding stress, and regulations to discard certain
components of the catch are designed under the assumption that many of these animals will survive and
contribute to the future growth of tipepulation and hence potential ca{Bunnell and Miller 2005)

In some crab fisheries a consideration that is not related to sex or size and that has the potential to determine
both discard levels and the likelihoodttla animal will survive handling is that of body condition due to
stage of growth. While a crabdés soft tissue grows
process by which crab grow in shell sizhedding the old shell and revealing avnéarger, and
(temporarily) 6softd shell underneat h. Soft shell
discard mortality than their hard shell counterpéfisise, Hicks, and Murphy 1994In some cases, such

as the blue crab fishery in Chesapeake bay, soft shell crab command a higher price and managers try to
encourage fishermends access to the resource at t
shelllegal sizecanimals lagely irrelevan{Bunnell, Lipton, and Miller 2010; Huang et al. 201Hpwever,

in other cases, such as the Dungeness crab fishery on the west coast of the U.S., soft shell crab are lower in
meat quality and density and processors generally do nohgme these crab; management actions are
designed to restrict fisher menos (Daliere@g)dncreased t he r
handling mortality of soft shell crab is therefore an important consideration when designing management

regulations in these fisheries, and given that handling mortality rates in any fishery are rarely estimated
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(Benoit et al. 2012)epresents a significant source of uncertainty to fishery managers, and one which has

potentiallyimportant implications for the sustainability and profitability of fishe(®avis 2002)

Management actions designed to address handling mortality concerns in crustacean fisheries are widespread
and tend to focus ogeason length and timing restrictions which ostensibly reduce the probability that a
soft shell animal will interact with the fishing gear in the first place. For example, the spiny lobster fisheries

in New Zealand haveelativelylong restricted seassin order to reduce pot related mortaliBreen and

Kendrick 1997) and the Dungeness crab fisheries on the west coast of the U.S. haradntpld seasonal

closures since the mi20" century to address soft shell mortality concéislier 2002)

In Oregn, there has been renewed interest in examining the potential economic and biological impacts of
further adjusting season length in the Dungeness crab fishery in order to protect soft shell crab which have
little sale valueg(ODCC 2015) While some research has focused directly on the population effects of
handling mortality(Coggins et b 2007) and other research has indirectly examined the economic and
biological impacts of discard mortality by comparing a range of alternative management strategies that have
differential effects on mortalit{Breen and Kendrick 1997; Bunnell, Lipton, and Miller 2010; Huang et al.
2015) we are aware of no research that has attempted to explicitly evttleatconomiand biological

tradeoffs involved in implementing management measures designed to reduce discard mortality in a crab

fishery.

The purpose of this paper is to develop a bioeconomic simulation model of the commercial Oregon
Dungeness Crab (QD) fishery to examine how changes in the season closure date may affect the level and
distribution of profits in the fishery, and to determine how changes in the amount of soft shell crab mortality
affect these profits. To the best of our knowledge, theCOBhery has not been examined from a
bioeconomic perspective. There is a reasonable level of knowledge regarding the biology of the Dungeness
crab, including research on handling mortality rgeeg. Yochum et al (in press)that may be used to
parameterize a representation of the biological dynamics of the stock. However, without a fishery
independent estimate of the stogike or a rigorous examination and representation of the population
dynamics of Dungeness ctafze are unable to make predictions of el of economic impacts that may

result from adjusting the season closure date. We focus our attention, thenefentdying a season
closure date that maximizes economic performance in the fishery in a base representation of the model

which is calibrated using the best available information from the literature, and then compare how this
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closure date is affected lajranges in fishery conditions such as recruitment size, timing of the moult, and

handling mortality rates.

The overall simulation model combines a 3 cohort representation of the ODC stock where recruitment is
determined by exogenous environmental foregth a fleet dynamics model of the ODC fleet, where the
amount of effort exerted in the fishery responds to changes in the abundance and cohort structure of the
crab stock as well as economic conditions in the ODC fishery and other fisheries that Gid@€ish
participate in. A realistic range of variability in recruitment is included in the model and the model is run
over a range of model conditions in order to determine its sensitivity to model parameters. In the next
section we give an overview of the@enomi ¢cs and ecol maycrab fishe@mdingonds |
sectiors 4.2 and 4.3we present the biogical andeconomic suimodek, respectively. Irsecton 44 we

present the combined bioeconomic siation model and in section5we apply the modeb hypothetical

early season closure dates. We examine how changes in season closure dates affect both the level and
distribution of economic impacts in the fishery, and how assumptions regarding the rate of handling

mortality and the timing of the moultprocess affect these impacts.

4110REGONOGS DUNRKRABRIEBHERY C

Dungeness crabCancer magistgr are a commercially important crustacean ranging from southern
California to the Bering Sea, Alaska and are generally targeted by commercial fisheimgnusir ab & p ot
which are baited metal traps. Since the first commercial landings were recorded in San Francisco bay in the
1840s the fishery has evolved to become the most valuable fishery;vessad value terms, in the

California Current systerfRasmuson 2013; Dewees et al. 200@)e first commercial landings in the

Oregon Dungeness Crab (ODC) fishery were recorded in [B&ory 1990)nd over the last several

decades Oregon has contributed approximately 30#edbtal coastvide catch. Between December 2006

and August 2015, annual -eessel landing values of Dungeness crab in Oregon have ranged between

$29.43 million and $50.15 million, making it consistently the most valuable fishery in the state of Oregon.

Hitherto unregulated, between 1948 and 1996 the management of the ODC fishery evolved to include
seasonal closures to protect recently moulted crab, a moratorium on the retention of all female crab and
undersize male crab (<159mm carapace width), and tblesion of an escape hatch on all pots to allow
crab in | ost ( qOdren2802)dhile therd wasihiiter concern eegarding the ability of

the crab stock to replenish during this time, these management measures were intended to safeguard the

reproductive and growth ability of the stock. As the fishery intensified towards the end of ibenary,
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the6r ace for fishd that is characteristic of many o
the fishery, high levels of occupational hazard from fishing in unsafe conditions, and conflict between
different user groups, such as trawlemsl arabberg§Demory 1990) This competitive behavior led to

market glis at the beginning of the season and poor product recovery rates which amplified inefficiencies

in the fishery(Dewees et al. 2004Another symptom of the race for crab was that while catch peaked in

March and April prior to 1960, this peak gradually shifted towards the beginning oédherswith the
result that mo s tis landed durmg thesfiestab sveeksdos thecseas@@dmory 1990;

Dewees et al. 2004; Hackett et al. 2004)

As a response to these efficiency concerns, a limited entry program was established in 1996 which restricted
the total amount of vessdlsat could operate in the fishery in a given sedBadier 2002) In 1998 a limit

on the amount of crab that coulé kanded in a week period between Jun® Hhd August 18 was
implemented partly to protect soft shell crab from excessive handling mo¢Ealityan 2001)Finally, in

2006 a pot it system was implemented which restricted the total amount of pots that vessels could use.
The pot limit system was introduced as a tiered system where vessels were assigned a limit on the total
number of pots they could use at a given time of either20W, or 500 pots. The allocations for the limited

entry and pot limitation programs were based on historical participatidfishing effort.

Since 2006 the management structure in the ODC fishery hasdiat@relystable Thefishery is managed
cooperatively between the states of Washington, Oregon, and California with significant opportunities for

i nput from stakehol ders-S6Tliesifziesheesmrwnlyicabegmatara e ¢y s
than 159mm carapace width are retainable, amje crab are retainable, and the season closes between
August 14 and December®tieach year to protect moulting crab. In the last 8 years, the majority of the

catch has been taken in the fidsiveeks of the season (figure 4.,18resumably when abundanof legal

size males is high, which leads to high catch rates. In general, catch rates in the fishery are highest at the
beginning of the season, and decrease towards thd #mlseasorWhile the traditional opening date of

the ODC fishery is Decemb@®, the opening may be delayed if crab condition assessments made during
pre-sseason tests indicate that the proportion of crab with meat recovery rates of less than 25% is higher than

an acceptable level.

The ODC fishery has been certified as sustambblthe Marine Stewardship Coundilgrine Stewardship
Council 2010) and is commonly held up as an example of how to sustainably manage a crustacean fishery

(Rasmuson 2013)The ODC fishery also allows significant input from stakeholders through the Oregon
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Dungeness Crab Commission (ODCC). The ODCC was formed in 1977 as part of the Oregon Department

of Agricultur e 6s commodi ty commi ssion progr am. This proc
order to increase their commodityés value, recogni
in a commitment to increase the profitability of the indudirgighfi pr o mot i on, educati on,

(ODCC 2016a)The ODCGworksclosely with the Oregon Department of Fisheries and VIBIGODDFW),

the state agency responsible for ODC fishery management. The apparent sustainability of the ODC stock
under t hesbc urarnamgte meht wpaessedilgmevieingkesex and fi she
fishery management decisions througle tBDCC have resulted in widespread faith in the current
management structure and a reluctance to change among ODC fishermen. However, a very limited amount
of research has been conducted on either the economics of the ODC fishery, or on the population size
structure, and dynamics of the crab stock. There is therefore a high level of interest among ODC fishermen,
and the ODCC, in improving the state of knowledge regarding the fishery. While much of this desire for
information discovery stems from feelingresource stewardship among ODC fishermen, there is also
interest in exploring ways that profitability in the fishery can be increased, particularly in ways that do not
significantly change the existing management strugtDEBCC 2015)

While there are few concerns regarding the sustainability of the ODC fishery, this is not driven by a rigorous
assessment of their stock statmla formal assessment of the Dungeness crab stock in Oregon has not
been undertaken to date. Rathiis optimism derives from the fact that while total fishery landings
fluctuate from year to year, there has been no sustained downward trend in total fishery (@rediregs

et al. 2004)Landings of Dungeness crab in Oregon is often taken as a proxy of stcakdiize a common
assetion that approximately 90% of the legal size male crab oMtlst coast of the U.S. are removed

from the fishery each yeébewees et al. 2004; Rasison 2013)Landings of Dungeness crab in Oregon

and other west coast states fluctuate widely from year to year in a generally cyclical pattern that peaks
approximately every 10 yeafslankin 1985; Demory and others 1990; Didier 2002; Dewees et al..2004)
While many explanations haveén proposed for the cause of these fluctuations in abun@aecklankin

(1985) for a discussion)here is widespread consensus among fishery scighagtthese fluctuations are

due to changes in the abundance of crab that are recruited to the fishery and not changes in the dynamics
of fishing effort(Hankin 1985; Heppell, Thompson and Price 2009)

In many fishery models a stockcruitment relationship is specified which relates uigrent of new
individuals in the population to the fishery as a function of the size and characteristics of the existing

population. In the ODC fishery, however, it is thought that environmental influences during the larval stage
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of a c¢r ab 6y haleitle gyreatest influencenmadetermining future crab abundeiegpell,
Thompson and Price 2009; Rasmuson 203Pregon, Dungeness crab mate in the spring at the moment
that mature female crab undergo moultf@PFW 2016) Most male Dungeness crab then moult after the
female moulting period in the late spring to summer although some moulting occurs throughout the year
(Rasmuson 2013After the initial moult the exoskeleton hardens over a period of two to three months,
during which time they are in a soft shell state, and more gtilsiecto injury from handlingWDFW

2016) In Oregon, eggs hatch approximately 6 therafter the female moult in January to March, and crab
spend approximately 4 months as larvae before settling in the nearshore envirgRasanson 2013)

During the larval phases survival rates and dispersion patterns are highly influenced by oceanographic
conditions, including water temperature, current patterns, and availability of nufdems and Shanks

2012) The current thinking is that the timing and pattern of currents in the California current system, which
follow a cycle known as the Pacific Decadal Oscillation (PDO), is the main deterrmofrzaab recruitment
(Rasmuson 2013Yhe theory is that during a negative phase of the ,Rfp&ter nutrient levels and cooler

water temperatugeresult fromstronger cool water currents flowing south as the California current (and
weaker northward flows as the Alaska curreBgth of these factors are thought to incrahsesurvival of
Dungeness crab larvae. Extremely high larval mortalitysradeipled with extremely high numbers of crab
larvae means that even a small improvement in larval stage survival rates can translate into a potentially
huge increase in recruitment to the fish@thankin 1985) While there are likely to be many causes of the
fluctuations in crab abundance between yeginanks and Roegner (20@Howed that larval survival rates
explained approximately 90% of the varialyilin the adult Dungeness crab population between San

Francisco and Washington.

While much is known about the biology and life cycle of the Dungeness crab there is very limited
information regarding its stock dynamics, partly because much of the inforrfattas required to conduct

a rigorous stock assessment has not been collgttggbell, Thompson and Price 200Bpr example, size

and sex composition of the cht and an accurate measure of the total number of pots used in the fishery
were not collecteduntil the recent change in management to reduce overcapitalizéidioler 2002)

However, starting in 2008 all ODC fishery participants are required to record fishing locations as well as
other trip level information in vessel logbooks. While there has been no rigorous egsifritag size and

age structure of the Oregon Dungeness crab stock, the fact that fishery catch has recovered to high levels
within a few years of any drop in levels is indicative of a highly resilient popul@deppell, Thompson

and Price 2009)in addition, there is no empirical evidence that suggests that the moratorium on retaining
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females and small male crab has led to a sex and size distribution thataiglyifinpacts female mating
succesgHankin, Hackett, and Deses 2005; Rasmuson 2018) fact, some authors have suggested that
the fishery is undeutilized andthat the male size limit could be reduced and some females allowed to be
retained without a significant effect on the reproductive potential of the gtapulas a wholé¢Heppell,
Thompson and Price 2009)

Currently, one of the main concerns in the fishery is the potential impact of fishing towards the end of the
season on recently moulted (safhell) crab, which are generally not retained for fal2CC 2015) Most

male crab in Oregon moult between April and SepterfiRasmuson 2013and while they are in a soft

shell state they are highly susceptible to handling mortality through being captured in pots, brought on deck,
then release(©DCC 2015) Theconcern is that these removals from the population towards the end of a
season are due to handling mortadihdhave a significant effect on the catch levels of saleable;deaitl

crab in subsequent seasons. While concern over handling mortality cfhstificrab is not nevand
regulations have been in place to reduce softshell harvests and mortality (eageekiye catch limit of

crab in the summer montlasd an Aigust 14 season closujeno assessment of the potential impacts of

6 s umme r Oas beerscbnductgd tdhdate. Such an assessment is complicated by the fact that very little
is known regarding either the timing of the moult, the distribution and behavior of soft shell crab, the ways
these crab interact with fishing gear, or mortality sdtem either handling or natural causes. In addition

the population levels of the stock, including the proportion of animalsaftahell stateare not known

for anyparticular time. While the biological impacts of summer fishing are importane#hésue is how

these biological impacts translate into economic impaetghe level, distribution, and sustainability of
profits. Vessels in the ODC fishery are heterogeneoilitiese vesselkail from different ports, have
different cost structureshd physical characteristics, and catch different amounts of crab at different times
throughout the season. The impact of summer fishing is themtpegiencedsymmetrically on the fleet,

and any management actions that are introduced to address stetmsa@me likely to result in both winners

and losers.

A management measure that is commonly discussed to address concerns surrounding the handling mortality
of soft shell crab is that of closing the season earlier than the traditional Au§usat4ODCC 2015;

ODCC 2016bKelly Corbett 2016) This is a contentious issugome fishermen traditionally fish into the
summer months, although most do (@DCC 2015) Closing the season earlier than the traditional date

will likely have a negative imga on these fishermen, while potentially benefiting those who do not fish in

the summer months. However, it is also possible that an early season closure will have such beneficial
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effects on the crab population as a whole that catch amounts for all fisheimoluding the group of
summer fishermen, will increase to the point where everyone is better off from a profit perspective, even if
profits are concentrateghrlier season. Examining these tradeoffs necessitates the use of a bioeconomic

modeling frameork, which we now describe.

4.2 Biological Sub-Model

We focus the biological component of the model on the part of the Dungeness crab stock that is either
recruited to the fishery, or will recruit to the fishery during the next moult (at least age 3ffdtts of
retaining only large males on the population of crab is not thought to result in a size or sex distribution that
significantly affects female mating succébkankin, Hackett, and Dews 2005; Heppell, Thompson and

Price 2009; Rasmuson 2018) addition, adult recruitment into the fishery is not thought to depend heavily

on the existing population of crab, but rather on oceanographic and other environmental conditions during
the larvdphase 4 years previous to recruitm@®asmuson 2013We argue that it is reasonable, therefore,

not to explicitly include female crab and imarab that are younger than age 3 in the model, and to represent
recruitmento the SL cohoris an exogenous process.

There are three cohorts in the biological-sutdel:

 ASLO c¢ o h or t-legalMard skell srab lf< 159mm carapace width) that willlininto legal

crab (>159mm carapace width) during the next moult.
T ALHO cohort : Mal e | egal size hard shell crab (>
T ALSO cohort: Bboishelcrdb ¢&dlBMm saragaee width).

While there are varying degrees of hardndssab carapaces, we define soft shell crab as those crab that
are not normally retained due to the softness of their carapace, and hard shell crab as those crab with a shell

condition that would not cause fishermen to discard them based on carapacsshalmine

We specify a discrete time step with each intetyaépresenting a 7 day period. Week 1 in the model starts

on December sl and week 52 ends on Novembef"’30 whi ch refl ect s how a <c¢r a
prosecuted. We represent the recneiht process as an exogenous inputoflegal S) cr ab (t he 0«
which occurs after the last week of the previous seasobedatkthe first week of the current seasBoth

the sublegal hard shell§L) and legal hard shelLH) cohorts moult throghout the season into the legal
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soft shell LS cohort. The moulting process is represented as a probability that an indhaddiahelcrab

wi || O6moul td during a g¢iaythenprobabiltyeof nputing dorthg a weekr e ac
period,t, is mi. As Dungeness crab are thought to remain in a soft shell state for approximately 3 months
after the i1 nitial moul t, after 12 model Oweekso,
into theLH cohort. Note that this later introdusti into theLH cohort is composed of crab that originated

both in theSLandLH cohort, after deaths due to natural causes or fishing are accounted for.

Two sources of crab mortality are represented in the model which, within a time period, are acoounted f
after the moulting processes occoatural mortalityandfishing mortality Natural mortality M, is time
independent but cohort specific and represents the instantaneous rate of mortality for each cohort that arises
from nonfishing factors. The inantaneous rate of fishing mortalitly,, is time dependent and cohort
specific and represents mortality arising from all fishing activity. There are several known sources of fishing
mortality of Dungeness crab. Apart from retention for sale these insard#ling mortality, cannibalism in

pots, ghost fishing, and mortality from other fisheries, such as the bottom trawl fiBasmuson 2013)

Handling mortality is the incidental mortality that occurs when a crab is captured in a pot, brought on deck,
and released. Cannibalism in pots arises from crab being trapped in a pot with larger or more voracious
crab, and is thought to be a significantreeuof crab mortality. Ghost fishing occurs when pots are lost at

sea, and either not recovered, or recovered after the escape hatch has opened. Deaths from ghost fishing
may be due to starvation, octopus predation, and/or cannibalism. The bottom treagkraational fisheries

in Oregon are also thought to be a significant source of crab mo(iilitier 2002)

For thepurposes of this paper, we combine all sources of fishing mortality, apart from mortality from other
fisheries and ghost fishing, into a single percentage hatavhich represents the probability that an
individual crab will be killed by fishing activés conditional on the crab being captured by the geze.
instantaneous rate of fishimgpture Ca;, is the product of a catchability coefficieqt, and total fishing
effort, f;, in time period:

65 o0 L

The instantaneous rate of fishimgortality, Fa, is the product of the rate of fishing capture and the

percentage mortality rate:

O QD ol
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The instantaneous rate of total mortaliB, is the sum of the rates of fishing maity and natural
mortality, Mat:

®rp Oy 0 j (0] %)

The biomass of each cohoat, at timet, is0 . Within a season, the initial biomass of sslfiell gab in
timet, before deaths are accounted for, is the sum of the biomass of soft shell crab at the end1pf time
plus the introduction of newly moulted crab (from SieandLH cohorts), minus the outflow of hardened

crab:

0 g0 B 0p dp O o Nan QO § o8

5

The biomass of the LiAnd SLcohort after the moulting process has occurred but before mortality in each
time periodis:

O0fr O Op a4 j O0fF MNon WP MQEDd 0 OYD oRd

Total biomass killed due tbshing of cohorta, at the end of time peridds:

Or . Cn ,
O 0 VP wn v Op OB &

Total biomass dying due t@turalcause®f cohorta, at the end of time peridds:

5
O 0 Ve wn v On O &

Biomass of each cohort at the beginning of the subsequent getipdnd before moulting and hardening

takes place is then:

0 f 0y A@D Op O o
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4.3 Economic SubModel

The level and temporal distribution of fishing effort in the ODC fishery determines the amount of fishing
mortality over time. Given population abundance, effort drivessgl profit through its determination of
catch and the level of variable costs vessels incur. It is therefore the key variable in the bioeconomic
simulation model and the focus of this section. We considered total fishing effort to be determined by two

separate decisions made by ODC fishermen:
1) whether or not to participate in the fishery in a given time pexiessgl participation)and

2) how mucheffective effora vessel should exert in a given time period, conditional on participating

in that time perid

These two considerations formed both the basis of our estimation strategy, and the structure for the

economic fleet component of the bioeconomic model.

4.3.1VESSEL PARTICIPATION

Vessels in the ODC fishery exhibit remarkably stable temporal pattefish@dfy participation. In general,

vessels enter the fishery on the day the season opens to take advantage of extremely high catch rates in the
first weeks of the season, and then exit the fishery at some point before the season closes on"Aafgust 14

the subsequent year. Figutel shows the week of entry to the ODC fishery and the week of exit to the

ODC fishery aggregated over the 268J14 seasons. Week 1 corresponds to the opening week of the
seasongenerally Dec % and week 37 corresponds to Aisg) 14" in each yearthe traditional closure date.
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Figure 4.1: Entry and Exit weeks of ODC vessels aggregated over theZTI¥ seasons

Due to the hgh costs of both moving gear from the fishing grounds to a storage facility and moving pots
back to the fishing grounds from the stemmmge fac
generally does not occur until the next sea@@BCC 2015) The main exception to this pattern occurs

with vessels concurrently holding either a Washington (WA) state Dungeness crab permit or California
(CA) state Dungeness crab permit. These vessels will generally fish in each stase @ide per year to

keep the permits actiy@elly Corbett 2016) In these cases vessels will either start the season in another
fishery then enter the C fishery after the season has opened, or will exit the ODC fishery earlier than

t hey would have if they did not possess multiple
the WA/CA Dungeness crab fisheries were not available to us, theensiof ODC vessels that participate

in these fisheries is thought to have been relatively small, especially in recent years. In addition, the ODC
fleet has remained remarkably stable over the last 8 years, with minimal variation in total vessel numbers
or composition of the fleet by tier permit. The tier permit level specifies the maximum number of pots that

a vessel can deploy at one time and is positively correlated with vessel lengthd Tahlews the total

number of vessels participating in the ObBshery by season, as well as the total number of active vessels

(vessels that actually participated in the fishery) by permitted pot tier.
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Table 4.1: Number of vessels by pot tier license by season.

season| total vessels| 200 tier | 300 tier | 500 tier
2007 | 335 53 145 137
2008 | 312 51 134 127
2009 | 307 53 128 126
2010 | 325 58 137 130
2011 | 341 62 142 137
2012 | 319 60 139 120
2013 | 318 56 139 123
2014 | 315 50 137 128

The particular chacteristics of the ODC fisherpcluding thefact that the season structure has been

relatively consistent over the last decade and that individuals generally exit the fishery only once in each
season provides a rare opportunity to apply a duration nheal¢hein-season exibehavior of fishermen.

Duration analysis, also known as survival analysis in the health sciences, or failure time analysis in
engineering fields, i s a me (Smgedand Willett 2808)wherezan ng Ot |
6eventd is a measurabl e, di s cr eences, ductionh manleh®y.is | n e
commonly used to model spells of unemployment, with the first known application in the early 1970s
(Lancaster 1972)Since then duration models have been applied widely in such diverse applications as
timing of hurricane evacuation by individual househdldasan, Mes#&rango, and Ukkusuri 2013}he

adoption of conservation practicesby farme@® 6 Emd e n, LI e we l | thereffectaofsdciaBur t o n
context on the initiation of cigarette ug&eardon, Brennan, and Buka 2002hd the investigation of

factors affecting highway project time deldysastasopoulos et al. 201FeeHosmer Jr and Lemeshow

(1999) and Klein and Moeschberger (2005r good overviews of the models and techniques used in

regression modeling of time to evertta.

Two fundamental concepts in duration analysis arsuindval probabilityand thenazard probability The
survival probability at a particular time,refers to the proportion of an initial group or population that has
not exper i en wadidhattimedntedval, wighraurvival functiorthe set of these probabilities.
The hazard probabilityin time intervalt refers to the probability that individuals in a population will
experience the event in that time intersahditionalon those idividuals not having experienced the event
up to that timeThehazard functiomefers to the pattern of these hazard probabilities over(&meger and
Willett 2003; Singer and Willett 1993and is the main focus of regression modeli@geene 2000)
Duration models are generally characterized as-,nsemi, or fully-parametric, depending on the

assumptions made regarding the distribution of duration timespbli@ametric models, the mosiramon
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of which is the KaplaiMeier estimatofKaplan and Meier 1958are commonly used for exploring suitable

forms of the hazard function before covariates are added to the model, or when no covariates are specified.
In these models survival and hazard are calculaepirically. Semiparametric hazard models generally
assume that hazard is composed of two parts: a part that depends on individual characteristics, and a part
that does not depend on individual characteristics. In these models no functional fornstlire beazard

is assumedbaseline hazard is fully generahd the effects of covariates are then seen as proportional shifts
away from this baseline hazard. The most famous of these, the Cox Proportional Hazards (Ptaxrodel
1972)has seen rich use in the economic litera{iRan, Keithly, and Yue 2014Parametric models of

hazard, also known as Accelerated Failure Time (AFT) models, allow covariates to accelerate (or
decelerate) the survival function, for which a distributional assumption is made. Fully paranoetels

make more efficient use of the data than spanametric methods as they do not ignore the effects of
covariates in time periods where no events are obséni2d E md e n Ll ewel |,jutelso and B
constrain the form of the baseline hazard function to fit the distributional assumption. Common
distributional assumptions for the distribution of duration times are the Gompertz, exponential, and Weibull
distributions, depending on the shape ofdhserved hazard probability profile over tigi&reene 2000)

While a rich and varied literature exists on the application of duration models to economic issues, they have
rarely been appdid to fisheries, and never (to the best of our knowledge) to model-Heason exit
behavior of fishermerSmith (2004)contributed the first application of duration modeling to fishermen
behavior to analyze the factors influencing fleet attrition in the California red sea urchin fishery. Attrition
was modeleas a longerm decision to permanently leave the fishery, and the time to event was the length

of time that passed between fishery entry and exit. The author found that both individual characteristics of
the fisherman and policy variables such as seasangt h wer e signi ficant det e
decisions on whether to exit the fisherHoloway not ,
and Tomberlin (20063onducted a duraticanalysis on the California commercial salmon fishery in order

to demonstrate its use in fisheries analysis. They found that physical vessel characteristics as well as the
length of time vessels had operated in the fishery were significant factors expldiaiprobability of

vessels leaving the fishery. More recenfRan, Keithly, and Yue (20149stimated a duration model
combined with a model of reference dependent peates to investigate the factors affecting the length of
single fishing trip in the Gulf of Mexico shrimp fishery. The most recent application of a duration model to
commercial fisheries analyzed the effects of fishery subsidies on the decision to 8géish purse seine

fleet(Cordon Lagares and Garcia Ordaz 2015)
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None of these studies examilthe inseason exit behavior of fishermen, focusing instead on either long
term exit (the decisioto leave the fishery for good), or mieterm exit (the decision to end a fishing trip).

This is perhaps due to the fact that the nature of most fisheries precludes the use of duration analysis for
determining inrseason exit. For example, many fisheriesdraracterized by seasons that are so short that

all vessels exit the fishery at the same time e.g. the Pacific Halibut fishery in Oregon. In other cases seasons
are long but barriers to 4entry (such as gear-geployment costs) are minimal resultingfishermen

entering and exiting the fishery several times throughout the season. Many fisheries are characterized by
some form of property rights regime where vessels are free to fish at any time during the year and exit, in
most cases, when their quotatbalio becomes constraining. In all of these cases the application of duration
analysis is complicated by structural characteristics of the fisimetynultiple entry/exit decisions. In these
casesnultinomial choice models based on the random utilinéaork(after McFadden and others 1973)

are perhaps better suited to the analysisontrast, irthe ODC fishery vessels genkyaenter the fishery

at the same time and make an exit decision which is not reversegrifdaely to significant costs of gear
redeploymentind decreasing catch per unit effort as the season progf@s3€e€ 2015), and proviles a

unique opportunity for applying seasodakationtype modes.

4.3.1.1Empirical Duration Exploration

While all vessels enter the fishery at roughly the same time, the shape of their empirical survival functions
differs according to the portfolio @lternative fisheries that a vessel participates in. For example, ODC
vessels that also participate in the shrimp fishery have a much higher hazard rate at the beginning of the
season, and do not generally participate in the ODC fishery after April linyeac. As part of the initial
duration exploration we divided vessels into initial groups based on participation in alternative fisheries in
order to determine if the behavior of these groups differed in a systematic fashion, and if sthegdndd

modd ed as s-€padnolé todccambplish this we categorized all possible alternate fisheries
that ODC vessels participated in into several groups and identified groups of vessels that shared similar
alternate fishery participation portfoliobable4.2 shows the alternative fisheries identifiaad figure 4.2

shows the average revenues throughout each season of all of the fisheries that were included in the analysis.
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Table 4.2: List and description of the alternat fisheries that ODC figlrmenparticipate in

Alternative Fishery Description Season Dates
Shrimp trawl gear targeting shrimp (March- December)
Limited Entry (LE) LE permitted vessels targeting the groundfish (yearround)
grourdfish complex
Open Access (OA) OA permitted vessels targeting the groundfish | (yearround)
groundfish complex
Salmon salmon trolling (March October)
Tuna albacore tuna trolling (JuneSeptenber)
Other all other fisheries (e.g. whiting, halibut, sardine) | (various times)

FISHERY

Crab — — Shrimp —— Salmon Tuna OA — LE — Other —

40000 1

30000 1

20000

10000 -

Average per vessel Weekly Revenue ($)

& - e e =D =
- S e e e = = d

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
week

Figure 4.2: Average weekly revenue per vessel in the alternative fisheries for thQ08%easons

Using all fish tickets for those vessels that participated in the ODC fishery between the 2007 season (Dec
2006Aug 2007) and the 2014 season (Dec2B813g 2014) , vessels were charac
on the portfolio of alternative fisheries each vessel participated in. A hierarchical methodology was
followed based on both the season timing and value of the alternative fishery. We posited that, most of the
time, vessels would exit the ODC fishery fbeir next best economic opportunity. The Limited Entry
groundfish (LE) fishery and the shrimp fishery are the next most valuable fisheries (in revenue terms) on
average after the ODC fishery so after placing all vessels that did not participate inreatiadtdishery in

acrgd group, groups were defined forshwim@dsel and htah o §
that participatledy .shripdhgr bEpf wabedgf {G6ed for thos
in both the shrimp and LE fisheries. The Open Access groundfish (OA) fishery is open year roumasbut
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arelatively |l ow value. Those vessels thoad graocupsc,i p

and two mooasalmor caoame®0 We r e forcvesseds that gharticipated in the OA and

salmon fisheries and OA and tuna fisheries, respectively. Finally, groups of vessels that participated in the

sal mamod()6 andunddndi 6beri es were defined:veskBese gr
in a given season may not belong to more than onfleseth and all vessels arepresented by aib-fleet.
Table 4.3 shows the initial groupings by alternative fishery participation and all possible fisheries that
vessels participated in:
Table 4.3: Initial groups for the empirical survival estimation
. . Group All vessels in group also Vessels may participate i
Main Vessel Grouping Code participate in these fisheries: thesefisheries:
crab only crab none none
LE groundfish le LE groundfish OA groundfish, salmon,
tuna, other
OA groundfish oa OA groundfish OA groundfish
OA groundfish/salmon| oasalmon| OA groundfish + salmon OA groundfish, salmon,
tuna, other
OA groundfishtuna oatuna | OA groundfish + tuna OA groundfish, tuna, other
salmon salmon | salmon salmon, tuna, other
tuna tuna tuna Other
shrimp shrimp | shrimp tuna, other
shrimp/LE groundfish | shrimple | shrimp + LE groundfish tuna, other
Empirical survival functionsvere estimated using the Kapi&teier methodKaplan and Meier 1958pr
each of the main fleet groupings as:
Yo 06 a0 Qi {i'dbtid QTN TANI @d QOQ O it o
004w QI i "TBFQWN OO @M O Ei'FKDI Qwi € ¢ ®
While the simplicity of the Kaplan Meier method is one of its strongest qualitiesribtha effectively
used to determine the quantitative effects of covariates on survivalltimeuseful in this case for both
determining the average duration behavior qf the

that isthosegroups that behave relatively similadpd can be represented dtgtistical models of hazard
determination.Subfleets were defined for each season and these subfleets were aggregated before the

empirical survival functions were estimatddhe estimated survival functions are plotted in figdu®
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Kaplan-Meier Survival Estimates (initial sub-fleets)
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Figure 4.3: KaplanMeier survival functions fothe initial subfleet group. Data weraggregated over
the 20072014 seasons.

It is immediately apparent that there appear to be 4 aggregated groups that belgasieniiairly, which

we now deffimetasad doub model ing purposes. Wilcoxon
curves imply that there is no statisticadabddi ffere
deb6 , o0a5),cagkdmord ,0 ad u n ad dalmBd ,turi@d . These sets f-iteetsned 3 s
Grabled ,0ab ¢ gattud oO6r espectivel y. A Wil coxonshrim@stanfdor d
Ghrimpld sur vi val curves r ej ect ssigrifibaat diffietehce betwgep thed he s i s

curves. However, given that these curves follow the same general pattern and because of a limited number
of observations for these two gr oups-fleett Resufgsofwer e c

Wilcoxon tests for differences between initial sildets are preented in table.4.

Table 4.4: Results of the Wilcoxon tests for differences in the KajMater survival functionsThe
comparisons arketween the initial sulleet groupings aggregated into 4 groups.

Test for Difference between: G’ statistic (df) p-value
oa, oasalmon, oatuna 3(2) .223
salmon, tuna 0(1) 917
crab, le 2 (1) .659

shrimp, shrimple 20.8(1) 5.16e06
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Table 4.5: Final subfleets combined from the initial stfteet groups.

Original Groups Combined: Sub-fleet names
6crabé + 6 6crabl ed
Oshrimpbé + 0 6shri mpbd

6oab + O6o0asaln 6o0ad
6sal mond + | 6sal tunbd

The null hypotheses that there is no diffeeebetween the Kaplan Meier survival curves of the aggregated
subfleets are rejected by Wilcoxon tests at the p=.001 Ig\able4.6)

Table 4.6: Wilcoxon tests for differences between the final-6ub e e t 6-BleieK saumpivalafunctions

G’ statistic | oa saltun crable shrimple
oa
saltun 62.5 (2.66e
15)***

crable 193 (0)*** 92.5

(O)***
shrimp 511 (Q)*** 555 191

(O)*** (0)***

KaplanMeier estimates of the survival functions for the aggregatedisets are presented in figuded.

Kaplan-Meier Survival Estimates (aggregated sub-fleets)
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Figure 4.4: KaplanMeier survival functions for the final stfleet groupings.



100

These 4 sulfleets, characterized by historical behavior of alternative fishery participation in each season,

form the main fleet structure in the bioeconomic simulation model. Predicting exit times ofieesbhsis

incorportes a level of realism that would be difficultrapresentf all vessels were modeled as a single

fleet. In addition predicted economic impacts on aftedt basis arguably enables us to represent a measure

of distributional impacts in the fishery. Ferx ampl e, t he 6oadé fl eet was comp
with a 200 pot I imit whil e t he-cagabldhvessaspniostith80t was
pot limits. While sukfleet composition changes from year to year, this change izveyainodest.

4.3.1.2Discrete Time Hazard Model

We implemented a Discrete Time Hazard (DTH) duration m@lager and Willett 1993)here thesvent

we modeled is an individual vessel exiting the ODC fishery (whexssel makes its last delivery for the
season), and théime to events the length of time that passes from the date the season opens until an
individual vessel exits. We did not assume a distributional form for the baseline hazard, instead allowing it
tobe estimated fully generally. This was partly due
of the data. A tie occurs when two individuals experience the event at the same time, and a large number
of ties can lead to bias in parameteireates when using continuous time meth@dsrtzPicciotto and

Rockhill 1997) Ties are pervasive in discrete time specifications, and raise no significant issues in the
estimation procedurginger and Willett 2003)Another reason for choosing a discrete time specification

was that there are many discrete events throughoutduese of a season which potentially have a
significant effect on hazard such as the timing of alternative fishery openings. Capturing these effects using
a functional specification for time (as is the case with fully parametric models), is problematicigv

number of potential events. However, including a set of discrete time dummy variables in a fully general
specification of time is relatively straightforward and as holidays fall in the same time period in each year,
and other annual events (suchiasng of alternative fishery openings) are generally consistent, the average

of these effects is captured conveniently in the parameter on the time dummy. Finally, specifying discrete
time for the duration model estimation meant that the results coulh&ity synchronized with the

biological submodel in the simulation framework, which simplified the overall modeling task.

Hazard, the focus of the regression model, can be thought of as a function relating covariates that represent
fishery conditions tdhe probability that a vessel will exit in a given time period. The value of hazard in
any time period must therefore lie in the open interval (0, 1). Performing an odds transformation on the

hazard probabilities ensures that hazard is bounded in thigahtelowever, as odds are bounded below
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by 0, linear predictions of odds hazard could theoretically lead to negative predictions. Logit transforming
(also known as logdds) hazard ensures that that all possible predictions from a linear regression model
leads to values of hazard that lie on the unit intgiSadger and Wille 2003, Jaeger 2008)

The logit transformation of raw hazard for individuain time t is the log of the odds ratio (inside
parentheses):
Q0

a € 'O IIPT N"ad 1

Transforming logit hazard into raw hazard is accomplished using the inverse logit) (fcayisformation:

— s P .y
Q o)
0 5 Qon P p

The general sggification of the model is to specify logit hazard for each vessel in each time period as a
function of 1) a set of time dummies for each week perigdi:g 2) a set ok time invariant covariates,

Xi, and 3) a set ahtime varying covariate&m (Equation 4.1).
aeE @6 | 0O | O E | O o E T O 1 O 8 1 & 0

The set of dummies and their respecti v eachpflaest,amet er
which is the logit hazard function for a theoretical vessel that has zero values for all time invariant and time
varying variables. The theoretical effect of the time invariant variables is therefore to shift the base logit
hazard function in &ch time period proportionally according to the value of the paramtter
Aiproportional | o Binger ahdawillattr 1898)The imterpretation of ahe effects of the

time varying variables on logit haml is more complicated while the value of time varying variables
changes over time, the effect of fhe@rameteron logit hazard is assumed to be constant over time, but the
overall effect on hazard is timearying (Singer and Willett 2003)While the proportional logit hazards
assumption may seem overly restrictive, givbat each vessel has unique values of twaging
covariates, each vessel theoretically has a unigue logit hazard function. In addition, while the effect of
parameters is linear (proportional) on the logit scale, this translates idmeanproportioality on the

probability scale.
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An important implication for our estimation strategy was that while some vessels only participated in the
ODC fishery for one season the majority of vessels participated in several seasons. Observations on the
same vesselgiween seasons are therefore likely to beindependent as unobserved heterogeneity on the
individual vessel levend may affect the timing of vessel exit. The implications of this unobserved
heterogeneity to our model (if untreated) is to possiblydhice bias into the estimates of the standard
errors of the parameter estimates, and the parameter estimates themselves. In both standard linear
regressions with a continuous and unbounded dependent variable, and regressions with a binary dependent
variabk, the presence of unobserved heterogeneity leads to incorrect statistical inferences as the standard
errors of the estimates are biag@dgresti and Kateri 2011; Beck, Katz, and Tucker 1998)general,

standard errors are underestimated, leading to overly optimistic statistical inferenses Wity, note that

the denominator in the formula for calculating the standard error of a parameter estimate in a standard
regression model is the square rootnpfthe number of observationsnplicit in this formula is the
assumption that each individuabservation contributes an equal amount of information to the model.
However, if observations for the same vessel are correlated, each observation does not contribute the same
amount of information as outcomes for the same vessel are likely to be telsiinidar over the years

(Miles 2016) In this case, the standard error estimate is inflated, leading to overly optimistic statistical
inferences. The standard treatment is to correct the estimates of the standard errors for clastering (
individual vessels in our case) by dividing the number of observations in the standard error calculation by

a variance inflation factor, which corrects for intnaup correlation(Hanley et al. 2003; Hosmer Jr,
Lemeshow, and Sturdivant 20123)nother option is to use a robust estimator of the covariance matrix such
asHubeWhi t eés sandwich esti mator, which is current]l)
overview ofthis estimator, seereedman (2012) and STATA corp. (2016)

While in a standard linear regression the parameter estimates remain consistent when observatiens are non
independent, and standard errors can then just be @stfectclustering, the consequences of unobserved

(and untreated) heterogeneity in a logistic regression are to introduce duration bias into the parameter
estimategBarber et al. 2000; Hausman and Woutersen 2014; Rodriguez. 201@)r model, there is
potentialfor bias in both our estimates of baseline hazard and the estimates of the time invariant and time
varying parameters. The same vessels are likely to display similar exit behavior across seasons but the
estimator of baseline hazard reflects the averagartaover all vessels in the fleet. The base hazard
parameters will therefore reflect the behavior of only a subset of vessels later in the season. This issue is

also reflected in the estimates of the coefficients on the other variables in the modehrfpleevessels
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that stay in the fishery later due to unobserved characteristics (such as a deep love for crab fishing), may
bias the population estimates of the effects of observed variables (such as crab revenue) on the probability
of fishery exit in a yen time period. It is important to account for unobserved heterogeneity in duration
models for these reasorfslausmanand Woutersen 2014; Barber et al. 2000vo major model
specifications that account for unobserved heterogeneity in duration models are the fixed effects model and
the random effects model.

Fixed effects models effectively include a separate intefoeptaich group, where a group is defined such

that observations are correlated within a group but uncorrelated between groups. They are popular for
analyzing panel data as they make it possible to control for group characteristics, and the reason why one
may assume conditional independence of the observd#diirson and Christakis 2006; Rodriguez 2016)
Implementing the fixed féects model in a logistic regression, however, is complicated by the fact that
consistency of the Maximum Likelihood (ML) estimators requires that the number of parameters be fixed
as n increaseg@gresti and Kateri 2011)This implies that simply adding a dummy variable to the model

for every vessel might cause inconsistency of the parameter estimates. Instead, using the conditional logit
fixed effects estimator allows consistent estimation of the model with the drawback that time invariant and
groupspeci fic effects candt be esti mat e d(Ageestiagdr oup e
Kateri 2011) Another drawback of the conditional fixed effects estimator is that, when working with
discrete time data, these models fail when covariates are a monotonic fumdiroa so no control for

time itself can be introducddllison and Christakis 2006)

An alternative specification is a random effects model where the unobserved heterogeneity is treated as a
random variable and can be thought of agvétg the intercept for each group to vary randomly. Instead

of a parameter for each group, a parametric assumption for the distribution of the unobserved heterogeneity
over all groups is made and the parameters of the distribution are estimated. Ropuatiage
probabilities from the random effects model can then be obtained by averaging thespgoifip
probabilities over the random intercept distribution. Random effects models also have the benefit that time
invariant effects can be estimated. Hoeewandom effects models assume that the random effects are
independent across vessels, or in other words uncorrelated with observed vessel specific covariates.
Essentially this means that if there are unobserved vessel specific factors that affeatesosadh as a
vessel 6s r ev e randthe deaisioraof vghethveeonnotvoeeritKwhich seems highly likely), the

parameters of a random effects logit model are likely biased.
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Given these issues, we estinththe pooled logistic regression model each subileet separately and

correced the estimated standard errors for fiodependence by clustering on individual vessels using
Whiteds s and(wreeadhan 20d2ZKasmeaski 201500k a similar approach, conducting

separate estimations for effort level predictions for differdasses of vessels in their bioeconomic
simulation of a multspecies fishery. The fact that sflibets were defined based partly on historical exit
behavior implies that they are natur al 6groupsod f
each sulleet separately, however, we account for the effects of at least some of the unobserved
heterogeneity by allowing the baseline hazard function and other parameters to be calculated separately for
each group of vessels. We introduce addition&digffects into each model by including dummy variables

to indicate the class of pot tier that a vessel was licensed for and the season that each observation is from.
Pot tier is highly correlated with vessel length, which is commonly used as a proishfog fpower or

capacity and the assumption is therefore that observations are independent between groups. Another benefit
of specifying the estimation in this way is to partially relax the proportional logit hazards assumption
(Singer and Willett 2003which would have constrained the logit hazard curves for two vesselsrdjff

in only a single characteristic, such as their participation in the shrimp fishery, to be proportional in each
time period. A more reasonable assumption would be that vessels that share the same set of behavioral
characteristics (such as theirpoltfto o of ot her fi sheries participatio
function, and the proportional logit hazards assumption operates on vessel characteristics such as pot limit

(which is a rough proxy for vessel size), and vessel revenues an(Remtdon, Brennamand Buka 2002)

The explanatory variables that would theoretically affect the probability of a vessel exiting the ODC fishery
during a given week included variables that measured economic and biological conditions in the ODC
fishery as well as vessgbecific variables. While weather conditions theoretically affect the probability of

a vessel exiting the fishery in a given time period, the inclusion of the time dummies effectively includes
average weather effects. Fixed effects for season were incdsdedummy variable corresponding to the
season the observation was from. The pot tier license that vessels held in a given year was included as a set
of dummy variables. Vessel specific weekly revenue in the ODC fishery, as reported on fish tickets was
included. To include the effects of opportunity costs of participating in the ODC fishery on the probability
of vessel exit the ratios of average weekly revenue in all of the alternative fisheries to vessel specific weekly
revenue in the ODC fishery were lnded. A dummy variable for participation in these alternative fisheries
was included and multiplied by the revenue ratio measigr@ result, the revenue ratios only appeared in

the dataset for those vessels that historically participated in the adtéstariesHistorically vessels that



105

make up the shrimp fleet have not participated in the ODC fishery after week 20 so time dummies after that

week were omitted. There were also very few observations for the shrimp fleet after week 13 of each year

so tre predictive power of the model for this fleet is limited after this tifadle4.7 describes all variables

included in the estimation procedure.

Table 4.7: Description of the variables used in the discrete time hazard model

Variable Description

d, i=1,..,37 | di=1if observation is in week i, where i the number of weeks from Decerfiber 1
tier200 dummy=1 if vessel held a 200 tier license

tier300 dummy=1 if vesel held a 300 tier license

tier500 dummy=1 if vessel held a 500 tier license

seasog dummy if observation was in season s

revenue sum of a vessel 6s weekly ODC revenuc¢€
rev SH weekly ratio of average shrimp reven
rev LE weekly ratio of average LE revenue t
rev OA weekly ratio of average OA revenue 't
rev SA weekly ratio of average sal mon rever
rev TU weekly ratio of average tunarevenuetoasvesl 6 s ODC revenue
rev OT weekly ratio of average other fisher
fuel price weekly average price of #2 diesel for Oregon ports (PacFIN extraction) ($)
The loglikelihood equations for the pooled logistic regression are:

ad QUL 0 0 ®m0Y Qo p O®0W Ip QO o o

wherei is an individual vesseh(t:) is logit hazard (given in E@t.11), n; is the numbeof vessels in each
fleetj, Ti is the total number of time periods that each vessel participates iB)Xdifidis an indicator that

takes the value 1 if a vessel exits during time petiadd O otherwise.

This function expresses the log probability thatwould actually observe the exact pattern of events, given

the values of our covariates. In effect our model specifies a logistic regression procedure, the only difference

being the presence of a dummy variable for each time period. Each individhatefore contribute$;

terms to the log likelihood function. The regressions were conducted omitting the model intercept in order

to include all 37 time dummies. Fleet effects are relative to the 200 tier class of vessel for each fleet, apart

from the shimp fleet (which had no 200 tier vessels) where the base group was the 300 tier vessel class.

All estimations were conducted in Stata($4ataCorp and others 2007)
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The parameters on the week dummies were significant for all fleets and negative until the last week. A
predicted base hazard of 0 on the logit scale implies an exit pribpabb0% in that time period, and this
generally was not the case until the last week of the season. If there were no exit events in a particular week
for a fleet the effect of the parameter could not be estimated, which was the case for some wdaks early
the season for the open access (OA) and salmon/tuna (saltun) fleets, and late in the season for the shrimp
fleet. The parameter on ODC revenue was significant and negative for all fleets except for the crable fleet.
A negative sign on the parameter atimevarying variable such as ODC revenue implies a negative
marginal effect of that variable on the probability that a vessel exits. To calculate the effect of that variable
in a given time period on logit hazard the level of the variable is multipliede parameter to give the full

effect on logit hazard. e parameters on the ratio of other fisheries revenue to ODC revenue were mostly
insignificant at the 5% level, suggesting that vessels may not take revenue in other fisheries into account
when exiing the ODC fishery, and rather respond to revenues in the ODC fishery. The two exceptions were
the ratio of OA revenue to crab revenue for the cr
for the saltun fleet. The parameter on fueterivas significant and positive for the oa and saltun fleets,
implying that vessels in these fleets, which were on average smaller boats, responded to changes in the
price of fuel when making exit decisions. There was no difference in base logit haradrbtte 200 tier

and 300 tier fleets for the crable and oa fleets based on asymptotic standard errors. However, the Akaike
Information Criterion (AIC Akaike 1998) decreased when this distinction was removed from the saltun
fleet estimation so it was retained in the specification for input into the simulation model. Thefietmp

which has no 200 tier vessels, is composed mainly of 500 tier vessels. There was no significant difference
in exit behavior, holding revenue differences constant, between the 300 and 500 tier vessels of the shrimp
fleet. Parameters that were sigeodft at the 5% level, or caused a decrease in model fit as measured by the
AIC were included in the final specification. These parameters, as well as their estimates and asymptotic

standarcerrors are presented in tabl&.4



107

Table 4.8: DTH resultsParamedr estimates, asymptotic standard errors analyes for the final model

specifications.
CRABLE FLEET OA FLEET SALTUN FLEET SHRIMP FLEET
Parameter |Est. ASE P-value |Est. IASE |P-va|ue Est. IASE IP-vaIue Est. ASE P-value
di -3.6750 | 0.4375] 0.0000 (omitted) (omitted) -3.3805 [ 1.1349| 0.0030
d2 -3.2589 | 0.2635| 0.0000| -3.7469 | 1.1105] 0.0010] -4.9739 | 1.0250| 0.0000 | -3.0857 | 0.8561] 0.0000
d3 -3.9087 | 0.3576 ] 0.0000 omitte d) -4.5829 | 0.8530| 0.0000 | -3.5849 | 0.8270] 0.0000
d4 -4.6943 | 0.5010] 0.0000| -3.7589 | 0.8226 | 0.0000| -5.3846 | 0.7727] 0.0000 | -4.3907 | 1.0169 | 0.0000
ds5 -3.4327 | 0.2194] 0.0000| -4.5553 | 1.0421] 0.0000| -4.7113 | 0.5948 ] 0.0000 | -3.4806 | 0.6242| 0.0000
dé -3.3705 | 0.2401] 0.0000 omitte d) -5.2489 | 0.8556 | 0.0000 | -2.6959 | 0.4828 | 0.0000
dz -3.0693 | 0.2285] 0.0000 | -4.8533 | 1.0821 | 0.0000| -5.6153 | 0.7547] 0.0000 | -1.7476 | 0.3369 | 0.0000
ds -2.9181 | 0.2022] 0.0000| -4.9076 | 1.0715] 0.0000| -5.3681 | 0.6714 | 0.0000 | -1.5617 | 0.3440| 0.0000
d9 -2.9237 | 0.1944] 0.0000 | -4.4274 | 0.7796 | 0.0000| -5.2471 | 0.6007 | 0.0000 | -1.3490 | 0.3006 | 0.0000
dio -3.1089 | 0.2109] 0.0000 | -4.2554 | 0.7265] 0.0000 | -4.2279 | 0.4469| 0.0000 | -1.2403 | 0.3108 | 0.0000
dil -3.0812 | 0.2423] 0.0000 | -4.5269 | 0.8246 | 0.0000| -4.4260 | 0.4290| 0.0000 | -1.2075] 0.2923 | 0.0000
di2 -2.5431 | 0.1694] 0.0000 | -3.9159 | 0.6415] 0.0000 | -4.4447 | 0.4837] 0.0000 | -0.6531 | 0.2848 | 0.0220
di3 -2.5985 | 0.1970] 0.0000| -5.3658 | 1.1145] 0.0000| -4.4535| 0.4620| 0.0000 | -1.0682 | 0.3042| 0.0000
di4 -2.6878 | 0.1996] 0.0000 | -3.5669 | 0.5405] 0.0000| -4.4428 | 0.4371] 0.0000 | -0.3245] 0.3151| 0.3030
di5 -2.5321 | 0.2013] 0.0000 | -3.3944 | 0.5370 | 0.0000| -4.1531 | 0.4381] 0.0000 | -0.3849 | 0.4457| 0.3880
di6 -2.7741 | 0.2193] 0.0000| -3.7862 | 0.5509 | 0.0000| -3.5368 | 0.3873 | 0.0000| -1.4082 | 0.6178| 0.0230
di7 -2.4321 | 0.1807] 0.0000 | -5.4632 | 1.0842| 0.0000| -3.4811 | 0.3701] 0.0000 | -0.3019 | 0.3569 | 0.3980
dis -2.1793 | 0.1972] 0.0000| -3.0906 | 0.5238 ] 0.0000| -3.1607 | 0.3865] 0.0000 | -0.7834 | 0.4764| 0.1000
di9 -2.3806 | 0.1775] 0.0000| -2.7952 | 0.4924 | 0.0000| -3.1341 | 0.3668 | 0.0000 [ -0.4066 | 0.3893 | 0.2960
d20 -2.0604 | 0.1740] 0.0000 | -2.8386 | 0.5226 | 0.0000| -3.1169 | 0.3822] 0.0000 [ -0.3044 | 0.5173| 0.5560
d21 -2.1987 | 0.2049] 0.0000| -3.8555 | 0.6091] 0.0000| -3.1340 | 0.3721| 0.0000 - - -
d22 -2.0585 | 0.1864] 0.0000 | -2.9596 | 0.5020 | 0.0000| -2.7606 | 0.3706 | 0.0000 = - -
d23 -1.9137 | 0.1951] 0.0000 | -3.1550 | 0.5055] 0.0000| -2.9344 | 0.3551| 0.0000 - - -
d24 -2.2134 | 0.2108] 0.0000| -2.6479 | 0.5274] 0.0000| -3.0257 | 0.3816 | 0.0000 - - -
dz25 -2.0485 | 0.2217] 0.0000| -3.1126 | 0.5467 | 0.0000| -2.9077 | 0.3800| 0.0000 = - -
d26 -1.6750 | 0.2000] 0.0000 | -2.4067 | 0.4745] 0.0000| -2.9526 | 0.3939 | 0.0000 - - -
d27 -1.5154 | 0.2038] 0.0000 | -2.1317 | 0.4572 | 0.0000| -2.4759 | 0.4070| 0.0000 - - -
d28 -1.4792 | 0.2241] 0.0000 | -2.7153 | 0.4872| 0.0000| -2.6695| 0.3834 | 0.0000 = - -
d29 -1.6395 | 0.2685] 0.0000| -2.3763 | 0.4968 | 0.0000| -2.5582 | 0.3841] 0.0000 - - -
d3o0 -1.7682 | 0.2507 ] 0.0000 | -2.6421 | 0.5276 ] 0.0000| -2.6362 | 0.4077| 0.0000 = - -
d3l -1.9750 | 0.2851] 0.0000 | -2.3454 | 0.4755] 0.0000| -2.5446 | 0.4260| 0.0000 - - -
d32 -2.0989 | 0.3413] 0.0000| -2.2716 | 0.4995] 0.0000| -2.8661 | 0.4557| 0.0000 - - -
d33 -1.4739 | 0.2346] 0.0000 | -2.4134 | 0.5361 ] 0.0000| -2.4835| 0.4387| 0.0000 = - -
d34 -1.8616 | 0.3459] 0.0000 | -2.3184 | 0.5442| 0.0000| -2.6919 | 0.4739| 0.0000 - - -
ds3s -1.3692 | 0.2544] 0.0000| -1.6780 | 0.4362 | 0.0000| -2.8785| 0.4815| 0.0000 - - -
d36 -0.8236 | 0.2217] 0.0000 | -1.0640 | 0.4196 | 0.0110| -1.8514 | 0.4264 | 0.0000 = - -
d37 4.4122 | 0.9809| 0.0000] 5.2851 | 1.1159| 0.0000 (omitted) - - -
revenue -9.990E-0q 0.0000 | 0.1770 | -5.088E-04 0.0001 | 0.0000 |-1.985E-04 0.0000 | 0.0000 |-2.450E-0% 0.0000] 0.0330
fuel price = - - 0.1891 | 0.0827 ] 0.0220 | 0.2247 | 0.0726 | 0.0020 - - -
tier300 = - - 0.3800 | 0.3025] 0.2090 | 0.6255 | 0.2410| 0.0090 - - -
tier500 0.3152 | 0.1281] 0.0140| 0.9156 | 0.3599 | 0.0110| 0.7517 | 0.2880| 0.0090 = - -
rev OA 0.1085 | 0.0275] 0.0000 - - - - - - - - -
rev OT = - - = - - 0.0047 | 0.0018 | 0.0100 - - -
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4.3.2EFFECTIVE EFFORT

The duration model predicts how endogenous and exogenous changes in fishery conditions (catch rates,
input/output prices, and opportunity costs) affect the number of vessels participating in the fishery during
a given time period. In order to estimate total effective fishing effort, which is the main input into the
biological module, it was necessary to dine our duration model estimates of fleet participation in each

time period with an estimate of effective effort per vessel in each time period.

Two characteristics of the ODC fishery aided us in defining effective effort. First, vessels generadly utiliz
the maximum number of pots they are permitted to use over the entire course of the se#sain pet

6t i(@DCG 2015) For example, this implies that a vessel with a 300 pot limit will generally have 300
pots deployed othe fishing grounds throughout the course of the season. While this is not strictly true,
especially for vessels in the 200 tier class, information on the total number of pots used is not collected
(Didier 2002; Kelly Corbett 2016)his chaacteristic also implies that the soak time of each pot per week
is a week! Secondl vy, pots ar e ¢genedepoyeld, gandpotsiarai t e d
most effective in the first 224 hours after rebaiting, and relatively ineffectiyter that time framgODCC

2015) We therefore defined effective effort (BEor each vessel i in each week period, t, as the number

of pots deployed (N per vessel multiplied by the proportion of those pots that wereddpdés pulled

(PR) divided by NR), or just number of pots pulled:
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In modeling effective effort, one consideration waa thshould include a measure of number of trips made

per vessel where a trip is defined as a vessel leaving port, exerting fishing effort, and returning to port.
Defining trips is important as many variable vessel costs are incurred on a trip levelxaraple,

significant fuel costs are incurred steaming between port and the fishing grounds at the beginning and end

of trips and taking this granularity into account is important for simulating vessel profits. An issue that
presented itself when trying toeasure the number of trips in the fishery was that our two main data sources

-- vessel logbooks and fish ticketglid not provide an accurate measure of number of trips made. Logbook
data were provided as o6recor dod,bowhki dpewdrae ne fnfge a
pots), and it is unclear how the number of strings pulled pertain to trips. The number of fish tickets is a
more accurate measure of trips made than individual logbook records as a fish ticket is generated each time

a vessel delivers to a first receiver. It is rare for vessels to make more than one trip (@D@&/2016b)
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but in some cases multiple fish tickets will be generated for a single trip, such as in the casewelksel
delivers to more than one first receiver or uses two different gear types in the same trip. We decided that
aggregating fish tickets on a vessel/day basis was the most accurate method for definiBgetniffs

multiple fish tickets were genedeal for the same trip, they were likely generated on the same day, and that,

except in extremely rare circumstances, vessels did not make more than one trip(@ECEy2016b)

A priori, our expectation wa® perform an estimation procedure on the number of trips a vessel takes in a
given week of the season conditional on having not exited the fishery, and then to estimate how the number
of pots pulled per trip is affected by changes in fishery conditmorg]itional on taking a trip. However,

while a reliable estimate of the number of trips could be made using fish ticket data, defining the number
of pots pulled per trip was hampered by the characteristics of the logbook data, which contained the
information on pots pulled. Logbook data were problematic for a number of reasons. First, logbooks were
only required to be filled out starting from the 2008 season, and compliance was relatively low for the first
several years of this requirement. Compliance, easured by the percentage of total fish tickets (which

we assume to have a 100% reporting rate) captured by the logbook data, was approximately 68%, 78% and
90% for the 2008, 2009, and 2010 seasons, and averaged 93.5% between the 2011 and 20Kedgasons
Corbett 2016)It is unknown if logbook data were incomplete in a systematic or random fashion, but it is
reasonable to assume that whether or not sselecaptain completed their logbopksgbookswas
correlated with factors that may also affect fishing behavior and which may cause sampling bias. In addition
there is a relatively low level of trust in the accuracy of the reported data, particuldhg fost few years

of the new logbook reporting requireme(@DCC 2016b) Secondly, due to resource limitations, starting
fromthe 2012seasponl y 3 0% of the total | o gdm acodssiblé datalbaser d s 6
on a stratified sampling basis. Each month 30% of all records for each port in Oregon were randomly
selected to be transcribed and it is unknown whet
their weekly effort. Thisneant that later in each season, when the number of vessels participating decreased
significantly, data coverage on a sildet basis was relatively poor. Taking these data limitations into
account we decided that it was impractical to estimate how thbarurhpots per trip changed in response

to fishery conditions. Rather, in order to examine how weekly effort responds to fishery condéions w
calculated the average number of pots pulledniefor each vessel on a sflbet basis and averaged over
the20082014 seasongnd thercombinedhis metricwith a statistical model of number of trips made per

week to arrive at the total number of pots pulled per week.
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4.3.2.1Weekly Number of Trips Estimation

We estimated how the number of trips a vesseddghker week varied throughout each season, and in
response to fishery conditions such as catch rates, crab prices, fuel costs, and opportunity costs. While log
transformed linear regression models have been used in the past to model count data thaoeisare va
drawbacks to doing so, including biased and inefficient parameter estimates and a limited ability to handle
zero countgPradhan and Leung 2006; Rijnsdorp, Daan, and Dekker 20@6nt models are generally
estimated using either a Poisson model, negative binomial model, or one of many derisatitibe

(2014)for a good overview; Long and Freese 2006)

Before we could proceed in specifying a suitable count model the dataset was amended in a number of
ways. First, the fish ticket data only contained records for those vésaebctually made a delivery in a

given week. It was relatively common for a vessel to fail to deliver Dungeness crab during one or more of

the weeks before its week of exit. Reasons for this could include severe weather, a vessel participating in
otherf i sheries in between tending its crab gear, or

I ncluding these 6zerobdé records is an important st
model, and preclude the use of a truncatsttidution for the counts when one is not needed. Following

Smith (2002) additional data records were created specifying a zero trip count and maintaining all pertinent
information for all mi ssing weeks i navéruNotethgt any w
while the vast majority of vessels entered the fishery in week 1 of each seasor4(fiyutes procedure

meant that we created records pertaining to weeks
As discussed previoyslvessels that participated in Washington or California Dungeness crab fisheries

made up the vast majority of late entrants, of which there are relative{(@{£0¢6 per seasonin addition,

severe weather, mechanical breakdowns, or crew issues arecatiseis of late entrffODCC 2015)

Variables that were not vesssecific (such as fuel prices) and vessel specific but norviaméng (such

as the pot tier |icense held) wer ehetnevanjingand arr i e
vessel specific variables were all based on weekly revenue of each vessel. For missing values of revenue

we imputed the average of revenue in that week and season of all other vessels holding the same pot tier
license. For missing vadus o f the revenue ratio variables (rat
revenue), the average value of that variable was also imputed on a pot tier basis, but the variables were
multiplied by an indicator of whether or not a vessel participateckialternative fisheries in that season.

Finally, theseevenue basedariables were lagged by one week to avoid simultareihe value in week

1 became the lagged value for week 2, and so on.
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Perhaps the most weéthown count model specifies the coustaPoisson distributed random variable.
Following (Hilbe 2014)the Poisson distribution can be expressed as:

Q0n_

Qws_ oA

o v
Where y is the count variable which can take on ar
expected meaaf the distribution of y. When incorporating covariates into a Poisson regression a common

formulation is:
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Wherear is the expected number of occurrenoéthe count variable for that individual; % a matrix of
covariates, and b is a vector of parameters, the
nontnegative value for the predicted mean of the distribution.

It is important to intoduce a scale variable to recognize either the possible range of values that a count may

take, the length of time, or the area of space that a count is measured over. In our case the scale variable
refers to the maximum number of trips that a vessel ca®n@iven our definition of a trip using fish

ticket data, the minimum number of trips a vessel could take in a week period was 0, and the maximum
number 7. We effectively reformulated the count equation taking into account the scale viasdidn t

inour case is just the scal art hfe. elxfpetch e de wmd aitee b f

multiplied by t. In this case the count equation beco(®adhan and Leung 2006)

o Ager a® OB X

The Poisson distribution exhibits eglispersion i.e. the mean of the distribution is equal to its variance. If

this assumption is violated the result is consistent but inefficient paraméteatestand is considered the

main issue in count models when fitting modglsng and Freese 2006; Hilbe 2014his assumption of
equidispersion can be violated in several ways, including measurement error and the presence of excess
zero observations ondhdependent variablgreene 1994)Overdispersion occurs when the variance of

the data is greater than the mean, and underdispestans when the opposite is true. The most common
remedy for overdispersion is to estimate a negative binomial model, which includes an extra dispersion
parameter, although this model is inappropriate when underdispersior(l@iiz2014) Again following

Hilbe (2014) the negative binomial probability distribution can be expressed as:
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Where y is the count variable which can take on a
disper sion parameter, and & is the expected mean of
t o: & A somriba- test for overdispersion in a Poisson model is conducted by estimating a negative

binomial model and evaluating the dispersi@ngmeter. If the dispersion parameter is not significantly
different to zero then a Poisson model is preferred as it is more effiEiidloe 2014; Pradhan and Leung
2006)

When count data contain a substantial number of zero observations, conventional Poisson and negative
binomial models fail to describe the data well, often umtedicting the zero observatio@slacNeil,

Carlson, and Beerkircher 2009; Poston Jr and McKibben 2868exampleMinami et al. (20073uggest

that the negative binomial model may overestimate parameters when fitted to data with many zero values.
In addition, overdispersion can be indicated if the number of zeros in the data are greater than what a regular
count model wuld predict{Greene 1994)in these cases using a model that explicitly accounts for a high
number of zeros in the dataset is called Hurdle models, such as the two part delta lognormal model
(Maunder and Punt 2004plit the dataset into two partsne part confaing only the zero observations,

and another part containing the records with all of the positive counts. The two subsets of the data are
estimated using different models. Mixture models, such as thel@#ated Poisson (ZIP) modéafter

Lambert (1992) assume that observations are governed by two different proeeas@srnailli process

that generates just zero values, and a Poisson or negative binomial process that generates a regular
distribution of counts, which includes zer@dilbe 2014) In this casehe zeros are the product of two
random terms, only the product of which are manifested in the data and are estimated con@reendy

1994) The choice of using a hurdle or mixture model to account for excess (or structural) zeros should be
based on theorylf the zero observations are generated by a separate mechanism to the positive counts then
it may be appropriate to use a Herdhodel. If the process generating structural zeros is intertwined with
the process generating the O0regulard zeros and pc
(Hilbe 2019.

For reasons discussed below we included the ZIP model specification in our analysis but did not include

the Zero I nflated Negative Binomial (ZI NB) specif
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theoretical specification, but for a good oxiew, seeHilbe (2014) The Zerelnflated Poisson model has
two separate components. First, a binary component estimates the probability that a count is a structural
zero, commonly usinipgistic regressiofLambert 1992; Greene 1994; Hilbe 20IBhe count component

of the model then models all of the counts, including the zeros, as the manifestation of a Poisson process.
Using a logit specification,ther obabi | ity of observing a structur al

p i
p Agar ORP o

Where Z is a matrix of explanatory variables for the generation of zero coudts, an i s t he vec:

parameters to be estimated.
The probability of observing a count of zero, is therefore:
01l a0 M — p —Qwn olg 1

The probability of observing a neaero count is

01 éd Q p —=— oBg p

Count models have seen widespread use in the fisheries economics literature. For ¢knGpienell,

Strand, and Blakéledges 1995¢ombine a random utility model of site choice with a Poisson model of

angl ersd expected Gillig, ©zunadrtandeGafin{20@@bmbindaePsissonsnbdele s .

for egimating the number of trips that fishermen take with a demand model to estimate the value of the red
snapper fishery in the Gulf of Mexic&crogin et al.(2004)use a ZI P model t o exaé
expectations of catch in a combined random utility model of fishing location chasperski (2015)

conducts a Poisson regression for vessekbkdms on the number of trips to take and combined the results

with a bioeconomic model of intelependent fish stockSmith(2002mo del ed f i sher menoés |
decision, and given participation their fishing location choice by combining a negative binomial model of
numberof trips taken with a Seemingly Unrelated Regression model of location cRoackhan and Leung

(2006)used both a Poisson model and a negative binomial specification to explore the factors affecting sea
turtle interactions in the Hawaiiarlagic longline fishery and applied each model to different target species

types based on whether the data exhibited overdispersion or not.
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Recently there has been much interest in comparing the performance of different modeling specifications,
generally galuated in terms of a model fit statistic such as the Akaike Information Criterion (Ak@ike

1998) For exampleMacNeil, Carlson, and Beerkircher (200@)mpare a range of Generalized Linear
Models (GLMs), hurdle models, and mixture models in thdyaizaof shark depredation rates in the
Atlantic pelagic longline fishery. There was a high preponderance of zeros in the data and the authors found
that the hurdle and mixed models outperformed the GLWésidor, Lamouroux, and Olivier (2011)
compare the performance of the Poisson, NB, ZIP, and ZINB when estimating the abundance of 12
freshwater fish spges. They found that the negative binomial model worked well for a wide range of
sample characteristics, the ZIP and Poisson models worked best when mean and variance were relatively
low, and ZINB worked best when the mean was very higiwin et al. (2010compare regular count
models hurdle models, and mixture models in their ability to deal with zero inflated datasets and found that
when the dataset included a large number of zero counts only hurdle and mixture models could be reliably
applied.

Given the dataset we used for the mipdata model was based on the same dataset used for the duration
model estimationour data potentially exhibited nendependence between observations on the same
vessels. When dealing with longitudinal data the same suite of models that are usesficnréggession

can be used iRoisson regression analysieluding fixed effects and random effects (and many more)
models (Cameron and Trivedi 2013However, including a dummy variable for each vessellyear
combination would have resulted in several thousand extra parameters so the fixed effeaisr esim
unfeasible. Using a conditional fixed effects specification is again an option but estimating the effect of
time invariant variables using this model is not possible. Specifying a random effects model would be to
assume that the random effectsiadependent across vessels, or in other words uncorrelated with observed
vessel specific covariates. Essentially this means that if there are unobserved vessel specific factors that
affect covariates such as a v siecmofdidwdmmnytripsioctakeiie i n  a
that week (which seems probable), then the parameters of a random effects logit model are likely biased.
In addition to the theoretical limitations of the use of these panel models, a practical consideration was that
the esults were destined to be incorporated into a fonkaking bioeconomic simulation model. A
mechanism for incorporating results of, for example, a random effects panel model into the simulation
would have been considerably more complicated to incogorathe model than the pooled model

specification.
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We therefore take a similar approachKtasperski (2015)and to the estimation of the duration model in
section4.3.1, by conducting gearate regressions for each dlget separately and including fixed effects

for the different pot tier levels. This approach is also somewhat simiratthan and Leung (2006&yho

presume that there may be vessel specific effects that #ife probability of sea turtle interaction. They
incorporate this effect using a dummy variable fo
not for each vessel per se. To account for the potentially correlated error structure wtedbtrmodels

using robust standard errors clustered on individual vessels usingWilbért e 6s r obust wvari a
(Freedman 2012; STATA corp. 2016)

In deciding on the exact model specification we examined the arahwariance of the counts of number
of trips per week for each of the 4 silkets. It appears that overdispersion was limited in all 4 datasets,
with significant underdispersion in the shrimp dataset. TaBlshows the mean and variance of the counts

of number of trips per week for each of the 4-flalts.

Table 4.9: Characteristics of the amended dataset used in the effective effort estimation

Sub-Fleet Number of Observations | Mean Variance
crable 23723 .934915 | 1.189339
OA 11123 1.060865| 1.277629
saltun 16180 1.003337| 1.066062
shrimp 3094 .840659 | .518088

Given the way we amended the fish ticket data set we decided that the most suitabégomoided model

the number of trips fishermen take in a week was a mixture meitleer a ZIP model or a Zeiaflated

Negative Binomial (ZINB). The reason for this was that the zeros in the dataset were generated by a mixture

of processemcluding oneprocessvh er e fi sher men doné6t take a trip i
one where the fisherman has not entered yet and zero records were created by a separate data generating
process. While negative binomial and ZINB models are suitable when tsetdakhibits overdispersion

due to the presence of some high colfbesvin et al. 201Q)our data did not exhibit high counts and an
examination of the mean and variance statistics indicate that overdispersion was Nraiteidr,
Lamouroux, and Olivier (201139howed that the ZINB model works best when the means of the count
variable are very high. Given this, and the fact that thlBBZhiled to converge for several of the alternative
specifications tested we did not use the ZINB model in our analysis. We estimated the regular Poisson,
negative binomial, and the zeirdflated Poisson model and compared model fit using the AIC. Adinega

binomial models are unsuitable when underdispersion is pr@siime 2014) we did not estimate these
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models for the shrimp stiteet. A commonly used test for whether a zftated model is appropriate

was proposed bfvuong 1989) However, the statistic reBeon the true likelihood function and as our use

of a robust covariance matrix means we are estimating -tikel#hoods, tests that rely on the true
likelihood, such as the likelihood ratio test or Vuong test, are not (tdiliobe 2014)

In our model specification we included fixed effects for the particular week of the season and the pot tier

license that each vessel held. Lagged weekly revenue, the average price of fuel, and theityppusts

of making a trip, represented by

the ratio of

ot he

included. The inflation portion of the ZIP model was conditioned on dummy variables representing the first

6 weeks of the season. Covéemare described ialtle 410

Table 4.10: Description of the variables used in the ZIP model.

Variable Description Inflation? Poisson?
d, i=1,..,37 | di =1 if observationd in week i d(inf)1-d(inf)6 X
tier200 dummy=1 if vessel held a 200 tier license X
tier300 dummy=1 if vessel held a 300 tier license X
tier500 dummy=1 if vessel held a 500 tier license X
seasog dummy if observation was in seas®n X
lagrev sumd a vessel 6s weekly ODC r e\ X
SH ratio of average weekly reven X
ODC weekly revenue.

LE ratio of average weekly reven X
weekly revenue.

OA ratio of average weekly revenue X
weekly revenue.

SAL ratio of average weekly reven X
ODC weekly revenue.

TUN ratio of average weekly reven X
weekly revenue.

OTH ratio of average weekly reven X
ODC weekly revenue.

offset a column of 8 was included as the offset variable to reflect the X
maximum value of the count

The estimation was conducted for theubfleets separately using the Poisson, negative binomial, and ZIP

model specifications. In all cases the AIC indicated that ZIP was the preferred model. Parameters that were

not significant at the 5% level using a Wald test, and did not cause astenrehe AIC when removed,

were removed from the model and the modedsemated.
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The parameter estimates on the week dummies were all significant, picking up a time trend showing the
average number of trips per week decreasing slightly throughowtdbkers For each sileet, a parameter
estimate on at least one of the revenue ratio variables were significant and negative, indicating a negative
marginal effect of that variable on the number of trips a vessel takes. For the crable fleet, the pamameter
the ratio of LE groundfish revenue to ODC revenue was significant, for the OA fleet the parameter on the
ratio of OA revenue to ODC revenue was significant, for the saltun fleet the parameter on salmon revenue
was significant, and for the shrimp flebketparameter on shrimp revenue was significant. This suggests
that the average number of trips each-#ebt makes in a week period decreases when opportunity cost of
participating increases. Lagged revenue was a significant positive predictor for therrafrtrips taken

per week for the OA and saltun fleets although this effect was not significant for the crable and shrimp
fleets. This indicates that the higher a vessel 0¢
vessel 6s crpedsathemumber of tripsde/she took in the next time period. The fixed effects
on pot tier were mostly insignificant predictors of number of trips taken. The exception was the shrimp fleet
where vessels who had a 500 pot tier license took less trigpgeoage than 300 tier vessels (there were no

200 tier vessels in the shrimp fleet). This suggests that pot tier does not have a significant effect on the
number of trips that vessels take in a week period. Although vessels with higher pot tiers exeffampre

this higher effort is reflected in the number of pots each vessel pedidrip (see figure 4.6 The
interpretation of the parameters is in the opposite direction for the inflation part of the model. A positive
parameter indicates a positiveasff of that variable on the probability that an observation was a zero count.
The dummy variables for the first 6 weeks of the season were significant and indicated that, on average,
zero observations were more likely to occur in week 1 of the seasomwéle&r?, and so on. Final model

specifications and parameter estimates are shown in4dldle
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Table 4.11: ZeroInflated Poisson modeésults. Rrameter estimates, asymptotic standard errors, and
associated{alues for the final model specificat®n














































































































































































