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The polarization state of light in a single mode optical fiber may

be changed by linear and circular birefringence intrinsic to the fiber

or introduced by stress in the fiber due to external pressure, bends or

twists. Rotation of polarization may also occur in the absence of any

intrinsic or stress induced birefringence, if the fiber is bent into a

nonplanar curve. Such rotation depends purely on the path of the fiber

and is therefore known as geometric or topological rotation of

polarization.

An experiment was carried out to measure this geometric rotation

of polarization by laying the fiber in different helical paths.

Measurements of polarization rotation were made for each of twelve

different fiber helices. A personal computer was used for experimental

control and data acquisition.

The theory of the geometric rotation of polarization can be

explained using classical electrodynamics, and an independent quantum

mechanical treatment based on Berry's topological phase. Both theories

are discussed in this work. The experimental results were compared

with both theories and agreement with both was obtained.
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ROTATION OF POLARIZATION IN SINGLE MODE OPTICAL FIBERS

AND ITS RELATION TO BERRY'S PHASE

CHAPTER 1

INTRODUCTION

The silica glass fiber or the optical fiber, as it is popularly

known, has truly revolutionised the communication technology today.

The combination of low loss and wide bandwidth available at optical

frequencies make these fibers extremely attractive for use as a

transmission medium in telecommunication systems. Also, whereas the

metallic transmission lines suffer from exponentially increasing

conducting losses at higher frequencies, the losses of fibers are far

less, there-by allowing repeaters to be spaced further apart.

Much of the research and development in the area of integrated

optics has also been stimulated by technological breakthroughs in the

understanding and production of low loss fibers.

Further advances in fiber optics technology has enhanced their

scope of application from the traditional realm of telecommunication.

Fibers are extensively used today as various kinds of sensors such as

remote light sensors, pressure sensors, interferometric sensors,

polarization sensors and even optical gyroscopes.

It is thus essential to study and understand the different

properties of the fiber, like transmission loss, polarization and

birefringence, etc., for effective application of these fibers.
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1.1 WHAT IS AN OPTICAL FIBER ?

An optical fiber is essentially a dielectric waveguide. A typical

optical fiber, shown in fig.l.l(a) is a cylindrical structure,

consisting of a central core of radius a and index of refraction n2

surrounded by a concentric cladding of a slightly lower refractive

index n1. Typical fiber geometries are shown in fig.1.1(b)1-3).

Confined and lossless propagation in fibers is accomplished by

total internal reflection from the dielectric interface between the

core and the cladding. This requires the refractive index of the core

to be greater than the cladding. It also requires. that the angle of

incidence of the core be greater than the critical angle.

i.e. Oi > 8c sin-1(n1 /n2)

This is shown schematically in fig.l.2.

The light then propagates inside the fiber by successive internal

reflections. This is the basic principle of light propagation in an

optical fiber.

According to the refractive index profile of the core and the

cladding, the fibers are classified as step index or graded index

fibers. The geometries of the step index and graded index fibers are

shown in fig.1.3(a), (b).

A step index fiber consists of a core of refractive index nl and

radius a, and a cladding of refractive index n2 and a radius b. The

radius b of the cladding is chosen large enough so that the field of



Fig. 1.1a A typical optical fiber

r4-103 um 0-4
rm-- 115 sm--4-1 1*--125

10 an

tat.. 1.460

rit(1 1)

T.. 1.0

Sing e-'voce
fiber

L470

fti 2 illS1 4..

0.01

.rLi :L.1.0

Retractve
ineas

50 an

Stecnee:Gisaceancex
munimme neer mutomoze fiber

Fig. 1.1b Typical fiber geometries

3

1.470

nt(1 1)

1.0



4

y/t//////////////////////////// /// /////

r11. tv 1,44.

n.

Fig 1.2 Light propagation in an optical fiber



42.1r.

a(r)

011

5

IC. 1.3a. Structure and refractive index of a step index fiber

FIG. 1.3b. Structure and refractive index of a graded index fiber
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confined modes is virtually zero at r b.

A graded index fiber differs from a step index fiber in that the

index of refraction is a continuous variable function of the radial

distance from the fiber axis. In the simplest configuration, the index

is maximum on the axis, decreases with r, for r<a and is constant for

r>a. Also, the manner in which a graded index fiber guides the fiber

is not reflection at a dielectric discontinuity, but by continuous

bending of the propagation vector k, as it moves through the region of

continuously changing index of refraction.

Graded index fibers are becoming increasingly important in fiber

optics communication today, because they offer a multimode propagation

in a large core fiber coupled with low modal birefringence. The

analysis of fields inside a graded index fiber is more complacated than

the step index fiber. We will mainly limit our discussion to

propagation inside step index fibers.

1.2 PROPAGATION MODES INSIDE A FIBER

The electric and magnetic fields of the light propagating inside a

planar dielectric can be resolved into a z-component parallel to the

waveguide axis and its x-component normal to the axis. Propagation is

possible only when the x components form standing waves since only

these can interfere constructively. As a result, only a finite number

of modes are allowed to propagate. These are called transverse modes

and are labelled TE or TM depending on whether the E or the B field is
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transverse to the waveguide axis. A fiber can thus have one or more

modes travelling in it. A fiber designed to propagate only one mode is

called a single mode fiber. Single mode fibers have lower modal

dispersion than multimode fibers. They also have better polarization

preserving properties. But, the numerical aperture of a single mode

fiber is much smaller and coupling light into the fiber is more

difficult. However, single mode fibers are finding a wide range of

applications in communication systems and fiber optic sensors.

The condition for a fiber to be single mode can be derived

accurately by solving the wave equation inside the fiber. This is

discussed in the following section.

1.3 WAVE EQUATIONS INSIDE AN OPTICAL FIBER

The ray picture of light propagation through a fiber, is only an

approximation for fibers with dimensions much larger than the wavelegth

of light. Particularly, for single mode fibers, where the core

diameter is comparable to the wavelength of light, it is necessary to

use wave optics to get a more accurate description of light

propagation. To derive the exact wave equations in the fiber we need

to solve Maxwell's equations with appropriate boundary conditions. The

exact solutions of such a cylindrical step index dielectric waveguide

are very complicated and involve hybrid EH', and HM1. modes which have

six nonzero field components, rather than the simple TE and TM modes.

A good approximation of the field components and mode conditions
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can be obtained in most fibers whose core refracrive index is only

slightly higher than the cladding medium, i.e. (n2-n1 <<1). In this

approximation, the continuity conditions at the core cladding

interfaace are simplified, thus allowing us to use Cartesian field

components as above. Fibers that satisfy this condition are called

weakly guiding fibers.

In this approximation, we can write the wave equation inside the

fiber as :

[32/3r2 + (1/r)8 i2r + (1/r2)32/802 + (k2nj2 - /32)]Oz

where nj is n1 for the core and n2 for Lb* cladding.

lihz corresponds to the z component of the electric or the magnetic field

inside the fiber.

The solution of 1.1 is assumed to be of the form:

E(r,4,z,t) E(r,O)exp[i(wt-f2)] (1.2)

where wck is the frequency in radians and 19, the longitudinal propa-

gation constant of the wave. It can be seen from the form of eqn. 1.1,

that the field variation along r will depend on the value of (k211j2-fl2)

and will be sinusoidal for (k2ni2-fit) >0 and exponential for (k2ni2-432)

<0. Modes having physical significance can exist only with propagation

constants smaller than kn1,else they will be evanascent everywhere. On

the other hand, propagation constants smaller than kn2 correspond to

fields that oscillate everywhere and thus do not vanish at r co.

Thus, we have the condition,3
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kn2 kni

For a fiber with radius a, we define the parameters

ai (K2n2coreP2)

v a (k2n2cladding-P2)

Then, substitution of 2 into 1 gives E(r,O) in terms of Bessel functi-

ons as J(ur/a) and K(vr/a).

We can define a third parameter

V u2 - 172 a2k2(ncor.2 nc12)

This is called the normalized frequency. Fig.1.3 shows the low order

modes propagating in a fiber and their propagation constants as a

function of V. It can be seen that in order to get a single mode, V <

2.405.

The exact solutions of the wave eqation, BEIm modes can be

replaced by linearly polarized LPIm modes in the weakly guided fibers.

The subscripts 1 and m give the number of azimuthal and radial modes,

respectively. The fundamental LP02 mode therefore does not have an

azimuthal component and has a circular beam shape. In fact, the field

distribution of the fundamental mode is approximated to be a gaussian

distribution. This is also the beam characteristic of a single mode

fiber.
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CHAPTER 2

POLARIZATION PROPERTIES OF A SINGLE MODE FIBER

In applications of single mode fibers as polarimetric devices like

current sensors, rotation sensors, optical gyroscopes and other

interferometric devices, the fiber operates with coherent polarized

light. So a thorough understanding of their polarization properties is

important for successful construction and operation of such devices.

2.1 AN OVERVIEW OF BIREFRINGENCE IN OPTICAL SYSTEMS

A material which displays two indices of refraction in two

different directions is called a birefringent substance and the

phenomenon is called birefringence. The origin of birefringence lies

in the structural anisotropy of the material. This results in optical

anisotropy, i.e. the optical properties of the material are not all

the same in all directions.

There exists, however, one direction of propagation in the

crystal which does not exhibit this optical anisotropy and is called

the optical axis of the material. The refractive indices for directi-

ons perpendicular(ni ) to and parallel(n") to this direction are

different. This difference (ni.-nu) is a measure of the birefringence

of the material.
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LINEAR BIREFRINGENCE: Now consider linearly polarized light

propagating in the direction of the optical axis inside such a materi-

al. The parallel and perpendicular components of the E field then

travel with different propagation constants, resulting in a phase lag

between the two components. Thus the resulting wave will be

elliptically polarized in general. This phenomenon is called linear

birefringence and is illustrated in fig.2.la for a half wave

plate4' .

OPTICAL ACTIVITY OR CIRCULAR BIREFRINGENCE: The phenomenon,

whereby the plane of polarization of linear light undergoes a rotation

as it propagates through a material is called optical activity or

circular birefringence.

A material which exhibits optical activity is called an active

material. Such a material has different refractive indices for the

left and right circularly polarized light i.e. n1 and nr.

Now, linear polarized light can always be represented as a

superposition of left and right circularly polarized light. Each of

the two components propogate with different propagation constants in

the medium. Thus, in traversing the medium, the two get out of phase,

and the resultant linear wave appears to have rotated.

This is illustrated in fig.2.lb.

2.1.2 JONES MATRICES

A compact and elegant representation of polarized light was

invented by American physicist R.K.Jones. In this formalism, a

polarized light wave is represented in terms of the electric field.



Fig. 2.1(a).
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Ex (t)

Ey (t)

(2.1)
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Ex(t) and Ey(t) are the instantaneous scalar components of E.

Obviously, knowing E, we know everything about the polarization state.

We can deal with coherent waves, if the phase information is also

preserved. We then write eqn. 2.1 as

E

E. exp(i0.)

Ey exp(i0y)

(2.2)

Now, suppose that we have a polarized incident beam represented

by this Jone's vector Ei, which passes through an optical element,

emerging as a new vector, Et. This can be described mathematically

using a 2 2 matrix. Let the transformation be represented by a matrix

3, where

3 all a12
a 21 a 22

(2.3)

The four matrix elements are complex, in general, and contain a

complete description of the birefringence properties of the optical

system.

The emerging light can then be described as:

Et SEi
(2.4)

If the wave passes through a series of optical elements represented by



the matrices 31, 52, etc., then

3n 31 Ei
(2.5)
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Note that these matrices donot commute and must be applied in the

proper order.

The Jone's matrix, for light propagating along the optical axis

of a system with linear birefringence is given as":

exp(i61/2)

0 exp(-i61/2)

(2.6)

where 61 at measure of the linear birefringence

Since the effect of the linear birefringence is to introduce a phase

retardation between the two components of the E field, this term

appears as an exponential in the matrix.

For example, consider an optical system like a quarter wave plate.

The effect of such an element is to convert linearly polarized light

to circularly polarized light by introducing a phase lag of i/2 between

the two components of the linear light. So, the Jones matrix for a

quarter wave plate is

exp(i/r/4 ) 0

0 -iexp(iw/4)

For a system with circular birefringence

3 =1

cos(6c/2) sin(6,/2)

3
-sin(6,/2) cos(6, /2)j

(2.7)
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where Sc measure of the circular birefringence.

This is simply a rotation matrix so that for the transmitted light, the

plane of polarization rotates by an angle 8./2.

2. 2 PROPAGATION OF POLARIZATION IN SINGLE MODE FIBERS

As discussed in Chapter 1, the propagation of polarization in an

optical fiber is by the phenomena of total internal reflections. When

light is internally reflected, the perpendicular and parallel

components of the E field undergo different phase shifts, as indicated

by fig. 2.2. If LPL is launched inside a straight fiber such that the

E field is polarized perpendicular to the waveguide axis, then there is

no parallel component of the E field at any time and hence in the

absence of any birefringence, the polarization state of LPL is

preserved. Further, in the case of weakly guided fibers, the

difference between the refractive indices of the core and the cladding

is considered to be negligible, i.e. (n2-no<<1. In this

approximation, the internal angle is always taken to be close to 90°,

so that there is no phase shift between the parallel and perpendicular

components of the E field propagating inside the fiber, even if it is

not polarized perpendicular to the waveguide axis, in the case of such

weakly guiding fibers.

So, in general, we assume that an ideal fiber with no intrinsic or

stress induced birefringence, preserves the state of polarization.

As we will see in the next section, this is not always true.
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2.3 BIREFRINGENCE IN SINGLE MODE OPTICAL FIBERS

An ideal optical fiber is assumed to be perfectly cylidrical with

a circularly symmetric refractive index distribution. This leads to

perfect degeneracy of the two linearly polarized modes, i.e. the x and

y linearly polarized modes with the same propagation constants.

However, actual fibers exhibit some ellipticity of the core and

some anisotropy in the refractive index distribution which arises due

to the presence of anisotropic stresses. In the presence of anisotrpic

stresses, the dielectric permittivity is no longer a scalar, but is a

tensor. This results in two different propagation constants for the x

and y polarized modes, leading to perturbations of the state of

polarization of the light transmitted by the fiber. The difference in

the propagation constants is defined as birefringence(p)3.

The practical parameter used to study the polarization preserving

properties of an optical fiber is the beat length, defined as

L 2x/15

where p is the birefringence.

Optical fibers with beat lenghts longer than one meter are

commercially called low birefringence fibers. Beat length measurements

have been made in the past by using techniques such as:"

1). Optical polarization

2). Rayleigh Scattering

3). Electro-optic modulation
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4). Wavelength Sweeping

5). Polarization dispersion

6). Application of lateral stress

7). Optical Heterodyne interferometry

Anisotropic stresses could be present in the fiber because of

built-in anisotropies resulting from the fabricaiton process or could

be induced externally. The resulting birefringence effects are called

intrinsic or induced birefringence effects.

2.3.1 INTRINSIC BIREFRINGENCE

Intrinsic birefringence is that present in the fiber due to built

in anisotropies resulting from the fabrication process. If the core is

not circular but elliptic, then the x and y polarized modes will have

different propagation constants resulting in linear birefringence.

This is called shape induced birefringence.

Because the materials used to manufacture optical fibers have different

thermal coefficients, it is possible to build anisotropies in the fiber

due to photoelastic effect. For good quality fibers this corresponds

to a very low birefringence or a very long beat length.

2.3.2 INDUCED BIREFRINGENCE

1. BEND INDUCED BIREFRINGENCE

When a fiber of outer radius r is bent along a curve of radius

R(R>>r) then the induced linear birefringence is given by:
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Ab rr2k

where k curvature of the bend

r - a constant 0.093 for 633nm

Again, this results because of the stress induced due to bending.

2. TWIST INDUCED BIREFRINGENCE

Twisting a fiber with a uniform twist rate 2 ,rN (rad/m) where N is

the number of turns per meter, will induce a shear stress that leads to

circular birefringence in contrast to other stress induced effects.

Thus the state of polarization of linearly polarized light is preserved

but it is rotated by an angle 9.

The induced birefringence is given by3):

At gr

where r twist rate 2 ,rN, for N turns

and g constant -0.16

3. EXTERNAL FIELDS: FARADAY ROTATION

A magnetic field applied longitudinally along the fiber axis will

induce a circular birefringence through the Faraday Effect. The

rotation is given by

of Hdl

Where H is the magnetic field and

V is the Verdet's constant of the material

If the magnetic field is produced by a current I flowing through N

turns of a coil, then, using Ampere's Law, we can write the rotation as

op VNI

Thus the rotation of polarization is a measure of the current.
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CHAPT. 3

GEOMETRIC ROTATION OF POLARIZATION

The polarization of light propagating in a single mode fiber can

also be rotated in the absence of any natural birefringence or stress

induced effects if the fiber is bent into a nonplanar curve. Such a

rotation depends only on the geometry of the path of the fiber and is

independent of other factors like the wavelength of light and some

fiber characterisics.

In various applications of the fiber as a sensor, a helical

geometry of the fiber is preferred. In such cases, the geometric

rotation of polarization is quite significant;of the order of a few

degrees, especially for large pitch helices. In a fiber optic current

sensor, the magnetic field due to the electric current in a conductor

induces a rotation of the polarization of the light in the fiber due to

Faraday rotation.16.17) This rotation is proportional to the current

and is a fairly small rotation; comparable to the rotation caused by

other birefringence effects discussed in Chapter 2. A slight change in

the path of the fiber may cause a large rotation comparable to or

greater than the Faraday rotation. It is therefore important to

calculate this effect in such applicatons. The large rotations may

also be used advantageously to isolate the Faraday rotation from other

stress induced linear birefringence effects discussed earlier.
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3.1 PROPAGATION OF POLARIZATION IN A CURVED FIBER

As discussed in Chapter 1, the propagation of light in a fiber is

based on the principle of total internal reflections. It was also

shown that in the case of a straight fiber, the state of polarization

of light is preserved, in the absence of any linear birefringence.

This, however, is not obvious in the case of a curved fiber.

When light is internally reflected, the perpendicular and

parallel components of the E field undergo different phase shifts, as

indicated by fig.2.2. If linearly polarized light is launched inside a

straight fiber such that the E field is polarized perpendicular to the

waveguide axis, then there is no parallel component of the E field at

any time and hence in the absence of any birefringence, the

polarization of the linearly polarized light is preserved. However,

in the case of a curved fiber, the waveguide axis and hence the

propagation direction changes along the curve. Thus at any time, the

E field must be resolved into a parallel and perpendicular component,

each of which will undergo a different phase shift. This could change

the linearly polarized character of light.

For the case of single mode fibers it was shown in chapter 1.2,

that to a good approximation, we can assume the fiber to be a weakly

guiding fiber, i.e. nl-n2<<1, where nl and n2 are the refractive

indices of the cladding and the core respectively. For such a fiber,

the internal reflection angle of light is always approximately 90°. It

can be seen from fig.2.2 that the parallel and perpendicular compone-
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nts of the E vector do not have a phase lag with respect to each other.

In other words, the polarization state of linearly polarized light will

not be affected even for a curved fiber.

If we look at the more accurate description provided by the

waveguide theory, rather than the ray picture. We saw in chapter

1.3, that in the weakly guiding fibers, linearly polarized modes are

propogated. In the absence of any birefringence, the particular mode

propagating in a single mode fiber can not undergo any change.i.e., an

ideal single mode fiber will always propogate the same mode.

At this point we introduce an axiom known in literature as the

principle of constant azimuth or Ross's axiom14), which states that for

a single mode fiber with no birefringence, the angle that the

polarization vector makes with the normal to the plane of curvature at

any point on the curved fiber is will remain fixed. The implication of

Ross's axiom is illustrated in the folllowing section.

3.2 ORIGIN OF THE GEOMETRIC ROTATION

Consider a low birefringence single mode fiber laid on two plates,

which are twisted by an angle 0, as shown in the fig.3.1a. The normals

to the planes are indicated by Na and Nb respectively15).

If linearly polarized light is coupled into the fiber, then from

the principle of constant azimuth discussed earlier, the azimuthal

angle, i.e. the angle the electric field vector makes with the normal

to the plane on which the fiber is laid, remains constant.

Since there is no reason for light to change its direction of
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optical vibration at the interface of the two planes, the azimuthal

angles on the two planes are related as follows:

46b 8
(3.1)

where O. is the azimuthal angle of the E- field on the first plane.

Next, consider that such an ideal fiber is fixed on two plates A

and B as shown in fig.3.lb. Plate B is rotated around an axis by 8.

The input and output ends of the fiber are fixed on the same plane of

plate A, as shown in fig.3.lb. Let linearly polarized light be

launched into the fiber such that the E field makes an angle O. with

the normal Na. Then, as above, the azimuthal angle on plate B is

given as

Ob Oo (3.2)

If the polarization azimuth of the returning light from plate B to A is

denoted by O.', then we have, similar to the transit from A to B,

04t1 01) 8

Then, from 3.1 and 3.2 it follows that

(3.3)

0a1." Oa 29 (3.4)

Thus, though both the input and the output ends of the fiber are on the

same plane, only the change in the intermediate path of the fiber

creates the effect of polarization rotation.



Fig.3.1

Geometric rotation of polarization
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3.3 MATHEMATICAL DERIVATION FOR THE GEOMETRIC ROTATION OF A HELICAL

FIBER

Now consider a single mode fiber with no intrinsic birefringence.

The fiber is assumed to have no other stress induced birefringence

effects. Let the fiber axis lie along a non planar curve r(s) where s

is the distance along the curved fiber from an arbitrary point Po.(fig-

3.2a).

The orientation of the polarization vector is defined with respect

to the orthogonal triad of vectors k, n, b as shown in the fig.3.3,

where k is the propagation direction tangent to the curve at each

point, n is the normal vector, pointing towards the radius of

curvature. b is the normal to the plane tangential to the fiber at

that point and passing through the the centre of curvature.

Because of the non planar nature of the curve, the vectors bl and

b2 at the two points P1 and P2 will be at an angle a to each other.

Then from Ross's axiom, if the polarization vector makes an angle 80

with respect to the normal nl, it will have to rotate an angle 8 to

maintain the same orientation with respect to the normal n2. This is

illustrated in fig.3.2b.

If the points P1 and P2 are close to each other i.e. if ds, the

distance along the curve is sufficiently small, then the angle between

bl and b2 is defined, from differential geometry, to be

a db/ds -rds (3.4)
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where r (2rp)/((2ra)2+(p/2)2) (3.5)

for a uniform helix of pitch p and radius a.

Thus in general, the orientation of polarization at a point P with

respect to the local normal vector is related to the polarization

orientation 80 at Po by

B Bo - frds (3.6)

Note that if the curve is planar then r-0 (p-0), so that 8-8o as requ-

ired. For the case of a uniform helix, the fiber length s of a helix

of pitch p and radius a is given as

s 2r(a2+p2 )1/2 (3.7)

So, the angle of rotation for a complete helix is given using 1-3 as:

0 - Bo - frds - 2r(p/s) (3.8)

Note that the rotation depends only on the pitch and the length of the

helical fiber.

This is found to agree with the experimental rotation measured for

fibers with different helical geometries. The experiment is discussed

in Chapter 5.
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CHAPTER 4

BERRY'S TOPOLOGICAL PHASE

The topological phase observed in the helical fiber has received a

lot of attention in recent physics literature as a manifestation of

what is now known as Berry's Phase or the Quantum Adiabatic

Phase 19.20) The angle of rotation is then a measure of the Berry's

phase for the photons travelling in the helical fiber. The rotation

predicted by this phenomenon agrees with the classical result discussed

earlier and with the experimenal results22).

The universality of the phase has stimulated a great deal of

interest in physics because it seems to span phenomena as diverse as

atomic physics and classical electromagnetism to modern particle

physics. This phase factor arises from the adiabatic transport of a

system around a closed path in an abstract coordinate system called the

Parameter Space. Such a space describes the variation of the various

parameters on which the Hamiltonian depends. For example, if we have a

Hamiltonian with a changing magnetic field then the parameter space

here is the space representing the magnetic field. In the case of the

photon propagating in an optical fiber, the direction of propagation

is changed,so that the parameter space is the k- space.

The most notable feature of this phase factor is its path depende-

nce. The phase carries information about where the system has been.
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It thus stores the memory of the past.

The origin of this phase can be explained very elegantly by simple

"topological experiment" described here.

Consider a pointer held tangentially on the surface of a globe so

that it is on the equator and parallel to it. Keeping the pointer

tangential to the surface at all times, take it on a closed circuit

around the globe so that it is always parallel to its original directi-

on. Move it around the equator 90°and then move it toward North Pole

along a longitudinal line. Upon reaching the North Pole,move it back

down the longitude that intersects the starting point. At the end of

the circuit, the pointer will have rotated 90°.

The rotation occurs despite the best efforts to maintain the

pointer in a fixed orientation with respect to the local environment.

This is because of the curvature of the sphere. Note that it is

crucial to go around one of the poles to get the rotation. In mathema-

tics,such a phenomenon is known as the parallel transport of vectors.

The curvature of the earth's surface is related to the curvature

of the parameter space. It is this curved surface which gives rise to

the topological phase. Different paths on the parameter space corresp-

ond to different phases.

4.1 GENERAL DERIVATION OF BERRY'S PHASE

The adiabatic evolution of a Quantum mechanical system is descri-

bed by the Quantum Adiabatic Theorem which states that when stationary
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state of a quantum mechanical system undergoes an adiabatic cyclic

evolution then at the end of the cycle the wave function is modified

only by a dynamical phase factor exp(-iEt/h).

The British physicist Michael Berry modified the theorem by

predicting an additional phase factor which depends on the path of

evolution and is known as Berry's phase or the Quantum Adiabatic Phase.

To derive a general expression for this phase let us consider a

physical system described by a Hamiltonian H(R) where

corresponds to the different parameters on which the Hamiltonian

depends. For example, K could correspond to different components of

the magnetic field for a system of an electron in a changing magnetic

field.

Let the system be in a stationary state. From the time dependent

SchrOdinger equation, the time evolution of the state is given by:

H(12*(0)1111(0> iha/atlis(t)> (4.1)

Taking Berry's prediction as an Ansatz, we have from the modified

Adiabatic Theorem,

Ills(t) exp(-iEt/h)exp(i-yn(t))1n(ii(t))

where 7n(C) is Berry's phase.

Substituting 4.2 into 4.1 we get,

-i-rn(t)InCii(t* IvRn(R(t)). R(t)

So, the total phase change around C is given by:

(4.2)

(4.3)
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7n (C) i 5 (n(R)IVZ.n(k)> dit (4.4)

Apply Stoke's Theorem to 4.4, then

7n(C) i ff Vx<nablViz_n(i)>g (4.5)

Let us denote Vn(1) as

Vn(k) V x 01(11.)171n(i1)) = <VnIxlVn>

Now,for any eigenstate In> of the Hamiltonian,

En In:.

Using completeness,we can write 4.6 as:

Vn(R) i03 <VnIm>x<mIVn>

E.4.11 <Vnlm>x<ml Vn>+<VnIn>x<nlVn>

From normalization we know,

<nln>1

so, <VnIn> + <nlVn> 0

i.e. <VnIn> -<nlVn>

ao <Vnhn> x <nlVn> 0

Also,

Hin> EnIn>

so, dHln> + HIdn> Eldn>

<mIVn> <mldHln>/(En-Em)

(4.6)

(4.7)

(4.8)

(4.9)
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Substituting in 4.8, we get

Vn(R) Fein <nIVRHIm>x<m1Voln>/(E.-En)2 (4.10)

So, the general expression for Berry's phase is

7n (C) fIc a :V. (i) (4.11)

where Vn is given by eqn.4.10

4.2 PROPERTIES AND SIGNIFICANCE OF BERRY'S PHASE

The general expression for the phase can give some insight into

some properties of this phase. We note, from eqn.4.6 in section 4.1,

that the expression involves an integrand which is the curl of

vector. i.e.

7n (C) iffc Vx<n(R)IVRn(R)).d;

- iffc vxX d;

where A <n(R)IVRn(R)>

This makes the phase gauge invariant so that it is unaffected by

choices of phases of wavefuction. So, if

In(R)> exp(i8(R))In(R)>

Then,

An(R) An(R) - Vie(*)

So that 7n is not affectod,since V X V 8(r)-0.

The gauge invariace property of Berry's phase brings about the analogy

to the vector potential of elecromagnetic theory and the Aharonov Bohm
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effect, which describes the effect of a vector potential corresponding

to zero field. The Dirac phase factor which multiplies the wave

function in this effect, has been explained as a special case of the

Aharanov Bohm effect. In other words, Berry's Phase has been described

as a generalized Aharanov Bohm Effect.

The gauge invariance of Berry's phase has also been an attractive

feature to study for thoerists. The gauge fields that permeate modern

particle physics also have a strong geometrical character. A connect-

ion has been made in the recent theoretical physics literature between

Berry's phase and such gauge fields". 24,31).

Another consideration of Berry's phase comes about in the Born-

Oppenheimer approximation in molecular physics. This relates to the

adiabatic excursion of electrons in a rotating molecule. It was shown,

that if the internuclear coordinates traverse a circuit within which

the state is degenerate with respect to another,then the electronic

wavefunction acqires an additional phase of 180°. i.e. it changes

sign. This sign change can now be explained as a special case of

Berry's phase25).

As we have seen earlier the geometric phase arises from rather

general considerations and is thus relevant to many areas of quantum

physics82-84).

Condensesd matter applications have been found in the statistics

pertaining to the fractional quantization of Hall effect. Wilzeck and

Zee have presented a generalization of this phenomena to degenerate

subspaces, to show how altered quantization conditions arise in simple

adiabatic systems28.29).
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While these topics are not a subject of our discussion here, they

highlight the relevance and significance of this phenomena to different

fields in physics.

4.3. MANIFESTATION OF BERRY'S PHASE IN PHYSICAL SYSTEMS

4.3.1. PARTICLE IN A MAGNETIC FIELD

The interaction of a spin s particle with a magnetic field is described

by a Hamiltonian19.23)

H(B) kh B.S (4.11)

where k is a constant involving the gyromagnetic ratio

and S is the spin operator with 2s+1 eigenvalues n with integer spacing

and that lie between -s and +s. The eigenvalues of the Hamiltonian

are:

En (B) kJ Bn (4.12)

Here B corresponds to the parameter R in our general analysis.

Since S is in the direction along B, as B is slowly varied, S is

rotated in a circuit. This circuit gives rise to Berry's phase factor

given by

7.(c) f

where Vfl(B) <nIVB.Im>x<m1VBaln>/(E.-En)2

Emsn<nlElm>x<mIsIn>/(m-n)2

(4.13)

(4.14)

Let us rotate the axes so that the Z-axis is along the direction of

B, then

Y2
(Sx+iSy)ln,s> fs(s+1)-n(n+1)] In+1,s>

nin,s>

(4.15)
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From the orthogonality of eigenstates, only the states with m n±1 are

coupled with In> in 4.14.

Making use of 4.15 in 4.14, we get

Vn 1/B2.(knISxin+1><n+11Syln> - <n1Syln+1><n+11S1In> +

<n1SxIn-1><n-11Syln> - <nIS7In-1><n-11SxIn>1)

i.e. Vn(B)n/B1 (4.16)

Since the expressions x.Vn(B) and y.Vn(B) vanish, therefore

Vn(i) nt/83

and consequently,

Arn(C) ff

(4.17)

(4.18)

But this is the solid angle 0 that the closed circuit C subtends at

B-0. So, from 4.16, we have the geometrical phase factor as

exp(i7n(C))exp(-infl(C))

4.3.2 PHOTON IN A HELICAL FIBER

The photon in a massless spin-1 boson. A photon propagating along a

direction K can be described by its helicity defined as S.K where s is

the spin of the photon. If we denote the photon state as Ik(t)> then

it always satisfies")

1.RIk(t): Ik(t))

Here t represents the optical path and is the helicity quantum number.

The helicity of a photon is always ±1. For an adiabatic propagation,
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the helicity of the photon is invariant so that the helicity quantum

number is conserved.

Consider light propagating inside a helical single mode fiber. As

it propagates smoothly down the helical waveguide, K is constrained to

remain parallel to the local axis of this waveguide, since the momentum

of the photon is along this direction. Since its helicity is adiabat-

ically conserved, S is also constrained to remain parallel to the local

axis of the waveguide. Thus as the photons propogate down the wavegu-

ide the photon spin traces a loop in the parameter space (Kx,Ky,Kz).

Then following the discussion in the previous section,the geometric

phase of the photon is given by

7n(c) ± D(C)

where 0(C) is the solid angle subtended by the loop C with respect to

k-0, i.e. the solid angle subtended by the closed path of K in K space.

In the case of a uniform helix,this is C is a circle so that:

0(C) 2x(1-cos8)

Now, how would this phase be detected in this case?

Consider linearly polarised laser light be launched into the fiber.

Then the initial state may be represented as:

Ix> - 1/i2 (1±> + 1->)

where, 1± are the eigenstates corresponding to a ±1. After

propagation through the fiber the final state of the photon acquires



the geometrical phase, so that

IX') - 1//2 (1+>exp(i7.) + exp(-i7,01->)

Therefore,
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1<X1X' >12 - cos27.

By Malus's law, this implies that the plane of polarisation has rotated

by an angle which is equal to 7.

Thus the rotation of polarisation observed in a helical fiber can

be understood as a manifestation of Berry's phase.

An experiment to verify this phenomenon will be discussed in

Chapter 5.
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CHAPTER 5

AN EXPERIMENT TO MEASURE THE TOPOLOGICAL

ROTATION OF POLARISATION IN A LOW BIREFRINGENCE

SINGLE MODE OPTICAL FIBER

The objective of the experiment was to measure the rotation of

polarization of a low birefringence, single mode fiber following a non-

planar path and to verify the manifestation of Berry's topological

phase for photons propagating in such a fiber.

Helices with different harmonics of deformation were used as the

non-planar path of the fiber. Special care was taken to avoid other

birefringence effects caused by twisting and bending the fiber. An

analysis of birefringence induced by the stress due to bends and twists

was also done.

A computer controlled system to measure the rotation of polarizat-

ion was designed for the experiment.Within experimental errors, the

results of the experiment were found to be in good agreement with the

theoretical calculations.

5.1.1 EXPERIMENTAL SETUP

The experimental setup is shown schematically in fig.5.1(a).

The setup consisted of a 5 mw, 633nm He Ne laser, a single mode

fiber and a hollow cylinder. The optical fiber was inserted in a loose

rubber tube and then wrapped around the cylinder in a helical
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Fig. 5.1. Schematic of the experimental setup.
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path. The rubber tube ensured that the fiber was free from torsion.

At the input, the fiber was firmly held by placing the loose tip

of the fiber on a groove carved on a piece of cork and fixed on a

stand on an optical bench. This held the fiber firmly in place while

introducing negligible amount of stress birefringence at the ends. The

rest of the fiber, which was in the rubber tube, was relatively free

from torsion as it was allowed to move freely within the tube and was

also free from any friction introduced while bending the fiber on the

cylinder.

The cylinder was clamped on holders on the same optical bench.

This ensured the stability of the system. The input and output ends

of the fiber were made exactly parallel to each other by placing the

ends on stands of exactly the same height and by placing the fiber ends

parallel to the optical bench. The propagation directions at the input

and output were thus in the same plane and parallel to each other.

5.1.2 SPECIFICATIONS OF COMPONENTS

LASER: 5 mw He-Ne 633 nm laser

COUPLER: Focusing Lens:30 mm focal length

X-Y fiber holder

FIBER: Newport Single mode, step index fiber (F-SV) with Silica core

and cladding
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V number: V 2.19 at 633 nm

Numerical Aperture: NA 0.11

The output of the He-Ne laser was linearly polarized. The

polarization was measured by placing a polarizer analyser combination

at the input end. With the direction of polarization along the Y axis,

the light was launched into the fiber by a focusing lens and a x-y

holder.

A 30 mm lens was used to focus and collimate the beam. To get a

good coupling, the fiber tip had to be stripped of the cladding, so

that light would be coupled into the core rather than the cladding.

This was done by dissolving the cladding at the tip in methyline

chloride solution. Stripped of the cladding, it was easy to couple

light into the core of the fiber.

A flat end face without any cracks or defects was also required

for obtaining good coupling. This was achieved by cleaving the fiber

tip with a sharp razor blade or a special fiber cleaver. The small

nick from the sharp cutter propagates through the fiber without

introducing cracks or defects in the fiber. This was necessary in

order to get the correct beam shape and good coupling.

The other factor that affected the coupling was the alignment of

the fiber with the focused laser beam. As discussed in Chapter 1, the

angle of the incident beam has to be within the numerical aperture of

the fiber. Also, the electromagnetic field distribution of the laser

beam has to match the profile of the mode propagated by the fiber. A

single mode fiber propagates the HE11 mode. For a graded index fiber,

this is approximated to be a Gaussian distribution:
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wo a[0.65+1.619V-1-5+2.879V-6]

where a is the core radius

wois the radius of the 1/e2 intensity point of the beam.

This was calculated to be 2.3 mm.

The spot size of a focusing lens is given by:

wr fA/rwin

For our lens, this was found to be 3mm., which was too large to attain

optimum coupling. The coupling efficiency, i.e. the ratio of the input

light intensity to the output intensity was found to be approximately

30%.

5.1.3 DETECTION AND DATA ACQUISITION

The polarization axis of the linearly polarized light launched

into the fiber was aligned at 90° of the polarizer at the input. Thus

the minimum of the input intensity was at the 0° position of the

anlyzer. The light coming out of the fiber was passed through a

rotating polariser. The changing intensity of the output light was

measured by a negative biased photodiode.

The electrical signal from the photodiode was suitably amplified

and then sent to a computer through an 8-bit analog to digital

converter. The digitized signal was stored in an IBM-PC/AT. The

varying light intensity was thus recorded by the computer which was
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able to plot a graph of the intensity.

It was possible to average out the random fluctuations in the

intensity by using signal averaging. The computer drove a stepper

motor rotating the polarizer with 720 steps per rotation. Taking 100

readings per step, slow enough to average out the fluctuations, we

were able to get a smooth sine-wave. The resolution of the graph was

1/2°. The minimum or maximum intensity points on the graph were used

to measure the polarization. The polarization rotation could be

determined from the shift in the minimum or the maximum of the

intensity plot.

A sample plot is shown in fig.5.2.

The angle of rotation for different geometries of the fiber was

thus measured with respect to that of the polarisation at the input of

the fiber.

The rotation angles were measured with respect to the output

polarisation of the straight fiber as the zero reference.

An uncertainty of measurement of about 3°, was estimated in the

data analysis of section 5.4.

5.2 THEORETICAL CALCULATION OF THE ROTATION

In order to form the nonplanar path of the fiber, a paper with a

computer generated curve was wrapped on a cylinder and the fiber was

laid on top if this curve. This formed the nonplanar path of the

fiber. The curves were uniform helices or helices with one harmonic of
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deformation. An example of such a curve is shown in fig.5.3a.

Let the horizontal axis of the paper be the Z axis and the vertical

axis be the axis.

Then, using cylindrical co-ordinates, (r, 0, z), the equation of a

non uniform helix is:

z/r (p/2wr)0 + Asin0

where p:pitch of the helix as shown in the figure

r:radius of the helix

A:variable parameter called a harmonic of distortion

(5.1)

A-0 corresponds to the case of a uniform helix.

Thus different curves were generated for different values of A on the

same cylinder. The experiment was also repeated for two other cylind-

ers with different dimensions.

As can be seen from fig.5.3a, when the curve is unwrapped onto a

plane, using cylindrical coordinates (r, 0, z) we have

tan 0(0) (d4 /dz) (5.2)

where 9(4) is the angle between the local waveguide axis and the helix

axis as shown in fig.5.3.

Following Berry's theory, this traces out a closed circuit C on

the surface of a sphere representing the momentum space. The solid

angle in space subtended by C with respsect to the centre of the

sphere is then given by
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0(C) - 1- oo(8(0)) 80 (5.3)

For the case of the uniform helix, we have, from equations 5.1 and 5.2,

cos(9(0)) p/s

0(C) - 2r(1-p/s) (5.4)

which was the same result derived by using the classical treatment for

the case of a uniform helix.

So that,

Again from equations 5.1 and 5.2 :

dO/dz-1/((p/2)+Acos8(0))

cos(8(0))-(1+tan(8(e))-'4

cos(8(0))-(1+r[1/((p/2)+Acos(0)]&

The integral 5.3 was then evaluated numerically on a computer for

different values of A to calculate the corrponding value of the

expected rotation.

5.3 DATA ANALYSIS

Theoretical and experimental values of rotation are compared and

are found to be in good agreement with each other. Table 5.3 shows the

experimental and theoretical values of rotation of polarization for
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each cylinder with different harmonics of deformation A. Figures

5.4(a,b,c) show plots of theoretical and experimental values of

ritation, in radians, for different helices on cylinders with different

dimensions.

The straight line indicates good agreement between thoery and

experiment.
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TABLE 5.3

MEASURED AND CALCULATED VALUES OF ROTATION FOR

DIFFERENT CYLINDERS AND DEFORMATIONS

(IN RADIANS)

cylinder 1 cylinder 2 cylinder 3

A

r1-6.8cm ; p1 -130cm r2-10cm ; p2-80cm

Theory Experiment Theory Experiment

r2-14cm ; p2-43cm

Theory Experiment

0 0.27 0.31 1.27 1.37 3.45 3.51

0.3 0.25 0.35 1.42 1.54 3.90 3.95

0.6 0.40 0.38 1.83 1.87 4.40 4.38

0.9 0.45 0.43 2.15 2.22 4.45 4.50

1.2 0.62 0.50 3.15 3.10 5.22 5.10

TABLE 5.4

BEAT LENGTHS OF BEND INDUCED BIREFRINGENCE

FOR DIFFERENT CYLINDERS

cylinder 1 cylinder 2 cylinder 3

r1-6.8cm

p1-130cm

Beat length

r2-10cm

p2-80cm

r2-14cm

p2-43cm

(rad/meter) -0.1 -0.7 -0.17

Fiber length (m) 628 90 37

21r /Lb (rad) 0.01 0.06 0.16
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5.4 ERROR ANALYSIS

The various possible experimental errors due to other

birefringence effects and the measuring systems are analysed in this

section.

5.4.1 ROTATION DUE TO OTHER BIREFRINGENCE EFFECTS

The calculations of the rotation were done assuming negligible

birefringence due to other effects such as stress, twist, torsional or

bend induced birefringence.

The errors due to these effects will be calculated .

1.BEND INDUCED BIREFRINGENCE:

The linear retardatoin due to bend induced birefringence for a

fiber with outer radius r is given by

Pb Brk >1

where k is the curvature of the bend

B is constant 1.7*107 deg/m

For a uniform helix of pitch p and radius a is given by:

k a/(a2+p2) >2

This, however will not give an exact value of the retardation due to

the bend induced birefringence. For an exact calculation, we would
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have to consider the coupling between linear retardation and circular

birerefringence due to geometric rotation. It would be necessary to

use Jone's calculus to get an exact value of the bend induced rotation.

A good estimation can be obtained by comparing the beat length of the

linear birefringence with the length of the fiber. The beat length is

given by:

Lb 27r/Bb

Table 5.4 shows the different beat lengths of the bend induced birefri-

ngence for different cylinders and the relative errors.

2.TWIST INDUCED BIREFRINGENCE

The circular birefringence induced by a torsional stress due to

twists is given by:

At gr

where g constant 0.16

T - twist rate (rad/m)

for a uniform helix of pitch p and radius r,

r [p/2+2(r1 )/p1-4

For this value of g, it can be seen that even small twist rates contri-

bute significantly to the rotation of polarization. However, twist can

be avoided by guiding the fiber loosely rubber tube such that it can

detwist easily. This was done by inserting the fiber into a rubber

tube. The fiber then had sufficient room to detwist when it was

wrapped around the cylinder. Looking at the ease of moving the fiber
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in the tube even after wrapping it on the cylinder and the good

agreement of the experimental and theoretical vaues, we can conclude

that the tubing reduced this effect considerably.

3.INTRINSIC BIREFRINGENCE

The intrinsic circular and linear birefringence due to anisotrop-

ies in the fiber core and other fabrication defects was measured by

laying the fiber straight and launching linearly polarized light

through it.

We could not measure any rotation of polarization or ellipticity

for the straight fiber with the sensitivity of our measuring system.

The rotation of polarization caused by these birefringence effects must

be less than 0.5, the sensitivity of the measuring system used.

5.4.2 ERRORS DUE TO THE MEASURING SYSTEM

The shift in the positions of the minima of the intensity plot was

considered as a measure of the rotation of polarization for different

paths of the fiber. The finite width of the minima thus introduced an

uncertainty in the measurement which was of the order of 2°.

5.5 EXTENSION OF THE EXPERIMENT TO FARADAY ROTATION:

As discussed in Chapter 2, a magnetic field applied longitudinally

along a fiber will induce a circular birefringence through the Faraday
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effect. The rotation due to a coil of N turns, carrying a current I

per turn, is given as:

Of VNI

where V is Verdet's constant 4. 6 6*10-6 rad/amp

The setup to measure the geometric phase canm be used to measure

Faraday rotation. Since the value of V is of the order of 10^-6 only,

even a fairly large current would result in a relatively small rotat-

ion. This usually comparable to other linear birefringence effects

found in the fiber. The circular birefringence effects due to the

geometric phase and Faraday rotation togather would be large enough to

quench other linear birefringence effects.

To measure Faraday rotation, we can wrap a coil of N turns over

the helical fiber with N turns. The rotation with and without any

current through the coil could be measured using the system described

above.

The corresponding intensity plots, when subtracted from each other

would yield a value of Faraday rotation to a good approximation.

This could form the basis to develop a non contact current measuring

optical fiber device.

If a current carrying coil was wound over the helical fiber then

the Faraday rotation would add to the geometric rotation of Berry's

phase.

The intensity plots with the magnetic field on and off could be

subtracted from each other to give a value for the Faraday rotation.
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CHAPTER 6

SUMMARY AND CONCLUSIONS.

The experiment verified the manifestation of Berry's phase for

photons propogating in a helical waveguide.The theoratical and experim-

ental values of rotation of polarization were in good agreement.The

errors and uncertainties involved in the experiment were found to be of

acceptable magnitude.

It has beeen debated in recent physics literature,that this does

not confirm Berry's phase at the quantum mechanical level,since a laser

beam was used in the experiment.This corresponds to an enormous number

of photons in a single coherent state, rather than a single photon.

The experiment, however, does support the topological feature of

classical electromagnetic theory which originates at the quantum

level,but survives the correspondence limit into the classical level.In

that sense, it is analogous to the Aharanov Bohm effect seen in

electromagnetism and is explained at the level of quantum mechanics.

It should be noted that Berry's phase for neutrons has recently been

verified experimentally.

Berry's phase thus provides a base for an interesting discussion

of the correspondence between classical and quantum physics. The

derivation of the geometric phase using boundary conditions of electro-
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magnetic theory and parallel transport of vectors yields the same

result as that predicted by Berry,for the case of a nonuniform helix.It

would, however, be a nontrivial problem to derive it for the more

general case of, say, a uniform helix.

The experiment also facilitated an interesting study of polarizat-

ion properties of a helical fiber,which is important in the context of

the present fiber technology.
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