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The goal of this thesis is to advance the methodology and thought regarding the transferability of 

ecological estimates of ecosystem services.  Conceptually and in practice, ecological estimate transfer 

parallels economic benefit transfer in ecosystem services research and policy, yet the literature for benefit 

transfer predates ecological estimate transfer by several decades.  The economic benefit transfer literature 

has identified context similarity to be a major prerequisite for the accurate transfer of economic estimates. 

This thesis applies approaches and lessons learned from economic benefit transfer to develop a framework 

for conducting ecological estimate transfers and a structure for describing ecological contexts.  

Despite the need and utility of ecological estimate transfers for data-limited ecosystem services 

research and policy there lacks a consistent method for evaluating such transfers across contexts. This thesis 

proposes a framework for describing and evaluating contextual variables in order to add consistency and 

rigor to transferability practices. Such guidance is needed in order to assess the need for more sophisticated 

treatment of uncertainty and error. The relationships between structural or ecological elements (i.e., context) 

and specific ecological processes (i.e, the data generating processes, or production functions) may be 

numerous and complex, however, broadly the nature and existence of ecological processes may be 

described in terms of its scale and location, termed here the ‘contextual reference frame’. The contextual 



reference frame is proposed in this thesis as a structure for ecological contexts and basis for transferability 

assessment to identify and explore sources of transfer error. 

Assumptions and challenges inherent in transferability assessment are illustrated in a case study of 

benthic microalgal primary production (BMPP) estimates, which reflects data and parameter transfers used 

in fisheries-habitat ecosystem service assessments.  The case study applies the framework approach to 

qualitatively and quantitatively explore contextual variables and determine a basis to transfer estimates 

from the literature to a hypothetical policy site. The case study highlights the relative utility of simple 

univariate (ANOVA) and more complex multivariate classification methods (CART) analysis.  

This thesis finds that the proposed framework facilitates the representation of the major sources of 

error and uncertainty associated with transfers. Benefit transfer practices have increased the awareness and 

exploration of transferability limitations in policy and research applications. Use of the framework can 

promote analogous awareness and future research may increase the consistency and reliability of ecological 

estimate transfers. The case study finds that future research should focus on replicating transferability tests 

across contextual levels and variables to develop better indicators of transfer reliability and define 

acceptable limits of transfer error and uncertainty.  
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GLOSSARY OF TERMS 

 

Ecosystem Services: The benefits people obtain from ecosystems, as both goods and services that are 

 tangible and intangible (Millennium Ecosystem Assessment 2005). 

Benefit Transfer: “The [application] of existing estimates of nonmarket values to a new study which is 

 different from the study for which the values were originally estimated” (Boyle & Bergstrom, 

 1992). 

Ecological Estimate Transfer: The application of existing estimates of ecological structures or processes 

 to a new study which is different from the study for which the estimates were originally 

 estimated. 

Data Generating Process (DGP): The mechanism through which estimates (either economic or ecological) 

 are produced in reality. Models and functions are representations of the ‘true’ DGP.  

Meta-Analysis: The synthesis, analysis and summary of a collection of studies (Osenberg et al. 1999). 

Scale: The space over which processes are observed and defined by. Indexed by both extent and grain. 

 “The spatial scale of ecological data encompasses both grain and extent” (Wiens 1989; Turner et 

 al. 1989). 

Extent: “the overall size of the study area. For example, maps of 100 km2 and 100,000km2 differ in extent 

 by a factor of 1000.” (Turner et al. 1989) 

Grain: “the resolution of the data, i.e., the area represented by each data unit. For example, a fine-grain 

 map might organize information into 1-ha units, whereas a map with an order of magnitude 

 coarser resolution would have information organized into 10-ha units.” (Turner et al. 1989) 

Contextual Reference Frame: Structure proposed by this thesis to describe the context of a study or 

 estimate in terms of its spatial, temporal and ecological organizational scale in terms of both 

 extent and grain of scale. The contextual reference frame also refers to the point location of the 

 study or observation which can be described spatially, temporally and ecologically as well.  

Context: The space within which investigations are conducted and to conclusions apply. Includes the 

 reference frame and other factors and variables which affect an estimate’s value. 

Extrinsic contextual variable: Study or site features that may not be useful for describing an ecological or 

 economic process within a site but may be useful for describing differences in process across sites 

 (e.g., factors or features that are constant across original sites such as geographic setting or habitat 

 type). 

Intrinsic contextual variable: Theoretically or empirically important core driving variables for a given 

 ecological or economic process. 

Scaling: transfer of information across scale levels i.e., interpolation and extrapolation. 

Transfer error: Difference between the transferred estimate and the ‘true’ estimate for a given site where 

 the ‘true’ estimate may be known (as in validation tests) or unknown. Major contributions to this 

 error are measurement error, publication bias and generalization errors. 
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1. Introduction 

  There is increasing demand to describe and account for the values and uses that humans 

obtain from ecosystems in decision-making and management (Pearce et al. 1989; Daily et al., 

2009; EPA, 2009). However, comprehensive descriptions of these benefits, referred to as 

ecosystem services, and their production can be limited either because some services and their 

connections to human benefit are less well understood (e.g., biodiversity), or because particular 

services have not been studied for the contexts (e.g., location, ecosystem type, or scale) for 

which assessments are desired. In particular, quantifying multiple ecosystem services for a given 

context is often difficult due to the quantity of multidisciplinary information that is required. In 

part, this creates a demand to directly apply existing estimates of ecological production, even 

though the original context (i.e., the study site) of the estimates often differs from where the 

estimate is needed (i.e., the policy site). Additionally, management relevant ecosystem service 

information may seek to incorporate information concerning the ecological production of 

ecosystem service endpoints in order to trace changes in ecosystem structure (such as habitat 

conversion), species composition or ecological processes to ecological endpoints that humans 

use and value. Such ecological production functions, which describe the quantitative 

relationships between goods and services and the inputs required to produce them (Barbier 2007) 

are important for assessing trade-off and scenarios (Granek et al. 2010).  

While methodologies exist to analyze the transfer of economic ecosystem service values 

(e.g., benefit transfer), there is no analogous formalized approach for the transfer of ecological 

data for estimating ecosystem service production. As a result, data may be transferred with little 

to no identification or analysis of uncertainties associated with differences in study and policy 

site contexts, or comparisons to other sources of error. Ecological estimate transfer represents a 
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useful tool for research, policy and management to gain ecosystem service information when 

primary research is not available, however guidance is needed for assessing assumptions, trade-

offs, and the need for primary research. This thesis works to apply foundational principles from 

benefit transfer, in particular the role of context similarity, for evaluating transfer errors in 

ecological estimate transfers.  

1.1 Examples of Ecological Estimate Transfer for Ecosystem Service Production 

One of the most notable examples of economic ecosystem service value transfer is from 

Costanza et al. (1997). However, less recognized is that this study also transfered ecological 

estimates. In this paper, worldwide economic values were estimated. In their estimation of 

services worldwide by biome, ecological estimate transfers across space and scale were utilized. 

For example, food production as an ecosystem service was calculated for estuaries by relating 

primary production rates of these systems to the fish production rate in these systems, and by 

applying an average price to obtain the ecosystem service value in dollars per year (see 

supplementary information for Costanza et al. 1997). However, the average primary production 

rate used in this calculation comes from ten U.S. East and South-East coastal estuaries (Houde 

and Rutherford 1993), and is applied as an average to the areal extent of estuaries globally.  

Examples of ecological transfers can be found across the ecosystem services literature. It 

may be difficult to map or model multiple ecosystem services production on a landscape due to 

the lack of sufficient biophysical information in the desired location. For example, Egoh et al. 

(2008) utilized previous model results, specifically the median annual runoff in order to map 

multiple ecosystem services production in South Africa. It may also be desirable to express the 

importance of particular ecosystem services using a synthesis of available data. For example, 
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Grabowski et al. (2012) valued services provided by oyster reefs. However, Grabowski et al. 

(2012) use an average estimate from a biogeographic region (southeastern United States) in their 

calculations and apply to oyster reefs generally. Kroeger and McMurrary (2008) survey 

ecosystem services provided by Yaquina Bay, Oregon. In order to estimate carbon sequestration 

rates in saltmarsh ecosystems, the authors synthesize estimates from across the literature. The 

estimates reported included a recent average estimate from four California saltmarshes, a 100-

year average from San Francisco South Bay, and an average rate of tidal marshes in the 

conterminous U.S. The authors used the highest estimate (the U.S. average) and the lowest 

estimate (the California average) to construct high and low scenarios.  

Across these studies, assumptions regarding the applicability and accuracy of transfers 

for the intended purpose are inconsistently discussed and investigated. For example, studies 

which aggregate estimates as an average may use a similar habitat or ecosystem type as the 

stated filter, or basis for transfer. With respect to these studies it can be unclear what the 

definition of the ecosystem type is (e.g., a particular classification scheme), and whether this is a 

valid approach for selecting estimates. Explicit comparison of transferred values in terms of 

other sources of accuracy such as the method used or the variability around the estimate may also 

be unstated. In addition, the effect of variability (real or simulated) around a chosen mean 

estimate on the final assessment or model results may also not be acknowledged.  

While many different goods and services’ production can be described in terms of 

transferred ecological information, this thesis focuses on a particular service, the importance of 

aquatic and coastal habitats for fisheries production (habitat-fisheries services). This service 

describes the value of habitats for fishery support as refugium, food, or nursery support (Barbier 

et al 2011). 
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1.2 Need for Transferability Assessment: Evidence from GecoServ 

The Gulf of Mexico Ecosystem Service Valuation Database was queried (GecoServ, 

Plantier-Santos, Carollo, and Yoskowitz 2012) to identify studies that estimated the value of 

coastal habitats to fisheries. Studies from this database were utilized for a few reasons including 

that the database records information on the value, service, valuation method, country of study, 

and ecosystem type. This was particularly useful since it was hypothesized that values identified 

as elicited using the production function approach (alternatively, production method) would be 

more likely to use or link ecological production functions to economic values, and thereby rely 

on ecological information of ecosystem services production.   

Thirty-five valuations of habitat value were exported from GecoServ in September 2013, 

from 26 studies of several ecosystem types including saltmarshes, combined freshwater and 

saltwater marshes, and seagrass meadows (21, 7 and 7 valuations respectively). Potential 

ecological estimate transfers were investigated if a study noted the use of information from 

another study or from the literature and were recorded as transfers if information was from a 

different context, usually a different location, scale or ecosystem. Ecological estimate transfers 

were utilized in 10 of 26 papers and underly 9 of 19 reported estimates that utilized either a 

production method or benefit transfer approach. In total, this represents 12 of the total 35 

estimates in the database for the reviewed ecosystem types.  Therefore, over one-third of the 

economic valuations surveyed in this small study relied upon transferred ecological data, 

increasing to nearly one half of studies when considering only those which utilized the 

production method or a benefit transfer approach. However, the validity of any given transfer 

was not assessed in this initial survey.  
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The observed prevalence of ecological estimate transfers represents an important issue 

especially given the stated importance of  the ecosystem service production method, or other 

approaches that are able to relate environmental changes to changes in human benefit (Barbier 

2007; Daily et al. 2009). Parameter estimates of primary production rate or natural mortality rate 

were commonly extracted from the literature. However, justifications regarding the suitability of 

transferred estimates for the given study varied. For example, some researchers prioritized 

estimates from proximate geographic locations (e.g., Feagin et al. 2010), or aggregated estimates 

across similar ecosystem types (e.g., Johnston et al. 2002). Some explicitly compared the range 

of estimates chosen for transfer (e.g., from a similar geographic range) to other potential 

estimates from a different contextual scope (e.g., from a global range), to illustrate differences 

and potential context dependencies (e.g., McArthur and Boland 2006; Kroeger and McMurrary 

2008), however many others did not present such a comparison or validation for the chosen 

transfer approach (e.g., Watson, Coles and Lee Long 1993). Therefore, it appears that often a 

priori assumptions concerning the potential similarity or applicability of estimates for ecosystem 

service models are treated inconsistently in the available literature. While there may be logical or 

theoretical reasons to expect ecological estimates to be more similar if closer together in space, 

or collected in similar ecosystems, the relationship and interaction of these features may be 

important. Is geographic proximity or ecosystem similarity sufficient for valid transfers? For 

example, for a policy site in California is an estimate from California 40 years ago more reliable 

than a more recent estimate from similar ecosystems in Oregon?  In addition, is a single site 

transfer between a very similar policy and study site more reliable than an average value transfer 

based on several more dissimilar study sites? Such questions are worth investigating, in order to 
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understand the effect of transfer assumptions and to foster the utility of ecosystem service 

research for policy applications.  

As has been done for economic estimates, this work hopes to bring attention to ecological 

estimate transfers and related sources of error. In addition, this work suggests a potential method 

to facilitate the exploration and acknowledgement of ecological estimate transfer limitations. 

Drawing from key concepts of benefit transfer, this thesis presents a framework by which the 

accuracy of ecological estimate transfers may be assessed based on comparisons of the 

ecological contexts at study and policy sites, and on comprehensive evaluation of assumptions, 

sources of error, and uncertainty. This framework is then used to analyze the transferability and 

of benthic microalgal primary productivity rates to hypothetical policy site using a large number 

of estimates from coastal sites globally. While not specifically ecosystem service production 

estimates per se, benthic primary production and other primary production estimates may be used 

as parameters in habitat-based, coastal fisheries production studies and models (Barbier et al. 

2011; Costanza, Farber, and Maxwell 1989; Johnston et al. 2002; McArthur and Boland 2006).  

This analysis serves to illustrate the potential utility of the framework and associated graphical 

and statistical methods to evaluate the transferability of ecological data, such as those useful 

estimating for ecosystem service production.  

2. Benefit Transfer: Conceptual Foundation for Ecological Estimate Transfer  

The need for time and cost effective surveys and assessment of ecosystem service values 

as part of mandated cost-benefit analyses has prompted the study of economic value transfers 

between sites (Bergstrom and De Civita 1999). While the use of benefit transfer was common as 

early as the 1980s, it wasn’t until the early 1990s that researchers began to formalize procedures 
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and protocols (Johnston and Rosenberger 2010). At present, this literature spans the theoretical 

implications and repercussions for validity and precision resulting from this practice to guiding 

frameworks developed for academics, policy-makers and managers to help assist decision-

making about how to perform transfers (Ranganathan et al 2008). In part, this has resulted in 

widespread recognition and acknowledgement of the term ‘benefit transfer’ in the literature, so 

that those who utilize it in their research commonly self-identify the practice (Brenner et al. 

2010; Camacho-Valdez et al. 2013; Kubiszewski et al. 2013).  

2.1 Benefit Transfer Framework for Transferability 

As previously mentioned, there is extensive guidance for benefit transfer inside and out 

of the academic literature (Boyle and Bergstrom 1992; Desvousges, Johnson and Banzhaf 1998; 

Bergstrom and De Civita 1999; EPA 2000; Loomis and Rosenberger 2006; Navrud and Ready 

2007). A framework that presents major components and considerations for conducting benefit 

transfer comes from within an EPA report for preparing economic analyses (EPA 2000). This 

framework serves as a compelling basis to define an analogous framework for the transfer of 

ecological estimates given its components are applicable overall. Addressing uncertainty in terms 

of contextual similarity in addition to other sources is a major component of the EPA framework. 

It also notes the importance of reporting and assessing assumptions: 

“Benefit transfer involves judgments and assumptions. Throughout the analysis, the 

researcher should clearly describe all judgments and assumptions and their potential 

impact on final estimates, as well as any other sources of uncertainty inherent in the 

analysis.” (EPA 2000, p.87) 
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In order to support the application and re-interpretation of a benefit transfer-based framework, 

next major sources of error in benefit transfers will be outlined and compared to errors described 

for ecological studies.  

2.2 Sources of Error and Uncertainty in Transferred Values 

The benefit transfer literature has identified that the primary contributions to the total 

errors associated with transfers of economic value are primary study measurement error, 

publication bias, and site correspondence error (or generalization error) (Liu et al. 2011; 

Rosenberger and Stanley 2006).  

Measurement error is the variability in the original estimate that arises during data 

collection due to analytical imprecision and natural random error. This reflects the potential 

divergences between a true underlying value and the primary study estimate (Rosenberger and 

Stanley 2006). Measurement error is nearly identically described for ecological analysis. 

Measurement errors occur during the collection and analysis of ecological data, including 

random error, instrument bias (for example, thermometers and salinity probes) and 

methodological choices such as the those concerning the inclusion and adjustment of data 

(Sugihara and May 1990). This refers to how data are included or excluded from final data used 

for summary statistics or model building, or if data was adjusted before analysis. For modeled or 

statistically derived estimates, this also includes variation left unexplained by the model (Guisan, 

Edwards, and Hastie 2002). 

 Publication selection bias refers to the nature and value of published estimates that may 

not be representative of empirical evidence (Rosenberger and Stanley 2006). Publication 

selection bias results as an artifact of preferentially publishing statistically significant results or 
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those that are consistent with theoretical expectations. Data may go unpublished because they do 

not meet study-specific objectives (i.e., data are legitimately pruned by the investigator) or they 

are not sufficiently novel to meet editorial requirements (i.e., a manuscript is rejected by a 

journal), yet those data may still be useful for value transfer. These biases have important 

implications for the validity of estimate distributions (e.g., the completeness of the distributions), 

therefore affect meta-analyses which depend on the statistical independence and representative 

distribution of values.  This can lead to inaccuracy of a predicted estimate’s central tendency or 

variability. These biases have important implications for the validity of estimate distributions, 

therefore especially for meta-analyses since it affects the independence and distribution of 

values, skewing both estimates of central tendency and variability towards a value other than the 

‘true’ value. Such issues are not unique to economics and have been the subject of discussion in 

ecological disciplines as well (Leimu and Koricheva 2004; Lortie et al. 2007; Nakagawa 

2004).That said, publication error is difficult to detect and measure, because the investigator 

seeking to account for it usually cannot know what is not reported. 

Generalization error is defined as uncertainty arising from the transfer process as a result 

of differences in context between locations where the original measurements were made 

(hereafter, study site) and the location to which the estimate is to be transferred (hereafter, policy 

site) (Johnston and Rosenberger 2010). The extent of generalization errors has been quantified in 

the benefit transfer literature, usually using tests of convergent validity. Tests of convergent 

validity correspond to validation techniques used in ecology (Rykiel 1996). Generalization errors 

have been compared across U.S. states (Vandenberg et al. 2001); European countries (Bateman 

et al. 2011); and various scales (Johnston and Duke 2009). Generally, it has been found that the 

magnitude of transfer errors decreases as site similarity increases although exceptions have been 
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noted (Johnston and Rosenberger 2010), which will be discussed later. Therefore, site similarity 

is often referred to as a fundamental requisite (Johnston 2007; Spash and Vatn 2006). The 

importance of site similarity for point estimate transfers is emphasized because they often cannot 

easily be adjusted for differences, as opposed to models with the potential to tailor estimates for 

policy sites (Boyle et al. 2010; Jiang, Swallow, and Mcgonagle 2005). That is, models can be 

adjusted or calibrated for differences in context by using or deriving policy site specific 

parameters from data that is associated with the policy site. 

 The previous discussion supports that a benefit transfer approach serves as a useful 

foundation for an exploration of and framework for ecological estimate transferability. Firstly, 

foundations and pressures to transfer ecological estimates and economic estimates between 

studies for use in ecosystem service assessments are similar. Secondly, major sources of error as 

identified benefit transfers have direct analogs in ecological estimate transfers. Thirdly, benefit 

transfer theory and methodologies have been distilled into simple, policy-informative guidance 

frameworks that are useful for researchers and managers, which might be similarly developed to 

guide ecological estimate transfer.  

Because of the key importance of context similarity for the transfer of point economic 

estimates, this requirement, and generalization error generally, receive focal attention in the 

development of a framework for ecological estimate transfers. However, defining ecological 

“sites” or “contexts” requires deeper discussion. In the next section economic contexts will be 

explored in order to support a definition of ecological contexts.   
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2.3 Economic Contexts in Benefit Transfer 

Lists of conditions for site (context) similarity vary between studies but most include 

similarity across the following: the environmental good studied, its quantity and the change in 

quantity/quality; the population; market characteristics; institutional setting; temporal differences 

between the primary data collection and that of the policy site; and geographical location (Spash 

and Vatn 2006; Stapler and Johnston 2008; Zandersen, Termansen, and Jensen 2007). 

Differences in these requirements have been attributed to the lack of a formal definition of 

similarity or the elements over which similarity may be measured (Johnston 2007). Using these 

site-similarity conditions (as listed above) three general requirements are observed: Firstly, 

similarity in the process or estimate that is needed/transferred (e.g., the environmental good 

studied, change, quantity and change in quantity and quality, extent of the market); secondly, 

similarity in core theoretically important drivers (e.g., conceptual and methodological 

foundations used) and thirdly, similarity across variables that are not necessarily core variables 

or drivers of the original estimate but have been shown to be useful to explain variation between 

economic values (e.g., geographic location). These conditions may be further described as 

‘intrinsic’ and ‘extrinsic variables’, or variables that are or could be used to describe the 

production of an estimate at a given site, and variables that could be used to explain differences 

between sites, respectively.  

Both intrinsic and extrinsic contextual variables are important to defining the overall 

context of a study or policy site. Intrinsic contextual variables are study features that can be used 

to explain variation in an estimate within a site. These are the direct causal factors that 

theoretically drive the demand for the good or service, and are typically used as predictor 

variables in economic models. Extrinsic contextual variables are factors that may be correlated 
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with the estimate, particularly among study sites, and include general site characteristics (e.g., 

geographic location or time of measurement) that vary across sites but are relatively constant 

within a site.  That said, extrinsic contextual variables may actually be surrogates (i.e., proxies) 

for driving factors, or contain driver variables hidden within a composite variable, that are not 

sufficiently well  understood to be included as “intrinsic” variables.   

Several assumptions are necessary to describe a site in terms of contextual variables. The 

theoretical basis that ties both intrinsic and extrinsic characters to the response variable in question 

(i.e., the “estimate” to be transferred) is the assumption that the response is a function of observable 

characteristics. Consistency across observable characteristics confers similarity in the mechanism 

which produces the estimate (the data generating process or DGP) and therefore in the estimate in 

question (Boyle et al. 2009). Observable characteristics are components and features in a study 

that can be measured and described. Unobservable characteristics, by contrast, are things that 

systematically affect the estimate but are not recorded or measured (for example, the health and 

attitudes of consumers, which is not usually included in economic surveys) (Boyle 2009). In other 

words, it is expected that the true process that generates the estimate is represented by observable 

characteristics  (Boyle et al. 2009; Kaul et al. 2013), and that those observable characteristics drive 

the response (i.e., the “estimate”) in the same way functionally at study and policy sites. This is 

related to explained and unexplained variation in regression models (Kent 1983). Secondly, it is 

expected that as the values of the intrinsic variables (i.e., those that drive the response) converge 

between sites, the value of the response (i.e., the “estimate”) will converge. This is represented by 

tests for statistical equivalence between a transfer model and the true model (i.e., a model specific 

to the policy site), where if the two models are not identical the transfer is not valid (Downing and 

Ozuna 1996). For point estimates, this may be practically demonstrated by testing for statistical 
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equivalence between a transferred estimate and associated model parameters and independently 

measured values at a policy site (i.e., validation, or tests of convergent validity). 

Therefore, ignoring sources of bias and error, two sites with identical context 

characteristics are assumed to be described by identical functions and produce identical 

estimates. By extension, differences in observable and unobservable intrinsic context 

characteristics may result in estimate differences. Observable contextual characteristics at one 

study location may differ among multiple locations. The ability to describe and account for such 

differences across studies and sites is a fundamental motivation for the estimation of underlying 

meta-valuation functions (Rosenberger and Phipps 2007). This tenant thus explains why the 

comparison of context variables (e.g., intrinsic and extrinsic variables) lies at the heart of 

economic benefit transfer, and as will be shown later, for the transfer of ecological estimates as 

well.   

2.3.1 “Extrinsic” Contextual Variables 

Extrinsic contextual variables are site features that may be unaccounted for or 

unimportant in a model for a given site, but either directly or indirectly account for 

differences in the same estimate between different sites. Therefore, extrinsic contextual 

variables come directly into play when transferring estimates across sites (Rosenberger 

and Phipps 2007).  

“Many of the physical differences important for calibrating values across sites are 

 unmeasured in the original functions. In part, this is because these characteristics 

 are fixed, or constant, in individual site models or researchers assumed these 
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 differences are captured in the price coefficient.” (Rosenberger and Phipps 2007, 

 p. 38) 

Extrinsic variables that are constant within a given site may vary across multiple sites. 

For example, if an estimate was derived over the course of one year, for example 2015, the effect 

of ‘year’ as a predictor cannot be determined, since there is only one observation, one year, over 

the course of the study. In that study, ‘year’ is an extrinsic variable. However, if the same 

estimate was derived over multiple years from multiple studies, the effect of year can be 

assessed.  

Proximity in terms of in-state versus out-of state, domestic versus international, and other 

physical and geographical characteristics such as topography, lake size or water clarity have all 

been included in benefit transfer models and in tests of convergent validity (See Rosenberger and 

Phipps 2007 for a review). Overall, such tests have supported the hypothesis that site similarity is 

important for transferability. Therefore, it is potentially equally as important to defining the 

context of an estimate (or the underlying meta-function)  to describe driving variables that are 

unobserved, unaccounted or exogenous to the original functions as it is to identify main 

theoretical drivers and potential differences in the specification (e.g., parameters) of the original 

model for a site. Site similarity and DGP similarity are therefore closely coupled, where 

variables for site similarity may closely follow specifications for economic functions (i.e., 

consist of core economic variables) or deviate to include other meaningful predictors (such as 

extrinsic variables). 
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2.3.2 “Intrinsic” Contextual Variables 

Core variables, specific to a process and corresponding estimate (i.e., intrinsic variables) 

represent a key component of context. Guidance for intrinsic variables represents both economic 

theory as well as results from empirical investigations, but also variables that are able to be 

described as either intrinsic or extrinsic. Theoretically guided core variables may more closely 

represent intrinsic variables, as features that are key to describing the process (In fact, in 

empirical models these are the core variables measured). Furthermore, core variables have been 

described as an important requirement for benefit transfer ‘meta-models’ (Bergstrom and Taylor 

2006). This framework proposes that in addition to identifying potential extrinsic variables in 

studies that may vary between a study site and a policy site and contribute to generalization 

errors, that changes in and variability in ‘core’ process-level variables should also be considered. 

This recommendation follows guidance from Bergstrom and Taylor (2006) on 

formulating meta-analysis benefit transfer (MA-BT) models. Bergstrom and Taylor (2006) 

discuss how approaches for constructing MA-BT models may strictly follow economic theory 

(“strong structural utility theoretic”) or may not (“weak” or “non-structural utility theoretic”). 

Weak structural utility theoretic approaches include deviations from the theoretical model to 

include other potentially relevant predictors in MA-BT models. An example non-structural utility 

theoretic meta-analysis of wetland values is provided by Woodward and Wui (2001) where 

physical and geographic variables such as wetland size, number of services valued and other 

study characteristics were included but core economic variables were not (e.g., income, 

substitutes and household characteristics).  In this example, it may be observed that such ‘non-

structural theoretic’ variables would be classified as extrinsic variables for most studies, since 
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individual studies are less likely or able to investigate the influence of the size of a given 

wetland, for example, on the elicited value.  

Whether a strong or weak theoretic approach is utilized, Bergstrom and Taylor (2006) 

discuss the advantages to accuracy and rigor of benefit transfer practices when researchers 

consider core economic variables and strongly recommend their inclusion in MA-BT models. 

Therefore, this framework seeks to similarly account for theoretically derived context variables, 

as intrinsic variables, in addition to extrinsic variables.  

So far it has been illustrated that to understand how an estimate changes within and 

across contexts an understanding of both intrinsic and extrinsic variables is required. Economic 

contexts have been generally defined by the economic literature as a composite of intrinsic and 

extrinsic variables. This definition of context was represented by lists of requirements for site 

similarity, as well as the guidance for defining meta-models which speak to describing important 

intrinsic and extrinsic variables. 

The following framework will illustrate the role of both extrinsic and intrinsic contextual 

variables for describing and comparing ecological contexts. In addition, the framework outlines 

the importance of defining the similarity of the estimate or change in an estimate that is desired 

for transfer. The framework utilizes additional ecological theoretical guidance to define 

contextual reference frames that may help users select appropriate and theoretically consistent 

contextual variables. In the following sections first, the framework for conducting ecological 

estimate transfers will be presented, then further discussion of the basis and current discussion 

related to the proposed structure of ecological contexts, including reference frames, will be 

discussed.  
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3. Framework for Conducting Ecological Estimate Transfers 

A framework similar to the benefit transfer guidance provided by EPA (2000) may be 

helpful for thinking about and ultimately conducting ecological estimate transfers between study 

and policy sites. Such a framework can provide a process for performing transfers in a consistent 

manner with explicit acknowledgement of assumptions and potential sources of uncertainty. In 

this thesis I present a framework to help improve rigor and transparency of ecological estimate 

transfers in ecosystem services research and policy (figure 1) which builds upon the guidance 

and theories provided in benefit transfer discussed earlier (table 1). In addition, the framework 

utilizes additional ecological theoretical guidance to define the scales of investigation, called the 

contextual reference frame, which may help users better define the estimate for transfer as well 

as select appropriate and theoretically consistent contextual variables. The characteristics of the 

ecological estimate framework will be explored in the following sections, and further 

demonstrated within the case study.  

 A meta-analytic approach to thinking about transfers across contexts may assist the 

ability to think about and assess transferability and generalizability assessment in several ways. 

Firstly, the contextual reference frame of the policy site may be clearly outlined. Secondly, the 

reference frame of the policy site may be compared to that of the study sites for both 

correspondence (same or similar reference frame) and coverage (representative). Thirdly, the 

reference frame may help identify relevant intrinsic and extrinsic contextual variables.  Fourthly, 

gaps in measured variables relative to theoretical constructs may be identified, including defining 

areas for future research. Defining reference frames provides a coarse baseline for defining the 

context of both the policy site and the study site/s in a transfer. In addition, inconsistencies across 

reference frames help identify assumptions which can be more holistically considered and 
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evaluated. Holistic considerations may be particularly important to ecosystem services research, 

since it is inherently multidisciplinary and often requires the synthesis of information across 

disciplines (Wainger and Mazzotta 2011). Therefore, many transfer decisions, such as the choice 

to transfer estimates that are more similar geographically, or in a similar ecosystem type, reflect 

researcher knowledge and judgments that may change across disciplines because of differences 

in standardized or common practices.  

This framework (Figure 1) corresponds both with the previously presented framework 

from EPA’s guidance for conducting economic analyses (EPA 2000;Table 1) as well as a related 

framework on ecological model transferability (Moon et al. 2013; DeWitt et al. 2014). These 

steps are as follows: First, the context of the application (policy) site and transfer need (estimate) 

are defined and candidate transfer estimates are found. Next, candidate estimates are individually 

reviewed for validity (Conceptual Validity). Then, the remaining candidate estimates are 

compared collectively in terms of their numerical value and context (Operational Validity). 

Finally, magnitudes of uncertainty are evaluated alongside identified contextual similarities in 

order to make final transfer decisions.  

 

3.1 Step One: Study Purpose and Data Selection 

The first step of an ecological estimate transfer is to determine the nature and purpose of 

the present study and the desired estimate. What information is needed at the policy site (e.g., 

ecological parameter or ecosystem service production estimate), in what form (e.g., units) and 

for what purpose (e.g., policy evaluation, site assessment, hypothesis testing)?  
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Next is to define the contextual reference frame of the policy (or application) site across 

categories of scale: space, time and ecological organization. Define the location spatially, 

temporally, and ecologically (e.g., Oregon, 2015, salt marsh) as well as the scale of investigation 

across each category of scale in terms of grain and extent. Grain could be defined by 

assessment/model needs or output (e.g., is the study or model spatially explicit and if so what is 

the resolution). Extent is represented by the area applicable to the investigation (e.g., Oregon 

wetlands, or Yaquina Bay estuary). Together, the description of the scale and location of the 

policy site defines the policy site reference frame. The policy site reference frame description 

will be useful to identifying and filtering study site estimates that correspond to the policy site. In 

step three, if study site estimates do not correspond completely, the investigator will have to 

consider whether to change the expression, extent or resolution of the required estimate to match 

the available data and with what respect to changes in transfer error and construct validity. 

3.1.1 Theoretical and Empirical Guidance 

After the policy site reference frame has been defined, relevant contextual variables for 

the estimate of interest can be determined from literature review. Contextual variables will be 

used in step three to assess similarity between study and policy sites and include both intrinsic 

and extrinsic contextual variables. What are the biophysical factors that produce the ecological 

estimate for the scales (contextual reference frame) of inquiry (i.e., intrinsic variables)?  What 

other context variables are useful for describing the locations where the estimate has been 

measured and where it will be applied, relevant to the contextual reference frame (i.e., extrinsic 

variables)?   
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Intrinsic and extrinsic variable identification begins with the theoretical construct and is 

guided by a literature review of studies of the estimate of interest, with attention paid specifically 

to the policy site reference frame. Sources of information to guide literature review may vary, 

ranging from the predictor variables used in models for the estimate in question, to descriptions 

of general driving variables covered in meta-analyses. When possible, mechanistic or processed-

based equations describing the process that generates the estimate (e.g., for primary production, 

[light energy] + 6CO2 + 6H2O ---- C6H12O6 + 6O2) will be useful to elucidate core theoretic 

variables from extrinsic variables. Both intrinsic and extrinsic variables may include a suite of 

biophysical and ecological variables or proxies such as species, community type, tidal regime, 

salinity or light. 

Candidate estimates for transfer should be found and pooled from the literature or other 

data sources based on an initial description of the desired estimate and its context, including 

important theoretical and empirically important driving contextual variables for the associated 

process. If direct theoretical or empirical rationales are missing for differentiating the desired 

estimate based on a perceived driver or contextual variable, strong consideration should be given 

to omitting the variable in favor of a broader scope, since comparisons and reductions in scope 

can occur later in transferability assessment. Therefore, considerable literature review occurs at 

this step, however it may be necessary to revisit the literature or seek best professional judgment 

for additional guidance at other framework steps. The framework steps are designed to be 

iterative, where each step can be repeated or reviewed to redefine requirements in order to 

change the scope of the assessment, provided that the new basis of each step is explicitly stated.  

Overall, step one corresponds with the first two steps of the EPA framework (table 1) and 

also generally reflects the first step of research synthesis, as has been described in the benefit 
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transfer literature alongside discussion of meta-analysis (Smith and Pattanayak 2002), or the first 

step of the impact pathways approach for assessing ecosystem services production and value 

(van Beukering, Cesar, and Janssen 2003).   

 

3.2 Step Two: Conceptual Validity 

The step of conceptual validity has been outlined for ecological models (Rykiel 1996) 

wherein modelers must first determine whether or not the underlying theory and assumptions of 

a model are valid for an intended use. Similarly, users must evaluate whether estimates, and the 

procedures used to acquire them, are valid in their own right before judging their suitability for 

transfer. Rykiel (1996) states that conceptual validity involves stating a scientifically acceptable 

rationale of the cause and effect relationships in the model, but this logically applies to the 

process that generates the estimate of interest (the DGP). The related concept of internal validity 

is used to describe the robustness of scientific experiments (Loewenstein 1999) which also 

applies to the robustness of integrity of studies that generate ecological estimates.  

Both internal and external validity should be given careful consideration in selecting 

candidate estimates for transfer. Specifically, internal validity is “the ability to draw confident… 

conclusions from the research” (Schram 2005, p. 226). Considerable attention has been given to 

the topic of internal versus external validation, or how conclusions from experimental 

populations can be generalized to real world populations for economic experiments (Levitt and 

List 2007). External validity is used to describe the ability of experimental contexts and 

populations to represent real ones for which the experiment is designed to study, or the 

artificiality of the experimental setting. For example, Moore and Robinson (2004) observe that 
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the use of artificial bird nests in studies to measure reproductive success reduces the external 

validity of the study, since predation of artificial nests differs from real nests and reduces the 

ability for conclusions from studies utilizing artificial nests to be generalized to populations with 

real nests.  

While step two primarily focuses on evaluating the validity of individual estimates for the 

context that it was originally derived, it may also be important to consider differences in study 

site estimate contextual reference frames. Differences between reference frames will be a focus 

of the next step, however at this step differences between reference frames may be considered 

broadly to ensure that candidate estimates individually are representative of their intended or 

stated reference frame. Simply stated, this helps to ensure that comparisons across reference 

frames will be informative since individual estimates are correctly specified, or matched to their 

reference frame.  

As in benefit transfer, the step of conceptual validity may be described as identifying and 

choosing to include or exclude studies from further assessment based on the rigor or consistency 

of a particular study with current ecological guidance or theory; i.e., particular methods have 

been shown to introduce bias, such as a proxy method or a given measurement technique. For 

example, different methods to measure benthic microalgal production produce estimates that are 

neither completely representative of net primary production or gross primary production 

(Cahoon, 1999) so a user may choose to specify a particular technique.  An analog in benefit 

transfer might be choosing to not consider ecosystem service value estimates that were derived 

using the replacement cost method, since this represents a proxy for the value of the service and 

relies on assumptions that may not always be valid or based on theoretical constructs of 

economic value (Brander, Brouwer, and Wagtendonk 2013; Woodward and Wui 2001).  
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Furthermore, this step corresponds with identifying sources and magnitudes of 

measurement error and defining limits for acceptable magnitudes. In addition to the previous 

considerations for measurement error, the amount of variability around an estimate (i.e., as 

represented by a confidence interval or standard error) also should be considered. This reflects 

guidance from benefit transfer that measurement error may represent a lower bound on the total 

amount of variability, or error, around transferred estimates. 

“In fact, even if the process of benefit transfer were without error, the transferred value 

would be expected to differ from the actual value by the square root of the sum of the 

estimation variances of these two sites.” (Rosenberger and Stanley 2006, p. 374) 

If error or variability metrics are not available or reported, users should consider whether to 

include them in the assessment, since this lower bound of error will not be able to be evaluated in 

the final steps of transferability assessment. 

The basis that any researcher deems a particular approach, method or any other aspect of 

the scientific process to be defensible is likely to vary between disciplines or the particular field 

of study, and therefore is subject to professional judgment. In part because ecosystem services 

research fluidly moves across disciplines, it is integral to this framework that the basis for 

selecting or excluding estimates for transfer must be made explicit as well as corresponding 

scientific rationales. If a scientific rationale for exclusion is unclear, or cannot be justified, 

retaining the estimates will allow for further exploration in the rest of the assessment as long as 

assumptions are noted for later review.  

At this step, justifications should be provided for assumptions and for using 

simplifications of known processes and for conjectured relationships of poorly known processes 
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(e.g., derived using indicators or proxies) (Rykiel, 1996). In addition, estimates based on transfer 

methods should also be earmarked as potentially biased or excluded. For example, careful 

consideration or further investigation is warranted if estimates are derived from other 

assessments. It may be found that an estimate derived from another study was in turn based on 

results from another study, in a chain of transfers. If this is a case, depending on the number of 

available estimates for transfer, it may be worthwhile to first investigate these transfers 

retrospectively. Afterwards, a decision can be made if the estimate is valid enough for inclusion 

in the present transfer.  

Overall, the conceptual validity step represents filters that researchers can use to select 

metadata. This serves the purpose of both evaluating the individual robustness of each estimate 

or study and for setting minimal requirements for accuracy and error.  

 

3.3 Step Three: Operational Validity and Context Assessment 

In step three, candidate estimates are first compared to each other numerically to 

reconcile differences in definition and in representation, then are compared across contextual 

variables and reference frames for consistency and coverage (3a). Finally, estimates are 

compared to the policy site in terms of their numerical value and similarity of the context for 

which it was estimated, using previously identified contextual variables (3b and 3c). The first 

part of step three defines the ‘niche’ for which the estimate of interest has been previously 

measured or calculated across contexts, and then how this relates to the context of the policy site. 

The application niche allows users to visualize the correspondence of estimates to policy site 

contextual variable values, to assess representation. Then, users can explore the relationship 
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between numerical values of the estimate and contextual variables using qualitative or 

quantitative methods.  

Trade-offs exist for decisions made at the previous steps when selecting candidate 

estimates, specifically for determinations of sufficient accuracy or context similarity. If few 

estimates are found that meet both requirements, the ability to construct an application niche and 

explore contextual variable relationships is limited. A user may either conclude that no 

acceptable transfers exist, or redefine acceptable limits for conceptual validity or context 

similarity. For the latter, this should only proceed if assumptions and limitations are clearly 

stated and recorded. Alternatively, requirements may be refined to be more specific if it appears 

that the bounds are too general or there are many estimates for comparison. Either way, 

justifications should be provided and scientifically grounded (Boyle et al. 2009).  

3.3.1 Evaluate Comparability, Applicability and Representativeness  

Estimates are now compared in terms of their definition, numerical value and contextual 

reference frame.  

The EPA guidelines describe commodity consistency as a requirement (i.e., uniformity of 

the definition of the good that is valued) however theoretical consistency (i.e., the uniformity of 

the type of value that is estimated) has also been described alongside this requisite (Londoño and 

Johnston 2012). Together, these relate to the comparability in the definition and representation of 

the estimates (e.g., net primary production (NPP) versus gross primary production (GPP)). 

Differences either underlying the definition, the units of representation, or both must be 

reconciled to compare estimates.  In some cases, estimates may be converted to a set of common 

units; however, extrapolating estimates to new reference frame scales (i.e., upscaling or 
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downscaling in space, time, or ecological organization) must account for changes in scale-

dependency of driving factors that generate the estimate. The framework introduces the concept 

of the contextual reference frames to draw attention to potential sources of generalization error 

related to up or downscaling, which will be discussed in detail in the following section. 

 Similarity across study site reference frames, both among each other and to the policy site 

reduces additional sources of generalization error and bias and also assists in the identification of 

relevant intrinsic and extrinsic contextual variables.  If candidates do not correspond in terms of 

their reference frames, it should be investigated if it is reasonable to assume scaling invariance or 

negligible scaling effects, since scaling effects can affect process-specific intrinsic variables 

(Gustafson 1998). Therefore, required transformations or adjustments that change study site 

reference frames should have clear scientific rationales. If, for example, the primary production 

rate of seagrass beds was measured at sites throughout an estuary and an average estimate across 

the entire estuary is desired, it is acceptable to calculate an average value if the sampled sites are 

indeed representative of the seagrass beds across the estuary (see Lussenhop 1974 for history and 

theory of sampling).  

In addition to representing equivalent processes in terms of comparable units, the 

candidate study site estimates must also have comparable associated contextual variables. 

Intrinsic and extrinsic variables that were identified during literature review are now associated 

to study site estimates. These can be specified using either the information that is reported in the 

original study, or from other sources (e.g., GIS coordinates, specific ecological classifications). If 

specific biophysical or ecological contextual information is missing from many estimates, users 

may rely more on readily available extrinsic contextual variables or proxies of intrinsic variables, 

which limits conclusions in subsequent transferability assessments. 
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Once a set of valid, site-specific estimates and the associated contextual variables have 

been compiled, the contextual niche can be explored to ensure representation of policy site 

characteristics by the selected intrinsic and extrinsic variables. Attributes that are compared in an 

application niche include the intrinsic and extrinsic variables identified from the literature review 

in part one. A policy site whose context is outside of the bounds of the application niche (e.g., 

beyond cumulative geographical representation, ecosystem or habitat type, different depth 

gradient or salinity and temperature profile) especially for intrinsic variables, may have the 

highest transfer risk. This is because aspects of the policy site are not represented within the 

meta-data are therefore “unmeasured”. Unmeasured or unobserved attributes cannot be readily 

explored in this framework. To construct the application niche, ranges of numerical values and 

categorical descriptions in the dataset are compared to the policy site in comparable terms. A 

potentially simple and useful method to construct the application niche is a radar plot, an 

example of which will be provided in the case study. 

3.3.2 Qualitative Context Comparisons  

The next step is to explore trends and relationships of the estimate’s numerical value 

across contextual variables. Numerous graphical methods may be used (e.g., scatterplots, and 

histograms) to detect both the level of variance or potential trends across individual variables 

with respect to the response estimate. Consistently identifiable patterns such as directional 

differences between the desired estimate and a given contextual variable (e.g., the estimate is 

much lower across polar studies than in tropical studies) may quickly inform decisions 

concerning transferability, while inconsistencies may confound decision-making at this step. 

Because this step generally corresponds with approaches for data exploration which is a common 

step inherent to statistical analyses, statistical method texts (e.g., Ramsey and Schafer 2012) and 
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references on conducting meta-analysis (see Schulze 2004 for review of meta-analysis methods) 

can provide additional detail and other methods. Examples of methods potentially useful for 

transferability assessment will be highlighted in the case study.  

3.3.3 Quantitative Context Assessment  

Depending on the results of qualitative assessment and policy site needs quantitative 

analysis may be useful to elucidate clear univariate or multivariate effects or predict a policy site 

estimate. Similar to qualitative assessment, a suite of approaches may be useful in this step and 

in particular tools for meta-analysis (see Osenberg et al. 1999; Stewart 2010). Some methods, 

such as meta-regression may allow for the prediction of a new estimate for the policy site based 

on its characteristics (Schulze 2004). In addition, quantitative assessment may also allow for 

much of the final step of transferability assessment, uncertainty analysis, to be performed 

concurrently. An apparent trade-off, is the time and knowledge needed to build and apply 

statistical models. In part, the pressure to transfer estimates is due to the need to quickly gain 

easily identifiable information concerning an estimate, which may limit the appeal of 

sophisticated statistical approaches and models. Statistical approaches confer advantages such as 

gaining a more precise transfer estimate or estimate of transfer uncertainty. If precision is not 

necessary for the transfer and a more coarse description of uncertainty is sufficient, 

transferability assessment may be well served by previous qualitative approaches. Middle-

ground may be found by applying simpler approaches (e.g., simple linear regression) versus 

more complex options (Ordination techniques such as non-metric multidimensional scaling 

(MDS) or bayesian modelling approaches). A merit of this framework is flexibility in how 

transfer errors are assessed, so that users may determine whether the effort required to predict a 

new estimate specific to the policy site is worth the gains in precision or description of 
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uncertainty.  The case study will provide examples of different middle-ground approaches in 

order to further support this discussion. 

 

3.4 Step Four:  Total Transfer Error and Uncertainty Analysis 

The final step of transferability assessment requires the synthesis of uncertainties and 

conclusions from previous steps to inform a transfer decision. Starting from step one, the user 

has recorded necessary assumptions which are now addressed. Some questions that may guide 

the uncertainty assessment may include:  

 How strictly was the reference frame defined?  

 How much uncertainty was allowed or introduced by methodological approaches 

or surrounded individual estimates? 

 How representative were investigated intrinsic variables of core variables for the 

process? (i.e., were proxies or covariates used, or were some but not all core 

variables explored?) 

 How are selected extrinsic variables representative of differences between sites? 

 Were adjustments or transformations required to compare data? 

 How much variability exists across the metadata? How does this compare to 

variability in terms of contextual characteristics similar to the policy site? 

 [if conducted] How much variability in the data is explained by the model (e.g., R 

squared value)? What is the standard error around the predicted estimate? 



30 

 

After the user has considered all assumptions and sources of error (measurement, 

publication and generalization) the total error surrounding a transferred estimate may be judged. 

At this time, users may decide which estimates to transfer, or if another approach is needed for 

the intended assessment (i.e., to measure the estimate-of-interest at the policy site and forego 

estimate transfer).  

As previously discussed in step two, a lower bound on total transfer error may be the 

error associated with the original estimate, or the measurement error. Sources of measurement 

error should be considered in addition to contextual similarity, which represents generalization 

error. For example, if a single study site is identified to have the highest context convergence 

with the policy site, and contextual assessment has identified that this will likely be more 

representative of the policy site than other estimates, users next must evaluate sources of 

measurement error. If at the original site this estimate represents an average, or was modelled it 

may have an associated variability metric (as evaluated in step two, e.g., as a standard error) 

which may directly be applied as variance to the estimate. The treatment of measurement error 

ultimately depends on the number and quality of estimates used in the transfer. If only one 

estimate is selected, determining measurement error may be more straightforward as in the 

previous example. However, when aggregating estimates across studies either as an average or if 

a transfer model was built, variability is introduced within and between estimates due to both 

measurement and generalization error. Therefore, further uncertainty analysis may be required to 

evaluate the total transfer error depending on if and how within-study variability was treated in 

the quantitative transferability assessment (i.e., propagation of uncertainty, see (Hoffman and 

Hammonds, 1994)). For example, within-study variance may have been included via weighting 
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based on variance in the transfer model if a fixed-effects or random-effects meta-analysis model 

was utilized (see Gurevitch and Hedges 1999; Lortie et al. 2013 for more information).  

Publication bias has been previously discussed as another source of error which 

contributes to the total error surrounding transferred estimates. Publication bias represents the 

misrepresentation of study results and distribution of study site estimates due to the 

underreporting or delayed publication of non-significant results in the available literature 

(Rosenberger and Stanley 2006).  It is difficult to assess the magnitude of publication bias 

however some methods exist such as funnel plots (Copas and Shi 2000) which relate significance 

or goodness of fit metrics  to sample size or other precision metrics. Funnel plots permit visual 

inspection of the distribution of results with expected statistical distributions and are relatively 

easy to construct, however more advanced tests exist such as the funnel-asymmetry test (see 

Stanley 2008).  

Assessing context similarity as an indicator or generalization error is a major focus of the 

framework. Therefore, conclusions whether qualitative or quantitative must be integrated with 

other sources of error to understand the total error of the transferred estimate. As previously 

mentioned, quantitative approaches may help predict a policy-site estimate that may capture 

some or all of the total error and therefore have representative confidence intervals and other 

statistical metrics. Qualitative approaches however, may leave the interpretation of multiple 

sources of error to the user. All assessment approaches, however, leave defining acceptable 

limits of error to the user. These may be related to the intended use of the transfer estimates, 

whether in litigation, policy evaluations, site assessments, or potential (i.e., predicted) 

magnitudes of effects on importance.  
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After total error is accounted for, users may synthesize assumptions and sources of error 

further through uncertainty analysis. The goal of uncertainty analysis is to identify the “errors, 

inexactness, unreliability and imperfection” (Wu, Jones and Li 2006, p. 44) inherent to 

ecological investigation and modeling.  While many tests and approaches for uncertainty 

analysis exist depending on the approach used, general approaches which apply to many analyses 

concern error propagation, sensitivity analysis and validation (See Wu, Jones and Li 2006, 

chapter 3 for review).  

Error propagation refers to how errors in input data or surrounding parameters affect 

model outputs. Output uncertainty from error propagation is assessed by determining how 

variances in model variables change the modelled output, and the variability in modelled outputs 

is a measure of the output uncertainty. Examples of methods used to assess error propagation 

include Monte Carlo simulation, generalized likelihood uncertainty estimation and sequential 

partitioning (see Wu, Jones and Li 2006 for descriptions). Similar methods may be applied in 

sensitivity analysis, a related term used to describe the investigation of how uncertainty in model 

outputs is related to sources of input uncertainty (Copas and Shi 2000; Yang 2011).  

Sensitivity analysis quantifies the rate of change in a model when one of more input 

variables and parameters are varied while others are held constant (Wu, Jones and Li 2006; 

Boyle et al. 2009). Validation techniques, for example through bootstrapping or cross-validation 

may help elucidate the ability for a transfer model to predict outside of the metadata, or for 

selected samples in the metadata that were intentionally left out for validation (Bennett et al. 

2013; Jakeman, Letcher, and Norton 2006; Rykiel 1996). 
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The treatment of cumulative errors is an important challenge for transferability 

assessment. In particular, how to reconcile trade-offs associated with selecting few or individual 

estimates that may have high contextual convergence but high variance or statistical 

uncertainties, or vice-versa (Johnston and Rosenberger 2010). It is ultimately important to know 

how the uncertainty associated with the estimate affects uncertainty in the overall ecosystem 

service assessment or model. This may be complicated for many ecosystem service models, for 

example linked economic and ecological models (Wainger and Mazzotta 2011).  

 

 

Example Benefit Transfer Framework Ecological Estimate Transfer Framework 

1. Describe the policy case 

 

1. Define transfer needs 

2. Identify existing, relevant studies              a.   Theoretical and empirical 

 guidance 

3.  Review available studies for quality 

and applicability 

2. Evaluate conceptual validity 

a.  The basic commodities must be 

essentially the equivalent 

3. Evaluate operational validity & context 

comparisons 

b.  The baseline and extent of change 

should be similar 

a. Evaluate comparability and 

applicability 

c. The affected populations should be               

similar 

b. Qualitative context comparisons 

4.  Transfer the benefit estimates c. Quantitative context assessment 

5.  Address uncertainty  4.  Assess total error and uncertainty 

Table 1: Benefit Transfer and Ecological Estimate Transfer Framework comparison. Steps from EPA (2000) guidance for 

preparing economic analyses (left) and the proposed framework for performing ecological estimate transfers (right). 
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4. A Structure for Ecological Contexts 

The framework for conducting ecological estimate transfers relies on describing contexts 

in several ways. Latter framework steps (three and four) rely on defining contextual variables as 

analogously defined for benefit transfer. However, initial steps (one and two) rely primarily on 

defining contextual ‘reference frames’. The contextual reference frame is proposed to help users 

Figure 1: Conceptual diagram of the framework for ecological estimate transfers 
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identify appropriate and theoretically consistent contextual variables. Ecological processes may 

be studied across many different levels with different implications for their nature and existence. 

In this section, a more thorough definition and discussion of this structure is provided.  

 

4.1 Theoretical Foundations 

The concept of a contextual ‘reference frame’ emerges when defining the components of 

context that are broadly characteristic of different ecological systems, within which ecological 

processes operate. For example, the movement, abundance or habitat association of fishes on a 

daily or annual time scale are described using different variables as representative of different 

processes. In an estuary, fish distribution and abundance throughout a day might be more 

strongly related to salinity gradients and tidal flux, or food availability (Hartill et al. 2003). By 

contrast, on a monthly or annual scale, abundance may be explained more by species and life 

stage, where diadromous fishes move in and out of the estuary at various life history stages 

(Beck et al. 2001). Such differences fundamentally relate to the relationship between pattern and 

scale, specifically that observed patterns are dependent on the scale of observation, and therefore 

so are the mechanisms used to describe the pattern (Levin 1992). 

The contextual reference frame is bounded by the levels of each of three categories of 

scale that broadly differentiate ecological processes (space, time and ecological organization) 

and is additionally described by the locational setting. The categories of scale represent the levels 

over which homogeneity either exists or is assumed, which serves as the basis for 

generalizability (Wu, Jones and Li 2006). Each category is intended to represent a distinct 

component of the reference frame. Scales, in space and time serve as the major theoretical 
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foundation for this structure. The effect of scale on the existence, nature and pattern of different 

ecological processes represent key issues in ecology (Pielou, 1977; Levin, 1992; Schneider, 

2001). The consistent evocation of the concept ‘scale matters’ across biological and physical 

sciences (Schneider 2001) supports the approach taken by the transferability framework to define 

scale in order to assess scale compatibility as an indicator of broad contextual and ecological 

system similarity. 

Scale refers to the extent relative to the grain of a variable indexed by time or space 

(Wiens 1989), where the grain is the minimum resolvable area or time period within some range 

of measurement (extent). Each category of scale represents a hierarchy of characteristic levels 

that have distinct extents and grain sizes. For example, in terms of ecological organization this is 

described as the movement from cell to individual, to populations, to communities and beyond 

(Odum 1959; Allen and Starr 1982). “Hierarchy theory indicates that, in general, the strength and 

frequency of interactions between levels decrease with distance.” (Wu 1999, p.377) 

In addition to the effect of hierarchical levels of scale on the relationship between pattern 

and process, the effect of geographic and temporal proximity on the similarity of ecological 

observations is also well founded, of which spatial and temporal autocorrelation is of central 

concern to the field of spatial ecology (Gustafson 1998; Legendre 1993).  The reference frame 

reflects the potential importance of both proximity and similarity across scales as transcendent 

principles that most broadly differentiate ecological systems and processes. Therefore, the 

components of contextual reference frames may serve as the basis for defining an ‘ecological 

meta-function’ for describing the levels of context that apply across ecological estimates.   
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It is proposed that by first recognizing the contextual reference frame, a basis to compare 

contexts at the system-level emerges. The ability to compare contexts can promote transparent 

and robust accounting as well as analysis of ecological estimate transferability.  

“Patterns and dynamics at a given scale may develop from interacting lower-level units 

may also be imposed by large-scale constraints (Levin 1992). As a consequence, results 

from ecological investigations and predictions are critically affected by the scales 

addressed and their corresponding processes (Turner & Gardner 1991). In spite of this, 

the choice of the considered scales and aggregation levels is only rarely discussed 

explicitly in ecological investigations. This common neglect of scale-related questions 

may be the result of the scarcity of applicable methods for choosing appropriate levels of 

aggregation and for linking level-specific processes across scales (Kolasa 2005; Urban 

2005).”(Meyer et al. 2010, p. 561)  

Scaling issues, as resulting from the extrapolation or interpolation of processes across the 

hierarchical levels of scale have been extensively addressed in the ecological literature (see Wu, 

Jones, and Li 2006). The framework draws attention to the fundamental consequences that scale 

transformations may have on ecological processes by classifying scaling transfers as transfers 

which change the bounds of the reference frame. Transfers to different scale levels can be 

thought of as changing the size or scope of the reference frame, or ‘scaling’ by extrapolation or 

interpolation. For example, utilizing a measurement from one month to represent a year, or a 

stand of trees to represent an entire forest represent issues of scaling. By contrast, transfers 

between sites that are at the same scale levels have comparable reference frames, such a 

measurement from one stand of trees in California and the same measurement from a stand of 

trees in Oregon. Because of the fundamental consequences of transfers across different reference 
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frames, the framework identifies these transfers as a potentially greater source of generalization 

error and uncertainty because of the implications for the composition of intrinsic variables for 

ecological processes. Both the existence and the interaction of various processes may change 

depending on the scale of observation, which will be discussed in more detail in this section. 

However, while transfers between sites at comparable reference frames may help reduce 

potential generalization errors, this requirement does not eliminate generalization error. 

Differences between sites in terms of their location, or name of the scale levels, as well as 

contextual variable differences are additional sources of generalization error. Additionally, as 

discussed previously, total transfer error will also be affected by both measurement and 

publication bias.  

The ability to generalize across scales and locations represents an important issue in 

ecology and to the transferability of ecosystem services estimates. The presented framework 

draws attention to this issue specifically by differentiating and highlighting contextual reference 

frame changes as major potential source of generalization error. Ecological processes may be 

more similar across comparable reference frames: “Parameters and processes important at one 

scale are frequently not important or predictive at another scale”(Turner et al. 1989). The 

structure for ecological context used by the framework relies on the premise that few ecological 

processes are scale invariant (Wu 1999) and scale effects may be profound (Wiens 1989). 

Because of this, the framework highlights consistency between reference frames of the study and 

policy sites prior to selection of context variables, to ensure that those processes generating the 

estimate-of-interest are also comparable across sites. 
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4.2 Contextual Reference Frames and Ecosystem Services 

The following discussion represents a synthesis of prior thought and research relevant to 

the transferability of ecosystem service estimates across contextual scales to overview the scope 

of issues and practices. This serves to relate the status of current practices and issues to the 

proposed definition of ecological contexts, including contextual reference frame scale categories, 

levels and locations, to illustrate how holistic consideration of contextual reference frames and 

respective variables may increase the robustness of ecological transfers. 

4.2.1 Spatial Scale 

Spatial scale represents the physical dimension of the contextual reference frame, 

represented in both extent and grain, by metrics of length, height (or depth), area or volume. The 

hierarchy of spatial scale levels includes local and regional scales up to global (see table 2). In 

terms of physical scale, spatial transfers may therefore occur between sites that correspond in 

terms of spatial extent and grain, or at the same site at a different extent or grain, or both. 

Transfer issues related to spatial scale are well represented inside and outside of the 

ecosystem services literature. Issues resulting from transfers across spatial scale levels in 

ecosystem services, via extrapolation, have been addressed most commonly by the ecosystem 

service literature (Helfenstein and Kienast 2014).  This discussion has been prompted in part by 

the common practice to take literature values derived from one or more studies and apply it to a 

larger spatial extent in order to get an estimation of landscape or global total ecosystem service 

value (e.g., Li et al. 2010). However, other issues with transfers (e.g., at the same extent but with 

a different grain) may exist. For example, using an average value across a landscape or region to 
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represent units within the region (regionalization error), or using average representative units to 

represent other similar units within the same extent (sampling error).  

Several authors have noted the issues associated with extrapolating from small-extent 

estimates to large extents (Eigenbrod et al. 2010a). For example:  

“… original studies valued small changes in specific and localized components of 

individual ecosystems … it is incorrect to extrapolate the value estimates obtained in any 

of these studies to a much larger scale, let alone to suppose that the extrapolated estimates 

could then be added together.” (Barbier et al. 2011, p. 173) 

Yet, despite this, extrapolation remains a popular approach to generating estimates of ES 

production and value. This is because despite its limitations, it provides insight and value to 

things that are otherwise given a magnitude-less value or priority in decision-making (Costanza 

et al. 2014). Such studies may utilize what is sometimes called the proxy method, where an 

estimate derived for a particular land cover or ecosystem class is applied to all other units of the 

same class (Nemec and Raudsepp-Hearne 2013). Relatively little is known about how the errors 

associated with proxy-based methods might affect the inferences drawn from analyses because 

quantifying the impacts of such errors is difficult without comparisons using primary data. 

However,  Some shortcomings of proxy-based maps for ES economic values have been 

addressed through sensitivity analyses (e.g. Nelson et al., 2009; van Beukering, Cesar, & 

Janssen, 2003). 

Important guidance for the treatment of spatial scale related errors in ecological data in 

ecosystem service mapping come from Eigenbrod et al. (2010a, b). Eigenbrod et al. 2010 (a, b) 

discuss and quantify errors associated with the lack of accounting for spatial variability of 
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biophysical variables in proxy-based maps of ecosystem services. They compared field data for 

four terrestrial ecosystem services (recreation, carbon storage, biodiversity and agricultural 

production) and assigned production estimates to 14 land cover classes. They tested the relative 

importance of different components of generalization error by altering both the number and 

locations of grid cells used to obtain values for each land cover type. Errors investigated 

included: uniformity error, obtained by averaging all primary data values for a given ES that 

corresponded to a given land cover type; sampling error, obtained by taking a random sample of 

primary values and using an average to represent the value and; regionalization error, by 

averaging values based on 100 square kilometer grids in order to simulate variation by region. 

Poor fits were found between all maps and primary values and in particular for identifying 

hotspots or edges. However, the authors note that the difference between the proxy-based maps 

and the primary data only becomes important at more specific levels of inquiry: 

“For example, if the goal of our study had been to identify whether the southeast of 

England had more biodiversity than the northwest, then we would have obtained the same 

answer using our proxies as using our primary data surfaces for biodiversity. However, 

proxies were completely unsuitable for selecting the top 10% of land area in England for 

biodiversity or for recreation.” (Eigenbrod et al. 2010a, p.383) 

The results of the study by Eigenbrod et al. (2010a) help elucidate the risks associated 

with not only proxy-based mapping, but also sources of bias and error in how estimates are 

aggregated and averaged as inputs in other types of ecosystem service assessments. Scale 

mismatches in transferred values may also appear in ecosystem service models or in other 

calculation steps in ecosystem service assessments. For example, Grabowski et al. (2012) applied 

an estimate of the value of oyster reef for fish production from a biogeographic region (the 
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southeastern United States) and use it as an estimate for oyster reefs generally. Such evidence 

supports the framework’s approach to distinguish estimates based on reference frames and to 

associate high transfer risk with transfers that require generalizations beyond the spatial scale of 

an estimates’ reference frame in order to represent the policy site.  

4.2.2 Geographic Proximity 

In addition to transfers that extrapolate or interpolate information to different levels of 

spatial scale, transfers at the same spatial scale level may also occur. Therefore, the reference 

frame also relates to the geographic location, as a centroid independent of scale as well as the 

name that describes the location, which may refer to the scale. This component reflects transfer 

assumptions based on geographic co-occurrence or proximity and ecological theory which 

relates the similarity of observations due to their spatial relationships.  

The first law of geography states that “Everything is related to everything else but near 

things are more related than distant things” (Tobler 1970). In his aim to build a simple but useful 

population model for Detroit, Tobler applied this logic to illustrate that while the population 

change between 1930 and 1940 in Detroit was a function of the city’s initial population size, 

ultimately the population growth was also affected by the world’s population, across all 

locations. Tobler offered that one could either build a model with all other cities’ populations 

(e.g., 16 thousand variables), or use the global population as “a single surrogate”. Alternatively, 

Tobler proposed the law of geography and built a model to describe the growth of the population 

of one cell as a function of the population of neighboring cells. Spatial statistics and inquiries of 

spatial autocorrelation invoke the first law of geography commonly (Tobler 2004). Spatial 

autocorrelation refers to the dependency of observations in space (Legendre 1993). Spatial 
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autocorrelation is also commonly investigated as a statistical concern since it violates 

assumptions of independence. Tobler’s law is also visible in studies of distance decay of 

ecological patterns and processes. Distance decay has been investigated within multiple scales 

such as local and regional spatial scales (e.g., Nekola and White 1999), as well as across 

organizational scales (e.g., species, population and community) (Morlon et al. 2008).  Because of 

the way patterns of ecological processes may vary across geographic distance, it is regarded here 

as an emergent characteristic of contextual reference frames.  

Explicit investigation into the relationship between geographic location and the values of 

ecological ecosystem services was not found during literature review. Researchers may 

commonly use geographic similarity to represent similarity across other study features but 

validations of this assumption were not specifically found. Extrapolations of scale may or may 

not involve a transfer in geographic location. In addition, transfers using the ‘proxy method’ as 

described by Eigenbrod et al. (2010b) where an estimate is applied to other units of the same 

land cover, ecosystem or habitat class may also involve a transfer across geographic location.  

In the absence of site-specific information, investigators may assume that geographic 

proximity confers similarity without citing evidence for the comparability of estimates across 

space, or in comparison to change across other components of the reference frame. For example, 

Feagin et al. (2010) state that they prioritized estimates for transfer if they were close to the 

Galveston Bay area in their study of the changes in ecosystem services in salt marsh in sea level 

rise scenarios. However, despite the stated intention to describe changes in fisheries supply 

service due to sea level rise scenarios their chosen estimate is an average replacement cost 

derived from a study of restoration benefits, which may be less theoretically robust from both an 

ecological and economic standpoint. Ecologically, by using this approach equivalence between 
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habitat use/viability of naturally occurring units of marsh and constructed units of habitat is 

assumed. Economically, this approach may be less desirable to determine value than other 

methods since it is both the average cost of restoration projects instead of lowest cost and is a 

proxy of value (Woodward and Wui 2001; Brander, Brouwer, and Wagtendonk 2013). There 

was no comparison of this value with other candidates that were derived either using other 

elicitation methods, in comparable habitats, or for the desired service in general so it is unknown 

if these were explored alternatively.  

Occasionally, estimates across geographic locations are presented alongside the chosen 

estimate. If direct comparison or justification was not provided, the reporting of multiple 

estimates from various extents or other contextual levels allows for geographic proximity-based 

assumptions to be generally evaluated. For example, a study of habitat-fisheries linkages in 

South Australia, McArthur and Boland (2006) provide a range of seagrass primary productivity 

estimates from studies conducted in Australia (120 to 700 g C m-2y-1) and compare them to 

reported global estimates of seagrass primary production estimates from coastal reef systems and 

non-tropical shelves (890 g C m-2y-1 and 310 g C m-2y-1, respectively). The authors use the 

average value from Australian studies in their calculations, stating that the difference between 

the low and high value of the other systems is attributable to the inclusion of other sources of 

production such as phytoplankton and epiphytes in the estimate. While subtle, this comparison 

serves two purposes. First, it supports the Australian estimate as accurate or consistent across the 

literature. Second, it implies that using an estimate based on a different reference frame 

component, ecological organization (i.e., ecosystem type) would not change the assessment 

drastically.  
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4.2.3 Temporal Scale and Proximity 

The ecological theory which supports spatial scale and proximity as reference frame 

components is nearly identical to that which supports the importance of temporal scale and 

proximity. Scales of spatial and temporal scale are often described as linked or coupled, meaning 

increases across one will likely lead to increases across the other (Levin 1992; Wu 1999). This is 

due to the scales over which processes become visible as well as the scales that we can measure 

spatial and temporal processes. The latter speaks to the general difficulties of fine-scale 

measurements over long periods of time or fine resolution temporal data over large spatial scales. 

However, some characteristics of ecological systems only emerge on larger scales. For example, 

patterns of global ocean thermohaline circulation or the formation of and movement of 

deepwater currents and upwelling systematically across the globe are observed on average over 

the course of decades to centuries, but on a yearly or finer temporal scale the movement of water 

at any given location around the globe is a function of wind, storms, eddies and other processes 

(Garrett 2003; Lozier 2010).  

As with spatial scales, it is regarded as invalid to extrapolate beyond an investigated 

temporal scale without accounting for the effect of time on ecological processes (Legendre 

1993). This is reflected in research design theory on representative sampling and valid statistical 

conclusions (Ramsey and Schafer 2012). For example, a study of seagrass carbon sequestration 

in an Oregon estuary taken weekly over a two month period from September to November 2013 

would likely not be representative of annual carbon sequestration rates at the same site for the 

same year. Not only is this beyond the extent of the investigation, but seasonal and inter-annual 

variability for carbon sequestration is both theoretically founded (Mcleod et al. 2011) and 

empirically validated (Macreadie et al. 2013).  
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Temporal effects are less frequently cited or investigated as possible drivers of error with 

respect to transferred estimates in either the benefit transfer or the broader ecosystem services 

literature. However, issues of scaling, including extrapolations and interpolations as well as the 

effect of geographic proximity on estimate similarity may have many similar consequences with 

respect to time.   

Wu, Jones and Li (2006) describe the concepts of extent, coverage and spacing with 

respect to both spatial and temporal scales each of which reflects the opportunity for 

regionalization, uniformity and sampling errors, respectively. Therefore, it becomes important to 

ask if firstly, candidate observations are at the same scope (extent and grain) as the policy site 

and secondly, if observations are representative of the entire temporal extent as well as 

opportunities for bias from sampling and uniformity error. 

The proximity of estimates in time also has implications for their similarity either due to 

functional relationships and dependencies, or as a covariate. Observations may be autocorrelated 

in time due to processes which act at multiple temporal scales (Legendre 1993; Li 2005). Daily 

trends, such as tidal exchange may cause correlation in some observations, such as estuarine 

salinity on an hourly basis, since the salinity at a given time will be dependent on (or predictable 

from) the salinity one time step before or after the present (Ellis and Schneider 2008). Contextual 

variables that are either intrinsic or extrinsic to a given study, such as air or sea surface 

temperature, can be autocorrelated on daily, seasonal and annual basis. Processes also show 

autocorrelation at larger time scales, such as climate variability in the Pacific Ocean, which has 

roughly decadal oscillations between regimes, or global climate change over hundreds or 

thousands of years (Mantua et al. 2002). Therefore, proximity in time between a study-site 

estimate and the temporal setting of the policy or application site therefore may increase the 
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likelihood of similarity via autocorrelation for multiple variables. In addition, proximity in time 

may also confer similarities that are indirectly related.  For example, most technological and 

methodological improvements in science are assumed directional in time. In their review of 

primary production estimates, Duarte and Chiscano (1999) attribute differences between their 

review and a review ten years prior due to both an increase in data and methodological advances. 

It is important to acknowledge the potential for such temporal shifts, however, since transfers 

between multiple papers may obscure temporal differences; McArthur and Boland (2006) 

compare their chosen primary production estimate range to a global range in comparable 

habitats, however the cited source (Pauly and Christensen 1995) calculated reported estimates 

from another source (De Vooys 1979) which in turn was based on a synthesis of previous 

literature.  

4.2.4 Ecological Organizational Level and Classification 

A third component of scale refers to the structure of ecological systems and similarly has 

a reference point or “location” which corresponds to the name or classification given to different 

levels of ecological organizational scale. 

Ecological organizational scale follows hierarchy theory in ecology (Allen and Starr, 

1982). Hierarchical structuring in ecological systems followed insight from biology that 

organisms are made of cells (Weinberg 1975) and other ecological levels follow such that 

organisms compose a population, groups of populations form a community et cetera up to levels 

of ecosystem and global levels of complexity (O’Neill, Johnson, and King 1989).   
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“Hierarchy theory suggests that ecological systems are nearly completely decomposable 

(or nearly decomposable) systems because of their loose vertical and horizontal coupling 

in structure and function.” (Wu 1999, p. 367) 

Interpolations or extrapolations across different reference frames with respect to 

ecological organization occur when estimates either observed or modelled for one level (table 2) 

are applied to finer or coarser level. Transfers at the same reference frame level may occur when 

an estimate at a given level is used to represent other units of the same level, therefore at a 

different location, time or ecological classification. While most ecological levels in a hierarchy 

of ecological organization are clear and well-defined and correspond with ecological inquiries 

and disciplines (e.g., studies of populations versus ecosystems) others such as those which focus 

on guilds or food-webs may not be as clear. In addition, studies of many biophysical and 

chemical processes may only implicitly refer to levels of ecological organization. For example, 

primary production rates in seagrass beds may appear to refer to the species level, however rates 

derived may include production due to epiphytes or microalgae on the seafloor, which changes 

the level to that of the community (Cambridge and Hocking 1997; Jernakoff and Nielsen 1998). 

Furthermore, for transfers at the same ecological level, such as an ecosystem, differences within 

may be difficult to compare because of the large diversity of classification and naming 

conventions for these systems.  

Ecological classifications, such as ecosystem, biome, or Land Cover Land Class (LULC) 

are sometimes used as the primary basis for the transfer for ecological estimates because they are 

perceived to represent consistency or homogeneity across ecosystem structure, function or both. 

For example, researchers may prioritize studies for transfer if they were conducted in the same or 

similar ecosystem type (e.g., McArthur and Boland 2006). This may be intuitive for very 
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divergent ecosystem types, such as wetland versus grassland, where there are fundamental 

differences in ecological setting (e.g., terrestrial vs. aquatic) but becomes less clear depending on 

the process or ecosystem types compared, such as specific classes of wetland or estuary (e.g., bar 

built or salt-wedge estuaries). In addition, the representativeness of the ecological classification 

may be confounded if there are other inconsistencies across dimensions of context or other 

variables. Furthermore, there are many available habitat, landscape and ecosystem classifications 

with varying connections to underlying processes, so the utility of a given classification to be 

effective for describing ecosystem service production may depend on the service and the scope 

of inquiry.   

Extant classifications of ecological systems may require further validation and testing to 

test their utility for determining transferable relationships. Biome and ecosystem type 

classifications date back to the 1930s and 1940s and are based on climatic data, because this was 

the only globally available variable for extrapolation (Ramakrishna and Running 1996). Land 

use and land cover classifications have since been modified since their origin (Homer et al. 2007 

e.g., the National Land Cover Database, NLCD) and are designed to differentiate terrestrial 

space based on remotely sensed geographic and vegetation characteristics (e.g., elevation, 

canopy cover). Therefore, the utility of popular and extant classification systems for 

transferability assessment depends on the correspondence between the classification basis and 

contextual variables that are meaningful for the process and estimate in question. 

Recent investigations to generate a robust and consistent classification scheme of 

ecological habitats, similar to a chemical periodic table of elements, observe that while the 

relationship between structure and function of habitats for ecological functions is an empirical 

question, it is often unquestioned in applications predictive in nature (Ferraro 2013). In other 
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words, intuition about the structure and function of habitats is a good starting place for 

investigation, but predictive relationships of community usage and other ecological patterns 

require validation. Ferraro (2013) notes: 

“When a community is quantitatively sampled in a statistically rigorous, unbiased, 

representative manner in an ecologically relevant space-time frame, tests for quantitative, 

periodic habitat-community patterns can be made under the a priori assumption that the 

community is defined appropriately. When, under these conditions, quantitative, periodic 

habitat-community patterns are found, the operationally defined habitat types are 

appropriate for the purpose in the spatial and temporal domain they were tested” (Ferraro 

2013, p. 1543).  

Investigations into these relationships are not uncommon in the ecological literature (e.g., 

Rabeni, Doisy, and Galat 2002), however, validation and investigation in contexts such as for 

ecosystem service supply or  production are rare, if any exist. Others have noted the lack of 

ecosystem service-specific classification systems and have created ecosystem service driven 

classifications to fill this need (e.g., Townsend et al. 2014; Yapp, Walker, and Thackway 2010) 

however no single classification is predominant or has been broadly adopted.  

There is strong ecological theoretical support for the proposed structure of ecological 

contexts as reference frames based on scale level and location across space, time and ecological 

organization. It is clear from both this theory and previous work in ecosystem services that both 

generalizations and transfers across dimensions may have significant consequences for transfer 

accuracy and reliability. However, previous discussion in the ecosystem services literature with 

respect to transfers across these different components of scale is not comprehensive. Where some 
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limitations due to differences in reference frames are well represented, including extrapolations 

of spatial scale and the use of LULC and ecosystem type as proxy, other issues such as transfers 

of information at the same spatial or ecological level are not, such as different geographic 

locations and ecological classifications. Extrapolations across time have received less attention 

as well. Perhaps most importantly, discussion concerning transfers across all or comparing 

consequences between these types of transfers is lacking. 

 

Contextual Reference Frame Category Example Reference Frame Levels 

Spatial Scale  

 Global 

 Regional 

 Landscape 

 Local 

Temporal Scale  

 Geological 

 Century 

 Decadal 

 Annual 

 Seasonal 

 Monthly 

 Daily 

 Hourly 

 Instantaneous 

Ecological Organization  

 Biosphere 

 Biome 

 Ecosystem 

  

 Populations 

 Individual 

 Cellular 

 

Table 2: Contextual reference frame categories of scale and example levels. Hierarchical levels are represented from broadest (top) to 

finest (bottom). 
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5. Case Study: Transferring Estimates of Benthic Microalgal Primary Production 

In the GecoServ valuation database review, a few common estimate transfers were 

identified within studies of habitat-fisheries linkages. Habitat or ecosystem type was used as a 

proxy to apply ecological estimates to maps in several studies (five of twelve instances), 

however parameter transfers were found to be slightly more commonly used, as derived from the 

literature (in seven of twelve instances). Studies which utilized parameter transfers represented 

un-calibrated estimates (i.e., were not adjusted for policy site conditions). Furthermore, two 

types of parameters were commonly transferred, either estimates of the natural mortality rate for 

fishery species or estimates of primary production rates of the habitat of ecosystem types studied.  

Table 3: Example contextual classification systems.  Reproduced with author’s permission from DeWitt et al. (2014). 
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Primary production estimates were utilized in studies where secondary production is 

calculated from or related to the extent of primary production (five instances). Approaches that 

required natural mortality rate estimates were less common (two estimates). Natural  mortality 

rate estimates were used in individual-based population models or other predictive modelling 

approaches, similar to stock assessment models (Clark 1999). Because parameter transfers of 

primary production rates were the most prevalent, this was selected for further investigation in a 

case study to explore the utility of the framework approach for evaluating ecological estimate 

transfers.  

A general form of this relationship relates the contribution of benthic microalgal primary 

production (BMPP) to secondary production, as represented by fisheries value (or alternatively 

in metric tonnes of catch). An example of a simple model is provided in equation 1 (McArthur 

and Boland 2006): 

 𝐵𝑒𝑛𝑡ℎ𝑖𝑐 𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑙 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 ($ 𝑚−2𝑦𝑟−1) =
(

𝑝𝑝𝑏𝑚𝑝𝑝

𝑝𝑝𝑡𝑜𝑡𝑎𝑙
)∗𝐹𝑖𝑠ℎ𝑒𝑟𝑦 𝑉𝑎𝑙𝑢𝑒

𝐴𝑏𝑚𝑝𝑝
             (Eq.1) 

𝑃𝑃𝑏𝑚𝑝𝑝 = 𝑃𝑃𝑅𝑏𝑚𝑝𝑝 ∗ 𝐴𝑏𝑚𝑝𝑝                                                                                                              (Eq. 2) 

𝑃𝑃𝑛𝑏 = 𝑃𝑃𝑅𝑛𝑏 ∗ 𝐴𝑛𝑏                                                                                                                           (Eq. 3) 

𝑃𝑃𝑡𝑜𝑡𝑎𝑙 =   𝑃𝑃𝑏𝑚𝑝𝑝 + 𝑃𝑃𝑛𝑏                                                                                                                 (Eq. 4) 

Equation one estimates the value of BMPP by relating the magnitude of BMPP (PPbmpp) 

to total primary production within the site (non-benthos habitats, PPtotal) (in terms of areal 

extent). To derive indicated parameters, the calculation requires primary production rate 

estimates for the specific habitat type (the benthos, 𝑃𝑃𝑅𝑏𝑚𝑝𝑝) and the areal extent of this habitat 

type (𝐴𝑏𝑚𝑝𝑝) (Eq. 2). In addition the primary production rate of non-benthic habitats (𝑃𝑃𝑅𝑛𝑏)  
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and extent (𝐴𝑛𝑏) is needed (Eq.3) to estimate total primary production for the site (𝑃𝑃𝑡𝑜𝑡𝑎𝑙, Eq. 4). 

The ratio of BMPP to total primary production is then multiplied by the total value of the fishery 

(Fishery value, in landings per year). The resultant annual value of BMPP is divided by the 

benthos area to derive the value per unit area. The case study focuses on the hypothetical transfer 

of the benthos-specific estimate of primary production rate (𝑃𝑃𝑅𝑏𝑚𝑝𝑝) as used in equation two. 

 

5.1 Step One: Study Purpose and Data Selection 

In this example, a hypothetical study seeks to quantify ecosystem services production by 

the Columbia River estuary, Oregon, USA (i.e., the policy site). For this assessment an estimate 

of BMPP is needed to calculate the contribution of primary production to secondary production. 

Benthic primary production is generated by microphytobenthic algae, which are the microscopic 

algae (primarily diatoms) and cyanobacteria that reside on the seafloor.  Most of the 

microphytobenthos reside in the top few millimeters of shallow unvegetated habitats (e.g., 

mudflat, river channel bottom) but also reside in other submerged aquatic habitats such as salt 

marsh and seagrass beds (Macintyre, Geider, and Miller 1996).  

First, the contextual reference frame is defined for each level of the three contextual scale 

categories. The spatial scale is defined by both the extent and grain of the policy site. The spatial 

extent of the policy site is specifically the lower 410 km2 of the Lower Columbia River estuary 

(Lower Columbia River Estuary Partnership 2007). The spatial grain is the represented habitat 

type, in square meters, based on the resolution of the hypothetical fisheries model (Eq. 1). The 

temporal extent of the study is a year and the model is not temporally distributed, therefore the 

grain and extent are the same. In terms of the ecological scale, the extent is the habitat type 
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specified, or the benthos, as the homogenizing unit that differentiates this rate from other types 

of primary production rates, such as in the water column (phytoplankton) or from submerged 

aquatic vegetation (macrophytes). The ecological ‘grain’ is the community, since BMPP is due 

to the photosynthesis of multiple types of organisms.  

The descriptions provided for each category of scale represent the reference frame levels 

and in addition can be described by name or “location”. The geographic location is equivalent to 

the extent name, the Columbia River estuary, Oregon but is also represented by its latitude and 

longitude, approximately 46.2⁰ N and 123.8⁰ W. The temporal location is 2015 and the 

ecological location may be described in several different ways. The name of the reference frame 

level, ‘community’ is the microphytobenthos. As part of the geographic name, the ecological 

setting is partially described as an estuary. A detailed classification of the terrestrial and aquatic 

ecosystem of the estuary exists, The Columbia River Estuary Ecosystem Classification, 

(CREEC, Simenstad et al. 2011). The ecosystem classification provided by Simenstad et al. 

(2011) provides an in depth description of the hydrological and geomorphic setting of the policy 

site, providing six hierarchical levels of classification across “ecosystem province, ecoregion, 

hydrogeomorphic reach, ecosystem complex, geomorphic catena and primary cover class” (p.11) 

The classification uses and adapts currently available classifications for its use, including EPA-

adopted ecoregions (see Omernik 1995, 2004). While many of the higher levels of the 

classifications describe primarily the terrestrial setting surrounding the estuary, the Ecosystem 

Complexes and Catena classification components map several depth regimes (e.g., deep channel, 

permanently flooded, side channel). Deep channels were classified as areas corresponding to the 

fourth quartile of depths, and correspond to greater than 8 meters (or approximately 26 feet).    
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5.1.1 Theoretical and Empirical Guidance  

After the policy site reference frame is determined the next step is to review the literature 

to identify study site estimates and contextual variables. A previous review of 106 published 

BMPP rates (Cahoon 1999) was identified that could provide a source of globally-distributed 

study site estimates for transferability assessment. The literature review in transferability 

assessment is intended to balance enlightened inquiry and full meta-analysis as dependent on 

user needs. This is in recognition that transfers are potentially more likely in either time or 

budget limited policy applications, data-intensive ecosystem service assessments, or other 

applications which must prioritize analytical efforts. It falls to the user to decide how much 

understanding of the given process is needed, for which identification of the contextual reference 

frame and the scope of the study will assist with. In this example, differences across contexts are 

assessed broadly, across global locations. This enables examination of broad trends across 

greater ranges of contextual variables and also to maximize the size of the available dataset. In 

addition, this assists in the assessment of the relative importance of general contextual variables, 

such as geographic proximity and ecological classification which may help to inform the basis of 

selecting a subset of estimates to transfer (i.e., whether to select estimates from geographically 

proximate locations or from more similar ecological classifications). Depending on the results of 

a broad scale inquiry, users may decide to investigate further, collecting more information and 

defining more detailed contextual variables or can make a coarse, but informed transfer decision 

based on the initial broad assessment.  

In a broad assessment, such as across global locations, literature reviews or previous 

meta-analyses are a good place to identify core intrinsic contextual variables and relevant 

extrinsic variables. Therefore, the data source (Cahoon 1999), another review (Macintyre, 
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Geider, and Miller 1996)  and a more recent update (Cahoon 2006) were primarily used to 

identify relevant intrinsic and contextual variables . Basic photosynthetic physiology yields 

insight that intrinsic variables may be defined as light intensity, biomass (chlorophyll a) and 

temperature (Cahoon 2006). Therefore, factors and processes that affect core intrinsic variables 

are also important to consider. Such covariates are described as light attenuation (by both 

overlying water and sediment) and the degree of patchiness in benthic microalgal abundance in 

both space and time (Cahoon 2006; Macintyre, Geider, and Miller 1996). It is also expected that 

BMPP rates correspond across latitudinal gradients with increased seasonality at high latitudes 

(Macintyre, Geider, and Miller 1996).  Essential nutrients, such as nitrogen and phosphorous are 

not described as limiting factors for BMPP and are therefore not included as a core variable for 

the process. This is described by Cahoon (1999, p. 71): 

 “The nature of near-bottom water flows in neritic area, which are driven by wave action, 

 lunar and wind tides, internal waves, and other currents, ensures a frequently turbulent 

 regime that… prevents nutrient depletion in the near bottom zone.” 

Therefore, light, temperature and biomass emerge as key core intrinsic variables where 

factors or elements that affect these factors represent other potential intrinsic or extrinsic 

contextual variables. Extrinsic variables might include the site depth, climatic regime, or latitude 

which may affect the quantity and intensity of light reaching the seafloor. Other possible 

variables which can locally affect BMPP rates include the specific microalgal species 

composition, predator densities and predation rates on the macroalgal community, storm 

intensity and frequency at the site (Cahoon 2006; Mcintrye, Geider, and Miller 1996).  
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5.2 Step Two: Conceptual validity 

Initially, all estimates included in the case study were assumed sufficiently valid for the 

transferability exercise. Each study was previously included in a published meta-analysis 

(Cahoon 1999) and represents a large pool (86 studies) so that differences in methodological 

technique and other features affecting conceptual validity may be explored for impact later in the 

transferability assessment. However, this step may be necessary to revisit when selecting final or 

individual candidates for transfer to assess sources and magnitudes of measurement error.  

 

5.3 Step Three: Operational Validity and Context Assessment 

5.3.1 Evaluate Comparability, Applicability and Representativeness: 

In step three, the applicability, comparability and representativeness of the pool of study 

site estimates for the policy site context is addressed. First differences in study site estimate 

descriptions and units are reconciled to allow for subsequent comparison. Then, 

representativeness is evaluated by comparing contextual scale levels, locations and contextual 

variable ranges to the policy site to ensure adequate representation.  

Estimates reported by Cahoon (1999) are in equivalent terms and units. Estimates are 

representative of gross primary production rates versus net primary production rates (GPP and 

NPP, respectively). However, it is noted that different methods yield estimates that are slightly in 

between true GPP and NPP, which refers to the difference between the entire photosynthetic 

production of organic compounds (GPP) and the amount that results in growth (NPP) 
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(Macintyre, Geider, and Miller 1996). All estimates are reported as annual rates per square meter 

of habitat (g C m-2 yr-1).  

Estimates also have comparable contextual variables. Cahoon (1999) reported location, 

depth (or range) of measurement, methodology, publication information, and climatic regime 

information alongside each annual BMPP rate estimate (see appendix 1). Estimates that did not 

have all contextual variable information available (e.g., methodology or location was missing) 

were not included in further assessment. An assumption required for analysis was that depth 

ranges, when a single estimate was reported, could be represented adequately by the median 

reported depth. 

Estimates are assumed to have been measured at comparable reference frames. Estimates 

are assumed to represent equivalent spatial scales since no large-scale averages, such as 

continental or global averages, exist in the data set. Estimates are generally identified by site-

specific names (e.g., San Antonio Bay, TX) however more general, regional identifiers are also 

provided (e.g., Danish fjords). Specific extents and resolutions of study site observations are not 

reported. Further study-specific investigation is needed to determine the scope of individual 

studies as representative of studied ecosystems (i.e., the extent of each study respective to the 

environment type and scale identified). Ecologically, included studies are all at the community 

level, where total primary production is measured resulting from assemblages of microalgae of 

various species (mostly species of diatoms but sometimes cyanobacteria, chlorophytes among 

others, Cahoon 1999). Temporal reference frames were adjusted by Cahoon (1999) to be 

comparable. Many estimates were converted from hourly (g C hr-1) or daily (g C day-1) BMPP 

rates using static conversion factors. This adjustment required several conservative assumptions: 



60 

 

“Shaffer & Onuf (1985) discussed proper methods for deriving daily, monthly and annual 

estimates of benthic microalgal production, but few of the published studies [used in this 

meta-analysis] satisfy the criteria they use for better estimation methods. Consequently, I 

use several conservative assumptions (10-h production days, production years of 365, 

270 and 90 days in tropical, temperate and polar zones, respectively, and a conservative 

formula to calculate annual production.” (Cahoon 1999, p.54)  

There are limitations to the approach used by Cahoon (1999) to standardize the dataset for 

comparison, but are assumed to be sufficiently correct as reported for the present step in order to 

proceed. However, errors in these transformations could lead to biased and inaccurate estimates. 

Thus this assumption is carried forward into the later uncertainty analysis (step four). 

Based on the reference frame descriptions and in acknowledgement of required 

assumptions, the estimates are assumed applicable and comparable to each other and to the 

policy site. Next, representativeness is addressed to evaluate the coverage of the study site 

“locations” and variable ranges relative to the policy site. This step constructs an “application 

niche” in order to gauge how proximate available estimates are to the policy site spatially, 

temporally and ecologically and also across other available variable ranges.  

Two approaches were used to explore the application niche of BMPP estimate contextual 

variables. Geographic points were attributed to each location by estimating the centroid, using 

the site names as provided and Google Earth. Then, latitude and longitude data were used to 

create a map in ArcGIS (figure 2) to visualize the distribution of estimates across the globe. 

Second, a radar plot was constructed in Microsoft Excel to compare estimates based on 

contextual variables reported in the Cahoon (1999) study (figure 3). Selected contextual 
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variables were limited to those that were both reported, those that could be compared between 

estimates, or those that could be geo-referenced. These included the depth (or median depth) 

where the estimate was collected, measurement approach, the climatic regime (temperate, 

tropical or polar), date of study publication, and the location as represented by an estimated 

latitude and longitude. In addition, other classifications for marine and coastal environments 

were identified using a GIS referenced database (Marine Regions, Claus et al. 2014).   

Two applicable ecological and biogeographic classifications for coastal and marine 

systems were added as potential contextual variables that are finer than climatic regime. Marine 

Ecoregions of the World (MEOW) is a four-tiered hierarchical classification system for coastal 

ecological systems (i.e., nearshore). The coarsest level of MEOW (“Latitudinal Zone”) 

corresponds nearly identically to the climatic regime classification provided alongside the BMPP 

estimates by Cahoon (1999) (only one conflict occurred near a boundary in South America). 

Therefore, this classification was not used in the analysis because it was redundant. The “Marine 

Realms” level of the MEOW classification consists of twelve realms worldwide, ten of which 

were represented in the dataset. A finer classification of World Seas, a biogeographic 

classification was also used and identified 24 classes in the dataset. The finest level of MEOW, 

consisting of ecoregions was not applied, because of the accuracy of the BMPP site locations 

was insufficient to confidently place those sites within specific ecoregions. 

The map (figure 2) and radar plot (figure 3) illustrate the overall patchiness of the dataset.  

The map illustrates the concentration of data in mid-latitude temperate regions in the northern 

hemisphere, off the east coast of the United States and Western Europe, in particular, with 

representation on all major continents, but lowest representation in polar latitudes and in South 

America and Asia. In terms of geographic location, three estimates are from Washington State 
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(Grays Harbor, False Bay, Chapman Cove). Comparing the temporal location, the studies from 

Washington and most others in the data set are from the mid-1980s, up until mid-1990s. The 

temporal extent and grain of the data in Cahoon (1999) are 1959 to 1996 and annual, 

respectively. 

Tropical and polar observations are limited in comparison to temperate locations. The 

radar plot illustrates that approximately two-thirds of the data were collected in the temperate 

climatic regime (as designated by Cahoon (1999)), with less than a third of observations in 

tropical regions and just a few studies in polar zones (figure 3). The radar plot adds an additional 

variable to the information derived from the map by allowing the depth of observation to also be 

compared. Depth ranges vary, across sites and climate regimes, however a greater proportion of 

measurements from tropical sites come from depths greater than 0 (representing intertidal 

measurements) whereas roughly half come from intertidal observations in temperate studies. 

Longitude and date of study were not compared on a radar plot. Longitude was not included 

since it lacked a theoretical foundation (i.e., not a proxy alone) and the numerical range that was 

not as easily comparable to the magnitude of depth, absolute latitude and depth. This is a 

limitation of radar plots, since value ranges that are very different between values will skew 

apparent variability. For example, absolute latitude ranges from 0 to 90, however longitude 

varies from -180 to +180. By increasing the scale of the radar plot to include the extreme ranges 

in longitude, differences in absolute latitude, while meaningful, appear disproportionately less 

variable. For general representation, such as in the current example, ranges and values that are 

similar will elucidate major trends well, but most accurate representation requires values and 

ranges to be standardized. For example, the climatic regime categorical variable was 

standardized to a range for comparison.  
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From the radar plot and map of the estimates it can be concluded that while distributions 

globally and across depths are patchy, context variables that are most closely aligned with 

intrinsic drivers, such as depth, absolute latitude and climatic regime (because of their effect on 

light availability and intensity) are representative of the policy site. The latitude of the Columbia 

River estuary, at approximately (46.2⁰) N is similar to Grays Harbour (46.9⁰) and Chapman 

Cove (47.22⁰), Washington. In addition, sites in Italy and France are also at comparable latitudes 

(45.6⁰ and 45.8⁰, respectively). The radar plot shows that many sites at similar latitudes are 

represented. A range of depths in temperate latitudes is also represented from the intertidal to 35 

meters depth (the total range of the dataset extends to 60 meters depth). The total depth of the 

policy site extends to 60 meters depth however median depth is approximately 30 meters and 

mudflat and unvegetated bottom habitats are mostly intertidal (CREEC, Simenstad et al. 2011).  

Therefore, while the specific geographic location is not represented, the coverage and 

correspondence of the available contextual variables to the policy site characteristics do not 

indicate that the site is beyond the extent of the application niche for BMPP estimates and 

adequate representation across contextual variables exists.  

5.3.2 Qualitative Context Comparison 

Next, both qualitative and quantitative approaches may be utilized to explore and analyze 

the estimates in terms of their contexts. Scatterplots and histograms of the data with respect to 

the numerical estimates permit insight into the relationship between estimates’ numerical values 

and selected contextual variables. If quantitative assessments will be conducted, this step may 

assist with the evaluation of assumptions and conditions required for statistical testing. While 

there is significant variability, declining trends in both production by depth and across absolute 

latitude (from high to low latitude) are visible (figure 4). Single observations for some 
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measurement methods, such as a combination of oxygen flux and carbon isotope uptake (14C/O2) 

seem to have very different values. However, the most prevalent methods, carbon isotope flux 

(14C) and oxygen flux (O2) (94 percent of observations) average values and standard deviations 

do not seem to vary substantially. The combined oxygen flux (O2) and 14C radiolabelling 

technique appears to yield different average value, however as an observation from the Great 

Barrier Reef and as one of the few tropical sites may not be indicative of bias. Estimate values 

seem to be fairly equally distributed across publication dates, which indicates that possible 

changes in methodological accuracy or other bias over time are not observable in the date ranges, 

however as previously noted more recent estimates up to the present do not exist in the data set. 

From these initial simple visual explorations one may observe that the climatic regime, 

latitude and depth variables appear to correlate with changes across the observed BMPP 

estimates.  

5.3.3 Quantitative Context Assessment 

In order to explore the combined effects of contextual variables and derive transfer 

estimates for the policy site two statistical methods were utilized, specifically analysis of 

variance (ANOVA) tests and a Classification and Regression Trees (CART) analysis. These 

methods were used to explore the importance of the variables as previously identified in a 

univariate approach (using the former), and also to demonstrate potential multivariate 

relationships (using the latter). In addition, these methods illustrate potential differences across 

models of different complexities.  

Individual one-way ANOVA models were constructed in R for three contextual 

variables: absolute latitude, depth and climatic regime. ANOVA models were not constructed for 
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World Sea or MEOW Realm classifications because of the small number of replicates within 

many groups. In order to compare differences between groups, continuous variables such as 

absolute latitude were compared at intervals of 10 degrees. Depth intervals followed breaks 

specified by Cahoon (1999) which distinguishes intertidal sites (“0” depth) from subtidal sites. 

Subtidal sites were grouped from less than zero to five meters, from 5 to 20 meters and greater 

than 20 meters. Box and whisker plots of the data and results of each test (figure 4) conclude that 

the most significant difference across groups are observed across climatic regimes (P-value 

<.001), however significant differences across latitudinal classes were also observed (P-value = 

0.0013). Some evidence of differences across means was found for depth classes (P-value 

=.0318). A nonparametric test (Kruskal-Wallis) was also used in order to investigate the effect of 

deviations from the ANOVA assumptions of normally distributed residuals and independence 

between groups. The results of these tests showed that conclusions of significance were robust 

across all models. Possible transfer estimates based on climatic regime (temperate) or absolute 

latitude (40⁰ to 50⁰) of the policy site result in mean estimates of approximately 89 or 70 g C m-2 

yr-1, respectively. 

The CART model was constructed in JMP using all contextual variables explored 

individually in the ANOVA models. The CART model explains variation in a single response by 

recursively splitting the data into more homogenous groups, using a single continuous or 

categorical predictor variable at each branch. For continuous response variables, each group 

produced by the model is represented by a typical value of the response variable (the mean), the 

number of observations that define it and the specific values of the explanatory variables used 

(De’ath and Fabricius 2000; McCune and Grace 2002). The final CART model (lowest AIC) 

used absolute latitude and depth to define the number of splits and final categories (figure 6). 
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The CART model is read like a dichotomous key, where first the data is split into two groups 

based on absolute latitudes greater or less than 18.7⁰, and then splits the representative data 

based on either depth or latitude. In total, the model breaks out the data into eight different 

groups, which are defined by the final node and all of the nodes which precede it. The policy site 

is entirely predicted by its absolute latitude, where it falls within the group defined by absolute 

latitudes greater than 38.7⁰ and less than 55.53⁰ which predicts a mean value of 70.7 g C m-2yr-1 

(figure 6). Conversely, tropical locations (absolute latitudes <18.7⁰) are classified by absolute 

latitude and depth. After the first split, locations at latitudes less than 18.7⁰ are split three more 

times based on depth breaks of less than or greater than 2.5, 7.5 and 25 meters. Each final node 

predicts declining productivity with depth.  

Overall, the use of quantitative approaches lends further statistical insight into the 

individual (ANOVA) or combined (CART) explanatory power of the contextual variables. Use 

of qualitative approaches may persuade a user to transfer an average value based on similarity 

across a climatic zone, latitudinal range and depth gradient. Multiple one-way ANOVAs 

illustrate that climatic regime and absolute latitude groups serve as the first and second most 

statistically significant categorizations of the data. Finally, CART analysis uses a data-driven 

approach to define categories that explain the most variation in the dataset. For the policy site, 

the CART model creates a group nearly identical to the group specified in the absolute latitude 

model and therefore predict similar policy site estimates.  
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5.4 Step Four: Total Transfer Error and Uncertainty Analysis  

Several assumptions were made in earlier steps that were noted to potentially affect the 

accuracy of the BMPP estimates or the context variables. These assumptions thus affect one’s 

confidence in the transferred BMPP estimate.  These assumptions included: 

1. The reference frames of the estimates and the policy site were comparable.  

o Temporal scale transformation was accurate: Few estimates in the data set 

across studies did not require a transformation across temporal scale 

(n=12). 

o Comparable spatial scales are represented: the data did not report spatial 

extents or grain of individual estimates, depth ranges are represented by 

median depth. 

2. The estimates were representative in terms of both location and variable ranges. 

o Temporal locations were representative of the policy site: all included 

studies are well over a decade old. 

o Changes in ecological community composition (ecological “location”) are 

insignificant: differences with respect to species compositions between 

sites was not directly represented.  

o Geographically proximate observations and at similar latitudes convey 

sufficient coverage to be representative of the policy site conditions. 

3. Proxies are able to represent intrinsic contextual variables: light intensity and 

availability was represented by depth, latitude and climatic regime. 

4. Measurement techniques may produce systematic differences. 
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5. Assumptions required for statistical analysis: intra-study variability, effect size 

comparisons and other sources of statistical uncertainty. 

The first assumption addresses potential differences in estimate reference frames, relative 

to each other and the policy site. The temporal scales required transformations to be comparable 

and the spatial scales were assumed equivalent. Both assumptions introduce potential 

generalization errors, such as sampling and regionalization error (Eigenbrod 2010 a,b). The 

representation of spatial scale in the data was only by depth, other information on the 

geographical extent or grain of individual observations within studies was not reported. 

Therefore, it was assumed that these differences did not affect the underlying process and that 

the representation of depth ranges by median depth would be sufficient. However this 

assumption may have contributed to the ability to assess the correlative effect of depth on BMPP 

rates across locations. As shown by the ANOVA model for depth, the overall relationship 

between BMPP and depth was not as strong as one might have expected theoretically (Townsend 

et al. 2014). However, declines in productivity were predicted for low latitude observations in 

the CART model.  

The second assumption refers to the ability for the data set to capture the policy site 

context, where it was assumed that sites from the same biogeographic region (Washington) and 

latitudinal range could sufficiently represent the policy site, the Columbia River estuary, 

spatially, temporally and ecologically.  The scale ‘location’ least well represented by the data is 

perhaps time, since there is nearly a 20 year gap between the most recent estimates in the dataset 

and the policy site location. The stability across methods used and BMPP estimate ranges across 

publication dates over 40 years is an indicator that generalizability risk due to this lack of 

correspondence (figure 4) is low, however it is not conclusive.  
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The third assumption refers to the ability for the available contextual variables to 

represent core intrinsic variables and therefore be useful for relating differences in estimate 

values across sites. Because only proxies of intrinsic variables were available the ability to 

capture differences between estimates may be reduced. 

In addition to uncertainty and error introduced through the previous assumptions, each 

individual study had measurement error associated with it. As previously addressed, differences 

in measurement technique were not detected in the assessment but could be masked by the 

variability of the dataset as a whole. Other error, as represented by variability around individual 

estimates was not reported and therefore is not addressed. A more comprehensive meta-analysis 

could collect individual study data in order to weight estimates relative to sample sizes and 

variability (see Pigott 2012).  

The modelled results represent several important indicators for the total transfer error 

(i.e., including both measurement and generalization error). Information available for the models 

includes the strength of evidence for observed differences between groups (i.e., not due to 

chance alone, P-value), the fit of the data to the model (R2) and the variability or error around 

group means (standard deviation and standard error). Potential transfer estimates from each 

model based on the policy site characteristics are in table 4.  Conclusions based on differences in 

statistical evidence among groups and across models should be balanced with previously 

identified limitations of the dataset, since these are not captured directly within the data. 

However, up to this point there is little indication what the effect of previous assumptions and 

transformations may have be for the reliability of the data and models. Validation testing, or tests 

of convergent validity as described in benefit transfer, are useful for evaluating such assumptions 

and transfer errors comprehensively (Rosenberger and Phipps 2007).  
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Several estimates were removed from the Cahoon (1999) dataset prior to transferability 

assessment in order to assess the ability for different approaches to represent values outside of 

the training data. One validation site represented the actual policy site, the Columbia River 

estuary. Percent transfer errors (PTEs) were calculated in two different ways to explore the 

magnitude of the effect of the temporal transformation on the data and also the ability for the 

models to predict at the policy site.  

Five estimates were selected from most and least represented parts of the data set. Two 

estimates from Oregon, Netarts Bay and one from the chosen policy site, the Columbia River 

estuary were included as “well represented” points, since many other sites from temperate, mid-

latitudes and shallow depths were in the dataset. In addition, another temperate site from the 

Netherlands (Ems-Dollard) was also selected. Estimates from Manukau Harbour, New Zealand 

and McMurdo Sound, Antarctica were selected as unique or less well-represented sites. The New 

Zealand estimate represents the only site from New Zealand in the data set, whereas one other 

Antarctic site was represented by the remaining data.  

Percent transfer errors (PTE) were calculated to compare the performance of the models 

for predicting the validation site estimates. To calculate PTE, the original study estimate is used 

as the approximation of the true policy site estimate. The difference between a transfer (study 

site) estimate and a policy site estimate is divided by the policy site estimate and multiplied by 

100 to calculate PTE (Rosenberger and Phipps 2007).  

The results of the validation test illustrate that generally all of the models performed 

better for well-represented sites than for the New Zealand or Antarctic sites (figure 7). 

Interestingly, the more complex CART model only performed best to predict the validation 
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estimate that represented the policy site. The ANOVA models performed best at each of the four 

other validation sites. The depth ANOVA model performed best at the Netherlands site, however 

on average it performed the worst for all sites (average PTE = 52.5). On average, the ANOVA 

climatic regime, absolute latitude and CART models performed similarly (average PTE = 41.7, 

42.4 and 44.3, respectively).  Overall, the validation sites help illustrate how transfer errors may 

vary across models and sites, depending on the representation in the dataset.  

More extensive validation testing is required to discern the best or most reliable model, 

especially since performance was found to be fairly variable within and across models. In 

addition, since validation estimates come from the same transformed data set, estimates which 

were transformed in this way are not as representative of the ‘true’ site value as we 

untransformed values, which represents an additional source of generalization error. Therefore, 

the validation exercise cannot gauge the difference between these true values and the 

transformed representations of true estimates in the dataset. However, the validation site estimate 

at the Columbia River Estuary was not transformed from hourly or daily rates which allows for a 

better approximation of the total transfer error for the present case study. 

To explore the potential effects of the temporal generalization on total transfer error, the 

original Columbia River Estuary study data (Mcintire and Amspoker 1986) was used to estimate 

a hypothetical transformed estimate for the study, henceforth referred to the transformed policy 

site estimate. The mean hourly BMPP estimate (41.6 mg C m-2 hr-1) was converted to an average 

annual estimate by multiplying the estimate by ten hours, to represent the assumed number of 

hours of primary production in a day, and by 270 days to represent the number of days in a year 

that production is assumed occur in temperate latitudes (Cahoon 1999).  
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The transformed policy site estimate was calculated to be 112 g C m-2 yr-1.  The ‘true’ 

value is represented by the original annual estimate reported by Mcintire and Amspoker (1986), 

72 g C m-2 yr-1. There is a 55.6 PTE between the original policy site estimate and the transformed 

estimate. This difference may represent a conservative estimate of the bias introduced by the 

transformation since the average hourly estimate represents data that spanned both a year and the 

entire extent of the lower Columbia River Estuary. This estimate of bias is useful for illustrating 

the generalization error at the policy site, however does not assess the effect of the 

transformation on the remainder of the dataset, for which replication is needed. PTEs were 

calculated using both policy site estimates, the transformed and the original study value, to 

represent the true policy site across model predictions (table 4). This serves to explore the 

potential effect of the transformation on total errors between models.  

The uncertainty assessment helps illustrate that if the data from the original study of the 

Columbia River Estuary was transformed like much of the rest of the data set (30 of 106 

estimates total) the ‘best’ and ‘worst’ models would change, as opposed to comparing the 

predicted value to a value that was not transformed. The best models for predicting the true value 

at the policy site are the CART and absolute ANOVA latitude models, since they split estimates 

into similar groups (PTE= 1.8, 2.8 respectively). A simple average of estimates from Washington 

(n=3) also results in close predictions. For the transformed policy site value, the CART model 

performs the worst (PTE= 36.9) and the best model is the ANOVA depth model (PTE=7). 

Overall, the models performed better for the true policy estimate than the transformed estimate 

(average PTE= 16.2, 26.5). 

Finally, users may select a candidate transfer estimate and specify a range of values to 

determine the sensitivity of the final ecosystem services assessment or model results. Ranges of 
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values around the estimate may be represented by the standard error, or by specifying a broader 

range, to reflect other uncertainties. As discussed previously, depending on the type of model or 

assessment both simple and complex approaches are available for conducting such sensitivity 

analyses. Remaining data necessary for the habitat-fisheries linked model proposed in this case 

study was not collected and therefore this sensitivity was not explored. However, future 

assessments may explore this in order to determine if and which model or estimate may be most 

reliable for the ecosystem services assessment.  

 

 

 

 

 

Figure 2: Map of the distribution of benthic production estimates from Cahoon (1999) 
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Variable for 

Model (1-
way 

ANOVA) 

Adj. 

R2 

RMSE F-ratio P-Value 

Climatic 

Regime 

0.117 138.84 7.63 0.0008** 

Absolute 
Latitude 

0.153 136.02 4.00 0.013** 

Depth 0.058 143.40 3.06 0.032* 

Figure 5: One-way ANOVA model results and boxplots of study site data. Means, medians and interquartile 

ranges of benthic microalgal primary production estimates (Benthic Production) selected from Cahoon (1999) 

are shown for the variable groups specified by one-way ANOVA models for selected contextual variables: 

absolute latitude (upper left), climatic regime (upper right), depth (lower left). Summary statistics (lower right) 

report significant results at the 99% (**) and 95% (*) levels.  
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Figure 6: CART Model of benthic microalgal primary production estimates. Splits are defined 

by the criteria of either absolute latitude or depth variables shown in white boxes. Final nodes 

(groups) and means are shown in grey. 
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6. Discussion:  

The case study using benthic microalgal primary production (BMPP) estimates illustrates 

the breadth of possible sources of transfer errors and the utility of a framework for accounting for 

these errors. The framework accounts for necessary assumptions using balanced approach to 

select estimates for a policy site that meet user-defined accuracy needs. The data set used in the 

case study has previously been used to support discussion of the challenges and inability to 

generalize this process at a global scale (Cahoon 2006), and also as the foundation for an 

ecosystem services approach based on generalizable ecological principles, where declining 

benthic productivity with depth is one such principle (Townsend et al. 2014).  While these 

Figure 7: Validation test results across models. Validation sites were selected from the dataset reported by Cahoon (1999) prior 

to transferability assessment. Differences between corresponding model predictions based on site characteristics and the value 

reported by Cahoon (1999) are shown as percentages (PTE). Models shown are (left to right) are one-way ANOVAs for 

absolute latitude, depth, and climatic regime and the CART model.  
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generalizability conclusions are based on the same data, the discrepancy between them helps to 

illustrate that the generalizability or transferability of information is largely dependent on user 

requirements for specificity and accuracy and is therefore difficult to define broadly.  

The case study assessment provides clear representation of the data and required 

assumptions if a transfer to the policy site is desired. Ecosystem services research represents a 

spectrum of policy-pertinent to directly policy-informative research. Therefore, requirements for 

accuracy and specificity varies within the literature. Because of this, clear and explicit goals, 

objectives and methods are of paramount importance for ecosystem services studies so that 

assumptions made within studies are transparently propagated into subsequent studies or policy 

applications (Costanza et al. 2014; Eigenbrod et al. 2010a,b).  

In this section, advantages of the framework will be highlighted in terms of the case 

study. Afterwards, challenges to applying the framework and for transferability assessment in 

general will be addressed. In particular, a prominent challenge exists once potential transfer risks 

are identified, since users must be able to gauge or minimize relative risks.  

 

6.1 Utility of the Ecological Estimate Transfer Framework  

The framework presents a logical method for identifying sources of uncertainty and 

estimating the accuracy of a transferred estimate to assist in the communication of transferability 

assumptions and risk. Each framework step elucidates sources of uncertainty and assumptions 

which are recorded and addressed cumulatively to inform a transfer decision. Primary sources of 

transfer error include generalization and measurement errors, as described by benefit transfer. In 

order to describe potential sources and indicators of generalization errors, the framework uses 
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ecological theory to generate a multilevel approach to assess context similarity. The case study 

helps to support the multilevel representation of generalization error, as represented by the 

difference between the transformed and true value for the policy site, as well as other sites 

outside of the dataset.  The case study also explores the relative error when different contextual 

variables are used as the basis for a transfer and finds similarity across climatic regimes and 

latitudinal gradients to confer the strongest theoretical and statistical evidence to transfer values 

broadly. In addition, the case study explores statistical and non-statistical approaches that may be 

used to explore context similarity that may be more accessible to users across disciplines, and for 

a variety of purposes spanning policy assessment and research.  

Users are first required to acknowledge sources of error inherent in the original approach 

and remove estimates that are inconsistent with the user’s standards for conceptually validity. 

Even when individual estimates are not immediately investigated, as in the example, the 

potential for error is recorded. Next, users are drawn attention to the sources of error that concern 

the comparability of estimates, which as illustrated by the case study, may require 

transformations to maintain a larger dataset. Such adjustments may change the reference frame 

of the estimates, an indicator of generalization risk. As previously discussed, changes across 

reference frames change the scale of inference across one or more levels which may affect the 

nature of the process of interest. In this example, temporal reference frames were adjusted to be 

comparable and spatial reference fames may have varied from samples within sites (estuaries), 

representative of entire estuaries, or multiple estuaries in an area.  

The transformation from hourly or daily data to annualized estimates as a reference frame 

change represents the potential for significant error. This error was confirmed by the difference 

between the hypothetical transformed value and the true estimate for the policy site of 40 g C m-2 
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hr-1. This bias may be conservative for the magnitude of potential bias since the transformed 

estimate at least represented an entire years’ worth of hourly data. For other estimates, the 

correction for 10 hour production days and number of production days per year based on climatic 

regime does not account for when in time the estimate was observed. For example, one of the 

study site estimates from Massachusetts Bay (Cahoon et al. 1993) derived average hourly BMPP 

from observations over the course of one week in August. Therefore, the transformation does not 

account for other seasonal variability and equates the mean from a week in August to the mean 

over all other months (or 270 days of the year, in temperate zones) that production is assumed to 

occur. Therefore, processes which affect not only light availability and intensity, but also the 

presence and abundance of microalgae over longer time scales are not represented by this 

estimate. For example, light intensity and availability from the sun varies seasonally, as does 

storm intensity and frequency. Similarly, the extent of observations in Cahoon et al. (1993) was 

limited to three sites along Stellwagen Bank, within Massachusetts Bay, as opposed to the entire 

bay as indicated by the location name.  

If users permit reference frame assumptions, contextual variables may be used to assess 

contextual differences in step three. Limitations due to both the type and nature of contextual 

variables were acknowledged at this step. Types of contextual variables and their connection to 

core drivers indicate how well the variables will represent differences between sites that are 

known to drive the estimate’s value.  In the case study, reported contextual variables were 

limited, but seemed to correspond well as proxies of main theoretical drivers.  

Main theoretical drivers were identified from literature review in step one to be light, 

biomass and temperature. Depth serves a proxy of light, because light attenuates with depth 

(Kauer et al. 2010), absolute latitude and location also serve as proxies for light availability and 
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temperature, in both intensity and seasonality (Macintyre, Geider, and Miller 1996). Biomass and 

primary production are dependent, since as one inevitably increases the other; however, neither 

direct metrics of either abundance, microalgal film density (Santos, Castel, and Souzasantos 

1997) or proxies such as grazing pressure (Macintyre, Geider, and Miller 1996) were available. 

Therefore, users that are constrained by the available intrinsic or extrinsic variables are 

compelled to acknowledge this limitation.  

The effect of using proxies versus direct core variables on the case study assessment was 

not directly assessed, for lack of data. However, the variability of the data across contextual 

groups, poor model fits, and problems to predict outside of the dataset may indicate either the 

inherent variability of the data, or that different variables would represent differences better. 

Cahoon (1999) also observed the variability in the data across climatic regimes and depth ranges 

and attributes this to inherent patchiness in observations, differences in between or within 

locations (light flux), differences between communities (P vs I curves, or photosynthesis versus 

irradiance responses) and the effect of different measurement techniques. 

“Probable sources of variability include patchiness on all scales of time and space, 

variability in incident light flux and in P versus I responses, and to some extent the 

different methodologies employed” (Cahoon 1999, p.60) 

The nature, or ranges of contextual variables is important for determining how well the 

pool of study site estimates represents the context of the policy site as an indicator of transfer 

risk. This was determined through the application niche of estimates, as represented by the map 

and radar plot of the data. It was determined that considerable variability and patchiness across 

all variables exists. However, general representation across contextual variables including similar 
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depths, latitude ranges, and locations of the policy site may reduce potential transfer errors since 

the transfer location was broadly represented by the data. The validation tests support the 

importance of representation in the dataset since all models performed worse at the New Zealand 

and Antarctic sites. While the absolute latitude range, depth range, and climatic regime 

(temperate) was well represented for the New Zealand estimate, the models performed very 

poorly for this site. The lack of other geographically proximate estimates prohibit investigation 

into whether the estimate is anomalous, or if the specific region, estuary, or ecosystem tends to 

have higher BMPP rates than other sites at similar latitudes. The ANOVA models generally 

performed slightly better than the CART model across the five validation sites, however CART 

model performed best for the true policy site estimate (figure 7).  

The case study highlights accessible and applicable tools useful for a range of 

transferability assessment needs. Simple contextual comparisons and analyses can help elucidate 

the most robust basis for a transfer which balances theoretical guidance and empirical support. 

Qualitative explorations of the data (e.g., scatterplots and radar plots) identified climatic regime 

and absolute latitude as the clearest basis to differentiate the context of the policy site from the 

rest of the dataset whereas quantitative assessment added statistical rigor to these conclusions.  

Simple and accessible quantitative tools were also used in the case study. Such methods 

are advantageous for applications in policy or other situations where time and expertise 

necessary to build other types of transfer models or conduct full meta-analyses are limited. 

CART analysis, while potentially more difficult to initially code and set up, is inherently 

nonparametric and therefore confers several advantages. Firstly, unlike ANOVA, assumptions do 

not need to be investigated regarding the distributions of the values or the predictors (Lewis 

2000). Secondly, a variety of types of data can be used in CART analysis including numerical 
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data that are highly skewed, categorical or either ordinal or non-ordinal (Lewis 2000; McCune, 

Grace and Urban 2002). CART results can also be simply visualized in a dichotomously 

branched tree. ANOVA, by contrast is a more familiar technique that results in a p-value as a 

widely-used measure of statistical significance. ANOVA also requires groups to be defined by 

the user. In the case study, 10 degree latitude breaks were used to define groups in the ANOVA 

model were validated for the policy site, however, for other splits smaller and larger breaks were 

defined by CART model. This reflects the data-driven and multivariate nature of the CART 

model which therefore is more robust to user decisions in group selection (i.e., other assumptions 

concerning context similarity).  

Finally, users synthesize both qualitative and quantitative uncertainties to gauge total 

transfer error in final framework steps. Major sources of uncertainty highlighted in the case study 

were reference frame changes, contextual variable representation, and statistical uncertainty. In 

acknowledgement of potential limitations, some transferability conclusions could be tentatively 

made. The case study benefited from the availability of a ‘true’ estimate for the policy site which 

allowed transfer error to be determined across the models. The CART model and the absolute 

latitude ANOVA model were found to minimize PTE at the policy site (1.8 and 2.8 PTE, 

respectively). The reliance of both models on absolute latitude suggests this contextual variable 

is the strongest basis to transfer estimates for the dataset and provided variables. This result 

indicates that both a more complex data-driven classification and a more simple assessment 

perform comparably for the case study transfer. However, it is also of interest how a transfer 

could be performed if no policy site information was available. The CART model prediction for 

the policy site has the lowest standard error (SE= 8.74) and the best fit to the data as a whole (R2 

= .597) so if a transferability assessment which confirms a strong basis to determine a transfer 
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estimate. However, the standard error information provided by the model is likely not sufficient 

to capture the other assumptions and limitations of the dataset.  

More detailed uncertainty and validation testing is required to understand total transfer 

error in order to specify a more reliable error and confidence interval for the estimate. A more 

conservative confidence interval for the transfer estimate may be prudent, as illustrated by the 

magnitudes of potential error explored in the validation exercise and resulting from the temporal 

transformation.  

The case study is successful in its description and exploration of the transferability of 

BMPP estimates. On a broad level, absolute latitude was found to be useful as a basis for 

determining contextual similarity versus the other contextual variables (climatic regime or depth 

gradient). Quantitative assessment results show reduced potential gains for more sophisticated 

transfer models in the presence of broader data-wide limitations. Statistical analysis may assist 

users to balance theoretical guidance with statistical significance. However, the limitations and 

assumptions with respect to the contextual reference frames, the available variables, and 

patchiness of the data confound the ability to determine precise and reliable transfer estimates 

without the application of more sophisticated analysis.  

 

6.2 Challenges and Future Research Needs 

The framework’s approach for identifying sources of transfer error potentially confers 

major advantages for describing assumptions and limitations comprehensively, however major 

obstacles remain. Broadly, this framework first relies on the importance of outlining the 

contextual reference frames of policy and study sites. Secondly, intrinsic and extrinsic contextual 
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variables that relate to the process specific to the reference frame must be specified and related to 

candidate transfer estimates. Finally, limitations with respect to reference frames or contextual 

variables must be compared to or combined with other measures of statistical error to inform a 

final transfer decision. Challenges with respect to these features are discussed next alongside 

avenues for future research that will support future transferability assessment. Finally, these 

challenges will be discussed in terms of lessons learned from benefit transfer and 

recommendations for future research. 

6.2.1 Reference Frame Consistency and Evaluation 

The extent of ecological theory and research concerning the effect of scale on pattern and 

process serves as conceptual basis of the contextual reference frame. Furthermore, transfers 

across the same or similar reference frames reduce the risk of scale-dependent effects or the need 

to specify scaling relationships. Consistency across reference frames as an indicator of system 

similarity therefore is a first determinant of transferability, where consistency across intrinsic and 

extrinsic variables follows closely. This was identified in the case study when a potential 

inconsistency across reference frames of original studies was identified, along temporal scales, 

since it required adjustment to be comparable. Consistency across other components of the 

reference frame was also unclear. Spatial scale in terms of either extent or grain was not reported 

alongside individual estimates by Cahoon (1999), however it is clear that by definition measures 

of benthic productivity are at the community level.  While the levels of scale that were available 

for the case study corresponded well with hierarchical levels suggested by the framework (table 

2), this may not always be the case for other applications.  
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Quantifying contextual differences across levels of scale requires users to specify 

informative levels for the process and estimate in question. The categories of scale (space, time, 

and ecological organization) are fixed within the ecological scaling literature, however within 

each category, each hierarchy of scale levels remains general. For example, ecological 

organization is commonly represented by the levels moving from individual to biome (see table 

2; Allen and Starr 1982; Schneider 2001; Wiens 1989; Wu, Jones, and Li 2006), however this 

hierarchy is not comprehensive. For example, a meta-population is a clearly distinct 

organizational unit that may not adequately be represented by either the population or 

community level given by the typical ecological hierarchy presented here. General levels of 

spatial scale and temporal scale are clear, moving from local to global, and reference to these 

scales is common however standardization does not exist. In addition, conventions for naming or 

“classifying” reference frame locations are not always consistent. For example, numerous 

ecological and biophysical classification systems exist to name scale levels and locations (table 

3). Depending on the classification system used, the name of the same location may vary 

slightly. In addition, since not all classification systems apply globally, a classification designed 

and applied only to Australia systems may not be easily compared to a system in North America. 

Therefore, considerable confusion may occur when identifying scale mismatches if different 

classification systems are used.  

Reconciling scale differences for many ecosystem services studies is a prominent 

challenge because the scales of ecological processes, experiments and analyses may vary from 

the scales of policy making and management (Wu, Jones and Li 2006). If such scale transitions 

are common, further research into the consequences, adjustments, or need for more sophisticated 

modeling may be necessary. A focus of future studies should be the relative consequences across 
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spatial, temporal and organizational scales and to identify important scale breaks for commonly 

transferred estimates and services.  

6.2.2 Intrinsic and Extrinsic Variable Identification  

The example assessment relied primarily on proxies of intrinsic variables, which limits 

potential accuracy and precision of predicted estimates in a transfer model. Observed variability 

and limitations of the case study models may be partially due to the lack of informative intrinsic 

and extrinsic variables. Further transferability investigations may benefit from the use of 

unadjusted data as response data and more representative intrinsic variables, such as site specific 

data concerning light intensity and availability across depths and scales. Improved reporting of 

contextual conditions and descriptions will help improve transferability assessment. In the lack 

of contextual information within papers, the growing number of classification systems and GIS-

referenced databases of biophysical data may permit users to gather appropriate contextual 

information (e.g., Marine Regions, Claus et al. 2015).  

Several ecological classification systems were explored as other potential extrinsic 

variables in the case study. It was anticipated that ecological classifications could be useful as 

proxies of differences in ecological composition, salinity regimes, or temperature regimes that 

were not able to be represented directly by intrinsic variables identified during literature review 

(Cahoon 1999; Cahoon 2006; Macintyre, Geider, and Miller 1996). In addition, other systematic 

variations may be represented such as in light availability due to benthic sediment composition, 

turbidity as related to the site or storm frequency or any number of other covariates are 

associated with microalgal production estimates but unobserved in many original studies 

(Cahoon 1999). However, the size and distribution of the case study dataset did not permit the 
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inclusion of available classifications, such as the MEOW Realms or World Seas, because there 

was not sufficient replication across groups. These classifications could have been investigated if 

assessment was limited to the temperate observations of the dataset, since many unique 

observations were across tropical or polar locations.  

Their efficacy of available classifications for describing meaningful differences between 

estimates depends on the basis of each system and the ability to apply the classification (Troy 

and Wilson 2006). This is particularly true when classification systems are limited in scope to 

particular continents or regions which cannot be broadly compared. In assistance to this end, 

several hierarchical and global classification systems have been proposed for marine systems.  

Marine Ecoregions of the World (MEOW, Spalding et al. 2007) and the Coastal and 

Marine Ecological Classification Standard (CMECS, NOAA 2012) represent two promising 

classification systems for use in transferability assessment of coastal ecosystem service 

estimates. CMECS classifies environmental “units” (a flexible description given to multiple 

scales) based on two settings (both aquatic and biogeographic) and four components (water 

column, geoform, substrate, and biotic). CMECS utilizes the MEOW classification to describe 

biogeographic setting. MEOW identifies coastal settings using a three-tiered hierarchical 

approach moving from realms (largest) to provinces to ecoregions (smallest). Given the size of 

our dataset and the spatial resolution of studies only realms were able to be georeferenced to the 

case study data. The MEOW classification is driven primarily to discriminate between distinct 

biota for conservation of biodiversity globally, however Spalding et al. (2007) notes the 

relationship and correspondence between biotic relationships and abiotic drivers:  
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“Very large regions of coastal, benthic, or pelagic ocean across which biotas are 

internally coherent at higher taxonomic levels, as a result of a shared and unique 

evolutionary history. Realms have high levels of endemism, including unique taxa at 

generic and family levels in some groups. Driving factors behind the development of 

such unique biotas include water temperature, historical and broad scale isolation, and the 

proximity of the benthos.” (Spalding et al. 2007, p. 3) 

Therefore, finer, more descriptive variations among studies may correlate with some 

important abiotic drivers or species compositions. However, the unevenly and unequitable 

distributed estimates in the case study disallowed reliable use of this biogeographic 

classification. Classification systems which apply broadly that relate characteristics which vary 

quantitatively across sites may be better able to describe differences across geographically 

distributed and sparse data. CMECS represents one such classification system. For example, the 

water column component is further defined by water layers (e.g., surface layer, upper water 

layer, pycnocline, and lower water layer), temperature, salinity, hydroform, and biogeochemical 

features (NOAA, 2012). Therefore, as studies adopt and relate individual studies to this 

classification, the amount of available information for transferability assessment will be greatly 

improved. As recognition and adoption of the CMECS standard grows, transferability 

assessment across possible intrinsic and extrinsic variables will be greatly enabled and will 

further reduce dependencies on proxies.  

6.2.3 Quantitative Estimates of Total Transfer Error: 

 The generalizations and simplifications of the dataset prior to analysis reduce the ability 

for the transfer models to predict reliable policy site estimates and for statistical error measures 
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to represent the uncertainty of the models to perform outside of the dataset. Therefore, either 

additional analyses quantifying the effect of these errors or decision rules on how estimate error 

should be adjusted are needed.  

The case study provided cursory assessment of the potential magnitude of these errors 

through the validation testing and the hypothetical transformation of the policy site estimate. 

Neither is sufficient to specify a new confidence interval for the transfer estimate, but these 

results do indicate several issues. Firstly, the hypothetical transformed policy site estimate value 

still lies within one standard deviation of the mean, which indicates the confidence interval and 

error may be conservative enough to encapsulate this error for the policy site. However, as 

previously mentioned, the deviation between the true policy site estimate and the transformed 

value may be conservative and therefore not representative of this error across the entire dataset. 

Secondly, PTEs across validation sites vary widely. The PTEs observed for the New Zealand and 

Antarctic sites reflect that the true estimates do not lie within two standard deviations of the 

predicted means, regardless of the model used. The improved performance of the models for 

sites similar to the policy site confers some confidence for the models for these conditions, 

however overall this indicates the need for further investigation of the data. Further investigation 

may specify more accurate or representative values of sites, more potential predictors, and 

comparisons across models using various specifications.  

Additional tools and methods may assist with transferability assessment. In particular, 

spatial statistical tools such as empirical variograms and ordination plots may help to investigate 

distance related effects across estimate locations. Literature review found that geographic 

proximity is a common basis used for transfers however, this was only indirectly evaluated by 

the case study. Using measures of distance between georeferenced points, points in time, or 
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ecological relationships variability in estimates as a function of distance, these relationships can 

be evaluated (Isaaks and Srivastava 1989; Legendre, 1993).  

6.2.4 Insights from Benefit Transfer and Future Research Directions 

Because of the previously identified challenges to quantify and evaluate context 

similarity there are fundamental challenges and limitations for conducting robust ecological 

estimate transfers. Benefit transfer has similarly noted such obstacles and through repeated 

testing across contexts and location has derived a few general conclusions. To follow this 

example, future research should focus efforts on quantifying trade-offs between methods for 

conducting transfers, prioritizing transferability research on estimates that are in greatest 

limitation or demand, and deriving general guidance for the relative importance of different 

contextual reference frame components. In particular, broad indicators of context are important if 

robust point estimate transfers are to be made.  

The benefit transfer literature has generally found that function-based transfers 

outperform unit value transfers (Rosenberger and Stanley 2006), where function transfer refers to 

the suite of function-based transfer approaches including meta-analysis models and others (see 

Johnston and Rosenberger 2010 for other methods). In the case study it was shown how 

quantitative methods including ANOVA and CART analysis can inform transferability 

assessment that balances available information and user knowledge and time constraints. 

However, comparisons between such methods and more detailed function-based transfers and 

meta-analytic models will help inform when simple approaches for estimate transfer, such as 

those shown are sufficient as compared to other approaches.  
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As has occurred in the benefit transfer literature, quantitative investigations of transfer 

error with respect to specific services and contexts will yield more specific transferability 

guidance and may modify, add or emphasize the importance of contextual reference frames and 

contextual variables. The presented framework applies a conservative approach to identifying 

risks associated with differences in reference frames, however ecosystem-service specific 

investigations into the magnitude of error introduced by changes in reference frames, both to 

predicted estimates in the transferability exercise and to final ecosystem service model results are 

needed to fully gauge the importance of similarity across reference frames. In addition, such 

studies will inform the importance for extrinsic and intrinsic variables in transfer models, which 

can in turn help to guide conceptual or qualitative assessments. 

Suggestions for improving benefit transfer have included increasing the availability of 

original data and reporting site characteristics and study attributes more consistently (Loomis and 

Rosenberger 2006). Reporting of site characteristics consistent with the contextual reference 

frame will assist scale identification and comparison. In addition, this will facilitate the 

identification of relevant extrinsic and intrinsic variables. Availability of original data may also 

assist in variable identification and concurrently facilitate meta-analytic analyses.  

Databases such at the Environmental Valuation Resource Inventory (EVRI) have been 

designed in part in order to enhance benefit transfer practices (DeCivita et al. 1998). Similarly, 

the EcoService Model Library (ESML), a database of ecological models, seeks to collect 

information on ecological models that relate to ecosystem service production (EPA, 2015). This 

database records detailed information that may help users identify equivalent scales and 

contextual variables. For example, the database collects information on model extent, grain, 

ecological organization in both numerical and categorical descriptions. Point locations in space 
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and in time are recorded for the model in general, and information on the lag interval and 

distribution of observations, if temporally or spatially distributed, is also recorded. Descriptive 

names are applied to models as well as they correspond to the author’s stated spatial scale are 

provided, but standardized classification schemes are also used for both terrestrial (using 

continent, country, and state identifiers) and marine locations (Marine Ecoregions of the World, 

MEOW). Such a descriptive tool may aid in the identification of potentially useful ecosystem 

service estimates or models for transfer.  

More extensive reviews of transfer practices within the ecosystem services literature will 

allow the prioritization of future transferability analyses. In this thesis, a focused review of the 

habitat-fisheries valuation literature found that estimates of natural mortality rate and primary 

production were transferred most often. A more comprehensive review of the literature and of 

policy and management applications will help identify the most commonly transferred estimates. 

Future discussion and self-identification of the use of ecological estimate transfer, as occurs with 

benefit transfer, in the literature will help improve the ability to review the occurrence of the 

practice and in turn prioritize areas in most need of detailed transferability assessment.  

The case study is effective in highlighting important determinants of transfer error and 

provides several indicators for the magnitude of these errors, however the case study is limited in 

both replication and scope. More comprehensive analysis is needed in order to understand the 

relative effects of generalization errors due to differences across contextual features such as the 

reference frame levels, locations and variables. The validation estimates used in the case study 

illustrate some trade-offs across the models for predicting at sites with different characteristics 

but more intensive cross-validation techniques would permit more concrete conclusions 

concerning relative model performance. In addition, by comparing models built using either 
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transformed or untransformed data the magnitude of this transformation on model predictions 

could be better assessed. Finally, rebuilding models using different combinations of extrinsic and 

intrinsic variables and utilizing the study site data more comprehensively will help define more 

meaningful groups and reduce statistical sources of uncertainty.  

 

7. Conclusion 

Demand for ecosystem service assessment is growing, from both an academic and a 

policy perspective. The concept of ecosystem services as a tenant of ecosystem-based 

management approaches is growing in importance to agencies, such as the U.S. EPA (EPA 2012) 

and has been written into the language of the U.S. National Ocean Policy (National Ocean 

Policy Implementation Plan 2013).  Furthermore, ecosystem service assessment has been 

directly requested as part of the natural resource damage assessment for the Deepwater Horizon 

oil spill (Mayer et al. 2012). Regulatory applications of ecosystem services information may 

increase the demand for ecological estimate transfers as has been observed for benefit transfer 

(Bergstrom and DeCivita 1999). Comprehensive ecosystem service assessments require 

researchers to extract information potentially across diverse ecological disciplines and sub-

disciplines (Börger et al. 2014; Guerry et al. 2013). The frequency of transfers in the habitat-

fisheries valuation literature is an indicator of the occurrence of the practice, especially in 

methods which utilize production functions and rely on more ecological information. If 

ecosystem service research and values are to become management and policy informative, 

transparency and effective communication of limitations and assumptions is requisite (EPA 

2009). The presented framework and associated structure for defining ecological contexts, the 
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contextual reference frame, represents a first attempt to organize and standardize transfers of 

ecological information in ecosystem services research. This approach represents a synthesis of 

previous work and thought in economic benefit transfer, ecological scaling, and ecosystem 

services.  

Benefit transfer as an analog demonstrated the theoretical importance of context for 

driving transfer errors and helped to define an architecture of ecological contexts. Previous work 

has identified the shortcomings of some types of transfers, most notably generalizations across 

spatial scale (Eigenbrod et al. 2010b). The framework draws attention to the multidimensionality 

of transfers across scale and contextual variables and calls for future research comparing the 

relative consequences of transfers that occur across different contextual reference frame scales, 

levels and locations. In particular, the case study drew attention to generalization errors across 

temporal scales. The proposed structure for defining context relates to the need to identify 

appropriate levels of aggregation and linking information across scales in ecology as a whole 

(Meyer et al. 2010) as well as the creating of functionally meaningful classifications of context 

for ecosystem services valuation (Troy and Wilson 2006). The structure for ecological contexts 

proposed in this thesis serves as a baseline for gauging transferability risk, but future research is 

needed to understand the relative risks between generalizations across spatial, temporal and 

ecological scales. The presented framework emphasizes the importance of diligence in each step 

of the meta-analytic and research synthesis process, asking researchers to define and compare the 

transfer needs to the available data, not only to assure consistency and accuracy underlying each 

candidate estimate itself, but also to compare estimates in terms of their contexts.  

The case study explored the advantages and challenges for comprehensive description of 

potential transfer errors. CART and ANOVA analyses are potentially useful methods to explore 
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ecological estimate transfers in addition to the meta-analytic and function-based approaches used 

in benefit transfer (Bergstrom and Taylor 2006). These methods allow comparisons between 

estimates and contexts and to assess transfer risks the need for further transferability assessment.  

The case study analysis highlights the utility of these approaches and the potential errors for 

generalizations across temporal scales. Given sufficient data, trends and effects across 

dimensions and metrics of contexts may be better understood in order to inform decisions 

concerning the generalizability of estimates or values for a given scale. Other techniques as 

applied in the spatial statistical literature, such as empirical variograms, hold promise for future 

transferability assessment across spatial locations (Legendre 1993; Pigott 2012).  

Considerable work is needed to quantify and compare magnitudes of transfer error for 

transfers occurring across contextual reference frames and locations to generate better indicators 

of transfer reliability. Indicators of transfer reliability that are less computationally demanding 

than full meta-analyses, or that may be used when too little information is available for 

comprehensive assessment will be useful but first depend on generating a body of supporting 

transferability assessments. If parameters or estimates that are most widely transferred can be 

identified, subsequent work may first focus on these estimates. In addition, investigations into 

the validity of traditional ecosystem classes, habitat types, or LULC as organizationally useful 

metrics of transferability should be conducted to test the extent of utility of preexisting 

classifications for transferability assessment.   
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Location

BMPP (g 

C m^-2 

yr^-1)

Depth 

Binned 

(median) Method

Publ-

ication 

Year

Climatic 

Regime

Absolute 

Latitude (⁰) Latitude (⁰)

Long-itude 

(⁰) World Sea 

Realm 

(MEOW)

AL, USA 20 1.2 14C 1995 Te 30.71 30.71 -86.9

Gulf of 

Mexico

Temperate 

Northern 

Atlantic

Barataria Bay 

LA, USA 121 0 O2 1988 Te 29.39 29.39 -89.94

Gulf of 

Mexico

Temperate 

Northern 

Atlantic

Bay of Fundy, 

Canada 58 0 O2 1983 Te 44.77 44.77 -65.38

Bay of 

Fundy

Temperate 

Northern 

Atlantic

Beaufort Sea, 

AK, USA 9 7 14C 1982 Po 72.84 72.84 -145.41 Beaufort Sea Arctic

Boca Ciega, 

FL, USA 57 2.5 O2 1960 Tr 27.8 27.8 -82.76

Gulf of 

Mexico

Tropical 

Atlantic

Bolsa Bay, 

CA, USA 97 0 14C 1978 Te 33.7 33.7 -118.05

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

Carribean 40.9 33.5 O2 1972 Tr 21.47 21.47 -78.65

Caribbean 

Sea

Tropical 

Atlantic

Chapman 

Cove, WA, 

USA 67 0 O2 1994 Te 47.22 47.22 -123.03

The Coastal 

Waters of 

Southeast 

Alaska and 

British 

Columbia

Temperate 

Northern 

Pacific

Appendix 1: Metadata used for case study analysis. Data reproduced with publisher permission from table 3 in  Cahoon 

(1999) includes the benthic microalgal primary production (BMPP) estimate, location, median depth, method, publication 

year and climatic regime. Google Earth and ArcGIS were used to identify the latitude, longitude, Wold Sea, and MEOW 

Realm information corresponding the the location name provided by Cahoon (1999). Estimates not applicable for analysis 
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Chesapeake 

Bay, VA, 

USA 234 0 O2 1985 Te 37.58 37.58 -76.17

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Chesapeake 

Bay, VA, 

USA 196 1 O2 1985 Te 37.584 37.584 -76.17

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Chesapeake 

Bay, VA, 

USA 75 0 14C 1993 Te 37.58 37.58 -76.17

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Chukchi Sea, 

AK, USA 16 5 14C 1974 Po 69.47 69.47 -171.69 Chukchi Sea Arctic

Cote d'Ivoire 81 2.5 O2 1977 Tr 5.13 5.13 -5.36

Gulf of 

Guinea

Tropical 

Atlantic

Curacao 405 1.75 O2 1976 Tr 12.17 12.17 -68.99

Caribbean 

Sea

Tropical 

Atlantic

Danish fjord 15 0.5 14C 1980 Te 54.59 54.59 8.42 North Sea

Temperate 

Northern 

Atlantic

Danish fjord 5 6 14C 1980 Te 54.59 54.59 8.42 North Sea

Temperate 

Northern 

Atlantic

Danish Fjords 189 0.9 14C 1960 Te 54.59 54.59 8.42 North Sea

Temperate 

Northern 

Atlantic

Ems-Dollard 

(Dollart), 

Netherlands 132 0 O2 1982 Te 53.28 53.28 7.18 North Sea

Temperate 

Northern 

Atlantic

False Bay, 

WA, USA 108 0 O2 1968 Te 48.48 48.48 -123.068

The Coastal 

Waters of 

Southeast 

Alaska and 

British 

Columbia

Temperate 

Northern 

Pacific

Golf de Fos, 

France 54 0.5 O2 1984 Te 43.38 43.38 4.93

Mediterrane

an Sea - 

Western 

Basin

Temperate 

Northern 

Atlantic
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Golfe de Fos, 

France 32 3.75 O2 1994 Te 43.38 43.38 4.93

Mediterrane

an Sea - 

Western 

Basin

Temperate 

Northern 

Atlantic

Golfe de Fos, 

France 100 1 O2 1996 Te 43.38 43.38 4.93

Mediterrane

an Sea - 

Western 

Basin

Temperate 

Northern 

Atlantic

Golfe de Fos, 

France 26.5 11 14C 1996 Te 43.38 43.38 4.93

Mediterrane

an Sea - 

Western 

Basin

Temperate 

Northern 

Atlantic

Golfe de Fos, 

France 54 0.5 O2 1987 Te 43.38 43.38 4.93

Mediterrane

an Sea - 

Western 

Basin

Temperate 

Northern 

Atlantic

Gray's harbor, 

WA, USA 59 0 O2 1984 Te 46.93 46.93 -123.7

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

Gray's Reef, 

GA, USA 120 20 O2 1991 Te 31.98 31.98 -80.93

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Great Barrier 

Reef, 696 0.5 O2/14C 1985 Tr 18.28 -18.28 147.7 Coral Sea

Central Indo-

Pacific

Gt. Barrier 

Reef, 333 4 O2 1990 Tr 18.28 -18.28 147.7 Coral Sea

Central Indo-

Pacific

Gulf of 

Trieste, Itlay 57 7 O2 1989 Te 45.67 45.67 13.58 Adriatic Sea

Temperate 

Northern 

Atlantic

Gulf of 

Trieste, Itlay 40 15 O2 1989 Te 45.67 45.67 13.58 Adriatic Sea

Temperate 

Northern 

Atlantic

Gulf of 

Trieste, Itlay 30 22 O2 1989 Te 45.67 45.67 13.58 Adriatic Sea

Temperate 

Northern 

Atlantic
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Hokkaido, 

Japan 19 0 Ixchla 1991 Te 43.06 43.06 141.34 Japan Sea

Temperate 

Northern 

Pacific

La Jolla, CA, 

USA 414 18.3 O2 1978 Te 32.83 32.83 -117.27

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

Laguna de 

Terminos, 

Mexico 73 1.75 O2 1982 Tr 18.7 18.7 -91.56

Gulf of 

Mexico

Tropical 

Atlantic

Laholm Bay, 

Sweden 8 11.5 O2 1986 Te 56.55 56.55 12.94 Kattegat

Temperate 

Northern 

Atlantic

Laholm Bay, 

Sweden 15 15 O2 1986 Te 56.55 56.55 12.94 Kattegat

Temperate 

Northern 

Atlantic

Laholm Bay, 

Sweden 3.5 17.5 O2 1986 Te 56.55 56.55 12.94 Kattegat

Temperate 

Northern 

Atlantic

Laholm Bay, 

Sweden 1 19.5 O2 1986 Te 56.55 56.55 12.94 Kattegat

Temperate 

Northern 

Atlantic

Laholm Bay, 

Sweden 18.5 3.5 14C 1988 Te 56.55 56.55 12.94 Kattegat

Temperate 

Northern 

Atlantic

Laholm Bay, 

Sweden 7 6.5 O2 1986 Te 56.55 56.55 12.94 Kattegat

Temperate 

Northern 

Atlantic

Langebaan 

Estuary, South 

Africa 7 0 14C 1988 Te 33.09 -33.09 18.03

South 

Atlantic 

Ocean

Temperate 

Southern Africa

Loch Ewe, 

Scotland 5.8 4 14C 1969 Te 57.82 57.82 -5.63

Inner Seas 

off the West 

Coast of 

Scotland

Temperate 

Northern 

Atlantic

Long Is. 

Sound CT, US 41 0 14C 1986 Te 41.07 41.07 -72.94

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic
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Long Is. 

Sound, NY, 

USA 6.6 0.9 14C 1996 Te 41.07 41.07 -72.94

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Long reef, FL, 

USA 13.5 16 ND 1972 Tr 25.42 25.42 -80.126

North 

Atlantic 

Tropical 

Atlantic

Marennes-

Oleron Bay, 

France 127 0 O2 1994 Te 45.8 45.8 -1.1

Bay of 

Biscay

Temperate 

Northern 

Atlantic

Marshall Is 300 2.5 O2 1973 Tr 7.23 7.23 171.18

North 

Pacific 

Eastern Indo-

Pacific

Massachusetts 

Bay, USA 36 24.5 O2 1993 Te 42.32 42.32 -70.78

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Mississippi 

Sound, MS, 

USA 339 1 14C 1992 Te 30.27 30.27 -88.51

Gulf of 

Mexico

Temperate 

Northern 

Atlantic

Mississippi 

Sound, MS, 

USA 63 0 14C 1988 Te 30.26 30.26 -88.51

Gulf of 

Mexico

Temperate 

Northern 

Atlantic

Moorea, F. 

Polynesia 402 0.5 O2 1976 Tr 17.54 -17.54 -149.83

South 

Pacific 

Eastern Indo-

Pacific

NC Shelf, 

USA 50.5 17.5 O2 1992 Te 35.25 35.25 -75.43

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

NC Shelf, 

USA 94 25 O2 1992 Te 35.25 35.25 -75.43

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

NC Shelf, 

USA 55.6 35.5 O2 1992 Te 35.25 35.25 -75.43

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Newport 

Estuary, NC, 

USA 20 0 14C 1977 Te 34.76 34.76 -76.7

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

North River, 

SC, USA 135 0 O2 1993 Te 33.33 33.33 -79.17

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic
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Nosy-Be, 

Madagascar 104 5 14C 1978 Tr 13.31 -13.31 48.25

Mozambiqu

e Channel

Western Indo-

Pacific

Nosy-Be, 

Madagascar 85 15 14C 1978 Tr 13.31 -13.31 48.25

Mozambiqu

e Channel

Western Indo-

Pacific

Nosy-Be, 

Madagascar 42 25 14C 1978 Tr 13.31 -13.31 48.25

Mozambiqu

e Channel

Western Indo-

Pacific

Nosy-Be, 

Madagascar 17 35 14C 1978 Tr 13.31 -13.31 48.25

Mozambiqu

e Channel

Western Indo-

Pacific

Nosy-Be, 

Madagascar 12 60 14C 1978 Tr 13.31 -13.31 48.25

Mozambiqu

e Channel

Western Indo-

Pacific

Nova Scotia, 

Canada 19 0 O2 1986 Te 44.68 44.68 -63.74

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

NW Spain 79 0 14C 1985 Te 43.06 43.06 -9.25

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Oresund, 

Denmark 95 1 14C 1970 Te 55.75 55.75 12.68 Kattegat

Temperate 

Northern 

Atlantic

Pacific Islands 74 5.5 ND 1986 Tr 7.93 -7.93 157.57

Solomon 

Sea

Central Indo-

Pacific

Potters Pond, 

RI, USA 150 0.7 O2 1985 Te 41.4 41.4 -71.53

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

S. Cal lagoon, 

CA, USA 143 0 O2 1983 Te 34.1 34.1 -119.08

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

S. New 

England, USA 54 0 O2 1971 Te 43.4 43.4 -70.39

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Salt marsh, 

DE, USA 74 0 O2 1974 Te 38.7 38.7 -75.16

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

San Antonio 

Bay, TX, 

USA 7.3 2 IxChla 1996 Te 28.3 28.3 -96.71

Gulf of 

Mexico

Temperate 

Northern 

Atlantic
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Santos 

Estuary, 

Brazil 164 0 14C 1983 Tr 23.97 -23.97 -46.33

South 

Atlantic 

Ocean

Temperate 

South America

Sapelo Is., 

GA, USA 25 0 14C 1981 Te 31.42 31.42 -81.24

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Sapelo Is., 

GA, USA 214 0 14C 1976 Te 31.42 31.42 -81.24

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Sapelo Is., 

Georgia 47 0 O2 1959 Te 31.42 31.42 -81.24

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Savin Hill 

Cove MA, 

USA 188 0 14C 1990 Te 42.31 42.31 -71.04

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

SC, USA 136 0 O2 1986 Te 33 33 -79.11

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Scott Reefs, 

Indian Ocean 640 5.5 O2 1986 Tr 14 -14 121.83

Indian 

Ocean

Central Indo-

Pacific

Signy Is., 

S.Orkney Is. 16 8 14C 1991 Po 60.71 -60.71 -45.6

Southern 

Ocean Southern Ocean

Smalandshave

t, Denmark 89 4 14C 1972 Te 55.02 55.02 11.51 Kattegat

Temperate 

Northern 

Atlantic

St.Croix, 

Virgin Islands 840 1.75 O2 1985 Tr 17.71 17.71 -64.83

Caribbean 

Sea

Tropical 

Atlantic

SW England 143 0 14C 1978 Te 50 50 -5.41

English 

Channel

Temperate 

Northern 

Atlantic

Tijuana Bay, 

CA, USA 232 0 O2 1980 Te 32.56 32.56 -117.09

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

Tuamotu  

Archipelago 171 2.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu  

Archipelago 154 7.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific
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Tuamotu  

Archipelago 137 12.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu  

Archipelago 119 17.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu  

Archipelago 101 22.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu  

Archipelago 84 27.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu  

Archipelago 66 32.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu  

Archipelago 49 37.5 O2 1988 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Tuamotu Is, F. 

Polynesia 426 0.5 O2 1976 Tr 18.04 -18.04 -141.41

South 

Pacific 

Eastern Indo-

Pacific

Vancourver, 

BC, Canada 106 0 O2 1976 Te 49.26 49.26 -123.11

The Coastal 

Waters of 

Southeast 

Alaska and 

British 

Columbia

Temperate 

Northern 

Pacific

Wadden Sea, 

Denmark 455 0 14C 1962 Te 55.53 55.53 8.08 North Sea

Temperate 

Northern 

Atlantic

Wadden Sea. 

Netherlands 115 0 O2 1982 Te 55.53 55.53 8.08 North Sea

Temperate 

Northern 

Atlantic

Wadden Sea. 

Netherlands 130 0 14C 1980 Te 55.53 55.53 8.08 North Sea

Temperate 

Northern 

Atlantic

Wadden Sea. 

Netherlands 94 0 14C 1974 Te 55.53 55.53 8.08 North Sea

Temperate 

Northern 

Atlantic

Wadden Sea. 

Netherlands 85 0 14C 1977 Te 55.53 55.53 8.08 North Sea

Temperate 

Northern 

Atlantic
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Westerschelde

, Netherlands 10 0 O2 1995 Te 51.42 51.42 3.54 North Sea

Temperate 

Northern 

Atlantic

Woods Hole, 

MA, USA 70 0 14C 1974 Te 41.5 41.5 -70.67

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Woods Hole, 

MA, USA 95 0 14C 1976 Te 41.5 41.5 -70.67

North 

Atlantic 

Ocean

Temperate 

Northern 

Atlantic

Ythan 

Estuary, 

Scotland 20 0 14C 1970 Te 57.3 57.3 -1.98 North Sea

Temperate 

Northern 

Atlantic

Columbia 

River, OR, 

USA 72 0 O2 1986 Te 46.24 46.24 -123.8

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

Ems-Dollard 

(Dollart), 

Netherlands 100 0 14C 1984 Te 53.28 53.28 7.18 North Sea

Temperate 

Northern 

Atlantic

Netarts Bay, 

OR, USA 106 1 O2 1983 Te 45.4 45.4 -123.94

North 

Pacific 

Ocean

Temperate 

Northern 

Pacific

Manukau 

Harbour, New 

Zealand 476 0 IRGA 1981 Te 37 -37 174.66 Tasman Sea

Temperate 

Australasia

McMurdo 

Sound, 

Antarctica 58 18 14C 1986 Po 77.84 -77.84 166.67

Southern 

Ocean Southern Ocean
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