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DISCRETE MODELING OF FLOW SYSTEMS
I. INTRODUCTION

Discrete modeling of flow systems using a fractional input
matrix (or stochastic matrix) may become a useful tool in chemical
engineering practice in the near future. This is mainly due to many
practical uses of such a model. For example, it is possible to apply
this technique to solve important problems which are encountered in
such applications as watér pollution treatment in the rivers and
oceans, drug distribution in human body, flow of chemical through
complex process equipments, solid particle movement in fluidized
beds, and the mixing problems in the design of chemical reactors.

In studying a physical phenomenon in a flow process, chemical
engineers often use sets of mathematical equations (both ordinary and
partial differential equations) which approximate the process under
investigation. But once the process becomes quite complex, particu-
larly, when many unknown factors are involved in that process (like
most of flow systems, for example), it is too difficult and often
impractical to formulate the mathematical equations which describe
the behavior of that system. The discrete flow model proposed in
this study may be a useful approach in such a case.

No general work has been reported in the literatures on

modeling continuous time, continuous space flow systems. But there



has been some work on modeling special kinds of flow systems. Among
them, most of the studies have been made on modeling continuous
time, discrete space flow systems with a known set of interregion
flows. In 1967, Gibilaro, et al. [8] used a discrete time Markov
process to evaluate the response of a continuous time flow system
consisting of six well-mixed vessels to input disturbances. ’They
arbitrarily assigned the volumes of the vessels and the magnitude of
the flows connecting the vessels. A network combing technique for
modeling stirred vessel arrays was introduced in 1969 by Buffham,
et al. [4]. An arbitrary flow network with identical linear dynamic
mixing characteristics at the nodes, according to their work, may be
replaced by an equivalent parallel-series arrangement. In this man-
ner, the total response can be expressed as a sum of the individual
series responses. That teéhnique can be used only when values of the
sizes of the vessels and the interconnected flows between the vessels
are specified. In 1971, Schmalzer ahd Hoelscher [19] presented a
stochastic model of a packed bed and discussed the consequences on
mixing and mass transfer within that bed. In that model it was
assumed that each packet of fluid has three velocity states and then
related the movement of the packet of fluid in velocity states to a
random walk problem. The transition probabilities in the velocity
space with time as a discrete parameter were chosen arbitrarily.

This was extended to the continuous parameter case later by



Srinivasan and Mehata [20}. In 1972, Chen, et al. [5] used a Markov )
chain model to model the axial mixing of a binary homogeneous solid
particle mixture in a motionless mixer having no moving parts. One
step transition probabilities were determined experimentally by them.
The experimental results were in good agreement with those predicted
from the model. But, according to their work, transition probabilities
were difficult to obtain experimentally and the determination of those
probabilities was time-consuming. This was extended to the case of
mixing of a multicomponent solid particles later by Lai and Fan’ [13].
A mathematical model called compartmental analysis was presented
in 1971 by Rubinow and Winzer [17]. It has been developed and used
extensively in physiology to model flow within an organism (6,15, 18].
According to that model, the information of the steady state fluxes
between the compartments in a compartment system consisting of n
interconnected well-mixed compartments can be inferred by observing
the tracer concenfration as a function of time in one or more com-
partments. There are only (2n-1) algebraic equations which can
be written down by relating the interconnected flux matrix to experi-
mentally determined quantities and its invariants. In making infer-
ences regarding n2 unknown elements of the interconnected flux
matrix, some elements of that matrix are assumed to be null. The

computation in that model is tedious and the result is not unique.



For many flow systems (like rivers and oceans, for example)
that are of interest in this study, there are very many regions inside
the systems. In practice we do not know the interregion flows con-
necting the regions inside the systems. We do not know the sizes of
the regions either. The only thing we may have is the transient con-
centrations of tracer at various points from multiple probe measure-
ments. This thesis seeks to find out what use can be made of these
sets of data measured by multiple probes in a flow system. Can they
tell what is going on inside the system? Is it possible to develop a
method to find the interregion flows from those measured data alone?

The approach in this study is to model the flow systems: as
discrete both in time and space and to develop general methodologies
for determining the fractional input matrix (or transition matrix)
based on multiple steady state or transient tracer measurements
within the system. The use of that matrix to find the sizes of the
regions, to predict the residence time distribution (RTD) of the fluiti
in the flow system, and to compute the reaction conversion if chemical

reaction occurs will also be developed.



II. DISCRETE FLOW MODEL

Description of the Model

The model proposed in this study assumes that the behavior of a
given flow system can be represented by an n regions which are
connected by an arbitrary flow network. A schematic diagram of this
flow model is shown in Figure 1. The volumes of the regions are not
necessarily equal. We index the regions by i, running from 1 to
n, denote the volume of the ith region by v, and the volumetric
flow rate from the ith region to the ith region itself by 95 and
the volumetric flow rate from the ith region to the jth by qij'
The volumetric flow rate from the inlet station (or feed station) to the
jth  region is denoted by Qj and the volumetric flow rate from the
ith region to the outlet station is % out’

In order to visualize a physical phenomenon which exactly
corresponds to the mathematical model, we consider each region to
contain a piston which moves from the top of the region down to the
bottom in one transition and then discontinuously moves back to the
top position ready for next transition. Material entering any region
mixes completely on entering.

Consider the system at some time t after a tracer has been
introduced. The state of the system is described by the tracer con-

centrations in eachof the n regions. After atime At, during
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which the material flows out of the bottom of each cell and back into
the top of other cells (or the same cell, or exits), we have a new set
of concentrations or a new state. Each redistribution of this kind will

be called a state transition.

State Transition Equation of the Model

Before we start the derivations, some assumptions about the

actual system for this model are listed as follows:

1. The flow is incompressible.

2. The flow pattern is unchanging (not a function of time).

3. The scale of turbulence compared to the size of the regions
is small and thus negligible. Hence measurements are
reproducible.

4. No chemical reactions are involved in the flow process.

At time t, we inject a tracer into a flow system assumed to

consist of n regions as shown in Figure 1. Let one step time
interval be At. Then from the mass balance of the tracer around

the jth region at time t+At, we find

n .
vie t+At Z q At)c (t) + (QjAt)fj(t), (la)
i=1

forall t>0 j=1,2,...,n



where cj(t+At) is the tracer concentration in region j at time
ttat, Ci(t) is the tracer concentration in region i at time ¢,
and fj(t) is the input tracer concentration from the feed station to
region j at time t. Dividing by Vj on both sides of Equation

(la), we get

2 q..0t Q.at
c,(tHat) = (== )eyt) + (g () (1b)
i::l j j
for all t>0 j=1,2,...,n
Now define
q. At
p..:_—J_: 1’_]:1’2’- »n (2)
ij v,
J
Q.At
-”J:—‘J’_—’ j =12, »n (3)
j

Equation (2) defines the fractional input coefficients (or transition
probabilities) pij in this flow model from a physical viewpoint.
They can be interpreted as the fraction of all material that will end up
in the jth region that transfers from the ith region in one step.
Similarly, the feed coefficients 'n'j (defined by Equation (3)) can be
interpreted as the fraction of all material that will end up in the jth
region that moves from the feed station in one step.

Substituting Equation (2) and Equation (3) into Equation (1b), we

obtain



n
e (t+at) = Zp,_c.(t) Frf(t) (4)
J 1] 1 J ]

i=1

for all t>0 j=1,2,...,n

In a general form, Equation (4) becomes

n
cj(t+(m+1)At) = Zpijci(t‘l‘mAt) + njfj(t+mAt) , (5)
i=1
for all t>0 j=1,2,...,n m=0,1,2,...

The above equation can be written in matrix notation as

C(t+(m+l)at) = C(ttmat)P + F(ttmat)l , (6)

forall t>0 m=0,1,2,...

In a shorthand, Equation (6) can also be written as

Cim+1l) = C(m)P + F(m)II, m =0,1,2,... (7)
where C(m) is the concentration row vector at time mAt, i.e.,
C(m) = [Cl(m) Cz(m). .. cn(m)], F(m) is input concentration row
vector at time mAt, i.e., F(m) = [fl(m) fZ(m). . .fn(m)]: P is

the fractional input matrix (or transition matrix) of the flow system

with elements p.j, i.e.,
i
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_ —
P11 P2 Pin
p=|P2a1 P22 Pon |,
_pn]. pn2 “ e prm—d
and T is the feed matrix with diagonal elements T i.e.,
b
1= T2
i
n
- —

Equation (7) is the general formula of state transition equation for
this flow model.
For an instantaneous or pulse tracer input at t = 0, the

input tracer concentration row vector F(m) becomes zero for

m > 0. Then Equation (7) becomes

Cim+l) =C(m)P, m=0,1,2,... (8)
Since by recursion
C(l) = C(O)P
c(2) = C(1)P = C(0)P*
C(3) = C(2)P = C(O)P3

in general,
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C(m) = C(O)P™, m=0,1,2,... 9)

Equation (9) is the state transition equation for an instantaneous or

pulse tracer input at t =0 .

Properties of the Fractional Input Matrix

1. The elements P.. of matrix P are non-negative and not
J

greater than one, i.e.,

0<p; <l

2. The summation over the column (i.e., Z pij)
(1)

From Equation (2), we know

Thus,

n n
- q..At T
Zpij Z i - ifl , j=1,2,...,n (10)

Case 1. If region j has an inlet from the inlet station, then

LAt < v, o, .:1:2:---911 (11)
Lupt< e
i=1
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Substituting Equation (11) into Equation (10), we get

< 3 = 1’ 2’ 3 12
zpij 1 j n (12)
i=1
Case 2. If region j has no inlet from the inlet station, then
n
LAt = v, =1,2, , (13)
zqu VJ .
i=l

From Equation (12) and Equation (14), we can summarize these

as follows: if Z pij < 1, then we can say that region j has an
(i)
inlet from the inlet station; if zpij =1, then we can say that
(i)
region j has no inlet from the inlet station. Both conditions are

true whether the volumes of the regions are all equal or not.

3. The summation over the row (i.e., Zpij)
(j)

From Equation (2), we know

p.. = —— , i,j=1,2,.
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Thus,
n n
q. At
ZP:Z—H— =1, i=1,2,...,n (15)
1] V. >
=1 =1

From Equation (15), we know that the sum of all the elements of
each row could be any positive number (i.e., less than or equal to or
greater than one) depending on individual flow rates and the volumes
of the individual regions. The sum of the ith row will be equal to
one if both of the following conditions are satisfied: (a) the volumes of
the regions are all equal. (b) Region i has no outlet to the outlet
station. We can summarize this as follows:

(1) If the sum of all the rows except the ones which have the
outlet to the outlet station are equal to one, then we may
assume that the volumes of the regions are all equal. In
this case, region i has no outlet to the outlet station if
the sum of the ith row is equal to one. Otherwise,
region i has an outlet to the outlet station.

(2) If only some of the rows sum to one, then we may say that
the volumes of the regions are not all equal. In this case,
Equation (15) alone can not tell much whether region i
has an outlet or not. From the flow diagram of the system,

we can reasonably assume that some of the regions have
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outlet to the outlet station and then check it later (check

z Vi) to see if the assumption is correct or not.
(i)
Stability for the Flow Systems

For a real flow system, a pulse of tracer which was injected
into system at t = 0 will eventually all wash out of the system.
We would like to know what conditions must exist for the fractional
input matrix P such that the concentration row vector C(m) will
approach 0 as m approaches infinity.

First, we introduce two important factors of the matrices so

called eigenvector and eigenvalue and then show how to find them.

Let x be an eigenvector of matrix P. Then, from the definition of

x, there must exist an eigenvalue X such that

Px = \x

(P-\I)x = 0 (16)

Equation (16) can be used to compute the eigenvector x which
corresponds to the eigenvalue X\ of matrix P. If det(P-\) # 0,
then Equation (16) has the trivial solution. We disregard this solution
since x is an eigenvector of the matrix P and can not be a zero-
vector by definition. Therefore, x will be an eigenvector of matrix

P if and only if
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det(P-\I) = 0 (17)

The Equation (17) is called the characteristic equation of matrix P

and the roots of that equation determine the eigenvalue X of matrix

P.
Next, from Equation (9), we know
C(m) = C(OOP™, m=0,1,2,
Define
_ - 1 o0 o 0]
. *
0 X 1 0 0
)\2 r
D= S = .
. Ir .
. 0 0 0 )\r 1
)\k
— — 0 0 o . 0 X
r
Here D 1is a diagonal matrix and Sr (r=1,2,...) 1is called a

semi-diagonal matrix that has all its diagonal elements equal to )\r’
all of its superdiagonal elements equal to one, and all of its other
elements equal to zero. Using the standard method [3,22] to compute

the matrix P, we obtain

P=MIM (18a)

where M is eigenvector matrix of matrix P, 1i.e.,

M=[x,,%,s..., xn] and J is called a matrix in Jordan canonical

172
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1/ . ) e s
form.=~" A square matrix is in Jordan canonical form if it is a
diagonal matrix or can be expressed in either one of the following two

partitioned diagonal forms:

— -
D
S1
%
or
Sl
S
r
Then from Equation (18a), we know
2 _ -1 -1, -1 a1
P =PP =(MIM YMIM )= MM M(IM )
-1 2. -1
= (MIIN(IM ) =MI M ’
2 2. - - 2 -1 -1
P> = p?p = (mr*m hmom Y = (s iyam T
2 - 3. -1
= M3 mEM Y = MM
and, in general,
P - Mr™M™ L, m=o0,1,2,... (18D)

1

—"A matrix in Jordan canonical form has nonzero elements only
on the main diagonal and superdiagonal, and that the elements on the
superdiagonal are restricted to be either zero or one.
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Now, consider an arbitrary n xn matrix J in the Jordan

canonical form

J = S (19a)

Using the method for multiplying together partitioned matrices, we

find

7= g™ ., m=0,1,2,... (19b)

get

C(m) = C(O)M s™ ML (20)

Since an arbitrary k x k diagonal matrix D 1is defined by

Thus,
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(21)

Since an arbitrary V x V semi-diagonal matrix Sr is defined as

N 1 o0 0 0]
r
0 A 1 0 0
r
S = :
r .
0 0 0 A 1
r
0 0 0 0 X\
r
It can be shown that [7]
— -
-1 -2 v+l
mA m(m- 1))\m m(m-1)... (m—v+2))\m v
\ r r r
r 1! 21 (vo1)!
- -v42
m\™ ! m(m-1)... (m-v+3))\m
0 \ r r
r 1! (v-2)!
s =
m)\fkl
0 0 0 1
0 0 0 A

(22)

From Equation (20), Equation (21), and Equation (22), we know that
the system will be stable if the magnitude of all the eigenvalues of the

fractional input matrix P computed by Equation (17) are less than one.



19

III. USE OF DISCRETE FLOW MODEL

Computation of the Volumes of the Regions in Flow Systems

From Equation (2), we know

qi,At
p..:_-]__’ i,j=1,2,...,n
ij v,
]
Thus,
..V, = At , i,':l,z,...,n
leJ qlJ )
Or,
n n
..V, = . At i=1,2,...,n (23)
DERARDRS
j:l j:l

.Case 1. If region i has no outlet to the outlet station, then

'Ms
0
g
[»2
(o
}
<
-
-
1]
)

1,2,... (24)
=1
Substituting Equation (24) into Equation (23), we get
n
zp..V.=V., i=1,2,...,n (25)
ij j i
j=1

Case 2. If region i has an outlet to the outlet station, then



n

At = - At) , i=1,2,...,
Zqij t Vi (qi,out t) ' n

j=1

Substituting Equation (26) into Equation (23), we get

= v, - , i=1,2,...,
Zpijvj Vi~ out?? ! n

Now suppose that a flow system assumed to consist of n

20

(26)

(27)

regions has some outlets to the outlet station, say from region k

and region n for example, then Equation (25) and Equation (27) can

be written together in matrix form as

- - - —
Y1 V1
V2 V2
P. = ( ) Jat
vk vk qk,out
_Vn_ _Vn B (qn,out _tJ
Or,
— — ’— —— pr— —
vy v1 0
V2 v, 0
P. = +
Vi Vi (9 o)t
v v -(q )At
| D | n ] | n, out |

(28)

(29)
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Thus,
o
v, 0
(P-I) . ) (30)
Vk -(qk, Out)At
_VnJ __(qn,out)AU

If (P-I) is non-singular (none of the eigenvalues of matrix P is
equal to one), then the matrix (P-I) is invertible.

Then, the above equation becomes

1 07
v, 0
= @-p7! : (31)
Vk -(qk,o'ut)At
_VnJ __-(qn,out)Ai

Equation (31) states that the volumes of the regions in flow systems
can be computed easily by that equation if the fractional input matrix
P is known.

Negative (or imaginary) volume, from a physical viewpoint,
does not make sense at all. Thus, one simple question may be raised:
Is there any guarantee to get only positive volumes of the regions by

using Equation (31)? The answer of that question is shown as follows:
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From Equation (31), we know

-Vl— — 0 7
vy 0
= (p-1)~ ! .
Vk _(qk, OU.’c)A
v - jat
B n_ n qn,out _
By a simple expansion of (P-I)" ", we get
(P-‘I)'1 = —(I+P+P2+P3+P4+. .2) (32)

This series must converge because all the eigenvalues of the matrix
P  must be less than one.

Substituting Equation (32) into Equation (31), we find

Pvl_ [ 0 ]
v, 0
- _(+p+PA P3P ) : (33a)
Vk _(qk,ou.t)A’c
_Vnd ;(qn,out) :c_

Or,
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—Vl— - 0 ]
V2 0
© = pptiR iRt ) : (33b)
_I_
vk (qk, out)At
Vn (qn, out
| | i

Thus, if all the elements of the fractional input matrix P are
positive, then, obviously, all the v, are positive according to
Equation (33Db).

Prediction of the I (Internal Age Distribution) Curves and
the F (Step Response) Curve in Flow Systems

The I curves of the regions and the F curve of a flow
system can be calculated easily if the fractional input matrix P of
that system is known. We assume that all the material enter the
system from a single inlet station and all leave into a single outlet
station.

Suppose that a flow system consists of n regions. Then the
matrix P is n xn matrix. In order to compute the [ curves
and the F curve simultaneously, we have to include an accumulating
outlet station, i.e., i =n+l. Then the augmented fractional input

matrix P can be written as
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P11 Pi2 ++ Plp Pl,ntl |

~ P21 Pz 0 Ppy pZ;n+1

P=| . ' : (34a)
Phl P2 - Ppn pn, n+l
Pht1,1 Pp+1,2 °°° Pntl,n pn+l,n+iJ

Once the tracer elements enter the outlet station, they stay there

permanently, hence

0 i # ntl
P . T
+1,
nret o1 i=antl
Thus, Equation (34a) becomes
Pi1 P12~ Pin Pr,ntl
_ | P21 P2z " Pan P2,n41
P = . . . . (34b)
Pi1 Pnz " Pan Pn,ontl
o ... 0 1

If no tracer is introduced for t >0, we may write (analogous to

Equation (9))
C(m) = C(0)P™ , m=0,1,2,... (35)

where C(0) 1is tracer concentration row vector including the outlet

station at t=0, i.e., 5(0) = [CI(O) cZ(O). .. cn(O) cn+1(0)], and
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C_I(m) is tracer concentration row vector including the outlet station
at t = mAt, 1i.e., E(m) = [cl(m) cz(m). .. cn(m) cn+1(m)].
Suppose that we inject a unit of tracer into the inlet station at
t=0, then cl(m), cz(m), ..., and cn(m), m=0,1,2,...,
computed by Equation (35) are the I curves corresponding to
region 1, region 2,..., and region n of the flow system. Also,
cn+1(m), m=0,1,2,..., computed by Equation (35) is the F
curve (step response) of the system. If the flow system only has one
outlet to the outlet station, say region n for example, then cn(m),

m=0,1,2,..., computed by Equation (35) is the RTD curve

(impulse response) of the flow system.

Calculation of Reaction Conversion

Suppose that chemical reaction occurs in a flow system
assumed to consist of n regions as shown in Figure 1. The reac-
tion is

A —> Products (36a)

In a constant volume system, the reaction rate of component A is

a known function as

) (36b)

We assume that at the beginning of each time interval, each region
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exchanges material instantaneously with the others according to the
matrix P. The new material mixes immediately and then the reac-
tion proceeds according to Equation (36a) for a time interval of At.
At the end of this interval, there is an immediate redistribution and
mixing followed by reaction during the next time interval. The
mechanism of this reaction-flow model is shown in Figure 2. During
o

the first time interval, Ci(t) reacts to form c_lr(t+At). Here Ci(t)
is the concentration of component A in region i at time t, and
cir(t+At) is the concentration of component A in the fluid streams

r
from region i attime t+At (just before redistribution). qi(t‘f‘At)

can be computed from Equation (36b) if Ci(t) is known.

D o~
_ »
R dT) 4 g
< q N g
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1

t+tat t+t2At

Figure 2. A schematic mechanism of the reaction-flow model.
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Then from the state transition equation of discrete flow model

(Equation (7)), we know

Replacing C(m) by Cr(m+1) and F(m) by Fr(m'l'l), then

Equation (7) becomes

C(m+1) = CTHm+1)P + F (m+1)I , (37)

m=20,1,2,...

where Cr(m+1) is concentration row vector in the fluid streams at
time (m+tl)at, i.e., C'(mt+l)s= [cll'(m+1) c;(mﬂ). ..c;(m+1)],

and Fr(m'l-l) is input concentration row vector in the input streams
r r
( (

at time (mtl)Aat, i.e., F 2

m+l) = [f‘l'(m+1) £ (m+1). . .f:;(m+1)].
Thus, the concentration of c%mponent A in each region at
time (m+1)At can be calculated by using Equation (36b) and Equation

(37) if the fractional input matrix P and the feed matrix of the flow

model are known.
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IV. COMPARISON OF DISCRETE FLOW MODEL AND
STIRRED TANK NETWORK MODEL

The stirred tank network model shown in Figure 3 assumes that
the behavior of a flow system can be represented by an n stirred
tanks which are connected by an arbitrary flow network. The
volumes of the tanks are not necessarily equal. The nomenclature
used in this model as shown in Figure 3 is analogous to that of dis-
crete flow model as shown in Figure 1. Since the time between state
transitions in this model is a continuous random variable (not a con-
stant), we can consider it to be a continuous time process.

Now suppose that at time t =0  we inject a pulse of tracer
into a flow system assumed to consist of n stirred tanks as shown
in Figure 3. Then from the mass balance of the tracer in the jth

tank at time t, we find

T (- Z qji)cj(t) + Z qijci(t) - qj,outcj(t)’ (38)
i=1 i=1
i?j i#3

forall t>0 j=1,2,...,n"

where Cj(t) is the tracer concentration in the tank j at time ¢,
vj is the volume of tank j, and Yermn is volumetric flow rate
from tank 'k to tank m.

Define
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A schematic diagram of stirred tank network model.
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Substituting Equation (39) into Equation (38), we obtain

dc (t)

i )
Vi T dt Z S
i=1

forall t>0 j=1,2,...

Dividing by vj on both sides of Equation (40), we get

n

dc](t) ql. q; out
(e, ) - (F)et)
dt V j
i=1 J
for all t>0 j=1,2,...
Now, define
q..
r..:—];‘L: 1:j:1:2:---:n
ij V.
J
q],out
aj v ) j=12,...,n

30

(39)

(40)

(41)

(42)

(43)

Equation (42) and Equation (43) define the transition rate coefficients

rij and output coefficients a, respectively.
J
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Substituting Equation (42) and Equation (43) into Equation (41),

we obtain

dc . (t) o k
—— = Zr..c.(t) - ac.(t) (44)
dt ij i 3 J
i=1
forall t>0 j=1,2,...,n
where r., is the transition rate coefficient from tank i to tank kj,

1

and aj is the output coefficient from tank j. The above equation

can be written in a matrix notation as

dgt(t) = C(t)R - C(t)A = C(t)(R-A), for all t>0 (45)

where C(t) 1is tracer concentration row vector with elements ci(t)

attime t, R is the transition rate matrix with elements rij’ i.e.;
r, Tz - rln
R=| T21 22 “2n| ,
ol Tn2 " Tnn
and A is the output matrix with diagonal elements aj, i.e.,
— —
21
A =
22
‘a
n
L pl
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Taking the Laplace Transform of Equation (45) with respect to t,
we get

sC(s) - C(0) = C(s)(R-A) (46a)

where (_3(5) is the row vector of the Laplace Transforms of the

tracer concentrations. Thus,

C(s)(sI-(R-A)) = C(0) (46b)
Or,

C(s) = C(0)(sI-(R-A)) " (46c)
Inverting the Laplace Transform of Equation (46c), we obtain
C(t) = C(0)exp((R-A)t), for all t>0 (47)

Equation (47) is the state transition equation of the stirred tank net-
work model for a pulse tracer input at t = 0 . From the definition

of r.lj (Equation (42)), we know

q..
r..:_lJ_: 1:_]:1:2: >
ij v,
J
Thus,
r..v, = e. D i:.:lszs >
LV qlJ !
Then,

n n
zr..v.=zq.., i=1,2,...,n (48)
ij ] ij ‘



From Equation (39), we know

Substituting Equation (49) into Equation (48), we find

n
Zr..v =0, 1:1,2, N
13 )
j=!1
Thus,
n
r..v. + r.v. =0, i=1,2, »n
ii'i ij ' j
j=1
j#i

Adding -a,v. on both sides of Equation (50b), we obtain

(r..—a.)v.+Zr..v.=—a.,v., i=1,2,...,n
1] ] 11

The above equation can be written in matrix form as

33

(50a)

(50Db)

(51)
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V1 "41, out
v -q
2 2,
(R-A) _ out (53)
v . -q
n { stirred tank network n, outJ

If matrix (R-A) is non-singular, then the unique solution of Equa-

tion (53) is

V]. ql:out
\% ’ -q
2 -1 2,
- (R-A) out (54)
_Vn_J STN "%, out

Equation (54) states that if we can find matrix (R-A), then we can
find the volumes of the tanks for this model. Once the volumes of the
stirred tanks are found, then, from Equation (42) and Equation (43),
we can find the volumetric flow rates connecting the tanks.

Next, let us look at the discrete flow model. As we know, the
state transition equation of discrete flow model for a pulse tracer

input at t =0 is (see Equation (9))

And,
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V]. ql,out)At
v -(q )at

2 - (P—I) 1 Z,Out (31)
Vn DFM _(qn,out)At_J

Suppose that we would like to find a matrix (R-A) for stirred
tank network model (continuous time process) that will have the same
tracer concentrations as the discrete flow model . (discrete time
process) described by matrix P at t = 0,At,2At,..., where one
step time interval At is defined as the time for one transition of the
discrete time process.

By comparison of Equation (47) and Equation (9) when t = mAt,

we know that

exp((R-A)At) = P (55)
Or,
_in P
R-A-= At (56)

From Equation (55) and Equation (56), we know that Matrix P for
discrete flow model and matrix (R-A) for stirred tank network
model are nearly interchangeable in many cases. For every case of
stirred tank network model we can find the corresponding case of dis -
crete flow model according to Equation (55), while it is not true in the

other direction according to Equation (56) since the convergence of
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In P depends on the eigenvalues M\ of matrix P. Hence, we may
say that discrete flow model is a more general model than stirred tank
network model.
Now, if we substitute Equation (56) into Equation (54) and then

compare it with Equation (31), we find

Vi Vi
v v
2 - 2
- un P) NP-1) (57)
Va |sTN Vn|DFM
L -3 . =
Similarly,
V1 V1
V2 . (exp((R-B)at)-T -1 p ) V2 (58)
At .
v v
nJ DFM | 1| STN

Equation (57) and Equation (58) give the relationship between the
volumes of the regions for discrete flow model and the volumes of the

stirred tanks for stirred tank network model
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V. DETERMINATION OF FRACTIONAL INPUT COEFFICIENTS
FROM EXPERIMENTAL DATA

The fractional input coefficients pij play an important role in
the discrete flow model. Hence, the general methodologies for
determining them based on multiple steady state or transient tracer

measurements are developed.

From Steady State Tracer Measurements

Consider a flow system which is assumed to consist of n
regions as shown in Figure 1. Then from the state transition equation

of this flow model (see Equation (7)), we know

Cim+1) = C(m)P + F(m)I , m=0,1,2,..

Now, suppose

Fm)=[—o0... 0], m=0,1,2,
™
1
Then,
_nl ]
1
Fmi=[— 0... 0] ™
T 2
1 L
™
n
SN -

"
—
—
]
]
—
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Substituting this into Equation (7), we find

c(l)=cO)P+FOMI=[0 0...0]+[1 0...0]

=[1 0...0],
C(2) = C(1)P + F(1)II
=[1 o0...0]P +[1 0...0],
C(3) = C(2)P + F(2)n
=[1 o...o]P2 +[1 o0...0]P+[1 0...0],
in general,
Clm+1) = [1 0...0/P™ +[1 o0...0]P™ !+
+[1 o0...0]P +[1 0...0]
=[1 o...oJ@E™+p™ 4. +p+1) (59)
We define the limit as m —™ %9 as
lim C(mtl) = [s S ....8. ] (60)

11 "12 In

m™—" ®

Here sij is the steady response at region j to a steady input at
region 1i.

Substituting Equation (60) into Equation (59), we obtain

-1
[s, syp -8, =1 0...0] lim PP 4. L HPH)  (61)
m™—™ ®



Since

1 -1

lim (P™4P™ 4. . +P+I) = (I-P)

m > 0

Thus, Equation (61) becomes

[s), s45---

Similarly,

.s J]=1o O....l](I-P)

sln]: [1 0 .o](I-P)'1
_ -1

SZn] =[0o 1...0)(I-P)
-1

nn
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Combining Equation (62) and Equation (63) together, we know

°11 %12
°21 S22
snl SnZ

Define

where S 1is the steady response matrix with elements

Equation (64) becomes

— — —
n 1 0 0
0 1 0
2n - (I-P)
0 0 1
nn | |
r-:3-11 512 ®1n
21 %22 " S2p
S P S
nl n2 nn
.

(62)

(63)

(64)

(65)
s... Then
1]
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1

S =11-P) = (I-P)~1 (66)

Hence

P=1-s'1 (67)

Equation (67) simply tells that in order to find the fractional input
coefficients pij for steady tracer inputs, the only information we
need to know is n  measurements of steady tracer responses from
the experiment. Conversely, the fractional input coefficients p,,

LN

can be used to obtain the steady state responses from Equation (66).

From Transient Tracer Measurements

Consider a flow system which is assumed to consist of n
regions as shown in Figure 1. For an instantaneous or pulse tracer
input at t = 0, then the state transition equation of this flow model

becomes (see Equation (9))

C(m) = C(0)P™, m=0,1,2,...
Thus,
C(l) = C(O)P
Cc(2) = C(0)P® = c(1)P
C(3) = C(OP° = C(2)P (68)

Cln-1) = c(('))P“'1 = C(n-2)P

C(n) = C(0)P™ = C(n-1)P
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Equation (68) can be written as

ey | [ o)

C(2) C(1)

CBI o] <@ | e (69)
C(n-1) C(n-2)

C(n) _C(n—l)-

If the first square matrix in the right-hand side of Equation (69) is

non-singular, then the unique solution of Equation (69) is

G(0) [ c(1)

C(1) C(2)
p=-| Ci3) (70a)

C(r.l—Z) C(n-1)

C(n-1 C(n)

Al B I

Or,

(c,(00 <, (0) e @ i ) e (1)]
cl(l) cZ(l) cn(l) cl(Z) CZ(Z) Cn(z)
o cl(Z) cZ(Z) cn(Z) c1(3) c2(3) cn(3)
cl(n—Z) c2(1.r1-2) cn(n-Z) cl(n-l) cz(n—l) cn(n—l)
:l(n-l) cz(n—l) cn(n—ll _cl(n) cz(n) cn(n)_
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Equation (70b) (or Equation (70a)) simply tells that in order to find the
fractional input coefficients p,lj for a pulse tracer input, the only
information we need to know is n2 transient tracer measurements

from the experiment if the initial condition is known.
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VI. A LUMPING ANALYSIS IN DISCRETE FLOW SYSTEMS

Lumping is important for modeling flow systems. Particularly,
when a flow system has many regions, it is convenient and practical
to lump all these smaller regions into larger regions and treat them
as non-overlapping lumped regions. So far, no work has been done on
lumping of flow systems, probably, because it requires a priori
knowledge of the whole set of flow rates connecting the regions, and
thé volumes of the regions. Such information is rarely directly avail-
able for most of flow systems. Therefore, the methods shown in
Chapter III and Chapter V for obtaining the sizes of the regions and
the fractional input coefficients will provide an important tool to .
analyze the lumping problems in flow systems.

In 1969, Wei and Kuo [21] introduced a lumping theory for
monomolecular reaction systems in a discrete mixture. This was
extended to a continuous mixture later by Bailey [1]. Although lump-
ing in the flow systems is more complicated and more difficultE than
that of in monomolecular reaction systems, many of the lumping

concepts in their work are still useful for the flow systems.

E/Due to the following reasons:
1. One more variable set, i.e., the volumes of the regions, involved.
2. Flow systems usually possess inlet-outlet stations while the
monomolecular reaction systems do not have those.



44

Lumping is a linear transformation from an n element

AN
vector, CV, into an k element vector, CV, of smaller
dimension (i.e., k <n) byan nxk lumping matrix L,
AA
CV = (CV)L (71)

where V and V are the diagonal volume matrices of the original

system and the lumped system respectively, i.e.,

F‘ -
Vi
V = V2 )
'V
n
- -
V1
A
V = 02. ,
l. 9
k

and C and C are concentration row vectors of the original

system and the lumped system respectively, and thus,

CV = [Clv1 CHVy - Cnvn] )
AN AN AA A A
CV = [clv1 CZVZ ... Ckvk] .

In order to retain the property of dividing all the regions into a few

larger regions for the lumping, each row of lumping matrix L must
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be a unit vector a,. If the system is lumped by such an L, then
the lumping is called proper [21]. For instance, suppose that we want
to lump region 1 and region 2 of a flow system consisting of four
regions into a larger region called region /1\, then the proper lumping

matrix is

1 0 0
1 0 0
L:
0 1 0
0 0 1
- —

Now suppose that there are n regions in a given flow system.

Then from Equation (9), we know

Cm) = C(O)P™, m=0,1,2,...

Similarly, from the mass balance of the lumped system consisting of

k regions (k < n), we know

A A A
Cm) = COOP™, m=0,1,2,.., (72)

A
where P is the fractional input matrix of the lumped system, i.e.,
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A A A T

P11 Pr2 Pk
A | 8. P p
2 2

AL 21 P2 k
A A

le Pr2 Prk

Now, in order to estimate the magnitude of errors resulting
from lumping in a given flow system, a criterion which has some
resemblance to Wei and Kuo's work [21] is established. Usually,
there are two ways to compute the concentration row vector C(m) of
the lumped system. The right way is to compute C(m) first (by
Equation (9)) and then lump C(m) into é(m) by using Equation

(71), as

A(r)(m) = c:(m)VL\/}'1 - c(0)P™vi¥ ! (73)

A
where C(r)

(m) is the concentration row vector of the lumped system
computed in the right way.
The wrong way is first to lump C(0) into é(O) (by Equation

A
(71)) and then compute C(m) by using Equation (72), as

AW é )?m = C(O)VLG"IQm (74)

A
where C(W)

(m) 1is the concentration row vector of the lumped
system computed in the wrong way.

Thus, the error of lumping is



) A
(m) = C(O)(PmVL\/f\ l vi¥ lﬁm)

Let

Substituting Equation (76) into Equation (75), we get

Ay - B9 ) - coy ™ -BB™)

Case 1. If the system is exactly lumpable, then

Alr) B =0

Substituting this into Equation (77), we know

A
P™B - BP =0
Or,
A
PmB - BPm

(76)

(77)

(78a)

(78b)

Case 2. If the system is not exactly lumpable (like most of

flow systems), then
(,J\(r)(m) - é(w)(m) 70

Substituting this into Equation (77), we know

p™p _ pB™ 4, m >0

(79)
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Most of the flow systems are not exactly lumpable by a proper
lumping matrix L, so here we examine only Case 2 in more detail.

We define a new matrix called the error matrix, E(m), which has

the lumping error vector at C(0) = u, as its ith row vector.
More precisely, the element eij(m) of the error matrix E(m) is
defined as the lumping error at the region j of the lumped system
to a unit tracer input at region i of the original system.

Then from Equation (77), we know

E(m) = PUB - B’P\’m, m >0 (80)

Using the standard method [3, 22] to diagonalize the matrices of P

A
and P (if they are diagonalizable), we get

P™ - MD™PMm ! (81)
A 3
fm _ fifimfy-1 (82)

where M and M are eigenvector matrices of P and P
respectively, D and D are diagonal eigenvalue matrices of P
and P respectively.

Substituting Equation (81) and Equation (82) into Equation (80),

we obtain

- . _
E(m) = MD™M B - sl (83)
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After rearrangement, Equation (83) becomes

E(m) = (™M B - oo HAB™H Y
- o le ) - v e 4! (84)

By expansion of Equation (84), the elements e,lj(m) of the error

matrix E(m) will appear in a form as shown in the following:

k n ‘
.. A

e..(m) = Z Z L pmAm) (85)
ij rd 4 r

r=11¢2=1

1:1,2, » 11, j:]-’z’ ' k
A .
whe re )\z is the eigenvalue of matrix P, )xr is the eigenvalue of

matrix Q, a(rlﬂj) is the coefficient of an expansion for eij(m)’ and

e.lj(m) is the element of the error matrix E(m) atthe ith row

and jth column.
Now, if C(0) = u.l, then the ith row of the error matrix

(m)...e. (m)], is the lumping error

E(m), 1i.e., [eil(m) e K

i2
vector. Here eij(m) is the lumping error at region j of the

lumped system to a unit tracer input at region i of the original sys-

tem. We now compute
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If max |e..(m)| < 1, then we can conclude that the lumping
i=1,2,...,k Y
error is small and the lumping is good. If max |eij(m)| is
i=1,2,...,k

larger than we can tolerate, then we may say that the lumping is poor.

The procedures for demonstrating a lumping analysis in discrete

flow systems can be described as follows:

1. Compute the fractional input matrices P and P of
original system and the lumped system respectively by using
Equation (70b) (or Equation (70a)).

2. Compute the volumes of the regions of the original and the
lumped system respectively by using Equation (31).

3. Compute the error matrix E(m) by using Equation (84).

The elements of E(m) appear in a form as Equation (85).

4. If C(0)= u,, then compute max |e..(m)|.
i . 1)
J"]., 2, P ,k

5. If max |e..(m)| < 1, then we can say that the

. ij

J"].,Z, e ,k

lumping is good. If max |e.1j(m)| is larger than we
i=1,2,...,k

can tolerate, then we may say that the lumping is poor.
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VII. FITTING THE FLOW MODEL TO REAL DATA

Assumptions

Before we start fitting the model to data, some assumptions
about the system are listed as follows:
1. There are enough data points with good accuracy.

2. The inflows into and outflows from the system are known.

3. The system is stationary.

Selection of the Size of One Step Time Interval

From the definition of p.lj of Equation (2), we know that the
fractional input coefficients p,lj of flow systems are function of
time interval At. Thus, before we can compute the fractional input
matrix P of a flow system by using Equation (70b) (or Equation
(70a)), the size of At must be chosen.

As we know, the smaller the size of At we choose, the closer
will be the concentration distributions in discrete time flow systems
to those of continuous time flow systems. But the computation time
increases proportionally with decreasing the size of At.

In modeling the flow systems, there are certain range of the
size of At «can be chosen. But once the size of At chosen is
too small, some of the fractional input coefficients will turn out to be

negative. It probably can be explained thus: When the size of At
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chosen is too short, some of the fluid elements in the regions do not
have enough time to mix uniformly. A negative coefficient corres-
ponds to reversing the direction of time. In reverse time, material
would have to leave a mixed region, unmix, and then go to other
regions with different concentrations. Thus, negative input coeffi-
cients suggest a reversal of»the mixing processes and likely corres-
pond to a time interval At too short to allow uniform mixing to
occur. Hence, the restrictions for choosing the size of At are
described as follows:

(1) A1l the fractional input coefficients p.1j computed from 2
choosing size of At must be in the range ?f zero to one.

(ii) The sum of the volumes of the regions computed from a
choosing size of At must be closed enough to the given

total volume of the flow system, i.e.; Ev. = v .
i total
(i)

From the above analysis, we may conclude that if we wish to
have a best fit to a flow system under investigation, then an optimum
size of At has to be chosen for modeling that system. In practice,
it has been found by the author that only a few trials are needed to

find the optimum size of At.
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Selection of Numbers of Probes

Before we start to model a flow system, it is important to know
what number of probes is needed to model that system. Such informa-
tion is rarely available in advance for most flow systems. Thus, a
trial and error method must be used. First, assume that a small
number of probes, say k probes for example, is sufficient to model
the flow system which is under investigation. If the values of some
elements of the fractional input matrix P computed by Equation (70b)
are not in the range of zero to one or the values of the sum in some
columns of that matrix are greater than one (see Equation (12) and
Equation (14)) no matter what size of At is chosen, then we may say
that an k probes is not sufficient to model that system and we have to
use more probes to model the flow system. If the first square matrix
in the right-hand side of Equation {(70b) (or Equation (70a)) turns out to
be a singular or nearly singular no matter what size of At is chosen,
then we may say that some of k probes are redundant or nearly redun-
dant and we must remove those redundant probes (according to their
cofactors in the overall matrix)é‘/ and use fewer probes to model that
system.

The n (n gk) probe model is a good fit to the flow system

under investigation if the residence time distribution (RTD) curve

4
—'Remove probe j first if the cofactor of the element c.(n-1)

in the concentration matrix (i. e., the first square matrix in th’la right-
hand side of Equation (70b)) is largest and so on.
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and the sum of the volumes computed from that model both are closed
to the real RTD curve (if it is known) and the total volume of the flow

system.

Numerical Examples

In order to demonstrate how to model flow systems by using
the methods shown in Chapters III, IV, and V, two simple examples
are given. The first example shows how to model a continuous time,
discrete space flow system. The second example shows how to modél
a continuous time, pseudo-continuous space flow system.

For each example, assume that a finite number of transient
tracer concentrations (each measured by a single probe) are known=

Example 1. Modeling a Continuous Time, Discrete
Space Flow System

Suppose that we put probe 1, probe 2, and probe 3
simultaneously into a given flow system consisting of three well-
mixed regions as shown in Figure E1. The transient concentrations
of tracer in this flow system that would be measured by the three

probes are tabulated in Table El.é/ What are the volumes of these

5
= In these examples, simulated data are given (see Appendix B
for data source).

é/See Appendix B.



1T %2 J(
. q -1
< d,; I % 2,out
423 932
X
T Y13
5 — =3
A q3, out
: <t 43
3
<% 3 —p
Figure El. Diagram of the flow system in Example 1.

Q9



three regions ? What are the interregion flow rates?

Table E1. Transient concentrations of tracer in the
flow system of Example 1.

0 1.0000 0 0

0.1 0.7639 0.1625 0.0952
0.2 0.5906 0.2446 0.1633
0.3 0.4627 0.2811 0.2088
0.4 0.3676 0.2919 0.2366
0.5 0.2963 0. 2885 0.2511
0.6 0.2424 0.2775 0.2558
0.7 0.2011 0.2627 0.2537
0.8 0.1693 0.2463 0.2469
0.9 0. 1443 0.2294 0.2370
1.0 0.1246 0.2129 0. 2252
1.1 0.1086 0.1970 0.2124
1.2 0.0956 0.1820 0.1992
1.3 0. 0849 0.1679 0.1859
1.4 0.0758 0.1548 0.1730
1.5 0.0681 0.1426 0.1606
1.6 0.0615 0.1314 0.1488
1.7 0. 0557 0.1209 0.1376
1.8 0.0506 0.1113 0.1271
1.9 0.0461 0.1024 0.1173
2.0 0.0421 0.0942 0.1081

Solution. 1. Modeling the well -mixed regions as discrete in

time (use discrete flow model directly).

Case (i). Let At =0.3. Then from Table El, we know



Substituting these into

ollo

I o

.0000

.4627

.2424

.4627

. 0380

. 0845

DFM
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c,(0) c3(0)] = [1.0000 © 0 ]
c,(1) c3(1)]=[0.4627 0.2811 0.2088]
c2(2) c3(2)] = [0.2424 0.2775 0.2558]
c,(3) c3(3)] = [0.1443 0.2294 0.2370]
Equation (70b), we find
0 11 [0.4627 0.2811 o0.2088]
0.2811 0.2088 0.2424 0.2775 0.2558
0.2775 0.2558) L_0'1443 0.2294 0.2370
0.2811 0.2088]
0.2895 0.1291 (E1)
0.3164 0.5886
Substituting Equation (E1) into Equation (31), we obtain
B (ql,ou.t)Aﬂ
-1} (a, )0t
(q3,ou.1:)At
T0.5373  0.2811 o0.2088] [ o ]
0.0380 -0.7105 0.1291 -(1)(0.3)
L0.0845 0.3164 -0.4114 | __(3)(0.3)_
1. 9600 |
1.1598 (E2)

3.4822
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Substituting Equation (E1l) and Equation (E2) into Equation (2), we get

the interregion flow matrix

K NI E 1.0867 2.4236 |
47 9, 953 3.0230 086 6
- - 3
Q, Ay 9pp Gpg 0.2483 1.1192 1.4985 (E3)
43, 93, 933 | 0.5521 1.2232 6.8321 |
The off-diagonal elements of matrix Qd in Equation (E3) are
interregion flow rates based on At;‘z 0.3.
Case (ii). Let At =0.1. Then from Table E1, we know
Cc(0) = [cl(O) c,(0) c3(0)] = [1.0000 O 0 ]
C(1) =[e (1) c,(1) c,(1)]=[0.7639 0.1625 0.0952]
C(2) = [°1(2) c,(2) c3(2)] = [0.5906 0.2446 0.1633]
C(3) = [cl_(3) c,(3) c3(3)] = [0.4627 0.2811 0.2088]
Substituting these into Equation (70b), we find
[1.0000 0 o |'[0.7639 0.1625 0.0952
P=]0.7639 0.1625 0.0952 0.5906 0.2446 0.1633
0.5906 0.2446 0.1633 0.4627 0.2811 0.2088 |
P pu— k.
— -
0.7639 0.1625 0.0952
=]10.0165 0.6301 0.0819 (E4)
0.0459 0.1899 0.8113J
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Substituting Equation (E4) into Equation (31), we obtain

rvl_ —-0.2361 0.1625 0.09527'l 0
v, = | 0.0165 -0.3699 0.0819 -(1)(0.1)
X i -0. -(3)(0.1
_V3J DEM _o 0459 0.1899 0 1883— L_( I )_
[ 1.9938 |
=} 1.0553 (E5)
3.1435

Substituting Equation (E4) and Equation (E5) into Equation (2), we get

the interregion flow matrix

’_1-5.2308 1.7148 2.9926
Q.= 0.3290 6.6493 2.5745 (E6)

0.9152 2.0040 25.5155

The off-diagonal elements of matrix Q in Equation (E6) are

d

interregion flow rates based on At = 0.1.

Summary. Case (i). At =0.3

1.9600 |

\4 =] 1.1598 (E2)

4822
V3 lprm | 3 8_J

ol b



60

3.0230 1.0867 2.4236
Qd: 0.2483 1.1192 1.4985 (E3)
0.5521 1.2232 6.8321
Case (ii). At = 0.1
EN 1.9938
v, =11.0553 (E5)
3.1
v3ilprm 21432
— vl
H5.2308 1.7148 2.9926
Qd = 0.3290 6.6493 2.5745 (E6)
0.9152 2.0040 25.5155
The true values of v, (i=1,2,3) and q,j (i,j = 1,2,3) are (see
i
Appendix B for data source)
vy [-2 0000
vy =11.0000 (E7)
3.
_V3_true - OOOO_J
- 1 ]
(4)2%413%9), ¢! 912 913
true 421 (ap1792379, o0t 923 )
431 932 “lag taz,tas oy
o -
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-5.5000 2.2000 3.3000

= 0.5000 -4.8000 3.3000 (E8)

1.0000 2.6000 -6.6000

N ]

The off-diagonal elements of matrix Qtrue in Equation (E8) are true
interregional flow rates.

By comparison of calculated volumes (Equation (E2) and Equa-
tion (E5)) and true volumes (Equation (E7)), we see that the smaller
the size of At we choose the closer are the volumes calculated from
discrete flow model to the true volumes. This is also true for the

calculated interregion flow rates as seen by comparing Equation (E3)

and Equation (E6) to the true values (Equation (E8)).

2. Modeling the well-mixed regions as continuous in time (use

discrete flow model as an intermediate).

Case (i). Let At =0.3. From Equation (El), we know

0.4627 0.2811 0.2088
P=10.0380 0.2895 0.1291

0.0845 0.3164 0.5886

g vl

Let

f(P)=4inP

Using the polynomial method on matrices given in [3], we know



62

2
f(P)=£nP=r(P)=c12P +(11P+QOI (£9)
where r(P) 1is the remainder and is of degree n-1 and a, are
constants.
Also,
2
f(\.) =4n X, = r(X)) = a N +a A +a (E10)
i i i 2 i i 0
where )\,1 is the eigenvalue of matrix P.
Then from the characteristic equation of matrix P (Equation
(17)), i.e., det(P-\I) =10, we find
)\1 =0.7777
A =
2 0.3799
X, = 0.
3 0.1832

Substituting these into Equation

Substituting the values of a.

(E10) to determine a., we obtain

-3.2075
5.5140

-2.5997%

into Equation (E9), we get



-0.8250  0.6599  0.3308
inP=|0.0828 -1.4375 0.3228
0.1424 0.7773 -0.6530

Substituting Equation (E11) into Equation (56), we find

R-4= IZ;P ) %é;?
[2.7530  2.1997  1.1027 |
= | 0.2760 -4.7917 1.0760
0.4747  2.5910 -2.1767

Substituting Equation (E12) into Equation (54), we obtain

vl _ql,out
-1
= (R-A -
VZ ( ) qZ,Out
V3 cont _q3,out
-2.7530 2.1997
= 0.2760 -4.7917
0.4747 2,.5910
2. 0002 |
=} 0.9981

3.0026
-

p—

1.1027
1.0760

-2.1767

63

(E11)

(E12)

(E13)
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Substituting Equation (E12) and Equation (E13) into Equation (42) and

Equation (43), we get the interregion flow matrix

+
r(q12 q13+q1,0u9 45 dy3
= - +q., .+
Qcont 121 (d1 7923792, out! 123
a3 3, (a3 1ta3,103 o)

P

-5.5065 2.1955 3.3110
=| 0.5520 -4.7826 3.2308 (E14)

0.9495 2.5861 -6.5357

— p—

The off-diagonal elements of matrix Q in Equation (E14) are

cont

interregion flow rates.
Case (ii). Let At =0.1. From Equation (E4), we know

0.7639 0.1625 0.0952

P=10.0165 0.6301 0.0819

0.0459 0.1899 0.8117

Then from the characteristic equation of matrix P (Equation (17)),

i.e., det(P-\I) =0, we find

)\1 = 0.9199
)\2 = 0.7196
N, = 0.5662
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Substituting these into Equation (E10) to determine a; we obtain

a, = -0.9520
a, = 2.7880
= -1.841
aO 1.8418

Substituting the values of a, into Equation (E9), we get
i

— ey

-0.2743 0.2202 0.1099
In P = 0.0205 -0.4804 0.1144

0.0561 0.2617 -0.2250

Substituting Equation (E15) into Equation (56), we find

-2.7430 2.2020 1.0990

R-A-= = 0.2050 -4.8040 1.1440

0.5610 2.6170 -2.2500

e —

Substituting Equation (E16) into Equation (54), we obtain

v, C2.7430 2.2020 1.0990 )7 [ o
v, = | 0.2050 -4.8040 1.1440 -1
Vs bons 0.5610 2.6170 -2.2500 -3

L . - . . e

[ 2. 0203
=1 1.0122

3.0143

(E15)

(E16)

(E17)
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Substituting Equation (E16) and Equation (E17) into Equation (42) and
Equation (43), we get the interregion flow matrix

—

r5.5417 2.2289 3.3127

= 0.4142 -4.8626 3.4484 (E18)
cont
1.1334 2.6489 -6.7822
. pu—
The off-diagonal elements of matrix Qcont in Equation (E18) are
interregion flow rates.
Summary. Case (i). At = 0.3
_vi- 2.0002
v, =]10.9981 (E13)
v 3.0026
| 3_cont | _

-5.5065 2.1955 3.3110

= 0.5520 -4.7826 3.2308 (E14)
cont

0.9495 2.5861 -6.5357

. —

Case (ii). At = 0.1

V] [2.0203 |
v, =|1.0122 (E17)
3.0143
_V3_ cont | _
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—

—
-5.5417 2.2289 3.3127

= 0.4142 -4.8626 3.4484 (E18)
cont

1.1334 2.6489 —6'7822_}

By comparison of calculated volumes (Equation (E13) or Equation
(E17)) and the true volumes (Equation (E7)), we find that the agree-
ment is good. By comparison of calculated interregion flow rates
(Equation (E14) or Equation (E18)) and the true flow rates (Equation
(E8)), we find that the agreement is also good. In fact the method is
exact, and the only errors are due to computer roundoff and
inaccuracies in calculating the eigenvalues. The larger size of At
gives slightly more accurate values.

Example 2. Modeling a Continuous Time, Pseudo-Continuous
Space Flow System

Consider a pseudo-continuous flow system shown in Figure EZ2a.
Suppose that the total volume of this flow system is given. The total
inlet flow rate to the system and the total outlet flow rate from the
system are also given. In addition, the residence time distribution
(RTD) of the fluid elements in the flow system is known as shown in
Figure EZb.l/ How does one model this flow system with a finite

number of probes?

7
"—/See Appendix B.
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Figure EZ2a.

Diagram of the flow system in Example 2.
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Figure E2b. The RTD curve of the flow system in Example 2.
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Solution. Method 1. We would like to put three probes

simultaneously into the flow system as shown in Figure E2c. The
transient tracer concentrations measured by these three probes are
tabulated in Table E2a.

Table E2a. Transient concentrations of tracer in the

flow system of Example 2 measured by
three probes.

1 2 3

0 0.2000 0 0

0.1 0.1316 0.0072 0

0.2 0.0913 0.0267 0.0003
0.3 0.0659 0.0423 0.0030
0.4 0.0490 0.0513 0.0086
0.5 0.0372 0.0546 0.0159
0.6 0.0288 0.0542 0.0234
0.7 0.0225 0.0514 0.0300
0.8 0.0178 0.0473 0.0350
0.9 0.0142 0.0427 0.0383
1.0 0.0115 0.0381 0. 0400
1.1 0.0093 0.0337 0.0403
1.2 0.0076 0.0296 0.0395
1.3 0.0062 0.0258 0.0379
1.4 0.0051 0.0225 0.0357
1.5 0.0042 0.0195 0.0332
1.6 0.0035 0.0170 0.0306
1.7 0.0029 0.0147 0.0279
1.8 0.0024 0.0127 0.0253
1.9 0.0020 0.0110 0.0228
2.0 0.0017 0.0096 0.0204




in out

Figure E2c. The schematic diagram of the three probes inside the flow system
in Example 2.
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First, let At =0.4.
C(0) = C(t =
C(l) = C(t =
C(2) = C(t =
C(3) =Cft =

0.5) =[0.0372
0.9) = [0.0142
1.3) =[0.0062

1.7) =[0.0029

0.0546

0.0427

0.0258

0.0147

Substituting these into Equation (70b), we find

0.0372

0.0142

0.0062

[0.3192

0.0443

0

0.0546

0.0427

0.0258

0.5630

0.3896

0.0306

0

.0159

-1

All the fractional input coefficients pij

non-negative and less than one.

acceptable.

Since

0.0142
.0383 0.0062
. 0379 0.0029
.076;-
. 5474
.3511

0

Then from Table E2a, we know

.0159]
.0383]
.0379]

.0279]

. 0427
. 0258

.0147

72

0.0383
0.0379

0.0279

(E19)

found in Equation (E19) are

Therefore, the choice of At is
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0.3192 + 0.0443 + 0 0.3635

o
o
—

il

1l
A
st

—
[
~—

0.9832

[k}
—_

]
5
e
N
i

0.5630 + 0.3896 + 0.0306

—
[
~—

1l
B

0.9746

1
—

0.0761 + 0.5474 + 0.3511

L e
[
~—

we can say that region 1l has an inlet from the inlet station, while
region 2 and region 3 both have no inlet from the inlet station.

Now,

Zplj =0.3192 + 0.5630 + 0.0761 = 0.9583 = 1
(j)
szj = 0.0443 + 0.3896 + 0.5474 = 0.9813 = 1
(j)
p,.=0 +0.0306 +0.3511 =0.3817< 1,
3]

G)

we may say that the volumes of the regions are all nearly equal and
region 1 and region 2 both have no outlet to the outlet station, while
region 3 has an outlet to the outlet station.

Substituting Equation (E19) into Equation (31), we get



3JDFM

Since v
total

volume is

2

0. 6808
= | 0.0443

0

el

g

8.7939
=] 9.3246

9.6861

0.5630

-0.6104

0.0306

is 25 (see Figure E2a),

0.0761
0.5474

-0. 6489

74
0
0

-(15)(0. 4)

e

(E20)

therefore the % error in the

total
< 100 = |27.8046 - zslx 100
25
total
=11.21 (%)
Next, let region 4 be an accumulating outlet station. Substituting
Equation (E19) into Equation (34b), we find
0.3192 0.5630 0.0761 O
_ 0.0443 0.3896 0.5474 O
P =
0 0.0306 0.3511 0.6183
0 0 0 1
and
C(O) C(t = 0.5) =[0.0372 0.0546 0.0159 0.0000]
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We use Equation (35) to compute a(m) for m=20,1,2,...

(m), and c,(m), m=0,1,2,..., arethe I

Here cl(m), c 3

2
curves corresponding to region 1, region 2, and region 3 respectively.
Here c4(m), m=0,1,2,..., is the step response curve of the
flow system. The normalized c3(m) curve is the RTD curve.

Also, the adjusted c4(m) curve is the F curve. The RTD curve

of this flow system computed from 3 probe - model is shown in Figure

E2d.

Summary. From Equation (E20), we know that the sum of the
volumes computed from three probe model is only 11.21% off
compared to the given total volume of the system. The RTD curve
computed from this model (see Figure E2d) is very close to the real
RTD curve of the flow system (see Figure E2b). Hence, we may say
that three probe model is a good fit to the flow system under investiga-

tion.

Method 2. We would like to put four probes simultaneously into
the flow system as shown in Figure EZ2e. The transient tracer con-
centrations measured by these four probes are tabulated in Table

EZb.g/

§/See Appendix B.
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The RTD curve of the flow system computed from
three probe model in Example 2.
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Figure E2e. The schematic diagram of the four probes inside the flow system
in Example 2.
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Table E2b.

Transient concentrations of tracer in the
flow system of Example 2 measured by
four probes.

C

C

1 2 3 4

0 0 0 0 0

0.1 0.0574 0 0.0575 0

0.2 0.0777 0.0043 0.0690 0.0047
0.3 0.0799 0.0136 0.0654 0.0132
0.4 0.0741 0.0244 0.0575 0.0215
0.5 0.0655 0.0339 0.0492 0.0280
0.6 0.0564 0.0411 0.0417 0.0323
0.7 0.0479 0.0456 0.0351 0.0345
0.8 0.0404 0.0477 0.0296 0.0352
Cc.9 0.0339 0.0480 0.0250 0.0348
1.0 0.0285 0.0468 0.0212 0.0336
1.1 0.0239 0. 0447 0.0180 0.0319
1.2 0.0201 0.0420 0.0153 0.0299
1.3 0.0169 0.0389 0.0131 0.0277
1.4 0.0142 0.0357 0.0112 0.0254
1.5 0.0120 0.0324 0.0096 0.0232
1.6 0.0101 0.0293 0.0082 0.0211
1.7 0.0086 0.0263 0.0071 0.0191
1.8 0.0073 0.0235 0.0061 0.0172
1.9 0.0062 0.0209 0.0053 0.0154
2.0 0.0053 0.0186 0.0046 0.0137
2.1 0.0045 0.0164 0.0039 0.0123
2.2 0. 0039 0.0145 0.0034 0.0109
2.3 0.0033 0.0128 0.0030 0.0097
2.4 0.0028 0.0113 0.0026 0.0086
2.5 0.0024 0.0099 0.0022 0.0076

First, let

At

1

1

= 0.4.

Then from Table E2b, we know

.0655 0.0339

.0339 0.0480

.0169 0.0389

.0086 0.0263

.0045 0.0164

0.0492

0.0250

0.0131

0.0071

0.0039

0.0280]
0.0348]
0.0277]
0.0191]

0.0123]
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Before substituting these into Equation (70b) (or Equation (70a)) to find
the fractional input matrix P, we check the determinant of the first
square matrix in the right-hand side of Equation (70b).

Let the concentration matrix

C(0) 0.0655 0.0339 0.0492 0.0280
C(1) 0.0339 0.0480 0.0250 0.0348
T = =
C(2) 0.0169 0.0389 0.0131 0.0277
C(3) 0.0086 0.0263 0.0071 0.0191
Then we find
_ -10 _
det(T) = 7.586 x 10 s for At =0.4 (E21)

Similarly, we find

4.855 x 10'10, for At =0.3

det(T)

lo (E22)
4.672 x 10 ", for At =0.5

It

det(T)

From Equation (E21) and Equation (E22), we know that the first
square matrix in the right-hand side of Equation (70b) is nearly
singular no matter what size of At is chosen. Hence, we may say
that some of four probes are nearly redundant. By looking at the
transient concentration distributions, we know that probe 1 and probe
3 are nearly redundant and also probe 2 and probe 4 are nearly

redundant. Therefore, we must remove two probes according to their
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cofactors in the concentration matrix and use two probes only to
model this flow system.

First, consider the case of At = 0.4. Comparing the cofactors

of the elements 01(3) and c3(3) in the matrix T, we find

-6
cofactor of cl(3) = -0.415 x 10

-6
cofactor of ¢_(3)= 0.734 x 10

Since the cofactor of c3(3) is larger than the cofactor of 01(3),

thus we remove probe 3.

After removing probe 3, we find a new concentration matrix T

we find

cofactor of cZ(Z) = 13.302 x 10-4

-4
cofactor of 04(2) = 19.948 x 10

Since the cofactor of c4(2) is larger than the cofactor of cZ(Z),

thus we remove probe 4.

The same results are obtained for the cases of At =0.3 and
At = 0.5,

Hence, after removing both probe 3 and probe 4, we would like

to use probe 1 and probe 2 only to model the flow system shown in

Figure E2a.
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First, let At = 0.4. Then from Table E2b, we know

C(0) = C(t = 0.5) =[0.0655 0.0339]
C(1) = C(t =0.9) = [0.0339 0.0480]
C(2) =C(t=1.3)=[0.0169 0.0389]

Substituting these into Equation (70b), we find

[ —I-1
0.0655 0.0339 0.0339 0.0480

0.0339 0.0480 0.0169 0.0389

r(;. 5285 0.493‘-9“

= ‘ (E23)
0.4616

0
L
All the fractional input coefficients p_1j found in Equation (E23) are

non-negative and less than one. Therefore, it is acceptable. Since

i
i

0.5285 + 0 0.5285 < 1

g

Pl

—_—

i)

1

0.4939 + 0.4616

p. 0.9555 =1,
i2

—_—
[
~—

we can say that region |l has an inlet from the inlet station, while
region 2 has no inlet from the inlet station.

Since
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Zpl, 0.5285 + 0.4939 = 1.0224 = 1
J

(j)

EPZJ' )

(3)

!
[en]

+0.4616 = 0.4616 < 1,

we may say that the volumes of the regions are nearly equal and region
1 has no outlet to the outlet station, while region 2 has an outlet.

Substituting Equation (E23) into Equation (31), we get

— ' -1
vy -0.4715 0.4939 0
-0. -(15)(0.4
vy IpEM 0 0.5384 (15)(0.4)
11.6736
= (E24)
11.1441

Since is 25 (see Figure E2a), therefore the % error in the

Viotal

volume is

|22.8177 - 25|
25

x 100 =8.73 (%)

Next, let region 3 be an accumulating outlet station.

Substituting Equation (E23) into Equation (34b), we find

0.5285 0.4939 0

ol
"
o

0.4616 0.5384

[e]
[e]
o
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and

0.5) = [0.0655 0.0339 0.0000]

Ql
S
il
Q|
[
1

We use Equation (35) to compute C(m) for m=20,1,2,...

Here c¢,(m), and c¢,(m), m=0,1,2,..., arethe I curves

1 2(
corresponding to region 1, and region 2 respectively. Here c3(m),
m=0,1,2,..., is the step response curve of the flow system. The

normalized c¢,(m) curve is the RTD curve. Also, the adjusted

2

c3(m) curve is the F curve. The RTD curve of this flow system

computed from two probe model is shown in Figure E2f.

Summary. From Equation (E24), we know that the sum of the
volumes computed from two probe model is only 8. 73% off compared
to the given total volume of the flow system. The RTD curve com-
puted from this model (see Figure E2f) is fairly close to the real RTD
curve of the flow system (see Figure E2b). Hence, we may say that

two probe model is a fair fit to the flow system under investigation.
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Figure E2f. The RTD curve of the flow system computed from
two probe model in Example 2.
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VIII. CONCLUSIONS

A general discrete flow model which is discrete both .in time
and space is developed and is used to model flow systems. A stirred
tank network model (continuous time compartment model) is sum-
marized and the relationship between these two models is developed.
Both models make use of fractional input matrices with elements
representing the fraction of flow into the jth region which originates
in the ith region. The fractional input matrices for the discrete
and continuous models are shown to be related to each other. The
discrete flow model is more general and computationally much simpler
than the stirred tank network model, and gives data which agrees
precisely with continuous model at regularly spaced discrete values
of time.

The fractional input matrix can be used to find the sizes of the
regions, to predict the residence time distribution (RTD) of the fluid
in the flow system, and to compute the reaction conversion if chemi-
cal reaction occurs. Direct methods are given for finding the frac-
tional input matrix from either steady state or transient tracer data.

Two simple numerical examples are given to demonstrate how
well the discrete flow model works. Use of the data fitting techniques
allows data generated by a high order stirred tank model to be fitted

quite well with a lower order discrete time model.
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Lumping is important for modeling flow systems with very
many regions, thus a lumping analysis for discrete ﬂowysystems is
presented. The methods for obtaining the sizes of the regions and the
fractional input matrix provide an important tool to analyze the lump-

ing problems in flow systems.
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APPENDIX A

Nomenclature

Definition
output coefficient from tank i
coefficient in Equation (85)
output matrix
defined by Equation (76)
concentration in the ith region at time mAt
concentration in the ith tank at time t

concentration row vector at time mAt

" concentration row vector at time t

defined by Equation (35)

row vector of Laplace Transform of concentration
concentration of component A in the fluid streams from
region i at time mAt

concentration row vector in the flow streams at time
mAt

defined by Equation (73)

defined by Equation (74)

diagonal matrix

lumping error at region j of the lumped system to a

unit tracer input at region i of the original system
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ij

avl

ij
i, out
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Definition
error matrix
residence time distribution of fluid
function
input concentration from the inlet station to region i
at time maAt
input concentration row vector at time maAt
input concentration in the input streams to region i at
time mat
input concentration row vector in the input streams at
time mAt
identity matrix
a matrix in Jordan canonical form
lumping matrix
eigenvector matrix
number of regions
fractional input coefficient from region i to region j
fractional input matrix
defined by Equation (34a) and Equation (34b)
volumetric flow rate from region i to region j
volumetric flow rate from region i to the outlet station

interregion flow matrix for continuous time flow systems
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Letter Definition

Qd interregion flow matrix for discrete time flow systems

Qj volumetric flow rate from the inlet station to the jth
region

r the remainder

r,lj transition rate coefficient from tank i to tank j

R transition rate matrix

s Laplace variable

s,1j steady response at region j to a steady input at region i

S steady response matrix

S, semi-diagonal matrix

t time

T concentration matrix

u unit vector with 1 as its ith element

\f volume of region i

Viotal total volume of the flow system

v diagonal volume matrix

X eigenvector

Greek lLetters

a constant in Equation (E9) and Equation (E10)
N eigenvalue

At one step time interval



Letter

Overhead

A

Definition
feed coefficient from the inlet station to region

feed matrix

any property related to lumped system

i
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APPENDIX B

Data Source for Numerical Examples

Data Source for Example 1

Suppose that at time t = 0 we inject a pulse of tracer into a
flow system consisting of three well-mixed regions as shown in

Figure E1l. Then from the material balance, we know

Vi@ - "92t93)e) T 95,0, T 93,0

2 at - %1281 " (9179379 0% T 9323 (A1)

dc
= : - +
V3Tar 91301 Y23 T (951137 o0
Let
= 2. = B = .
912 2 9y ~0.5 q3,71.0
= = = 2.
Ap3 =33 43733 g, 6
and
vy =2.0
VZ = 1.0
V3 =3.0

with the initial conditions:

cl(O) =1, cZ(O) = c3(0) =0
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A digital computer was used to solve Equation (Al). The

results were tabulated in Table E1.

Data Source for Example 2

Consider a flow system consisting of 25 regions as shown in
Figure Al. In order to obtain discrete data for this system, the
values of the initial condition and the fractional input matrix were
assigned arbitrarily. The elements of the fractional input matrix
were tabulated in Table Al. Then the transient concéntrations were
generated using Equation (9). The results are tabulated in Table A2.
The residence time distribution (RTD) of the fluid elements in the flow
system are computed by taking the flow weighted average of the
transient concentrations of region 5, region 10, region 15, region 20,
and region 25. The RTD curve of this system was shown in Figure

E2b.



i
[SN]

- —
— 1 2 3 4 5
-« <
| 4 | 4 [ 4 ) |4
T | T 0 y | v | v |
. (A - :: 9 ;;fi 10
| A | 4 | 4 1 4 | 4
y | v | v | v l__*.f l
3 —1 11 12 13 14 15
| 4 | 4 | 4 | 4 | 4
¥ | ¥ 1 [ ¥ ] ¥ 1] v |
— —1>
3 —» 16 17 18 o 19 20
< -+
L 4 | 4 L & L A 4
v | vy | v | 1] l__”v |
3 —» 21 224_ 23 < 24 -« 25
F 5 —

Figure Al.

=3
q5, out

qu, out

q15, out

920, out

q25, out

Diagram of the flow system with 25 regions.

H

g6



Table Al.

Fractional input matrix of the flow system with 25 regions.

«775
+050
« 000
-« 000
<200
«925
<300
<800
« 000
<000
<000
« 000
<000
- 000
<200
« P00
« 000
131
« P00
<000
<000
<200
+ 000
« 000

« 000

«200
«745

<040
<000
<200
00
«@15
<388
<000
<00
«A0R
<02
«000
<200
<000
« P00
<000
«000
« P00
<200
414
00
<000
<200

P00

«000
<180
«750
«A50
<200
<000
-« P00
o220
00
«00n
<207
<000
<000
« 000
« 000
« 000
<000
<200
<000
« 000
<000
<000
<000
000

+ 000

<000
<200
<190
<705
«@75
«000
<200
200
«930
<000
+ 000
« 000
« 000
- D00
000
<000
000
<300
- 000
<200
- 000
«0G0
<200
<000

- 200

«000
<200

«200

<210

«750

<000

<000

<0020

<000

«R40

<000

« 000

<000

<000

<000

<200

-« 000

<000

1.1

<000

«A00

<000

<00

<000

<000

«A25
<200
0y117]

00

«A00

<745
«030

Yzl

+ 000

~000

+050

« 000

<000

<200

<200

<000

<000

<000

<200

<000

« 000

<000

«000

000

~000

«000
«A25
<00

« 000

«000

«175

«725

D40

- 300

<200

<000

«935

«A08

« 000

<000

«000

<000

< P00

<000

<000
<000

<000

<000

a4

< P00

<000
1.1

<020

<000

«000

<000

«195

<710

<050

«000

<000

<000

.025

<300

<000

«000

-« 000

-« 000

iy 151%]

<000

1Y 21%14]

<000

<000

«A00

AN

<00
-« 000
« 000

+«835

<200

<000

<000

<200

«685

«B65

<000

<000

<000

«@15

<300

<00

<000

<000

<009

<000

3414

<000

«000

<000

«P00

0 :11]
<200
<007
<000
«925

«000

"« 008

<000
«225
«715
«000
<000
<200
<200
+«835
000
<000
«000
<000
000
<000
<000
<000
<000

<000

<800
«200
<200
« 000
«000
+055
« 000
<00
<300
«000
«725
«045
«000
00
000
025
«000
<000
«000
-« 000

<000
147
<200
<000

« 000

«000

<000

<000

«000

+ 000

«B00

«835

<000

<000

« 000

<200

+725

025

« 000

«000

«000

«015

+«000

<000

<000

<000

<200

<000

<000

<000

+ 000
« 000
<000
000
«000
« 000
<200
«030
<000
<000
<000
+180
«735
«045
<000
000
<000
010
<000
<000

<000
000
<000
«A00

<000

« 000
«000
<000
<200
«000
<000
<000
<007
010

«000

<200

<200

<205

+690

+«@55

«000
«000
«0200
«A40
+ 000
«000
«B00
+ 000
«000

«000

<000
<200
«000
<000
«000
<000
<000
« 000
«000
«930
« 000
+B00

<000
+«230

<710

«000

« 000

000

+«000

«030

«000

<000

000

<200

<000

<000
<000
«000

<000

+ 000

« 000

<000

« 300

000

-000

«025

000

<200

<000

«000

730

<045

«000

<000

<000

«050
<000
< P00
<000

000

+ 000
<000
<000

« 300

+ 000

<000

<000

« 000

«000

<000

<000

«215

<000

«000

+ 000
«190

<700

«065

<200

<000

«000

«0A30

« 200

<000

<000

«000
<000
« 300

«000

«000

<000

<000

<000

<000

<000

«200

<000

«010
<200

« 000

«000

+215

+695

«@55

«000

000

«200

025

«000

«200

<000
+ 000
« 000
<200
« 000
<000
000
«P00
<000
+ 000
<000
<900
«000

«020

<000
«000

«000

+195

<670

<070

<000
«000
<000
« 045

<000

« 000
« 300

<200

<000

«000
<000
<000
«000
000
<200
<000
<000

000

« 300

050
«000

<000
<000
.210
« 705
«000
«000
«000
+000

«@35

<200
<000

<000

«A00

<000

«000

«000

<000

000

<000

000

«000

<000

«000

<000

«055

<000

000

«000

<000

. 725
<070

<000

000

-0

<200
<000

« 300

- 000

<000

« 000

.000

000

« 300

<000

000

«000

<000

<000

000

-000

«025

<000

«000

000

«225
+695

+055

«000
«000

<000
<208

<000

«P00

«000

« 000

<000

<000

<200

<000

«000

800

<000

<000

000

000

000

«@35

<000

<000

<000
205

+«730

+030

«000

<000
<000

+000
+000
+ 000
<000
000
<000
«000
+ 000
+000
<000
<000
000
«000
000
«000
<000
.025

«000

«000
<000

+190

+ 705
1y2:1%]

<000

« 000

<000

«000

«000

<000

<000

<000

<000

<000

«000

+000

<000

«000

<080

<000

«000

<020

<000

045

<000
«000

<000

«220

«735
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Table A2. Transient concentrations of tracer in the flow system with 25 regions.
t 1 2 3 4 s ¢ 7 g 9 ‘10 1 S, €y 14 15 S1g 17 18 19 20 21 S22 23 24 S35
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1.4 +0078 .0161 @295 .PAPA .BA59 OS2 L0142 .B254 .B357 .palg <0051 .B118 .8225 .@305 +8357 .B@46 .0112 @182 .P254 0303 ,P46 .BP94 .B156 0224 .0262
1.5 +8058 +@136 +8257 0368 0431 .PPA3 .0120 .B222 .0324%.0384 <0042 BB9Y 0195 0275 P332 0039 +PB96 D160 0232 0284 .0P39 .BOB1 0137 0206 0248
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1.8 «B834 8883 0170 .0269 @336 .P025 .8873 0146 .P235 .8297 +00824 0859 0127 .B196 0253 .0024 .006) .P198 0172 .8223 .25 .@052 .P092 .8154 2198
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2.0 «0024 ,0868 .B129 @214 8275 P18 .B@53 .B111 @186 .B241 «PB17 <PBA2 .PO96 .P153 0204 PB17 0046 8083 8137 .B183 «PPL8 0039 .PB71 8125 .B165
21 +00208 8851 0113 40190 0247 .@P1S .PB45 BB96 .B164 8216 +BO14 .0036 +PBB3 0135 0182 0015 0039 0073 0123 40165 0016 PN33 0062 @112 48149
22 «BB17 8044 BP98 0168 0221 8013 0039 0083 0145 8192 +B8012 2031 8872 Bl19 ,0162 0213 0034 0064 8109 @148 0013 0029 .BAS4 @108 0134
243 V0815 +BB38 0B85 0149 0197 G011 0033 +B072 <8128 8171 +P010 0026 .0062 2184 0144 011 0030 @056 +BB97 .0132 0012 .@025 BP48 +POBY 0120
i .8012 .2032 .80874 .B131 .8175 0009 .Bp28 .B263 .0113 0151 0009 .8022 .B054 .0B92 0127 .BABY .8026 .PL4Y .0E86 .B118 0010 0022 0042 .0BT9 0108
oe5 2811 .8828 .BB65 0115 0155 8008 0024 0055 0099 0134 .PAB7 8019 .B047 .BBBB 2112 .PRO8 PP22 0043 +¢¥076 0195 +0029 8019 .0036 «pA70 0896
2ef +0009 0024 0056 0102 0137 .PBO7 0021 0047 .0PBT @118 <2006 8016 0040 BAT0 0099 0007 0019 Q038 0067 PR3 0007 .B017 0032 0062 .0BE6
B P08 0021 8049 BOE9 +B121 8086 P18 8041 .PBT6 8184 <0085 .@B14 .0035 .2062 0087 .0PP6 8017 B33 +BB59 .BAB2 0806 .BB14 0028 .B055 0076
P8 .2027 .0018 .G@43 .BB78 8187 .BBBS 0015 8836 .BB6T .£O91 .PP05 .P@12 .PB3P .0054 .0076 .BAOS 015 .BP29 .BBS2 P73 00886 .BOL3 .0B24 (048 .BO6E
P .BBB6 2215 037 0069 .B094 .PpP4 0013 €831 .B@SE 008 <0004 (0018 .0026 0047 Q@67 .0P05 .0013 0025 <8046 <HB6A .p@pS .PPLL .BP21 .9043 .006D
e B005 0013 0032 +P060 .0B83 0004 B811 0827 .8BS1 .P@70 +0P03 0009 @023 0041 JBOSY .B0B4 .00l 0022 0040 .BRST7 +0004 0009 .0019 .0038 .8053

L6



98
APPENDIX C

Comparison of Discrete Flow Model and Markov Model
[2,9,10,11,12, 14, 16]

A Markov model is an important type of stochastic model that is
useful in the study of complex systems. The basic ideas of the
Markov model are those of state of a system and state transition.
When a system is completely described by the values of variables that
define the state, we say that a system occupies a state. A system
makes a state transition when its describing variables change from
the values specified for one state to those specified for another. If
the time between transitions is a constant that is of interest, then we
may consider the system as a discrete time process. To study the
discrete time process, we have to specify the probabilistic nature of
the state transition. Suppose that there are n states (possibly
including an absorbing state) in a system running from 1l to n.

If the system is a simple Markov process, then the probability of a
transition from state i to state j during the next time interval,
is a function only of i and j and not of any history of that system
before its arrival in 1i. In other words, we may specify a set of
conditional probabilities pij that a system will occupy state j
after next transition, given that the system now occupies state i.
For a discrete time process, the probabilities that a system will

remain in same state, i.e., p.., i=1,2,...,n, are non-zero.
ii
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Since the pij are probabilities, they are non-negative and not
greater than one.
The similarities and differences between discrete flow model
and Markov model are listed as follows:

Similarities.

l. The fractional input matrix P (or transition matrix) is a
complete description of either model.

2. The elements of matrix P in either model are non-
negative and not greater than one.

3. The element of matrix P 1in either model, i.e., pij’ is
a function only of state i and state j and not of any

history of that system before its arrival in i.

Differences.

l. The discrete flow model is based on the time average
behavior of a very large number of particles, while Markov
model applied to the stochastic meandering of a single
particle.

2. The pij in the discrete flow model can be interpreted as
the fraction of material that will end up in the jth region
that transfers in from the 1ith region in one step, while the
pij in Markov model, from a physical viewpoint, can be

interpreted as the fraction of material in the ith region

that moves into the jth region in one step.
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The columns of matrix P in the discrete flow model
always sum to one if the columns include the inlet station,
while the rows of matrix P in Markov model always sum

to one if the rows include the absorbing state.
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APPENDIX D

Computer Programs for Computation

PROGRAM FIMTX

THIS PROGRAM USES GAUSS=-JORDAN HEDUCTION METHOD
COMBINING WITH MATKIX MULTIPLICATION THCHNIOUH
TO DETERMINE THE FRACTIONAL INPUT MATKRIX OF FLOW SYSTEMS

DIMENSION FACC1@,21),FRCC10,21)5IFCC10510),5C(10,10),

*P(10, 10)

COMMON/ARBC/N
COMMON/BCD/FAC:FRC:M:EPS:DETEH
COMMON/CDEZIFCsSC»P

REAL IFC
IEX=TTYINC4HIEX= )
DT=TTYINC4HDT= )
N=TTYIN(4HN= )
M=TTY IN (4HM= )

EPS=TTYINC(4HEPS= )
LUN=TTYINC4HLUN= )

VRITE(LUN,205)

VRITEC(LUN, 210)IEX

NPLUSM=N +M

VRITECLUNS 200)DTsNsM»EPS

VRITEC(LUN; 206)

DO 2 I=i,N

REANDCS» 101 CFACCT s d) s Ju laNPLUSM)
VRITECLUNS 201X CFACCLI U2 Js 1o NPLUSM)
VRITEC(LUN, 207)

DO 3 I=1,N
READ(75101)C(SC(I,J)»J=1,N)
VRITECLUNS2@1)(SC(I>J)»Jd=1,N)
eeeCALL ON GSJN TO COMPUTE THE 18T RESULTING MATRIXees
CALL GSJN

WRITE(LUN>203)DETER

VRITE(LUN,208)

DO 4 I=1,N

VRITEC(LUN,202) (FRC(I,J)»J=1>NPLUSM)
e+ e+ COMPUTE THE INVERSE OF 15T MATKIXeosso
DO 11 I=1,N

DO 11 J=1,N

JJ=M+J ‘

IFCCI»J)=FRCCI,»JJ)

VRITEC(LUN,209)

DO 12 I=1,N

VRITEC(LUNS202)CIFCC(I,»J)sJ=15N)

++«CALL ON MULTI TO COMPUTE THE FRACTIONAL INPUT MATRIXe..

CALL MULTI
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WRITECLUN,204)
DO 13 I=1,N
13 VRITECLUN,201)(P(I,J)sJ=1,N)
e+« FORMATS FOR INPUT AND OUTPUT STATEMENTSeses

101 FORMAT(1Xs6FYed)
=00 TDRMAT(IX:'DT ='F10e5/1Xs'N ='15/1X, '™ ='15/1%X,"EPS ="E10.

*1/) A
201 FORMAT(1X»6F9e4)
202 FORMAT(I1X,6F10e4)
203 FORMAT(/1X,'DETFR ='"E14.6/)
204 FORMAT(//1X,*THUS, THE FRACTIONAL INPUT MATRIX IS'/)
205  FORMAT(/ /71X * skokskokk sk ok ok sk sk ok ok ok ok 3 ok ok ok ook ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ook skok 7 &

1 skokookok ok sk skokosk skokskok ok ok k ok ok ok '/ 1X, © MAINLYSUSE GAUSS-JORDAN*
2' REDUCTION ALGORITHM FOR DETERMINING' /1%, * THE' ;
3" FRACTIONAL INPUT MATRIX "/ 13X "%k kskokokok ok ok ok okokok sk okokok ok ok ¥
4% K5k ok sk ook ok ok ok ok ok ol ok K sk ok ok ok sk kok Kok ok kok ok k sk kok kkkk Kk ' /11X, "WITH, "/ /)
206 FORMAT(/1X,'THE 1ST AUGMENTED MATRIX IS')
207 FORMAT(/1X, 'THE 2ND MATRIX IS*")
208 FORMAT(/1X,'THE 1ST RESULTING MATRIX 1§')
209 FORMAT(/1X,'THE INVEKSE OF 1ST MATRIX IS*')
210 FORMAT(1X, "EXAMPLE'I3/)
STOP
END
600&SUBHOUTINE FOR MAIN pROGHAMoooo
SUBROUTINE GSJN
DIMENSION AC1Us21),RC10,21)
COMIMON/ABC /N
COMMON/BCD/AsRsMaEPS, DETER
NPLUSM=N+M
s¢¢+BEGIN ELIMINATION PROCEDURE.« s
DETER=1.
DO 2 K=1,N
+ e+ «UPDATE THE DETERMINANT VALUESe e
DETER=DETER*A(K,»K)

ee+e+sCHECK FOR PIVOT ELEMENT TOO SMALLeess
IFCARSC(ACKLIKI )« GTEPSIGO T0O 3
VRITE(61,2082)

202 FORMAT(1X,'SMALL PIVOT - MATRIX MAY BE SINGULAR')
s+ s e NORMALIZE THE PIVOT KOWeoes

3 KP1l=K+1

DO 4 J=KP1,NPLUSM

4 A(K:J)=A(K:J)/A(K:K)
ACKs,KI)=1,.
s e o ELIMINATE K(TH) COLUMN ELEMENTS EXCEFT FOR PIUOTes.
DO 2 I=1,N

IFCI«EQeKeOReACIsK)eEQeP)G0 TO 2
DO 5 J=KP1,NFLUSM

5 ACL,J)=ACI>J)-ACIKI*ACKS, J)
ACI,K)=0e

CONTINUE

DO 1 I=1,N

DO 1 J=1,NPLUSM

1 R(I,JI=ACI-J)

N
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RETURN 103
END

o+« « SURROUTINE FOR MAIN PROGKAM ¢ o oo
SUBROUTINE MULTI

DIMENSION BCl@s>10),CC10,100-DC10H510)
COMMON/ARBC/N

COMMON/CDE/B,>C»D

DO 1 I=1,N

PO 1 J=1,N

DCI,J)=0.

DO 2 K=1,N
DCI>,J)=DCI,J)+BCIsKI*C(K»J)

CONTINUE

RETURN

END

PROGRAM VOLQ

THIS PROGRAM USES GAUSS-JORDAN KEDUCTION METHOD
TO DETERMINE THE SIZE OF THE KEGIONS AND THEN
FIND THE FLOW KATE CONNECTING THEREGIONS OF
FLOW SYSTEMS

DIMENSION APMIC10,21),PC10,10),QC10,180)5KIMIC18,21)5VC10)

COMMON APMI,KPMILN,M,EPS»DETER

IEX=TTYINCAHIEX= 3

DT=TTYINC4HDT= )

N=TTYIN(4HN= )

MeTTYINCHHM= )

EPS=TTYINC4HEPS= )

LUN=TTYINC4HLUN= )

VRITE(LUN,205)

VRITECLUN, 210 IEX

NPLUSM=N+M

VRITEC(LUN, 200)DT>Ns>M»EFRS
VRITECLUN,20A7)

DO 2 I=1sN
READ(5,101)CAPMI(1,5,J)5J=1>NPLUSM)
VRITEC(LUN>201)(APMICI»J)»J=15NPLUSM)

VRITFC(LUN, 208)
DO 3 I=1,N

RFEADC75 10 1) (P15 Jd)sd=15N)
VRITEC(LUNS201)(P(I,J)sJd=15N)

e+« CALL ON GSJUN T0 COMPUTE (F=1) RESULTING MATRIXe .
CALL GSJN

VRITEC(LUN, 2003)DETER

VRITECLIN, 209)

DO 10 I=1,N

VRITECLUN, 20 1) (RPMICI»>J)»J=1,NPLUSM)

"ll}‘.IND ALL V(I) I=1525eeN e s s
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WRITEC(LUN,204)

DO 11 I=1,N

VCI)=RPMICI,M)

WRITF(LUN,201)VC]I)

eee . FIND ALL 0CI,J) I,J=1,25e0eeN es e

DO 12 I=1,N

DO 12 J=1,N

OCI»J)=PCI,J)*VUCJ)/DT

VRITEC(LUN, 2006)

DO 14 I=1,N

VRITECLUN,201)C0CI,J),J=15N)

¢« FORMATS FOR INPUT AND OUTFUT STATEMENTS:i e s«
FORMAT(1X,6FY.4)

FORMATC(1X5 'DT ='F1De5/1X5°'N ="I5/1Xs'M ='I5/1Xs 'EPS ="
*El0e1/)

FORMAT(1X,6FY.4)

FORMAT(/1%, *DETER ='El14.6/)

FORMAT(//1X, '"THE SIZE OF THE REGIONS V(C1), U(e),...ARF'/)
FORMAT (/77 1 X5 " sk sk 3k 3k ok 5k ok % ok sk 3k sk >k 3 3 ok 5k ok s ok 5K o ok ok 3 o ok oK 3 sk ke ok o ok ok ok ok sk kok ok
17 ok skokokok ok kR ok ook kk ' /12, ' USE GAUSS=JORDAN KEDUCTION'
2' ALGORITHM FOR DETERMING'/1Xs 'THE SIZE OF THE REGIONS?Y
3' AND FLOU RATE CONNECTING THEM®/Z1X5 * %% %kkddkkskok ok ok ok ok fokok ?
41" Sk sk ok sk sk ok ok ok sk ok 3 ok ok ok ok 3k sk ok ok ok sk ok sk ok ok sk ok Sk osk sk ok ok sk ok kR koK Rk ok kk ' /1 X, "WITHS !
5/77)

FORMAT(//1%, *FLOW RATE CONNECTING THE REGIONS QC1,1)°
1')(3(132)300§0AHE'/)

FORMAT(/1Xs *THE (P«1) AUGMENTED MATRIX 1&*)
FORMAT(/1Xs "THE TRANSITION MATKIX 18%)

FORMAT(/1Xs " THE (P“I) HEbULTINb MA?BIX 15"
FORMATC1X, "EXAMPLE 13/

STOP

END

¢« e« SURROUTINFE FOR MAIN PROGRAMe .« ..
SURROUTINE GSJUN

DIMENSION AC105,21),RC(1@,21)

COMMON A»R>N»M>EPS,DETEKR
NPLUSM=N +M

¢+« +BEGIN ELIMINATION PROCEDUKEs s«
DETFER=1.

DO 2 K=1,N

e e« UPDATE THE DETERMINANT VALUFSee«s.

DETFEKR=DETER*A(KsK)

e+ e+ CHECK FOR PIVOT ELEMENT TOO SMALL eeos
IFCABSCACKSKI ) eGT.EFSIGO TO 3

VRITEC(A1,2002)

FORMAT (11X, * SMALL PIVOT = MATRIX MAY BE SINGULAR®)
oo e e NORMALIZE THE PIVOT KOVeseee

KP1=K+1

DO 5 J=KF1,NPLUSM

ACK» J)=A(KsJ)/A(KSK) :

A(KsKI=1.
*+ +FLIMINATE K(TH) COLUMN ELEMENTS EXCEFT FOR PIUOTsee
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PO 2 I=1,N

IFCIeFEQeKeOReA(ILK)eEQ.«)GO TO 2

DO 6 J=KPFP1,NFLUSM

ACI>J)=ACT >0 =ACIKI*A(Ks J)
ACILKI=0.

CONTINUF

DO 4 I=1,5N

DO 4 J=1,NFLUSM

RCI»J)=ACT> D)
RETURN
FND

PROGRAM FI1GFEN

THIS PROGRAM USES THE POWEK METHOD TO FINI) THE
EIGENVALUES AND EIGENVECTORS OF MATRICES

190

192

103
104

REAL L,LZEKO,LAMDA, IDENT
DIMENSION A(l@:lﬂ):B(lﬂ:l@):U(l@:1@):LAMDA(1®):V(1@)
*:Y(]@):U/FPO(l@):C(lﬂ:lD)

=TTYINC4H N= )
MMX=TTYIN(4HMMX=
MFO=TTYIN C4HMF (=
EPS=TTYINC(4HEPS=
LUN=TTYINCA4HLUN=
VRITE(LUN,205)
RFAD(G:!@H)(V?EHO(I) I=15N)
READ(65100) ((ACI,J)sJ=1sNIsI=1,N)
FORMAT(6FYv4)
VRITEC(LUN,203)
DO 1 I=1,N
VRITE(LUN, 204) CACT, J)»J=15N)
DO 2 I=1,N
DO 2 J=1,N
B(I,J)=0.
DO 3 I=1,N
B(I,I)=1.
DO 11 I=1,N
DO 192 I1=1,N
VCII)=n.
SUM=@.
DO 104 I1I1=1,N
DO 103 JJd=1,N
UCII)=PRCI1,JJI*XVZEROCJII+VUCTII)
SUM=SUM+UCTIId*UCIT)
LZFRO=SORT (SUM)
DO 5 M=1,MMX
IFC(M/MFO)*MFQ«eNEMIGOTO 4
SUM=0.
DO 105 II=1,N

)
)
)
)
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105 Y(II)=0.

DO 107 I1=1,N
DO 106 JJ=1,N
106 YC(II)=BC(II,JN*V(JII+Y(II)
107 SUM=SUM+YC(II)*Y(II)
L=SORT(SUM)
DO 108 I1J=1,-N
108 VCIJI=1./L*Y(IJ)
4 SUM=0.
DO 109 I1I=1,N
Y(I1)=0+
DO 110 JJ=1,N
110 YC(II)=ACII,Jd)*V(JJI+Y(ITD)
179 SUM=SUM+Y(II)*Y(II)
L=SQRT(SUM)
DO 111 II=1,N
111 VCII)=1e/L%Y(II)

IF(ABS((L-LZERO) /LZERO) «LT.FPS)GOTO 7
IF(MeGE o (MMX=-2))WRITE(LUN»210)L,LZERO
210 FORMAT(SX'L ='F9.4,15X'LZFERO ='F9.4)
5 LZFRO=L
IMI=1-1
VRITE(LUN, 200) (LAMDA(K) »K=1,1IM1)
200 FORMAT(//5%'NO CONUERGENCE « EIGENVALUES ARE"/7/7CTX> 6FYe4))
GOTO 12
7 CONTINUF
DO 112 II=1,N
YCIT)=0.
no 112 JJd=1,N

112 YCII)=ACIT>Jd)*VUCJII+YCIT)
DO 8 K=1,N

IF(ABS(UCK))+LT+1+E=-3)GOTO &
IFCUCK)*Y(K).LT.@)L=~L
GOTO 9
8 CONTINUE
9 LAMDA(CI)=L
VRITE(LUN»199)1,LAMPACT)
199 FORMAT(//5X'LAMBDAC'I3') ='F9.4)
DO 10 K=1,N
19 UCK, 1)=V(K)
IF(1.GT.N)GOTO 11
DO 114 II=1,N
DO 114 1J=1,N
C(I1,1J)=0.
DO 114 IK=1,N

IDENT=0.
IF(IK.EQ.IIDIDENT=1. ,
114 CCII1,1J)=CCII,1J)+CACII,IK)=-L*IDENT)*BC(IK,1J)
DO 115 II=1,N
DO 115 IJ=1,N
115 BC(II,1J)=CCI1,1J)
11 CONTINUE
VRITEC(LUN,201) (LAMDA(K) »K=1,N)
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201 FORMAT(////5%s '"EIGENVALUES ARE'//(6FY9e4))
VRITECLUN,202) (CUCI,J)sd=1-N)sI=15N)
202 FORMAT(////5%X, "E1GENVECTORS ARE'//(6FYe4))
2A3 FORMAT(S5X,'THE STARTING MATRIX IS'/)
204 FORMAT(1X,6F9.4)
205 FOHMAT(//IX,'***************************************'
1Y stokakokokok ok ok sk ok kk kokkk ok * /1%, 'USE THE FOWER METHODSFOR *

2'DETERMINING EIGENVALUES AND'/1X,"® EIGENVECTORS®
3/1X,'***********************************************';

41" kokokokkkkkokkkk '/ /)

12 CONTINUE
END

PROGRAM SODE

C THIS PROGRAM USES 4TH-0RDER RKM METHOD TO FIND THE
C TRANSIENT CONCENTRATIONS IN CONTINUOUS=TIME FLOV
C SYSTEMS

DIMENSION CC1@2),FC1@)

COMMON Ns>T,CsFsHs IRKM»E»TINT

IEX=TTYINC4HIEX= J
N=TTYINC4HN= )
H=TTYIN(4HH= )

TINT=TTYINCA4HTINT )
TMAX=TTYIN C4AHTMAX )

E2TTYIN(4HE= )
LUN=TTYINC4HLUN= )
VRITEC(LUN,218)
WRITECLUN, 240)1EX

c seeeSET INITIAL CONDITIONSes s

T=0e¢ $ CC1)=1el) 3 CC2)=Pe % C(3)=0e
VRITECLUN, 250)ON>H> TINT» TMAXS E
VRITECLUN,220)
VRITEC(LUN,230)
VRITECLUN,200)T»>(CCI),I1=1,N)
c eee«CALL ON RKM TO COMPUTE ALL C(J) J=1525eesN eeee
10  CALL RKM
IFCIRKMeERM«2)G0 TO 5
C ¢+« CALCULATION OF F(J) FOR ALL EQUATIONSe os e
FO1)==2.T75%C(1)+e25%C(2)+5%C(3)
FCU2)=2e2%¥C(1)=4e8*%C(2)+2.6%C(3)
FO3)=1el1*%CC1)+11%C(2)=-2.2%C(3)
GO TO 10
S VRITE(LUN,260)T»(CCI)»I=1,N)
IFCCTMAX=T) e GTe1eE~U)GE0 TO 19
VRITECLUNS230)
C e e+« FORMATS FOR INPUT AND OUTPFUT STATEMENTSe e e
210  FORMAT (/77 1X5 " %k ook sk ok ok ok ok ok ok ok o ok ok ok o o ok ok o ok sk ok ok ok ok ok ok ok sk ok ok ¥
1% oeokeok okok sk ok ok sk ok kokok ok kokk ok ok k ok kokk /1%, ' USE 4TH=-ORDER KKM*



240
25¢

220

200

260
230

100
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300
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2' METHOD TO SOLVE N SIMULTANEOUS'/1X,' 1ST"*
3'=0ORDER QeDoE o' /71X, *akkkokkkkokokokok ok ok ok ok ok ok ok ok ok ok ok ok skook skoskokdeoskok ®
45 ® ok ok ok ok ok ok ok ok ok sk ok ke ok ok ok ok ok k ok ok ok ok kkokkokk ' /1 Xs *WITHS '/ /)

FORMAT(1X» '"EXAMPLE'I3/)

FORMATC(1X» "N ='14/1X5'H ='F1l0«5/1X,'TINT ='F1l0.5/1X>»
1'TMAX ='Fl0.5/1%,"'F ='E10.5//)

FORMAT(1X5 *THE TRANSIENT CONCENTRATIONS IN THE FLOW'®
2°' SYSTEM ARE ¢*'////7/7)

FORMATCL17Xs "TCMIND *5 3%, "CC1) ' 54X, 'C(2) 5 4X5'CC3)"
3/140%, temmccccceae R R b LR L “eteeccccccca- '
Q771K 48F8e4)

FORMATC14X, 4F8e4)

FORMAT( /14X, *=--o=--==- R —emeee- R te

STOP

END

s s+« SUBROUTINE FOR MAIN PROGEAMe e

SUBROUTINE RKM '

DIMENSION Y(10),FC10),SAVEY(10)>PHICIB)>K(10,5),
*FRRORC10)

COMMON N»X»YsFsHs IRKM>E» XINT
REAL K

M=M+1

GO TO (100,200,300,4005500,600) M
IRKM= 1

IF(XINT.EQ.0.)G0 TO 16
IFCINDEX.EQ.0) 135 14

INDEX=1 $ ACCUM=0.

ACCUM=ACCUM+H

IF(ABSCACCUM=XINT) «LTe1.E=9)25,11
INDEX=@ $ HKETURN

IFCACCUMSsGT«XINTI1S,16
INDEX=0

HLAST=H § IH=2
H=H-ACCUM+XINT

ACCUM=XINT

RETURN

X=X+H/3.

DO 1 J=1,N

SAVEY (J)=Y (D)

K(J» 1)=F(J)*H/3.
PHI(JY=K(Js1)
ERROKRC(J)I=K(Js 1)

Y(JI=SAVEY (J)+K(Js 1)

RETURN

DO 2 J=1,N

KCJs2)=F(JI*H/3.

YD =SAVRY (J) +e5%(K(Js 1) +K(Js2))
RETURN

DO 3 J=1,N

K(J»3)=F(J)*H/3.
ERROR(J)=ERROR(J) =4 «5%K(J»3)

Y(JI=S5AVEY(J)+3e /8 %K (Js 1) +Y e /8 %K(J53)
X=X-H/3-+I‘{/2-
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RETURN

DO 4 J=1,N

KCJ,4)=FCJ)*H/3,
PHICJ)=FPHI(J)+4.*K(ds 4)
ERRORCJI=FRROR(JI+4*K(Js 4)
Y(JI)=SAUEY(J)+1e5%¥K(Js 1)=45%K(J»3)+6.*K(Jrd)
X=X+H/2.

RETURN

DO 5 J=1,N

KCJdsS)=F(J)*H/3
PHICJ)=PHI(JI+K(J»5)
ERROR(JI= e 2% (ERRORC(J) =« 5%K( J»5))
IFCARS(ERRORCUI I «GTLEXGO TO 10
CONTINUF

GO TO 20

I=1+1
IFCIeGE«21IVRITECAL, 1000 5 X5 H

1000 FORMATC(1X, *"RKM HALVED STEP INCREMENT'I3'TIMES. X=°

6

20

90
17

21
22
23
24

26
9

*F 1568 ' H= *FiS5.6)

X=XK-H & H=H/2.
ACCUIM=ACCUM~-H

INDEX=1

IH=1

DO 6 JJd=1,N

Y (JJI)=SAVEY (JJ)
FOJd)=1e5%K(JJs 1) /H

IKKM=1 $ M=2

GO TO 200

CONTINUE

PO 8 J=1,N
IFCARSC(ERKORCUII/ZE«GT« 0003360 TO 90
CONTINUE

IFCIHFOeR3I 17,06
IFCIHERe2)17,9

IH=1{
IF(HLAST LT e 4¥xXINTY21,28
H=HLAST % GO TO ¢
IFCHLAST e GT el e 4% XINTI23,24
H=XINT % GO TO 9
H=0.5%XINT $ GO TO 9
H=2 e %H

DO 7 Jd=1,N
YCJJI=SAVREY (JII+0 e 5% PHI (JJ)
M=(1 & IRKM=2

I=¢

RETURN

END
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PROGRAM MAD

TO COMPUTE TRANSIENT CONCENTRATIONS IF THE
INITIAL CONDITION AND THE MATRIX P ARE KNOUN

DIMFENSION C(100530)5,P(¢30,30)
M=TTYINC4HM= )

N=TTYIN(4HN= )
READ(7,100)(CC15d)5,Jd=1,5N)

FORMAT(10F6+3)
DO 1 I=1,N

READ(S5, 1033 (P(1,J),J=1,N)
PO 2 I=1,M

I1=1+1

DO 3 J=1,N

C(Ilisd=0.

DO 3 K=1,N
CCII>II=CCIT-JI)+CCILKI*P(KsJ)
CONTINUE

MM=M+1

DO 4 I=1,MM,2
VRITE(61,200)CC(I5J)sJ=1,N)
WRITE(4,200)(C(1,d)»Jd=1,N)
FORMATC10F6.4/)

END
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