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This study develops a general discrete flow model which is

discrete both in time and space. A stirred tank network model

(continuous time compartment model) is summarized and then com-

pared with the discrete flow model. Both models make use of a

fractional input matrix with elements representing the fraction of flow

into the jth region which originates in the ith region. It is

shown that the discrete flow model is more general and computatiom-

ally much simpler than the stirred tank network model.

The fractional input matrix is used to find the sizes of the

regions, to predict the residence time distribution (RTD) of the fluid

in flow systems, and to compute the conversion for chemical reaction

occurring in a flow system. Direct methods for finding the fractional

input matrix from either steady state or transient data are developed,

and methods and problems of fitting the model to data are presented.

Two simple numerical examples are given to demonstrate the use of

the model.



Lumping is important for modeling flow systems with very

many regions, thus a lumping analysis for discrete flow systems is

presented. The methods for obtaining the sizes of the regions and the

fractional input matrix provide an important tool to analyze the lump-

ing problems in flow systems.
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DISCRETE MODELING OF FLOW SYSTEMS

I. INTRODUCTION

Discrete modeling of flow systems using a fractional input

matrix (or stochastic matrix) may become a useful tool in chemical

engineering practice in the near future. This is mainly due to many

practical uses of such a model. For example, it is possible to apply

this technique to solve important problems which are encountered in

such applications as water pollution treatment in the rivers and

oceans, drug distribution in human body, flow of chemical through

complex process equipments, solid particle movement in fluidized

beds, and the mixing problems in the design of chemical reactors.

In studying a physical phenomenon in a flow process, chemical

engineers often use sets of mathematical equations (both ordinary and

partial differential equations) which approximate the process under

investigation. But once the process becomes quite complex, particu-

larly, when many unknown factors are involved in that process (like

most of flow systems, for example), it is too difficult and often

impractical to formulate the mathematical equations which describe

the behavior of that system. The discrete flow model proposed in

this study may be a useful approach in such a case.

No general work has been reported in the literatures on

modeling continuous time, continuous space flow systems. But there
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has been some work on modeling special kinds of flow systems. Among

them, most of the studies have been made on modeling continuous

time, discrete space flow systems with a known set of interregion

flows. In 1967, Gibilaro, et al. [8] used a discrete time Markov

process to evaluate the response of a continuous time flow system

consisting of six well-mixed vessels to input disturbances. They

arbitrarily assigned the volumes of the vessels and the magnitude of

the flows connecting the vessels. A network combing technique for

modeling stirred vessel arrays was introduced in 1969 by Buffham,

et al. [4]. An arbitrary flow network with identical linear dynamic

mixing characteristics at the nodes, according to their work, may be

replaced by an equivalent parallel-series arrangement. In this man-

ner, the total response can be expressed as a sum of the individual

series responses. That technique can be used only when values of the

sizes of the vessels and the interconnected flows between the vessels

are specified. In 1971, Schmalzer and Hoelscher [19] presented a

stochastic model of a packed bed and discussed the consequences on

mixing and mass transfer within that bed. In that model it was

assumed that each packet of fluid has three velocity states and then

related the movement of the packet of fluid in velocity states to a

random walk problem. The transition probabilities in the velocity

space with time as a discrete parameter were chosen arbitrarily.

This was extended to the continuous parameter case later by



Srinivasan and Mehata [20]. In 1972, Chen, et al. [5] used a Markov

chain model to model the axial mixing of a binary homogeneous solid

particle mixture in a motionless mixer having no moving parts. One

step transition probabilities were determined experimentally by them.

The experimental results were in good agreement with those predicted

from the model. But, according to their work, transition probabilities

were difficult to obtain experimentally and the determination of those

probabilities was time-consuming. This was extended to the case of

mixing of a multicomponent solid particles later by Lai and Fan [13].

A mathematical model called compartmental analysis was presented

in 1971 by Rubinow and Winzer [17]. It has been developed and used

extensively in physiology to model flow within an organism [6, 15, 18].

According to that model, the information of the steady state fluxes

between the compartments in a compartment system consisting of

interconnected well-mixed compartments can be inferred by observing

the tracer concentration as a function of time in one or more com-

partments. There are only (2n-1) algebraic equations which can

be written down by relating the interconnected flux matrix to experi

mentally determined quantities and its invariants. In making infer-

ences regarding n2 unknown elements of the interconnected flux

matrix, some elements of that matrix are assumed to be null. The

computation in that model is tedious and the result is not unique.



For many flow systems (like rivers and oceans, for example)

that are of interest in this study, there are very many regions inside

the systems. In practice we do not know the interregion flows con-

necting the regions inside the systems. We do not know the sizes of

the regions either. The only thing we may have is the transient con-

centrations of tracer at various points from multiple probe measure-

ments. This thesis seeks to find out what use can be made of these

sets of data measured by multiple probes in a flow system. Can they

tell what is going on inside the system? Is it possible to develop a

method to find the interregion flows from those measured data alone?

The approach in this study is to model the flow systems as

discrete both in time and space and to develop general methodologies

for determining the fractional input matrix (or transition matrix)

based on multiple steady state or transient tracer measurements

within the system. The use of that matrix to find the sizes of the

regions, to predict the residence time distribution (RTD) of the fluid

in the flow system, and to compute the reaction conversion if chemical

reaction occurs will also be developed.
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II. DISCRETE FLOW MODEL

Description of the Model

The model proposed in this study assumes that the behavior of a

given flow system can be represented by an n regions which are

connected by an arbitrary flow network. A schematic diagram of this

flow model is shown in Figure 1. The volumes of the regions are not

necessarily equal. We index the regions by i, running from

n, denote the volume of the ith region by v, and the volumetric

flow rate from the ith region to the ith region itself by qii and

the volumetric flow rate from the ith region to the jth by q...
13

The volumetric flow rate from the inlet station (or feed station) to the

jth region is denoted by Q. and the volumetric flow rate from the

ith region to the outlet station is q.1, out

In order to visualize a physical phenomenon which exactly

corresponds to the mathematical model, we consider each region to

contain a piston which moves from the top of the region down to the

bottom in one transition and then discontinuously moves back to the

top position ready for next transition. Material entering any region

mixes completely on entering.

Consider the system at some time t after a tracer has been

introduced. The state of the system is described by the tracer con-

centrations in each of the n regions. After a time At, during



q 21 q12

, out 2, out q.3, out

Figure 1. A schematic diagram of discrete flow model.

Qn

n

qn, out



which the material flows out of the bottom of each cell and back into

the top of other cells (or the same cell, or exits), we have a new set

of concentrations or a new state. Each redistribution of this kind will

be called a state transition.

State Transition Equation of the Model

Before we start the derivations, some assumptions about the

actual system for this model are listed as follows:

1. The flow is incompressible.

2. The flow pattern is unchanging (not a function of time).

3. The scale of turbulence compared to the size of the regions

is small and thus negligible. Hence measurements are

reproducible.

4. No chemical reactions are involved in the flow process.

At time t, we inject a tracer into a flow system assumed to

consist of n regions as shown in Figure 1. Let one step time

interval be At. Then from the mass balance of the tracer around

the jth region at time ti-At, we find

n

v.c.(t+,6t) =
3

q..Et)c.(t) + (Q.At)f.(t)
13 1 3 3

for all t >0 j =



twherec.( -I-Lt) is the tracer concentration in region j at time

c.( ) is the tracer concentration in region i at time t,

and f.(t) is the input tracer concentration from the feed station, to

region j at time t. Dividing by v. on both sides of Equation
3

(la), we get

Now define

c.(t+L t) =
3

pij v.

n

i=1

q..At

Tr.

Q.At
=

V.

'ii At Q.it
)c.(t) + (-1--)f.(t) ,

3

for all t >0 j = 1,2,...,n

i,j ::-1,2,..,n

j= 1,2,...,n

(lb)

(2)

(3)

Equation (2) defines the fractional input coefficients (or transition

probabilities) 13. in this flow model from a physical viewpoint.

They can be interpreted as the fraction of all material that will end up

in the jth region that transfers from the ith region in one step.

Similarly, the feed coefficients Tr. (defined by Equation (3)) can be

interpreted as the fraction of all material that will end up in the jth

region that moves from the feed station in one step.

Substituting Equation (2) and Equation (3) into Equation (lb), we

obtain



c. (t+11 t) =

n

i=1

p..c.(t) + IT.f.(t) , (4)
13 1 J

for all t > 0 j = 1, 2,

In a general form, Equation (4) becomes

i=1

for all t > 0 j = 1, 2, ... ,n m= 0,1, 2, ...

The above equation can be written in matrix notation as

C(t+(m+1)at) = C(t+mat)P + F(t+mat)r1 , (6)

for all t > 0 m = 0, 1, 2,

In a shorthand, Equation (6) can also be written as

C(m+1) = C(m)P + F(m)II, m = 0, 1, 2, . (7)

where C(m) is the concentration row vector at time mat, i.e. ,

C(m) [c 1(m) c 2(m). . c (m)], F(m) is input concentration row

vector at time mat, i.e. F(m) = [f 1(m) f 2(m)...fn (m)1, P is

the fractional input matrix (or transition matrix) of the flow system

c.(t+(m+1)at) =

with elements p.., i. e.

pij c. (t+rna t) + Tr.f.(t+mat) , (5)
1 J J



P =

Pll

P21

[Pn1

P12

P22

Pn2

pin

P2n

Pnn

and II is the feed matrix with diagonal elements iTr., e. ,

TT

TT

n

Equation (7) is the general formula of state transition equation for

this flow model.

For an instantaneous or pulse tracer input at t = 0, the

input tracer concentration row vector F(m) becomes zero for

m > 0. Then Equation (7) becomes

C(m +l) = C(m)P, m = 0,1,2, ... (8)

Since by recursion

C(1) = C(0)P

C(2) = C(1)P = C(0)P
2

C(3) = C(2)P = C(0)P
3

in general,

10
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C(m) = C(0)Pm, m = 0,1,2,... (9)

Equation (9) is the state transition equation for an instantaneous or

pulse tracer input at t =

Thus,

Properties of the Fractional Input Matrix

1. The elements p.. of matrix P are non-negative and not

greater than one, i.e. ,

0 < pii < 1

2. The summation over the column (i.e. , P..)
(i)

From Equation (a), we know

n

P. =

i=1

ij
p

V.

..At
1=1

v. v.i=1 3

i,j =

j= 1,2,...,n (10)

Case 1. If region j has an inlet from the inlet station, then

q..At

i=1

v. , j= 1,2,...,n (11)
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Substituting Equation (11) into Equation (10), we get

p.. < 1, j = 1,2,...,n (12)
1.3

i=1

Case 2. If region j has no inlet from the inlet station, then

n

1.3

= v. , j = 1,2,...,n (13)

i=1

Substituting Equation (13) into Equation (10), we get

1,

i=1

j-=. 1,2,...,n (14)

From Equation (12) and Equation (14), we can summarize these

as follows: if
iJ <

(i)

inlet from the inlet station; if

then we can say that region j has an

region

p.. = 1, then we can say that

(i)

has no inlet from the inlet station. Both conditions are

true whether the volumes of the regions are all equal or not.

3. The summation over the row (i.e. ,

(j)

From Equation (2), we know

q..At
P. i,j 1,2,...,n

ij v.



Thus,

n

P

13

<
1, i = 1,2,...,n (15)

v.
3

From Equation (15), we know that the sum of all the elements of

each row could be any positive number (i.e. , less than or equal to or

greater than one) depending on individual flow rates and the volumes

of the individual regions. The sum of the ith row will be equal to

one if both of the following conditions are satisfied: (a) the volumes of

the regions are all equal. (b) Region i has no outlet to the outlet

station. We can summarize this as follows:

(1) If the sum of all the rows except the ones which have the

outlet to the outlet station are equal to one, then we may

assume that the volumes of the regions are all equal.

this case, region i has no outlet to the outlet station if

the sum of the ith row is equal to one. Otherwise,

region i has an outlet to the outlet station.

(2) If only some of the rows sum to one, then we may say that

the volumes of the regions are not all equal. In this case,

Equation (15) alone can not tell much whether region i

has an outlet or not. From the flow diagram of the system,

we can reasonably assume that some of the regions have
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outlet to the outlet station and then check it later (check

vi) to see if the assumption is correct or not.

Stability for the Flow Systems

For a real flow system, a pulse of tracer which was injected

(i)

into system at t = 0 will eventually all wash out of the system.

We would like to know what conditions must exist for the fractional

input matrix P such that the concentration row vector C(m) will

approach 0 as m approaches infinity.

First, we introduce two important factors of the matrices so

called eigenvector and eigenvalue and then show how to find them.

Let x be an eigenvector of matrix P. Then, from the definition of

x, there must exist an eigenvalue X such that

Or,

Px = Xx

(P-XI)x = 0 (16)

Equation (16) can be used to compute the eigenvector x which

corresponds to the eigenvalue X of matrix P. If det(P-XI) 0,

then Equation (16) has the trivial solution. We disregard this solution

since x is an eigenvector of the matrix P and can not be a ze ro-

vector by definition. Therefore, x will be an eigenvector of matrix

P if and only if
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det(P-XI) = 0 (17)

The Equation (17) is called the characteristic equation of matrix

and the roots of that equation determine the eigenvalue X of matrix

P.

Next, from Equation (9), we know

Define

Here

D

D is

C(m)

xi

X2

Xk

a diagonal matrix

= C(0)Pm

S
r

and

,

kr

0

0

Sr

m = 0 ,

1 0

X r

0 0

0 0

1

(r = 1,

1 ,

.

.

..

...

2,

2, . . .

0

X r

0

... )

0

is called a

semi-diagonal matrix that has all its diagonal elements equal to X. ,

all of its superdiagonal elements equal to one, and all of its other

elements equal to zero. Using the standard method [3, 22] to compute

the matrix P, we obtain

P = MJM 1

where M is eigenvector matrix of matrix P, i.e. ,

(18a)

M = [xl, x2, , xn] and J is called a matrix in Jordan canonical
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form.-1/ A square matrix is in Jordan canonical form if it is a

diagonal matrix or can be expressed in either one of the following two

partitioned diagonal forms:

..1 .

Si

D

r

or

Sri

Then from Equation (18a), we know

P2 = PP = (MJM -1
)(MJM

-1
) = (MJ)(M M)(JM )

1

= (MJ)(I)(JM
-1

) = MJ
2 -1

P3 = P2P = (MJ2
M

-1
)(MJM

-1 ) = (MJ2 1
)(M M)(JM

-1
)

= (MJ2
)(I)(JM

-1
) = MJ

3 -1

and, in general,

Pm mjmm-1, m = 0,1,2,... (18b)

1 /A matrix in Jordan canonical form has nonzero elements only
on the main diagonal and superdiagonal, and that the elements on the
superdiagonal are restricted to be either zero or one.



Now, consider an arbitrary n x n matrix J in the Jordan

canonical form

J =

D

17

(19a)

Using the method for multiplying together partitioned matrices, we

find

Din

Jm 5m

Sm
r

m= 0,1,2, (19b)

Substituting Equation (18b) and Equation (19b) into Equation (9), we

get

C(m) = C(0)M 5m

mSr_

Since an arbitrary k x k diagonal matrix D is defined by

1

Thus,

(20)



Dm = Xm

Xk

18

(21)

Since an arbitrary v x v semi-diagonal matrix Sr is defined as

1 0 ... 0 0

0 kr 1 0 0

0 0 ... r 1

0 0 0 ...

It can be shown that [7]

m rn.Xr m(m- 1)k M.
v+2)xrn-v+1m-1 m-2

r r
k r 1! 2! (v-1)!

mkm-1r
0 Xm

r
r 1! (v-2) !

Sm =r

m(m-1)...(m-v+3)Xm-v+2

0 0

0 0 0

(22)

From Equation (20), Equation (21), and Equation (22), we knowthat

the system will be stable if the magnitude of all the eigenvalue s of the

fractional input matrix P computed by Equation (17) are less than one.



Thus,

Or,

19

III. USE OF DISCRETE FLOW MODEL

Computation of the Volumes of the Regions in Flow Systems

From Equation (2), we know

pij

p..v.
13 3

j=1

ijOt ,

j=1

i,j = 1,2,...,n

i,j = 1,2,...,n

At , i= 1,2,...,n (23)

Case 1. If region i has no outlet to the outlet station, then

n

1 q..6t = v. , i = 1,2,...,n (24)
ii i

i=1

Substituting Equation (24) into Equation (23), we get

..v. = V. ,
13 3 1

j=1

i = 1,2,...,n (25)

Case 2. If region i has an outlet to the outlet station, then
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.At =
1

- (q. outAt) , i= 1,2,...,n (26)
1,

j=1

Substituting Equation (26) into Equation (23), we get

i=1

t..v. v. - ( out A ) , i = 1,2, . , n (27)

Now suppose that a flow system assumed to consist of

regions has some outlets to the outlet station, say from region

and region n for example, then Equation (25) and Equation (27) can

be written together in matrix form as

1
v

1

P. (28)
vk vk (qk, out)"

vn vn (qn,out)At

Or,

v
1

v2

v
1

v2

0

0

P.

[qn,

(29)
(qk, out)At

vn vn out



Thus,

[v

1

vk

0

v2 0

(P-I)
-(qk, out)6t

vn
(cln., out)At

21

(30)

If (P-I) is non-singular (none of the eigenvalues of matrix P is

equal to one), then the matrix (P-I) is invertible.

Then, the above equation becomes

v2

=vk

vn

0

0

k, out)6t

out

(31)

Equation (31) states that the volumes of the regions in flow systems

can be computed easily by that equation if the fractional input matrix

P is known.

Negative (or imaginary) volume, from a physical viewpoint,

does not make sense at all. Thus, one simple question may be raised:

Is there any guarantee to get only positive volumes of the regions by

using Equation (31)? The answer of that question is shown as follows:



From Equation (31), we know

vi

v2

vk

vn

= (P-I)-1

0

-(qk, out)6t

(qn, out)"

By a simple expansion of (P-I) -1, we get

-1 2 3 4(P-I) = -(I+P+P +P +P +... )

22

(32)

This series must converge because all the eigenvalues of the matrix

P must be less than one.

Substituting Equation (32) into Equation (31), we find

v
1

v2

vk

Or,

= -(I+P+P 2+P 3 +p4+...
)

0

0

(clk, out 6t

- (q .6 t
n, out

(33a)



v
I

2

(I+P+p2 -Fp 3+p 4+...

vk

vn

0

+ ( qk, out

+(qn,
out t

Thus, if all the elements of the fractional input matrix P are

positive, then, obviously, all the v. are positive according to

Equation (33b).

Prediction of the I (Internal Age Distribution) Curves and
the F (Step Response) Curve in Flow Systems

The I curves of the regions and the F curve of a flow

system can be calculated easily if the fractional input matrix P

that system is known. We assume that all the material enter the

system from a single inlet station and all leave into a single outlet

station.

Suppose that a flow system consists of n regions. Then the

matrix P is n x n matrix. In order to compute the I curves

and the F curve simultaneously, we have to include an accumulating

23

(33b)

outlet station, i.e. , i = n+1. Then the augmented fractional input

matrix P can be written as
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P11 P12 Pln Pl, n+1

P21 p22 P 2n 2,n+1
(34a)

Pnl Pn2 Pnn Pn, n+1

Pn+1,1 Pn+1,2 Pn+1,n Pn+1,n+1
1 1

Once the tracer elements enter the outlet station, they stay there

permanently, hence

i n+1
Pn+1, i

1 i = n+1

Thus, Equation (34a) becomes

Pll p12 Pln ,n+1

P21 p22 P2n P2, n+1
(34b)

Pnl Pn2 nn Pn, n+1

0 0 0 1 .

If no tracer is introduced for t > 0, we may write (analogous to

Equation (9))

C(m) = 6(0)1"111 m = 0,1,2, ... (35)

where C(0) is tracer concentration row vector including the outlet

station at t = 0, i.e. , E(0) [c1(0) (0)... n(0) n 1 (0)], and
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E(m) is tracer concentration row vector including the outlet station

at t = mA t, i.e., C(m) = [ci(m) cz(m)...cn(m) cn+1(m)].

Suppose that we inject a unit of tracer into the inlet station at

t = 0, then c1(m), c 2(m), , and cn(m), m = 0,1,2, .

computed by Equation (35) are the I curves corresponding to

region 1, region 2, , and region n of the flow system. Also,

cn+i(m), m = 0,1,2, computed by Equation (35) is the F

curve (step response) of the system. If the flow system only has one

outlet to the outlet station, say region n for example, then c (m),

m= 0,1,2, ... , computed by Equation (35) is the RTD curve

(impulse response) of the flow system.

Calculation of Reaction Conversion

Suppose that chemical reaction occurs in a flow system

assumed to consist of n regions as shown in Figure 1. The reac-

tion is

A > Products (36a)

In a constant volume system, the reaction rate of component A is

a known function as

dc
A = f(c )

rA
= dt A

(36b)

We assume that at the beginning of each time interval, each region
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exchanges material instantaneously with the others according to the

matrix P. The new material mixes immediately and then the reac-

tion proceeds according to Equation (36a) for a time interval of At.

At the end of this interval, there is an immediate redistribution and

mixing followed by reaction during the next time interval. The

mechanism of this reaction-flow model is shown in Figure 2. During
Q

the first time interval, c.(t) reacts to form (t+A t). Here c.(t)
1 1

is the concentration of component A in region i at time t, and

c. (t+At) is the concentration of component A in the fluid streams

from region i at time t+At (just before redistribution). cr. (t+At)

can be computed from Equation (36b) if c1 (t) is known.

.<1
<1 <3 hl N± + + +

.,i ;-I .1-1 ,-I
U U U U U

REACT .4--- REACT -.I-- REACT

t t+A t t+2,6t TIME

Figure 2. A schematic mechanism of the reaction-flow model.



Then from the state transition equation of discrete flow model

(Equation (7)), we know

C(m +1) = C P + F(m)II , m = 0,1,2, . . .

Replacing C(m) by Cr(m+1) and F(m) by Fr(m+1), then

Equation (7) becomes

C(m +l) = Cr(m+1)P + Fr(m+1)11

m = 0,1,2, ...

27

(37)

where Cr(m+1) is concentration row vector in the fluid streams at

time (m+1)At, i. e. , Cr(m +l) = [cri(m+1) c2(m+1)...c:(m+1)],

and Fr (m+1) is input concentration row vector in the input streams

at time (m+1)Lt, i. e. , Fr(m+1) = [fr
1
(m+1) fr(m+1)...fr(m+1)].

2

Thus, the concentration of component A in each region at

time (m+1)At can be calculated by using Equation (36b) and Equation

(37) if the fractional input matrix P and the feed matrix of the flow

model are known.
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IV. COMPARISON OF DISCRETE FLOW MODEL AND
STIRRED TANK NETWORK MODEL

The stirred tank network model shown in Figure 3 assumes that

the behavior of a flow system can be represented by an n stirred

tanks which are connected by an arbitrary flow network. The

volumes of the tanks are not necessarily equal. The nomenclature

used in this model as shown in Figure 3 is analogous to that of dis-

crete flow model as shown in Figure 1. Since the time between state

transitions in this model is a continuous random variable (not a con

stant), we can consider it to be a continuous time process.

Now suppose that at time t = 0 we inject a pulse of tracer

into a flow system assumed to consist of n stirred tanks as shown

in Figure 3. Then from the mass balance of the tracer in the jth

tank at time t, we find

dc.(t)
vj dt ( ..)c.(t) +

i=1
iij

n

i=1

..c.(t) q.3,outc.(t), (38)

for all t > 0 j = 1, 2, n

where c.(t) is the tracer concentration in the tank
3

at time t,

v. is the volume of tank j, and qkm is volumetric flow rate

from tank k to tank m.

Define



, out q2, out q.), out qn, out

Figure 3. A schematic diagram of stirred tank network model.
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i =1
iij

30

j = 1,2,...,n (39)

Substituting Equation (39) into Equation (38), we obtain

dc.(t)

3 dt

n

=
3

q..c.(t) q. , outc.(t)
1..3

i= 1

(40)

for all t > 0 j = 1,2, ... ,n

Dividing by v. on both sides of Equation (40), we get

Now, define

dc.(t) q .. q.,
v

o t
)L = -

u .(t) ,
dt v. . 3

i=1

r.
1j v.

3

for all t > 0

i,j = 1,2,...,n

q.Lo_ut
a. j= 1,2,,n

3 v.
3

(41)

= 1,2, ,n

(42)

(43)

Equation (42) and Equation (43) define the transition rate coefficients

r.. and output coefficients a. respectively.



Substituting Equation (42) and Equation (43) into Equation (41),

we obtain

dc.(t)

dt

n

i=1

r..c.1 (t) a.c.(t)
13 3

31

(44)

for all t > 0 j = 1,2, . . . , n

where r. is the transition rate coefficient from tank i to tank j,

and a. is the output coefficient from tank j. The above equation

can be written in a matrix notation as

dC(t)
dt C(t)R - C(t)A = C(t)(R-A), for all t > 0 (45)

where C(t) is tracer concentration row vector with elements c.1 (t)

at time t, R is the transition rate matrix with elements r. , .e.,
iJ

R =

r
11

r
12

. rin

r21 r22 r2n

r r rnl n2 nn

and A is the output matrix with diagonal elements a., i.e. ,

al

A = a
2

an



Taking the Laplace Transform of Equation (45) with respect to

we get
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sC(s) - C(0) = C(s)(R -A) (46a)

where C(s) is the row vector of the Laplace Transforms of the

tracer concentrations. Thus,

E(s)(sI-(R-A)) = C(0) (46b)

Or,

C(s) = C(0)(sI-(R-A)) 1 (46c)

Inverting the Laplace Transform of Equation (46c), we obtain

C(t) = C(0)exp((R-A)t), for all t > 0 (47)

Equation (47) is the state transition equation of the stirred tank net-

work model for a pulse tracer input at t = 0 . From the definition

of r.. (Equation (42)), we know

Thus,

Then,

n

q.i_
r..

ij v.
i,j = 1,2,...,n

r..v. = q..
13

, i,j = 1,2,...,n
13 3

r..v.
13 3

j=1 j=1

n

i= 1,2,...,n (48)
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From Equation (39), we know

q.. = 0 , i = 1,2, . ,n (49)

J=1

Substituting Equation (49) into Equation (48), we find

Thus,

n

r..v. = 0 , i = 1,2, . . . , n (50a)
J

j=1

r..v.
11 1

r..v. = 0 , i= 1,2,...,n (50b)
J

Adding -a.v. on both sides of Equation (50b), we obtain

(r..-a.)v.
11 1 1

r..v. = -a.v.
13 3 1 1

i= 1,2,...,n (51)

Substituting Equation (43) into Equation (51), we get

(r..a1-.)v.
11

r..v. = -q. i = 1,2, . . . , n (52)
13 1, out

The above equation can be written in matrix form as



(R-A)
v2

n stirred tank network

-1211, out

q2, out

qn, out
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(53)

If matrix (R -A) is

tion (53) is

non-singular,

v
1

v2

then

= (R -A) -1

the unique

ql, out

-112, out

solution of Equa-

(54)

vn STN qn, out

Equation (54) states that if we can find matrix (R-A), then we can

find the volumes of the tanks for this model. Once the volumes of the

stirred tanks are found, then, from Equation (42) and Equation (43),

we can find the volumetric flow rates connecting the tanks.

Next, let us look at the discrete flow model. As we know, the

state transition equation of discrete flow model for a pulse tracer

input at t = 0 is (see Equation (9))

C(m) = C(0)Pm, m = 0,1,2, ...

And,



v2

vn DFM

(P-I) -1 -(c12,out)At

(cln, out )0 t

35

(31)

Suppose that we would like to find a matrix (R-A) for stirred

tank network model (continuous time process) that will have the same

tracer concentrations as the discrete flow model (discrete time

process) described by matrix P at t = 0, At, tot, , where one

step time interval At is defined as the time for one transition of the

discrete time process.

By comparison of Equation (47) and Equation (9) when t = mAt,

we know that

Or,

exp((R-A)At) = P (55)

R A
P

At
(56)

From Equation (55) and Equation (56), we know that Matrix P for

discrete flow model and matrix (R -A) for stirred tank network

model are nearly interchangeable in many cases. For every case of

stirred tank network model we can find the corresponding case of dis -

crete flow model according to Equation (55), while it is not true in the

other direction according to Equation (56) since the convergence of
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/n P depends on the eigenvalues X. of matrix P. Hence, we may

say that discrete flow model is a more general model than stirred tank

network model.

Now, if we substitute Equation (56) into Equation (54) and then

compare it with Equation (3 1), we find

Similarly,

V2

vn

v2

vn ISTN

DFM

(.fn P) -1 (P-I)

Vl

vn DFM

exp((R -A),6t)- -1(R-A
of

=
v

1

vn STN

(57)

(58)

Equation (57) and Equation (58) give the relationship between the

volumes of the regions for discrete flow model and the volumes of the

stirred tanks for stirred tank network model
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V. DETERMINATION OF FRACTIONAL INPUT COEFFICIENTS
FROM EXPERIMENTAL DATA

The fractional input coefficients p j
play an important role in

the discrete flow model. Hence, the general methodologies for

determining them based on multiple steady state or transient tracer

measurements are developed.

From Steady State Tracer Measurements

Consider a flow system which is assumed to consist of n

regions as shown in Figure 1. Then from the state transition equation

of this flow model (see Equation (7)), we know

Now, suppose

Then,

C(m+1) = C(m)P + F(m)n

C(0) = [o o

F(m)11 = [- 0 ... 0]
T1

= [1 o o]

11.1.

Tr
1

m = 0 , 1 , 2 , . . .

Tr
2

°.
Tr
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Substituting this into Equation (7), we find

C(1) = C(0)P + F(0)II = [0 0 ... 0] + [1 0 ... 0]

=[1 o o] ,

C(2) = C(1)P + F(1)II

= [1 o... o]p + o... ,

C(3) = C(2)P + F(2)I1

= o... o]P2 + [1 o... o]P + [1 o... o ] ,

in general,

C(m +l) = [1 0...0]Pm + [1 0... 0]Pm-1 +

+[1 O... 0]P + [1 O... 0]

= [1 0... O](Pni+Pm-1+. +P+I) (59)

We define the limit as m co as

lien C(rn+1) = [s11 s12. sinm--°°

Here s. is the steady response at region

region i.

Substituting Equation (60) into Equation (59), we obtain

] (60)

to a steady input at

[s s
11 12' s ln] = [1 0. . . 0] lim (Prn+Pm- 1+.

. +P+I) (61)
m--1-



Since

lirn (Pm +Pm-1 ...+P+I) = (I-P) -1

m co

Thus, Equation (61) becomes

Similarly,

[s s12... = [1 o... 0](I -P)

[s21 s22 stn] 0 1... 0](I-P)-1

[snl sn2. snn] [0 0... 1](I-P)-1

Combining Equation (62) and Equation (63) together, we know

Define

s
11

s
12 sin

s21 s22 stn

sn2
n1 nn

S

0 1 0

0 0 ... 1

.sll s12 s ln

s
21

s 22 2n

snl sn2 . snn

11,

(I-P
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(62)

(63)

(65)

where S is the steady response matrix with elements s... Then

Equation (64) becomes



Hence

S = I(I-P) -1 (I-P ) -1

P = I - S 1-

40

(66)

(67)

Equation (67) simply tells that in order to find the fractional input

coefficients p.. for steady tracer inputs, the only information we
iJ

need to know is n2 measurements of steady tracer responses from

the experiment. Conversely, the fractional input coefficients p..

can be used to obtain the steady state responses from Equation (66).

From Transient Tracer Measurements

Consider a flow system which is assumed to consist of

regions as shown in Figure 1. For an instantaneous or pulse tracer

input at t = 0, then the state transition equation of this flow model

becomes (see Equation (9))

Thus,

C(m) = C(0)Pm,

C(1) = C(0)P

m = 0, 1, 2,

C(2) = C(0)P2 = C(l)P

C(3) = C(0)P
3 = C(2)P

C(n-1) = C(0)Pn 1 = C(n-2)P

C(n) = C(0)Pn = C(n-1)P

(68)
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Equation (68) can be written as

C(1) C(0)

C(2) C(1)

C(3) C(2) (69)

C(n-1) C(n-2)

C(n) C( -1)

If the first square matrix in the right-hand side of Equation (69) is

non-singular, then the unique solution of Equation (69) is

P =

Or,

C(0)

C(1)

C(2)

C(1)

C(2)

C(3)

C(n-2) C(n-1)

C(n-1) C (n)

(70a)

ci(0) c2(0) cn(0) -1 ci( ) c2(1) c n(1)

c1(1) c2(1) c n(1) cl(4) c2(2) c n(2)

ci(2) c2(2) c (2)
n c1(3) c2(3) c n(3)

P =

ci(n-2) c2(n-2) cn (n-2) ci(n-1) c2(n-1) .. cn(n-1)

c 1(n-1) c 2(n-1) c
n

(n-1) ci(n) c2(n) .. cn(n)_
(70b)
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Equation (70b) (or Equation (70a)) simply tells that in order to find the

fractional input coefficients p.. for a pulse tracer input, the only

information we need to know is n2 transient tracer measurements

from the experiment if the initial condition is known.
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VI. A LUMPING ANALYSIS IN DISCRETE FLOW SYSTEMS

Lumping is important for modeling flow systems. Particularly,

when a flow system has many regions, it is convenient and practical

to lump all these smaller regions into larger regions and treat them

as non-overlapping lumped regions. So far, no work has been done on

lumping of flow systems, probably, because it requires a priori

knowledge of the whole set of flow rates connecting the regions, and

the volumes of the regions. Such information is rarely directly avail-

able for most of flow systems. Therefore, the methods shown in

Chapter III and Chapter V for obtaining the sizes of the regions and

the fractional input coefficients will provide an important tool to

analyze the lumping problems in flow systems.

In 1969, Wei and Kuo [21] introduced a lumping theory for

monomolecular reaction systems in a discrete mixture. This was

extended to a continuous mixture later by Bailey [1]. Although lump-

ing in the flow systems is more complicated and more difficult-
2 /

than

that of in monomolecular reaction systems, many of the lumping

concepts in their work are still useful for the flow systems.

2 /Due to the following reasons:
1. One more variable set, i. e. , the volumes of the regions, involved.
2. Flow systems usually possess inlet-outlet stations while the

monomolecular reaction systems do not have those.
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Lumping is a linear transformation from an n element
AA

vector, CV, into an k element vector, CV, of smaller

dimension (i. e. , k < n) by an n x k lumping matrix L,

AA
CV = (CV )L (71)

Awhere V and V are the diagonal volume matrices of the original

system and the lumped system respectively, i.e. ,' .1111

v
1

V =

A
v1

A
V =

v2

A

Avk

A
and C and C are concentration row vectors of the original

system and the lumped system respectively, and thus,

CV = [c
1
v

1
c

2
v2 cn vn

AA rA A A ACV = Lcivi c2v2 c
A

kvk

In order to retain the property of dividing all the regions into a few

larger regions for the lumping, each row of lumping matrix L must
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be a unit vector u.. If the system is lumped by such an L, then

the lumping is called proper [21]. For instance, suppose that we want

to lump region 1 and region 2 of a flow system consisting of four
A

regions into a larger region called region 1, then the proper lumping

matrix is

L =

1 0 0

1 0 0

0 1 0

0 0 1

Now suppose that there are n regions in a given flow system.

Then from Equation (9), we know

C(m) = C(0)Pm, m = 0,1,2, ...

Similarly, from the mass balance of the lumped system consisting of

k regions (k < n), we know

A A
C(m) = C(0)P

Am
, m = 0,1,2,.., (72)

A
where P is the fractional input matrix of the lumped system, i.e. ,
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A [P 1%1

A A A

Pll p12 Plk
A A
P22 P2k

A A.
P kl Pk2 Pkk

Now, in order to estimate the magnitude of errors resulting

from lumping in a given flow system, a criterion which has some

resemblance to Wei and Kuo's work [21] is established. Usually,
A

there are two ways to compute the concentration row vector C(m) of

the lumped system. The right way is to compute C(m) first (by

Equation (9)) and then lump C(m) into (m) by using Equation

(71), as

(r) A-1 m A -1
C (m = C(m)VLV = C(0)P VLV (73)

(r)where C
A

(m) is the concentration row vector of the lumped system

computed in the right way.

The wrong way is first to lump C(0) into (0) (by Equation

(71)) and then compute C(m) by using Equation (72), as

-A(w)(m) = C
A

(0)P
Am

= C(0)VLV
A 1

P
m

(w)
where C

A
(m) is the concentration row vector of the lumped

system computed in the wrong way.

Thus, the error of lumping is

(74)
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A(r) A(w) m - A- jAm
C (m) C (m) = C(0)(P VLVA 1 -VLV -P ) (75)

B = VLV
A-1 (76)

Substituting Equation (76) into Equation (75), we get

(r)(m) /(w)(m.)
= C(0)(PmB -B0m)

Case 1. If the system is exactly lumpable, then

(r)(rri) (w)(m.) = 0

Substituting this into Equation (77), we know

Or,

(77)

APmB - BPm
= 0 (78a)

PmB = BP
Am (78b)

Case 2. If the system is not exactly lumpable (like most of

flow systems), then

A(r) A(w)
C (m) C (m) 1 0

Substituting this into Equation (77), we know

PmB - BPmIO, m > 0 (79 )
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Most of the flow systems are not exactly lumpable by a proper

lumping matrix L, so here we examine only Case 2 in more detail.

We define a new matrix called the error matrix, E(m), which has

the lumping error vector at C(0) = ui as its ith row vector.

More precisely, the element e..(m) of the error matrix E(m) is

defined as the lumping error at the region j of the lumped system

to a unit tracer input at region i of the original system.

Then from Equation (77), we know

E(m) = PmB BPm, m > 0 (80)

Using the standard method [3, 22] to diagonalize the matrices of
A

and P (if they are diagonalizable), we get

Pm = MDmM-1 (81)

Am AAm- 1P MD m

A Awhere M and M are eigenvector matrices of P and P

Arespectively, D and D are diagonal eigenvalue matrices of
A

and P respectively.

(82)

P

Substituting Equation (81) and Equation (82) into Equation (80),

we obtain

A AmA.- 1
E(m) = MDm

M
-1B - BMD M (83)



After rearrangement, Equation (83) becomes

A A-1E(m) = (MDmM
-1 B(MM )-(

= M(Dm(M
-1 BM) -

-1 AAmA-1M )BMD M )

1BM)Dm)M -1
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(84)

By expansion of Equation (84), the elements e..(m) of the error

matrix E(m) will appear in a form as shown in the following:

) m Am
e..(m art(ii

(XI kr )
r=1 i=1

(85)

i= 1,2,...,n; j = 1,2,...,k

where Af is the eigenvalue of matrix P, kr is the eigenvalue of

matrix , a(ii) is the coefficient of an expansion for e..(m), andrf 13

e..(m) is the element of the error matrix E(m) at the ith row
13

and jth column.

Now, if C(0) = u., then the ith row of the error matrix
1

E(m), i. e. , m[eil(m)e1.
2

( )... e. (m)], is the lumping error

vector. Here e..(m) is the lumping error at region j of the

lumped system to a unit tracer input at region i of the original sys-

tem. We now compute

3/max le.. (m) I .
j=1,2, k 1 3

3/Let de..(m)/dm = 0.
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If max I e..(m) I << 1, then we can conclude that the lumping
j=1,2,...,k

error is small and the lumping is good. If max I e..(m) I is
j=1, 2, ... ,k 13

larger than we can tolerate, then we may say that the lumping is poor.

The procedures for demonstrating a lumping analysis in discrete

flow systems can be described as follows:
A

1. Compute the fractional input matrices P and P of

original system and the lumped system respectively by using

Equation (70b) (or Equation (70a)).

2. Compute the volumes of the regions of the original and the

lumped system respectively by using Equation (31).

3. Compute the error matrix E(m) by using Equation (84).

The elements of E(m) appear in a form as Equation (85).

4. If C(0)= u., then compute max I e..(rn) I .
1 j=1,2,...,k 13

5. If max leii(m)1 << 1, then we can say that the
j=1,2,...,k J

lumping is good. If max I e..(m) I is larger than we
j=1, 2, .. . , k 13

can tolerate, then we may say that the lumping is poor.
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VII. FITTING THE FLOW MODEL TO REAL DATA

Assumptions

Before we start fitting the model to data, some assumptions

about the system are listed as follows:

1. There are enough data points with good accuracy.

2. The inflows into and outflows from the system are known.

3. The system is stationary.

Selection of the Size of One Step Time Interval.

From the definition of of Equation (2), we know that the

fractional input coefficients p,. of flow systems are function of

time interval At. Thus, before we can compute the fractional input

matrix P of a flow system by using Equation (70b) (or Equation

(70a)), the size of At must be chosen.

As we know, the smaller the size of At we choose, the closer

will be the concentration distributions in discrete time flow systems

to those of continuous time flow systems. But the computation time

increases proportionally with decreasing the size of At.

In modeling the flow systems, there are certain range of the

size of Gt can be chosen. But once the size of At chosen is

too small, some of the fractional input coefficients will turn out to be

negative. It probably can be explained thus: When the size of At
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chosen is too short, some of the fluid elements in the regions do not

have enough time to mix uniformly. A negative coefficient corres-

ponds to reversing the direction of time. In reverse time, material

would have to leave a mixed region, unmix, and then go to other

regions with different concentrations. Thus, negative input coeffi-

cients suggest a reversal of the mixing processes and likely corres-

pond to a time interval At too short to allow uniform mixing to

occur. Hence, the restrictions for choosing the size of At are

described as follows:

(1) All the fractional input coefficients p., computed from a

choosing size of At must be in the range of zero to one.

(ii) The sum of the volumes of the regions computed from a

choosing size of At must be closed enough to the given

total volume of the flow system, i.e. , v. total.
(i)

From the above analysis, we may conclude that if we wish to

have a best fit to a flow system under investigation, then an optimum

size of At has to be chosen for modeling that system. In practice,

it has been found by the author that only a few trials are needed to

find the optimum size of At.
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Selection of Numbers of Probes

Before we start to model a flow system, it is important to know

what number of probes is needed to model that system. Such informa-

tion is rarely available in advance for most flow systems. Thus, a

trial and error method must be used. First, assume that a small

number of probes, say k probes for example, is sufficient to model

the flow system which is under investigation. If the values of some

elements of the fractional input matrix P computed by Equation (70b)

are not in the range of zero to one or the values of the sum in some

columns of that matrix are greater than one (see Equation (12) and

Equation (14)) no matter what size of Lt is chosen, then we may say

that an k probes is not sufficient to model that system and we have to

use more probes to model the flow system. If the first square matrix

in the right-hand side of Equation (70b) (or Equation (70a)) turns out to

be a singular or nearly singular no matter what size of .6t is chosen,

then we may say that some of k probes are redundant or nearly redun-

dant and we must remove those redundant probes (according to their

cofactors in the overall matrix)4/ and use fewer probes to model that

system.

The n (n k) probe model is a good fit to the flow system

under investigation if the residence time distribution (RTD) curve

4/
Remove probe j first if the cofactor of the element c(n-1)

in the concentration matrix (i. e. , the first square matrix in the right-
hand side of Equation (70b)) is largest and so on.
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and the sum of the volumes computed from that model both are closed

to the real RTD curve (if it is known) and the total volume of the flow

system.

Numerical Examples

In order to demonstrate how to model flow systems by using

the methods shown in Chapters III, IV, and V, two simple examples

are given. The first example shows how to model a continuous time,

discrete space flow system. The second example shows how to model

a continuous time, pseudo-continuous space flow system.

For each example, assume that a finite number of transient
5/tracer concentrations (each measured by a single probe) are known7-

Example 1. Modeling a Continuous Time, Discrete
Space Flow System

Suppose that we put probe 1, probe 2, and probe 3

simultaneously into a given flow system consisting of three well-

mixed regions as shown in Figure El, The transient concentrations

of tracer in this flow system that would be measured by the three

probes are tabulated in Table El. 6/ What are the volumes of these

5 /In these examples, simulated data are given (see Appendix B
for data source).

6 /See Appendix B.
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Figure El. Diagram of the flow system in Example 1.
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three regions ? What are the interregion flow rates ?

Table El. Transient concentrations of tracer in the
flow system of Example 1.

cl cc2
c3

0 1.0000 0 0

0.1 0.7639 0.1625 0.0952
0.2 0.5906 0.2446 0.1633
0.3 0.4627 0.2811 0.2088
0.4 0.3676 0.2919 0.2366
0.5 0.2963 0.2885 0.2511
0.6 0.2424 0.2775 0.2558
0.7 0.2011 0.2627 0.2537
0.8 0.1693 0.2463 0.2469
0.9 0.1443 0.2294 0.2370
1.0 0.1246 0.2129 0.2252
1.1 0.1086 0.1970 0.2124
1.2 0.0956 0.1820 0.1992
1.3 0.0849 0.1679 0.1859
1.4 0.0758 0.1548 0.1730
1.5 0.0681 0.1426 0.1606
1.6 0.0615 0.1314 0.1488
1.7 0.0557 0.1209 0.1376
1.8 0.0506 0.1113 0.1271
1.9 0.0461 0.1024 0.1173
2.0 0.0421 0.0942 0.1081

Solution. 1. Modeling the well -mixed regions as discrete in

time (use discrete flow model directly).

Case (i). Let Lt = 0.3. Then from Table El, we know



C(0) = [c1(0) c2(0) c3(0)] = [1.0000

C(1) = [c1(1) c2(1) c3 (1)] = [0.4627

C(2) [c1(2) c2(2) c3 (2)] = [0.2424

C(3) = [c1(3) c2(3) c3 (3)] = [0. 1443

0 0

0.2811 0.2088]

0.2775 0.2558]

0.2294 0.2370]

Substituting these into Equation (70b), we find

P =

1.0000 0 0

0.4627 0.2811 0.2088

0.2424 0.2775 0.2558

0.4627 0.2811 0.2088

0.0380 0.2895 0.1291

0.0845 0.3164 0.5886

-1 '0.4627

0.2424

0.1443

0.2811 0.2088

0.2775 0.2558

0.2294 0.2370

Substituting Equation (E 1) into Equation (31), we obtain

v
1

v2

v3 DFM

=(P-I) -1
-(q2,out)'"

-(c13 , out
,--
-0.5373 0.2811 0.2088

L0.0380 -0.7105 0.1291

0. 0845 0.3164 -0.4114

1.9600

1.1598

3.4822

-1

57

(El)

(E2)
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Substituting Equation (El) and Equation (E2) into Equation (2), we get

the interregion flow matrix

Qd =

q11

cl 21

c131

q12

q22

c132

q 13

q23

c133

3.0230

0.2483

0.5521

1.0867

1.1192

1.2232

!0,
2.4236

1.4985

6.8321

(E3)

The off-diagonal elements of matrix Qd in Equation (E3) are

interregion flow rates based on At = 0.3.

Case (ii). Let At = 0. 1. Then from Table El, we know

C(0) = [c1(0) c2(0) c3(0)] = [1.0000 0 0

C(1) = [c1(1) c2(1) c3(1)] = [0.7639 0.1625 0.0952]

C(2) = [c1(2) c2(2) c3 (2)] = [0.5906 0.2446 0. 1633]

C(3) = [c1 (3) c2(3) c3 (3)] = [0.4627 0.2811 0.2088]

Substituting these into Equation (70b),

1.0000 0

0.7639 0.1625 0.0952

0.5906 0.2446 0.1633

we

-1

find

_-
0.7639 0.1625 0.0952

0.5906 0.2446 0.1633

0.4627 0.2811 0.2088
IMMIN

0.7639 0.1625 0.0952

0.0165 0.6301 0.0819 (E4)

0.0459 0.1899 0.8117



Substituting Equation (E4) into Equation (31), we obtain

vi

v2

v3 DFM

V
-0.2361 0.1625 0.0952

0.0165 -0.3699 0.0819

0.0459 0.1899 -0.1883

-1
,

0

-(1)(0.1)

-(3)(0.1)

1.9938

1.0553

3.1435
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(E5)

Substituting Equation (E4) and Equation (E5) into Equation (2), we get

the interregion flow matrix

15.2308 1.7148

Qd

2.9926

0.3290 6.6493 2.5745

0.9152 2.0040 25.5155

The off-diagonal elements of matrix Qd in Equation (E6) are

interregion flow rates based on At = 0. 1.

(E6)

Summary. Case (i). At = 0.3

v
1

1.9600

v2 1.1598 (E2)

v3 DFM 3.4822
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VON/.

3.0230 1.0867 2.4236

0. 2483 1. 1192 1. 4985 (E3)

0.5521 1.2232 6.8321

Case (ii). At = 0. 1

IMMO. NNW'

vl 1. 9938

v2
1. 0553 (E5)

v3 DFM
3 .

10.
1435

15.2308 1.7148 2.9926

Qd 0.3290 6.6493 2.5745 (E6)

0.9152 2.0040 25.5155
AMMO.

The true values of vi = 1, 2, 3) and q.. j = 1, 2,3) are see
1 13

Appendix B for data source)

-
V1

2

v3 true

2. 0000

1. 0000

3. 0000

(E7)

Ammo&

-(c112+c113-1-ci1, out q12 q13

Qtrue q 21 -( -4-°123+q2, out) q23

q3131 q32
_ +

4-"32 '3, out)
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-5.5000

0.5000

1.0000

2.2000

-4.8000

2.6000

3.3000

3.3000

-6.6000

(E8)

The off-diagonal elements of matrix Qtrue in Equation (E8) are true

interregional flow rates.

By comparison of calculated volumes (Equation (E2) and Equa-

tion (E5)) and true volumes (Equation (E7)), we see that the smaller

the size of At we choose the closer are the volumes calculated from

discrete flow model to the true volumes. This is also true for the

calculated inter region flow rates as seen by, comparing Equation (E3)

and Equation (E6) to the true values (Equation (E8)).

2. Modeling the well-mixed regions as continuous in time (use

discrete flow model as an intermediate).

Case (i). Let At = 0.3. From Equation (El), we know

P =

Let

0.4627 0.2811 0.2088

0.0380 0..2895 0.1291

0.0845 0.3164 0.5886

f(P) = in P

Using the polynomial method on matrices given in [3], we know



f(P) = Qn P = r(P) = a2P 2 + a1P + a0I

62

(E9)

where r(P) is the remainder and is of degree n-1 and a i
are

constants.

Also,

f(X.) = in X = r(X.) = a \
2

+ a X. + a
1 2 i

al X.

where X. is the eigenvalue of matrix P.

(E10)

Then from the characteristic equation of matrix P (Equation

(17)), i. e. , det(P -XI) = 0, we find

X
1

= 0.7777

X2 = 0.3799

X3 = 0.1832

Substituting these into Equation (E10) to determine a.,

a
2

= -3.2075

a
1

= 5.5140

a
0

= -2.5997

Substituting the values of a. into Equation (E9), we get

we obtain
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-0.8250 0.6599 0.3308

in P = 0.0828 -1.4375 0.3228 (Eli)

0.1424 0.7773 -0.6530

Substituting Equation (Ell) into Equation (56), we find

R - A in P in P-
At 0.3

-2.7530

0.2760

0.4747

2.1997

-4.7917

2.5910

1.1027

1.0760

-2.1767

(E12)

r--

Substituting Equation (E12) into Equation (54), we obtain

1

v3 cont

= (R -A )- 1

-ql, out

c12, out

I:13, out

-2.7530

0.2760

0.4747

2.1997

-4.7917

2.5910

1.1027

1.0760

-2.1767

-1

-1

-3

-2.0002

0.9981

3.0026

(E13)



Substituting Equation (E12) and Equation (E13) into Equation (42) and

Equation (43), we get the interregion flow matrix

--(q12+c113+c11, out) q12 q13

Qcont q21 -(c121+c123+c12, out) q23

q31 q32 -(c131+q-32+c13, out)

-5.5065 2.1955 3.3110

0.5520 -4.7826 3.2308

0.9495 2.5861 -6.5357
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(E14)

The off-diagonal elements of matrix Qcont
in Equation (E14) are

interregion flow rates.

Case (ii). Let At = O. 1. From Equation (E4), we know

P

0.7639 0.1625 0.0952

0.0165 0.6301 0.0819

0.0459 0.1899 0.8117

Then from the characteristic equation of matrix P (Equation (17)),

i.e. , det(P -X.I) = 0, we find

X
1

= 0.9199

X
2

= 0.7196

X3 = 0.5662



Substituting these into Equation (E10) to determine a.,

a2 = -0.9520

a
1

= 2.7880

-1.8418

Substituting the values of a, into Equation (E9), we get

in P =

-0.2743 0.2202 0.1099

0.0205 -0.4804 0.1144

0.0561 0.2617 -0.2250

Substituting Equation (E15) into Equation (56), we find

65

we obtain

(E15)

in P
-2.7430

0.2050

0.5610

2.2020

-4.8040

2.6170

1.0990

1.1440

-2.2500

(E16)R - A = 0.1

Substituting Equation (E16) into Equation (54), we obtain

v
1

v2

v3 ont

-2.7430

0.2050

0.5610

2.2020

-4.8040

2.6170

1.0990

1.1440

-2.2500

-1

-3

2.0203

1.0122

3.0143

(E17)



Substituting Equation (E16) and Equation (E17) into Equation (42) and

Equation (43), we get the interregion flow matrix

Q cont

-5.5417 2.2289 3.3127

0.4142 -4.8626 3.4484

1.1334 2.6489 -6.7822

66

(E18)

The off-diagonal elements of matrix Qcont in Equation (E18) are

interregion flow rates.

Summary. Case (i) Lt = 0.3

2.0002vl

0.9981 (E13)

cont 3.0026

-5.5065 2.1955 3.3110

Qcont 0.5520 -4.7826 3.2308 (E14)

0.9495 2.5861 -6.5357

Case (ii). At = 0.1

v1 2.0203

v2 1.0122 (E17)

v3 cont 3.0143



-5.5417 2.2289 3.3127

0.4142 -4.8626 3.4484Qcont

1.1334 2.6489 -6.7822
ONOw-

67

(E18)

By comparison of calculated volumes (Equation (E13) or Equation

(E17)) and the true volumes (Equation (E7)), we find that the agree-

ment is good. By comparison of calculated interregion flow rates

(Equation (E14) or Equation (E18)) and the true flow rates (Equation

(E8)), we find that the agreement is also good. In fact the method is

exact, and the only errors are due to computer roundoff and

inaccuracies in calculating the eigenvalues. The larger size of At

gives slightly more accurate values.

Example 2. Modeling a Continuous Time, Pseudo-Continuous
Space Flow System

Consider a pseudo-continuous flow system shown in Figure Eta.

Suppose that the total volume of this flow system is given. The total

inlet flow rate to the system and the total outlet flow rate from the

system are also given. In addition, the residence time distribution

(RTD) of the fluid elements in the flow system is known as shown in

Figure E2b.7/ How does one model this flow system with a finite

number of probes?

/SeeSee Appendix B.
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Figure Eta. Diagram of the flow system in Example
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0. 6

0.5

0.4

E(t)
0.3

0. 2

0. 1

0

t

Figure E2b. The RTD curve of the flow system in Example 2.
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Solution. Method 1. We would like to put three probes

simultaneously into the flow system as shown in Figure Etc. The

transient tracer concentrations measured by these three probes are

tabulated in Table E2a.

Table E2a. Transient concentrations of tracer in the
flow system of Example 2 measured by
three probes.

t cl c
2

0 0.2000 0 0

0.1 0.1316 0.0072 0

0.2 0.0913 0.0267 0.0003
0.3 0.0659 0.0423 0.0030
0.4 0.0490 0.0513 0.0086
0.5 0.0372 0.0546 0.0159
0.6 0.0288 0.0542 0.0234
0.7 0.0225 0.0514 0.0300
0.8 0.0178 0.0473 0.0350
0.9 0.0142 0.0427 0.0383
1.0 0.0115 0.0381 0.0400
1. ,1 0.0093 0.0337 0.0403
1.2 0.0076 0.0296 0.0395
1.3 0.0062 0.0258 0.0379
1.4 0.0051 0.0225 0.0357
1.5 0.0042 0.0195 0.0332
1.6 0.0035 0.0170 0.0306
1.7 0.0029 0.0147 0.0279
1.8 0.0024 0.0127 0.0253
1.9 0.0020 0.0110 0.0228
2.0 0.0017 0.0096 0.0204



Q. = 15 X g 5
out

= 15

Figure Etc. The schematic diagram of the three probes inside the flow system
in Example 2.
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First, let At = 0.4. Then from Table E2a, we know

C(0) = C(t = 0.5) = [0.0372 0.0546 0.0159]

C(1) = C(t = 0.9) = [0.0142 0.0427 0.0383]

C(2) = C(t = 1.3) = [0.0062 0.0258 0.0379]

C(3) = C(t = 1.7) = [0.0029 0.0147 0.0279]

Substituting these into Equation (70b), we find

P =

0.0372 0.0546 0.0159

0.0142 0.0427 0.0383

0.0062 0.0258 0.0379

0.3192 0.5630 0.0761

0.0443 0.3896 0.5474

0 0.0306 0.3511

0.0142 0.0427 0.0383

0.0062 0.0258 0.0379

0.0029 0.0147 0.0279

(E19)

All the fractional input coefficients
p j found in Equation (E19) are

non-negative and less than one. Therefore, the choice of At is

acceptable.

Since
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pit = 0.3192

(i)

pit = 0.5630

(i)

(i)

= 0.0761

+ 0.0443 + 0 = 0.3635 < 1

+ 0.3896 +0.0306 = 0.9832 = 1

+ 0.5474 + 0.3511 = 0.9746 = 1

we can say that region 1 has an inlet from the inlet station, while

region 2 and region 3 both have no inlet from the inlet station.

Now,

(j)

(j)

= 0.3192

p
2j

= 0.0443

= 0

(j)

+ 0.5630 + 0.0761 = 0.9583 = 1

+ 0.3896 + 0.5474 = 0. 9813 = 1

+ 0.0306 + 0.3511 = 0.3817 < 1 ,

we may say that the volumes of the regions are all nearly equal and

region 1 and region 2 both have no outlet to the outlet station, while

region 3 has an outlet to the outlet station.

Substituting Equation (E19) into Equation (31), we get



v
1

v2

v3 DFM

`70.6808

0.0443

0

0.5630

-0.6104

0.0306

0.0761

0.5474

-0.6489

-1 vow.

0

-(15)(0.4)
am.

8.7939

9.3246

9.6861

74

(E20)

Since vtotal is 25 (see Figure E2a), therefore the % error in the

volume is

vtot al

vtotal

127.8046 - 251x 100 x 100
25

= 11.21 (%)

Next, let region 4 be an accumulating outlet station. Substituting

Equation (E19) into Equation (34b), we find

and

0.3192 0.5630 0.0761

0.0443 0.3896 0.5474 0

=

0 0.0306 0.3511 0.6183

0 0 0 1

C(0) = = 0. 5) = [0. 0372 0.0546 0.0159 0.0000]
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We use Equation (35) to compute C(m) for m = 0, 1, 2, ...

Here ci(m), c2(m), and c3(m), m = 0, 1, 2, , are the I

curves corresponding to region 1, region 2, and region 3 respectively.

Here c4(m), m = 0, 1, 2, is the step response curve of the

flow system. The normalized c3(m) curve is the RTD curve.

Also, the adjusted c4(m) curve is the F curve. The RTD curve

of this flow system computed from 3 probe model is shown in Figure

E2d.

Summary. From Equation (E20), we know that the sum of the

volumes computed from three probe model is only 11.21% off

compared to the given total volume of the system. The RTD curve

computed from this model (see Figure E2d) is very close to the real

RTD curve of the flow system (see Figure E2b). Hence, we may say

that three probe model is a good fit to the flow system under investiga-

tion.

Method 2. We would like to put four probes simultaneously into

the flow system as shown in Figure E2e. The transient tracer con-

centrations measured by these four probes are tabulated in Table

E2b.8

8 /See Appendix B.
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Figure E2d. The RTD curve of the flow system computed from
three probe model in Example 2.



Q. = 15
in

5

qout 5

= 15

Figure E2e. The schematic diagram of the four probes inside the flow system
in Example 2.
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Table E2b. Transient concentrations of tracer in the
flow system of Example 2 measured by
four probes.

t
1

c
2

c3 c4

0 0 0 0 0

0.1 0.0574 0 0.0575 0

0.2 0.0777 0.0043 0.0690 0.0047
0.3 0.0799 0.0136 0.0654 0.0132
0.4 0.0741 0.0244 0.0575 0.0215
0.5 0.0655 0.0339 0.0492 0.0280
0.6 0.0564 0.0411 0.0417 0.0323
0.7 0.0479 0.0456 0.0351 0.0345
0.8 0.0404 0.0477 0.0296 0.0352
0.9 0.0339 0.0480 0.0250 0.0348
1.0 0.0285 0.0468 0.0212 0.0336
1.1 0.0239 0.0447 0.0180 0.0319
1.2 0.0201 0.0420 0.0153 0.0299
1.3 0.0169 0.0389 0.0131 0.0277
1.4 0.0142 0.0357 0.0112 0.0254
1.5 0.0120 0.0324 0.0096 0.0232
1.6 0.0101 0.0293 0.0082 0.0211
1.7 0.0086 0.0263 0.0071 0.0191
1.8 0.0073 0.0235 0.0061 0.0172
1.9 0.0062 0.0209 0.0053 0.0154
2.0 0.0053 0.0186 0.0046 0.0137
2.1 0.0045 0.0164 0.0039 0.0123
2.2 0.0039 0.0145 0.0034 0.0109
2.3 0.0033 0.0128 0.0030 0.0097
2.4 0.0028 0.0113 0.0026 0.0086
2.5 0.0024 0.0099 0.0022 0.0076

First, let At = 0.4. Then from Table E2b, we know

C(0) = C(t = 0.5) = [0.0655 0.0339 0.0492 0.0280]

C(1) = C(t = 0.9) = [0.0339 0.0480 0.0250 0.0348]

C(2) = C(t = 1.3) = [0.0169 0.0389 0.0131 0.0277]

C(3) = C(t = 1.7) = [0. 0086 0.0263 0.0071 0.0191]

C(4) = C(t = 2. 1) = [0.0045 0.0164 0.0039 0.0123]
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Before substituting these into Equation (70b) (or Equation (70a)) to find

the fractional input matrix P, we check the determinant of the first

square matrix in the right-hand side of Equation (70b).

Let the concentration matrix

C(0) 0.0655 0.0339 0.0492 0.0280

C(1) 0.0339 0.0480 0.0250 0.0348
T

C(2) 0.0169 0.0389 0.0131 0.0277

C(3) 0.0086 0.0263 0.0071 0.0191

Then we find

det(T) = 7.586 x 10 1-0 for At = 0.4 (E21)

Similarly, we find

det(T) = 4.855 x 10 10,

det(T) = 4.672 x 10 10,

for Lt= 0.3

for At = 0.5
(E22)

From Equation (E21) and Equation (E22), we know that the first

square matrix in the right-hand side of Equation (70b) is nearly

singular no matter what size of At is chosen. Hence, we may say

that some of four probes are nearly redundant. By looking at the

transient concentration distributions, we know that probe 1 and probe

3 are nearly redundant and also probe 2 and probe 4 are nearly

redundant. Therefore, we must remove two probes according to their
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cofactors in the concentration matrix and use two probes only to

model this flow system.

First, consider the case of Lt = 0.4. Comparing the cofactors

of the elements cl(3) and c 3(3) in the matrix T, we find

cofactor of c1(3) = -0.415 x 10 -6

cofactor of c 3(3) = 0.734 x 10-6

Since the cofactor of c 3(3) is larger than the cofactor of c
1

(3),

thus we remove probe 3.

After removing probe 3, we find a new concentration matrix

we find

cofactor of c 2(2) = 13.302 x 104

cofactor of c 4(2) = 19.948 x 10-4

Since the cofactor of c 4(2) is larger than the cofactor of c 2 (2 ),

thus we remove probe 4.

The same results are obtained for the cases of At = 0.3 and

At = 0.5.

Hence, after removing both probe 3 and probe 4, we would like

to use probe 1 and probe 2 only to model the flow system shown in

Figure E2a.



First, let At = 0.4. Then from Table E2b, we know

C(0) = C(t = 0.5) = [0.0655 0.0339]

C(1) = C(t = 0.9) = [0.0339 0.0480]

C(2) = C(t = 1.3) = [0.0169 0.0389]

Substituting these into Equation (70b), we find

P =
0.0655 0.0339 -1 0.0339 0.0480

C1.0339 0.0480 I 0.0169 0.0389

0.5285 0.4939

0 0.4616

81

(EZ3)

All the fractional input coefficients p j found in Equation (E23) are

non-negative and less than one. Therefore, it is acceptable. Since

(i)

=

0.5285 + 0 = 0.5285 < 1

0.4939 + 0.4616 = 0.9555 = 1

we can say that region 1 has an inlet from the inlet station, while

region 2 has no inlet from the inlet station.

Since



/p lj = 0.5285

(j)

(j)

= 0

+ 0.4939 = 1.0224 -= 1

+ 0.4616 = 0.4616 < 1 ,

82

we may say that the volumes of the regions are nearly equal and region

1 has no outlet to the outlet station, while region 2 has an outlet.

Substituting Equation (E23) into Equation (31), we get

Since vtotal

volume is

[v21FM

v -0.4715 0.49391
-1

1

11.6736

11.1441

[-0.5384 -(15)(0.4)

0

(E24)

is 25 (see Figure E2a), therefore the % error in the

22.8177 251 x 100 = 8.73 (%)
25

Next, let region 3 be an accumulating outlet station.

Substituting Equation (E23) into Equation (34b), we find

P =

0.5285 0.4939 0

0 0.4616 0.5384

0 0 1



and

C(0) = C(t = 0.5) = [0.0655 0.0339 0.0000]

We use Equation (35) to compute C(m) for m = 0, 1, ,
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Here ci(m), and c2(m),(m) m = 0, 1, 2, ... , are the I curves

corresponding to region 1, and region 2 respectively. Here c3(m),

m = 0, 1, 2, ..., is the step response curve of the flow system. The

normalized c 2(m) curve is the RTD curve. Also, the adjusted

c
3
(m) curve is the F curve. The RTD curve of this flow system

computed from two probe model is shown in Figure E2f.

Summary. From Equation (E24), we know that the sum of the

volumes computed from two probe model is only 8.73% off compared

to the given total volume of the flow system. The RTD curve com-

puted from this model (see Figure E2f) is fairly close to the real RTD

curve of the flow system (see Figure E2b). Hence, we may say that

two probe model is a fair fit to the flow system under investigation.
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VIII. CONCLUSIONS

A general discrete flow model which is discrete both in time

and space is developed and is used to model flow systems. A stirred

tank network model (continuous time compartment model) is sum-

marized and the relationship between these two models is developed.

Both models make use of fractional input matrices with elements

representing the fraction of flow into the jth region which originates

in the ith region. The fractional input matrices for the discrete

and continuous models are shown to be related to each other. The

discrete flow model is more general and computationally much simpler

than the stirred tank network model, and gives data which agrees

precisely with continuous model at regularly spaced discrete values

of time.

The fractional input matrix can be used to find the sizes of the

regions, to predict the residence time distribution (RTD) of the fluid

in the flow system, and to compute the reaction conversion if chemi-

cal reaction occurs. Direct methods are given for finding the frac-

tional input matrix from either steady state or transient tracer data.

Two simple numerical examples are given to demonstrate how

well the discrete flow model works. Use of the data fitting techniques

allows data generated by a high order stirred tank model to be fitted

quite well with a lower order discrete time model.
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Lumping is important for modeling flow systems with very

many regions, thus a lumping analysis for discrete flow systems is

presented. The methods for obtaining the sizes of the regions and the

fractional input matrix provide an important tool to analyze the lump-

ing problems in flow systems.
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APPENDIX A

Nomenclature

Letter Definition

a output coefficient from tank i

a) coefficient in Equation (85)rf
A output matrix

B defined by Equation (76)

c.(m) concentration in the ith region at time mAt

.c (t) concentration in the ith tank at time ti
C(m) concentration row vector at time mAt

C(t) concentration row vector at time t

C(m) defined by Equation (35)

C(s) row vector of Laplace Transform of concentration

c.r(m) concentration of component A in the fluid streams from

region i at time mAt

Cr(m) concentration row vector in the flow streams at time

mAt

C(r)(m) defined by Equation (73)

C (w) (m) defined by Equation (74)

D diagonal matrix

e..(m) lumping error at region j of the lumped system to a

unit tracer input at region i of the original system
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Letter Definition

E(m) error matrix

E(t) residence time distribution of fluid

f function

mf.( ) input concentration from the inlet station to region i

at time mAt

F(m) input concentration row vector at time mLt

mf.( ) input concentration in the input streams to region i at

time milt

Fr(m) input concentration row vector in the input streams at

time mAt

I identity matrix

J a matrix in Jordan canonical form

L lumping matrix

M eigenvector matrix

n number of regions

fractional input coefficient from region i to region j

P fractional input matrix

P defined by Equation (34a) and Equation (34b)

qij volumetric flow rate from region i to region j

volumetric flow rate from region i to the outlet stationqi, out

interregion flow matrix for continuous time flow systemsQcont
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Letter Definition

Qd interregion flow matrix for discrete time flow systems

Q. volumetric flow rate from the inlet station to the jth

region

r the remainder

r., transition rate coefficient from tank i to tank j

R transition rate matrix

s Laplace variable

s., steady response at region j to a steady input at region i

S steady response matrix

Sr semi-diagonal matrix

t time

T concentration matrix

u. unit vector with 1 as its ith element
1

v. volume of region i

vtotal total volume of the flow system

V diagonal volume matrix

eigenvector

Greek Letters

a

X

Lt

constant in Equation (E9) and Equation (E10)

e igenvalue

one step time interval
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Letter

Tr

Overhead

Definition

feed coefficient from the inlet station to region i

feed matrix

A any property related to lumped system
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APPENDIX B

Data Source for Numerical Examples

Data Source for Example 1

Suppose that at time t = 0 we inject a pulse of tracer into a

flow system consisting of three well-mixed regions as shown in

Figure El. Then from the material balance, we know

dcl
vl dt -(c112+c113)cl q21c2 + q31c3

dc2
v2 dt q12c1 (c121+c123+c12, oudc2 q32c3

dc
3

v3 dt c113c 1 + q23c2 (c131+q32+c13, oudc3

Let

qi = 2. 2 q21 = 0.5 q31= 1.0

q13 = 3.3 (423 = 3. 3 q32 = 2. 6

and

vl = 2. 0

v2 = 1.0

v3 = 3.0

with the initial conditions:

c 1(0) = 1, c2(0) = c3(0) = 0

(Al)
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A digital computer was used to solve Equation (Al). The

results were tabulated in Table El.

Data Source for Example 2

Consider a flow system consisting of 25 regions as shown in

Figure Al. In order to obtain discrete data for this system, the

values of the initial condition and the fractional input matrix were

assigned arbitrarily. The elements of the fractional input matrix

were tabulated in Table Al. Then the transient concentrations were

generated using Equation (9). The results are tabulated in Table A2.

The residence time distribution (RTD) of the fluid elements in the flow

system are computed by taking the flow weighted average of the

transient concentrations of region 5, region 10, region 15, region 20,

and region 25. The RTD curve of this system was shown in Figure

E2b.
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Table Al. Fractional input matrix of the flow system with 25 regions.

.775 .200 .000 .000 .000 .025 .000 .000 .000 .000 000 000 000 000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.050 .745 .180 .000 .000 .000 .025 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 000 .000 .000 .000 .000

.000 .040 .750 .190 .000 .000 .000 .020 .000 .000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 000 .000 .000

.000 .000 .050 .705 .210 .000 .000 .000 .035 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 000 000 .000 000 .000

.000 .000 000 .075 .750 .000 000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.025 .000 .000 .000 .000 .745 .175 .000 .000 .000 .055 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .015 .000 .000 .000 .030 .725 .195 .000 .000 .000 .035 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .020 .000 .000 .000 .040 .710 .200 .000 .000
000 .030 000 .000 .000 .000 000 000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .030 .000 .000 .000 .050 .685 .000 .000 .000 .010 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .040 .000 .000 .000 .065 .715 .000 .000 .000 .000 .030 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .050 .000 .000 .000 .000 .725 .200 .000 .000 .000 .025 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .035 .000 .000 .000 .045 .725 .180 .000 .000 .000 .015 .000 .000 .000
.000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .025 .000 .000 .000 .025 .735 .205 .000 .000 .000 .010 .000 .000 .000 .000 .000 000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .015 .000 .000 .000 .045 .690 .230 .000 .000 .000 .020 .000 000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .035 .000 .000 .000 .055 .710 .000 .000 .000 .000 .050 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .025 .000 .000 .000 .000 .730 .190 .000 .000 .000 000 .000 000 000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .015 .000 .000 .000 .045 .700 .215 .000 .000 .000 .025 .000 .000 .000

.000 .000 000 .000 .000 .000 .000 .000 000 .000 000 .000 .010 .000 .000 .000 065 695 .195 000 .000 .000 .035 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .040 .000 .000 .000 .055 .670 .210 .000 .000 .000 .025 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .030 .000 .000 .000 .070 .705 .000 .000 .000 .000 .045

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .050 .000 .000 .000 .000 .725 .225 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .030 .000 .000 .000 "70 .695 .205 .000 .000

000 000 .000 .000 .000 000 000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .025 .000 .000

.000 .055 .730 .190 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .045 .000 000 .000 030 705 .220

.000 000 000 .080 735
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .035



Table AZ. Transient concentrations of tracer in the flow system with 25 regions.

t ci 02 03
'4 05 06

.7
'8 '9 010 '11 C12 c13 014 015 016 017 018 c19 020 021 '22 '23 '24 025

0 .3000 0 0 0 0 .2000 0 0 0 0 .2000 0 0 0 .2000 0 0 0 0 .1000 0 0 0 0

0.1 .1912 .0927 .0108 0 0 .1391 .0574 .0068 0 0 .1316 .0630 .0072 0 0 .1236 .0575 .0082 0 0 .0707 .0354 .0046 0 0

0.2 .1295 .1142 .0387 .0062 .0004 .0984 .0777 .0265 .0043 .0003 .0913 .0801 .0267 .0046 .0003 .0816 .0690 .0275 .0047 .0003 .0523 .0452 .0173 .0027 .0002

0.3 .0919 .1096 .0596 .0183 .0038 .0712 .0799 .0432 .0136 .0029 .0659 .0787 .0423 .8139 .0030 .0566 .0654 .0403 .0132 .0028 .0400 .0451 .0275 .0084 .0018

0.4 .0675 .0967 .0705 .0312 .0106 .0526 .0741 .0535 .0244 .0084 .0490 .0706 .0513 .0241 .0086 .0409 .0575 .0460 .0215 .0076 .0312 .0414 .0334 .0148 .0052

0.5 .0509 .0823 .0738 .0419 .0194 .0396 .0655 .0579 .0339 .0161 .0372 .0608 .0546 .0328 .0159 .0306 .0492 .0468 .0280 .0135 .0248 .0367 .0357 .0204 .0098

.0.6 .0392 .0690 .0721 .0493 .0284 .0304 .0564 .0581 .0411 .0242 .0288 .0512 .0542 .0388 .0234 .0235 .0417 .0449 .0323 .0195 .0200 .0319 .0355 .0245 .0148

0.7 .0306 .0574 .0677 .0536 .0365 .0236 .0479 .0556 .0456 .0317 .0225 .0428 .0514 .0423 .0300 .0184 .0351 .0416 .0345 .0247 .0163 .0275 .0337 .0271 .0193

0.8 .0242 .0477 .0619 .0553 .0428 .0186 .0404 .0516 .0477 .0376 .0178 .0355 .0473 .0436 .0350 .0147 .0296 .0378 .0352 .0286 .0134 .0237 .0312 .0285 .0230

0.9 .0193 .0396 .0557 .0551 .0472 .0148 .0339 .0470 .0480 .0418 .0142 .0295 .0427 .0432 .0383 .0118 .0250 .0339 .0348 .0313 .0111 .0203 .0284 .0287 .0256

1.0 .0156 .0329 .0495 .0534 .0496 .0119 .0285 .0421 .0468 .0442
.0115 .0245 .0381 .0417 .0400 .0096 .0212 .030! .0336 .0328 .0092 .0174 .0255 .0282 .0273

1.1 0126 .0274 .0438 0508 .0504 .0096 .0239 .0374 .0447 0450 .0093 .0203 .0337 .0393 .0403 .0079 .0180 .0267 .0319 .0332 .0077 .0149 .0227 .0272 .0280

1.2 .0103 .0229 .0385 .0476 .0498 .0078 .0201 .0330 .0420 .0445
.0076 .0169 .0296 .0366 .0395 .0066 .0153 .0235 .0299 .0328 .0065 .0128 .0201 .0258 .0279

1.3 .0085 .0192 .0337 .0441 .0482 .0064 .0169 .0290 .0389 .0062 .0141 .0258 .0335 .0379 .0055 .0131 .0207 .0277 .0318

1.4 .0070 .0161 .0295 .0404 .0459 .0052 .0142 .0254 .0357

.0431

.0051 .0118 .0225 .0305 .0357 .0046 .0112 .0182 .0254 .0303

.0055

.0046

.0109

.0094

.0177

.0156

.0241

.0224

.0273

.0262

1.5 .0058 .0136 .0257 .0368 .0431 .0043 .0120 .0222 .03241.0384 .0042 .0099 .0195 .0275 .0332 .0039 .0096 .0160 .0232 .0284 .0039 .0081 .0137 .0206 .0248

1.6 .0048 .0115 .0224 .0333 .0401 .0036 .0101 .0193 .0293 .0355 .0035 .0083 .0170 .0247 .0306 .0033 .0082 .0140 .0211 .0265 .0034 .0070 .0120 .0188 .0232

1.7 .0040 .0097 .0196 .0300 .0369 .0030 .0086 .0168 .0263 .0326 .0029 .0070 .0147 .0220 .0279 .0028 .0071 .0123 .0191 .0244 .0029 .0060 .0105 .0171 .0215

1.8 .0034 .0083 .0170 .0269 .0336 .0025 .0073 .0146 .0235 .0297 .0024 .0059 .0127 .0196 .0253 .0024 .0061 .0108 .0172 .0223 .0025 .0052 .0092 .0154 .0198

1.5 .0028 .0070 .0148 .0240 .0305 .0021 .0062 .0127 .0209 .0268 .0020 .0050 .0110 .0173 .0228 .0020 .0053 .0095 .0154 .0203 .0021 .0045 .0081 .0139 .0181

2.0
.0024 .0060 .0129 .0214 .0275 .0018 .0053 .0111 .0186 .0241 .0017 .0042 .0096 .0153 .0204 .0017 .0046 .0083 .0137 .0183 .0018 .0039 .0071 .0125 .0165

2.1
.0020 .0051 .0113 .0190 .0247 .0015 .0045 .0096 .0164 .0216 .0014 .0036 .0083 .0135 .0182 .0015 .0039 .0073 .0123 .0165 .0016 .0033 .0062 .0112 .0149

2.2 .00E7 .0044 .0098 .0166 .0221 .0013 .0039 .0083 .0145 .0192 .0012 .0031 .0072 .0119 .0162 .0013 .0034 .0064 .0109 .0148 .0013 .0029 .0054 .0100 .0134

2.3 .0015 .0038 .0085 .0149 .0197 .0011 .0033 .0072 .0128 .0171 .0010 .0026 .0062 .0104 .0144 .0011 .0030 .0056 .0097 .0132 .0012 .0025 .0048 .0089 .0120

P.A
0012 .0032 .0074 .0131 0175 .0009 .0028 .0063 .0113 0151 0009 .0022 .0054 .0092 .0127 0009 .0026 0049 .0086 0118 .0010 .0022 .0042 .0079 .0108

25
0011 .0028 .0065 0115 .0155 .0008 0024 .0055 .0099 .0134 .0007 0019 .0047 .0080 .0112 .0008 .0022 .0043 .0076 .0105 .0009 .0019 .0036 .0070 .0096

2.6 .0009 .0024 .0056 .0102 .01.37 .0007 .0021 .0047 .0087 .0118 .0006 .0016 .0040 .0070 .0099 .0007 .0019 .0038 .0067 .0093 .0007 .0017 .0032 .0062 .0086
2.7

.0008 .0021 .0049 .0089 .0121 .0006 .0018 .0041 .0076 .0104 .0005 .0014 .0035 .0062 .0087 .0006 .0017 .0033 .0059 .0082 .0006 .0014 .0028 .0055 .0076

2.8
0007 .0018 .0043 0078 .0107 .0005 0015 .0036 .0067 .0091 .0005 .0012 0030 0054 .0076 .0005 0015 .0029 .0052 .0073 .0006 .0013 .0024 .0048 .0068

2.5
.0006 .0015 0037 .0069 .0094 .0004 .0013 0031 .0058 .0080 .0004 .0010 .0026 .0047 .0067 .0005 .0013 .0025 .0046 .0064 0005 .0011 0021 .0043 0060

7.0
.0005 .0013 .0032 .0060 .0083 .0004 .0011 .0027 .0051 .0070 .0003 .0009 .0023 .0041 .0059 .0004 .0011 .0022 .0040 .0057 .0004 .0009 .0019 .0038 .0053
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APPENDIX C

Comparison of Discrete Flow Model and Markov Model
[2, 9, 10, 11, 12, 14, 16]

A Markov model is an important type of stochastic model that is

useful in the study of complex systems. The basic ideas of the

Markov model are those of state of a system and state transition.

When a system is completely described by the values of variables that

define the state, we say that a system occupies a state. A system

makes a state transition when its describing variables change from

the values specified for one state to those specified for another. If

the time between transitions is a constant that is of interest, then we

may consider the system as a discrete time process. To study the

discrete time process, we have to specify the probabilistic nature of

the state transition. Suppose that there are n states (possibly

including an absorbing state) in a system running from 1 to n.

If the system is a simple Markov process, then the probability of a

transition from state i to state j during the next time interval,

is a function only of i and j and not of any history of that system

before its arrival in i. In other words, we may specify a set of

conditional probabilities p.. that a system will occupy state

after next transition, given that the system now occupies state i.

For a discrete time process, the probabilities that a system will

remain in same state, i.e., pii, i = 1, 2, ... n, are non-zero.
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Since the p.. are probabilities, they are non-negative and not

greater than one.

The similarities and differences between discrete flow model

and Markov model are listed as follows:

Similarities.

1. The fractional input matrix P (or transition matrix) is a

complete description of either model.

2. The elements of matrix P in either model are non-

negative and not greater than one.

3. The element of matrix P in either model, i.e., p.., is

a function only of state i and state j and not of any

history of that system before its arrival in i.

Differences.

1. The discrete flow model is based on the time average

behavior of a very large number of particles, while Markov

model applied to the stochastic meandering of a single

particle.

2. The p.. in the discrete flow model can be interpreted as

the fraction of material that will end up in the jth region

that transfers in from the ith region in one step, while the

P in Markov model, from a physical viewpoint, can be

interpreted as the fraction of material in the ith region

that moves into the jth region in one step.
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3. The columns of matrix P in the discrete flow model

always sum to one if the columns include the inlet station,

while the rows of matrix P in Markov model always sum

to one if the rows include the absorbing state.



APPENDIX D

Computer Programs for Computation

PROGRAM FIMTX
C THIS PROGRAM USES GAUSS-JORDAN REDUCTION METHOD
C COMBINING VITH MATRIX MULTIPLICATION TECHNIQUE
C TO DETERMINE THE FRACTIONAL. INPUT MATRIX OF FLOC., SYSTEMS

DIMENSION FAC(10,21),FRC(10,21),IFC(10,10),SC(10,10),
*P(10,10)
COMMON/ABC/N
COMMON/BCD/FAC,FRC,M,EPS,DETER
COMMON /CDE /IFC, SC, P
REAL IFC
IFX=TTYIN(4HIEX= )

DT=TTYIN(4HDT= )

N=TTYIN(4HN= )

M=TTYIN(4HM= )

EPS= TTYIN(IiHEPS=
LUN=TTYIN(4HLUN= )

VRITF(LUN,205)
VRITE(LIIN,210)IEX
NPLUSM=N+M
VRITE(LON,200)DTAN,M,EPS
VRITE(LON,206)
DO 2 ItsioN
HPAD(5s101)CFAC(I,J),Jb1, IPLUSM)

2 VRITE(LUN0201)(FAC(I,J),J=1,N1'LUSM)
VRITE(LUN,207)
DO 3 I=1,N
READ(7,101)(SC(I,J),J=1,N)

3 WRITECLUN,201)(SC(I,J),J=1,N)
C ...CALL ON GSJN TO COMPUTE THE 1ST RESULTING MATRIX...

CALL GSJN
VRITE(LUN,203)DETER
VRITE(LUN,208)
DO 4 I=1,N

4 VRITE(LUN,202)(FRC(I,J),J=1,NPLUSM)
C ....COMPUTE THE INVERSE OF 1ST MATRIX....

DO 11 I=1,N
DO 11 J=1,N
JJ=M+J

11 IFC(I,J)= FHC(I,JJ)
VRITE(LUN,209)
DO 12 I=1,N

12 WRITE(LUN,202)(IFC(I,J),J=1,N)
C ...CALL ON MULTI TO COMPUTE THE FRACTIONAL INPUT MATRIX..

CALL MULTI



WRITE(LUN,204)
DO 13 I=1,N

13 VRITE(LUN,201)(P(I,J),J=1,N)
C ....FORMATS FOR INPUT AND OUTPUT STATEMENTS....
101 FORMAT(1X,6F9.4)
200 FORMAT(1X,'DT ='F10.5/1X,'N ='I5/1X,'M =.15/1X,'EPS ='El0.

*1/)
201 FORMAT(1X,6F9.4)
202 FORMAT(1X,6Y10.4)
203 FORMAT(/1X,'PETER ='F:14.6/)
204 FORMAT(//1X,'THUS, THE FRACTIONAL INPUT MATRIX IS'/)
205 FORMAT(///1X,.****************************************'

1' *********************'/1X,' MAINLY%USE GAUSSJORDAN'
2' REDUCTION ALGORITHM FOR DETERMINING'/1X,' THE'
3' FRACTIONAL INPUT MATRIX'/1X,'***********************'
4'**************************************'/1WVITHs'//)

206 FORMAT( /IX,'THE 1ST AUGMENTED MATRIX IS')
207 FORMAT(11X,'THE 2ND MATRIX IS')
208 FORMAT(/1X,'THE 1ST RESULTING MATRIX IS')
209 FORMAT( /IX,'THE INVERSE OF 1ST MATRIX IS')
210 FORMAT(1X,'EXAMPLE'I3/)

STOP
END

C ....SUBROUTINE FOR MAIN PROGRAM....
SUBROUTINE GSJN
DIMENSION A(10$21),R(10,21)
COMMON/ABC/N
COMMON/BCD/AARoMAEPS/DETER
NPLUSM=N+M

C ....BEGIN ELIMINATION PROCEDURE
DETER=1.
DO 2 Ii=1,N

C ....UPDATE THE DETERMINANT VALUES....
DETER=DETER*ACK,K)

C ....CHECK FOR PIVOT ELEMENT TOO SMALL....
IF(ABS(A(K,K)).GT.EPS)GO TO 3
GRITE(61,202)

202 FORMAT(1X,'SMALL PIVOT MATRIX MAY BE SINGULAR')
C ....NORMALIZE THE PIVOT HOW....

3 Kli1=K+1
DO 4 J=KP1,NPLUSM

4 A(K,J)=A(K,J)/A(K,K)
A(K,K)=1.

C ...ELIMINATE K(T13) COLUMN ELEMENTS EXCEPT FOR PIVOT...
DO 2 I=1,N
IF(I.E0.K.OR.A(I,K).E0.0.)G0 TO 2
DO 5 J= KPI,NPLUSM

5 A(I,J)=A(I,J)A(I,K)*A(K,J)
A(I,K)=0.

2 CONTINUE
DO 1 I=1,N
DO 1 J=1,NPLUSM

1 R(I,J)=A(I,J)



RETURN
END
....SUBROUTINE FOR MAIN PROGRAM....
SIJ}3HOUTINE MULTI
DIMENSION B(10/10),C(10,10),D(10/10)
COMMON/ARCM
COMMON/CDE/R/C/D
DO 1 I=1/N
DO 1 J=1,N
D(I,J)=0.
DO 2 K=1/N

2 D(I,J)=D(I,J)+R(I,K)*C(K,J)
1 CONTINUE

RETURN
END
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PROGRAM VOLO
C THIS PROGRAM USES GAUSS-JORDAN REDUCTION METHOD
C TO DETERMINE THE SIZE OF THE REGIONS AND THEN
C FIND THE FLOG. RATE CONNECTING THE1REGIONS OF
C ELM SYSTEMS

DIMENSION APMI(10,21),P(10/10),O(10,10),RPMI(10/21)/(10)
COMMON APMI,h1JMI/N,M,EPS,DETE1i
IEX=TTYIN(4HIEX= )

DT=TTYIN(4HDT= )

N=TTYIN(414N= )

M=TTYINCIIHM= )

EPSt:TTYIN(iHEPS= )

LUN=TTYIN(4HLUN= )

VRITEMUN/205)
VRITF(LUN,210)IEX
NPLUSM=N+M
VRITE(LUN/200)DTA/M,EPS
VRITE(LUN,207)
DO 2 I= 1,N
READ(5,101)(APMI(I/J),J=1,NPLUSM)

2 VRITE(LUN,201)(APMI(I,J),J=1,NPLUSM)
1,RITE(LUN,208)
DO 3 I=1,N
REAP(7,101)(P(I,J),J=1,N)

3 VRITE(LUN,2(?I1)(P(I,J),J=1,N)
C ...CALL ON GSJN TO COMPUTE (P-I) RESULTING MATRIX...

CALL GSJN
VRITE(LUN,203)DETER
VRITECLUN,209)
DO 10 I=1,N

10 VRITECLUN,201)(RPMI(I/J),J=1,NPLUSM)
C .FIND ALL V(I) I=1,2,...N



WRITECLUN,204)
DO 11 I=1,N
V(I)=BPMICI,M)

11 VRITECLUN,201)V(I)
C ....FIND ALL Q(I,J) I,J=1,2,....N

DO 12 I=1,N
DO 12 J=1,N

12 0(I,J)=P(I,J)*V(J)/DT
VRITE(LUN,206)
DO 14 I= 1,N

14 1.)RITE(LUN,201)(Q(I,J),J=1,N)
C ....FORMATS FOR INPUT AND OUTPUT STATEMENTS....
101 FORMAT(1X,6F9.4)
200 FORMAT(1X,'DT ='F10.5/1X,'N ='I5/1X)'M =.15/1X,'EPS ='

*E10.1/)
201 FORMAT(1X,6F9.4)
203 FORMAT( /1X,DETER ='E14.6/)
204 FORMAT(//1X,'THE SIZE OF THE REGIONS V(1),V(2),...AhE',)
205 FORMAT(///1X,1*****************************************'

1'********************'/1X,' USE CAUSS"JORDAN REDUCTION'
2' ALGORITHM FOR DETEHMING'/1X,'THE SIZE OF THE REGIONS'
3' AND FLOV RATE CONNECTING THEM1/1X4'******************'
4'*******************************************'/1X,'VITH,'
5//)

206 FORMAT(//1X,'FLOI. HATE CONNECTING THE REGIONS 0(1,1)'
I',0(1,2) AHE'/)

207 FORMAT( /IWTHE (1".1) AUGMENTED MATRIX IS')
208 FORMAT(/1WTHE TRANSITION MATRIX IS')
209 FORMAT(/1X,'THE (1"I) RESULTING MATRIX IS')
210 FOHMAT(1X,'EXAMPLEII3/)

STOP
END

C ....SUBROUTINE FOR MAIN PROGRAM
SUBROUTINE GSJN
DIMENSION AC 10,21),H(10,21)
COMMON A,B,N,M,EPS,DETER
NPLUSM=N+M

C ....DEGIN ELIMINATION PROCEDURE....
DETER=1.
DO 2 K=1,N

C ....UPDATE THE DETERMINANT VALUES...
DETER=DFTER*A(K,H)

C ....CHECK FOR PIVOT ELEMENT TOO SMALL...
IFCAPS(A(K,K)).GT.EPS)C0 TO 3
VRITF(61,202)

202 FORMAT(1X,'SMALL PIVOT - MATRIX MAY BE SINGULAR')
C ....NORMALIZE THE PIVOT RCA....

3 KP1=K+1
DO 5 J=KP1,NPLUSM

5 A(K,O)=ACK,J)/ACK,K)
ACK,F)=1.

C ...ELIMINATE KITH) COLUMN ELEMENTS EXCEPT FOR PIVOT.-..
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PO 2 I=1,N
IF(I.FO.K.OH.A(I,10.E0.0.)G0 TO 2
DO 6 J=KP1,NPLUSM

6 ACI,J)=A(I,d)-A(I,K)*A(K,J)
A(I,K)=0.

2 CONTINUE
DO 4 I=1,N
DO 4 d=1,NPLUSM

4 11(I,J)=A(I,J)
HETUHN
END

PHOGRAM EIGEN
C THIS PHOGHAM USES THE POVEh METHOD TO FIND THE
C EIGENVALUES AND EI(ENVECTORS OF MATRICES

HEAL L,LZEhO,LAMDA,IDENT
DIMENSION A(10,10),13(10,10),U(10,10),LAMVA(10),V(10)

*,Y(10),VZER0(10),C(10,10)
N=TTYIN(4H N= )

MMX=TTYIN(4HMMX= )

MFCJ=TTYIN(4HMFO= )

EPS=TTYIN(4HEPS= )

LUN=TTYIN(4HLUN= )

4'HITEJLUN,205)
HEAD(6)100)(VZEHO(I), =1,N)

REAV(6,100)((A(I,J),J=1,N),,I=1,N)
100 FOhMAT(6F9,4)

VhITECLUN,203)
DO 1 I=1,N

1 VRITECLUN,204)(A(1,J),J=1,N)
DO 2 I=1,N
DO 2 J=1,N

2 B(I,J)=0.
DO 3 I= 1,N

3 R(I,I)=1.
PO 11 I=1,N
DO 102 II=1,N

102 V(II)=0.
SUM=0.
DO 104 II=1,N
DO 103 Jd=1,N

103 V(II)=P(II,JJ)*V7.FHO(JJ)+V(II)
104 SUM=SUM+V(II)*V(II)

LZEHO=SORT(SUM)
DO 5 M=1,MMX
IFC(M/MFO)*MEC.NE.M)GOTO 4
SUM=0.
DO 105 II=1,N



105 Y(II)=0.
DO 107 II=1,N
DO 106 JJ=1,N

106 Y(II)=B(II,JJ)*V(JJ)+Y(II)
107 SUM=SUM+Y(II)*Y(II)

L=SORT(5UM)
DO 108 IJ=1,N

108 V(IJ)=1./L*Y(IJ)
4 SIJM =0.

DO 109 II=1,N
Y(II)=0.
DO 110 JJ=1,N

110 Y(II)=A(II,JJ)*V(JJ)+Y(II)
109 SUM=SUM+Y(II)*Y(II)

L=SOHT(SUM)
DO 111 II=1,N

111 V(II)=1./L*Y(II)
IF(ABSC(L-LZEHO)/LZER0).LTF.PS)GOTO 7
IF(M.GE.(MMX-2))VRITECLUN,210)L,LZEHO

210 FOHMAT(5X'L =1F9.4,15X'LZEItO ='19.4)

5 LZFRO=L
IM1=I-1
VRITE(LUN,200)(LAMDA(K),K=1,IMI)

200 FORMAT(//5X1NO CONVERGENCE. EIGENVALUES ARE1//(7)(,6F9,4))

GOTO 12
7 CONTINUE
DO 112 II=1,N
Y(II)=0.
DC) 112 JJ=1,N

112 Y(II)=A(II,JJ)*V(JJ)+Y(II)
DO 8 K= 1,N
IF(AnS(V(1.)).LT.1.E-3)GOT0 8
IE(V(X)*Y(X).LT.0.)Lm-L
GOTO 9

8 CONTINUE
9 LAMDA(I)=L
VRITE(LUN,199)I,LAMPA(I)

199 FORMAT(//5X'LAMBDA('I3') ='F9.4)
DO 10 K=1,N

10 U(K,I)=V(K)
IF(I.GT.N)COTO 11
DO 114 II=1,N
DO 114 IJ=1,N
C(II,IJ)=0.
DO 114 IH=1,N
IDENT=0.
IF(IK.E0II)IDENT=1.

114 C(II,IJ)=C(II,IJ)+(A(II,IK)-L*IDENT)*B(IE,IJ)
DO 115 II=1,N
DO 115 IJ=1,N

115 R(II,IJ)=C(II,IJ)
11 CONTINUE

VRITE(LUN,201)(LAMDA(K),K=1,N)
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201 FORMAT(////5X,IFIGENVALUES ARE'//(6F9.4))
1,RITE(LUN,202)((U(I,J),J=1,N),I=1,N)

202 FORMAT(////5X,'EIGENVECTORS ARE'//(6F9.4))
203 FORMAT(5Xs'THE STARTING MATRIX IS'/)
204 FORMAT(1X,6F9.4)
205 FORMAT(//1X,'***************************************'

l'********************'/1X,'USE THE POVER METHODWOR
2'DETERMINING EIGENVALUFS AND'/1X,' EIGENVECTORS'
3/1X,'**********************************************';
4'************'//)

12 CONTINUE
END

PROGRAM SORE
C THIS PROGRAM USES 4THORDER HKM METHOD TO FIND THE
C TRANSIENT CONCENTRATIONS IN CONTINUOUS--TIME FLOE
C SYSTEMS

DIMENSION C(10),F(10)
COMMON N,T,C,F,H,IRKM,E,TINT
IEX=TTYIN(4HIEX= )

N=TTYIN(4HN=
H=TTYIN(4HH= )

TINT=TTYIN(4HTINT )

TMAX=TTYIN(4HTMAX )

E=TTYIN(4HE=
LUN=TTYIN(4HLUN0
Ii2RITF(LUN,210)
1tiRITE(LUN,240)IEX

C ....SET INITIAL CONDIlIONS...
T=0. $ C(1)=1.0 $ C(2)=0. $ C(3)=0.
1,,RITE(LUN,250)N,H,TINT,TMAX,E
VRITE(LUN,220)
VRITECLUN,230)
WRITE(LUN,200)Ts(C(I),I=1,N)

C ....CALL ON RIOS TO COMPUTE ALL C(J) J=1,2,
10 CALL RKM

IF(IRKM.E0.2)G0 TO 5
C ....CALCULATION OF F(J) FOR ALL FOUATIONS

F(1) =- 2.75 *C(1) +.25 *C(2) +.5 *C(3)
F(2)=2.2*C(1)-4.8*C(2)+2.6*C(3)
F(3)=1.1*C(1)+1.1*C(2)-2.2*C(3)
GO TO 10

5 VRITECLUN,260)T,(C(I),I=1,N)
IF((TMAXT).GT.I.E-9)G0 TO 10
14RITE(LUN,230)

C ....FORMATS FOR INPUT AND OUTPUT STATEMENTS....
210 FOHMAT(///1X,1***********************************'

11************************'/1X,' USE 41HORDER
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2' METHOD TO SOLVE N SIMULTANEOUS' /1X,' 1ST'
3'ORDER 0.D.E.1/1X,9*******************************'
4'****************************'/1X,'4ITH,'//)

240 FORMAT(1X,'EXAMPLE'I3/)
250 FORMAT(1X,'N ='I4/1X,'H ='F10.5/1X,'TINT =1F10.5/1X,

1'TMAX ='F10.5/1X,'E ='E10.5//)
220 FORMAT(1X,'THE TRANSIENT CONCENTRATIONS IN THE FLOE'

2' SYSTEM ARE :' / / / / //)
200 FORMAT(17X,'T(MIN)',3X,IC(1)',4X,'C(2)',4X,'C(3)'

3/14X,'
4//14Xo488.4)

260 FORMAT(14X,4F8.4)
230 FORMAT(/14X,'

STOP
END

C ....SUBROUTINE FOR MAIN PROGRAM....
SUBROUTINE RKM
DIMENSION Y(10),F(10),SAVEY(10),PHI(10),H(10,5),

*ERROR(10)

COMMON N,X,Y,F,H,INKM,E,XINT
REAL K
M=M+1
GO TO (1(0,200,300,400,500 600),M

100 IRXM=1
IF(XINT.E0.0.)60 TO 16
IF(INDEX.E0.0)13,14

13 INPEX=1 $ ACCUM=0.
14 ACCOM=ACCOM+H

IF(ABS(ACCUM...XINT).LT.1.E"))25,11
25 INDEX=0 $ RETURN
11 IF(ACCUM.GT.XINT)15,16
15 INDEX=0

HLAST=H $ IH=2
H=HACCUM+XINT
ACCUM=XINT

16 RETURN
200 X=X+H/3.

DO 1 J=1,N
SAVEY(J)=Y(J)
K(J,1)=F(J)*H/3.
PHI(J)=K(J,1)
ERROR(J)=K(J,1)

1 Y(J)=SAVEY(J)+K(J,1)
RETURN

300 PO 2J=1,N
K(J,2)=F(J)*11/3.

2 Y(J)=SAVEY(J)+.5*(K(j,1)+E(j,2))
RETURN

400 DO 3 J=1,N
K(J,3)=F(J)*1i/3.
ERROR(J)=ERROR(J)-4.5*K(J,3)

3 Y(J)=SAVEY(J)+3./8.*E(j,1)+9./8.*K(J,3)
X=XH/3.+H/2.
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HETUHN

500 DO 4 J=1/N
K(J/4)=F(J)*H/3.
PHI(J)=PHI(J)+4.*H(J,4)
EHIMP(J)=EHHOH(J)+4.*K(J,4)

4 Y(J)=5AVEY(J)+1.5*F(J/1)-4.5*K(J,3)+6.*K(J,4)
X=X+H/2.
RETURN

600 DO 5 J=1,N
K(J,5)=F(J)*11/3
PHI(J)=PHI(J)+K(J,5)
EHHOH(J)=.2*(ELHOPi(J)-.5*K(J,5))
IF(ADSCFRHOH(J)).GT.E)60 TO 10

5 CONTINUE
CO TO 20

10 I=I+1
IF(I.OE.21)VHITE(61,1000)I,X,H

1000 FORMAT(IX/1HEM HALVED STEP INCHEMENT1I31TIMES. X=1
*E15.8 ' If= 'E15.6)
X=X*H $
ACCUM=ACCUM-H
INDEX=1
IH=1
DO 6 JJ=1,N
YCJJ)=SAVEY(JJ)

6 F(JJ)=1.5*H(JJ,1)/H
IHEM=1 $ M=2
GO TO 200

20 CONTINUE
PO 8 3=1,N
IF(AllSCEHhOli(J))/E.GT.0.003)00 TO 90

6 CONTINUE
IF(1H.E(J.2)17,26

90 IF(114.E(,02)17/9
17 111=1

IE(HLASTLT.0.4*XINT)21,22
21 H=HLAST $ 00 TO 9
22 IF(HLASTGT06*XINT)23,2
23 H=XINT $ GO TO 9
24 H=0.5*XINT $ GO TO 9
26 H=2. *H
9 DO 7 JJ=1,N
7 Y(JJ)=SAVEY(JJ)+0.5*PHI(JJ)

M=0 $ IMEM=2
I=0
kFTUEN
END



PROGRAM MAD
C TO COMPUTE TRANSIENT CONCENTRATIONS IF THE
C INITIAL CONDITION AND THE MATRIX P ARE KNOVN

DIMENSION C(100,30),P(30,30)
M=TTYIN(4HM= )

N=TTYIN(4HN= )

READ(7,100)(C(1,J),J=1,N)
100 FORMAT(10F6.3)

DO 1 I=1,N
1 READ(5,100)(P(I,J),J=1,N)

DO 2 I=1,M
11=1+1
DO 3 J=1,N
0(II,J)1=0.
DO 3 K=1,N

3 C(II,J)1=C(II,J)+C(I,K)*P(K,J)
2 CONTINUE

MM=M+1
DO 4 I=1,MM,2
4RITE(61,200)(C(IiJ),J=1,N)

4 VRITE(4,200)(C(Isd),J=1,N)
200 FORMAT(10F6.4/)

END
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