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Chapter 1 

Introduction 

Increased greenhouse gas emissions have contributed to rising global temperatures in 

recent years, encouraging adaptation and make lifestyle changes in various human systems. The 

hazards of extreme temperatures impact health and economic livelihoods, especially within 

urban areas. Due to climate change, heat waves have become longer and more frequent with 

extreme heat causing higher mortality rates than any other natural disasters (Harris 2020; Baker 

2019). The frequency and longevity of these heat waves create a climate phenomenon in 

metropolitan areas known as the urban heat island (UHI) effect. In a recent issue of Time 

Magazine, the UHI effect in Jacobabad, Pakistan, is highlighted as the city reached 124F, 

weather causing respiratory distress and heatstroke for residents living there. In addition, to the 

negative health effects, the UHI effects also compromises economic productivity as people are 

unable to work during the day; the extreme heat is retained in the environment which also 

prevents cooling down at night (Graff and Neidell 2014). There is also evidence that low-income 

communities face the greatest risk as they lack the resources needed to voluntarily evacuate 

during extreme weather events (Hollis 2019). Extreme heat impacts the most vulnerable 

populations in our society, providing a strong motivation for policy proposals aimed at 

mitigating greenhouse gas emissions in the atmosphere and adaptation with environmental 

justice principles.  

Although humans are highly adaptive when it comes to heat, there is a limit since the 

body cools down by sweating which is less effective when the air is already humid and hot 

(Baker 2019). The UHI effect experienced in cities creates a core of warmer temperatures up to 

10-20 degrees warmer compared to its surrounding areas (Shandas et. al 2016). The construction 

density, human activity, traffic congestion, and lack of green/open space all contribute to the 

retainment of extreme heat in the area. The infrastructure in cities often intensify this effect 

because the dry, impermeable surfaces of asphalt and concrete get much hotter compared to 

areas with more trees, moisture, and shade, which provide a cooling effect in the environment. In 

addition, cities also tend to produce more industrial heat from cars and air conditioning which 

further exacerbates the UHI effect. On a national scale, summers in the U.S. have been hotter 

since the 1970’s and daily temperatures in metro areas are 27F higher than surrounding rural 

areas for 60 major cities (Kenward et. al 2014). Within these cities, Portland, OR ranks amongst 
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the top 5 cities in the U.S. that is impacted by the urban heat island effect. With an increase in 

the intensity and frequency of hotter weather extremes, some cities have implemented ordinances 

that require A/C capabilities in rental units (Harris 2020; Kaplan 2020). However, a major 

concern that arises from this is the energy burden, which is defined in Oregon as the percent of 

the household income spent on energy bills (Oregon Department of Energy 2019). This 

encourages homeowners to implement energy efficient systems which reduces the cost of 

utilities, greenhouse gas emissions, energy consumption and improves the overall health and 

safety of the household. Households that have a higher energy burden benefit from easing this 

since they are also less able to invest in efficiency solutions for their homes. Another approach to 

mitigate these climate change effects within the urban development setting, is through the 

implementation of urban and peri-urban forests which create a microclimate that absorbs carbon 

dioxide and dust particles and provides a more direct cooling effect. A recent call for action by 

the Food and Agriculture Organization of the United Nations (FAO) demonstrates how cities can 

use forest-based solutions as a more sustainable and resilient model of urban development, 

making cities greener and healthier places to live (Borelli and Conigliaro 2020). Studying the 

impacts of climate change illustrates the multi-scale nature of the UHI effect, which is related to 

lifestyle and policy changes both nationally and globally. 

 

1.1 Research Focus 

We refined our area of interest for this study to the neighboring cities of Eugene-

Springfield, OR in an effort to quantify the urban-heat island effect on housing markets. The 

variation of the magnitude of monthly temperature deviations from normal climate outcomes 

within a single metropolitan area allows us to tease out the potential UHI effect on housing 

prices. Economists have long studied how environmental amenities and dis-amenities impact 

housing prices and this literature provides a foundation for designing a plausibly exogenous 

measure of the urban heat island and determine whether it impacts housing price transactions 

(Ohler and Blanco 2017; Klaiber and Abbott 2011; Montero et. al 2017; Albouy et. al 2016). 

Traditionally, the hedonic price model established by Rosen (1967) is used to capture the value 

of homes as it reflects an individual’s willingness to pay (WTP) for changes in climate and 

housing amenities/dis-amenities that are location-specific and heterogenous across cities (Albouy 

et. al 2016). For example, proximity to open/green space has been shown to be an environmental 
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amenity in the Netherlands (Daams et. al 2016) while proximity to airports has been shown to be 

an environmental dis-amenity in Memphis, TN (Affuso et. al 2019). By valuing climate 

amenities, we can see how warmer temperatures affect individual behavior in the housing 

market, which provides insights into the interaction between climate and location decisions and 

informs policy.  

 

1.2 Capturing Measures of the Urban Heat Island Effect 

 

We capture measures of the UHI in our hedonic model by looking at the temperature 

deviation from monthly average and maximum daily temperatures compared to historical climate 

normals during summer months. Our identification strategy relies on neighborhood and temporal 

fixed effects along with the randomness of weather observations to isolate the UHI effect from 

other local amenities that may also impact housing prices. Because climate can be perceived 

from the actual experience of weather, the short-run response to a change in climate can be 

estimated from the effects of weather fluctuations which is known as the marginal treatment 

comparability assumption (Hsiang 2016). Bishop et. al (2019, 2) state that the best practice in 

using hedonic property models for welfare measurement relies on a research design that 

identifies a clear source of exogenous variation in an amenity such as weather, that prospective 

buyers can be assumed to observe. This ensures that our UHI measures are indeed random and 

exogenous in our model since the weather —and hot spells in particular—is salient and 

observable to a home buyer in the negotiation process. Additionally, we implement two types of 

neighborhood fixed effects to isolate the weather influence of the UHI. These neighborhood 

fixed effects control for time-invariant unobservables, like parks or biking trails, that are specific 

to neighborhoods. We also consider the spatial nature of the housing data and use GIS analysis to 

create a database of housing and climate variables for our sample. Omitted variable bias is a 

common concern with any hedonic price model and we explore this through different 

specifications of the UHI measure, temperature lag variables, interaction terms, and add controls 

for inflation in the housing market, seasonality, and neighborhood amenities, ultimately testing 

the robustness of our estimates. We find that the overall UHI effect has a negative and 

economically significant influence on housing prices in our sample. This thesis contributes to the 
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literature by borrowing approaches from agricultural, environmental, and climate economics to 

capture a measure of the heat island effect while keeping the spatial integrity of the housing data. 
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Chapter 2 

Hedonic Price Model and Environmental Amenities/Dis-Amenities 

The decomposition of the valuation of a home into the individual attributes describing the 

home is traditionally modeled using a hedonic price method, pioneered by Rosen (1974). Under 

the assumptions of his model, a house is considered to be a composite good, in which the price of 

a home, P, is reflective of its housing attributes which are represented as a bundle of goods. The 

relationship between the price of a differentiated product and its attributes is interpreted as an 

equilibrium outcome that occurs from the market interactions between the consumer and 

producer. By regressing the price of a product on its attributes, a consumer’s preference 

represented as the marginal willingness (MWTP) to pay for individual attributes of a 

differentiated product, such as a house is revealed, equation 1. 

 

𝑃 = 𝑓(𝑠𝑖𝑧𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑦𝑝𝑒, 𝑟𝑜𝑜𝑚𝑠, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠, 𝑒𝑡𝑐)  [1] 

  

In addition, the hedonic model of market equilibrium implies that changes in non-market goods 

and services can be conveyed through the location choice of a home (Scott Orford 1999). The 

market prices for housing reveal a consumers’ willingness to pay (WTP) for location specific 

housing attributes. Neighborhood and environmental amenities such as parks, better air quality, 

proximity to recreational spaces, minimal noise pollution are a few attributes that have been 

studied in the literature providing insight on how consumers value environmental amenities and 

dis-amenities (Daams et. al 2016; Montero et. al 2017; Affuso et. al 2019).  

 

2.1 Model Specification of Hedonic Price Models 

 

A recent study by Kuminoff et. al (2010) shows evidence that moving away from 

standard linear specifications of the price function improves the accuracy of estimating the 

effects of attributes on the value of a home. They argue that a flexible framework that utilizes a 

combination of spatial fixed effects, quasi-experimental identification, and temporal controls for 

housing market adjustment is needed to address the omitted variable bias problem. While this 

problem is quite general, it is challenging to evaluate its implications for hedonic estimates of 

nonmarket values because housing prices and consumer welfare are simultaneously determined 
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as equilibrium outcomes of the market clearing process (Rosen 1974). In order to address this 

bias, Kuminoff et. al (2010), implement a theoretically consistent series of Monte Carlo 

simulations to evaluate the performance of the hedonic price method in determining MWTP for 

reduced commute time and proximity to a park. Using housing transactions data for Wake 

County, North Carolina they simulate 54,000 regressions to evaluate 540 different hedonic 

models in various functional forms. The models varied according to the shape of the utility 

function (Cobb–Douglas, Translog, Diewert); the form of the price function (linear, log–linear, 

log–log, Box–Cox linear, quadratic, Box–Cox quadratic); the spatial controls for omitted 

variables (no controls, fixed effects for census tracts, spatial error model, spatial lag model); the 

approach to panel data estimation (pooled cross-section, differences-in-differences, first 

differences); the variables omitted from the regression (none, three neighborhood amenities, 

three randomly chosen variables); and the number of homes in the simulated market (200, 2000) 

(p153). By preserving the spatial characteristics of the urban landscape in their simulations, they 

state that pseudo-data reflects spatial correlation between prices, neighborhood attributes, and 

amenities in their study area. They further control for neighborhood amenities by implementing 

census tract spatial fixed effects and generate weight matrices for estimating spatial lag and 

spatial error models based on the geographical coordinates of a housing parcel. 

The results of their simulations indicate that a model estimated using OLS with no 

omitted variables contain 25% bias in linear functional form, 24% bias in semi-log functional 

form, and 42% bias in log-log functional form for cross sectional data. This bias is reduced to 

18% when spatial fixed effects are added to an OLS model in semi-log form indicating that 

adding controls for neighborhood amenities strengthen model specification. Lastly, they find that 

a difference-in-difference estimator performs the best for panel data with 16% bias when a model 

is in semi-log form. One advantage of the data used for their simulations is that it contains 

repeated sales of the same home at various periods in time which reduces bias caused from time 

constant omitted variables. 

Kuminoff et al. (2010) add insight on controlling for omitted variable bias by taking 

advantage of their data structure, preserving spatial attributes of housing parcels, and 

implementing spatial fixed effects and spatial lags in their hedonic models. Given the evidence 

that more flexible specifications for the price function outperform the simpler linear models in 

this study, we test both linear and log-linear functional forms in our model specifications. We 
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also implement spatial fixed effects at the census tract level to further control for the presence of 

bias caused by omitted variables. Our dataset also contains repeated sales from the same 

neighborhoods over a 4-year sample period allowing us to take advantage of the structure of our 

data to alleviate the presence of bias that may arise from time-constant omitted neighborhood 

variables. By measuring the amount of bias in different combinations of functional forms and 

estimation methods, Kuminoff et. al (2010) provide a guideline for model specification that 

captures the non-market values of public goods, environmental services, and urban amenities. 

 

2.2 Omitted Variable Bias and Multiscale Capitalization in Hedonic Price Models 

 

Another study conducted by Klaiber and Abbott (2011) explores the issue of omitted 

variable bias in hedonic price models by delving further into the different types of fixed effects 

that can be used in specification. They argue that the traditional fixed effects that approximate 

some notion of a neighborhood are not enough to capture unobserved variables that occur at 

different spatial scales. Although fine spatial fixed effects improve estimates, they believe that 

the bias is due to the subsuming of capitalization into fixed effects for nonmarket goods. In 

contrast, they also recognize that many studies use “coarse” effects at the city, county or school 

level to capture the capitalization of amenities but at the cost of potential omitted variable bias. 

“For example, while school districts are likely to be an appropriate scale to evaluate differences 

in school quality, fixed effects at such a large spatial scale will fail to capture potentially 

important unobservable spatial variation correlated with measures of school quality that vary 

across the neighborhoods comprising the district” (Klaiber and Abbott, 2011, 1332). This 

acknowledges that researchers may be encouraged to use finer scale fixed effects but a limitation 

of this is that district wide capitalization of school quality would not be properly measured.  

To illustrate the tradeoff between controlling for omitted variables and measurement of 

the full extent of capitalization, they create measures of adjacency to sub-division open space 

cause it has multiple plausible scales of capitalization. They refine this to sub-division open 

space because they believe that the cost of purchasing land to provide sub-division space is 

capitalized into the neighborhood as a whole given that developers pay for the land. They also 

argue that coarse-scaled fixed effects at the city or county level can potentially identify 

capitalization of amenities on a large-scale, leaving potential for omitted variable bias in 
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estimates for smaller neighborhood scales. Demographic characteristics such as race, ethnicity, 

age at the census block group level to are also included to control for potential correlation 

between the spatial measures of open space provision and socioeconomic background. They 

further explore the importance of simultaneously accounting for both small-scale and large-scale 

capitalization by creating measures for MWTP for subdivision open space separated by the 

spatial extent of capitalization. When comparing the neighborhood-wide MWTP measures, the 

OLS estimates are small and insignificant whereas the random effects (RE) and Hausman-Taylor 

(HT) estimates are larger. They also suggest that due to the inability of fixed effects being able to 

capture the large-scale capitalization, the random effects estimator is able to capture both small-

scale and large-scale capitalization with the large-scale willingness to pay being over four times 

larger than at small scales. Lastly, comparing the RE estimator and HT estimator indicates that 

the RE estimator underestimates the MWTP by more than 30% and both models show similar 

proximity-based willingness to pay measures that decrease with distance. They conclude that it is 

important to account for both large-scale and small-scale capitalization while controlling for 

potential omitted variable bias. 

Although the data for the current study is not panel in nature, Klaiber and Abbott’s 

research provides insight on how fine-scale and coarse-scale fixed effects can influence estimates 

in hedonic price models which are also applicable to our pooled cross-sectional data. This 

motivates testing different types of neighborhood fixed effects to capture any omitted variable 

bias that may be present. We use two types of fine scale fixed effects, Census Tract and PRISM 

Grid, to define neighborhood level fixed effects in our study. The census tract neighborhoods are 

on a finer scale than the PRISM Grid, which will allow us to check for robustness of our 

estimates depending on the specification of our neighborhood fixed effects.  

 

2.3 Subjective Perception of Environmental Amenities 

 

Another environmental amenity that has been commonly explored in hedonic price 

models is open/green space. In a study conducted by Daams et. al (2016), they attempt to capture 

the effect of natural space on housing prices for parcels that are close by in the Netherlands. 

They characterize this by using a survey of perceived attractiveness combined with land use data 

to measure a buyer’s willingness to pay. They assume that natural spaces are capitalized in 
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surrounding property prices and expand work done by Palmquist (2005) by including a measure 

of the perception of attraction rather than using just land use data. By doing so, they move away 

from implicit assumptions that buyers evaluate natural spaces with similar land use 

characteristics as a homogenous good. The baseline specification of the model uses a semi-log 

function and includes both time and location fixed effects. For the model including locational 

measures they find that for properties within 0.5km from natural space that is perceived as 

attractive, there is a 16% price effect which is consistent with previous studies.  

Daams et. al (2016) supports empirical literature on subjective evaluations of natural 

spaces and landscapes by including a measure of perceived attractiveness. They illustrate how 

subjective perception of environmental amenities are taken into consideration by homeowners 

when purchasing a house. This parallels with the current study as we attempt to capture the 

influence of the urban heat island effect on housing prices since the subjective perception of a 

hotter or cooler day may be absorbed within the selling price. In addition to the time fixed effects 

(yearly and monthly) that are used in our study, we create measures for the UHI recognizing that 

weather is observable (a subjective perception) to the buyer during a transaction.  

 

2.4 Estimating Environment Impacts on Housing Price 

 

Estimating the effects of environmental amenities has been explored extensively in 

hedonic price literature which also lead to the exploration of dis-amenities. The impact of an 

amenity is considered to be positive on housing prices whereas a dis-amenity would have a 

negative impact. Some early work conducted by Ridker and Henning (1967) and Keil and 

McClain (1995) explore different types of environmental dis-amenities such as air pollution or 

proximity to garbage incinerators, and their impact on housing prices. The literature also 

coincides with current research on environmental dis-amenities that consider the spatial nature of 

property data. 

A recent study conducted by Montero et. al (2017) explore the effects of air and odor 

pollution on housing prices in Madrid, Spain with a spatial lens. In order to evaluate the impact 

of these dis-amenities, they take spatial autocorrelation, spatial heterogeneity, and nonlinearity 

into consideration for their model specification. By using parametric and semiparametric spatial 

models, they attempt to capture measured differences in environmental attributes rather than a 
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consumer’s willingness to pay for a perceived environmental dis-amenity in Madrid, Spain. 

Similar to previous studies, they take a natural log transformation of prices in their data and use 

the percentage of residents who determine that the neighborhood has serious pollution issues as a 

subjective environmental factor (Montero et. al 2017). They acknowledge that because of spatial 

autocorrelation, nonlinearity, and heterogeneity in the data, in some models, residents’ 

perception of air and odor pollution is insignificant, and these can be addressed with use of 

spatially lagged terms, areal covariates, and spatial drifts. Overall, impacts of air and odor 

pollution is significant on housing prices which supports taking environmental dis-amenities into 

account. 

Montero et. al provide evidence that including spatial drifts improves specification 

strategy when creating measures to test environmental impacts on housing prices. Although we 

do not use parametric and semi-parametric models for estimation, we consider the spatial 

characteristics of the weather observations that vary in temperature to construct measures of the 

UHI across our sample area. Both the spatial and temporal nature of this variable ensures that we 

have variation in hotter temperatures. By joining the spatial characteristics of the housing data 

with weather outcomes we can specify the overall influence of the UHI on the housing market. 

Lastly, we also test weather outcome lags by creating our own spatially lagged temperature 

variables further adding to the robustness of our estimates. 

 

2.5 Using Spatial Techniques to Characterize Environmental Dis-Amenities 

 

Affuso et. al (2019) illustrate another application of using a spatial autoregressive model 

to capture the impact of an environmental dis-amenity: noise pollution in metropolitan areas. 

They determine whether the proximity to an airport influences housing prices in Memphis, 

Tennessee and find that the recent methods consider the geographical location of housing parcels 

as a spatial characteristic and utilize multiple approaches such as GIS analyses, contingent 

valuation, and hedonic models to improve estimates of the directional effects as it takes spatial 

correlation into consideration (Nelson 2004). The spatial dataset used in the study contains 

information about the noise levels, property characteristics, and neighborhood characteristics for 

housing transactions bounded by the urban growth line for Memphis. 
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Similar to previous studies, they express price in natural log form and include yearly and 

neighborhood fixed effects, which are derived by merging the data to demographic information 

at the census tract level.  They utilize Esri ArcGIS software to create proximity measures of 

distance between housing units and closest major road, four major open space areas, and the 

Mississippi River. In order to estimate the capitalization of airport noise pollution on property 

values, they employ a traditional hedonic model and borrow from theory of acoustic physics to 

create a measure of noise pollution. Their results are consistent with previous research that 

indicates noise pollution is a dis-amenity since an increase in noise pollution is capitalized in the 

value of properties across the entire sample. However, this varies across the area as different 

regions have the ability to mitigate the effects of aircraft noise based on other environmental 

factors. 

Affuso et. al find evidence that supports the idea that airport noise is perceived as a 

negative externality and recognize that their study does not account for potential macroeconomic 

benefits of the airport. Although some of the bias is mitigated by using proxies for homeowner’s 

propensity of noise avoidance, another limitation of the study that they discuss is the inability to 

completely tease out the effects of noise produced from takeoffs and landings from other 

environmental noise. This additional example of a dis-amenity shows justification that 

environmental impacts can differ depending on use of spatial techniques. We also use urban 

growth boundary lines to restrict our sample area to Eugene-Springfield and GIS analysis to 

spatially join our housing parcels to temperature variables for our study. This allows us to test 

the impact of the UHI measures assigned to each parcel across space and time.  
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Chapter 3 

Climate Change Effects: Urban Heat Island 

Economists have shown how environmental amenities and dis-amenities can influence 

housing prices in cities across the nation and world. A prevalent issue that we face in 

environmental and natural resources economics is evaluating the economic impacts of climate 

change. As we experience extreme climate changes, like frequent heat waves, it is not surprising 

to see that home buyers are cognizant of climate amenities and dis-amenities. The urban heat 

island effect is an example of an extreme climate outcome and in order to characterize this in our 

study, we use guidance from existing literature of climate amenities for our model specification.  

 

3.1 Climate Amenities, Climate Change, and American Quality of Life 

 

We can expect that changes in economic welfare can occur from extreme climate 

outcomes based on where an individual chooses to live. This change is often measured through a 

quality of life (QOL) index. Previous hedonic studies show that climate preferences for 

households in the U.S. can vary as estimates of WTP for a unit change in warming temperatures 

are positive in some studies (Hoch and Drake 1974; Moore 1998), negative in others (Cragg and 

Kahn 1997, 1999; Kahn 2009; Sinha and Cropper 2013) and close to zero in (Nordhaus 1996) in 

other studies.  

Albouy et. al (2016) explore this in their study as they estimate the dollar value American 

households place on climate amenities, specifically in temperature. The tradeoff here is that 

households may suffer from hotter summers but benefit from milder winters (Albouy et. al 2016, 

pg. 206). Using the foundational framework developed by Rosen (1974) and Roback (1982), 

they examine how households’ willingness to pay (WTP) varies in areas with different climates 

in the United States. By developing a local QOL index they measure WTP based on living costs 

of households and their income. One advantage of observing this on a national scale is the 

geographical and climate variation that is present as some states like California have hot, dry 

weather while other states like New York have cold, snowy seasonality. Their estimates of 

amenity values primarily reflect impacts of exposure to climate on comfort, activity, and health, 

including time use (Graff and Neidell 2012) and mortality risk (Deschênes and Greenstone 2011; 

Barreca et al. 2015). They implement a hedonic approach since climate amenities have no 
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explicit markets. The underlying intuition for their approach is that households pay higher prices 

and accept lower wages to live in areas with desirable climate amenities (Albouy et. al 2016, 

209). The data to measure QOL was collected from 2,057 Public Use Microdata Areas (PUMA) 

for 48 states from the 2000 Census which includes wage and housing cost differentials. They 

implement historical climate data by creating temperature bins of daily average temperatures at 

the 4km resolution from 1970-1999 and calculate the average numbers of days at each grid point 

for which the average daily high and low temperature falls within each bin. Some other climate 

data that they use are monthly precipitation and humidity levels obtained from PRISM and 

percentage of sunshine on a given day from 156 weather stations in the National Climate Data 

Center. Lastly, they use predicated climate change data from the Community Climate System 

Model and control variables for geography and demographics.  

In their dataset the average heating degree days is 4.38F and the average cooling degree 

days is 1.29F. They find that households prefer temperatures near 65F, dislike marginal 

increases in heat compared to marginal increases in cold and suffer the least from marginal 

increases in cold or heat once the temperature stabilizes to cold or hot. They also find evidence 

of heterogeneity in these preferences, with households that are most averse to cold living in the 

South, consistent with models of both sorting and adaptation (Albouy et. al 2016, 243). When 

looking at the impacts of climates change, they discover that there is an average welfare loss of 

1% to 4% of income per year by 2070-2099 in the predicted climate model assuming business as 

usual, that is no action is taken to reduce greenhouse gas emissions. These estimates are similar 

in magnitude to previous studies of economic welfare illustrating that climate impacts require 

mitigation and the costs can be justified.  

The study by Albouy et. al (2016) supports the use of hedonic pricing approach to 

measure the influence climate change in a cross-sectional setting. They acknowledge that 

households can mitigate potential damages from climate through adaptation for example, by 

insulating homes, changing wardrobes, or adopting new activities, which cross-sectional 

methods account for compared to time series panel approach (Albouy et. al 2016, 207). In our 

study we will be using similar estimation strategies and climate data as we have pooled cross-

sectional data to mitigate the influence of unobservables using neighborhood fixed effects. This 

also helps with determining mitigation/adaptation methods like upgrading to energy efficient 

utility systems, that households can implement when the UHI effect is exacerbated.  
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3.2 Extracting Trade-Off Measures for Physically Coupled Amenities 

 

The QOL index shows that the effects of hotter temperatures on housing prices can cause 

a loss in economic welfare. The urban heat island provides direct evidence of human activities 

contributing to a feedback loop that changes ecosystem services by creating localized warming 

and differences in vegetated landscapes in areas around the urban core (Klaiber et. al 2017, 

1053). As this climate change phenomenon affects many more cities across the U.S., there is a 

focus on studying how individuals adapt to these changes. In a study conducted by Klaiber et. al 

(2017), they develop a spatial, temporal panel estimator to evaluate how household’s value 

landscape and temperature ecosystem services in Phoenix, AZ. They measure landscaping as a 

composite index of “greenness” within each parcel and subdivision. The motivation behind this 

is that they believe that buyers make housing choices based on the joint parcel and subdivision 

landscapes and its combined effect on the local microclimate caused by the urban heat island 

effect. They assume that a household’s choice of landscaping is driven by the benefits of 

increased evapotranspiration, shading from trees, shrubs, and grassed areas, and reduction in 

cooling expenses that alleviate the urban heat island effect (Stone and Norman 2006).  

Due to the panel nature of their data they use the Hausman-Taylor model to define the 

spatial and temporal scale of random effects. Similar to previous studies mentioned, they use 

census tracts to define neighborhood fixed-effects and interact it with the year of sale to capture 

the spatial dimension of the random effect and the variations in population density. They 

normalize the housing prices to 1998 dollars and convert them to an annual rental rate since there 

was a rapid increase in housing prices during the sample period. The data for the landscape 

characteristics was gathered from remote sensing data, which covers 12 unique land cover types 

for the Phoenix area. They use this to measure the percentage of parcels in a subdivision that are 

green. They also include temperature data at the census tract level obtained from PRISM as they 

expect that a household’s perceptions of micro-climate are relatively coarse so temperature-

based sorting will happen at the larger neighborhood level (Klaiber et. al 2017, 1064). Variables 

for other parcel level GIS attributes such as distance to nearest highway, parks, and downtown 

Phoenix, were also included in their specification.  
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The results of the Hausman-Taylor estimate indicate that there is a 0.7% premium for 

green landscaping at the parcel level, a small but significant effect. At the subdivision level this 

is much larger; about 12% premium and the interaction effect for green subdivision is significant 

suggesting that there is a greater capitalization effects for areas with larger parcels. They take 

advantage of the between/within variation to measure the effect of green landscaping and 

temperature separately and find that the households are aware of the benefits from landscaping 

especially, within the local microclimate. They also find evidence that households tend to sort 

into neighborhoods with lower temperatures and vegetation that mitigate hotter temperatures at 

both the parcel and subdivision level. Another area that they explore are the aesthetic benefits 

aside from energy savings that can happen from landscaping choice. They estimate that there is 

$114 annual capitalization for the mean home of converting from dry to wet landscaping 

suggesting that there are private benefits from green landscaping.  

Although the current study will not be using panel data, Klaiber et. al’s (2017) provide 

insight on specification of fixed-effects and measurement error in hedonic price models. In 

addition to the two types of neighborhood fixed effects, we include yearly and monthly fixed 

effects to control for inflation in the housing market and seasonality. We also normalize the 

transaction prices of homes by converting them to 2014 dollars, which is the last year in our 

sample period. We can also explore sorting behavior of households across neighborhoods given 

the climate amenities/dis-amenities for that area. 
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Chapter 4 

Using Weather Observations vs. Climate Outcomes 

We have seen in the literature that it is common to use weather measures to identify the 

causal effects of climate change, especially when there are hotter temperature extremes. 

Depending on whether those weather measures are historical climate normals or daily 

temperatures, the choice of using weather versus a climate data to create explanatory variables 

critically affects the interpretation of the estimated coefficients in the econometric model: that is, 

whether the outcome is a true climate response or a short-run elasticity of weather (Auffhammer 

et. al 2013, 181). By distinguishing between weather observations vs. climate outcomes, there is 

a possibility to tease out the short run and long run effects and economic implications they have 

for the issue being studied. The temporal and spatial characteristics of temperature variables also 

add complexity to specification as there may be unobservable variables that are correlated with 

the weather measure.  

 

4.1 Economic Analyses of Climate Change with Temperature Measures 

 

Auffhammer et. al (2013) delve into the specification of weather observations vs. climate 

outcomes and common mistakes that are made when using these data. One pitfall they describe 

when using gridded weather data is that it does not provide enough variation in panel data since 

each grid takes on an average value across space. They also mention the averaging of daily 

temperatures can lead to similar issues as the grids are created through interpolation due to some 

areas having less weather stations than others. This is further exacerbated when fixed effects for 

time and location are included in a panel setting. They argue that when location fixed effects 

remove average weather outcomes at the interpolated location, and temporal fixed effects are 

included, the remaining weather variation is greatly diminished and the variation that is due to 

stations coming in and out of the sample can potentially account for a significant share of the 

overall variance (Auffhammer et. al 2013, 187). Another pitfall they present is the correlation of 

weather variables which causes omitted variable bias. They believe that variables like 

temperature and precipitation are historically correlated so in order to get unbiased estimates of 

the effects of these variables both should be included in the model specification. The last pitfall 

they describe is the spatial correlation of climate variables across space and time. Although 
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weather variation is random across time, they argue that variation across space is less random at 

refined spatial scales resulting in biased standard errors of estimates. One way they suggest 

econometricians can combat this is by adjusting for spatial correlation with spatial weights or a 

nonparametric approach for panel data. Since endogeneity is also a concern with weather data, 

they suggest looking at how much the underlying station data has changed over time and whether 

exogenous shocks such as policy interventions influence the frequency of weather data being 

collected.  

Along with the weather data, the researchers look at the integrity of climate prediction 

models. This is important, as the basis for future predictions occur from the existing global 

climate data (GCM). The generation of GCM comes from a physics-based model of the global 

climate in which forecasts of human activities are considered exogenous (Auffhammer et. al 

2013, 191). They argue that it is important to quantify and correct aggregation bias that happens 

at the time and spatial scale when matching the GCM to econometric model. Therefore, they 

recommend that predicted change in weather should be used in the baseline model rather than 

using direct GCM output as a future climate measure. 

The emphasis of weather specifications illustrated by Auffhammer et. al (2013) show that 

it is important to consider the underlying issues of historical or future gridded datasets. 

Depending on the type of data, specifically panel, this can cause bias in estimates of economic 

impacts of climate change. In order to create measures for the UHI effect for our study we take 

this into consideration and collect both historical climate data and monthly temperature variables 

to distinguish between climate outcomes and weather observation. This ensures that our UHI 

measures are exogenous in our hedonic price model. We will also be using pooled cross-

sectional data for our study and GIS analysis to preserve spatial characteristics with two types of 

neighborhood fixed effects that further control for bias in estimates that may occur from spatial 

correlation or omitted variables.  

 

4.2 Short Run vs. Long Run Responses to Climate Change 

 

In a recent study conducted by Kolstad and Moore (2020) the estimation of long run 

climate change effects is further explored with weather observations vs. climate outcomes. The 

motivation for this comes from concerns that the effect of year-to-year weather variation on 
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economic impacts cannot be used to identify the effect of climate changes because the response 

to short-run weather fluctuations may be fundamentally different from the response to a 

permanent change in climate (Kolstad and Moore 2020, 2). They also compare the advantages 

and dis-advantages of using panel or cross-sectional data in this setting and provide insight on 

hybrid approaches that will address consequences of using these data types. There is a preference 

for panel data as it varies both over time and space whereas in cross-sectional data the 

observations are for one period in time. Early versions of econometric models have used cross-

sectional variation in climate to estimate the marginal economic effect of long-run changes in the 

distribution of temperature and rainfall in the agriculture sector (e.g., Mendelsohn, Nordhaus, 

and Shaw 1994) however, recent econometric models use panel data to estimate these effects.  

The researchers describe the difference between weather and climate as a characteristic of 

its randomness. This allows for either short run or long run responses from individuals as they 

learn to adapt their lifestyle. Because weather is inherently random, meaning that at any given 

point in time (highly predictive) it can be drawn from a probability distribution, the probability 

distribution over weather outcomes can be thought of as the climate (Kolstad and Moore 2020, 

3). This leads to the idea that climate can be perceived from the actual experience of weather, 

therefore the short-run response to a change in climate can be estimated from the effects of 

weather fluctuations. They identify that cross-sectional models provide better estimates of long-

run responses to climate change because they incorporate the benefits of all adaption methods. In 

contrast, they believe that linear panel models provide better estimates of short-run impacts of 

weather since fixed-effects are used to control for unobservables that cross-sectional models do 

not control for. They suggest the use of hybrid approaches like non-linear panel, multistage, long 

difference or portioning variation models to estimate response functions at various timescales 

since omitted variable bias has been a long due concern in the literature.  

The parallel of estimating the economic impacts of climate change effects in agriculture 

to environmental amenities gives us justification to use observed weather data in comparison to 

historical temperature data as a measure of the urban heat island effect. By relatively comparing 

hotter to cooler summers we attempt to isolate hot spells which intensify the UHI effect in metro 

areas while also having enough variation in the weather. The pooled cross-section nature of our 

data along with yearly, monthly, and PRISM Grid neighborhood fixed effects further provide an 

advantage in capturing this impact with our UHI measures.  
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Chapter 5 

Study Area 

The Eugene-Springfield area is located within Lane County in the eastern region of 

Oregon near the confluence of the Willamette and Mackenzie Rivers. The study area covered 

155.52 km2 with latitudinal range of 4358 N to 448 N and longitudinal range of -12312 W 

to -12252 W (Figure 1). This is the third largest metropolitan area in Oregon with a total 

population of 234,224 people. In recent years, the population has grown 5.5 % with median 

home value of $272,000 (U.S. Census Bureau 2018). It is a college town home to the University 

of Oregon, Northwest Christian University, and Lane Community College making it a cultural 

hub. Due to this characteristic, many residents of this metro are usually students, faculty, and 

staff of these institutions. This demographic includes both renters and owners, however for this 

study we focus on transactions of single-residence homes. The state of Oregon has a special land 

use program that protects farm and forest land, therefore cities and counties plan for population 

growth using compact development principles defined by urban growth boundaries (City of 

Eugene 2017). These boundaries include city limits and additional land that can be developed 

into homes, jobs, parks, and schools to accommodate 20 years of population growth. In order to 

create a measure for the urban heat island effect, spatial variation in housing parcels and in 

temperature effects from hot spells is necessary. Further, best practices in hedonic estimation is 

to limit analysis to a single competitive land market. Thus, the study area is restricted by the 

Eugene and Springfield urban growth boundaries.  

The climate in the Willamette Valley—which contains Eugene and Springfield—is cool 

and moist with over 170 different crop and livestock items being produced in the area. Its fertile 

soil makes it an ideal environment to grow timber, hazelnuts, grass and legume seeds (USDA 

2019). The seasonal variation in weather ranges from abundant precipitation in winter and spring 

seasons and hot, dry weather in the summer making it prone to extreme wildfires (NOAA 1997).  
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Figure 1: Location Map of Lane County (left) and the Eugene-Springfield Metropolitan 

Area (right) 

 

5.1 Housing Transactions Data 

 

 The data for housing transactions in Lane County was purchased from CoreLogic’s 

University Data Portal, which includes deed records and tax assessor data from 2004 to 2015. To 

select the sample used to estimate our hedonic price model, we focused on transactions that 

occurred in the Eugene-Springfield metropolitan area between May and September. Since the 

urban heat island effect occurs during the hottest time of the year, we focus on summer 

transactions with buffer months, May and September, as it is typical for closing date to occur 

within a few weeks to a month after an offer is accepted. The assessor data includes the sale 

amount (price) and household characteristics of 3,309 single-residence parcels which are 

uniquely identified by the account number (acctnum), shown in Table 1. All transaction prices 

are adjusted to 2014 dollars using the House Price Index from the Federal Housing Agency. 

Zero-dollar transactions were removed from the sample and the market improvement value 

(ImpValue), which is provided by the local taxing/assessment authority, is used to capture the 

value of the physical structure and housing characteristics. Figure 2 below shows the change in 
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average price of a parcel in our sample over time, which ranges from $234,197.60 to 

$356,597.50. The fluctuations in the average price reflect the housing market crash that occurred 

during our sample period and we control for this using yearly fixed effects, which are further 

discussed in the identification strategy.  

 

Figure 2: Average Price of a House Sold in 2006, 2009, 2012, and 2014 

 

 

 The variable acres represents the total acreage of a parcel. Also included are two types of 

neighborhood fixed effects using census block groups (Census Tract) and the PRISM Grid; 

Census Tract is categorical variable that represents the census tract ID name as it is a string data 

type. The parcels fall within 37 unique census tracts and 20 unique PRISM Grids, we discuss 

how these fixed effects are also specified later in the identification strategy. The sale year 

(SaleYear) and sale month (month) have been coded as dichotomous variables to control for 

inflation in prices and any seasonal effects. The overall dataset includes 3,532 transactions, this 

is higher than the number of unique parcels as some homes have sold multiple times over the 

years. 

 

Table 1: Descriptive Statistics of Housing Transactions 
 Variable Observations Mean Std. Dev. Min Max 

 acctnum 3532 - - - - 

 ImpValue  3532 198658.36 96198.546 19721 1387106 
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 acres  3532 .178 .161 0 3.65 

 SaleYear 3532 2009.498 3.218 2006 2014 

 month 3532 6.946 1.41 5 9 

 day 3532 17.101 8.772 1 31 

 price 3532 288142.51 749722.11 10456.412 19726054 

year1 3532 .388 .487 0 1 

 year2 3532 .201 .401 0 1 

 year3 3532 .199 .399 0 1 

 lnp 3532 12.347 .534 9.255 16.797 

tractid 3532 - - - - 

*Year1, 1 if the sale year is 2006 

*Year2, 1 if the sale year is 2009 

*Year3, 1 if the sale year is 2012 

*lnp is a natural log transformation of price  

*tractid represents the census block group assigned to a neighborhood by the U.S. Census Bureau  

 

5.2 Climate and Weather Data 

 

 The data for the summer climate (long run measure) and weather (short run measure) of 

the Eugene-Springfield area was collected from the PRISM Climate Group. In studying the 

impact of climate on agriculture, health, and electricity usage, temperature has been measured by 

the number of days in various temperature bins (Schlenker and Roberts, 2009; Deschenes and 

Greenstone, 2011; Albouy et al., 2016). Table 2 shows the descriptive statistics for the following 

monthly weather data collected for each 4km grid covering the study area: maximum 

temperature (tmax), mean temperature (tmean), and the geographical variables, elevation, 

latitude, and longitude. Historical climate normals, calculated from monthly 30-year “normal” 

temperature covering the conterminous US, averaged over the period 1981- 2010, were also 

included (LRtmin, LRtmax, and LRtmean,). 

 

Table 2: Descriptive Statistics of Climate and Weather Data 
 Variable Observations Mean Std. Dev. Min Max 

 PRISM Grid 3532 - - - - 

 Elevation (ft) 3532 543.52 208.061 374 1040 
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 SeasonYear 3532 - - - - 

 SeasonMonth 3532 6.946 1.41 5 9 

 tmean (°F) 3532 62.975 4.833 53.2 70.9 

 tmax (°F) 3532 77.266 6.462 64.4 87.3 

 max_lag (°F) 3532 77.31 6.357 64.4 87.3 

 avg_lag (°F) 3532 62.947 4.775 53.2 70.9 

 LRtmean (°F) 3532 61.924 4.32 54.5 66.7 

 LRtmax (°F) 3532 75.618 5.841 65.9 82.4 

 LRmax_lag (°F) 3532 72.85 7.657 62.7 82.4 

 LRavg_lag (°F) 3532 59.936 5.771 52.3 66.7 

 temp_dev (°F) 3532 14.291 2.063 10.9 17.4 

 LR_tempdev (°F) 3532 13.694 1.604 11.3 15.8 

 avg_tempdev (°F) 3532 1.051 1.586 -2.4 4.3 

 max_tempdev (°F) 3532 1.648 1.949 -3.7 5.1 

 avg_tempdev_lag (°F) 3532 3.011 4.189 -2.4 12.9 

 max_tempdev_lag (°F) 3532 4.46 6.115 -3.7 17.7 

*All temperatures data were collected for on monthly basis 

*Avg_tempdev_lag is the previous month’s average temperature assigned to a parcel based on sale 

month 

*Max_tempdev_lag is the previous month’s maximum temperature assigned to a parcel based on sale 

month 

*SeasonMonth & SeasonYear represent the month and year that the seasonal climate data was 

collected for 

 

 

 The historical normals dataset describes the average monthly and annual conditions for 

the recent three decades, giving us insight to the spatial variation in the climate in the U.S. 

(PRISM 2019). The advantage of using mean summer temperatures is that they capture 

seasonality, which annual heating and cooling degree days and temperature bins do not (Sinha et. 

al 2017). The average normal temperature ranges from 54.5-66.7F and maximum normal 

temperature ranges from 65.9-82.4F for our sample area, Eugene-Springfield. We focus on the 

hottest summers on record for the area, 2009 & 2014, along with cooler summers, 2006 & 2012, 

to ensure that we have variation in our key independent variable, the urban heat island (UHI) 

effect. We difference out the normal temperature for a month from the observed maximum 
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temperature for the month (tmax-tmean) to gauge if the summer season was particularly hot or 

cool relative to the normal. Identifying hotter summers help with identifying the UHI effect as 

the frequency of hotter temperatures creates a core of heat in urban areas (Kenward et. al 2014). 

The scope of our data allows us to clearly identify the variation in the weather which assists in 

specifying the UHI effect spatially and temporally. 
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Chapter 6 

Econometric Framework 

The specification of our model starts with a traditional linear regression model estimated 

with OLS, a common approach in hedonic price models. Given the pooled cross-section nature 

of the data we adjust for the presence of heteroskedasticity using robust standard errors and 

include a time dummy variable to capture structural changes over time. The advantage of the 

time dummy is that it allows the intercept to have a different value in each period of our sample. 

A common functional form that is often used in hedonic price models is a log-linear form which 

narrows the range of the transformed variable and ensures that our model is less sensitive to 

extreme values (Kuminoff et. al 2010; Riera et. al 2006; Klaiber et. al 2017; Ozbakan and Kale 

2012). Taking a natural log transformation of our dependent variable, price, results in the 

equation: 

 

𝑙𝑛𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛽2𝑇𝑒𝑚𝑝𝑖𝑡 + 𝑌𝑒𝑎𝑟𝑡 + 𝑀𝑜𝑛𝑡ℎ𝑚(𝑖) + 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑁(𝑖) + 𝜀𝑖𝑡  [2] 

 

where 𝑙𝑛𝑃𝑖𝑡 represents the log price of a house i at a given time t, 𝑋𝑖𝑡 represents a vector of 

housing variables (log of ImpValue and acres), 𝑇𝑒𝑚𝑝𝑖𝑡 represents a vector of urban heat island 

variables (avg_tempdev, max_tempdev, avg_tempdev_lag, and max_tempdev_lag), 𝑌𝑒𝑎𝑟𝑡 is a 

dummy variable of the year a housing transaction was made, 𝑀𝑜𝑛𝑡ℎ𝑚(𝑖) represents monthly 

fixed effects, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑁(𝑖) represents the neighborhood fixed effects indexed by N for the 

different specifications (Census Tract and PRISM Grid), and 𝜀 is the error term. We also 

estimate the following linear model for robustness checks:  

 

𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛽2𝑇𝑒𝑚𝑝𝑖𝑡+𝑌𝑒𝑎𝑟𝑡 + 𝑀𝑜𝑛𝑡ℎ𝑚(𝑖) + 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑁(𝑖) + 𝜀𝑖𝑡 [3] 

 

6.1 Identification Strategy: Measurement of 𝑻𝒆𝒎𝒑𝒊𝒕 

 

The urban heat island effect is captured in our model by taking the difference between 

maximum monthly temperature for the month that the house is sold (tmax) and maximum normal 

temperature for the same month (LRtmax) to observe the temperature deviation within a given 

month from the historical normal. The maximum temperature deviation (max_tempdev) varies 
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from 0F to 3.8F in 2006, -0.5F to 4.3F in 2009, -3.7F to 3F in 2012, and -0.1F to 5F in 

2014. Similarly, another measure created to capture and test this effect is the difference between 

average monthly temperature for the month that the house is sold (tmean) and average normal 

temperature for the same month (LRtmean) represented by the variable avg_tempdev. The 

average temperature deviation (avg_tempdev) varies from -1.3F to 2.5F in 2006, -0.3F to 3F 

in 2009, -2.4F to 1.6F in 2012, and -0.2F to 4.3F in 2014. The left panel on Figure 3 below, 

shows the spatial variation in the overall maximum temperature deviation by neighborhoods 

defined by Census Tract.  

 

Figure 3: Maximum Temperature Deviation by Census Tract (left) and Average 

Temperature Deviation by Census Tract (right) 

   

 

The temperature deviation measures, max_tempdev and avg_tempdev, help identify the urban 

heat island effect because we are using weather observations at monthly and yearly time scales. 

This parallels specification strategies used within agricultural economics and recreational fishing 

demand studies, as temperature is assumed to be exogenous in the presence of controls for spatial 

factors (e.g. neighborhoods, regions) and temporal factors (e.g. time dummies) (Blanc and 

Schlenker 2017; Schlenker and Roberts 2009; Dundas and H. von Haefen 2020). As mentioned 

by Kolstad et. al (2020), the random nature of weather cannot be controlled by the economic 

agent and is generally unanticipated, while production choices (e.g., what to plant and when, or 

how much capital to invest) are decisions made by the economic agent and are based on factors 
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such as prices and expectations about (stochastic) weather. We assume that these temperature 

deviations are caused by the urban heat island effect since it intensifies the heat in areas with a 

higher density of buildings, industrial areas, and major highways/roads. This indicates that the 

natural within variation in weather variables (max_tempdev and avg_tempdev) is essential in 

generating a plausibly exogenous variable that helps identify the urban heat island effect and 

reduce bias caused from any unobservable factors in our models which are also unlikely to be 

correlated with random weather deviations.  

 

6.2 Timing Issues with the Urban Heat Island Measures 

 

It is expected that the timing between when the house price is negotiated to the closing 

date of a transaction can vary from a few weeks to a month in the real estate market. Since the 

weather is observable and known to the buyer during the initial phase of the home buying 

process when price is being negotiated, we can expect that the weather from this time can 

influence the value of a home. This perception in weather outcome can create a lag in the 

influence of the weather effect on housing prices because the actual closing date of the home can 

occur much later in time. Therefore, we create alternative measures of one-month lagged 

temperature deviation (max_tempdev_lag and avg_tempdev_lag) by assigning the previous 

month’s weather to a housing transaction (Montero et. al 2017). Re-estimating the econometric 

model with alternative lagged temperature deviations is meant to check for robustness in the 

estimate. Aligning with best practices in hedonic property value models, the choice of the 

amenity variable (urban heat island measures), the source of exogenous variation in the amenity 

(randomness of weather observations),  and the composition of our sample (removing zero-dollar 

transactions and including repeated sales of a parcel) contribute to the robustness of our 

estimates (Bishop et. al 2019, 17).  

 

6.3 Measurement of Cooling Capabilities (𝑻𝒆𝒎𝒑𝒊𝒕*top25) 

 

We hypothesize that the cooling capabilities or energy efficiency of a home can influence 

its price however, due to data limitations we cannot explicitly control for whether a parcel has air 

conditioning or not. We attempt to control for this by creating an interaction term that picks up 
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high-value housing structures that are likely to have air conditioning systems that provide 

adaptation to hot spells. First, we create a dummy variable, top25, that indicates whether or not a 

parcel falls within the top quartile of market improvement values then interact with our UHI 

measures, avg_tempdev, max_tempdev, avg_tempdev_lag, and max_tempdev_lag. We test this 

interaction term in all of our models which allows us to differentiate the UHI effect across 

wealthy and less wealthy neighborhoods and determine whether homes with higher physical 

quality (as measured by market improvement value) are less susceptible to hot spells in property 

transactions. 

 

6.4 Measurement of 𝑿𝒊𝒕 

 

The parcel specific variables in our model are represented by ImpValue and acres. Under 

the assessed value method, all of the variables of the structural housing attributes are 

theoretically compiled into one statistic – the assessment (Esquire 2008), therefore it is common 

practice to use the assessed structural value on the right-hand side of hedonic price models. The 

values of characteristics associated with a property’s housing structure, such as the number of 

bedrooms, bathrooms, garage, fireplace, and landscaping are lumped into this assessed structural 

value (Horsch and Lewis 2009). We use the market improvement value, ImpValue in our 

specification, following the logic that all attributes of the physical housing structure would be 

capitalized into the home’s improvement value. This specification is consistent with property 

assessments, whereby a property’s value is the linear sum of its improvement value and its land 

value. A coefficient is multiplied by ImpValue to capture any systematic under or over-

assessments made by assessors relative to that observed in market transactions. In simple 

specifications with 𝑃𝑖𝑡 represented as a linear rather than log-transformed variable, we fail to 

reject the null hypothesis that the parameter on ImpValue is equal to one (5% level). Thus, 

assessments of ImpValue appear to accurately reflect the market. The literature also does not 

provide concrete guidance on the selection of variables or functional form in hedonic models for 

individual housing attributes, therefore we avoid misspecification and introducing bias in our 

model by using the market improvement value (Horsch and Lewis 2009).  
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Figure 4: The Average Market Improvement Value of Parcels by Neighborhood 

 

 

Figure 4 shows the variation in the market improvement value of parcels within the 

Eugene-Springfield by census block. The dark purple areas represent parcels that have average 

market improvement value less than $346,594.70 and the white areas represent parcels that have 

average market improvement value less than $141,680.60, demonstrating substantial spatial 

variation in market improvement value. The parcels with the highest market improvement value 

(dark to light purple) indicate the neighborhoods with the most expensive housing structures. 

Additionally, we also expect that the size of a parcel (acres) positively contributes to the value of 

a home given that larger parcels sell for a higher price. The combination of these parcel-specific 

variables address observable heterogeneity among housing parcels in the Eugene-Springfield 

area, strengthening our model specification.  

 

6.5 Measurement of 𝒀𝒆𝒂𝒓𝒕 

 

We implement a dummy for the year of sale to capture unobserved dynamic economic 

processes that could affect the housing price and other unobserved neighborhood heterogeneities 
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(Caudill, Affuso, and Yang 2015). As shown in Figure 2 earlier, there is a large drop in housing 

prices from 2006-2008, about $113,702, that was caused by the U.S. housing market crash which 

occurred during the financial crisis of 2008. The advantage of using the year dummy variable is 

that it controls for this exogenous shock in housing prices that were widely acknowledge as 

leading to the Great Recession.  

 

6.6 Measurement of 𝑴𝒐𝒏𝒕𝒉𝒎(𝒊) 

 

Another concern with a hedonic price model is that seasonality effects can often be 

correlated with both the dependent variable and independent variables in a model. For example, 

in the real estate market, summer is the busiest time of year which impacts the number of, and 

potentially the quality of housing transactions that occur. An increase in the amount of sales may 

occur during seasons when sellers of homes expect to have more potential buyers. To control for 

this seasonality, we implement monthly fixed effects which help isolate the causal relationship 

between the price of a house and the urban heat island variables, by separately accounting for the 

seasonal impacts of summer sales. 

 

6.7 Measurement of 𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒉𝒐𝒐𝒅𝑵(𝒊) 

 

We adjust our specification above to include two types of neighborhood fixed effects. 

Since the definition of neighborhood is arbitrary, we present estimates based on the census block 

groups and the PRISM Grid used to define neighborhood fixed effects. The neighborhood fixed 

effect measures control for unobserved neighborhood amenities and dis-amenities, including the 

demographic composition of neighborhoods such as income, race, etc. contained in the census 

block groups. Adding these neighborhood fixed effects also explicitly controls for local 

amenities such as parks, recreation spaces, and proximity to urban center, that influence the price 

of a house. Figure 5 shows the variation in the average price of a home based on the census block 

groups showing wealthy and less wealthy neighborhoods in our sample. Klaiber and Abbott 

(2011) mention that coarse scale fixed effects (city or county) leave the potential for bias due to 

omitted variables for smaller neighborhood scales but with the use of two types of fine scale 

fixed effects (neighborhoods) we address this concern in our model as our parcels fall within 37 



 32  

unique Census Tracts and 20 unique PRISM Grids ensuring that we have variation within our 

fine scale fixed effects. The neighborhood fixed effects help capture the effect of climate on 

housing prices, and so this study relies on within-neighborhood variation in temperature across 

the cooler summers (2006, 2012) and hotter summers (2009, 2014) in our sample to identify the 

urban heat island effect. The intention of the neighborhood fixed effects is to absorb the price 

effect of spatially clustered omitted variables ensuring that our measures of observed temperature 

deviations are quasi-random and provide adequate within variation needed to identify the 

influence of the urban heat island effect on housing prices (Kuminoff et. al 2010).  

 

Figure 5: Average Price of a House by Census Tract (2014 USD) 
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Chapter 7 

Measuring Spatial Data with Geographic Information Systems (GIS) 

Recent literature has emphasized that omitted variable bias is a major issue in hedonic 

price models when parcel level amenities and dis-amenities are not observed in spatial datasets. 

While the geographic scale may impact the magnitude of the estimated effects, there is consistent 

evidence that these spatially heterogeneous amenities are correlated with landscape and 

temperature variables, however with the use of GIS software it has become easier to control for 

spatial amenities (Klaiber et. al 2017). We combine the housing and climate data with Esri 

ArcGIS Pro so that we can assign temperature variables to each housing parcel in the sample. 

Figure 6 shows a workflow of how this was executed. Each parcel was connected to the GIS 

parcel data by account number assigned by the assessor, then clipped to the Eugene-Springfield 

urban growth boundary line. We then define neighborhoods using census tract groups and 

overlay that with the housing parcels layer. Using the spatial join tool, we link housing parcels to 

census tract groups so that each parcel is associated with its neighborhood fixed effects. The 

spatial join tool allows us to preserve all spatial characteristics associated with the parcels. Then 

a feature class was created using the latitude and longitude associated with each PRISM grid that 

contains the climate data. Each neighborhood was then connected to the PRISM grid using a 

spatial join in GIS to spatially connect a housing parcel to temperature variables.  

Figure 6: GIS Workflow shows Sequence of Operations 
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7.1 Summary of Identification Strategy and Empirical Approach 

GIS analysis of spatial data facilitates our econometric identification strategy and allows 

us to maintain the integrity of the spatial characteristics of the housing and climate data in our 

sample. Using the two types of neighborhood fixed-effects, parcel-specific variables, and 

controlling for time trends and seasonality strengthen our specification strategy for isolating the 

influence of the urban heat island effect on home prices. The mean independence assumption in 

the classic linear regression model requires that E[𝜀𝑖𝑡| 𝑋𝑖𝑡 , 𝑇𝑒𝑚𝑝𝑖𝑡 , 𝑌𝑒𝑎𝑟𝑡, 𝑈𝐻𝐼 ∗

𝑡𝑜𝑝25𝑖 , 𝑀𝑜𝑛𝑡ℎ𝑚(𝑖), 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑁(𝑖)] = 0. Since omitted variable bias caused by other 

unobservables of housing and neighborhood amenities is a common concern in hedonic model, 

we rely heavily on the random nature of weather and its spatial and temporal variation to create 

exogenous temperature measures of the UHI effect. This ensures that all of our time-varying 

structural components are uncorrelated with the error term reducing bias and adding to the 

consistency of our estimates given the pooled-cross sectional nature of our data.  
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Chapter 8 

Empirical Results for Model with Logged Dependent Variable 

A common hedonic specification is to take a log transform of the transactions price (the 

dependent variable) and the market improvement value (an independent variable). Table 3 and 4 

contain all models with price in log form so the estimated coefficients can be easily interpreted 

as a percent change. The overall model fit is measured by adjusted R2 is around 0.49. One 

notable feature of our model is the use of market improvement value in place of separate 

variables indicating physical structure (e.g. number of bedrooms, garage, etc.). However, the 

adjusted R2 measure of goodness-of-fit is comparable to other similar hedonic models that 

separately include physical attributes of the house, such as Dundas and Lewis (2020). The 

estimates of our model indicate that there is a significant relationship between the price of a 

house and the average lag temperature deviation and maximum lag temperature deviation 

variables in Table 3 and 4. Robust standard errors are used to correct for any violation of the 

assumption that the variance of the error terms is constant for the estimated parameters.  

All models include time dummies for the year of house sale (closing date) and monthly 

fixed effects. The neighborhood fixed effects are included in the specification to control for any 

unobserved neighborhood qualities represented by the PRISM Grid and Census Tract variables. 

Also included in each model are the acres of a parcel, the log transformation of the market 

improvement value, which captures the value of the structure only (this includes housing 

characteristics such as the number of bedrooms, number of bathrooms, whether there is a 

fireplace, backyard, pool, etc.), a measure of the UHI, an interaction term between the UHI 

measure and whether the parcel falls within the top quartile of market improvement value in our 

sample, and a lag temperature variable. 

 In Table 3 and 4, the estimated coefficient of the variable acres has a positive but 

statistically insignificant effect on the price. The coefficient of the time dummies for year of sale 

are all statistically significant and show that homes sold in 2006 sell for 22-24% more compared 

to homes sold in 2012. The estimates of the market improvement value are positive as expected 

across all models and show that a 1% change in the improvement value of the structural 

components of a home would approximately increase the housing price by 0.70-0.73%. For 

example, if a house’s total value is $300,000, and its market improvement value is $200,000 

(these numbers are close to our sample means), a 1% change in improvement value would raise 
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improvement value by $2000, and therefore change total value to $302,000, which works out to 

an approximate 0.67% change. So, the range of 0.70%-0.73% in the estimates are very 

reasonable for our model. We control for seasonal effects by implementing monthly fixed 

effects, which are positive and statistically significant if a house is sold in July in model 1, 2, 3, 

and 4. The estimates of the coefficient for houses sold in June and August are negative and 

statistically insignificant in all the models.  

 

Table 3: Four Estimated Hedonic Price Models including Maximum Temperature 

Deviation 

With natural log transformation of price and market improvement value (ImpValue) 
 (1) (2) (3) (4) 

max_tempdev 0.000889  -0.000962  

 (0.00500)  (0.00494)  

max_tempdev_lag -0.00897* -0.00917* -0.00996** -0.0101** 

 (0.00493) (0.00493) (0.00504) (0.00503) 

max_tempdev*top25 0.0161**  0.0151**  

 (0.00655)  (0.00662)  

max_tempdev_lag* 

top25 
-0.00411* -0.00255 -0.00502** -0.00359 

 (0.00249) (0.00232) (0.00251) (0.00235) 

acres 0.00313 0.00434 0.00860 0.0108 

 (0.0493) (0.0485) (0.0508) (0.0511) 

ImpValue 0.722*** 0.736*** 0.701*** 0.714*** 

 (0.0226) (0.0221) (0.0227) (0.0223) 

Year Time Dummy Included Included Included Included 

Monthly Fixed 

Effects 
Included Included Included Included 

Neighborhood Fixed 

Effects 
PRISM Grid PRISM Grid Census Tract Census Tract 

Constant 3.794*** 3.628*** 4.226*** 4.092*** 

 (0.296) (0.290) (0.292) (0.288) 

Observations 3532 3532 
3532 

 
3532 



 37  

R2 0.496 0.495 0.499 0.498 

Adjusted R2 0.491 0.491 0.492 0.491 

Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01 

 

Our measures of the UHI, max_tempdev_lag and avg_tempdev_lag, indicate that there is 

a negative influence on housing prices from hot spells that occur a month prior to the sale. The 

estimates from model 4, suggest that a one degree increase in maximum lag temperature 

deviation causes an approximate 1% decrease in housing prices for those homes below the top 

quartile in improvement value, indicating that the weather observed in a previous month can 

influence housing prices for the less expensive physical structures. In Table 3 and 4, the 

estimates in model 4 give very similar results which differ when we use the maximum 

temperature deviation or average temperature deviation in our specification. With the interaction 

term, we find some evidence that the UHI has a much smaller negative effect on home prices for 

the top 25% of improvement values, but the evidence is somewhat weak and varies across model 

specifications. For model 1 and 3 this indicates that a one degree increase in the UHI has a larger 

positive effect on home prices (by 1.5%-1.6%) for homes that fall within the top quartile of 

market improvement values compared with homes that fall below the top quartile of market 

improvement values (Table 3). 

 

Table 4: Four Estimated Hedonic Price Models including Average Temperature Deviation 

With natural log transformation of price and market improvement value (ImpValue) 
 (1) (2) (3) (4) 

avg_tempdev -0.00681  -0.00592  

 (0.00562)  (0.00559)  

avg_tempdev_lag -0.00804 -0.00846 -0.00989* -0.0103* 

 (0.00584) (0.00583) (0.00585) (0.00584) 

avg_tempdev* 

top25 
0.0179**  0.0163*  

 (0.00909)  (0.00915)  

avg_tempdevlag* 

top25 
-0.00369 -0.00228 

-0.00497 

 
-0.00372 
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 (0.00349) (0.00326) (0.00353) (0.00330) 

acres 0.00434 0.00705 0.0104 0.0123 

 (0.0485) (0.0492) (0.0500) (0.0507) 

ImpValue 0.722*** 0.732*** 0.702*** 0.711*** 

 (0.0237) (0.0224) (0.0237) (0.0225) 

Year Time Dummy Included Included Included Included 

Monthly Fixed Effects Included Included Included Included 

Neighborhood Fixed 

Effects 
PRISM Grid PRISM Grid Census Tract Census Tract 

Constant 3.741*** 3.609*** 4.165*** 4.061*** 

 (0.297) (0.284) (0.290) (0.279) 

Observations 3532 3532 3532 3532 

R2 0.495 0.495 0.498 0.498 

Adjusted R2 0.491 0.490 0.491 0.491 

Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01 

 

8.1 Robustness Check with Level-Level Model 

 

As a robustness check, we re-estimate the UHI effect in models where all prices 

(transaction price and market improvement value) are expressed in linear rather than logged 

form. This type of model is commonly referred to as a level-level model. The linear level-level 

models, shown in Table 5 & 6, indicate that there is a significant relationship between the price 

of a house and the average temperature deviation and maximum temperature deviation variables. 

Both tables contain a temperature lag variable which takes the previous month’s weather into 

account when making a house sale represented by the average lag temperature deviation and 

maximum lag temperature deviation variables. For example, if a house sale occurred in the 

month of June, the previous month’s weather deviation, May was assigned to the transaction. 

Model 3 in Table 5 shows that the price of a house sold in 2006 is expected to be $134,848.60 

higher than those sold in 2009, 2012, and 2014. Contrastingly, the price of a house sold in 2012 

is expected to be $92,127.90 less than those sold in 2006, 2009, and 2014. The estimates of the 

time dummies are similar in magnitude and statistical significance to our initial OLS models 
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showing consistency in the decline of housing prices. The coefficients of the market 

improvement value remain positive and have a statistically significant effect on the price of a 

house in all models. When looking at the estimated coefficients of homes sold in August, we find 

that they are positive and statistically significant in all models while the other monthly fixed 

effects are insignificant in the lagged models. Table 5 also shows that the estimated coefficients 

of maximum temperature deviation are negative and statistically significant in models 1 and 3. 

We find that if the maximum temperature deviation increases by one degree the price of a house 

is expected to decrease by $18,858.60 in model 1. Results in model 3 which shows that if the 

maximum temperature deviation increases by one degree the price of a house is expected to 

decrease by $17,666. This estimate is similar in magnitude to the estimated maximum 

temperature deviation coefficients in the initial regressions, which suggest consistency in our 

estimates.  

 

Table 5: Four Estimated Hedonic Price Models with Maximum Temperature Deviation 

including Temperature Lags 

All models are estimated by samples corrected for heteroskedasticity 
 (1)  (2)  (3)  (4)  

max_tempdev -18858.6**  -17666.0**  

 (8570.8)  (8171.6)  

max_tempdev_lag 4191.4 
4087.9 

 
9012.0 

8863.0 

 

 (4780.1) (4785.5) (6748.3) (6729.0) 

max_tempdev*top25 3060.0    

 (5323.1)    

max_tempdev_lag*top2

5 
1546.9 1678.8 7422.7 1527.2 

 (2218.8) (1845.8) 
(4527.7) 

 
(1937.7) 

acres -134134.7**  -173089.2** -176144.2** 

 (63934.4)  (83441.0) (85285.9) 

Improvement Value 1.194***  1.005*** 1.046*** 

 (0.143)  (0.135) (0.121) 

Year Time Dummy Included Included Included Included 
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Monthly 

Fixed Effects 
Included Included Included Included 

Neighborhood  

Fixed Effects 
PRISM Grid PRISM Grid Census Tract Census Tract 

Constant 18528.5 -43856.1 117349.6 60697.1 

 (97016.7) (117546.6) (120786.9) (134491.6) 

Observations 3532 3532 3532 3532 

R2 0.074 0.073 0.050 0.049 

Adjusted R2 0.065 0.065 0.036 0.036 

Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 The estimated coefficients in Table 6, show that the average temperature deviation are 

also negative and has a statistically significant effect on the price of a house in model 1 and 3. 

We find that if the average temperature deviation increases by one degree, the price of a house is 

expected to decrease by $28,875.10 in model 1. Results in model 3, show that if the average 

temperature deviation increases by one degree, the price of a house is expected to decrease by 

$28,096.20. The estimated coefficients vary slightly in magnitude in the models depending on 

the type of neighborhood fixed effects used, adding to the robustness of our estimates. The 

coefficients of the average lag temperature deviation, maximum lag temperature deviation, and 

interaction term are positive but statistically insignificant, in all models that they are included in 

both Table 5 and 6. 

 

Table 6: Four Estimated Hedonic Price Models with Average Temperature Deviation 

including Temperature Lags 

All models are estimated by samples corrected for heteroskedasticity 
 (1) (2) (3) (4) 

avg_tempdev -28875.1**  -28096.2**  

 (12994.6)  (13080.7)  

avg_tempdev_lag 5477.5 5468.1 
4167.3 

 

3410.7 

 

 (6233.8) 
(6469.3) 

 
(5720.2) (5471.8) 

avg_tempdev*top25 -19429.9 -32241.5 -16840.9  
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 (21476.2) (21834.9) (21513.1)  

avg_tempdev_lag*top25 3595.7  3122.8 1282.4 

 
(3799.3) 

 
 

(3858.1) 

 
(2355.7) 

acres -129362.3** -136212.5** -170000.9** -177159.1** 

 (63529.7) (66062.3) (82802.9) (86371.0) 

Improvement Value 1.261*** 1.358*** 1.080*** 1.053*** 

 
(0.185) 

 
(0.223) (0.175) (0.126) 

Year Time Dummy Included Included Included Included 

Monthly 

Fixed Effects 
Included Included Included Included 

Neighborhood  

Fixed Effects 
PRISM Grid PRISM Grid Census Tract Census Tract 

Constant 20980.0 
-40424.5 

 
269152.7** 182092.0 

 (93500.6) (114613.6) (112724.1) (115166.1) 

Observations 3532 3532 3532 3532 

R2 0.076 0.074 0.051 0.049 

Adjusted R2 0.067 0.066 0.038 0.036 

Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01 

 

8.2 Summary of Results 

 

Our results indicate that the overall UHI effect has a negative influence on housing 

prices. We have weak evidence that the negative price effect of the UHI is larger for those homes 

which have less expensive physical structures (the bottom 3 quartiles of market improvement 

value), and that the UHI has an insignificant effect on the price of the homes with the most 

expensive physical structures (the top quartile of market improvement value). However, the 

evidence is stronger for an overall average negative UHI effect on prices than the evidence on 

the heterogeneity of the UHI effect across homes with different physical structure values.  Given 

the different functional forms tested in our OLS models, we find that the independent variables 
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explain far more of the variation in the log transformed prices than for linear representations of 

prices. The log form is also preferred because our dependent variable is a positive price, and the 

log transformation narrows the range of the dependent variable which makes OLS estimates less 

sensitive to extremely large values (Wooldridge 1960, 181). Exploring two alternative types of 

neighborhood fixed effects further controls for omitted neighborhood amenities and dis-

amenities and are important in reducing omitted variable bias. Since the census tract fixed effects 

also control for demographics in our sample, we prefer this compared to the PRISM Grid fixed 

effects although the estimates vary slightly in magnitude.  
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Chapter 9  

Conclusion 

The estimates of our hedonic price model indicate that housing prices are overall 

negatively influenced by the urban heat island effect. The UHI measures, maximum lag 

temperature deviation and average lag temperature deviation, are significant and negative in the 

log-linear models indicating that the UHI effect in the previous month influences housing prices 

since the weather is observed by the buyer during the initial transaction. Our results illustrate that 

the overall UHI effect acts as a climate dis-amenity, since houses are expected to sell for less 

when the buyer is experiencing extremely hot weather during the time of transaction. This 

implies that valuing climate amenities are important to individuals when purchasing a house.  

 We test for robustness of estimates in our sample by including several model 

specifications in addition to yearly, monthly and neighborhood fixed effects to capture any 

unobserved amenities to address the concern of omitted variable bias. With the addition of the 

interaction term, we find weak evidence homes with higher market improvement value (top 

25%) that are assumed to more likely to have AC or energy efficiency capabilities, therefore the 

UHI effect has a statistically insignificant total effect on them. Another reason that this evidence 

may be weak is that homeowners are unaware of the value of energy efficiency therefore, this is 

not reflected in the price of a house. One possible extension of this study would be to increase 

the number of observations in our sample and look at the recent 10 years (2010-present) for both 

housing and climate data. Along with this, looking at housing transactions that are beyond this 

university town would provide insight on how hotter temperatures effect housing prices in other 

metro areas. This can potentially be measured by creating spatial buffers for parcels that are in 

close proximity to the boundary, similar to previous studies that captures the effect of 

environmental amenities and dis-amenities through proximity measures (Daams et. al 2016; 

Affuso et. al 2019). Given that the CoreLogic data for A/C in homes for the sample was 

unavailable, another extension of this study would be to use energy score reports as a proxy, 

because these reports estimate the energy use, cost of utilities, and cost-effective energy 

solutions for homes. For equity and housing affordability purposes, reducing this energy burden 

is important to keep this in mind since there is evidence that the most vulnerable populations, 

like low-income communities are heavily impacted by the UHI effect. Lastly, since the Eugene-

Springfield metro area is in a smaller spatial scale compared to a larger city, studying the 
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influence of the UHI effect on housing prices in Portland, OR may also provide insight on how 

the UHI effect can vary at a larger spatial scale.  

 

Policy Implications 

The negative impact of the UHI on housing prices has potential implications at the city 

and county level because we can expect that officials will be able to collect less property taxes, 

especially for metro areas that experience an intense UHI effect. The evidence from this study 

also provides implications for policy measures to mitigate the UHI effect. Taking the impact of 

the UHI effect on housing prices into account can influence the behavior of home buyers/sellers 

and real estate agents because they can advertise according to the upgrades made to the energy or 

cooling efficiency of a structure. This may incentivize homeowners to make improvements to the 

energy efficiency of homes, however this maybe challenging if a homeowner does not have the 

financial capability of doing so or if the structure is really old, further creating barriers to entry in 

the market for energy efficiency of homes with lower market improvement values. 

Another incentive of reporting energy scores of homes is that it raises the value of homes 

resulting in a higher transaction price transaction for a parcel (Myers et. al 2019). Policymakers 

can require home energy scores to be evaluated then reported in home sale documents so that 

efficiency can be explicitly priced into decisions with complete information of the energy burden 

associated with the home and incentivize investments in the energy efficiency of homes. They 

can do this by subsidizing efficiency and cooling upgrades for low income communities’ 

homeowners, which further reduces the barriers to entry in the market and ensures affordable 

housing for various demographic groups in urban areas. Other policy interventions include 

making adjustments to infrastructure like green roofs, improving electric grid resiliency, 

permeable pavements, bioswales, and implementing urban forests to mitigate the retainment of 

extreme heat in the environment. Reframing the UHI effect in the housing market provides 

further insight on how policymakers can address climate change issues given the economic 

disparity and health risks it causes in metropolitan areas.  
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Appendix A Full Tables of Results for all Models 

 

1. Results of Log-Linear Model with all Fixed Effects 
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4.165**
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4.061**
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3.794**

* 

3.628**

* 

4.226**

* 

4.092**

* 

 (0.297) (0.284) (0.290) (0.279) (0.296) (0.290) (0.292) (0.288) 

Observa

tions 
3532 3532 3532 3532 3532 3532 3532 3532 

R2 0.495 0.495 0.498 0.498 0.496 0.495 0.499 0.498 

Adjuste

d R2 
0.491 0.490 0.491 0.491 0.491 0.491 0.492 0.491 

Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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2. Results of Linear Model with all Fixed Effects 

 (1) (2) (3) (4) (5) (6) (7) (8) 
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.8* 

-

236809

.0* 

   
(13091

1.7) 

(12312

3.8) 
  

(12293

1.3) 

(12262

7.9) 

         

Census 

Tract=2

7 

  

-

306234

.6** 

-

261515

.4** 

  

-

252133

.0** 

-

255643

.1** 

   
(13731

5.6) 

(12654

9.0) 
  

(12674

9.1) 

(12580

0.7) 
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Census 

Tract=2

8 

  

-

261561

.9* 

-

227645

.8* 

  

-

214269

.4* 

-

223728

.8* 

   
(13372

5.4) 

(12557

4.6) 
  

(12449

0.3) 

(12502

0.1) 

         

Census 

Tract=2

9 

  

-

279803

.1** 

-

244213

.6* 

  

-

233976

.9* 

-

240033

.1* 

   
(13751

6.7) 

(12648

1.9) 
  

(12610

8.7) 

(12551

4.3) 

         

Census 

Tract=3

0 

  

-

234044

.5* 

-

208489

.9* 

  

-

199524

.9 

-

204757

.4* 

   
(13050

6.5) 

(12489

0.7) 
  

(12395

0.4) 

(12397

6.0) 

         

Census 

Tract=3

1 

  

-

260031

.1** 

-

234708

.4* 

  

-

221816

.9* 

-

229498

.2* 

   
(13186

5.3) 

(12582

7.6) 
  

(12391

3.9) 

(12441

9.8) 

         

Census 

Tract=3

2 

  

-

281178

.9** 

-

253232

.9** 

  

-

238644

.3* 

-

247474

.5** 

   
(13076

2.1) 

(12419

9.3) 
  

(12238

6.1) 

(12296

4.5) 

         

Census 

Tract=3

3 

  

-

257769

.0** 

-

231348

.3* 

  

-

219866

.1* 

-

224308

.1* 

   
(12691

8.8) 

(12278

3.2) 
  

(12154

9.6) 

(12130

1.6) 

         

Census 

Tract=3

4 

  

-

297839

.1** 

-

265266

.7** 

  

-

263155

.5** 

-

259909

.5** 

   
(13474

9.2) 

(12919

8.1) 
  

(12883

7.8) 

(12787

3.3) 

         

Census 

Tract=3

5 

  

-

273327

.3** 

-

241224

.0* 

  

-

232994

.8* 

-

236280

.0* 
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(13444

9.5) 

(12645

5.8) 
  

(12628

3.1) 

(12529

3.5) 

         

Census 

Tract=3

6 

  

-

252663

.9** 

-

226300

.8* 

  

-

214675

.1* 

-

220936

.8* 

   
(12840

8.5) 

(12160

4.2) 
  

(12036

9.7) 

(12018

8.8) 

         

Census 

Tract=3

7 

  

-

305565

.2* 

-

244709

.9* 

  

-

239295

.5 

-

239008

.4 

   
(17762

9.7) 

(14806

1.9) 
  

(15084

0.8) 

(14613

2.4) 

         

Census 

Tract=3

9 

  

-

272981

.2* 

-

249863

.8* 

  

-

230203

.8 

-

241824

.4* 

   
(15349

5.4) 

(14659

5.4) 
  

(14503

3.9) 

(14481

1.7) 

         

Census 

Tract=4

0 

  

-

196322

.2 

-

164843

.8 

  

-

154526

.9 

-

162623

.1 

   
(12453

8.4) 

(11979

8.5) 
  

(11832

8.5) 

(11906

0.7) 

         

Census 

Tract=4

1 

  

-

272188

.9** 

-

238453

.9* 

  

-

222442

.2* 

-

232300

.2* 

   
(13288

5.0) 

(12474

9.8) 
  

(12311

6.0) 

(12355

6.1) 

         

Census 

Tract=4

2 

  

-

315282

.7** 

-

280686

.9** 

  

-

272415

.1** 

-

281173

.3** 

   
(14478

0.3) 

(13488

3.8) 
  

(13647

1.9) 

(13540

6.4) 

         

Census 

Tract=4

3 

  

-

266031

.4** 

-

227448

.2* 

  

-

226211

.4* 

-

222495

.0* 

   
(12865

3.8) 

(12201

6.9) 
  

(12300

5.1) 

(12136

5.6) 
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Census 

Tract=4

4 

  2735.3 
42454.

7 
  

51416.

7 

51250.

8 

   
(10968

9.5) 

(12081

7.7) 
  

(11833

7.4) 

(12208

4.6) 

         

Census 

Tract=4

5 

  

-

245226

.0* 

-

234438

.0* 

  

-

225246

.9* 

-

236718

.6* 

   
(13406

1.8) 

(12956

7.8) 
  

(12737

3.4) 

(13036

6.1) 

         

Census 

Tract=4

6 

  

-

254978

.8* 

-

209875

.4* 

  

-

204089

.0 

-

202868

.7 

   
(13733

2.8) 

(12692

9.9) 
  

(12842

4.5) 

(12600

2.1) 

         

Census 

Tract=4

7 

  

-

233998

.3* 

-

187362

.3 

  

-

184338

.8 

-

177899

.8 

   
(13200

0.5) 

(11984

3.9) 
  

(12042

3.8) 

(11807

8.0) 

         

Census 

Tract=4

8 

  

-

442896

.0** 

-

364299

.2** 

  

-

380878

.2** 

-

362927

.9** 

   
(20305

5.0) 

(17450

8.7) 
  

(18474

0.3) 

(17455

3.8) 

         

Census 

Tract=4

9 

  

-

195457

.0 

-

149230

.1 

  

-

145587

.5 

-

146875

.7 

   
(15861

2.4) 

(14580

3.5) 
  

(14775

0.2) 

(14541

7.8) 

         

Census 

Tract=5

0 

  

-

248198

.6* 

-

203363

.8* 

  

-

192490

.6 

-

191347

.8 

   
(13379

4.5) 

(12140

2.7) 
  

(12107

6.2) 

(11858

8.0) 

         

Census 

Tract=5

1 

  

-

247059

.8* 

-

198714

.3 

  

-

178632

.3 

-

177379

.8 
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(13348

3.3) 

(12516

1.1) 
  

(11952

4.1) 

(11922

2.4) 

         

Census 

Tract=5

2 

  

-

241439

.1* 

-

211136

.9* 

  

-

202059

.6* 

-

199019

.1* 

   
(12998

0.7) 

(12297

5.4) 
  

(12202

7.5) 

(11984

5.8) 

         

Census 

Tract=5

3 

  

-

236170

.4* 

-

205454

.3* 

  

-

194913

.2 

-

196664

.1 

   
(13090

6.7) 

(12434

7.4) 
  

(12267

8.2) 

(12185

9.3) 

         

Census 

Tract=5

4 

  

-

232854

.6* 

-

197808

.5 

  

-

190491

.9 

-

186930

.7 

   
(12813

8.5) 

(12053

3.0) 
  

(11957

3.8) 

(11773

3.9) 

         

max_te

mpdev 
    

-

18858.

6** 

 

-

17666.

0** 

 

     
(8570.8

) 
 

(8171.6

) 
 

         

max_te

mpdev_l

ag 

    4191.4 4087.9 9012.0 8863.0 

     
(4780.1

) 

(4785.5

) 

(6748.3

) 

(6729.0

) 

         

max_te

mpdev # 

top25 

    3060.0  7422.7  

     
(5323.1

) 
 

(4527.7

) 
 

         

max_te

mpdev_l

ag # 

top25 

    1546.9 1678.8 980.8 1527.2 

     
(2218.8

) 

(1845.8

) 

(2179.7

) 

(1937.7

) 
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Constan

t 

20980.

0 

-

40424.

5 

269152

.7** 

182092

.0 

18528.

5 

-

43856.

1 

117349

.6 

60697.

1 

 
(93500.

6) 

(11461

3.6) 

(11272

4.1) 

(11516

6.1) 

(97016.

7) 

(11754

6.6) 

(12078

6.9) 

(13449

1.6) 

Observa

tions 
3532 3532 3532 3532 3532 3532 3532 3532 

R2 0.076 0.074 0.051 0.049 0.074 0.073 0.050 0.049 

Adjuste

d R2 
0.067 0.066 0.038 0.036 0.065 0.065 0.036 0.036 

Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

 


