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Abstract: The efficiency of six disaggregative methods and two individual-tree methods was evaluated in terms of their

ability to predict 5-year basal area increment for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands in western

Oregon. Models were developed for predicting gross stand basal-area increment and individual-tree diameter increment. In

addition, models were developed to disaggregate the active increment prediction methods to the tree level. Passive and active

prediction schemes were evaluated for both the tree and stand levels. Generally, the individual-tree approach was superior to

the disaggregative approach for prediction of both stand and tree growth. This was less evident, however, when crown ratio

was eliminated from the individual-tree models. This suggests that at least some of the disparity between the two is due to the

presence of crown ratio in an individual-tree passive aggregation approach. The additive disaggregation approach appeared to

be best suited to young stands (less than 50 years of age). The linearity assumption required for this particular model appeared

to be violated for older stands with larger trees. Generally, the two whole-stand, gross-growth models used in this study were

inferior to the individual-tree method for predicting gross basal area growth for one period.

Résumé: Six modèles qui décomposent la croissance du peuplement et deux modèles de croissance d’arbre sont évalués pour

leur capacité à prédire l’accroissement quinquennal en surface terrière des peuplements de Douglas taxifolié (Pseudotsuga

menziesii (Mirb.) Franco) dans l’Ouest de l’Orégon. Les modèles d’arbre prédisent directement l’accroissement de l’arbre en

diamètre alors que les modèles de croissance du peuplement prédisent directement l’accroissement brut du peuplement en

surface terriè et len accriamètrarbre llemen de prsive et active sont évalués pour le double niveau de l’arbre et du peuplement.

En général, l’approche par arbre est supérieure à celle du peuplement pour prédire la croissance de l’arbre et du peuplement.

Néanmoins, cette supériorité s’atténue lorsque la longueur relative du houppier est éliminée des modèles d’arbre. Ce résultat

suggère que certaines disparités entre les deux approches sont dues à la présence de la longueur relative du houppier dans les

modèles d’arbre à recomposition passive. L’approche de décomposition additive semble la plus adéquate pour les

peuplements juvéniles (âgés de moins de 50 ans). L’hypothèse de linéarité requise par cette approche de décomposition ne

semble pas aussi valable dans les peuplements plus âgés avec des arbres plus gros. Les deux modèles de peuplement analysés

qui font appel à la croissance brute sont inférieurs au modèle d’arbre pour prédire la croissance brute en surface terrière sur

une période de temps.

[Traduit par la Rédaction]

Introduction

Stand dynamics can be modeled with a variety of methods,
which may be distinguished from one another by their associ-
ated levels of resolution (Munro 1973). The differences in levels
of resolution associated with contrasting modeling philoso-
phies, however, are often not readily apparent. Whole-stand –
disaggregative and individual-tree – distance-independent
simulators, although functionally different, are similiar in their
ability to produce output of the same resolution. Thus, the
functional disparity between these two may be obscured by
the unity of apparent resolution. Examples of the whole-stand –

disaggregative models have been described by Dahms
(1983), Harrison and Daniels (1988), and Zhang et al. (1993).
Individual-tree – distance-independent models include Progno-
sis (Stage 1973), CACTOS (Wensel et al. 1986), and ORGANON

(Hann et al. 1993).
The individual-tree modeling approach is based on growth

projections for each individual in a sample of trees that repre-
sents the stand, or aggregate. The functional components of
the individual-tree approach predict such traits as height
growth, diameter growth, probability of mortality, and crown
dynamics. These predictions are used to update the sample tree
list; stand-level attributes are derived from the aggregate of
these predictions. This can be described as a passive aggrega-

tion scheme (Ijiri 1971). Individual-tree models are capable of
simulating stands that are diverse in structure and species com-
position. Furthermore, because more information is required
to run individual-tree models, they have the potential for better
predictions because they are based on a more detailed repre-
sentation of the stand than that employed in whole-stand models.

In contrast, the whole-stand – disaggregative approach
makes predictions about the dynamics of the aggregate
through active aggregation. This is accomplished by modeling
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whole-stand parameters such as gross basal area growth (e.g.,
Harrison and Daniels 1988) or gross volume growth (e.g.,
Dahms 1983). Thus, this represents a whole-stand implemen-
tation with the added ability to distribute a growth projection
among trees in a sample tree list. For some simulators, the step
of disaggregating growth is an option based on the resolution
of the input data. Up to the point where the disaggregation
takes place, the simulator is no different from a traditional
whole-stand growth model.

Disaggregative models may be structured so that forecasts
can be driven by stand-level attributes alone or with the more
complete stand description afforded by a tree list. This is a very
attractive feature, as users are not obligated to provide a tree
list, but may do so if one is available. If a tree list is maintained,
then the disaggregation function is the means by which the
stand-growth predictions are linked to tree-level descriptions
of the stand.

A disaggregation function may be structured in such a way
as to maintain invariance between stand growth and the aggre-
gation of tree growth. That is, if disaggregated growth is
summed, the resulting stand growth is equal to the stand-level
prediction. Therefore, aggregation of tree values does not af-
fect stand-level prediction of growth. A model built in this
manner can be said to maintain a constrained consistency, or
invariance (Ijiri 1971).

Disaggregation functions vary in complexity and in meth-
ods for allocating growth. In this paper we attempt to empiri-
cally address two questions pertaining to these different
methods: (1) Does the disaggregative approach adequately
predict growth of individual trees? (2) Which approach best
reflects aggregate (stand-level) dynamics? To evaluate these
questions, we focus on gross basal area increment for a single,
5-year growth period. The use of multiple growth periods
would unnecessarily complicate the analysis by incorporating
additional components and design features that vary greatly
from one simulator to another and are often an expression of
the modeler’s unique approach to the problem at hand. Be-
cause separate components of simulators do not function inde-
pendently, we do not want to confound results with other
aspects of simulator design.

Data

The data in this study are from 105 Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco) stands in the mid-Willamette Valley
of western Oregon. The stands are located on McDonald For-
est, which is a research forest of the College of Forestry at
Oregon State University. The stands are mainly composed of
even-aged, second-growth Douglas-fir, although some stands
have a minor component of other conifers, primarily grand fir
(Abies grandis (Dougl. ex D. Don) Lindl.). Among these
stands, King’s (1966) site index ranged from 27.4 to 41.5 m
(90 to 136 ft) with breast-height base age of 50 years. Stand
ages (at breast height) ranged from 26 to 142 years, with
breast-height basal area of 2.75 to 62.0 m2/ha (12 to 270 ft2/acre).

The sampling methods were described in detail by Hann
and Larsen (1991). A grid of points was installed in each
stand, at densities ranging from one per acre to one per 5 acres
(1 acre =0.40 ha). At each point on the grid, a nested plot design
consisting of a variable-radius plot (basal area factor of
4.59 m2/ha, or 20 ft2/acre) for trees > 20.3 cm (8.0 in.), a

0.0071-ha (0.017-acre) plot for trees 10.4–20.3 cm (4.1–8.0 in.),
and a 0.0018-ha (0.0044-acre) plot for trees <10.4 cm (4.1 in.)
in diameter was installed. All conifers >10.16 cm (4.0 in.) in
diameter at breast height (DBH) (1.37 m, 4.5 ft) were bored to
obtain past 5-year radial increment. In addition, tree heights,
diameters, and crown ratios were measured. These measure-
ments were used to establish stand and tree growth.

Because the measurement of past diameter growth of
trees <10.16 cm (4.0 in.) DBH was not consistently obtained
across the entire data set, this analysis only considers those
trees in the stand with DBH >10.16 cm (4.0 in.). That is, we
define stand growth as the growth of trees >10.16 cm (4.0 in.)
DBH. While this is not the optimal method for the develop-
ment of a working simulator, we feel it will not dramatically
affect the results of this analysis. For most of these stands, the
understory trees <10.16 cm (4.0 in.) are suppressed, many of
which are not contributing substantially to stand growth, and
are prime candidates for mortality in the near future. For the
full implementation of some of the disaggregative approaches
discussed in this paper, a more complete range of diameters
may be desirable.

Model construction

Gross basal area growth rate function
Two equation forms were chosen for predicting the aggregate
of gross basal area growth rate. The first is based on age,
King’s site index (1966), and stand density index (Reineke
1933). Application of this basal area growth equation does not
require any tree-level information beyond DBH to estimate
stand basal area and trees per acre. The second equation re-
places stand density index with an estimate of crown surface
area for the stand. A number of different crown surface area
estimation methods were initially applied; the best were those
of Biging and Wensel (1990). Since the crown surface area
equations are dependent on more individual-tree information,
such as height and crown ratio, this equation is limited in ap-
plication to stands for which such information is available.

We used linear regression and a log transformation of the
dependent variable to fit the equations. This transformation
was found to provide residuals that appeared to be approxi-
mately normally distributed, implying an approximate lognor-
mal distribution for conditional basal area growth. The first
gross basal area growth equation is expressed as

[1] E(∆BA) = exp



θ01 + θ11 ln(A) + θ21

S

A
+ θ31 ln(SDI)


where

∆BA is 5-year aggregate gross basal area growth (m2/ha)

A is breast-height stand age

S is site index (m)

SDI is stand density index (trees/ha), Reineke (1933)

θij are parameters to be estimated

The second aggregate gross basal area growth equation is ex-
pressed as

[2] E(∆BA) = exp



θ02 + θ12 ln(A) + θ22

S

A
+ θ32 ln(CSA)




∑+ θ42 CSA2



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where CSA is crown surface area, proportion of unit area, e.g.,
vertical projection of crowns expressed as a proportion of 1 ha,
where crown area is estimated using equations of Biging and
Wensel (1990).

A number of variations of [1] and [2] were also investi-
gated, but those presented here provided the lowest mean
squared error (MSE). The ordinary least squares (OLS) pa-
rameter estimates for [1] and [2] are shown in Table 1. The
adjusted R2 values (R

__
2) for these two log–linear fits were 0.74

and 0.82, respectively. In general, we have a predictive equa-
tion, Ψ(Z, θ̂j), within which expected gross stand basal area
increment is expressed as a function of some vector of stand
attributes, Z, and a vector of parameter estimates, θ̂j, j = 1 and
2 for models [1] and [2] (Table 1), respectively.

Additive disaggregation function
While a number of approaches have been used in developing a
disaggregation function, these generally allocate growth either
additively or proportionately. Harrison and Daniels (1988)
presented a methodology for the development of a disaggrega-
tive simulator that can be used to illustrate an additive disag-
gregation function

[3]



∆bai −

Ψ
TPH





= κ[bai − BA
___

]

where

∆bai is individual-tree basal area increment of tree i

in the aggregate

Ψ is estimated gross basal area growth for trees in the

given aggregate

TPH is trees per unit area

bai is basal area of tree i in the aggregate

BA
___

= Σi(baini)/ TPH

ni is number of trees per unit area represented by the
subject tree

κ is a parameter to be estimated

This disaggregation function is based on the assumption
that tree growth is linearly related to tree size in any given
stand. Parameter κ̂ varies from stand to stand and is expressed
as a function of site index and dominant height (H) with the
following assumed relationship:

[4] E(κ)^ = γ1S
γ
2 exp(γ3H)

The simplicity of this model is an attractive feature. The allo-
cation function is dynamic. That is, the disaggregation coeffi-
cient κ̂ changes over time with changes in dominant height.

Model [3] is formulated to provide constrained consis-
tency (Ijiri 1971) because the sum of bai − BA

___
= 0. This ensures

invariance to aggregation of stand-level forecasts. That is, data
from a tree list may be aggregated to stand-level statistics prior
to initiation of the simulator without affecting predictions of
stand growth. In theory, a more generalized model may be
developed by adding terms to the disaggregation function, as
long as any additional terms also maintain a linear relationship
with basal area increment.

For each of 105 stands, κ1 was estimated with OLS as the
slope of a model that related basal area growth and basal area:

[5] ∆baip = κ0p + κ1p
^ baip + εip

for tree i in stand p. With OLS, the estimate of the slope term
is unaffected by applying a mean correction to the dependent
and independent variables. κ0 is a nuisance parameter. The
values obtained for κ1p

^ ranged from 0.003 89 to 0.678, with a
mean of 0.1245. All of these were significantly different from
zero; the largest p-value associated with t-tests of the signifi-
cance of κ1p

^ (H0: κ1p = 0) was 0.017, and most were well below
0.001. In terms of linear association between basal area and
basal area increment, there is a tremendous range (Fig. 1). The
plots in Fig. 1 were selected to cover the range of linear asso-
ciations between tree growth and tree basal area. In general, the
best linear relationships were associated with the youngest
stands. Considering the correlation coefficient as an index of
the linear association between basal area and basal area incre-
ment for each stand, we found some values were as high as
0.95, yet others were less than 0.10. These fits tended to be
worse for older stands (Fig. 2), which possibly indicates a
shortcoming in predicting tree growth for older stands. This
finding was further evaluated by adding a quadratic term to [5].

On all but three of the stands, a quadratic term was significant
(p-values less than 0.05), with most p-values for the quadratic

Model θ̂0 θ̂1 θ̂2 θ̂3 θ̂4 MSE

1 –1.256 001 –0.654 745 0.563 248 0.805 055 — 0.0617

(0.953) (0.204) (0.296) (0.0646) —

2 0.887 219 –0.435 310 0.576 562 0.879 799 –0.000 595 242 0.0434

(0.810) (0.166) (0.249) (0.0631) (0.000 220)

Note: Intercept terms are corrected for log bias with MSE/2 (Flewelling and Pienaar 1981).

Table 1.Parameter estimates (and standard errors) and residual mean-squared error from the log

transformation, linear regression of models [1] and [2].

Fig. 1. Three selected plots illustrating the relationship between

basal area and basal area increment for sampled trees.
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term less than 0.01. This problem was most evident in stands
with large trees. Homogeneous young stands did indeed seem
to maintain a nearly linear relationship; however, the presence
of any large trees formed a positively skewed diameter distri-
bution, which seemed to accentuate the problem of nonlinear-
ity in eq. 5.

The linearity assumption apparently is not as reliable
among older stands, where increasing variability in stand
structure with stand age results in a more complex relationship
between increment and basal area. This within-stand het-
erogeneity may also reflect changes in management
strategies over time. It is not known whether the young
stands of today will, in time, develop into the older stands
reflected in this data set.

The disaggregation coefficient is predicted for individual
stands as a function of dominant height and site index. We also

considered a similar model, which employed age instead of
dominant height in eq. 4; the dominant height equation, how-
ever, provided superior fit statistics. The disaggregation coef-
ficient, κ1

^ , was negatively correlated with H (Fig. 3). This
result met with our expectation that the coefficient may be
interpreted as an estimator of the ratio of standard deviations
of basal area growth and basal area, that is, κ1 ù σbag/σba. Since
tree basal area is the sum of basal area increment, and the
variance of the sum of increments should exceed the variance
for any one increment period, we anticipated that κ1 would
be <1.0 and would decrease as stand age (or dominant height)
increased. The values of κ1

^ did vary from 0.003 89 to 0.678;
the largest value was somewhat of an outlier, as all but three
estimates were below 0.40.

There was a weak relationship between site index and κ1
^

(Fig. 4). This relationship was not as well defined as that be-
tween κ1

^ and H. Three-dimensional graphical analysis of this
data did not reveal any other trends, which may have been
hidden when dominant height and site index were viewed in-
dependently.

A function may be developed by obtaining estimates for the
parameters [γ1, γ2, and γ3 ] in [4]. This procedure results in a
predictive system that is sensitive to stand age and site produc-
tivity. Because dominant height in the disaggregation function
and stand age in the gross-growth function are both even aged
stand concepts, the application of this system to stands that are
not even aged is inappropriate. The values of κ1p

^ for each of
the stands (p = 1, 2, ..., 105) were used as the dependent vari-
ables in model [4] above. We reparametrized [4] in the follow-
ing manner:

[6] E(κ1)^ = exp[γ1
^ + γ2

^ ln(S) + γ3H
^ ]

The parameter estimates for model [6] were obtained using
weighted nonlinear least squares with a weight of 1/V(κ1

^ ),
where V(κ1)^ is the estimated variance of κ1 from the OLS fit.
The results of this regression are shown in Table 2. The un-
weighted R

__
2 is 0.6081. The application of [6] in eq. 3 is then

Fig. 2. Indices of fit (r2) plotted over stand age for the ordinary

least squares fit of ∆bai = κ0 + κ1bai + εi for 105 Douglas-fir stands

in western Oregon.

Fig. 3. Plot of κ1
^ over dominant height for 105 Douglas-fir stands

in western Oregon.

Fig. 4. Plot of κ1
^ over King’s (1966) site index for 105 Douglas-fir

stands in western Oregon.
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[7] ∆bâ =
Ψ(Z, θ̂1)

TPH
+ κi

^ {ba − BA
___

}

The technique suggested by Harrison and Daniels (1988)
for disaggregation is not limited to the simple linear equation
expressed above. The model can be generalized by adding
additional terms. One possible generalization is the addition of
crown ratio to the model

[8] ∆baip = κ0p + κ1p baip + κ2p crip + εip

where crip is live crown ratio.
In this formulation the parameter κ1 can be fit with the same

eq. 6 used in the restricted model. We applied the above tech-
niques to obtain parameter estimates with OLS regression,
which we used in a nonlinear fit of [6] (Table 3). It should be
noted that in the regression analysis of [8], the κ2 term was
often of marginal value. The improvements in fit statistics
were not dramatic, R

__
2 values rarely increased more than 0.10.

This generalization has the advantage that information con-
tained in crown ratio is brought to bear on predictions of
individual-tree growth. Crown ratio as a variable has been used
extensively in individual-tree growth equations (Stage 1973;
Wensel et al. 1987; Hann and Larsen 1991). The obvious dis-
advantage is that a simple list of diameters alone is not suffi-
cient to power the disaggregation component of the model; that
is, crown ratio will be required. In addition, this system would
require equations for crown change when projecting over mul-
tiple growth periods.

We could find no trends for relating κ2
^ to any stand parame-

ters. Accordingly, we employed a weighted mean for all stands
as a predictor. The weighted mean was 0.4104 with a standard
error of 0.019.

The application of this particular model in allocating tree
growth is then

[9] ∆bâi =
Ψ(Z, θ̂2)

TPH
+ κ1

^ {bai − BA
___

} + κ2
^ {cri − CR

___
}

where

CR
___

=
Σ
i
(crini)

TPH

ni is the number of trees per unit area represented by

the subject tree

Note that as with the simpler version of this model, invariance
is maintained: Σi(∆bâini) = Ψ(Z, θ̂2). The remaining terms all
sum to zero.

Proportional allocation disaggregation function
Another means of disaggregating growth or yield is a propor-
tional allocation approach, such as that used by Clutter and

Jones (1980) and Dahms (1983). The general form of this type
of model is

[10]
wi

W
=

g(ui)
Σ
i
(g(ui)ni)

where

wi is some trait of subject tree (e.g., tree volume
growth or tree basal area)

W is the predicted aggregate of w

g(ui) is a function of some measured tree dimension
(e.g., diameter, height)

An example of [10] for basal area growth is

[11]
∆bai

∆BA
=

bai

Σ
i
(baini)

where ∆BA is estimated from some stand-level function. By
multiplying both sides of [11] by trees per unit area, the left
side could be viewed as an index of relative tree growth and
the right side as an index of relative tree dimension as was done
by Zhang et al. (1993). In the Zhang et al. (1993) generaliza-
tion, the left side of [11] is specified as relative tree growth
(rtg), and the right side is a polynomial of relative tree size
(rts). Zhang et al. (1993) explicitly defined rts as predicted tree
volume divided by stand volume. That is, g(ui) is a tree volume
function. The Zhang et al. (1993) generalization is

[12] rtg i = φ0 + φ1 rtsi + φ2 rts i
2

The parameters in [12] are estimated as a function of stand
attributes. Equation 10 is then (approximately) a special case
of [12], with φ0 = 0, φ2 = 0, and φ1 = 1. One problem with this
generalization is that unlike the more simplified model of
Dahms (1983), invariance is not maintained.

A constraint can be established that will produce the desired
invariance in application of the system. This constraint may be
expressed as

[13] φ0
^ = 1

Σ
i

ni




1 − φ1

^ − φ2
^

Σ
i

g(ui)2ni

(Σ
i

g(ui)ni)2





We used both the restricted and generalized proportional
allocation models to develop predictors for basal area incre-
ment. For this application, we defined the following variables

rtg i =
∆bai

Ψ(Z, θ̂1)

rtsi =
bai

BA

Parameter Estimate

Asymptotic

standard error

γ1 –4.300 50 3.214

γ2 0.977 218 0.866 1

γ3 –0.018 287 0.009 311

Table 2.Results of nonlinear regression on

disaggregation coefficient, κ1
^ in eq. 6.

Parameter Estimate

Asymptotic

standard error

γ1 –2.952 29 3.224 8

γ2 0.588 352 0.872 1

γ3 –0.064 330 8 0.009 688

Table 3.Results of nonlinear regression on

disaggregation coefficient, κ1
^ in eq. 8, a

generalization of the Harrison and Daniels

(1988) disaggregation model.
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The estimates of φ for these stands did not reveal any trends
useful for predicting either φ1 or φ2. Although the two are
highly correlated, as was found by Zhang et al. (1993), neither
parameter showed any significant relationship with other stand
variables. Therefore, we calculated weighted means for both
parameters: φ1

^ = 0.807 35 (SE = 0.0252), φ2
^ = 3.5167

(SE = 0.250). The function for the intercept term, φ0
^ is then

φ0
^ = 1

TPA




0.192 65 + 3.5167





Σ
i

bai
2ni

BA2









Predicted growth with this model is then

[14] ∆bâi = Ψ(Z, θ̂1){φ0
^ + φ1

^ rtsi + φ2
^ rtsi

2 }

Individual-tree growth rate equation as a disaggregation
function

An individual-tree growth equation can also be used as a dis-
aggregation function. Generally, this does not maintain sym-
metry with any particular whole-stand growth function other
than that implied by the passive aggregation of such a function.
Within the context of the particular application, however,
some individual-tree functions may actually act as symmetric
allocators of growth. An example of this is the use of individual-
tree mortality functions in ORGANON (Hann and Wang 1990).
In this application, situations may arise wherein the individual-
tree mortality functions are scaled according to an aggregate-
level prediction, provided by the size–density trajectory of
Smith and Hann (1984). Invariance is maintained and the simula-
tor operates from a disaggregative approach for mortality.

Similarly, the basal area growth equation may be scaled by
a whole-stand basal area growth prediction, thereby maintain-
ing symmetry with the active aggregation scheme. Given an
aggregate gross basal area growth equation, Ψ(Z, θ̂), and an
established individual-tree equation

[15] ∆bâi = ψ(xi, β̂)

where xi is a vector of predictors for individual-tree diameter
growth for tree i, the proper allocation of growth can then be
established by the ratio

[16] R̂ =
Ψ(Z, θ̂)

Σ
i
(ψ(xi, β̂)ni)

A disaggregation function, ψ′ , then can be developed to allo-
cate gross basal area growth to tree i by combining [15] and [16]

[17] ψ′ = ∆bâiR̂

This is actually another proportional allocation scheme, not
unlike that used by Dahms (1983). Instead of tree dimension,
however, this method [17] uses estimated basal area growth
divided by the aggregate of estimated basal area growth.
Therefore, another perspective of proportional allocation is
that predicted tree growth is scaled by the ratio of the two
estimates of stand gross basal area growth. For this predictive
model, an individual-tree model is required. For our analysis,
we fit individual-tree diameter growth regressions for
Douglas-fir and grand fir.

The regression for individual-tree diameter growth func-
tions was based on the findings of Hann and Larsen (1991) for
conifer species in southwestern Oregon. Hann and Larsen

(1991) found that the basal area growth prediction function
was unreliable for very small trees, and instead used diameter
increment as a response variable. Employing the fully speci-
fied model for predicting individual-tree diameter increment,
parameter estimates were obtained for the model

[18] E(∆d) = exp 

β0 + β1 f1(d) + β2 f2(d) + β3 f3(S)

+ 

β4 f4(bal, d) + β5 f5(BA) + β6 f6(cr)


where

f1(d) = ln(d + 2.54) × 0.1

f2(d) = d2 × 0.0001

f3(S) = ln(S − 1.37)

f4(bal, d) =
bal2 × 0.000 01

ln(d + 12.7) − 0.932 16

f5(BA) = √BA × 0.01

f6(cr) = ln




cr + 0.2

1.2





cr =
live crown length

total tree height

d is diameter at breast height (cm)

bal is aggregate basal area in trees larger than the subject
tree (m2/ha)

BA is aggregate basal area (m2/ha)

The parameters βi were estimated (Table 4) with the non-
linear least-squares technique of Marquardt (1963). This fit
was iteratively reweighted with the assumption that the vari-
ance of the error term was proportional to the predicted
growth. This weight was found to be optimal by Hann and
Larsen (1991). There are 9526 Douglas-fir and 595 grand fir
sample trees in the data sets. Examples of disaggregative mod-
els have, by convention, avoided inclusion of crown ratio. In
a disaggregative setting, where crown information is generally
absent, a growth function without crown ratio is more appro-
priate. Accordingly, we fit a reduced form of model [18], as
model [19]

[19] E(∆d) = exp 

β0 + β1 f1(d) + β2 f2(d) + β3 f3(S)

+ 

β4 f4(bal, d) + β5 f5 (BA)


Results of this regression are shown in Table 5.

Application of models

Individual-tree prediction
Eight models for individual-tree basal area growth (P1–P8)
were established:

P1: reduced individual-tree diameter growth rate model
[19]

P2: full individual-tree model [18]

P3: disaggregative model [17], with reduced individual-
tree model [19] scaled by predicted stand basal area
growth model [1]

P4: disaggregative model [17], with full individual-
tree model [18] scaled by predicted stand basal area
growth model [2]

P5: Harrison and Daniels (1988) disaggregative model
[7] with predicted stand basal area growth model [1]
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P6: simple proportional allocation disaggregative (eq. 11)
method with predicted stand basal area growth
model [1]

P7: Harrison and Daniels (1988) generalization model
[9] with predicted basal area growth model [2]

P8: constrained generalized proportional allocation
model [14] with predicted basal area growth model [1]

Two of these are standard individual tree – distance inde-
pendent predictive models (P1 and P2); the remaining models
are disaggregative with a constrained invariance.

For P1 and P2, diameter increment for an individual tree was
estimated as dictated and then transformed into basal area in-
crement. Those models requiring crown ratio were paired with
the whole-stand equation [2] because that whole-stand growth
model is dependent on an aggregation of individual-tree crown
measurements.

The residuals (observed – predicted) from these eight mod-
els were used to calculate MSE and R

__
2 for the complete data

set (Table 6).

Aggregate (stand-level) prediction
Four aggregate predictive methods may be implied by the pre-
ceding tree-level models:

AP1: predictions based on the aggregate of the reduced
individual-tree model [19]

AP2: predictions based on the aggregate of the full
individual-tree model [18]

AP3: predictions based on whole-stand predictive
model [1] (with SDI)

AP4: predictions based on whole-stand predictive
model [2] (with CSA)

The first two stand-level predictions (AP1 and AP2) are
based on an aggregate of the predictions from the individual-
tree predictive models. These predictions are made by sum-
ming the product of predicted tree growth and the per-acre
expansion factor. The other two models predict the stand-level
gross growth directly. Since gross growth is used here, there
is no reduction in expansion factors for mortality. The summa-
ries of residuals for these four models are shown in Table 7.

Results

The summaries in Table 6 indicate the superiority of the full
individual-tree model over the other methods. The reduced
individual-tree (P1) and disaggregated full individual-tree (P4)
models appear to work equally well. For these data, therefore,
the loss in predictive power is approximately equal for drop-
ping crown ratio and imposing a stand-level growth constraint.
The reduced individual-tree model with a whole-stand basal
area growth constraint (P3) shows a substantial reduction in
predictive ability. Both of the more traditional disaggregative
approaches (P5 and P6) are much worse than the individual-
tree-based approaches (P1–P4), even those that use a tree func-
tion in a disaggregative approach. The addition of crown ratio
to the Harrison and Daniels (1988) method resulted in a modest
reduction in MSE, from 0.000 41 to 0.000 36. However, P4 had
a substantially lower MSE (0.000 28), so if crown ratio is to be
used, the individual-tree function is superior. The generaliza-
tion (P8) of the proportional allocation model (P6) resulted in a
substantial reduction in MSE, but even with that improvement,
the MSE was substantially worse than any of the individual-
tree-based methods.

It should be noted that the presence of a negative R
__

2 indi-
cates that the prediction generated was worse (had a larger

Full model

Douglas-fir Grand fir

Parameter β̂ SE(β̂) β̂ SE(β̂)

0 2.707 11 0.223 7 –1.308 56 1.0294

1 3.395 17 0.175 2 5.946 42 0.8051

2 –0.663 786 0.019 39 –1.512 960 0.2271

3 1.156 15 0.060 69 0.555 335 0.2769

4 –84.690 5 4.878 6 –55.156 7 16.364

5 –4.947 03 0.830 41 –9.827 21 3.6274

6 1.199 51 0.023 74 1.127 12 0.1058

Table 4.Results of nonlinear regression on the full individual-tree

diameter growth rate equation [18].

Reduced model

Douglas-fir Grand fir

Parameter β̂ SE(β̂) β̂ SE(β̂)

0 –3.320 87 0.250 4 –0.945 285 1.132

1 3.006 11 0.197 6 6.276 48 0.8772

2 –0.568 888 0.213 7 –1.565 84 0.2514

3 1.328 08 0.067 92 0.446 850 0.3061

4 –117.103 5.565 54 –54.160 1 17.6662

5 –14.848 4 0.901 424 –22.371 5 3.6149

Table 5.Results of nonlinear regression for individual-tree

diameter growth rate equation excluding crown ratio [19].

Method R
__

2 Bias (b̂i) Variance (σi
2) MSE

P1 0.3903 –0.002 438 0.000 280 4 0.000 286 4

P2 0.4701 –0.000 368 7 0.000 248 7 0.000 248 8

P3 0.2781 0.002 214 0.000 334 2 0.000 339 1

P4 0.4001 –0.001 592 0.000 279 3 0.000 281 8

P5 0.1260 0.003 205 0.000 400 3 0.000 410 6

P6 –2.9963 –0.011 60 0.001 742 0.001 877

P7 0.2288 0.003 965 0.000 346 5 0.000 362 2

P8 0.1735 0.001 055 0.000 388 3 0.000 389 4

Table 6.Individual-tree summary statistics for the residuals of

predictive methods P1–P8 on the entire data set, where residual =
observed – predicted (units are m2 of basal area per tree).

Method R
−2 Bias (b̂i) Variance (σ̂i

2) MSE

AP1 0.6914 –0.080 559 0.027 325 6 0.033 815 4

AP2 0.8193 –0.008 238 7 0.019 740 4 0.019 808 3

AP3 0.6517 –0.004 955 25 0.381 466 0.381 491

AP4 0.7797 –0.000 124 50 0.025 171 0.025 171

Table 7.Summary statistics for the residuals of aggregate

predictive methods AP1–AP4 for 105 Douglas-fir stands in western

Oregon.
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MSE) than the sample mean. In typical regression applica-
tions, residual sum of squares is constrained to be less than the
total sum of squares; thus, in most instances, R

__
2 is positive.

Since these predictions are not the direct result of OLS regres-
sion, the residual sum of squares is not so constrained.

Crown ratio, or the absence thereof, appeared to be an im-
portant determinant of model performance. This was also
found to be the case in prediction of height growth for individ-
ual trees in the organon simulator (Hann and Ritchie 1988;
Hann et al. 1993). The addition of crown ratio in the generali-
zation of the Harrison and Daniels (1988) model P7 did result
in an improvement. Among disaggregative approaches, how-
ever, the use of an individual-tree growth model (either P3 or
P4) as an allocator of growth was still superior.

The generalization of the proportional disaggregation
method (P8), while superior to P6, still does not approach any
of the individual-tree approaches.

As we observed, the assumptions required for the additive
disaggregation method seemed to be affected by stand age. If
so, then perhaps the benefit of using an individual-tree method
would be less evident among younger stands. We calculated
summary statistics for the predictive methods for stands less
than 50 years old (Table 8). While MSE for the Harrison and
Daniels (1988) model did improve, so did all of the
individual-tree-based methods. Therefore the Harrison and
Daniels (1988) model is no better suited to younger stands than
are the individual-tree models. However, MSE increased for
both the proportional allocation model (P6) and its generaliza-
tion (P8) in the younger stands.

An ideal prediction scheme would be one for which there
was nearly a one to one linear correspondence between ob-
served ∆bai and prediction, Pim. This was evaluated by fitting
a linear regression for residual as a function of predicted for
each of the m predictive methods (m = 1, 2, ..., 8). The results
of this analysis are shown in Table 9. The ideal predictor has
a slope and intercept of zero, or nearly so. A high r2− is indica-
tive of poor fit, a linear trend in the residuals with respect to
predicted growth, Pm. The individual-tree methods were supe-
rior to the disaggregative methods, although the Harrison and
Daniels (1988) method was not much worse than a reduced
individual-tree growth function; inclusion of crown ratio ap-
peared to result in a better fit (Table 9). It should be noted that
all parameter estimates were statistically significant at the 5%
level, except the intercept for P1.

The cumulative distribution of the absolute value of the
residuals expressed as a percent (ε′) is displayed for P3, P5, and
P6 in Fig. 5. The ideal predictor would have zero values for all
residuals and, therefore, would display a horizontal line at the
100% level over ε′ . Among the disaggregative approaches
without crown ratio, the proportional allocation method was
the least effective. However, either of the models with crown
ratio (whole-stand disaggregative or traditional individual-
tree) were superior to any without crown ratio (Fig. 6).

Among stand-level predictions, the full specification of the
individual-tree predictive method (AP2) had the lowest MSE;
however, the bias was smallest with AP4, a whole-stand pre-
dictive method. For long projections, therefore, the whole-
stand approach may provide better predictions. For short-term
projections, the individual-tree approach appeared to be supe-
rior. It should also be noted that the observed bias may be
offset by an underestimate of stand density over time and re-
sulting overestimates of growth.

The individual-tree method without crown ratio (AP1), al-
though not as good as the whole-stand model with crown sur-
face area (AP4), had a lower MSE than the model based on
stand density index (AP3). Note, however, that AP4 is depend-
ent on the information needed for an individual-tree-based
model. To calculate the crown surface area with the Biging
and Wensel (1990) equations, a list of trees with crown ratio
is required. In general, whole-stand models, even disaggrega-
tive systems, do not maintain this information. A more stand-
ard approach, such as AP3, which does not require crown
information, is only marginally better in terms of bias, and is
much worse in terms of variance than the individual-tree pre-
diction with crown ratio (AP2).

The cumulative distribution of the absolute value of relative
residuals expressed as a percentage showed that the distributions
were very similar, and that nearly all of the predictions of AP2

were within 40% of the actual growth (Fig. 7). This is a great
improvement over the predictions made at the tree level.

Despite the established knowledge of stand growth and
yield, and the fact that stand growth is generally well defined
for even-aged stands, the individual-tree approach including
crown ratio was a superior predictive technique for this one
observed growth period (Fig. 7). Figure 7 also illustrates the
general improvement in estimating stand growth versus tree
growth among the individual-tree prediction methods when
compared with Fig. 6. This does not necessarily mean that this
trend will hold over a long projection. Much of the difficulty
in obtaining reasonable long-term projections with an individual-
tree approach may be due to mortality functions. Existing functions

Method R
−2

Bias

(b̂i)

Variance

(σi
2) MSE

P1 0.5579 –0.002 937 0.000 139 8 0.000 148 4

P2 0.6525 0.000 127 6 0.000 117 1 0.000 117 1

P3 0.1812 0.000 841 8 0.000 275 3 0.000 276 0

P4 0.5362 0.000 105 8 0.000 156 3 0.000 156 4

P5 –0.1373 0.003 491 0.000 371 1 0.000 383 3

P6 –8.4282 –0.006 010 0.003 142 0.003 178

P7 0.2079 0.002 945 0.000 258 3 0.000 267 0

P8 –0.2503 0.002 076 0.000 417 1 0.000 421 4

Table 8.Individual-tree summary statistics for the residuals of

predictive methods P1–P8 for stands less than 50 years of age,

where residual = observed – predicted (units are m2 of basal area

increment).
Method Intercept Slope r2−

P1 0.005 939 –0.094 930 0.0279

P2 0.020 862 –0.078 417 0.0069

P3 0.071 061 –0.282 00 0.0872

P4 0.051 342 –0.207 63 0.0586

P5 0.131 64 –0.349 18 0.0933

P6 0.224 01 –0.797 34 0.7966

P7 0.098 231 –0.205 71 0.0254

P8 0.122 34 –0.389 22 0.1433

Table 9.Results of analysis of residuals for linear

trends.
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for estimating individual-tree probability of mortality may not
aggregate reliably. The effects of mortality prediction are be-
yond the scope of this study, and unconstrained mortality
estimation techniques are certainly not necessary for individual-
tree architecture.

Conclusions

We found no evidence to suggest that the disaggregative ap-
proach is able to predict tree or stand gross basal area growth
as well as an individual-tree approach for a single 5-year period.

Crown ratio appears to be an important component in prediction
of both tree and stand gross growth; the full individual-tree
model consistently outperformed both additive- and proportional-
allocation disaggregative models. In predicting stand or tree
growth, the use of individual-tree functions in a disaggregative
approach did not result in any improvement over the more
traditional application of unconstrained individual-tree growth
models.

Of the two disaggregative approaches, we found that the
additive allocation system patterned after Harrison and
Daniels (1988) was far superior to the simple proportional al-
location for predicting basal area increment. Adding a con-
straint to the proportional allocation [13] greatly improved the
model. While it appears that the linearity assumption of the
Harrison and Daniels (1988) model does not hold as well for
older stands in this data set, the effect of stand age on predic-
tions is also evident for individual-tree methods.

Since these stands are mostly even aged and are dominated
by a single species, we cannot say what the results would be
for more complex stand structures. In general, one would expect
that whole-stand models would suffer in their ability to predict
growth for such stands. If disaggregative models were to work
well anywhere, it should be in even-aged, single-species
stands, such as those in this study. In general it should be noted
that results for a single 5-year period do not necessarily hold
for long-term projections. The superiority of an individual-tree
approach for gross-growth estimation may not hold for pre-
dicting net growth; this is partially dependent on mortality
estimation, which may be an area where disaggregative methods
would be beneficial.
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