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Three closely related isolates belonging to the Al serotype of infectious pancreatic

necrosis virus (IPNV) were selected for comparison, to provide insight into the nature of

variation in the virulence of IPN viruses. Brook trout fry (Salvelinus fontinalis) were

experimentally infected with the three isolates by immersion. Cumulative mortalities over a

62 day period for the three isolates were 67%, 78%, and 93%. The negative control was

3%. Virus titers from whole fish homogenates sampled at peak mortality for each isolate

were statistically similar, indicating that quantity of virus does not account for virulence

differences. For the two least virulent isolates, the virus titer was inversely correlated with

fish weight, whereas for the most virulent isolate, no correlation was observed.

Amino acid sequences of the viral capsid protein VP2 were determined using the

reverse transcriptase polymerase chain reaction (RT-PCR). There were two amino acid

changes at residue 217 and 288 between the two least virulent isolates and the most

virulent isolate. These cha ges might provide a specific molecular basis for the variations

in virulence among isolates.

The progression of IPN virus infection in the experimentally infected fry was

followed using histopathology, in situ cDNA hybridization, and alkaline phosphatase

immunohistochemistry (APIH). While microscopic lesions were limited almost exclusively

to necrosis of the pyloric caeca and pancreas, positive reactions with in situ hybridization

and APIH were observed in tissues throughout infected fish. An IPNV infection appeared



to be established in the fish by two routes: by entering the skin/lateral line and diffusing 

through the muscle, and from the oral region into the gastrointestinal tract by ingestion. 

In a second experiment, within a group of experimentally infected brook trout fry, 

external and behavioral signs of IPN disease in moribund fish disappeared, with the fish 

becoming healthy in appearance. Several of these fish were sampled, along with dead, 

moribund, and asymptomatic fish (never showed signs of IPN disease). Very few 

differences were observed among the fish sampled, using histopathology and in situ 

hybridization. Fish that appeared to recover after displaying signs of IPN disease died 

within a 2 week period. 
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PATHOGENIC AND MOLECULAR CHARACTERIZATION
 
OF THREE CLOSELY RELATED ISOLATES
 

OF INFECTIOUS PANCREATIC NECROSIS VIRUS (IPNV)
 

CHAPTER 1
 
THESIS INTRODUCTION
 

Infectious pancreatic necrosis virus (IPNV) is a virus which infects aquatic animals 

that can cause devastating disease in salmonid species worldwide. It is known to cause 

significant losses in hatchery-reared brook and rainbow trout (Salvelinus fontinalis and 

Oncorhynchus mykiss) in both eastern and western parts of the U.S., and throughout the 

world. It has caused notable mortality in young salmonids in Oregon hatcheries (Groberg 

et al., 1980), and is considered a prevailing fish health problem in Idaho fish hatcheries 

(Hauck, 1990). 

Two recent occurrences in the U.S. succinctly illustrate the concern raised by the 

TN virus. In one instance, 7 million young salmonids from a single hatchery facility in 

Colorado were destroyed to eliminate IPNV (P. Reno, personal communication). In the 

other instance, IPNV was detected in returning coho salmon (Oncorhynchus kisutch), 

resulting in the destruction of more than 2 million eggs from this stock of fish (Olson et 

al., 1994). In Europe, an increased association of IPNV with postsmolt disease of farmed 

Atlantic salmon (Salmo salar) has been observed. In the two months following transfer of 

smolts to sea, poor growth and significant mortality occur that can be related to pancreas 

and gastrointestinal pathologies associated with high IPN virus titers (Smail et al., 1992). 

In Norway, losses up to 30% have been reported for IPN outbreaks in postsmolts 

(Christie et al., 1990). 

The unenveloped, icosahedral virus is about 60 nm in size and has been classified 

as a birnavirus, with a genome consisting of two segments of double-stranded RNA 

(Dobos, 1976). The virus is transmitted both horizontally and vertically, with survivors 

from IPNV enzootics becoming carriers for life (Bootland et al., 1991). The virus has 

been detected in both freshwater and marine fish from 32 different families, as well as 
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members of the mollusc and crustacean phyla (Hill and Way, 1995); it is most often 

detected in carrier animals in the absence of overt disease. Given the worldwide 

distribution of the virus in freshwater and marine environments, combined with the 

frequent lack of external disease signs, the potential for dissemination of the IPN virus is 

very high. 

IPNV is one of the most extensively studied fish viruses, and much has been 

discovered about the molecular biology of IPNV, including its mode of replication and the 

genomic segments responsible for production of each viral polypeptide product (Dobos 

and Roberts, 1983; Dobos, 1995). However, little is known about the pathogenesis of the 

disease. A large part of the difficulty in understanding the disease is a lack of information 

about why overt disease occurs in certain situations and not in others. Therefore, it is 

important to determine which inherent virus characteristics are associated with the 

virulence of IPN virus. 

Ten different birnavirus serotypes exist, within two serogroups designated A and B 

(Hill and Way, 1995). All IPN viruses are members of Serogroup A, which contains 9 

different serotypes. Serotypes are differentiated by reciprocal cross-neutralization assays, 

using standardized procedures. Each serotype is composed of numerous isolates, with the 

virulence expressed by different IPNV isolates being extremely variable (Jorgensen and 

Kehiet, 1971; Sano, 1971b). Recent sequence data (B. Nicholson, personal 

communication) from the VP2 viral capsid protein region believed to be responsible for 

virulence (Sano et al., 1991) indicates an extreme homology among IPNV isolates. These 

data belie marked differences in virulence among the isolates, based on mortality 

experiments using susceptible brook trout fry (J. Maret, personal communication). The 

purpose of this research was to focus on several isolates of IPNV with marked variations 

in virulence, but virtually identical sequences, to determine how the isolates differ in 

mechanisms of infection. 

Chapter 3 of this thesis describes a possible molecular basis for the difference in 

virulence among Pacific Northwest strains of IPNV in salmonids, by determining the 

nucleotide sequence of three isolates of Buhl subtype IPNV that appear to differ markedly 

in their expressed virulence. Susceptible brook trout fry were experimentally infected with 
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the different isolates of IPNV, and the resulting mortality data used to confirm the 

virulence level of each isolate. The viral genome was extracted and sequenced, using the 

reverse-transcriptase polymerase chain reaction (RT-PCR), at three different points in 

time: before being introduced into the fish, during the epizootic, and 2 months after 

exposure, in order to determine if major changes occurred in the VP2 region that might 

account for the differences in virulence at a molecular level. 

Chapter 4 of this thesis describes research that utilized both molecular probes and 

immunohisto chemical techniques in tandem with conventional histopathology to determine 

the pathogenesis of the IPN disease in brook trout fry. Resulting reactions in individual 

tissues of the fish were also compared among isolates of different virulence levels to 

determine if differing mechanisms of infection could be elucidated, or whether there was a 

predilection for certain tissues by more virulent isolates, which was lacking in less virulent 

isolates. 

Lastly, in Chapter 5, this thesis examines the possible survival of fish infected with 

IPNV that display clinical signs of IPN disease, in order to ascertain information about 

why some fish survive an IPNV infection while others die. It has been presumed that fish 

exhibiting signs of disease die within hours of the onset of signs (Wolf, 1966). 
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CHAPTER 2
 
LITERATURE REVIEW
 

Infectious Pancreatic Necrosis Disease 

History 

Infectious pancreatic necrosis disease (IPN) is believed to have been first described 

by M'Gonigle in 1941, who observed whirling behavior and high mortality in brook trout 

(Salvelinus fontinalis) fry in Canada. At the time, however, the condition was described as 

"acute catarrhal enteritis" and the likely cause was thought to be nutritional or 

physiological. 

After a similar outbreak in the eastern U.S. in 1954, the infectious nature of IPN 

was subsequently demonstrated by Wood et al. (1955), using waterborne transmission to 

healthy brook trout. Infection resulted in acute pancreatic necrosis in young fry. Based on 

the results of these experiments, a virus was suggested by Wood et al. to be the causative 

agent of IPN. 

Snieszko et al. (1957, 1959) reported possible outbreaks of the IPN disease in 

rainbow trout (Onchorynchus mykiss), Atlantic salmon (Salmo salar), and brown trout 

(Salvelinus tnata) fingerlings; and subsequently demonstrated the transmissibility of IPN 

by feeding a homogenate of moribund IPN infected fry to susceptible brook trout 

fingerlings. 

The actual viral nature of IPN was proven in 1960 by Wolf et al., who infected cell 

cultures of eastern brook trout tissues, using gill, swim bladder, spleen, kidney, and caudal 

fin of infected fish. Cytopathic effect (CPE) was exhibited by the cell cultures in 18-24 h 

after primary inoculation, with complete destruction of the cells occurring in 1-4 days. It 

was also found at this time that the agent was filterable, unaffected by antibiotics, and 

could be passed on serially in cell culture. When susceptible fish were inoculated with the 

cell culture fluid, IPN signs developed (Wolf et al., 1961), thus fulfilling Rivers' postulates 

(Rivers, 1937) and proving this virus to be the etiologic agent of the disease. 
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Host Range 

Although IPN is most prominently known for its devastating effects on freshwater 

salmonids, such as brook trout, rainbow trout, brown trout, and cutthroat trout 

(Oncorhynchus clarki), the virus has been found in numerous other aquacultured and feral 

species, both freshwater and marine. 

The first non-salmonid host to be discovered carrying the IPN virus was a 

population of healthy white suckers (Catastomus commersoni) located downstream from 

an IPN-positive Canadian fish hatchery (Sonstegard et al., 1972). Since that time, the list 

of affected species has grown to include fish that represent 32 different families, as well as 

members of the mollusc and crustacean phyla (Hill and Way, 1995). In most of these 

cases, the virus was found without clinical signs of disease being present in the host 

species. However, there is convincing evidence that IPNV does cause disease in some 

non-salmonid hosts, such as young Japanese eels (Anguilla japonica) (Sano et aL, 1981), 

as well as yellowtail (Seriola quinqueradiata) fry and fingerlings in Japan (Sorimachi and 

Hara, 1985). 

It was suggested that IPNV causes disease in Atlantic menhaden (Brevoortia 

tyrannus), after a virus similar to IPNV was isolated from Atlantic menhaden suffering 

from a "spinning" disease in Chesapeake Bay (Stephens et al., 1980). Susceptible fish that 

were experimentally infected with the isolated virus exhibited hemorrhaging at the base of 

fins and along the body, along with darkened pigmentation, followed by erratic swimming 

behavior and death within 3-5 days. The virus could be re-isolated from the brain, 

pancreas and other internal organs, as well as the blood. Similar viruses were found in 

striped bass (Morone saxatilis) (Schultz et al., 1984), and Mediterranean sea bass 

(Dicentrarchus labrax) (Bonami et al., 1983), although it has not been conclusively 

decided whether the disease signs caused by these virions meet the criterion for IPN 

disease. 

To date, IPN virus has not been found infecting a mammalian species. Indeed, no 

pathogenic mammalian birnaviruses have been discovered (Dobos, 1995). 
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Epidemiology 

Clinical signs of IPN disease are displayed primarily by early feeding fry or 

fingerlings, with an almost linear relationship reported between the decrease in sensitivity 

to the virus with increasing age of the susceptible host (Dorson and Torchy, 1981). 

Mortalities resulting from IPNV infection have traditionally been recorded in hatchery fish 

less than 6 months of age. However, IPN disease of yearling salmonids has been recorded 

in brook trout (Elazhary et al., 1976) and experimentally infected Atlantic salmon 

(Swanson and Gillespie, 1979), and recent observations at European sea farm sites 

indicate that IPNV is causing increased disease and mortality in postsmolt Atlantic salmon 

(Krogsrud et al., 1989; Christie and Havarstein, 1989; Christie et al., 1990; Small et al., 

1992). Additionally, it has been observed that asymptomatic carriers of IPNV who 

survived an outbreak of the disease as fry may have a reactivation of clinical disease, 

mediated by stress (Roberts and McKnight, 1976). It does appear that a susceptible fish of 

any age can become infected with the IPN virus, subsequently becoming an asymptomatic, 

chronic carrier. 

Although the time course of the disease varies considerably with factors such as 

host species and age, water temperature, and virus strain, some general observations can 

be made from experimental evidence. Clinical signs of the disease usually appear in feeding 

fry about 3-5 days after initial exposure to the virus, while fingerlings manifest signs about 

8-10 days after exposure (Noga, 1996). Peak mortality usually occurs from 7 to 18 days 

after exposure, after which mortalities taper off relatively quickly (Swanson and Gillespie, 

1979; Lapeirre et al., 1988). A second, smaller peak of mortalities occurring a few days 

after the first may or may not be observed (P. Reno, personal communication). Overall, 

mortalities from IPNV usually last a total of 4-6 weeks after initial exposure to the virus, 

although fish that have been weakened by the virus may sporadically die over a longer 

period of time. 
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Environmental Factors 

As with most fish diseases, water temperature is one of the most important 

environmental factors affecting the outcome of an IPN infection. Generally, at high 

temperatures (10° to 14° C), mortality of infected fry is the most rapid and extreme. 

However, at temperatures greater than 15°C, the mortality rate is suppressed (Dorson and 

Torchy, 1981). At lower temperatures, mortality of the infected fish becomes prolonged 

and the mortality rate is often reduced, although susceptibility to IPNV infection at 

specific temperatures appears to depend primarily upon the virus isolate (Frantsi and 

Sayan, 1971). 

There is also evidence that environmental conditions such as overcrowding affect 

the development of clinical IPN in hatchery-reared fry or fingerlings. In the field, it has 

been observed that the mortality level caused by IPN becomes lower if the population 

density of hatchery-reared fish is reduced (Jorgensen and Bregnballe, 1969). Other stress 

inducers such as transportation and low oxygen content have been observed to cause 

increased replication of the IPN virus in carrier fish (Frantsi and Sayan, 1971; Roberts and 

McKnight, 1976), and it has been suggested that stress-promoting treatments such as 

immunosuppressant reagents might be used to increase the titer of IPNV in order to aid 

detection capabilities (McAllister et al., 1994). 

Pathology 

The characteristic signs of IPN disease include corkscrew whirling about the long 

axis alternating with prostration, ascites which causes severe distension of the abdomen, 

petechial hemorrhages of ventral areas, castlike excretions from the vent, overall 

darkening, and rapid respiration. Exopthalmia may or may not be present. Infected fish 

refuse feed and collect at the water outflow. Following the most severe signs, death is 

often rapid, usually occurring within an hour or two (Wolf, 1966). 
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Internally, the spleen, heart, kidneys and liver of infected fish are pale, and there is 

petechial hemorrhage in the pyloric caeca and adipose tissue. The digestive tract is devoid 

of food, replaced by copious amounts of a clear to milky mucous in the stomach and 

anterior intestine. Large amounts of sloughed off epithelial cells from the pyloric caeca and 

intestinal mucosa are also found throughout the digestive tract. 

Fry that survive an acute IPN infection often become significantly stunted in their 

growth because of the extensive pancreatic fibrosis that may occur (McKnight and 

Roberts, 1976; Munro and Duncan, 1977). 

Histopathology 

As is evident from the name, pronounced pancreatic inflammation and necrosis are 

the most obvious signs of disease seen in tissue sections of infected fish. The pancreatic 

acinar cells are the prime viral target, although islet pancreatic tissues may be affected, as 

well as the adjacent adipose tissue. Lymphocytes usually infiltrate into the acinar tissue in 

the early stages of infection, followed by nuclear pyknosis and karyorhexis in acinar cells 

(Noga, 1996). The epithelial cells of the pyloric caeca may swell and develop a fragmented 

nucleus, becoming "McKnight cells", which then shed their eosinophilic cytoplasm into the 

lumen of the pyloric caeca (McKnight and Roberts, 1976). 

Sloughing of the mucosal epithelium is common in the pylorus, pyloric caeca, and 

upper intestine. The liver, kidney, and hematopoietic tissue may show slight pathological 

signs, such as focal necrosis or increased macrophages (Yasutake et al., 1965; Swanson 

and Gillespie, 1979). 

Hyaline degeneration of the skeletal muscle of infected fish is frequently described 

in association with IPN disease (Snieszko et al., 1957), although a direct correlation has 

not been proven (Wolf, 1966). Acinar cells may contain basophilic, cytoplasmic inclusions, 

believed to be the products of cell degeneration, especially near the edges of tissue where 

necrosis has just begun (Noga, 1996). However, these signs are not consistent enough to 

be definitely associated with the disease. 
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Distribution 

After the initial reports of IPN in Canada by M'Gonigle (1941) and in the eastern 

U.S. by Wood et al. (1955), IPN was also found to exist in the western U.S. (Parisot et 

al., 1963). It was found to be widespread throughout fish culture stations in eastern 

Canada (MacKelvie and Artsob, 1969). It was quickly discovered to be present in many 

other areas worldwide. 

The first European outbreak was reported affecting rainbow trout fry in France in 

1964 (Besse and de Kinkelin, 1965), which was followed by a similar report of IPN 

disease signs manifested by rainbow trout in Denmark in 1968 (Jorgensen and Bregnballe, 

1969). Sano (1971a) described the first outbreak in Asia, which occurred in rainbow trout 

fry in Japan. In further research, Sano (1972) discovered that IPN disease was widespread 

in Japanese rainbow trout fish hatcheries. 

Subsequently, IPN disease occurrences have been reported worldwide, with the 

most frequent occurrences in major trout-producing areas of the United States, Canada, 

France, Denmark, Norway, and Japan. With the recent report describing isolation of IPNV 

from two fish hatcheries in Portugal (Sousa et al., 1996), Greece remains the only member 

of the European Community (EC) to date that has not found IPNV in its facilities (Hill, 

1992). 

Natural Transmission 

The transmission of the highly contagious IPN virus is both horizontal and vertical. 

Natural horizontal transmission occurs in the water from carrier fish to susceptible fry, and 

from infected fry to susceptible fry, via waterflow, contact, or cannibalism of infected 

tissue. Virus may be shed in the urine, feces, and sex products of infected fish, although 

not all infected fish shed virus and some may shed only intermittently (Billi and Wolf, 

1969). One major source of IPN virus from infected fish may be the fecal pseudocast, 

which is highly mucoid. Additionally, IPNV was found to be present in the seminal fluid 
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of rainbow trout by Ahne (1983), while Mulcahy and Pascho (1984) found virus absorbed 

onto rainbow trout sperm. 

Transmission occurs vertically from adult carriers to the progeny fry in or on the 

eggs and ovarian fluid (Wolf et al., 1963; Bullock et al., 1976). Ahne and Negele (1985) 

conducted several experiments involving both eyed eggs and sexual products of salmonids 

and found that the virus, which had a strong affinity for the egg shell, could be reisolated 

from egg shells more than 3 weeks after infection. Since yolk-sac fry were observed trying 

to eat the egg shells, it is possible that infected egg shells serve as a source of IPNV 

contamination for young fry. It has been suggested by Wolf (1988) that IPNV may 

contribute to the mortality of fish embryos. 

Survivors from an enzootic infection become IPN virus carriers for life (Bootland 

et al., 1991), serving as the reservoir of the infection. The virus has most often been 

detected in carrier animals in the absence of overt clinical disease. 

Experimental Transmission 

The disease can be transmitted experimentally by feeding infected material (Wolf et 

al., 1961), injecting infected material intra-peritoneally or IP (Wolf, 1966), or by 

immersing susceptible fish in water containing the virus (Wood et al., 1955; McAllister 

and Owens, 1986). Transmission of IPNV by immersion occurs either by contact through 

the water or by ingestion of the virus, leading to administration via the oral route. 

Carriers/Vectors 

Several non-salmonid aquaculture species have been implicated as possible 

transmission vectors or carriers for the IPN virus. The striped bass has been shown to 

spread the virus to brook trout (Wechsler et al., 1987; McAllister and McAllister, 1988). 

Freshwater crayfish (Astacus astacus) infected with IPNV were found to excrete the virus 
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into the water continuously and the virus was found in the organs of infected animals for 

up to 1 year after initial infection (Haider and Aline, 1988). Scallops (Pecten maximus) 

which had been artificially infected with IPNV by injection or immersion were found to 

shed the virus in their feces, while prawns (Pandulus borealis and Palaemon elegons) 

which fed on dead IPNV-contaminated scallops became carriers of the virus (Mortensen, 

1993). Spawning prawns (Panaeus japonicus) from farms in Italy were also found to carry 

the IPN virus (Giorgetti, 1990). 

In the 1980s, loons (Gavia immer) were observed to feed on IPN infected brook 

trout from ponds located in New York state (Flick, 1983). Although no evidencewas 

obtained that the loons were spreading IPN virus to nearby ponds, it was suggested that 

predators might be a possible source of transmission. In 1992, IPNV was recovered from 

the feces of wild piscivourous birds that were observed feeding on IPN infected fish 

(McAllister and Owens, 1992). However, no disease signs were evident in the birds, and it 

remains unknown if they can serve as a vector for the virus. 

Detection 

The presence of clinical IPN in fish is usually determined by observation of 

classical pathological signs in susceptible species. However, in the absence of overt 

disease, clinical IPN can be detected by the inoculation of susceptible cell cultures with an 

overlay of filtered tissue homogenates derived from fish suspected to be infected with the 

virus. Target tissues for isolation of high titers include the posterior kidney, pancreas, 

pyloric caeca, spleen and liver. Typical CPE usually occurs in the inoculated cell culture 

within 2-4 days, depending on cell type, incubation temperature, and to a large extent, the 

amount of virus used to inoculate the culture. 

A definitive diagnosis of IPNV infection can be obtained by combining cell line 

replication with one of several serological assays available, such as: the serum 

neutralization assay, direct or indirect immtmofluorescence (Piper et al., 1973; Nicholson 

and Henchal, 1978), the complement fixation test (Finlay and Hill, 1975), the enzyme­
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linked immunosorbent assay or ELISA (Nicholson and Caswell, 1982; Dixon and Hill, 

1983; Hattori et aL, 1984), or an enzyme immunodot (Caswell-Reno et al., 1989). In all 

of these tests, IPNV specific antibodies (either mono- or polyclonal) are used to bind to 

the IPN virus in cell culture, if present, coupled with one of a variety of biochemical 

reactions for detection, providing a means for identification. For certain assays, it has 

been shown to be possible to test tissue homogenates from infected fish directly, without 

growth of the virus in cell culture, as long as the background absorbance is not 

prohibitively high (Dixon and Hill, 1983) and the virus titers are high (>1061g). 

Oligonucleotide DNA probes approximately 24 bases in size have also been used 

for the diagnosis of IPNV infection (Christie et al., 1988; Rimstad et al., 1990; Blake et 

al., 1995). With these, it was found that an initial extraction of the IPNV RNA was not 

required. Cloned cDNA probes were developed by Dopazo et al. (1994) for use in a dot-

blot hybridization assay to detect the presence of IPNV RNA in tissues of infected brook 

and rainbow trout. However, the assay was found to be most effective when combined 

with the conventional diagnostic method of inoculating the infected fish tissue 

homogenates onto a susceptible cell culture for 12-24 h before performing the assay, in 

order to increase the amount of viral RNA present. 

Infectious Pancreatic Necrosis Virus 

Virion Characteristics 

Infectious pancreatic necrosis virus (IPNV) is the prototype virus of the 

Birnaviridae family, which was established relatively recently (Brown, 1986) and contains 

three genera. IPNV is the type species of the genus Aquabirnavirus, the designation 

indicating that it infects aquatic species. The virion, with a molecular weight of 55 x 106 

Daltons or Da (Dobos et al., 1977), is non-enveloped with an icosahedral capsid 

approximately 60 nm in diameter. Typically, the viral capsid has been described as being 

composed of 92 capsomers with a triangulation number (T) of 9 (Kelly and Loh, 1972; 
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Cohen et al., 1973), however, it has been proposed that the capsid layer actually contains 

132 capsomers with a T = 13 (Ozel and Gelderblom, 1985). The buoyant density of IPNV 

in CsC1 is 1.33 g/cm3 (Kelly and Loh, 1972). 

Although originally believed to have a single-stranded RNA genome (Nicholson, 

1971; Kelly and Loh, 1972), it was ultimately determined that each IPN virion contains a 

double-stranded RNA genome that is bipartite, consisting of two segments of RNase­

resistant RNA. Neither segment contains a poly A tail at the 3' end. The segments are 

similar in size, with molecular weights of 2.5 x 106 and 2.3 x 106 Da (Dobos, 1976). The 

two genome segments, referred to as A and B, are functionally and structurally different, 

although they both contain large areas of noncoding sequence with extensive homology 

between the two segments. In contrast, there is little genomic homology between the 

coding regions of the two segments. 

Proteins 

Segment A, the larger RNA segment with 3097 bp, is bicistronic, containing two 

overlapping open reading frames (ORFs). A large ORF encodes three induced viral 

proteins, designated as VP2, VP3, and NS, after post-translational cleavage of a 106 kDa 

polyprotein (NH2-preVP2-NS protease-VP3-COOH). A small ORF, in a different reading 

frame that overlaps the large ORF, encodes a 17 kDa minor polypeptide that is arginine-

rich (Duncan et al., 1987). After expressing the 17kDa polypepetide as a fusion protein, it 

was determined that this basic protein is synthesized in small quantities in infected fish 

cells. It was also found that at least one strain of IPNV lacked the small ORF, while two 

other strains had truncated ORFs (Heppell et al., 1995). 

VP2 is originally produced as preVP2 along with VP3, during cotranslational 

cleavage of the polyprotein by the viral protease, NS. The preVP2 is then further cleaved 

to yield the structural VP2 protein (Dobos and Rowe, 1977; Duncan et al., 1987), which 

is 54 kDa in size. VP2 is one of the two capsid proteins of IPNV, representing 62% of the 

virion protein by mass. An external protein, VP2 stimulates production of type-specific 
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neutralizing monoclonal antibodies or MAbs (Nicholson, 1993), and it is believed by some 

to contain all the epitopes recognized by neutralizing MAbs (Caswell-Reno et al., 1986; 

Tarrab et al., 1995). 

The other viral capsid protein, VP3, is 31 kDa in size and represents 28% of the 

virion protein by mass, although it is present in slightly larger quantities than VP2 (Dobos, 

1995). Some IPNV serotypes contain a second small polypeptide that is 29 kDa in size, 

VP3a (sometimes referred to as VP4 in the literature), that is probably cleaved from VP3 

during virus maturation (Dobos and Rowe, 1977). VP3 is believed by some researchers to 

be an internal protein (Dobos et al., 1977; Dobos, 1977), although it has been suggested 

that at least a portion of the protein is exposed on the surface of the virion, based on 

results using anti-VP3 MAbs in both ELISA and immunodot assays (Caswell-Reno et aL, 

1986; Caswell-Reno et al., 1989; Nicholson, 1993). VP3 is known to contain several 

nonneutralizing epitopes based on the production of VP3 specific MAbs to several IPNV 

serotypes (Caswell-Reno et aL, 1986; Wolski et al., 1986; Christie et al., 1990; 

Dominguez et aL, 1991; Lecomte et al., 1992; Tarrab et al., 1996), and a recent 

publication described virus neutralizing activity using mouse antiserum raised against 

VP3/VP3a purified from the DRT strain of IPNV (Park and Jeong, 1996). 

The non-structural protease protein, NS, is 28kDa in size and found only in trace 

amounts (Dobos and Rowe, 1977). 

Segment B, the smaller RNA segment with 2784 bp, is monocistronic, encoding 

for the putative RNA-dependent RNA polymerase (RdRp), known as VP1 (Duncan et al., 

1991). VP1, which is 94 kDa in size, is an internal polypeptide found as two forms in the 

virion: as a free polypeptide, and as a genome-linked form known as VPg. In the latter 

form, a serine residue in the VPg forms a phosphodiester bond with the 5' of each RNA 

strand (Calvert et al., 1991). Although the IPNV RdRp was found by Poch et al. (1989) 

to contain several conserved domains in common with RdRps from other RNA viruses, it 

is unique in that it is lacking a characteristic Gly-Asp-Asp motif usually associated with 

this enzyme family (Gorbalenya and Koonin, 1988; Duncan et al., 1991). 
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Replication 

From the results of binding experiments, using CHSE cells at 4°C, it has been 

determined that IPNV saturates cellular binding sites in 2-3 hours (Dobos, 1995). 

Competition experiments, again using CHSE-214 cells, have demonstrated that IPNV 

attaches to cells by means of specific cellular components (Kumar et al., 1995). The 

mechanisms for penetration or uncoating of the virus are presently unknown, although it 

was shown that a very small amount of the adsorbed IPNV actually enters the cells, 

becoming internalized in acid compartments within 20 minutes Maximum synthesis of the 

viral RNA genome occurs 8-10 hours after initial infection of a cell, then diminishes by 14 

hours post-infection (Somogyi and Dobos, 1980). Replicationoccurs in a semi-

conservative manner, with displacement of the plus strand of genomic RNA by the newly 

synthesized RNA strand. 

Transcription of the dsRNA genome is primed by the WI protein (Vpg), after it 

forms a phosphodiester bond with the 5' of each RNA strand. Synthesis of the viral 

proteins, VP1, preVP2, VP3 and NS, occurs in approximately equal amounts between 3­

14 hours post-infection (Dobos, 1977). 

Stability 

The IPN virus is very stable in water, remaining infectious for up to 6 months in 

10°C tap water (Toranzo and Hetrick, 1982). It gradually becomes inactivated, but its 

level of stability is about the same in fresh versus salt water, indicating the potential of 

IPNV to survive in a variety of aquatic environments (Desautels and MacKelvie, 1975; 

Toranzo and Hetrick, 1982). The temperature of the water, regardless of water type, 

greatly affects the rate of viral inactivation. At 15°C, IPNV is more stable in estuarine 

water, while at 20°C, its rate of inactivation is about the same in both estuarine and fresh 

water (Toranzo and Hetrick, 1982). 
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IPNV is sensitive to alkaline pH (12.2), but relatively resistant to acid pH (2.5), 

underlining the ability of the virus to endure the conditions of the fish gut (Vestergaard-

Jorgensen, 1974). The virus is also resistant to air drying (Toranzo and Hetrick, 1982). It 

is relatively heat stable (MacKelvie and Desautels, 1975), and variably resistant to 

freezing, surviving for several months in frozen viscera (Noga, 1996). The virus can be 

successfully stored for several years by freezing at -80°C. 

In fresh water or phosphate buffered saline (PBS), IPNV is inactivated by at least 

25 ppm of iodophor or chlorine (Desautels and MacKelvie, 1975), however, the activity of 

these disinfectants greatly decreases in the presence of organic matter or serum in the 

environment (Inouye et al., 1990). Efficacy of these disinfectants also dependsupon the 

water pH and the concentration of the virus present (Elliott and Amend, 1978). 

Additional substances that inactivate IPNV include cresol, ethanol, methanol, and 

formalin (Dixon and Hill, 1983), as well as treatment by ozonation. IPNV is moderately 

resistant to UV irradiation (Liltved et al., 1995), and is not found to be inactivated by 

ether, propanol, phenol, or chloroform treatments (Inouye et aL, 1990). 

Cell Culture 

IPNV was first isolated in a primary fish cell culture from eastern brook trout in 

1960 by Wolf et al. Since then it has been found to replicate well in the cell lines of many 

teleost fish species (Wolf and Mann, 1980), such as chinook salmon Oncorhynchus 

tshawytscha (Walbaum) embryo CHSE-214 cells, carp epithelioma papulosum cyprini 

EPC cells, rainbow trout Oncorhynchus mykiss gonad RTG-2 cells, and fathead minnow 

Pimephales promelas FHM cells. Research by Kelly et al. (1978) found that the RTG-2 

cell line was more sensitive than the FHM cell line to lytic infection by IPNV. However, 

IPNV induces interferon production in RTG-2 cells, which have a sensitivity to interferon 

treatment, subsequently resulting in lower infectious titers around 106-107 PFU/ral 

(Macdonald and Kennedy, 1979) than in other cells. Since CHSE-214 cells are not 

sensitive to interferon treatment and are not producers of interferon, they are commonly 
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used by most laboratories to grow high titers of IPNV (Dobos, 1995). The titer of the 

virus in culture fluid from infected CHSE-214 cells is generally 108-109 PFU/ml or higher. 

Bova et al. (1985), after comparing the sensitivity of five fish cell lines to IPNV, 

concluded that pike (Esox lucius) gonad PG cells (Aline, 1979) were the best cells for 

detection and titration of IPNV, however, CHSE-214 cells were not included in the 

comparison. 

The optimum temperature for propagation of IPNV in cell lines is 20°C, with a 

range of 4-27°C. This low temperature range is a viral requirement, as opposed to being a 

requirement of the host cells (Dobos, 1995). 

A single cycle of viral replication takes 16-20 h at 22°C, with IPNV infected cell 

lines producing a characteristic CPE in 2-3 days. Many of the cells become spindle-

shaped, remaining attached to the substrate surface, with nuclear pyknosis evident. Other 

cells round up and separate from neighboring cells in the monolayer. Eventually, as the 

infection progresses, the majority of cells detach from the substrate surface and lyse, 

resulting in almost total cell destruction. Some cells might stick to the substrate, appearing 

to be alive. 

Avian and mammalian cell lines are not susceptible to infection with IPNV, 

possibly due to the low temperature requirement and/or the lack of necessary viral 

attachment receptors. Likewise, insect cell lines are not susceptible to infection with 

IPNV, although they can grow at the lower temperatures (Dobos, 1995). This suggests 

the absence of a receptor for IPNV. 

Types 

The original prototype isolate of IPNV was isolated by Wolf et al. (1960) from 

brook trout undergoing an epizootic in West Virginia, and deposited in the American 

Type Culture Collection (ATCC) in 1963. The designation "VR-299" refers to the 

reference number given to the isolate. The VR-299 antiserum was used extensively to test 

new found virus isolates, to determine if they were IPNV strains, based on neutralization 
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assays. However, many researchers (Malsberger and Cerini, 1963; MacKelvie and Artsob, 

1969; Wolf et al., 1969) found that there was wide variation in the level of neutralization 

observed, using the VR-299 antiserum. It was suggested that IPNV had greater antigenic 

diversity than previously recognized and that different serotypes of IPNV might exist. This 

led to new classifications of the IPN viruses. 

Three well-documented serotypes of IPNV were originally described in the 

literature, referred to as Sp (Jorgensen and Bregnballe, 1969), Ab (Jorgensen and 

Grauballe, 1971), and VR-299 (Wolf et al., 1960). They can be differentiated by 

neutralization tests as well as by physical and phenotypic differences (MacDonald and 

Gover, 1981). Sp and Ab were isolated from Denmark, while VR-299 was found in the 

U.S. Most U.S. strains of IPNV are related to VR-299, the original reference strain, while 

Sp and Ab are defined as European isolates. 

A proposal by B.J. Hill (1982) divided the aquatic birnaviruses into two 

serogroups: Serogroup I which contains all IPN viruses, and Serogroup II, an unrelated 

group which includes Tellina virus I (TV-I) as the type isolate. 

After an extensive study comparing 175 IPN virus isolates from eleven countries 

using polyclonal antisera in a neutralization assay, a further proposal by Hill & Way 

(1983) divided Serogroup I into nine cross-reacting serotypes, referred to as West Buxton 

(WB), Sp, Ab, Hecht (He), Tellina (Te), Canada 1 (C1), Canada 2 (C2), Canada 3 (C3), 

and Jasper (Ja). Most of the isolates cross-reacted with one another to some extent, 

however, it was felt that the existing differences warranted the separate classifications. 

Serogroup II contained the single serotype, TV-I. This proposal was amended to suggest 

that Serogroup I and II be changed to Serogroup A and B. Members of each serogroup 

would be referred to numerically, i.e. Al -A9 for the former, and B1 for the latter (Hill and 

Way, 1988; Hill and Way, 1995). 

Each serotype is composed of numerous strains or subtypes, defined by their 

reaction to specified monoclonal antibodies. Under the conventional categorization, VR­

299 is placed as a member of the Al serotype referred to as West Buxton. The same holds 

true for the Buhl subtype of the IPN virus. 
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Buhl Subtype 

The IPNV Buhl subtype was first isolated in 1965 from rainbow trout from Buhl, 

Idaho, and, based on the results of neutralizationassays, was placed in the Al serotype 

known as West Buxton, of which VR-299 is the type strain. It is categorized by the 

American Type Culture Collection as VR-890. 

Caswell-Reno et al. (1989) used three panels composed of a total of eleven 

different MAbs to presumptively serotype several strains of IPNV, with each separate 

panel of MAbs produced against a single virus strain. The Buhl strain of IPNVwas found 

to bind the MAbs to epitopes AS-1, W3, W5, El, E5, and E6, in contrast to VR -299 

which also reacts with epitope W4, and West Buxton (WB) which also reacts with 

epitopes W1 and W2. 

Virulence 

Although external conditions such as host and environmental factors play a large 

part in the course of an IPNV outbreak, another extremely important determinant is the 

intrinsic virulence of the virus strain involved (Hill, 1982). IPN virus strains display a wide 

range of virulence levels. For example, in Europe, it has been observed that the Sp 

serotype of IPNV causes higher mortalities in rainbow trout fry than the Ab serotype 

(Jorgensen and Kehlet, 1971). Four IPNV strains tested by Sane (1971b) in rainbow trout 

fry in Japan caused cumulative mortalities ranging from 15-58%. Hill and Dixon (1977) 

found that three IPNV isolates from the nonsalmonid carriers perch, loach, and carp, 

caused 6%, 10%, and 60% cumulative mortalities, respectively, when used to challenge 

susceptible rainbow trout fry. Brook trout fingerlings from Baldwin Mills, Quebec had 

cumulative mortalities of 16%, 29%, and 31% when infected with difference isolates of 

IPNV, all belonging to the Al serogroup (Silim et al., 1982). 

At this time, numerous IPNV isolates have been compiled, representing all of the 

nine presently recognized serotypes of Serogroup A (P. Reno, personal communication) 
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These isolates display extremely varied virulence, based on the mortalities caused in 

susceptible brook trout fry, ranging from 0% (less than or equal to mortalities in control 

groups) to virtually 100% mortalities (J. Maret, personal communication). 

Genomic Sequence 

The complete nucleotide sequence of segment A of the IPN virus has been 

published for the Jasper or Jo (A9) (Duncan and Dobos, 1986), DRT (A9) (Chung et al., 

1993), Sp (A2) (Mason, 1992) and Ni (A2) (Havarstein et aL, 1990) strains, representing 

two different serotypes; while the complete nucleotide sequence of segment B has been 

published for the Jasper and Sp serotypes (Duncan et al., 1991) only. However, a recent 

publication (Heppell et aL, 1995) discussed the deduced amino acid sequence of the VP2 

viral capsid protein of segment A from five additional IPNV strains. The strains analyzed 

were: VR-299 (A1), d'Honnincthun or Fr.21 (A2), Ab (A3), Hecht or He (A4), and Canada 

2 or C2 (A7), representing four different serotypes. In addition, nucleotide and amino acid 

sequence information has been compiled for numerous other IPNV isolates, representing 

all nine serotypes (B. Nicholson, personal communication) 
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Abstract 

Infectious pancreatic necrosis virus (IPNV) is an important aquatic pathogen that 

can cause high mortality in populations of young salmonids. To determine the molecular 

basis for virulence, brook trout (Salvelinus fontinalis) fry were experimentally infected 

with three different Al serotype, Buhl subtype isolates of IPNV. The three isolates were 

selected based on results of previously completed virulence assays, which indicated that 

the isolates had significantly differing virulence levels. To confirm this, mortalities from 

each treatment were recorded for the duration of the experiment (62 days), along with 

observation of any clinical disease signs. Mortalities began on day 5 post-exposure (dpe), 

peaked on day 7, then rapidly decreased for all three isolates tested. Diseased fry 

exhibited whirling, ascites, abdominal hemorrhaging, and prostration on the bottom of the 

tank. Daily virus titer from live fish was determined for 10 dpe, as well as at 28 and 62 

dpe. Viral titers were correlated with fish weight to determine statistical significance. Fish 

weight was found to negatively correlate to virus titer for the two least virulent isolates. 

The VP3 region was sequenced for each isolate at two times: before being introduced into 

the fish (pre-epizootic), and during the epizootic (peak-epizootic). These initial 

sequencing results demonstrated 100% sequence homology for the viral capsid protein 

VP3. The VP2 region was sequenced for each isolate at three times: pre-epizootic, peak­

epizootic and post-epizootic (2 months after initial exposure to IPNV), in order to 

determine if major changes existed in the VP2 region that might account for the 

differences in virulences. Sequence data indicate that two amino acid differences in the 

VP2 region exist, at residues 217 and 288, distinguishing the least virulent isolates and 

the most virulent isolate. These amino acid differences might account for the disparity in 

expressed virulence for these particular IPN virus isolates. 
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Introduction 

Infectious pancreatic necrosis virus (IPNV) causes devastating disease in 

salmonid fishes worldwide, with the highest levels of mortality occurring in hatchery-

reared fish less than 6 months of age. IPNV has been isolated from asymptomatic carrier 

adult salmonids (Dorson, 1983; Wolf, 1988), as well as from a wide range of non­

salmonid fish and shellfish species (Hill, 1982; Hill and Way, 1995). 

IPNV is a birnavirus, icosahedral in shape, approximately 60 nm in size, with a 

genome composed of two segments of dsRNA. Segment A codes for two structural 

proteins, VP2 and VP3; and a non-structural protease, NS. Segment B codes for the 

putative RNA-dependent RNA polymerase (Dobos, 1976). An external protein, VP2 

stimulates production of type-specific neutralizing monoclonal antibodies or MAbs 

(Nicholson, 1993), and is believed to contain all the epitopes recognized by neutralizing 

MAbs (Caswell-Reno et al., 1986; Lipipun et al., 1991; Tarrab et al., 1995). 

Under the classification scheme of Hill and Way (1995) there are nine different 

serotypes of IPNV within the A serogroup. Each serotype is composed ofnumerous 

strains which exhibit an extremely wide range of virulence (Hill, 1982; Silim et al., 1982; 

J. Maret, personal communication). The variation of virulence among isolates may be a 

reflection of the complex nature of the disease process itself, which is little understood. 

Although a high mutation rate characterizes the replication of RNA viruses (Holland et 

al., 1982; Steinhauer and Holland, 1987), it has been found that the serologicallyrelated 

IPN viruses have a high degree of homology, over 96% (Heppell et al., 1993). Recent 

sequence data from the VP2 viral capsid protein region believed to be responsible for 

virulence (Sano et al., 1991) also indicates an extreme homology among IPNV isolates 

(B. Nicholson, personal communication). Therefore, the sequence differences that occur 

between two closely related isolates, demonstrating markedly differing virulence levels, 

might pinpoint the amino acid residues that most prominently affect viral performance. 

Initial sequencing results demonstrated that the sequence of the viral capsid 

protein VP3 was identical among isolates, while there were slight differences among 

isolates in the sequence of the viral capsid protein VP2. Therefore, the sequencing efforts 
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were focused on the VP2 protein. The purpose of this study was to characterize virulence 

differences between IPNV isolates, at a molecular level. 

Materials and Methods 

Experimental Animals 

Brook trout (Salvelinus fontinalis) were obtained as swim-up fry from the Oregon 

Department of Fish and Wildlife, Wizard Falls Fish Hatchery, Camp Sherman, OR. IPNV 

has not been detected at this facility since 1976. The fish were held at the Oregon State 

University Salmon Disease Laboratory (SDL) facility in Corvallis, OR in UV-irradiated 

water. Fish were fed Rangen trout starter diet ad libitum and averaged 0.08 g in size, 

initially. 

Virus Isolates 

Three IPNV Buhl subtype isolates were used in the experiment: CSF 035-85, 91­

114, and 91-137. CSF 035-85 was generously donated by Dr. Scott LaPatra of Clear 

Springs Trout in Idaho. It was isolated in 1985 from rainbow trout fingerlings during an 

epizootic of IPN disease at Box Canyon, Idaho. The latter two isolates, 91-114 and 91­

137, were a kind gift from Kent Hauck at the Idaho Department of Fish and Game. Both 

of these were isolated in 1991 from asymptomatic carrier adult rainbow trout collected at 

Sawtooth, Idaho from a blind passage of tissue homogenates. Case # 91-114 was isolated 

from a single brood Pahsimeroi A strain male, while 91-137 was isolated from four brood 

Sawtooth A strain males. None of the isolates had been passaged in cell culture more than 

three times. 

The IPNV Buhl subtype isolates were selected after a review of virulence data 

obtained in previous experiments (J. Maret, personal communication). The isolates were 
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selected to represent a high virulence isolate (CSF 035-85), a medium virulence isolate 

(91-114), and a low/no virulence isolate (91-137), based on the mortality previously 

produced in brook trout fry. In the experiment by J. Maret, the cumulative mortalities 

caused by the isolates were 99%, 81%, and 33%, respectively. Cumulative mortality 

observed in control fish was 30%. 

The CSF 035-85 isolate was isolated from infected fingerlings (frozen at -70°C 

for 1 year) with an average titer of 107'25 tissue culture infectious dose, 50% endpoint, 

per milliliter (TCID50/m1), and passaged twice in chinook salmon embryo (CHSE-214) 

cells (Lannan et al., 1984). 

The 91-114 and 91-137 isolates were obtained as infected CHSE-214 cell cultures 

(frozen at -70°C for 1 year) and passaged twice to increase quantity and titrate the viral 

concentration. 

Experimental Exposure of Fish to IPNV 

Approximately 400 brook trout fry each were placed into tanks containing 10 L of 

water at 10°C. Three tanks were used for each treatment (or isolate), and control. Virus 

was diluted in 20 ml of Hepes-buffered minimum essential medium (HMEM) to give a 

final tank concentration of 105 TCID50/ml (McAllister and Owens, 1986). A sample of 

water from each tank was titered to assure that the correct viral dosage was given. Control 

fish were immersed in 10 L of water to which 20 ml of HMEM, only, had been added. 

The fish were held for 5 hours under static flow conditions and supplied with a high 

volume of air to maintain oxygen levels. After the immersion period, the water in the 

tanks was replaced with 25 L of virus-free water, the air removed, and the tank water 

allowed to circulate as usual. All tanks at the SDL were connected to a common flow-

through system, with an approximate flow rate of 2.2 L/min. Effluent was discharged 

through a chlorination system of concentration 2.8 ppm into settling ponds, and 

ultimately to the Willamette River. 
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Fish from replicate tanks were combined into a single 100 L tank (flow rate 8.8 

L/min) for each isolate and control at 15 dpe, after the primary sample gathering period 

was completed and it was determined that variability in mortality among replicate tanks 

was not significantly different. 

Sampling Schedule 

After exposure to IPNV, five (5) live fish were collected daily from each replicate 

tank for each isolate during days 1-10 post-exposure. Each sample of five fish was 

pooled, weighed and homogenized 1:5 in phosphate buffered saline or PBS (0.137 M 

NaCl, 0.0027 M KCI, 0.0043 M Na2HPO4x7H2O, 0.0014 M KH2PO4, pH 7.3), for use in 

determining viral titer. When possible, the fish first selected for viral titering were 

obviously moribund in appearance. 

At 28 dpe, five (5) live fish were collected for each of the three isolates and at 62 

dpe, nine (9) live fish were collected for each of the three isolates, for use in determining 

virus titer. For the 62 dpe sampling, three of the fish sampled were of small size (0.23­

0.55 g), three of medium size (1.00-1.48 g), and three of large size (2.02-2.54 g). These 

fish were titered individually for virus. 

Dead fish were collected daily from each tank and recorded over the entire 62 day 

course of the experiment. Mortalities among replicate tanks (first 15 days post-exposure) 

and isolates (entire 62 days) were statistically analyzed to determine if there was a 

significant difference among replicate tanks. The analysis was performed using a 

generalized linear modeling program (Glimstat, Perth, Australia) after logistic 

transformation of the mortality data. 

http:2.02-2.54
http:1.00-1.48
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Cell Culture and Virus Titration 

Virus was propagated in CHSE-214 cells grown in HMEM containing 10% fetal 

bovine serum (HMEM-10), using 96-well plates, as previously described by Caswell-

Reno et al. (1986). Samples for virus titer were processed on the same day as collected, 

within 2 hours, to eliminate loss of virus titer due to freeze/thaw cycles. 

The titer of virus in both cell culture and fish tissue was determined using the 

mathematical model of Spearman-Karber, tissue culture infectious dose, 50% endpoint, 

per ml (TCID50/m1). After determination of the virus titer, any sample remaining was 

frozen at -70°C and later used for sequencing. Virus titers among replicate tanks and 

isolates were statistically analyzed by ANOVA to determine if there was a significant 

difference using the Statview program (Abacus Concepts). 

For the first 10 days post-exposure, average viral titers were also compared to 

corresponding average fish weight (groups of 5 fish each) for replicate tanks of each 

isolate to determine if there was a statistically significant correlation. For samples 

collected at 62 dpe, individual viral titer was compared to individual fish weight for each 

isolate, and statistically analyzed using the linear regression model. 

Nucleic Acid Extraction 

Viral RNA was extracted from infected cell cultures or directly from fish 

homogenates using the TRIzol reagent according to manufacturer's instructions (Gibco 

BRL, Gaithersburg, MD). Details of the nucleic acid procedure are presented in Appendix 

A. One hundred microliter samples were used with each 1 ml of reagent. After an 

extraction with chloroform, the RNA was precipitated using sodium acetate and 

isopropanol. The final pellet was resuspended in a volume of 10 ul RNase-, DNase-free 

water. The freshly extracted viral RNA was used immediately in a reverse transcriptase 

assay system. 
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Primers 

Primers to be used for the reverse transcription and polymerase chain reactions 

were constructed at the OSU Center for Gene Research, based on primers described by 

Blake et al. (1995) for use with the Jasper isolate of IPNV. The 5' primer designed was: 

5' TGA GAT CCA TTA TGC TTC CCG A 3'. The 3' primer designed was: 5' GAC 

AGG ATC ATC TTG GCA TAG T 3'. Since the RNA sequence for the Buhl isolate 

contains an A nucleotide instead ofa C at position 20, this nucleotide triphosphate was 

substituted at this position (nucleotide 20 is indicated above in bold). 

Reverse Transcription (RT) 

IPNV RNA was extracted from either infected tissue culture cells or fish 

homogenates as described above and used as a template for the reverse transcriptase 

reaction. The IPNV RNA was diluted 1:10 in RNase-, DNase-free water, heated at 95°C 

for 5 min, microfuged briefly, then placed on ice for 2 min. 

The following reagents were added together: 1 ul of viral RNA (1:10 dilution), 1 

ul of 25mM magnesium chloride (MgCl2), 1 ul (200 units) reverse transcriptase [RT] 

(Promega, Madison, WI), 1 ul 5x RT buffer (Promega), 1 ul (33 units) RNasin 

(Promega), 1 ul (55 pmol) 3' primer, 1 ul (55 pmol) 5' primer, 1 ul (1mM each 

ATP,CTP,GTP,TTP) deoxynucleotides (dNTPs), 12 ul water. The solution was mixed, 

microfuged briefly, then placed at 37°C for 1 hr to allow reverse transcription to occur. 

After 1 hr, the mixture was heated at 95°C for 3 mM, microfuged briefly, then placed on 

ice for 2 min. After 2 min, an additional 200 units of RT were added. The solution was 

mixed, microfuged briefly, and placed at 37°C for an additional hour, to increase the 

amount of cDNA produced. 
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Polymerase Chain Reaction (PCR) 

The polymerase chain reaction (PCR) was used to amplify the amount of cDNA 

produced from the reverse transcription reaction. The 20 ul reaction from the RT was 

heated at 95°C for 5 min, then placed on ice, to separate the strands. 

Then, the following reagents were added: 8 ul 25mM MgC12, 10 ul 10x PCR 

buffer (Promega), 1 ul (55 pmol) 3' primer, 1 ul (55 pmol) 5' primer, 0.5 (2.5 units) 

Thermus aquaticus (Taq) polymerase (Promega), 59.5 ul water. The solution was mixed 

and microfuged briefly. The samples were placed in an Thermolyne Temp-tronicR 

(Barnstead/Thermolyne Corporation, Dubuque, IA) for 35 cycles using the following 

dissociation-annealing program: 94°C - 1 min, 58°C - 1 min, 72°C - 2 min. A 4°C dwell 

was placed at the end, until samples could be retrieved. 

Five microliters of each PCR sample were analyzed in a 1% agarose gel made 

with TAE buffer (40 mM Tris, 20mM acetic acid, 2 mM EDTA) and ethidium bromide 

stain. It was electrophoresed at 75 V for 1.5 h, and photographed. 

Purification of PCR Products 

PCR DNA products were purified using the QIAquick PCR purification kit 

(Qiagen Inc., Chatsworth, CA) according to manufacturer's instructions. Details of the 

purification procedure are presented in Appendix A. Briefly, the PCR reaction was 

diluted 1:10 in buffer, then applied to a QlAquick spin column and microfuged for 1 min. 

The column was washed with excess buffer and microfuged twice for 1 min each. Each 

purified PCR preparation was eluted in 30-50 ul of DNase-, RNase-free water. Samples 

were placed at -70°C for storage until analyzed/sequenced. 



30 

Sequencing 

Purified PCR products were sequenced by the OSU Center for Gene Research 

using the dideoxynucleotide chain termination method (Sanger et al., 1977) on an 

automated sequencer. Each virus isolate was sequenced from virus isolated under the 

following conditions: pre-infection (passaged fewer than three times in CHSE-214 cells), 

peak of epizootic (directly from day 6-7 infected fish), and post-epizootic (day 62 

infected fish). Each sample was sequenced three times, from both the 5' and 3' ends, to 

ensure sequence accuracy. The sequences were aligned and analyzed using the Genetics 

Data Environment (GDE) editor, UNIX version (Steven Smith, Harvard Genome 

Laboratory/ University of Illinois). Nucleotide discrepancies among the three replicates 

obtained at each sampling point were resolved by determining which sequence 

represented the majority consensus. After a consensus was determined, the nucleotide 

sequence was translated into amino acids using the GDE editor. 

Protein Secondary Structure 

Prediction of protein secondary structure, after conversion of the sequencing 

results to amino acids, was made using the ProtPlot ProgramTM (Ross and Golub, 1989). 

Results 

Mortalities 

Acute mortalities characteristic of an IPN epizootic occurred with all three 

isolates. No elevated mortalities were noted in negative control fish. No signs of disease 

or deaths were observed in the first four days post-exposure, with the exception of 1 

control fish and 1 fish infected with isolate 91-137, both on 2 days post-exposure (dpe). 
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Daily mortalities for the three isolates and the control fish are charted in Figure 3.1. 

Moribund fish displaying clinical signs of IPN disease were observed for all three isolates 

on 5 dpe and mortalities were observed for isolates CSF 035-85 and 91-137. The majority 

of the moribund fish exhibited typical external and behavioral signs of IPN disease: 

prostration on the bottom of the tank, rapid gilling, ascites and petechial hemorrhagjng in 

the abdominal area. Whirling of fish was observed infrequently. Mortalities for all three 

isolates in all nine treatment tanks were observed on 6 dpe. There were no control fish 

mortalities on this day. Mortalities peaked in the treatment tanks on day 7, then 

immediately decreased and continued to decline, but did not cease entirely. The 

experiment was terminated at 62 dpe, with no mortalities occurring in any of the tanks 

past 56 dpe. 

Cumulative mortalities for isolates CSF 035-85, 91-114, and 91-137 at the 

conclusion of the experiment were 93%, 67% and 78%, respectively. Cumulative 

mortality for control fish was 3%. Figure 3.2 depicts cumulative mortalities over the 

course of the experiment. There was a statistically significant difference in cumulative 

mortalities among isolates. Specifically, there was a significant difference between 

cumulative mortalities for isolates CSF 035-85 and 91-114, CSF 035-85 and 91-137, but 

there was not a significant difference in cumulative mortalities between isolates 91-114 

and 91-137 (Mantel-Cox X2 = 321.5, 2 di.; p<<0.0001). 

Quantitation of Virus in Exposed Fish 

The virus titer of water in each tank at the initiation of the experiment was 

approximately 105 TCID50 /m1 (104.95 - 105.1 TCID50 /ml). The harmonic mean virus titers 

for each isolate in fish for the first 10 days post-exposure are shown in Figure 3.3. Virus 

titer increased overall for all three isolates during the first 10 days post-exposure, with a 

range from 105 - 1011TCID5°/ml. Statistically, there was no significant difference in virus 

titer among tanks or isolates during the epizootic period (ANOVA F2,89=0.870, p=0.424). 
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Figure 3.1 Daily mortality of brook trout fry infected with IPNV isolates 91-137, 91-114, and CSF 035-85. Triplicate tanks 
of approximately 400 hundred fish each were infected with a challenge dose oflOs TCID50 /ml. The average number daily deaths 
for each virus isolate for all three tanks is shown on the ordinate and plotted against the days post-exposure. The range did not 
vary significantly among replicate tanks and thus is not shown. 
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Figure 3.2 Percent cumulative mortality of brook trout fry challenged with IPNV isolates 91-137, 91-114, and CSF 035-85. 
Triplicate tanks of approximately 400 fish each were infected with a challenge dose of 10' TCIDso/ml. The average percent 
cumulative mortalities for all three tanks for each virus isolate is shown on the ordinate and plotted against days post-exposure. 
The range did not vary significantly among tanks and thus is not shown. 
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Figure 3.3 Daily virus titer of brook trout fry challenged with IPNV isolates 91-137, 91-114, and CSF 035-85. Triplicate 
tanks of approximately 400 fish each were infected with a challenge dose of 105 TCID50/ml. The average daily virus titer as logo 
TCID50 /g for all three tanks for each virus isolate is shown on the ordinate and plotted against days post-exposure. The range 

41.did not vary significantly among tanks and thus is not shown. 
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Virus titers determined at 28 dpe were 10195, 10195, and 1051 TCID5o/g for isolates 

91-137, 91-114, and CSF 035-85, respectively. This indicated a marked drop in virus titer 

from the levels seen during the epizootic. Average viral titers at 62 dpe were 10184, 10436, 

and 1053 TCID50/g for isolates 91-137, 91-114, and CSF 035-85, respectively, which are 

similar to the 28 dpe virus titer levels. Virus was never detected in control fish. 

Weight of Fish vs. Titer 

For the first 10 days post-exposure, there was a positive correlation between 

weight of the fish and virus titer, for all three isolates (Figure 3.4; R2=0.336, 0.148, 0.070 

for isolates 91-137, 91-114, and CSF 035-85, respectively). As the weight of the fish 

increased, so did the virus titer, per gram of tissue. Size of the fish collected ranged from 

0.08-0.23 g over the 10 days, among all three isolates. There was no significant difference 

between the size of sampled infected fish and the size of control fish. 

Similar analysis of samples collected at 62 dpe indicated a significant negative 

correlation between weight and titer for the isolates 91-114 and 91-137 (Figure 3.5; 

R2=0.557 and 0.826, respectively). The smallest fish collected for these isolates carried the 

highest concentration of virus. Isolate CSF 035-85, the most virulent isolate, did not 

demonstrate a significant correlation between weight of fish and virus titer (R2=0.006). 

Virus titers at 62 dpe for this isolate were statistically similar, regardless of the size of the 

fish. Size of the fish collected for the isolates ranged from 0.23-2.5 g; with 0.25 g the 

average size of the smallest fish, 1.5 g the average size of the medium fish, and 2.5 g the 

average size of the largest fish collected. 

Viral RNA and Protein Sequencing 

The deduced amino acid sequence of the VP3 protein was constructed at pre- and 

peak-epizootic, with 100% homology exhibited at both sampling times among all three 
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Figure 3.4 Average fish weight (g) versus average virus titer (logio TCID50/g) of brook trout infected with IPNV isolates 
91-137, 91-114, and CSF 035-85. Fish were sampled at days 1-10 post-exposure. The average virus titer as login TCID5o/g for 
pools of sampled fish is shown on the ordinate and plotted against the average weight of the pooled fish in grams. Linear 
trendlines are added for each virus isolate. 
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Figure 3.5 Fish weight (g) versus virus titer (logio TCID50 /g) of brook trout infected with IPNV isolates 91-137, 91-114, 
and CSF 035-85. Fish were sampled at day 62 post-exposure. The virus titer as logo TCID50/g for each sampled fish is shown 
on the ordinate and plotted against the weight of the fish in grams. Linear trendlines are added for each virus isolate. 
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isolates (Figure 3.6). The deduced amino acid sequence of the VP2 protein was 

constructed for the three virus isolates at pre-, peak-, and post-epizootic (Figures 3.7, 3.8, 

and 3.9). The isolates, which react identically in immunodot blots with a panel of 11 

MAbs (J. Maret, personal communication), showed considerable homology of the VP2 

amino acid sequence, around 99%. There are two amino acid differences in the VP2 

region at positions 217 and 288, between the least virulent isolates (91-114 and 91-137) 

and the most virulent isolate (CSF 035-85). The differences are demonstrated at all three 

of the sequence sampling points (pre-, peak, and post-epizootic). At amino acid 217, the 

91-114 and 91-137 isolates have an alanine residue, while the CSF 035-85 isolate has a 

threonine residue. At amino acid 288, the 91-114 and 91-137 isolates have an arginine 

residue, while the CSF 035-85 isolate has a lysine residue. Although the amino acids 

belong to different classes, they do not appear to result in a change in the protein 

secondary structure (Figure 3.10a, b, and c). 

There are also two amino acid substitutions at amino acids 194 and 203 that occur 

for all three isolates, between the pre- and peak-epizootic stages. The arginine residue that 

was present initially in the pre-epizootic stage changes to a lysine residue by the peak­

epizootic stage. This change is still seen when the samples were sequenced for the post­

epizootic data and does not appear to affect the secondary structure. There were no 

sequence changes observed between peak- and post-epizootic samples for any of the 

isolates. 

Additionally, there is one amino acid difference for the 91-114 isolate that is only 

observed in the pre-epizootic sequencing, at amino acid 256, that does appear to result in 

a change in the protein secondary structure (Figure 3.10d). The 91-114 isolate has a 

serine residue amino acid initially, while both of the other isolates have a phenylalanine 

residue. However, by the time the isolates are sequenced at 7 dpe during the epizootic 

stage, the serine residue appears to have been replaced by a phenylalanine residue 

identical to the sequence of the other two isolates. 
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91-137 T AS GMDAELQGL LQATMARAKEVKDAEVFKL LKLMSWT RKNDL TD 45 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 45 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 45 

91-137 HMYRWSKEDPDAIKFGRLVS T P PKHQEK PKGPDQHTAQEAKAT RI 90 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 90 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 90 

91-137 S LDAVKAGADFVS PEWIAENNYRGPAPGQFKYYMITGRVPNPGEE 135 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 135 

035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 135 

91-137 YEDYVRKP IT RP TDMDK IRRLANS VYGLPHQEPAPDDFYQAVVEV 180 

91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 180 

035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 180 

91-137 FAENGGRGPD QDQMQDL RD LARQMKRRPRPAEIRRQTKIP PRAAT 225 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 225 

035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 225 

91-137 S S GS RFT P 5 GDDGEV 
91 -114 * * * * * * * * * * * * * * * 
035-85 * * * * * * * * * * * * * * 

Figure 3.6 Deduced amino acid sequence of the viral capsid protein, VP3, for the 
three IPNV isolates 91-137, 91-114, and CSF 035-85. The viral sequences were 
determined pre-infection, when each virus isolate had been passaged fewer than three 
times in cell culture. Identical amino acids are indicated by an asterisk (1'). 
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91-137 MS T SKAT ATY LR S IMLPENGP AS I PDDI TERHILKQETS SYNLEV 45 
91-114 * * ** ** * * * * * * * * * * * ** ***** ** * * * * * * * * * ********** 45 
035-85 * * * * ** * * ** * * * * * * * ** ** * ** * * * ** * * * * * * * * * * ***** * 45 

91-137 S E S GS GLLVC F PGAPGSRVGAHYRWNLNQTALE FDQWLET SQDLK 
91-114 ********************************************* 90 

035-85 ********************************************* 90 

90 

91-137 KAFNYGRL I S RKYDI QS S TLPAGL YALNGTLNAATFEGS LSEVE S 
91-114 ********************************************* 135 

035-85 ********************************************* 135 

135 

91-137 LTYNSLMSLTTNPQDKVNNQLVTKGI TVLNLPTGFDKPYVRLEDE 180 
91-114 * * * * * * ** ** * * * * * * * * * ***** * * * * * ***** ******** ** * 180 
035-85 * * * * ** ** ** ******* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 180 

91-137 TPQGPQSMNGARMRCTAAIAPRRYE I DL P SERLPTVAATATP TT I 225 
91-114 * * * ** * * * * * * * ** * * * * * * * * ** * * * * * * * * * * * *A* * * * * * * 225 
035-85 * * * * * ** * * * * * * * * * * * * * * * * * * ** * * * * *****T***** *** 225 

91-137 YEGNADI VNS T TVTGDI T FQLEAE PANE TVFDF I LQFLGLDNDVP 
91-114 * * * * ** ** ** * * * * * * * * * * * * * * * ** * * *s r * * * * * * * * * * * * * 

270 
270 

035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * F* * * * * * * * * * * * * * 270 

91-137 VVT VTS S TLVTVDNHRRASAKFTQS I P TEMI TKP I TRVKLAYQLN 315 
91-114 * * * * * * * * * * * * * * *R*** ** * * * * * * * * * * * * * * * * * * * * * ** * 315 
035-85 * * * * * * * * ** * * * * *R** * * * * * * * * * * * * * * * * * * * * * * * * * * * 315 

91-137 QQ TAI ANAAT L GANGPAS VS FS SGNGNVPGVL P I TLVAYEKMT PQ 360 
91-114 * **** ** * * * * ************* * ** * * * * * * ***** **** * * * 360 
035-85 * ** * * ***** * * * * * * * ** ***** **** * * * * * * * * * * * * * * * * * 360 

91-137 SILTVAGVSNYELIPNPDLLKNMVTKYGKYDPE 393 
91-114 **************************** ***** 
035-85 ******************************* * 

393 
393 

Figure 3.7 Deduced amino acid sequence of the viral capsid protein, VP2, for the 
three IPNV isolates 91-137, 91-114, and CSF 035-85. The viral sequences were 
determined pre-infection, when each virus isolate had been passaged fewer than three 
times in cell culture. Amino acids that vary among the three isolates are shown, while 
identical amino acids are indicated by an asterisk (*). 
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91-137 MST S KATATYLRSIMLPENGPAS I PDDI TERHILKQETS SYNLEV 45 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

45 
45 

91-137 SESGSGLLVCFPGAPGSRVGAHYRWNLNQTALEFDQWLETSQDLK 90* * *91-114 *************************************** * * * 90 
035-85 * ******************************************** 

90 

91-137 KAFNYGRL I SRKYDIQS STLPAGLYALNGTLNAATFEGS L SEVES
91-114 * * * ****************************************** 135 

035-85 * **** **************************************** 135 

135 

91-137 LTYNSLMSLTTNPQDKVNNQLVTKGITVLNLPTGFDKPYVRLEDE 180 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

180 

180 

91-137 TPQGPQSMNGARMKCTAAIAPRKYEIDL PSERLPTVAATATPTTI 225 
91-114 * * * * * * * * * * * * *** * * * ** * ** * * * * * * * * * * * * *A* * * * * * * * 225 
035-85 * ***********************************T******** 

225 

91-137 YEGNADIVNSTTVTGDITFQLEAEPANETVFDF I LQFLGLDNDVP 270 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * g * * * * * * * * * * * * * * 270 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * F** ************ 270 

91-137 VVTVT S STLVTVDNHRRASAKFTQSIPTEMITKP I TRVKLAYQLN 315 
91-114 * * * * * * * * * * * * * * * F***************************** 315 
035-85 * * * * * * * * * * * * * * * K * **************************** 315 

91-137 QQT AIANAATLGANGPASVS FSSGNGNVPGVLP I TLVAYEKMTPQ 360 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 360 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 360 

91-137 S ILTVAGVSNYEL I PNPDLLKNMVTKYGKYDPE 393 
91-114 * ********************************
 
035-85 * **** **************************** 393
 

393 

Figure 3.8 Deduced amino acid sequence of the viral capsid protein, VP2, from the 
IPNV isolates 91-137, 91-114, and CSF 035-85. The viral sequences were determined at 
the peak of the epizootic, directly from day 6-7 infected fish. Amino acids that vary 
among the three isolates are shown, while identical amino acids are indicated by an 
asterisk (*). Amino acids that changed from the pre-epizootic sampling period are shown
in bold. 
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91-137 MSTSKATATYLRSIMLPENGPASIPDDITERHILKQETSSYNLEV 45 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 45 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 45 

91-137 SESGSGLLVCFPGAPGSRVGAHYRWNLNQTALEFDQWLETSQDLK 90 
91-114 * * * * * * * * * ************************************ 90
 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 90 

91-137 KAFNYGRL I SRKYDI QS S TLPAGLYALNGTLNAAT FEGSLSEVE S 135 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 135 

035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 135 

91-137 LTYNSLMSLTTNPQDKVNNQLVTKGITVLNLPTGFDKPYVRLEDE 180 
91-114 ********************************************* 180 
035-85 ********** *********************************** 180 

91-137 TPQGPQSMNGARMKCTAAIAPRKYEIDLPSERLPTVAATATPTT I 225 
91-114 * * * * * * * * * * * * * * * * * * * ** ** ** * ** * * * * * * * *A* * * * * * * * 225
 
035-85 ************************************T********
 225 

91-137 YEGNADIVNSTTVTGDITFQLEAEPANETVFDFILQFLGLDNDVP 270 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 270 

035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 270 

91-137 VVTVTSSTLVTVDNHRRASAKFTQSIPTEMI TKP I TRVKLAYQLN 315 
91-114 ***************g*********************** * * * * * * 315 
035-85 ***************g***************************** 315 

91-137 QQTAIANAATLGANGPASVSFSSGNGNVPGVLPITLVAYEKMTPQ 360 
91-114 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 360 
035-85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 360 

91-137 S ILTVAGVSNYEL I PNPDLLKNMVTKYGKYDPE 393 
91-114 ********************************* 393 
035-85 ********************************* 393 

Figure 3.9 Deduced amino acid sequence of the viral capsid protein, VP2, from the 
IPNV isolates 91-137, 91-114, and CSF 035-85. The viral sequences were determined 
post-epizootic, directly from day 62 infected fish. Amino acids that vary among the three 
isolates are shown, while identical amino acids are indicated by an asterisk (*). No 
sequence changes were observed between the peak and post-epizootic sampling periods. 
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Figure 3.10 Predicted protein secondary structure of the VP2 protein of the IPNV 
isolates 91-137, 91-114, and CSF 035-85. (a) Virus isolate 91-137, from infected fish at 
peak and post-epizootic. (b) Virus isolate 91-114, from infected fish at peak and post­
epizootic. (c) Virus isolate CSF 035-85, from infected fish at peak and post-epizootic. (d) 
Virus isolate 91-114, from infected cell culture pre-epizootic. 
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Discussion 

While there were differences in virulence levels among the three isolates, it is 

unknown at this point why isolate 91-137 caused very low mortality (33%) in brook trout 

fry in previous experiments (J. Maret, personal communication) and caused 78% 

mortality in brook trout fry in this experiment. The fry were from the same hatchery, 

same stock of fish, with a 1 year difference in hatch. There have been a few comparable 

studies reported in the literature. Working from a hatchery population of brook trout fry, 

Sonstegard and McDermott (1971) isolated an apparently avirulent IPN virus that 

induced heavy mortalities when used to experimentally infect another population of 

brook trout fry. Similarly, Hill (1982) reported isolating an apparently avirulent strain of 

IPN virus from asymptomatic rainbow trout in England. The IPN viral strain produced 

heavy mortalities in other rainbow trout fry, as well as in the rainbow trout fry from 

which it was originally isolated, after experimental challenge. This suggests that it is 

possible for a virulent strain of IPNV to infect susceptible fry without causing clinical 

disease. Both of the previously cited cases originated in hatchery fish and the original 

level of virus exposure is unknown. In any case, there was still a significant difference in 

the mortalities caused by the isolates 91-137/91-114 versus isolate CSF 035-85, which 

has consistently caused greater than 90% mortality in experimentally infected brook trout 

fry less than 6 months of age. 

Despite the difference in virulence indicated by the mortality data, there was no 

significant difference in the amount of virus produced in affected fish for the first 10 days 

post-exposure. This implies that the virus quantity in fish does not account for differences 

in virulence between isolates. This concurs with results published by Silim et al. (1982), 

who reported similar virus titers (<1 login difference) in several species oftrout using 

virus isolates with differing virulence levels. Therefore, it appears that the ability of the 

virus to replicate in the host and the efficiency of the host immune response are not 

related to the ability to kill fish. 

It is interesting to note that fish weight was negatively correlated with virus titer 

for the two less virulent isolates, after the epizootic stage of the infection. It does not 
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seem likely that the fish are smaller because of the increased amount of virus they are 

carrying, since the fish infected with the most virulent isolate, CSF 035-85, all had higher 

virus titers and demonstrated a similar size distribution of fish. It is more likely that these 

virus isolates have a propensity for more effective replication in smaller fish, possibly 

because the tissues of these fish are at a stage of more rapid development than the tissues 

of the larger fish. Alternatively, larger fish may have a better developed immune response 

and can neutralize virus more effectively. This might explain the fact that IPNV rarely 

causes epizootics in susceptible fish greater than 6 months of age, with size being a more 

important factor than age. Okamoto and Sano (1992) concluded that fish body weight was 

the principle factor influencing mortality of rainbow trout fry experimentally infected 

with an IPNV Buhl isolate. They observedthat the larger fry in groups of infected fish of 

the same age displayed greater survival rates, over a 2 month sampling period. A similar 

observation was reported by Biering et al. (1994), after experimental infection of small 

(0.1 g) and large (1.0 g) Atlantic halibut (Hippoglossus hippoglossus) fry with an IPNV 

N1 isolate. At 12°C, the small fry had significantly higher mortality than the other size 

group and controls. Additionally, the larger fry seemed to clear the IPNV infection after 3 

weeks, while the small fry remained IPNV positive during the entire experimental period. 

The amino acid difference between virus isolates 91-114/91-137 and CSF 035-85 

at residue 217 on protein VP2 is the most likely cause of the significant variation in 

virulence among the IPNV isolates used for this particular experiment. Although it does 

not result in a change in the predicted secondary structure of the VP2 protein, the amino 

acids do belong to different classes. The alanine residue found in 91-114/91-137 is a 

hydrophobic amino acid, while the threonine residue found in CSF 035-85 is a polar 

amino acid. Additionally, the site is located in the variable domain of the viral binding 

region. It has been suggested by Frost et al. (1995) that minor changes in the amino acid 

sequence in this area could result in conformational variation. Pryde et al. (1993) found 

only two amino acid variations after sequencing a Scottish Sp virus strain and comparing 

the results to the N1 virus strain of Norway, both of which belong to the same serotype. It 

is possible that the change in amino acids at residue 217 hinders efficient binding of the 

IPN virus to cell receptors, resulting in a lowered virulence for the less virulent isolates 
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91-114 and 91-137. The VP2 protein has been implicated previously as an important 

factor for virus attachment to the cell surface (Darragh and MacDonald, 1982). It is less 

likely that the amino acid difference at 288 is a factor, since the difference is merely a 

substitution of one charged amino acid residue for another (arginine versus lysine). 

However, residues 275 to 288 have been designated a hypervariable region by Heppell et 

al. (1995). 

It is equally unlikely that the amino acid changes at 194 and 203 that occur for all 

isolates between the pre-epizootic sample and the peak/post-epizootic samples are 

relevant, since the change also involves a substitution of one charged amino acid residue 

for another (arginine to lysine). The difference between an arginine residue and a lysine 

residue is one nucleotide, and it is quite possible that a mutation of this sort would occur 

without affecting the performance of the virus. Since both the changes were from arginine 

to lysine residues, there is a possibility that the change from replicating in cell culture to 

fish somehow invoked the change. 

The serine residue at position 256 originally sequenced in the 91-114 isolate pre­

epizootic sample is interesting, since it is the only change that resulted in a predicted 

secondary structure alteration. Serine is a polar amino acid, while the phenylalanine 

found in the other two isolates is a hydrophobic amino acid. Once again, this residue falls 

within a region designated as a hypervariable region, 243 to 261, by Heppell et al. (1995). 

It is unknown why this alteration would have occurred in the virus in tissue culture, 

although it appears not be efficacious for the infection of fish, since the residue was 

changed by 7 dpe. It is possible that this alteration affected binding to particular cells 

types, since this isolate caused the lowest mortality, particularly in the first 10 days after 

exposure. By the end of the experiment, 62 days after infection, the mortality caused by 

isolate 91-114 was not statistically significant from isolate 91-137. This indicates that the 

alteration found in tissue culture did not permanently affect the isolate. 

The data obtained from this experiment point to the possible importance of 

individual amino acid residues located in the VP2 viral capsid protein hypervariable 

region, which might account for the widely varying virulence differences displayed 

among IPNV isolates. The fact that viral replicationappears to be influenced partially by 
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the size of the host, depending on the isolate used, points to another possible connection 

with viral virulence. This research illustrates the overall complexity of the IPN virus and 

the ensuing host-viral interactions. 
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Abstract 

Brook trout (Salvelinus fontinalis) fry were experimentally infected by immersion 

with three different Buhl subtype isolates of infectious pancreatic necrosis virus (IPNV), 

which displayed differing virulence levels. Fish were sampled daily, both before and 

during the epizootic. Collected samples were fixed, embedded whole, and sectioned. The 

location in tissues of the IPNV virus was followed for 10 days post-infection (dpe), using 

histopathology, alkaline phosphatase immunohistochemistry (APIH), and in situ 

hybridization. Histopathology was performed by examining tissue sections stained with 

hematoxylin and eosin (H&E). APIH was performed using a monoclonal antibody (AS-1) 

specific to the VP2 viral capsid protein of IPNV, while the in situ hybridization assay was 

performed using cDNA from the VP2 region that had been random labeled with 

digoxigenin. Microscopic signs of IPN disease were limited primarily to the pancreas and 

pyloric caeca and were first detected at 5 dpe. Immunohistochemistry and in situ 

hybridization demonstrated virus protein or genomic material in tissues throughout 

infected fish. The tissue most often containing virus elements, other than the pancreas, 

appeared to be fibroblasts found in the dermis/hypodermis of the skin, most prominently 

in the fins. In addition, goblet cells in the gastrointestinal tract contained heavy 

concentrations of viral antigen. Based on observed results, an IPNV infection appeared to 

be established in the fish by two routes: the muscle, most likely by entering the lateral 

line through contact with the water, and from the oral region into the gastrointestinal tract 

by ingestion. 

Introduction 

Infectious pancreatic necrosis virus (IPNV) is a significant pathogen of salmonids, 

particularly of fish less than 6 months of age. IPN viruses cause significant mortalities in 
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marine and freshwater fish worldwide, with notable losses of both brook and rainbow 

trout (Oncorhynchus mykiss) occurring in eastern and western parts of the U.S. 

The characteristic signs of IPN disease include corkscrew whirling about the long 

axis alternating with prostration, ascites, petechial hemorrhages of ventral areas, castlike 

excretions from the vent, overall darkening, and rapid respiration (Wolf, 1966). 

Transmission of IPNV can be vertical or horizontal, and the virus is shed in both feces 

and sex products of infected fish (Wolf et al.. 1963). 

Labeled cDNA oligonucleotides have been used previously as diagnostic probes 

for use in detection of IPNV in infected fish (Christie et al. 1988; Rimstad et al., 1990; 

Dopazo et al., 1994). However, these methods have not been applied to determine the 

exact route of viral entry in fish, and much is unknown about the disease process itself. 

Shankar and Yamamoto (1994) determined the specific location of viral replication of a 

strain of IPNV from lake trout (Salvelinus namaycush) by assaying the fish organs 

individually. While this method indicates what tissue is positive for virus, it does not 

conclusively demonstrate the course of the virus in the positive tissues. Swanson et al. 

(1982) used virus isolation (based on titer), histopathology, and immunofluorescence 

simultaneously to follow the distribution of the IPN virus in young brook trout 

fingerlings that had been artificially infected by intraperitoneal inoculation. This 

experiment demonstrated the process of viral infection in fish tissue, but did not imitate 

the possible occurrences of a natural infection. 

The use of molecular and immunohistochemical probes allowed elucidation of the 

specific route by which the IPNV virus enters the host, with correlation to the tissue 

damage involved by using classical histopathological techniques. 
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Materials and Methods 

Experimental Animals 

Brook trout (Salvelinus fontinalis) were obtained as swim-up fry from the Oregon 

Department of Fish and Wildlife, Wizard Falls Fish Hatchery, Camp Sherman, OR. No 

IPNV has been detected at this facility since 1975 (C. Banner, personal communication). 

The fish were held at the Oregon State University Salmon Disease Laboratory (SDL) 

facility in Corvallis, OR. Fish were fed Rangen trout starter diet ad libitum and averaged 

0.08 g in size, initially. 

Virus Isolates 

Three IPNV Buhl subtype isolates were used in the experiment: CSF 035-85, 91­

114, and 91-137. CSF 035-85 was generously donated by Dr. Scott LaPatra of Clear 

Springs Trout Co., Buhl, Idaho. It was isolated in 1985 from rainbow trout fingerlings 

during an epizootic of IPN disease in Idaho. The latter two isolates, 91-114 and 91-137, 

were a kind gift from Kent Hauck at the Idaho Department of Fish and Game. Both were 

isolated in 1991 from asymptomatic carrier adult rainbow trout collected at Sawtooth, 

Idaho from a blind passage of tissue homogenates. Case number 91-114 was isolated 

from a single brood Pahsimeroi A strain male, while 91-137 was isolated from four brood 

Sawtooth A strain males. None of the isolates had been passaged in cell culture more than 

three times. 

The IPNV Buhl subtype isolates were selected after review of virulence data 

obtained in previous experiments (J. Maret, personal communication). The isolates were 

selected to represent a high virulence isolate (CSF 035-85), a medium virulence isolate 

(91-114), and a low/no virulence isolate (91-137), based on the mortality previously 

produced in brook trout fry. In the experiment by J. Maret, the cumulative mortalities 
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caused by the isolates were 99%, 81%, and 33%, respectively. Cumulative mortality 

observed in control fish was 30%. 

The CSF 035-85 isolate was isolated from infected fingerlings (frozen at -70°C 

for 1 year) with an average titer of 107.25 tissue culture infectious dose, 50% endpoint, 

per milliliter (TCID50/m1), and passaged twice in chinook salmon embryo (CHSE-214) 

cells (Lannan et al., 1984). 

The 91-114 and 91-137 isolates were obtained as infected CHSE-214 cell cultures 

(frozen at -70°C for 1 year) and passaged twice to increase quantity and titrate the viral 

concentration. 

Experimental Exposure of Fish to IPNV 

Approximately 400 brook trout fry each were placed into tanks containing 10 L of 

water at 10°C. Three tanks were used for each treatment (or isolate), and control. Virus 

was diluted in 20 ml of Hepes-buffered minimum essential medium (HMEM) to give a 

final tank concentration of 105TCID50/m1 (McAllister and Owens, 1986). A sample of 

water from each tank was titered to assure the correct viral dosage was given. Control 

fish were immersed in 10 L of water to which 20 ml of HMEM, only, had been added. 

The fish were held for 5 hours under static flow conditions and supplied with a high 

volume of air to maintain oxygen levels. After the immersion period, the water in the 

tanks was replaced with 25 L of virus-free water, the air removed, and the tank water 

allowed to circulate as usual. All tanks at the SDL were connected to a common flow-

through system, with an approximate flow rate of 2.2 L/min. Effluent was discharged 

through a chlorination system of concentration 2.8 ppm into settling ponds, and 

ultimately to the Willamette River. 

Fish from replicate tanks were combined into a single 100 L tank (flowrate 8.8 

L/min) for each isolate and control at 15 dpe, after the primary sample gathering period 

was completed and it was determined that variability in mortality among replicate tanks 

was not significantly different. 
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Sampling Schedule and Preparation 

Ten (10) live fish were collected daily from each tank for the first 10 days 

following exposure to IPNV. When possible, the fish first selected for sampling were 

exhibiting slight clinical signs of IPN disease. Two (2) fish exposed to each isolate were 

collected at 62 dpe, immediately preceding termination of the experiment. Fish were 

preserved whole in 10% buffered formalin, embedded in ParaPlast Plus paraffin (Fisher 

Scientific, Pittsburgh, PA) and sectioned longitudinally at 5-7 urn thickness on a rotary 

microtome. The sections were placed on positively charged slides (Fisher Scientific) and 

air dried. Tissue sections were rehydrated by passing the slides through a series of graded 

alcohols (absolute to 50%), and finally into distilled water. 

Histopathology 

Rehydrated tissue sections were stained with Mayer's hematoxylin, then 

counterstained with eosin. Sections were dehydrated in a series of graded alcohols (50% 

to absolute), then cleared with Slide Brite. Slides were mounted with a coverslip using 

Permount mounting medium. Sections were examined using normal bright field 

microscopy to determine the extent and location of any tissue damage. 

The degree of IPNV infection in individual tissues was rated on an intensity scale 

of 1 to 4. For histopathology, intensity was measured by the level of damage sustained to 

the tissue. Intact tissues that showed barely discernible signs of infection were rated a 1, 

while moderate damage was rated a 2. Heavy tissue damage was rated a 3, and complete 

tissue destruction was rated a 4. 
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Probe Development 

Viral cDNA of the VP2 viral capsid protein region of all three isolates was 

transcribed and amplified using the reverse transciptase polymerase chain reaction (RT­

PCR) on infected fish homogenates. The cDNA was purified using the QlAquick 

purification for PCR products (Qiagen, Chatsworth, CA), quantified on a 1% agarose gel 

made with TAE buffer (40 mM Tris, 20mM acetic acid, 2 mM EDTA) and ethidium 

bromide stain, then used as a template for the labeling reaction. The cDNA was random 

prime labeled with digoxigenin, using a labeling kit according to manufacturer's 

instructions (Boehringer Mannheim, Indianapolis, IN). Purified template was boiled, then 

placed on ice. The hexanucleotide and nucleotide labeling mixtures were added to the 

template, along with Klenow enzyme, and incubated at 37°C overnight. After incubation, 

the labeled DNA was precipitated with lithium chloride and ethanol, and the pellet 

resuspended in 50 ul of tris-EDTA (TE) buffer. Labeled probes were diluted and tested 

using a direct detection procedure to determine the concentration of the labeling. 

In Situ Hybridization 

Tissue sections were probed with digoxigenin-labeled IPNV cDNA and a 

detection kit (Boehringer Mannheim), using the method described by Bruce et al. (1993). 

Sections were rehydrated, then washed in water and phosphate buffered saline (PBS: 

0.137 M NaCI, 0.0027 M KCI, 0.0043 M Na2HPO4x7H2O, 0.0014 M KH2PO4, pH 7.3), 

followed by a proteinase K treatment. The proteinase K was inactivated with PBS 

containing 0.2% glycine. The sections were prehybridized for 1.5 h at room temperature. 

A Thermolyne AmplitronR II (Barnstead/Thermolyne Corporation, Dubuque, IA) with an 

in situ plate accessory was used to heat the slides to 95°C for 3 mM immediately 

following addition of the probe, before hybridization overnight at 37°C. After 

hybridization, sections were washed in decreasing concentrations of sodium citrate (SSC) 

buffer, then blocked with normal sheep serum (NSS) and Triton X-100. The alkaline­
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phosphatase-digoxigenin conjugate (Boehringer Mannheim) was diluted 1:5000 with 

NSS and Triton X-100, then placed on sections for 45 min at room temperature. Slides 

were washed, and the color reagent (Boehringer Mannheim) placed on overnight. After 

the in situ hybridization procedure was complete, sections were rinsed in water and 

counterstained using nuclear fast red (Vector Laboratories, Burlingame, CA), and 

mounted with a coverslip. Tissue sections were examined using normal bright field light 

microscopy for cells or tissue displaying a dark blue to purple precipitate indicating the 

presence of homologous IPNV RNA. 

For the in situ hybridization assay, intensity was measured based upon the 

strength of the positive reaction observed, compared to background observed in control 

tissue. A light purple, barely discernible reaction was rated a 1, while a more definite 

reaction was rated a 2. Tissue that had a dark, intense purple reaction were rated a 3-4, 

depending on the proportion of tissue affected. 

Alkaline Phosphatase Immunohistochemistry (APIH) 

IPNV antigen was detected in paraffin embedded fish tissues using the 

VectastainR alkaline phosphatase substrate kit (Vector Laboratories) and the IPNV VP2­

specific monoclonal antibody AS-1 (Caswell-Reno et al., 1989) made in mice, with a 

method similar to that described by Drolet et al. (1994). Rehydrated sections were 

washed in water, then dipped in 20% acetic acid at 4°C for 15 seconds to eliminate any 

alkaline phosphatase activity associated with the tissue. Sections were rinsed in water, 

followed by PBS, then blocked with 2% normal serum followed by 5% nonfat milk. 

Sections were incubated for 1 h with undilute AS-1 antibody prepared in cell culture 

medium, rinsed, then incubated with biotinylated anti-mouse secondary antibody (Vector 

Laboratories). Sections were rinsed again before the avidin-biotin complex (Vector 

Laboratories) was added. Sections were rinsed, equilibrated, then incubated with the 

VectastainR blue substrate components (Vector Laboratories) for 40 min at 37°C. The 
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tissue was counterstained using nuclear fast red (Vector Laboratories) and mounted under 

a coverslip. Tissue sections were examined using normal bright field light microscopy for 

cells or tissue displaying a bright blue precipitate indicating the presence of IPNV 

antigen. 

For the APIH assay, intensity was also measured based upon the strength of the 

positive reaction observed, compared to background observed in control tissue. Tissues 

that stained a light blue were given a rating of 1-2, while tissues staining a bright blue 

were given a rating of 3-4, once again depending upon the proportion of tissue affected. 

Results 

Virus Infection 

Mortalities and signs of IPN disease were first observed on day 5 post-exposure 

(dpe), proceeded to peak on 7 dpe, then decreased with time (Figure 4.1). Cumulative 

percent mortality at 62 dpe was 93%, 78% and 67% for isolates CSF 035-85, 91-137 and 

91-114, respectively. Cumulative mortality for control fish was 3%. 

Moribund fish, first observed on 5 dpe as well, demonstrated classical clinical 

signs of IPNV and were observed to be prostrate on the bottom of the tank, dark in color, 

and respiring rapidly; many had ascites and petechial hemorrhaging in the abdominal 

area. Whirling of fish was observed infrequently. Control fish were not observed to 

demonstrate disease signs at any time during the experiment. 
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Figure 4.1 Mortality curve of brook trout (S. fontinalis) fry after artificial infection by 
immersion with IPNV Buhl subtype isolates 91-137, 91-114, and CSF 035-85. The pre­

epizootic period is from day 0-5 and the epizootic period is from day 6-10. 

Histopathology 

Observation of fish tissue sections stained with H&E indicate that lesions 

associated with IPN disease were evident in the tissue of infected fish before the time that 

the peak infection occurred; that is, before the time when the largest number of fish begin 

to die from IPN disease (7 dpe). No signs were observed in the tissue of sampled control 

fish during the course of the experiment (Figure 4.2a) 

A few possible signs of IPN infection were first observed in fish tissue on 3 dpe 

for all three isolates, before fish began exhibiting clinical signs of infection. Signs were 

limited to the pancreatic acinar cells and consisted of small areas of focal necrosis with 

pyknosis and karyorhexis (Figure 4.2b). 
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Figure 4.2 Histopathology of tissue sections from brook trout fry infected with IPNV. 
Sections were stained with Mayer's hematoxylin and eosin. (a) Pancreatic tissue of control 
tissue (250x). (b) Pancreatic tissue at 4 dpe, showing slight pathological signs of IPNV, 
such as pyknotic nuclei (arrow) (250x). (c) Pancreatic tissue at 9 dpe, showing extreme 
signs of necrosis and tissue disruption (250x). (d) Pancreatic tissue at 62 dpe showing a 
small area of necrosis (arrow) surrounded by normal acinar cells (250x). 
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On 4 dpe, the IPN disease signs observed in the tissue from fish infected with 

isolate 91-114 still consisted of limited areas of cellular necrosis in the pancreatic acinar 

cells. The tissue of fish infected with virus isolates 91-137 and CSF 035-85 were showing 

moderate signs of IPN infection. Areas with obvious cellular disruption and tissue 

disorganization were evident in the pancreatic acinar cells, as well as areas of slight 

necrosis. Pyknotic nuclei and karyorhexis were evident, and some sections had 

infiltration by lymphocytes. 

By 5-7 dpe, IPN lesions were obviously visible in pancreatic tissue from fish 

infected with each of the three isolates. They consisted primarily of cellular disruption, 

degeneration of tissue structure, nuclear pyknosis, varying degrees of hemorrhage, and 

areas of acute cytolytic necrosis. Intact acinar cells were dark and rounded, indicating 

some level of degeneration. Some sloughing of the pyloric caeca and intestinal mucosal 

epithelium was visible. 

Signs of IPN lesions reached their peak in all tissue from fish infected with each 

of the three isolates at 8-10 dpe (Figure 4.2c). Massive cellular disruption was evident, 

along with hemorrhaging and necrosis. Many fish had little or no unaffected pancreatic 

tissue remaining at this time. Severe sloughing of the pyloric caeca and mucosal 

epithelium of the intestine were evident. Most of the IPN signs were confined to the 

pancreas, pyloric caeca, and intestine, with the exception of small areas of hyaline muscle 

degeneration observed in several of the sampled fish. 

Histopathology of fish sampled at 62 dpe showed large areas of necrosis 

throughout the pancreas (not shown), however, many areas of unaltered pancreas with 

intact acinar cells remained (Figure 4.2d). Fish sampled at this time did not show any 

clinical signs of IPN disease and outwardly appeared to be healthy. 

There was no obvious difference noted histologically in the degree of tissue 

damage caused by the various IPNV isolates. 
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In Situ Hybridization of IPNV RNA 

In order to determine the location of IPNV genomic RNA in tissues of infected 

brook trout, a cDNA probe was used. A blue-purple precipitate indicating the presence of 

viral RNA was observed in the infected fish tissue as early as 1 dpe, the first sampling 

date, for all three isolates. For fish exposed by immersion to virus isolate 91-114, the 

IPNV RNA was initially confined to the skin epidermis, hyaline cartilage of the nose, and 

ocular lens of infected fish tissue. For fish exposed by immersion to virus isolates 91-137 

and CSF 035-85, viral nucleic acid was much more widespread, occurring in the mucosal 

epithelium of the esophagus, stomach and pyloric caeca, as well as the striated 

musculature of the myomeres (Figure 4.3a). Fish exposed to virus isolate CSF 035-85 

also had IPNV RNA in the skin epidermis and ocular lens, in addition to the mucosa of 

the intestine. Reactions, based on intensity and overall percent of tissue infected, were 

generally light to moderate at 1 dpe. 

As the infection progressed, the intensity and location of positive reactions 

generally increased for all three isolates. Viral nucleic acid was occasionally present in 

the 10 days post-exposure in the following tissues: intestine, kidney, spleen, brain, liver, 

eye, cartilage, swim bladder, and thymus. Reactions occurring in these tissues were 

sporadic, usually affecting single fish of 10 replicates, and highly variable in intensity, 

regardless of the virus isolate used to infect the fish orignally. A positive reaction in the 

thymus was only observed in a single fish, infected with virus isolate CSF 035-85 (6 

dpe). 

The most consistently affected tissues with the largest amount of viral RNA were: 

the pancreas and adjoining adipose cells, stomach, pyloric caeca, gills, heart, muscle, and 

epithelial skin and dermis/hypodermis. 

Using the mean of the intensity scores given to the hybridization reaction in these 

tissues for the ten fish examined daily for each virus isolate, the progression of the 

infection could be charted (Figures 4.4, 4.5, 4.6). Just prior to and during the epizootic 
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Figure 4.3 Detection of IPNV RNA by in situ hybridization on tissue sections from 
infected brook trout fry (nuclear fast red counterstain). (a) Pancreatic tissue of control fish 
(250x). (b) Limited positive reaction in the kidney (arrow) (250x). (c) Intense positive 
reaction in pancreatic tissue (250x). (d) Intense positive reaction in the epithelial 
dermis/hypodermis (250x). (e) Intense positive foci in heart cells (250x). (f) Individual 
pancreatic cell showing a positive reaction from a fish sampled at 62 dpe (250x). 
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Figure 4.4 Intensity of in situ hybridization reaction in tissue sections from fish infected with IPNV isolate 91-137. Each individual 
tissue type was given an intensity rating from 1-4, based on the positive reaction observed. The total mean percent intensity, based on 
the number of tissues examined, is shown on the ordinate and plotted against days post-exposure. 
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Figure 4.5 Intensity of in situ hybridization reaction in tissue sections from fish infected with IPNV isolate 91-114. Each individual 
tissue type was given an intensity rating from 1-4, based on the positive reaction observed. The total mean percent intensity, based on 
the number of tissues examined, is shown on the ordinate and plotted against days post-exposure. 
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Figure 4.6 Intensity of in situ hybridization reaction in tissue sections from fish infected with IPNV isolate CSF 035-85. Each 
individual tissue type was given an intensity rating from 1-4, based on the positive reaction observed. The total mean percent intensity, 
based on the number of tissues examined, is shown on the ordinate and plotted against days post-exposure. 
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stage of the infection, a particularly strong reaction was observed in what appeared to be 

fibroblasts located in the dermis/hypodermis of the fins and epithelial skin (Figure 4.3d), 

for fish exposed to any of the three virus isolates. Also during the epizootic stage of the 

infection, sloughed cells in the lumen of the intestine displayed a very strong positive 

reaction, indicating the presence of virus and/or viral RNA. However, the presence of a 

large amount of viral RNA in various tissues did not correlate with observed lesions by 

histopathology. 

In the initial stages of the infection, positive reactions for fish exposed to any of 

the three virus isolates were diffuse in nature, appearing as a light to moderate purple 

color located generally throughout the affected tissue. As the infection progressed to the 

epizootic stage, positive reactions became much more intense and focal in appearance, 

affecting individual clusters of cells (Figure 4.3e). This change in the reaction was 

observable on a day to day basis, for each isolate individually. The change from diffuse 

positive to focal reactions first occurred for fish exposed to virus isolate CSF 035-85 at 3 

dpe, for fish exposed to virus isolate 91-137 at 4 dpe, and for fish exposed to virus isolate 

91-114 at 6 dpe. 

Fish sampled at 62 dpe had only a small amoung of viral RNA in limited areas of 

the tissue of the pancreas, pyloric caeca, kidney, skin, and muscle. Reactions consisted of 

only a few foci per infected tissue (Figure 4.3f), which was scored a 1-2 based on 

intensity and extent of tissue affected. 

Alkaline Phosphatase Immunohistochemistry (APIH) 

Staining reactions observed using the APIH procedure correlated well with the 

results obtained with the in situ hybridization procedure. The same positive tissues were 

observed, with slight variations in intensity, with one exception. A positive reaction using 

APIH was observed during the epizootic period (5-10 dpe) in goblet mucous cells of the 

gastrointestinal tract and epithelium of the skin, that was only marginally visible using in 

situ hybridization. The reaction was quite strong (Figure 4.7a), and was not observed in 
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Figure 4.7 Detection of IPNV epitope AS-1 on VP2 protein by means of alkaline 
phosphatase immunohistochemistry (APIH) on tissue sections from experimentally 
infected brook trout (nuclear fast red counterstain). A positive reaction appears as a bright 
blue. (a) Intense positive reaction in goblet mucous cells of the intestines (arrow) (250x). 
(b) Positive reaction in the pyloric caeca and pancreatic tissue (100x). (c) Intense positive 
reaction lining the dermis/hypodermis of the epithelium (250x). (d) Negative pancreatic 
control tissue demonstrating the slight background obtained using the APIH procedure 
(250x). 
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the initial stages of infection (1-4 dpe), after the epizootic (62 dpe), or in the tissue of 

control fish. 

In general, the reactions observed with the APIH were more widespread in 

infected tissue, with fewer foci observed (Figures 4.7b and c). However, background 

levels were also much higher using the APIH procedure (Figure 4.7d). 

Discussion 

Positive reactions using either the in situ hybridization or APIH procedure were 

variable among fish exposed to any of the virus isolates in the 10 days post-exposure for 

the following tissues: intestine, kidney, spleen, brain, liver, eye, cartilage, swim bladder, 

and thymus. The positive reactions observed in these tissues usually occurred in 

individual fish. Detection of viral antigen using immunofluorescence were infrequently 

observed in the intestinal submucosa, liver and kidney by Swanson et al. (1982), while 

stomach, spleen, gills and skeletal muscle remained negative throughout the experiment. 

However, Swanson et al. used 12-week old brook trout that had been inoculated by 

intraperitoneal injection, where either factor might play a large role in altering the course 

of the virus distribution. Additionally, the sampled fish were cut crosswise into three or 

four sections, which might limit the number and extent of tissue that could be observed. 

Yamamoto and Ke (1991) found relatively high virus titers (105 PFU/ml) in the gills, fins, 

skin, spleen, pyloric caeca, and kidney of artificially infected brook trout fingerlings. 

Tissue distribution of viral antigen was extensive in adult carrier fish when tested by 

immunoperodixase using polyclonal Ab (Reno, 1988). 

The brain of infected fish infrequently displayed a positive reaction, by both in 

situ hybridization and APIH, usually in the cerebellar valvula and the cerebellum. Even 

more rarely a positive reaction was observed in the mensencephalon or optic lobe. 

Although it wasn't directly correlated, it seems possible that a positive reaction in the 
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brain could indicate those fish who were displaying whirling signs, due to a loss of 

equilibrium or vision impairment. 

The virus appeared to enter the fish through the skin and muscle, possibly via the 

lateral line, as well as through the oral tract, gaining entry into the digestive system. 

Brook trout fry that had been inoculated by intraperitoneal injection (Swanson et al., 

1982) displayed a consistent negative reaction in the tissue of the stomach and skeletal 

muscle, further suggesting that these are entry routes for transmission via water contact or 

ingestion. Despite the suggestion that initial IPNV infection occurs at the gill surface 

(Smail and Munro, 1989), IPNV was not detected in or on the gills in the early stages of 

infection, by either in situ hybridization or APIH. Just prior to and during the epizootic 

(4-10 dpe), focal reactions using either assay were observed in what appeared to be 

fibroblasts within the secondary gill lamellae, as well as connective tissue located in the 

gill arch. However, at this time, identical focal reactions were observed in tissue 

throughout the fish, indicating that this was not a route of entry, but the result of a 

disseminated infection. 

Virus appeared to become relatively dispersed thoughout the fish, displaying a 

distinct preference for pancreatic tissue, but also infecting individual cells or sites in other 

tissues. There was also a definite preference observed for what appeared to be fibroblasts 

in the dermal and hypodermal layers of tissue found throughout the fish, but particularly 

in the fins. Yamamoto and Ke (1991) found high virus titers in the fins of infected brook 

trout fingerlings, after infection by immersion. They suggest that viral replication in the 

epidermal tissues of susceptible fish establishes early in the infectious cycle, then persists 

during the acute stages of infection. It is a possibility that this a mechanism for site-

specific dispersal of the virus. It is noted by Ellis et al. (1989) that the vascular 

hypodermis is a frequent site of developing infectious processes. 

Differences among the virus isolates, as indicated by both in situ hybridization 

and APIH, include the fact that the virus isolate CSF 035-85 appeared to infect fish tissue 

at a faster rate than the other two isolates, producing small intense areas of focal 

replication in a shorter period of time (3 dpe), compared to the other two isolates, 91-137 

and 91-114, which produced the areas of focal replication at 4 dpe and 6 dpe, 
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respectively. Virus isolate 91-114 took the longest time to establish a substantial 

infection, and the observed reactions caused by this isolate were generally lower in 

intensity initially than for the other two isolates. 

From Figures 4.4, 4.5, and 4.6, using in situ hybridization, it is interesting to note 

that the day immediately preceding the appearance of the positive foci for fish exposed to 

each virus isolate there appears to be a decrease in the intensity and/or number of positive 

tissues. Possibly this indicates a stage in the viral replication when the VP2 section of the 

genome is not available for probe binding or the viral genome is in the middle of being 

replicated, followed by a sudden increase of virus and/or virus genome, resulting in the 

appearance of numerous locations with intense positive foci visible. 

By the end of the experiment, 62 dpe, the virus had almost completely cleared 

from the fish, as evidenced by the limited positive reactions observed using either in situ 

hybridization or APIH. Small positive focal areas were observed in tissue of the pancreas, 

pyloric caeca, kidney, muscle, and skin, suggesting that limited replication of the virus 

continues in these tissues over time, sustaining the carrier state of infected fish. 

The strong positive reaction observed in the goblet mucous cells of the 

gastrointestinal tract and skin using APIH, that was barely visible using in situ 

hybridization, points to a large accumulation of viral protein in these cells. It is unlikely 

that the reaction was due to non-specific binding or a tissue alkaline phosphatase 

response since the reaction was not seen throughout the infection period, it was not 

observed in the control tissue, and the tissue sections were treated with acetic acid prior to 

staining, to eliminate any tissue-associated alkaline phosphatase activity. The two most 

likely explanations are: intact virus about to be released, whose viral genome is somehow 

inaccessible to the DNA probe, or viral proteins, unassembled into virions or dissociated 

following assembly. If the reaction is due to intact virus, it is possible that the proteinase 

K treatment during the in situ hybridization assay caused a loss of stability that led to the 

disintegration of the RNA genome, before binding of the probe could occur. 

This research provided an opportunity for systematic comparison between two 

IPNV detection assays: in situ hybridization, which utilizes labeled IPNV cDNA to bind 

to viral RNA, and APIH, which uses an IPNV monoclonal antibody to bind to viral 
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protein or antigen. Both procedures were successful in tracking the route of the IPN virus 

through cells and tissue of infected fish. It appeared that the APIH assay might have more 

substance to react with than the in situ hybridization assay, thus resulting in a more 

widespread positive reaction. This is probably due to the fact that the viral proteins are 

produced in much larger quantities than the viral genome. However, this benefit was 

offset by the increased background that was observed using the APIH assay. The in situ 

hybridization assay was found to produce results in tissue sections that were relatively 

background-free, yet with positive reactions that were clear and easy to decipher. 

However, given the similarities obtained in results between the assays and the relative 

ease in performing each assay, selecting an appropriate assay may simply be a matter of 

personal preference and familiarity with the required reagents. Both assays appeared to 

detect IPNV products (either genomic material or antigens). 
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Abstract 

Five hundred brook trout (Salvelinus fontinalis) fry were experimentally infected 

with a virulent isolate of infectious pancreatic necrosis virus (IPNV). The purpose of the 

study was to determine the maximum time before death, for fish exhibiting clinical signs 

of IPN disease. Each day, mortalities were removed and recorded. Fish exhibiting 

obvious signs of IPN disease indicating a terminal conclusion were removed to a separate 

tank. The recovery of any fish in this tank was noted and tabulated for a period of 6 

weeks. Fish were sampled representing "recovered" fish (showed signs of IPNV that 

disappeared at some point), mortalities (died while exhibiting signs of IPNV), moribund 

fish (actively showing signs of IPNV) and "asymptomatic" fish (never showed signs of 

IPNV). Half the fish sampled were used to determine virus titer, while the other half were 

embedded and sectioned for histopathology and in situ hybridization, using a non-

radioactively labeled cDNA probe to IPNV RNA. Very few obvious differences were 

observed between the different groups of fish sampled. Mortalities and moribund fish 

appeared to have no sloughed cells in the lumen of the intestine, however, little or no 

unaffected pancreatic acinar tissue was observed. Both "uninfected" and "recovered" fish 

had large quantities of sloughed cells in the lumen of the intestine and, while necrosis 

was evident in the pancreas, also had some areas of unaffected pancreatic tissue 

remaining. Only 2.5% of fish that exhibited clinical signs of IPN disease demonstrated a 

recovery period, which lasted up to 2 weeks. However, brook trout fry that originally 

displayed signs of IPN disease all eventually succumbed and died. 

Introduction 

Infectious pancreatic necrosis virus (IPNV) can cause lethal disease in many 

aquaculture species worldwide, with the most devastating effects occurring in salmon and 

trout. It mainly affects young salmonids, from first feeding to approximately 6 months of 

age. 
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The disease was first described by M'Gonigle in 1941, who observed whirling 

behavior and high mortality in brook trout (Salvelinus fontinalis) fry. Mortality can vary 

markedly, depending upon the strain of IPNV causing the infection, however, several 

strains can cause upwards of 90% mortality (Wolf, 1988). The clinical signs of IPNV 

infection other than whirling behavior include: prostration on the bottom of the tank, 

overall darkening, abdominal distention, hemorrhage of ventral areas/base of fins, and 

castlike excretions from the vent (Wolf, 1988). 

It has been generally assumed that once a fish becomes infected with IPNV and 

displays clinical signs of the disease, death is imminent. Wolf (1966) states that death 

usually occurs within 1-2 hours of obvious clinical signs of disease. However, 

preliminary data obtained during a mortality study of three different Buhl isolates of 

IPNV indicated that recovery might be possible, even after the fish became markedly 

moribund in appearance. For this reason, a larger study was initiated, with the results 

being reported here. Results demonstrate that the recovery observed is temporary, lasting 

up to 2 weeks. However, fingerling brook trout that originally displayed signs of IPNV 

all eventually succumbed and died. 

Material and Methods 

Cells and Virus 

The Buhl strain CSF 035-85 of IPNV (American Type Culture Collection catalog 

#VR-890) was originally obtained as a generous gift from Dr. Scott LaPatra of Clear 

Springs Trout Co. in Idaho. The virus was propagated in the chinook salmon embryo 

(CHSE-214) cell line (Lannan et al., 1984), using techniques previously described 

(Caswell-Reno et al., 1986). Previous experiments have shown this isolate to cause 90­

99% mortality in brook trout fry (Bruslind and Reno, Chapter 3 of this thesis; J. Maret, 

personal communication). Virus titer was determined as tissue culture infectious dose, 
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50% endpoint per milliliter (TCID50/m1), calculated using the method of Spearman-

Karber. 

Experimental Animals 

Brook trout (Salvelinus fontinalis) were obtained as swim-up fry (0.07 g mean 

wt.) from the Oregon Department of Fish and Wildlife, Wizard Falls Fish Hatchery, 

Camp Sherman, OR. No IPNV has been detected at this facility since 1975 (C. Banner, 

personal communication). The fish were held at the Oregon State University Salmon 

Disease Laboratory (SDL) facility in Corvallis, OR. Fish used in the experiment were 

approximately 0.7 g in size. 

Experimental Exposure of Fish to IPNV 

Five hundred brook trout fry were placed into 20 L of water at 10°C. Virus was 

diluted in 20 ml of Hepes-buffered minimum essential medium (HMEM) to give a final 

tank concentration of 105 TCID50/m1 (McAllister and Owens, 1986). Control fish were 

immersed in 20 L of water to which 20 ml of HMEM only had been added. The fish were 

held for 5 hours under static flow conditions and supplied with a high volume of air to 

maintain oxygen levels. After the immersion period, the water in the tanks was replaced 

with 100 L of virus-free water, the air removed, and the tank water allowed to circulate as 

usual. All tanks at the SDL were connected to a common flow-through system, with an 

approximate flow rate of 8.8 L/min. Effluent was discharged through a chlorination 

system at a concentration of 2.8 ppm into settling ponds, and ultimately to the Willamette 

River. 
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Daily Routine 

Each day, fish which had died were removed and recorded. Fish exhibiting 

obvious signs of IPN disease were removed to a separate tank. Mortalities from the 

second tank were removed and recorded as well. The recovery of any fish in the second 

tank was noted and tabulated. The experiment was concluded at day 42 post-exposure 

(dpe), and mortality at this point was reported as percent cumulative mortality. Live fish 

that had been sampled during the course of the experiment were not included in the 

cumulative mortality calculations. 

Sampling Schedule 

Five dead fish were sampled on day 6 of the experiment and pooled, in order to 

determine viral titer. Fish sampled on day 11 represented different groups: "recovered" 

fish (showed signs of IPNV that disappeared), mortalities (died while exhibiting signs of 

IPNV), moribund fish (actively showing signs of IPNV), and "asymptomatic" fish from 

the original tank (never showed signs of IPNV). Four fish were sampled to represent each 

group. Two of the fish were used to determine virus titer, while the other two fish 

sampled were embedded and sectioned for histopathology and in situ hybridization. Fish 

sampled on day 42 represented "survivors," who had never showed clinical signs of 

IPNV infection during the course of the experiment. Nine live fish were sampled at this 

time and pooled in groups of three to determine viral titer. Two additional live fish were 

fixed in formalin for embedding and sectioning. 

Tissue Fixation and Sectioning 

Whole fish were preserved in 10% buffered formalin, embedded in ParaPlast Plus 

paraffin (Fisher Scientific, Pittsburgh, PA) and sectioned longitudinally at 5-7 um 
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thickness on a rotary microtome. The sections were placed on positively charged slides 

(Fisher Scientific). Tissue sections were rehydrated by passing the slides through a series 

of graded alcohols (absolute to 50%), and finally into distilled water. 

Histopathology 

Rehydrated tissue sections were stained with Mayer's hematoxylin, then 

counterstained with eosin. Sections were dehydrated in a series of graded alcohols (50% 

to absolute), then cleared with Slide Brite. Slides were mounted with a coverslip using 

Permount mounting medium. Sections were examined using normal bright field 

microscopy to determine the extent and location of any tissue damage. 

Probe Development 

IPNV cDNA of the VP2 viral capsid protein region of all three isolates was 

produced using the reverse transciptase polymerase chain reaction (RT-PCR). The cDNA 

was then used as a template for the labeling reaction. The DNA was random prime 

labeled with digoxigenin, using a labeling kit according to manufacturer's instructions 

(Boehringer Mannheim, Indianapolis, IN). Labeled probes were diluted and tested using a 

direct detection procedure to determine the concentration of the labeling. 

In Situ Hy ridization 

Each tissue section was probed with 2.5 ng of digoxigenin labeled IPNV cDNA 

using a method similar to that described by Bruce et al., 1993. A Thermolyne Amplitron R 

II (Bamstead/Thermolyne Corporation, Dubuque, IA) with in situ hybridization plate 

accessory was used to heat the slides following addition of the probe. After the in situ 
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hybridization procedure was complete, each slide was examined using normal bright field 

light microscopy, for cells displaying a dark blue to purple precipitate indicating the 

presence of homologous IPNV RNA. 

Results 

Mortalities and Moribund Fish 

Aside from the death of an exposed fish noted on day 2 post-exposure (dpe), the 

first mortalities were observed on 6 dpe, as well as the first fish displaying clinical signs 

of IPN disease. Affected fish were prostrate on the bottom of the tank, dark in color, and 

respiring rapidly; many had ascites and external hemorrhaging in the abdominal area. The 

number of mortalities and moribund fish peaked on 7 dpe, then rapidly dwindled in 

numbers. Figure 5.1 charts the progression of cumulative mortalities and moribund fish 

over the entire course of the experiment (42 days). At 42 dpe, the total cumulative 

mortality for the infected fish was 92%, while the control fish had 2% total cumulative 

mortality with no signs of IPN disease exhibited by control fish at any time. Out of the 

92% of fish that died, 56% exhibited clinical signs of IPN disease some time preceeding 

death. The remaining 36% died without exhibiting overt clinical signs of IPN disease. 

On 8 dpe, 6 of the fish "recovered" which exhibited clinical signs of IPN disease. 

An additional fish "recovered" on 10 dpe, bringing the total to 7 out of 279 moribund 

fish, which represented 1.4% of the total number of fish originally infected. All of these 

fish became lighter in color, hemorrhaging and ascites disappeared, and the fish swam 

around the tank in a normal fashion. No whirling characteristic of IPN disease was 

observed for these "recovered" fish. However, while physically appearing normal, these 

fish were not observed to consume food at any time. 

Four of the "recovered" fish were sampled on 11 dpe for determining virus titer 

and embedding. One "recovered" fish died on 13 dpe, one on 22 dpe, and the final fish 
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Figure 5.1 Daily mortality and moribund fish of brook trout experimentally infected with IPNV isolate CSF 035-85. Five hundred 
fish were infected with a challenge dose of 105 TCID50/ml. The daily affected fish (dead or moribund) are shown on the ordinate and 
plotted against days post-exposure. Moribund fish were those observed to display clinical signs of IPN disease. 
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died on 25 dpe. The fish from 22 dpe was used to determine virus titer, while the fish from 

25 dpe was fixed for embedding and sectioning. 

Virus Titer 

Mortalities sampled on 6 dpe demonstrated a virus titer of 10101 TCID50 /g (5 

pooled fish), while mortalities sampled on 11 dpe demonstrated a virus titer of 106.45 

TCID50 /g (5 pooled fish). Two moribund fish displaying clinical signs of disease that were 

sampled on 11 dpe both had virus titers of 1061 TCID50/g. The two "asymptomatic" fish 

sampled on 11 dpe demonstrated virus titers of 106.45 and 108.7 TCID5o/g, while the 

"survivor" fish sampled had virus titers of 106.2 and 1052 TCID50/g. Statistically, there was 

no significant difference in virus titer among the different groups of fish sampled on 11 

dpe (ANOVA F7=1.21, p=0.41). 

The "survivor" fish that died on 22 dpe had a virus titer of 1052 TCID5o/g. 

"Asymptomatic" fish sampled at the conclusion of the experiment on 42 dpe had virus 

titers of 1057, 105.45 and 105.2 TCID5o/g (3 pooled fish each). 

Histopathology 

The four groups of fish sampled on 11 dpe represented: "recovered" fish (showed 

signs of IPN disease that disappeared), mortalities (died while exhibiting signs of IPN 

disease), moribund fish (actively showing signs of IPN disease), and "asymptomatic" fish 

(never showed signs of IPN disease). When tissue sections of these fish were examined 

microscopically, all displayed classical signs of IPN disease. Massive cellular disruption 

was characterized by nuclear pyknosis and karyorhexis. Complete breakdown of regions 

of the pancreatic acinar cells was evident, as well as extensive areas of necrosis. The 

"asymptomatic" and "recovered" fish were not observed to have regions of hemorrhaging 

in the abdomen and had copious amount of sloughed cells in the lumen of the intestine, 

unlike the mortalities and moribund fish, which had extensive hemorrhaging and little in 
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the lumen of the intestine. Additionally, the mortalities and moribund fish had little or no 

normal pancreatic tissue remaining at this time, while the "asymptomatic" fish had a 

moderate amount of unaffected pancreas. The "recovered" fish had some small areas of 

unaffected pancreas, although it was obvious that large areas of the pancreas were 

diseased and subsequently destroyed. 

Tissue sections of the "survivor" fish that died on 25 dpe showed massive 

necrosis of the pancreas, both acinar and islet cells (Figure 5.2a). There were virtually no 

intact pancreatic cells remaining. The remaining necrotic tissue had infiltration with 

macrophages and erythrocytes. No sloughed cells were observed in the lumen of the 

intestine. 

Fish sampled on 42 dpe, representing survivors, showed severe pancreatic lesions, 

with extensive areas of necrosis. However, there were also many intact cells amidst the 

necrosis, with a moderate number of unaltered pancreatic tissue regions remaining 

(Figure 5.2b). Nuclear pyknosis and karyorhexis were not observed, nor was abdominal 

hemorrhaging or sloughed cells in the lumen of the intestine. 

In Situ Hybridization 

The results obtained using in situ hybridization to detect viral RNA in the tissue 

sections of infected fish are reported here. Positive reactions were detected in numerous 

organs and tissues of infected fish, with minor variations among the different groups of 

fish sampled. 

The reactions observed in the tissue of moribund fish and mortalities sampled on 

11 dpe were very similar, with moderately positive reactions observed in locations 

throughout the fish. Most of the reactions observed were focal in appearance, with the 

strongest reactions occurring in the spleen, muscle, epidermis, and fibroblast cells. Other 

infected tissue included the gills, kidney, heart, brain, swim bladder, as well as the 

gastrointestinal tract. A positive reaction was consistently observed in the pancreas, 

however, it was relatively light in appearance. 
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Figure 5.2 Histopathology of tissue sections from brook trout fry infected with IPNV. 
Sections were stained with Mayer's hematoxyling and eosin (H&E). (a) Pancreatic tissue 
of "survivor" fish that died at 25 dpe, showing massive necrosis with no normal acinar 
cells (250x). (b) Pancreatic tissue of "asymptomatic" fish sampled at 42 dpe, showing 
some areas of necrosis along with intact acinar cells (250x). 
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"Recovered" fish sampled on 11 dpe displayed stronger reactions than those seen 

in the moribund and mortalities, although the reactions were not quite as widespread. 

Positive reactions appeared confined primarily to the pancreas, tissue of the 

gastrointestinal tract (stomach, pyloric caeca, and intestine), muscle, and fibroblast cells. 

Positive foci were interspersed with areas of widespread positive reaction. 

The tissue of the "asymptomatic" fish sampled on 11 dpe showed light to 

moderate positive reactions, mostly focal in appearance, with the strongest reactions 

observed in muscle tissue, skin, and fibroblast cells. Some involvement of organs of the 

gastrointestinal tract were observed, however, they appeared to be limiting. 

The tissue of the "survivor" fish that died on 25 dpe showed light to moderate 

positive reactions in the gills, liver, pancreas, kidney, muscle and epidermal skin (Figure 

5.3a). The reactions were focal in appearance, affecting limited numbers of cells in the 

infected tissue. 

The positive reactions seen in tissue of the "asymptomatic" fish sampled on 42 

dpe were limited to a few foci in the liver, pancreas, kidney, stomach, intestine, muscle 

and skin (Figure 5.3b). Although the reactions were relatively strong, based on intensity, 

they appeared to involve only a few cells in limited areas of the affected tissue. The 

majority of the tissue appeared to be uninfected. 

Discussion 

The observed cumulative mortality of 92% demonstrated that CSF 035-85 is one 

of the most virulent isolates of IPNV. However, there was no significant difference in the 

viral titers of fish that had died from the disease, fish that were exhibiting clinical signs of 

the disease, exposed fish that appeared to be healthy, and fish that exhibited clinical signs 

of the disease before temporarily recovering. This indicates that quantity of virus does not 

account for the different effects seen in infected fish. 

Histopathological examination of tissue sections of infected fish indicated that 
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a 

b 

Figure 5.3 Detection of IPNV viral RNA by means of in situ hybridization using gene 
probes on tissue sections from experimentally infected brook trout fry (nuclear fast red 
counterstain). A purple precipitate indicates a positive reaction. (a) Pancreatic tissue of 
"survivor" fish that died at 25 dpe, showing a few positive focal reactions (arros) (250x). 
(b) Pancreatic tissue of "asymptomatic" fish sampled at 42 dpe, showing one positive focal 
reaction (250x). 
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fish which had died from IPN disease and moribund fish had little or no healthy 

pancreatic tissue remaining and probably suffered from complete pancreatic failure. The 

relatively light positive reaction observed in the pancreas, using in situ hybridization, was 

probably due to the fact that there was little pancreatic tissue remaining for the virus to 

infect. The pancreatic tissue of "recovered" fish and apparently healthy fish 

("asymptomatic") was affected to variable degrees, but there was always some unaffected 

tissue observed, allowing pancreatic function to continue. Swanson et al. (1982) observed 

widespread pancreatic lesions in brook trout fry following intraperitoneal inoculation 

with IPNV; however, there were no mortalities. He suggested that the lesions would not 

critically impair pancreatic function, if intact acinar cells still remained. 

"Recovered" fish and "uninfected" fish both had large amounts of sloughed cells 

visible in the lumen of the intestine, while the mortalities and the moribund fish did not 

display this characteristic. It is possible that this is due to fact that mortalities and 

moribund fish were in the last stage of the infection and that few cells remained in the 

intestine and pyloric caeca to slough off. The other two groups of fish were still actively 

fighting the infection, with intestinal sloughing being both a pathological feature as well 

as a defense mechanism of the host. It appeared that the main difference between the 

"uninfected" fish who survived and the "recovered" fish that eventually succumbed to the 

disease is the fact that the recovered fish had very limited amounts of unaffected 

pancreatic tissue remaining. Somehow these fish managed to rally their systems and 

temporarily halt the virus destruction; however, their pancreas appeared to have suffered 

too much damage at this point to insure survival. 
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CHAPTER 6 

SUMMARY 

Three closely related isolates of infectious pancreatic necrosis virus (IPNV) 

belonging to the A1 serotype were studied, in order to provide information into the nature 

of variation in the virulence of IPN viruses. 

In the first experiment, groups of brook trout fry (Salvelinus fontinalis) were 

experimentally infected with the three isolates by immersion. Cumulative mortality data 

demonstrated that the three IPNV isolates selected had different virulence levels in brook 

trout fry, with two virus isolates, 91-114 and 91-137, being significantly less virulent than 

the virus isolate CSF 035-85. Virus titers determined for 10 days post-exposure 

demonstrated that there was not a significant difference among isolates. Virus titers were 

then correlated with fish weight to determine statistical significance. Before and during 

the epizootic, a positive correlation was found between virus titer and fish weight, for all 

three isolates. After the epizootic (62 dpe), fish weight was found to negatively correlate 

to virus titer for the two least virulent isolates (91-137 and 91-114), while there was no 

correlation for the most virulent isolate, CSF 035-85. 

The nucleotide sequence of the IPNV capsid proteins VP2 and VP3 was 

determined, in order to elucidate a possible molecular basis for the difference in virulence 

among isolates. Initial sequencing results demonstrated sequence homology for the viral 

capsid protein VP3, while slight differences among isolates were observed for the viral 

capsid protein VP2. The VP2 region was sequenced for each virus isolate at three times: 

before being introduced into the fish, during the epizootic, and 2 months after exposure, 

in order to determine if major changes existed in the VP2 region that might account for 

the differences in virulences. Two amino acid changes between the less virulent isolates, 

91-137 and 91-114, and the most virulent isolate CSF 035-85 occurred at residues 217 

and 288 in the VP2 region, distinguishing the least virulent isolates and the most virulent 

isolate. It is proposed that these amino acid differences might account for the disparity in 

expressed virulence for these particular IPNV isolates. 
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Samples of live whole fish exhibiting slight clinical signs of disease were 

collected before, during, and after the epizootic. Collected samples were fixed, embedded 

whole, and sectioned using a microtome. The progression of the IPNV virus was tracked 

through the tissues for days 1-10 post-infection and at the end of the experiment (62 dpe) 

using histopathology, alkaline phosphatase immunohistochemistry (APIH), and in situ 

hybridization. Histopathology was performed by examining tissue sections stained with 

hematoxylin and eosin (H&E), and demonstrated that histopathology signs were limited 

primarily to the pancreas and pyloric caeca of infected fish. 

APIH was performed using a monoclonal antibody (AS-1) specific to the VP2 

viral capsid protein of IPNV, while the in situ hybridization was performed using cDNA 

reverse transcribed and amplified from the VP2 region, which was then randomly labeled 

with digoxigenin. Immunohistochemistry and in situ hybridization reactions, which 

paralleled each other, were observed in tissue throughout infected fish. The tissue most 

prominently affected was pancreas, as well as what appeared to be fibroblasts found in 

the dermis/hypodermis of tissue layers throughout the fish, but especially in fins. Based 

on observed results, an IPNV infection appeared to be established in the fish by two 

routes: the muscle, most likely by entering the lateral line through contact with the water, 

and from the oral region into the gastrointestinal tract by ingestion. 

Assay results between the two procedures were comparable, with only one 

reaction being observed with the APIH procedure that was barely observed using in situ 

hybridization. Using APIH, a very strong positive reaction was observed in the goblet 

mucous cells lining the intestinal mucosa and the epithelial skin. This points to possible 

accumulation of virus and/or viral proteins in these cells. It was also determined that the 

APIH procedure has higher background levels than the in situ hybridization. 

Preliminary data obtained during the first study of the three different isolates of 

IPNV indicated that recovery of infected fish might be possible, even after the fish 

became moribund in appearance, contrary to previous statements (Wolf, 1966). For this 

reason, a larger study was initiated. An artificial infection was initiated, using susceptible 

brook trout fry approximately 1 g in size. Severely moribund fish exhibiting obvious 

signs of IPNV were removed to a separate tank. The recovery of any fish in this tank was 
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noted and tabulated. Fish were sampled representing "recovered" fish (showed signs of 

IPNV that disappeared at some point), mortalities (died while exhibiting signs of IPNV), 

moribund fish (actively showing signs of IPNV) and "asymptomatic" (never showed 

signs of IPNV). Half the fish sampled were used to determine viral titer, while the other 

half were embedded and sectioned for histopathology and in situ hybridization, using a 

non-radioactively labeled cDNA probe to IPNV RNA. Very few obvious differences 

were observed among the different groups of fish sampled. Mortalities and moribund fish 

appeared to have no sloughed cells in the lumen of the intestine, however, little or no 

unaffected pancreatic acinar tissue was observed. Both "uninfected" and "recovered" fish 

had large quantities of sloughed cells in the lumen of the intestine and, while necrosis 

was evident in the pancreas, also had some areas of unaffected pancreatic tissue 

remaining. Results demonstrate that the recovery observed is temporary, lasting up to 2 

weeks. However, fingerling brook trout that originally displayed signs of IPNV all 

eventually succumbed and died, which may explain the low grade mortalities that occur 

after the peak of the epizootic has been reached. This may occur rather than the secondary 

infection of a subpopulation of fish which had not been infected the initial epizootic. 
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Reverse-Transcriptase-Polymerase Chain Reaction (RT-PCR)
 
Protocols for IPNV Infected Samples
 

TRIzol Extraction of Nucleic Acid from Fish Homogenates 

1.	 Add 100 ul of infected sample to 1 ml of TRIzol reagent (GibcoBRL). Mix and 
leave for 5 mM, room temperature (RT) to complete disassociation of any 
nuceloprotein complexes. 

2.	 Add 200 ul of chloroform, shake for 15 sec, then incubate at RT for 3 min. 

3.	 Microfuge at 11,500 g for 15 min, 4°C. Remove the aqueous (top) layer to a new 
tube and add 500 ul of isopropanol. 

4.	 Incubate samples for 10 min, RT. Microfuge at 11,500 g for 10 min, 4°C. 

5.	 Discard the supernatant and wash the resulting pellet with 1 ml of 75% ethanol. 
Microfuge at 7,500 g for 5 min, 4°C. 

6.	 Pour off the ethanol and let the pellet air-dry for 10 min, RT. 

7.	 Resuspend the pellet in 10 ul of DNase-, RNase-free water, then place at 55°C for 
10 min to improve dissolution of the pellet. 

Reverse Transcription (RT) 

1.	 Dilute extracted RNA 1:10 in water, heat at 95°C for 5 mM, microfuge briefly, 
then place on ice for 2 min. 

2.	 Add the following reagents together: 1 ul of diluted viral RNA, 1 ul (1.25 mM) 
25mM magnesium chloride (MgC12), 1 ul (0.25x) 5x buffer (Promega), 1 ul (33 
units) RNasin (Promega), 1 ul (200 units) reverse transcriptase (Promega), lul (55 
pmol) 3' primer, 1 ul (55 pmol) 5' primer, 1 ul (1mM each dATP, dCTP, dGTP, 
dTTP) deoxynucleotides (dNTPs), 12 ul water. Final MgC12 concentration for the 
reaction is 2.0 mM. Mix, microfuge briefly, then place at 37°C for 1 h. 

3.	 Heat the samples at 95°C for 3 min, microfuge briefly, then place on ice for 2 min. 

4.	 Add 1 additional ul (200 units) of reverse transcriptase to each reaction, mix, 
microfuge briefly, then place at 37°C for 1 h. 

5.	 Proceed immediately with polymerase chain reaction (PCR). 
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Polymerase Chain Reaction (PCR) 

1.	 Heat the 20 ul reaction from the RT at 95°C for 5 min, microfuge briefly, then 
place on ice. 

2.	 Add the following reagents: 8 ul 25mM MgC12, 10 ul 10x PCR buffer (Promega), 
1 ul (55 pmol) 3' primer, 1 ul (55 pmol) 5' primer, 0.5 (2.5 units) Taq polymerase 
(Promega), 59.5 ul water. Mix and microfuge briefly. 

3.	 Place the samples in a Thermolyne Temp-tronicR (Bamstead/Thermolyne 
Corporation) for 36 cycles with the following program: 94°C - 1 min, 58°C - 1 
min, 72°C - 2 min. Hold samples at 4°C, until samples can be retrieved. 

4.	 Run 5 ul of each sample on a 1% agarose gel made with TAE (40 mM Tris, 
20mM acetic acid, 2 mM EDTA), with ethidium bromide (Et Br) added, and 
electrophorese at 75 V for 1.5 h. Visualize gel with a UV light box. 

QlAquick Purification of PCR Products 

1.	 Add 500 ul of PB buffer (Qiagen) to each PCR reaction. 

2.	 Apply the sample to a QlAquick spin column (Qiagen), place in a 2 ml collection 
tube, and microfuge for 30-60 sec. 

3.	 Discard the flow-through. Add 750 ul of PE buffer (Qiagen) to the column, and 
microfuge the column for 30-60 sec. 

4.	 Discard the flow-through and microfuge the column for an additional minute. 

5.	 Place the column in a clean 1.5 ml microfuge tube. Add 50 ul of DNase-, RNase­
free water and microfuge the column for 1 mM. Place the sample at -70°C for 
storage. 
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IPNV Detection in Paraffin Embedded Fish Tissues 
using Alkaline Phosphatase Immunohistochemistry 

or Non-Radioactive In Situ Hybridization 

Tissue Fixation and Sectioning 

1.	 Preserve whole fish in 10% buffered formalin for at least 48 h, rinse with distilled 
water for 8 h, then place in 70% ethanol until ready to process. 

2.	 Place whole fish in tissue cassettes. Process fish by using a Tissue-TekR II tissue 
processor, which dehydrates tissue through a series of alcohols, followed by 
xylene, and paraffin. 

3.	 Embed preserved fish in ParaPlast Plus paraffin (Fisher Scientific) and section at 
5-7 urn thickness on a rotary microtome. 

4.	 Place sections on positively charged microscope slides (Fisher Scientific). 

Histology 

1.	 Rehydrate tissue sections through a series of graded alcohol, and finally into 
distilled water. 

2.	 Stain the tissue sections with Mayers hematoxylin for 4-6 min, then placed in 
running water for 20 min to blue the nuclei. 

3.	 Counterstain the tissue sections with eosin for 2 min. 

4.	 Dehydrate by passing the slides through a series of graded alcohols (50% to 
absolute) and finally into clearing agent, 2x for 15 min each. 

5.	 Mount slides with a coverslip using Permount mounting medium. Examine tissue 
sections, using normal bright field microscopy, to determine the extent and 
location of any tissue damage. 

Immunohistochemistry 

1.	 Embed tissue in paraffin and cut sections that are 4 urn or less in thickness. Put 
sections onto positively charged microscope slides. 

2.	 Rehydrate tissue as follows: 
Clearing agent 2x 5 min each 
100% alcohol lx 5 min 
95% alcohol 2x 5 min each 
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70% alcohol lx 5 min 

3.	 Wash the slides for 10 min in running water. 

4.	 Dip slides for 15 seconds in 20% glacial acetic acid at 4°C. Rinse with water. 

5.	 Equilibrate slides in phosphate buffered saline (PBS), pH 7.4 for 20 min, RT. 

6.	 Block tissue with 2% normal serum for 20 min, RT. Blot excess block from 
sections. 

7.	 Block tissue with 5% milk in PBS for 40 min, RT. Blot excess block from 
sections. 

8.	 Incubate with primary antibody for 1 h, RT. 

9.	 Rinse slide with PBS, 2 x 5 min each, RT. 

10.	 Incubate with biotinylated secondary antibody, diluted in PBS, for 40 min, RT. 

11.	 Rinse slide with PBS, 2 x 5 min each, RT. 

12.	 Incubate with Avidin-Biotin Complex (ABC) solution for 30 min, RT. 

13.	 Rinse slide with PBS, 2 x 5 min each, RT. 

14.	 Equilibrate sections with 100mM Tris, pH 8.2, for 3 min, RT. 

15.	 Incubate with VectorR Blue Substrate solution for 40 min at 37°C, in the dark. 

16.	 Rinse slides with tap water. Counterstain tissues with VectorR Nuclear Fast Red 
for 30 sec. 

17.	 Place slides in running water for 10 min. 

18.	 Dehydrate the slides as follows: 
70% alcohol lx 10 dips 
95% alcohol 2x 10 dips each 
100% alcohol 2x 10 dips each 
Clearing agent 2x 10 dips each 

19.	 Mount with coverslip and mounting medium (Permount). Examine sections 
under bright field looking for bright blue precipitate. 
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REAGENTS
 

Phosphate buffered saline (PBS) 
NaC1 8 g 

KH2PO4 0.2 g 
Na2HO4 1.15 g 
KC1 0.2 g 
dd H2O to 1 L 
pH to 7.4 with NaOH; autoclave to sterilize, store at RT. 

Blocking serum (prepare just prior to use) 
Blocking serum (VectastainR kit) 3 drops 
PBS 10 ml 

5% Milk block 
Nonfat dry powdered milk 5g 
PBS 95 ml 
Store at 4°C. 

Biotinylated secondary antibody (prepare just prior to use) 
Biotinylated anti-mouse antibody (Vectastain) 1 drop 

PBS 10 ml 
Mix well by shaking before use. 

Avidin-biotin complex (ABC) solution (let sit at RT for 30 min before use) 
Solution A (Vectastain) 1 drop 
Solution B (Vectastain) 1 drop 
PBS 5 ml 
Mix well by shaking after each solution is added. 

100 mM Tris 
100 mM Tris base 
dd H2O 
pH to 8.2; store at 4°C. 

Blue phosphate substrate (prepare just prior to use) 
Levamisole (VectorR) 1 drop 
Solution #1 (Vectastain) 2 drops 
Solution #2 (Vectastain) 2 drops 
Solution #3 (Vectastain) 2 drops 
100 mM Tris 5 ml 
Mix well by shaking after each solution is added. 
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Labeling of IPNV DNA with DIG 

1.	 Use 300 ng of purified template in a volume of 15 ul or less for each labeling 
reaction. Bring the volume up to 15 ul, if necessary, with ddH2O. 

2.	 Denature the DNA for 10 min in a boiling water bath, then chill the DNA on ice 
for 3 min. 

3.	 Add the following components: 2 ul hexanucleotide mixture, 2 ul dNTP labeling 
mixture, 1 ul (2 units) Klenow enzyme. Mix, microfuge briefly. 

4.	 Incubate the mixture at 37°C overnight. 

5.	 After incubation, add the following: 2 ul 0.2 M EDTA (pH 8.0), 2.5 ul 4 M LiC1, 
and 75 ul ice cold ethanol. Mix. 

6.	 Place the solution at -20°C for 2 h or -70°C for 45 min. 

7.	 Microfuge for 10 min, 10,000 g. Discard the supernatant and wash the pellet in 
70% ethanol. 

8.	 Let air dry for 20-30 min, RT. 

9. Resuspend the pellet in 50 ul 0.1 x Tris.EDTA. 

In Situ Hybridization with DIG-Labeled Probes 

1.	 Embed tissue in paraffin and cut sections that are 4um or less in thickness. Put 
sections onto positively charged microscope slides. 

2.	 Heat slides in oven for 30 min at 65°C. Rehydrate tissue as follows: 
Clearing agent 2x 5 min each 
100% alcohol lx 1 min 
95% alcohol 2x 10 dips each 
70% alcohol lx 5 min 

3.	 Wash the slides for 10 min in running water. 

4.	 Wash the slides for 10 min in PBS. Prepare proteinase K fresh at 100 ug/ml in 
PBS. Pipet on 1 ml per slide of proteinase K solution and incubate 15 min, 37°C, 
in a humid chamber. 

5.	 Wash the slides in PBS with 0.2% glycine for 10 min at RT to inactivate the 
enzyme. 
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6.	 Incubate slides in 2x SSC for 10 min at RT. 

7.	 Add 0.5 ml hybridization buffer per slide and incubate in humid chamber for 1.5 h 
at RT. 

8.	 Boil the DIG-labeled probe for 10 min and quench on ice; spin briefly in the cold 
and keep on ice. Dilute the probe to 10 ng/ml in hybridization solution and flood 
tissue with 250 ul of the solution. 

9.	 Carefully place a coverslip on top of each slide. Heat slides at 95°C for 3 min, 
followed by 2 min on ice. Incubate slides overnight at 37°C in a humid chamber. 

10.	 Wash the slides as follows: 
2x SSC 1 h RT 
lx SSC 1 h RT (warm 0.5x SSC during this step) 
0.5x SSC 30 min 37°C 
0.5x SSC 30 min RT 

11.	 Wash the slides for 5 min in Buffer I, RT. Block the slides with 1 ml per slide of 
Buffer II. Incubate 30 min, RT. 

12.	 Dilute the AP-DIG conjugate 1:5000 in Buffer I containing 1% normal sheep 
serum and 0.3% Triton X-100. Flood tissue with 500 ul of diluted conjugate and 
incubate in humid chamber, 45 min, RT. 

13.	 Wash the slides in Buffer I, 2 x 15 min each, RT. Equilibrate slides in Buffer III 
for 5 min, RT. 

14.	 Pipet on 500 ul of color reagent per slide and incubate in a dark, humid chamber, 
overnight at RT. 

15.	 Stop the reaction by washing the slides in Buffer IV, 10 min, RT. 

16.	 Dehydrate the slides as follows: 
distilled water lx 10 dips 
70% alcohol lx 10 dips 
95% alcohol 2x 10 dips each 
100% alcohol 2x 10 dips each 
Clearing agent 2x 10 dips each 

17.	 Mount with coverslip and mounting medium (Permount). Examine sections 
under bright field looking for dark blue to black precipitate. 
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REAGENTS
 

Phosphate buffered saline (PBS) 
NaC1 16 g 
KH2PO4 0.4 g 
Na2HO4 2.3 g 
KC1 0.4 g 
dd H20 to 2 L 
pH to 8.2 with NaOH; autoclave to sterilize, store at RT 

Proteinase K (prepare fresh prior to use) 
PBS 10 ml 
Proteinase K 1 mg 

0.2% Glycine 
PBS 100 ml 
Glycine 0.2 g 
Filter solution, store at 4°C. 

Prehybridization Buffer 
4x SSC (see below) 
50% Formamide 
lx Denhardt's (see below) 
5% Dextran sufate 
0.5 mg/ml herring sperm DNA (boil 10', shear through needle) 

Hybridization Buffer 
Same as prehybridization buffer, without herring sperm DNA. 

20x SSC Buffer 
3 M NaC1 
0.3 M Na3C6H5072H20 
dd H2O 
pH to 7.0; autoclave, store at 4°C 

20x Denhardt's 
Bovine serum albumim (Fraction V) 0.4 g 
Ficoll 400 0.4 g 
Polyvinylpropyl 360 0.4 g 
dd H2O 100 ml 
Filter through 0.45 urn filter; store at 4°C. 
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Buffer I 
0.1 M Tris base 
0.15 M NaC1 
dd H2O 

pH to 7.5 with Hcl; autoclave; store at 4°C. 

Buffer II (blocking buffer) 
Buffer I 49 ml 
Normal sheep serum 1 ml 
Triton X-100 0.15 ml 
Store at 4°C for up to 2 months. 

AP-DIG conjugate dilution buffer 
Buffer I 49.5 nil 
Normal sheep serum 0.5 ml 
Triton X-100 0.15 nil 
Store at 4°C for up to 2 months. 

Buffer III 
100 mM Tris base 
100 mM NaCI 
50 mM MgC12 
dd H2O 

pH to 9.5 with HCl filter through 0.45 um filter; store at 4°C. 

Buffer IV 
10 mM Tris base 
1 mM EDTA 
dd H2O 

pH to 8.0 with HC1 filter through 0.45 urn filter; store at 4°C. 

Development solution (prepare just prior to use) 
Levamisole 4mg 
Nitroblue tetrazolium salt (Boehringer Mannheim) 45 ul 
5-bromo-4-chloro-3-indoyl phospahte, 
toluidinum salt (Boehringer Mannheim) 35 ul 
Buffer III 10 ml 




