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Multi-instance data, in which each object (e.g., a document) is a collection of instances

(e.g., word), are widespread in machine learning, signal processing, computer vision,

bioinformatic, music, and social sciences. Existing probabilistic models, e.g., latent

Dirichlet allocation (LDA), probabilistic latent semantic indexing (pLSI), and discrete

component analysis (DCA), have been developed for modeling and analyzing multi-

instance data. Such models introduce a generative process for multi-instance data which

includes a low dimensional latent structure. While such models offer a great freedom

in capturing the natural structure in the data, their inference may present challenges.

For example, the sensitivity in choosing the hyper-parameters in such models, requires

careful inference (e.g., through cross-validation) which results in large computational

complexity. The inference for fully Bayesian models which contain no hyper-parameters

often involves slowly converging sampling methods. In this work, we develop approaches

for addressing such challenges and further enhancing the utility of such models.



This dissertation demonstrates a unified convex framework for probabilistic modeling

of multi-instance data. The three main aspects of the proposed framework are as follows.

First, joint regularization is incorporated into multiple density estimation to simultane-

ously learn the structure of the distribution space and infer each distribution. Second,

a novel confidence constraints framework is used to facilitate a tuning-free approach to

control the amount of regularization required for the joint multiple density estimation

with theoretical guarantees on correct structure recovery. Third, we formulate the prob-

lem using a convex framework and propose efficient optimization algorithms to solve

it.

This work addresses the unique challenges associated with both discrete and contin-

uous domains. In the discrete domain we propose a confidence-constrained rank mini-

mization (CRM) to recover the exact number of topics in topic models with theoretical

guarantees on recovery probability and mean squared error of the estimation. We pro-

vide a computationally efficient optimization algorithm for the problem to further the

applicability of the proposed framework to large real world datasets. In the continuous

domain, we propose to use the maximum entropy (MaxEnt) framework for multi-instance

datasets. In this approach, bags of instances are represented as distributions using the

principle of MaxEnt. We learn basis functions which span the space of distributions for

jointly regularized density estimation. The basis functions are analogous to topics in a

topic model.

We validate the efficiency of the proposed framework in the discrete and continuous

domains by extensive set of experiments on synthetic datasets as well as on real world

image and text datasets and compare the results with state-of-the-art algorithms.
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Chapter 1: Introduction

In multi-instance data each object (bag) is a collection of observations (instances). Multi-

instance data appears in a variety of applications in machine learning [23], computer

vision [112], bioinformatic [35], music [62], and social sciences [95]. For example, in

text document processing a document (bag) can be represented as a collection of words

(instances). Bag-of-words representation is a common way of representing text in the

corpus of documents [100]. In this representation, first a basic dictionary of unique

words (Vocabulary) is constructed by extracting all the words across the documents

in the corpus. Then, each document in the corpus is represented as a vector of count

of the number of occurrences of each word. The end results is a term-by-document

matrix whose rows contain word count for each document in the corpus. Thus, term-by-

document representation provides a fix-length vector of integer numbers for an arbitrary

length document. In image processing, an image (bag) can be represented as a collection

of the local patches or regions (instance) in the image (see Fig. 1.1). Machine learning

(a) (b)

Figure 1.1: Multi-instance representation for (a) image and (b) text documents.

algorithms are described as either supervised or unsupervised. In the literature, multi-



2

instance learning (MIL) refers to the prediction problem or supervised learning [3, 36,

42, 112] in which the main goal is to predict the label of an unseen bag, given the label

information of the training bags. On the other hand, learning multi-instance data in

an unsupervised manner is called grouped data modeling [22,23,107] in which the main

goal is to uncover the underlying (hidden) structure of the data in the input. In this

dissertation, we use multi-instance learning term referring to a class of learning problems

where the data is multi-instance. In the following, we review current approaches for

learning multi-instance data.

1.1 Different approaches for learning multi-instance data

We review the current approaches for multi-instance learning from different perspectives.

First, we categorize multi-instance learning into supervised and unsupervised as well as

generative vs. discriminative and discuss approaches in each category. We then sketch

some of the existing challenges involving in each approach.

1.1.1 Supervised vs. unsupervised

Multi-instance learning was coined in [42], where drug activity detection was investi-

gated. In their problem, each bag (molecule) is associated with a label and the goal is to

predict the label for a previously unseen bag. Formally, supervised multi-instance learn-

ing is defined as follows. Suppose we are given a set of N bags {(X1, y1), (X2, y2), . . . ,

(XN , yN )}, where X ∈ 2X , X ⊆ Rd is the feature space, and y ∈ Y is either a binary

or multi-class label associated with each bag. The instances in bag i are denoted by

xi1, xi2, . . . , xini , xi ∈ X , where ni is the total number of instance in bag i. The problem
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of MIL is to learn a classifier f : 2X → Y. In binary classification (yi ∈ {−1,+1}), a

bag is positive if at least one of the instances is positive. Due to the ambiguity of the

label information related to instances and the weak association between instance-level

information and bag-level information, supervised MIL is a challenging task. Since the

introduction of MIL in machine learning and signal processing, numerous algorithms

have been proposed either by adapting traditional algorithms to MIL, e.g., Citation-

kNN [112], MI-SVM and mi-SVM [3], or by devising a new algorithm specifically for

MIL, e.g., axis-parallel rectangles (APR) [42] and diverse density [80,81].

The main goal in unsupervised learning for multi-instance data is to learn the un-

derlying structure of the data in the input space. Due to the high dimensional nature

of objects in multi-instance data (e.g., a usual vocabulary size in a corpus of docu-

ments can be about 20, 000), it is beneficial to simplify the representation of objects

in multi-instance learning by exploring the inner structure of such datasets. Unsuper-

vised learning algorithms for multi-instance data are based on hidden variable modeling

of data. Hidden variable models are structured distributions in which observed data

interact with hidden random variables. Latent semantic indexing (LSI) [39], probabilis-

tic latent semantic indexing (pLSI) [63], and latent Dirichlet allocation (LDA) [23] are

well-known unsupervised algorithms for leaning multi-instance data.

1.1.2 Generative vs. discriminative

The generative probabilistic approach is commonly used for unsupervised learning of

multi-instance. The concept of topic model, a hierarchical Bayesian network, was pro-

posed for uncovering the underlying semantic structure of multi-instance discrete data

where each object can be represented as a vector of counts over a fixed size vocabulary
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(bag-of-word representation) [23, 63]. Topic models have been applied to many kinds of

data such as text documents in text processing [23,57] or images in computer vision [51].

A well-known topic modeling approach is LDA [23,107]. The framework of topic models

is extended to supervised learning of multi-instance data by incorporating the label infor-

mation in the model such as supervised LDA [20,71]. The discriminative multi-instance

learning algorithms are the generalization of the traditional margin-based discriminative

classifier (e.g., SVM) to the multi-instance case [3, 26, 52, 120]. For example, in kernel

methods the calculation of a kernel function between two bags is done by expressing

K(X,X ′) in terms of all the single instance kernel between all the instances from bag X

and all the instances from bag X ′, i.e., K(X,X ′) for all (x, x′) ∈ X ×X ′ (e.g., [3, 52]).

In extending the k-nearest neighborhood to multi-instance case [112, 120], one needs

to develop a generalization of the classical single instance metric (e.g., Euclidean) to a

distance between two bags (e.g., Hausdorf distance).

In the probabilistic approach to multi-instance learning, the domain of probabilities

can be divided into two basic classes: discrete and continuous. In the discrete domain,

the sampling space is the finite or infinite number of countable states. Each object in this

domain can be represented as a histogram over a bag-of-word representation. Note that

continuous datasets can be discretized using a dictionary approach. In the continuous

domain, the sampling space is uncountable. The features in this case can be defined as

a real-valued.

1.2 Challenges

Current ongoing efforts toward learning from multi-instance data are focused around i)

Bayesian inference for fitting a generative model to available data and ii) discriminative
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learning for multi-instance data in a supervised manner. The first approach allows for

a generative probability model which best describes the data but present challenges for

computational complexity of Bayesian inference [5]. The second approach does not offer

a probabilistic generative model for multi-instance data. Moreover, supervised learning

algorithms can be computationally expensive for large datasets. Distance-based MIL

algorithms such as Citation-kNN [112] and bag-level kernel SVM [52], construct a bag-

level similarity measure that depends on pairwise instance-level similarities.

1.3 Peek at the results

In this dissertation, we provide a convex framework for learning multi-instance datasets

in an unsupervised setting, which addresses the aforementioned issues. We investigate

the problem of learning multi-instance data in two different domains: discrete and con-

tinuous. In the discrete domain where histogram over the bag-of-words can be used

to represent each bag, we propose a confidence-constrained rank minimization to es-

timate the true low-rank term-by-document matrix from the noisy observation. The

proposed framework is convex and free of tuning parameters. Moreover, we provide an

in-probability bound for the estimation error. In the continuous domain, we propose

a maximum entropy based framework for structured leaning of distribution spaces in

multi-instance data. We consider the problem of associating each bag with a probabil-

ity distribution where instances in each bag are generated in an i.i.d. fashion from an

unknown probability density function. In this framework, each bag is summarized by a

fixed-size parameter set, which carries the information about the instances in the bag.

We use the maximum entropy framework to construct a concise representation for distri-

butions associated with bag and provide a convex optimization procedure for inference.
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With an m-dimensional parametric representation for each bag, the computational com-

plexity is reduced from O(Nn2) to O(Nnm), where N is the total number of bags, n is

the number of instances inside each bag, and m is the dimension of the parameter space.

We propose a joint density regularization framework to perform density estimation for

multiple densities. Using a sparse representations over a set of basis functions to learn

the space of distributions in a non-parametric framework has been studied in [89]. These

basis functions provide a continuous analogue to topics in a topic models.

1.4 Background

1.4.1 Probabilistic topic model

Probabilistic topic models are generative models. Topic probabilities provide an explicit

representation of documents in probabilistic topic models. The sampling process from

this model can be explained as follows.

Each document is drawn in an i.i.d. fashion. For the dth document, d = {1, . . . ,M},

a random distribution of topics p(zdj = t|θ) , θd(t), t ∈ {1, . . . , T} is drawn. In LDA,

θd ∼ Dir(α). Then, for jth word in document d, j = {1, . . . , nd}, a topic assignment

zdj is drawn, based on the topic distribution θd(t). Finally, word wdj is drawn based on

the conditional distribution p(wdj = l|zdj = t,Φ) , Φlt, l = {1, . . . , L}. Note that Φ is

a topics matrix where columns corresponds to topics {1, . . . , T} and rows correspond to

vocabulary words. The graphical representation of LDA is shown in Fig. 1.2 and the

precise sampling process for LDA is described in Algorithm 1. A key observation in topic

models is that the probability distribution of word wdj can be obtained by marginalizing
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W

(a)

Figure 1.2: The graphical model for LDA [105].

the joint word-topic distribution over the topic:

p(wdj = l|θd) =
T∑
t=1

p(wdj = l|zdj = t,Φ)p(zdj = t|θd). (1.1)

To simplify the notation, we represent (1.1) in a matrix format,

Ψ = Φθ, (1.2)

where Ψld , p(wdj = l|θd), Ψ ∈ RL×M ,Φ ∈ RL×T , and θ ∈ RT×M . In other words,

the vocabulary term-by-document matrix Ψ can be decomposed into the product of

Φ and θ where Φ is the vocabulary probability per topic (topic matrix) and θ is the

topic proportion per document. Note that the model in (1.2) is also applicable to pLSI.

Columns of these matrices are probability vectors satisfying non-negativity and sum-to-

one property. The introduction of latent topic variables allows for reduced dimension

representation of the term-by-document matrix Ψ. The rank of the matrix Ψ is the

number of topics T . We define the sample term-by-document matrix Ψ̂ as follows:
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Algorithm 1 Generative process for LDA

for t = 1 to T do
Draw Φt ∼ Dirichlet(β)

end for
for d = 1 to M do

Draw θd ∼ Dirichlet(α)
for j = 1 to nd do

Draw zdj ∼ Discrete(θd)
Draw wdj ∼ Discrete(ϕzdj )

end for
end for

Ψ̂ld =
1

nd

nd∑
j=1

I(wdj = l). (1.3)

Therefore, ndΨ̂·d ∼ multinomial(Ψ·d, nd) which for notational ease we denote Ψ̂ ∼

norm-multinomial(Ψ,n), where n = [n1, . . . , nd].

LDA is a probabalistic Bayesian framework for modeling multi-instance data in the

discrete domain. LDA attempts to summarize multi-instance data and explain the cor-

relation among them by inferring the topic matrix ϕ and θ.

1.4.2 Maximum entropy

The maximum entropy (MaxEnt) framework for density estimation was first proposed

by Janes [64] and has been used in many areas of computer science and signal process-

ing including natural language processing [18,40], species distribution modeling [47,92],

text classification [87, 125], and image processing [102]. The maximum entropy frame-

work [37] finds a unique probability density function (p.d.f) over X that satisfies the

constraints Ep[ϕ(x)] = α, where ϕ(x) ∈ Rm is feature transformation defined over X . In
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principle, many p.d.f.’s can satisfies the constraints. The maximum entropy approach

selects a unique distribution among them. The problem of single density estimation in

the maximum entropy framework can be formulated as

maximize H(p) (1.4)

subject to Ep[ϕj ] = αj∫
p(x)dx = 1,

where H(p) = −
∫
p(x) log p(x)dx is the entorpy of p(x) and Ep[ϕj ] =

∫
p(x)ϕjdx. It can

be shown that a solution to (1.4) can be represented as follows:

pλ(x) = exp
(
λTϕ(x)− Z(λ)

)
, (1.5)

where Z(λ) = log
∫
expλTϕ(x). There are several algorithms for solving MaxEnt, e.g.,

iterative scaling [40] and its variants [47,92], gradient descent, Newton, and quasi-Newton

approach [78,99].

In multi-instance data modeling, we can assume that instances inside each bag are

i.i.d. samples from an unknown density function. Therefore, one can use the principle

of maximum entropy approach to fit a distribution to each bag. We use this framework

for multi-instance data modeling in the continuous domain.
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1.4.3 Nuclear norm

Multi-instance data usually exist in a very high dimensional space. For example, the

size of a dictionary in a corpus of text documents can be in the order of 104. An

efficient way of modeling multi-instance data is to summarize the representation of the

data by projecting them into a lower dimensional space. This low dimensional space

corresponds to the hidden structure of the data. Rank minimization is an approach in

dimension reduction which finds a linear subspace of the observed data by constraining

the dimension of the given matrix. In general, rank minimization problems are NP

hard [82]. Various algorithms have been proposed to solve the general rank minimization

problem locally (e.g., see [58,83]). A heuristic replacement of the rank minimization with

a nuclear norm minimization is commonly proposed [50,97].

The nuclear norm of a matrix is defined as ∥X∥∗ =
∑

i σi, where σi ≥ 0 are the

singular values of matrix X given by the following sigular value decomposition X =

UΣV T . The nuclear norm is a special class of Schatten norm. The Schatten norm for

matrix X is defined as ∥X∥p = (
∑

i σ
p
i )

1
p . When p = 1, ∥X∥p is equal to the nuclear

norm, which is the sum of the singular values of matrix X. Similar to the use of l1-

regularization for sparsity, nuclear norm regularization is used to enforce low-rank in the

matrix setting and hence can be used to facilitate rank-constrained dimension reduction.

1.5 Dissertation Overview

In Chapter 2, we propose a confidence-constrained rank minimization (CRM) to re-

cover the exact number of topics in topic models with theoretical guarantees on recovery

probability and mean squared error of the estimation. Topic models have been proposed
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to model a collection of data such as text documents and images in which each object

(e.g., a document) contains a set of instances (e.g., words). In many topic models, the

dimension of the latent topic space (the number of topics) is assumed to be a determinis-

tic unknown. The number of topics significantly affects the prediction performance and

interpretability of the estimated topics. We provide a computationally efficient optimiza-

tion algorithm for the problem to further the applicability of the proposed framework

to large real world datasets. Numerical evaluations are used to verify our theoretical re-

sults. Additionally, to illustrate the applicability of the proposed framework to practical

problems, we provide results in image classification for two real world datasets and text

classification for three real world datasets.

In Chapter 3, we present a novel entropy estimator for a given set of samples

drawn from an unknown probability density function (PDF). Counter to other entropy

estimators, the estimator presented here is parametric. The proposed estimator uses

the maximum entropy principle to offer an m-term approximation to the underlying

distribution and does not rely on local density estimation. The accuracy of the proposed

algorithm is analyzed and it is shown that the estimation error is O(log n/n). In addition

to the analytic results, a numerical evaluation of the estimator on synthetic data as

well as on experimental sensor network data is provided. We demonstrate a significant

improvement in accuracy relative to other methods.

In Chapter 4, we analyze the error of entropy estimation for an unknown density

function p(x) using the principle of maximum entropy approach. We propose two estima-

tors for entropy estimation which is called brute-force and greedym-term approximation.

The derivation of the error bound of two estimators is provided.

In Chapter 5, we present the maximum entropy (MaxEnt) framework for learning

multi-instance data in which each object (bag) is represented as a collection of obser-
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vations (instances). In this approach each bag is represented as a distribution using

the principle of MaxEnt. We introduce the concept of confidence-constrained MaxEnt

(CCMaxEnt) to simultaneously learn the structure of the distribution space and infer

each distribution. We learn basis functions which span the space of distributions in

CCMaxEnt. The basis functions are analogous to topics in a topic model. We propose

KL-divergence for measuring similarities at the bag-level which captures the statistical

properties of each bag. In the experimental section, we evaluate the performance of the

proposed approach in terms of rank recovery in the space of distributions and compare

it with the regularized MaxEnt approach. Moreover, we compare the performance of

CCMaxEnt with the state-of-the-art algorithms in multi-instance learning (MIL) and

show a comparable results in terms of accuracy with reduced computational complexity.
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Chapter 2: On Confidence-Constrained Rank Recovery in Topic

Models

2.1 Introduction

In many applications of machine learning, such as text classification, image process-

ing, and web classification, a multi-instance representation of objects is commonly used

[4, 118]. In multi-instance datasets, an object is represented as a set of instances or bag

of instances instead of a single instance. For example, in a corpus of documents, a docu-

ment (object) comprises of words (instances). Often, distributions can be considered to

represent multi-instance data. For example, in a multi-instance discrete dataset such as

documents, the bag-of-words is a representation of a histogram over a given vocabulary.

Due to the high dimensional nature of objects in multi-instance datasets (e.g., a usual

vocabulary size in a corpus of documents can be about 20, 000), it is beneficial to simplify

the representation of objects in multi-instance datasets by exploring the inner structure

of such datasets. The framework of topic models introduces a low dimensional structure

by associating documents with a low dimensional distributions over a small set of topics.

In the generative approach to topic models, a subset of topics is first selected and the

document is generated based on selecting words from the assigned topics. Some of the

early well-known topic models are latent semantic indexing (LSI) [39], probabilistic la-

tent semantic indexing (pLSI) [63], and latent Dirichlet allocation (LDA) [23]. We refer

the reader to [21] for review on more recent developed topic models.
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The number of topics (dimension of the latent space) has a significant effect on the

quality of the model and interpretability of the estimated topics [23]. Heuristically,

this problem is addressed in the literature by scanning through a range of numbers of

topics and comparing performance measures such as perplexity on a held-out dataset

or classification accuracy across the range [23, 63, 114]. In [1], it is mentioned that

overestimating the number of topics can be remedied by ranking the topics and removing

those which are not related to the theme of the data. Bayesian nonparametric topic

models [22,53,107] provide a solution using Hierarchical Dirichlet Processes (HDP). The

associated Bayesian inference is often regarded as a computationally complex approach

[5]. A cross validation approach for selecting the number of topics in topic models is

proposed in [66]. While this approach seems to be efficient in number of topics selection,

different choices of held-out patterns and sizes have significant impact on the results.

Term-by-document matrix is commonly used for data representation in topic models.

The number of topics is the rank of such a matrix. Our interest is in devising a provable

and computationally efficient method to jointly determine the rank and recover the term-

by-document probability matrix from its noisy observation.

Constrained rank recovery of an unknown matrix has been studied vastly in the

literature in the communities of signal processing, control system, and machine learn-

ing [33,43,79] in problems such as matrix completion [106] and matrix decomposition [28].

While for simple cases singular value decomposition (SVD) has been a common tool, in

the constrained setting rank minimization presents additional challenges. One of the

main challenges is the non-convex nature of the rank operator. Rank minimization is

heuristically replaced with a nuclear norm minimization [30,50,69,97,98]. Nuclear norm

minimization can be formulated as a semidefinite programming (SDP) and solved via

general SDP solvers such as SDPT3 and SeDuMi. Although the convergence of these
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solvers is guaranteed, they can not be applied for a large scale problem due to the

high computational complexity of Newton direction [27, 74, 108]. Due to the problem

of computational complexity of SDP, several economical approaches have been devel-

oped. Most of these approaches are based on the idea of proximal point approximation

(Moreau-Yosida regularization [72]) resulting in a closed-form solution for nuclear norm

minimization [27, 72, 74, 108]. An Augmented Lagrange multiplier (ALM) [73] is an al-

ternative which proposes to minimize the nuclear norm of the low-rank component plus

l1 norm of the sparse component with augmented Lagrange approach. These methods

have been promising in terms of computational complexity. For example, in [73] robust

PCA is implemented using only 20 iterations of a highly economical version of SVD.

The conditions under which the low-rank matrix with missing entries can be estimated

with high probability are proposed in [28,30]. These methods have been applied to video

surveillance and image recovery. We are interested in using rank recovery methods to

determine the number of topics in topic models. However, we are faced with the following

challenges. First, the observed term-by-document matrix is contaminated by a multi-

nomial sampling noise as opposed to Gaussian noise [29, 68] or sparse noise [28]. Our

problem includes a specific set of constraints such as positivity and sum-to-one which

restrict the search space in the optimization problem.

We present a framework and algorithms for a provable rank recovery in topic mod-

els. Specifically, our contributions in this section are as follows: 1) We propose sufficient

conditions for exact rank recovery in topic models as a rank minimization problem. 2)

We provide a new framework of parameter free confidence-constrained convex optimiza-

tion as an alternative to rank minimization problem, which can overcome the issues

of Bayesian inferences such as i) computational complexity associated with sampling

methods, ii) approximation associated with variational Bayes approach [6], and iii)
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computational complexity associated with hyperparameter tuning [110]. 3) We provide

an analytical evaluation of the sufficient conditions for exact recovery of the number of

topics in topic models. Moreover, we provide a bound on the sum of squared errors

in terms of the model parameters such as number of documents, vocabulary size, and

number of words in each document. 4) We provide an accelerated algorithm to solve

the proposed convex optimization problem. We reformulate the problem in the dual

form. By evaluating the duality gap, we are able to provide accuracy guarantees for the

algorithm. 5) We evaluate our theoretical results on synthetic datasets. 6) Finally, we

apply the proposed method on two image datasets and three real world text datasets to

illustrate how the method can be applied to perform dimension reduction.

The rest of this section is organized as follows. In Section 2.2, the exact rank re-

covery in topic models is formulated. Section 2.3 introduces the method of confidence-

constrained rank recovery in topic models. Section 2.4 provides the theoretical guarantees

for the proposed confidence-constrained rank minimization. In Section 2.5, an acceler-

ated gradient projection method for solving the dual form of confidence-constrained

nuclear norm minimization is proposed. In Section 2.6, the evaluation of our theoretical

results against the simulation is presented. Section 2.7 illustrates how our method can

be applied to image and text datasets.

2.2 Problem formulation

In this section, we present the problem of determining the number of topics in probabilis-

tic topic models. We start with the generative process associated with the probabilistic

topic model and then proceed with the formulation of identifying the number of topics

in topic models. The theoretical framework for exact rank recovery proposed in this
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section can be applied to topic models with the following properties: (i) The generative

process involves a multinomial sampling from a probability matrix and (ii) the proba-

bility matrix can be decomposed as a product of two probability matrices. We carry out

our derivation on the well-known LDA model.

2.2.1 Probabilistic topic models

Probabilistic topic models are generative models. Topic probabilities provide an explicit

representation of documents in probabilistic topic models. The sampling process from

this model can be explained as follows (for a list of notation, we refer the reader to

Table 2.1).

Table 2.1: Notation used in this section

Ψ Term-by-document matrix θd Per-document topic proportion

Ψ̂ Sample term-by-document ma-
trix

Φ Topics matrix

Ψ0 Rank minimizing term-by-
document matrix

zdj Per-word per-document topic as-
signment

M Number of documents α Dirichlet prior parameter for
topic proportion

L Vocabulary size β Dirichlet prior for Topics matrix
T Number of topics (Rank(Ψ)) λ Lagrangian multiplier
nd Number of words in document d n min(nd), d = 1, . . . ,M
σT Smallest non-zero singular value

of Ψ

Each document is drawn in an i.i.d. fashion. For the dth document, d = {1, . . . ,M},

a random distribution of topics p(zdj = t|θ) , θd(t), t ∈ {1, . . . , T} is drawn. In LDA,

θd ∼ Dir(α). Then, for jth word in document d, j = {1, . . . , nd}, a topic assignment

zdj is drawn, based on the topic distribution θd(t). Finally, word wdj is drawn based on

the conditional distribution p(wdj = l|zdj = t,Φ) , Φlt, l = {1, . . . , L}. Note that Φ is
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a topics matrix where columns corresponds to topics {1, . . . , T} and rows correspond to

vocabulary words. The graphical representation of LDA is shown in Fig. 2.1 and the

precise sampling process for LDA is described in Algorithm 2. A key observation in topic

W

(a)

Figure 2.1: The graphical model for LDA [105].

models is that the probability distribution of word wdj can be obtained by marginalizing

the joint word-topic distribution over the topic:

p(wdj = l|θd) =
T∑
t=1

p(wdj = l|zdj = t,Φ)p(zdj = t|θd). (2.1)

To simplify the notation, we represent (2.1) in a matrix format,

Ψ = Φθ, (2.2)

where Ψld , p(wdj = l|θd), Ψ ∈ RL×M ,Φ ∈ RL×T , and θ ∈ RT×M . In other words,

the vocabulary term-by-document matrix Ψ can be decomposed into the product of

Φ and θ where Φ is the vocabulary probability per topic (topic matrix) and θ is the

topic proportion per document. Note that the model in (2.2) is also applicable to pLSI.
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Columns of these matrices are probability vectors satisfying non-negativity and sum-to-

one property. The introduction of latent topic variables allows for reduced dimension

representation of the term-by-document matrix Ψ. The rank of the matrix Ψ is the

number of topics T . We define the sample term-by-document matrix Ψ̂ as follows:

Algorithm 2 Generative process for LDA

for t = 1 to T do
Draw Φt ∼ Dirichlet(β)

end for
for d = 1 to M do

Draw θd ∼ Dirichlet(α)
for j = 1 to nd do

Draw zdj ∼ Discrete(θd)
Draw wdj ∼ Discrete(ϕzdj )

end for
end for

Ψ̂ld =
1

nd

nd∑
j=1

I(wdj = l). (2.3)

Therefore, ndΨ̂·d ∼ multinomial(Ψ·d, nd) which for notational ease we denote Ψ̂ ∼

norm-multinomial(Ψ,n), where n = [n1, . . . , nd].

2.2.2 Topics number recovery

Assume an unknown low-rank term-by-document matrix Ψ is obtained through the pro-

cess explained in Section 2.2.1. We observe matrix Ψ̂ ∼ norm-multinomial(Ψ,n). Since

Ψ̂ could be full-rank due to the presence of noise in the sampling process, a straight-

forward examination of its singular values may not provide an immediate indication on

the rank of Ψ. Furthermore, even if rank of the matrix Ψ is available, identifying a
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low-rank matrix Ψ which is similar to Ψ̂ is a nontrivial problem. Specifically, we are

interested in: 1) Estimating the term-by-document matrix Ψ from its noisy observa-

tions matrix Ψ̂. 2) Quantifying the accuracy of the estimator of Ψ in two aspects: (i)

Understanding the conditions under which the exact rank of the true matrix Ψ can be

recovered. (ii) Characterizing the estimation error of the matrix Ψ associated with the

matrix reconstruction. Note that we propose the estimation of the matrix Ψ rather than

the decomposition of Ψ into the product of two probability matrices Φ and θ. While the

connection is obvious, the problem of decomposing the estimated low-rank Ψ into the

products of two probability matrices presents additional challenges which we reserve for

future work.

2.3 Confidence-constrained rank recovery

In this section, we introduce the framework of confidence-constrained rank recovery. We

start by describing the maximum likelihood (ML) solution for estimating matrix Ψ from

its noisy observation Ψ̂. Then, we introduce the regularized ML to address the problem

of rank recovery. Finally, we conclude this section with the introduction of confidence-

constrained rank minimization approach.

2.3.1 Unconstrained maximum likelihood

The log-likelihood for the probabilistic topic model in (2.1) can be written as follows [63]:

L =
M∑
d=1

L∑
l=1

nld logΨld. (2.4)
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Using the fact that nld = ndΨ̂ld, we can rewrite the negative log-likelihood function as

follows:

M∑
d=1

ndDkl(Ψ̂·d∥Ψ·d) = −L+Υ, (2.5)

where Υ =
∑M

d=1 nd
∑L

l=1 Ψ̂ld log Ψ̂ld is a constant and Dkl(p∥q) =
∑

k pk log
pk
qk
. Hence,

the unconstrained ML estimate of Ψ can be obtained using the following optimization

Ψ̂ML = argmin
Ψ̃

M∑
d=1

ndDkl(Ψ̂·d∥Ψ̃·d),

subject to Ψ̃ ≥ 0,

1T Ψ̃ = 1. (2.6)

Since the ML formulation does not incorporate information on rank of the matrix Ψ, its

solution is the trivial Ψ̂ML = Ψ̂ solution. In other words, even though the nonnegative∑M
d=1 ndDkl(Ψ̂·d∥Ψ̃·d) can be made zero by setting Ψ̃ = Ψ̂, the rank difference |Rank(Ψ̃)−

Rank(Ψ)|may be large. The ML approach in its unconstrained formulation advocates the

potentially full rank matrix Ψ̂ as an estimate for Ψ. In the following, we show how the ML

approach can be modified to account for rank constraints using a regularization/penalty

term.

2.3.2 Penalized Maximum Likelihood

In this section, we introduce regularized ML, constrained ML, and model order selection

(MOS) that potentially can be used to address the problem of rank recovery associ-

ated with ML solution. For each framework, we start with the formulation and then
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proceed with the corresponding challenges. In contrast to confidence-constrained rank

minimization approach which we introduce in the following section, there are no guar-

antees for exact rank recovery in topic models using penalized ML. Analogous to the

use of l1-regularizer for sparsity, we consider the use of the nuclear norm to enforce the

rank constraint in the matrix setting. The heuristic replacement of rank with nuclear

norm has been proposed in the literature for matrix completion [29, 97], collaborative

filtering [103], and multi-task learning [93].

In regularized ML, a regularized nuclear norm is added to the objective function in

(2.6) yielding:

minimize

M∑
d=1

ndDkl(Ψ̂·d∥Ψ̃·d) + η∥Ψ̃∥∗,

subject to Ψ̃ ≥ 0,

1T Ψ̃ = 1. (2.7)

The regularization parameter η weighs the nuclear norm. The regularized ML can be

viewed as maximum a posteriori (MAP) criterion using a prior distribution over matrix

Ψ̃ of the form Ce−η∥Ψ̃∥. This is similar to the interpretation of l1-regularization for sparse

recovery as MAP with a Laplacian prior. Since one can apply the Lagrange multipliers

framework to replace a constraint with a regularization term, (2.7) can be formulated as

constrained ML. The constrained ML formula considers incorporating the nuclear norm

as an additional constraint to (2.6):

minimize

M∑
d=1

ndDkl(Ψ̂·d∥Ψ̃·d),

subject to ∥Ψ̃∥∗ ≤ ν,
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Ψ̃ ≥ 0,

1T Ψ̃ = 1, (2.8)

where ν ≥ 0 is a tuning parameter. For each value of η in (2.8) there is a value of ν

in (2.7) which produces the same solution [54]. As an alternative to (2.7) and (2.8),

MOS can be applied to rank estimation of a matrix [91, 113]. MOS offers a way to

evaluate the classical trade-off between goodness of fit and model complexity. For r =

1, 2, . . . ,min (L,M), a sequence of optimization problems in the form of (2.6) subject

to rank = r is solved to obtain Ψ̃∗(r). Then for each rank r, a cost function including

negative log-likelihood at Ψ̃∗(r) plus a penalty term pen(r) is evaluated. The penalty term

corresponds to the complexity of the model and is measured based on an information

criterion such as Akaike Information Criterion (AIC) or Minimal Description Length

(MDL) [91, 113]. Note that in AIC the penalty term corresponds to the number of

free parameters in the model. In MDL, each model candidate is assigned with a code

length and minimum code length is used for model selection. In some implementations

of MDL, each model is assigned with a prior probability and the model that yields the

maximum posterior probability is selected. The use of rank minimization for model order

selection in system identification is proposed in [75,84]. Furthermore in [75], the authors

proposed the heuristic replacement of the rank with the nuclear norm and showed that

it makes the selection of an appropriate model order easier. In the following discussion,

we illustrate some of the challenges associated with regularized ML, constrained ML,

and MOS proposed in this section.

Discussion One of the challenges associated with the regularized and constrained

ML is the choice of the regularization parameters (η and ν, respectively). Often, a

criterion for selecting a value for the regularization parameters that guarantees exact
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rank recovery of matrix Ψ is unavailable. For the problem of low-rank matrix estimation

in the noisy setting, asymptotic relationship between the regularization parameter and

estimation accuracy is proposed in [7, 85]. Such results cannot be applied directly to

our problem for the following reason. Counter to the sampling process in Section 2.2.1,

the sampling process proposed in [85] follows an i.i.d. model without the positivity

and sum-to-one. In MOS approach, solving the sequence of an optimization problem

with rank constraint and evaluating the cost function for different value of rank (r =

1, 2, . . . ,min(L,M)) is computationally complex. While in the unconstrained setting

SVD provides a one-shot solution [113], in the constrained setting rank minimization is

NP-hard [83]. The heuristic replacement of rank with nuclear norm in MOS proposed

in [75,84] suggests a regularization parameter framework. However, no recipe is provided

for selecting the regularization parameter to guarantee rank recovery. In the following,

we define the confidence-constrained rank minimization and show how our formulation

of the problem can address the issues associated with parameter tuning in regularized

ML and constrained ML and exhaustive rank search for MOS stated in this section.

2.3.3 Confidence-constrained rank minimization

We consider the concept of the confidence-constrained rank minimization for rank re-

covery in topic models. Using the statistical formulation of the problem proposed in

Section 2.2, an in-probability bound on the objective function in (2.6) can be obtained.

The probability bound on data fit criterion allows us to define a confidence set. Con-

fidence set is a high-dimensional generalization of the confidence interval and restricts

the search space of the problem. Search inside the confidence set guarantees a low-

rank solution. Hence, in this approach the roles of ML objective and rank constrained
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are replaced. We consider rank minimization subject to ML objective constraint. The

confidence-constrained rank minimization is given by:

minimize Rank(Ψ̃)

subject to
M∑
d=1

ndDKL(Ψ̂d·∥Ψ̃d·) ≤ ϵ(δ),

Ψ̃ ≥ 0,

1T Ψ̃ = 1, (2.9)

where ϵ(δ) is an in-probability bound for the estimation error. Note in this formulation

the tuning parameter ϵ(δ) can be obtained by bounding
∑M

d=1 ndDKL(Ψ̂d·∥Ψ̃d·). Intu-

itively the KL confidence-constrained set in (2.9) includes the matrix Ψ, and hence it

is guaranteed (w.p. 1 − δ) that the rank of the solution to (2.9) is less than or equal

to the rank of matrix Ψ. The main problem with KL divergence between two matrices

is that there is no straightforward way of translating it to the distance between their

singular values. Since singular values are related to the rank of a matrix, it is hard to

provide the theoretical guarantees for rank recovery in the KL version of the confidence-

constrained set. While the KL confidence-constrained formulation is difficult to handle,

the Frobenius-norm confidence-constrained formulation provides a convenient framework

for proving rank recovery in topic models. The problem of parameter tuning is elegantly

addressed in this framework by obtaining a model based in-probability uniform bound

on the confidence set. Moreover, the approach does not require a scan through a range of

rank values. In the following, we show that in the Frobenius-norm confidence-constrained

rank minimization exact rank recovery can be guaranteed.
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2.4 Exact rank recovery: theoretical guarantees

In this part, we introduce Frobenius-norm confidence-constrained rank recovery and

provide the theoretical guarantees for exact rank recovery in topic models. The KL-

divergence confidence-constrained rank recovery in (2.9) is replaced with Frobenius norm

confidence-constrained rank recovery since the theoretical results can be shown for the

Frobenius-norm case while such results are unavailable for the KL-divergence.

2.4.1 Frobenius-norm confidence-constrained rank minimization (CRM)

For the problem defined in Section 2.2.2, we propose the following confidence-constrained

rank minimization:

(CRM): minimize Rank(Ψ̃)

subject to ∥Ψ̃− Ψ̂∥F ≤ ϵ(δk),

Ψ̃ ≥ 0,

1T Ψ̃ = 1. (2.10)

where

ϵ(δk) = ϵ∗(δk) ,

√
1

n

(
M + k

√
M

2
(1 +

3

n
)

)
, δk =

1

1 + k2
, (2.11)

where nd = n for all d. In Appendix 2.8.2, ϵ∗ is developed for the general case where

document d has nd words. Here for simplicity, we present the case where nd = n. The

parameter k =
√
δ−1
k − 1 is the number of standard deviation away from the mean,

e.g., for k = 3, with probability 1 − 1/(1 + k2) = 0.9, ∥Ψ̃ − Ψ̂∥F ≤ ϵ(δ3) where
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ϵ(δ3) =

√
1
n(M + 3

√
M
2 (1 +

3
n)). Note that (2.10) is free of tuning parameters for the

following reason. Since the samples are governed by a multinomial distribution, an in-

probability bound on the estimation error of the form ∥Ψ− Ψ̂∥F ≤ ϵ(δk) w.p. 1− δ can

be obtained. Moreover, since the true low-rank matrix Ψ satisfies the Frobenius norm

inequality constraint w.p. 1− δ, then Ψ0 the solution to (2.10) is of equal or lower rank

to that of Ψ. While this result is straightforward, the following theorem shows that in

fact the CRM solution Ψ0 has the same rank as Ψ. Moreover, theorem provides a bound

on the estimation error [13].

Theorem 1 Let Ψ be a γ-distinct rank T matrix and Ψ̂ ∼ norm-multinomial(Ψ,n).

Assume γ > 2ϵ, and ϵ = ϵ∗ defined in (2.11). Then, with probability at least 1− δk, Ψ0

the solution to (2.10) satisfies:

1. Ψ0 ∈ 2ϵ-neighborhood of Ψ,

2. Rank(Ψ0) = T .

Theorem 1 characterizes Ψ0 the solution to CRM in (2.10). First, Ψ0 is at most 2ϵ away

from the true matrix Ψ. Theorem 1 is formulated with specific ϵ in (2.11) which comes

from the statistical model presented in Section 2.2. With ϵ in (2.11), the Frobenius norm

of the estimation error (Ψ0 −Ψ) is O(
√
M/n). The second property asserts that under

the hypothesis of the Theorem 1, it is guaranteed that with probability 1 − δ Ψ0 has

the same rank as the rank of the true unknown matrix Ψ. In other words, the exact

rank of the true matrix Ψ can be recovered by solving the CRM optimization problem in

(2.10). We now proceed with the proof of Theorem 1. For this, first we provide a detail

framework as follows:
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Definition 2 Ψ′ is a γ-distinct rank r matrix if σ1(Ψ
′) ≥ σ2(Ψ

′) ≥ . . . ≥ σr(Ψ
′) > γ >

σr+1(Ψ
′) = . . . = σL(Ψ

′) = 0, where σi is the ith largest singular value of matrix Ψ′.

In other words, Ψ′ is γ-distinct if all of its non zero singular values are greater than γ.

Definition 3 Matrix Ψ′ is in the ζ-neighborhood of matrix Ψ if ∥Ψ−Ψ′∥F ≤ ζ.

Lemma 4 W.p. 1− δ matrix Ψ satisfies ∥Ψ− Ψ̂∥F ≤ ϵ, where ϵ = ϵ∗ is given by (2.11).

Proof See Appendix 2.8.2.

Lemma 4 guarantees that w.p. 1−δ the confidence-constrained set S(Ψ̂, ϵ∗) = {Ψ′ | ∥Ψ̂−

Ψ′∥F ≤ ϵ} contains the true low-rank matrix Ψ.

Lemma 5 Let Ω be γ-distinct rank r matrix. Then there exists no matrix in the γ-

neighborhood of Ω, with the rank r0 < r.

Proof Suppose ∃Ω′ in the γ-neighborhood with rank r0 < r, therefore

γ ≥ ∥Ω′ − Ω∥F

≥ min
Rank(Ω̃)=r0

∥Ω̃− Ω∥F . (2.12)

By Eckart-Young theorem [104] the closest Ω̃ with rank r0 to Ω in the Frobenius norm

is Ω̃ = UΣ∗V T , where Ω = UΣV T and Σ∗ = diag(σ1, . . . , σr0 , 0, . . . , 0). For such Ω̃,

∥Ω̃ − Ω∥2F =
∑r

i=r0+1 σ
2
i . Thus, γ ≥

√∑r
i=r0+1 σ

2
i ≥ σr(Ω). By contradiction to the

assumption that σr(Ω) > γ, there exists no such Ω′ in γ-neighborhood with rank lower

than r.

Based on Lemma 5, the γ-distinct property of matrix Ψ assures that all the matrices

inside the γ-neighborhood of matrix Ψ have a rank greater than or equal to rank of
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matrix Ψ . Using Definitions 2 and 3 and Lemmas 4 and 5, we proceed with the proof

of Theorem 1.

Proof 1) Using the triangle inequality, we have

∥Ψ0 −Ψ∥F ≤ ∥Ψ0 − Ψ̂∥F + ∥Ψ̂−Ψ∥F . (2.13)

Note that the first term on the RHS of (2.13) is less than ϵ with probability 1, since Ψ0

the solution to (2.10) satisfies the confidence-constraint. Thus, Ψ0 ∈ ϵ-neighborhood of

Ψ̂. The second term on the RHS of (2.13) is a random quantity which can be bounded by

ϵ with probability 1−δ by Lemma 4. Therefore ∥Ψ0−Ψ∥F ≤ 2ϵ with probability 1−δ.

Proof 2) Since Ψ0 is in the 2ϵ-neighborhood of Ψ and 2ϵ < γ, then Ψ0 is also in the

γ-neighborhood of Ψ. Hence, based on Lemma 5 Rank(Ψ0) ≥ Rank(Ψ). On the other

hand, since Ψ ∈ ϵ-neighborhood of Ψ̂ w.p. 1− δk, and Ψ0 is the minimum rank solution

matrix in ϵ-neighborhood of Ψ̂, then Rank(Ψ0) ≤ Rank(Ψ). The inequalities can hold

only if Rank(Ψ0) = Rank(Ψ) = T .

Discussion The basic idea of Theorem 1 relies on two main principles. 1) γ-distinct

property of matrix Ψ which corresponds to the robustness of Ψ to the sampling noise. If

γ is large, the matrix Ψ is robust enough to be rank recoverable given a small sampling

noise (for illustration see Fig. 2.2). 2) The second principle associates with the magnitude

of the sampling noise which controls the size of the confidence-constrained set. Since

the statistics of the sampling noise is known, it provides the theoretical guarantees for

recovering the exact rank of the matrix Ψ.
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(a)

Figure 2.2: This figure shows two sets: i) ϵ-neighborhood of matrix Ψ̂ (confidence-
constrained set) which is defined as {Ψ|∥Ψ̂−Ψ∥F ≤ ϵ} and ii) γ-neighborhood of matrix
Ψ which is defined as {Ψ′|∥Ψ − Ψ′∥F ≤ γ}. In this figure, matrix Ψ is γ distinct and
γ > 2ϵ∗k. Thus, the assumptions of Theorem 1 hold. As a result, Ψ0 will have the same
rank as matrix Ψ.

2.4.2 Confidence-constrained nuclear norm minimization (CNM)

In general, rank minimization problems are NP hard [82]. Various algorithms have been

proposed to solve the general rank minimization problem locally (e.g., see [58, 83]). A

heuristic replacement of the rank minimization with a nuclear norm minimization is

commonly proposed [50, 97]. The nuclear norm of a matrix is defined as ∥X∥∗ =
∑

i σi

where σi ≥ 0 are the singular values of matrix X. The nuclear norm is a special class of

Schatten norm. The Schatten norm for matrix X is defined as ∥X∥p = (
∑

i σ
p
i )

1
p . When

p = 1, ∥X∥p is equal to the nuclear norm, which is the sum of the singular values of ma-

trix X. Similar to the use of l1-regularization for sparsity, nuclear norm regularization is

used to enforce low-rank in the matrix setting. To solve the rank minimization problem

proposed in (2.10), we propose the widely used approach of replacing the rank minimiza-

tion with the tractable convex optimization problem of nuclear norm minimization. In

Section 2.6, we provide the evaluation of CNM only, due to the prohibitive computation

complexity associated with CRM. In the following, confidence-constrained nuclear norm
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minimization (CNM) is proposed as a convex alternative to (2.10):

(CNM): minimize ∥Ψ̃∥∗

subject to ∥Ψ̃− Ψ̂∥F ≤ ϵ,

Ψ̃ ≥ 0,

1T Ψ̃ = 1. (2.14)

We denote the solution to (2.14) by Ψ̃∗. Since the nuclear norm is a convex function,

and the set of the inequality and equality constraints construct a convex set, (2.14) is

a convex optimization problem. This formulation targets the problem of exact rank

recovery for probability matrices under the sampling process described in Section 2.2.1.

2.5 Confidence-constrained nuclear norm minimization algorithm

(CNMA)

The nuclear norm minimization problem can be reformulated as an SDP [50]. Off-the-

shelf SDP solvers such as SDPT3 and SeDuMi are used to solve this problem. Such soft-

ware packages use the interior point method with Newton direction which is computation-

ally expensive [27,74,108]. The SDP problem of CNM has (M+L)×(M+L) semidefinite

constraints and (ML+M + 1) equality and inequality constraints. The computational

complexity is O(min{M,L})6 and the memory requirement is O(min{M,L})4. So while

the reformulation is theoretically appealing, computational challenges remain. In the

following, we provide an accelerated projection gradient algorithm to solve the dual for-

mulation of CNM. We start with the dual formulation of CNM and then solve it with the
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gradient projection approach [19]. We propose an accelerated version of our algorithm

using two point approximation [86] and a highly economical SVD-based implementation.

2.5.1 Dual formulation background

We solve (2.14) through formulating the dual problem. Generally, the dual formulation

of a problem in the form of

minimize f0(x)

Subject to f1(x) ≤ 0

h(x) = 0,

can be obtained first by constructing the Lagrangian L(x, λ1, λ2) as follows:

L(x, λ1, λ2) = f0(x) + λT1 f1(x) + λT2 h(x),

where λ1 ≥ 0 and λ2 are the Lagrange multipliers for the set of inequality and equality

constraints, respectively. The Lagrangian incorporates the constraints into the objective

function using the Lagrange multipliers λ1, and λ2. The second step is to minimize the

Lagrangian L(x, λ1, λ2) with respect to the primal objective variable x. Define x∗(λ1, λ2)

as:

x∗(λ1, λ2) = argmin
x

L(x, λ1, λ2).
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By replacing x∗(λ1, λ2) in the Lagrangian, we obtain the dual:

g(λ1, λ2) = L(x∗(λ1, λ2), λ1, λ2).

The dual formulation is given by the following optimization

maximize g(λ1, λ2)

Subject to λ1 ≥ 0.

The dual formulation of the optimization problem has several advantages. First, it

provides a lower bound for the primal problem. One can show for any feasible point x̃

in the primal problem, g(λ1, λ2) ≤ f(x̃). If the primal problem is convex and the set

of inequalities is strictly satisfied for some point inside the feasibility set, then based on

Slater’s condition the strong duality holds [25]. Hence, the duality gap f(x̃)− g(λ1, λ2)

provides means of assessing convergence of the optimization algorithm. Furthermore, the

positivity constraint in the dual formulation can be handled using a simple projection

onto the positive orthant. Note that in the primal formulation the projection onto the

set of equality and inequality constraints could be more complex.

2.5.2 Dual formulation of CNM

We follow the steps explained in Section 2.5.1. First, we construct the Lagrangian of

(2.14) to obtain the dual formulation [12]. The Lagrangian L(Ψ̃, λ1, λ2,Λ3) for problem

in (2.14) can be written as

L(Ψ̃, λ1, λ2,Λ3) = ∥Ψ̃∥∗ +
λ1
2
(∥Ψ̃− Ψ̂∥2F − ϵ2) + λT2 (1− Ψ̃T 1)− tr(ΛT

3 Ψ̃), (2.15)
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where λ1 ∈ R+, λ2 ∈ RM×1, and Λ3 ∈ R+L×M
. If we minimize L(Ψ̃, λ1, λ2,Λ3) with

respect to Ψ̃, we obtain Ψ̃∗(λ1, λ2,Λ3). We start by rewriting (2.15) as follows:

L(Ψ̃, λ1, λ2,Λ3) = ∥Ψ̃∥∗ +
λ1
2
∥Ψ̃−Ψ′∥2F + C(λ1, λ2,Λ3), (2.16)

where Ψ′ = Ψ̂ +
1λT

2
λ1

+ Λ3
λ1
, and C(λ1, λ2,Λ3) = −λ1

2 ∥Ψ′∥2F + λ1
2 ∥Ψ̂∥2F + λT2 1− λ1

2 ϵ
2. The

solution to the minimization of (2.16) w.r.t. Ψ̃ is

Ψ̃∗(λ1, λ2,Λ3) = D 1
λ1

(Ψ′),

where Dτ (X) is the soft thresholding operator on the singular value of matrix X (for

proof see [27]) defined by Dτ (X) = U(S− τI)+V
T , where X = USV T is the SVD of X.

To obtain the dual, we substitute Ψ̃∗(λ1, λ2,Λ3) back into (2.16), simplify and obtain

f(λ1, λ2,Λ3) = −λ1
2 ∥D 1

λ1

(Ψ′)∥2F + λ1
2 ∥Ψ̂∥2F + λT2 1− λ1

2 ϵ
2.

Thus the dual formulation of the CNM problem in (2.14) is

maximize f(λ1, λ2,Λ3)

subject to λ1 ≥ 0

Λ3 ≥ 0,

where λ1 ∈ R, λ2 ∈ RM×1, and Λ3 ∈ RL×M . The positivity for matrix Λ3 is elementwise.

Rather than maximize the dual function, we proceed with the convex minimization of

the negative dual, f̃(λ1, λ2,Λ3) = −f(λ1, λ2,Λ3).
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2.5.3 Gradient projection algorithm for CNM

The CNM optimization problem is expressed as follows:

minimize f̃(λ1, λ2,Λ3)

subject to λ1 ≥ 0

Λ3 ≥ 0, (2.17)

where f̃(λ1, λ2,Λ3) =
λ1
2 ∥D 1

λ1

(Ψ̂ +
1λT

2
λ1

+ Λ3
λ1
)∥2F − λ1

2 ∥Ψ̂∥2F − λT2 1 +
λ1
2 ϵ

2. We consider

the gradient projection method to solve (2.17). The gradient projection method for

minimizing a continuous convex function over a closed convex set was proposed in [55].

The modified backtracking approach for the gradient projection method was defined

in [19]. Application of the gradient projection method to our problem consists of the

following iterations:

λk+1
1 = [λk1 − tk∇f̃λk

1
(λ1, λ2,Λ3)]+, λk+1

2 = λk2 − tk∇f̃λk
2
(λ1, λ2,Λ3)

Λk+1
3 = [Λk

3 − tk∇f̃Λk
3
(λ1, λ2,Λ3)]+,

where [x]+ = x for x ≥ 0, and otherwise is zero, ∇f̃λi
(λ1, λ2,Λ3) is the gradient with

respect to λ1, λ2, Λ3, and tk is the step size. Note that since the positivity of λ1 and

Λ3 can be enforced coordinatewise, the projection is trivial. The gradient of f̃(λ) with

respect to λ1, λ2, and Λ3 is respectively,

∇f̃λ1(λ1, λ2,Λ3) =
1

2
∥D 1

λ1

(Ψ′)∥2F +
1

λ1
∥D 1

λ1

(Ψ′)∥∗ −
1

λ1
tr((1λT2 + Λ3)

TD 1
λ1

(Ψ′))

− 1

2
∥Ψ̂∥2F +

ϵ2

2
,
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∇f̃λ2
(λ1, λ2,Λ3) = D 1

λ1

(Ψ′)T 1− 1,

∇f̃Λ3(λ1, λ2,Λ3) = D 1
λ1

(Ψ′).

The derivative of f̃ with respect to λ1 is given by d
dλ1

(λ1
2 ∥D 1

λ1

(Ψ′)∥2F ) −
1
2∥Ψ̂∥2F + ϵ2

2 .

The derivation of the term d
dλ1

(λ1
2 ∥D 1

λ1

(Ψ′)∥2F ) which leads to the explicit expression

of ∇f̃λ1(λ1, λ2,Λ3) is provided in Appendix 2.8.1. Upon convergence of the Lagrange

multipliers [λ1, λ2,Λ3], one can compute the primal objective parameters using Ψ̃ =

D 1
λ1

(Ψ̂ +
1λT

2
λ1

+ Λ3
λ1
). In the following, we first show how to choose the step size for the

gradient method using the backtracking approach. Then, we provide the accelerated

gradient projection method.

2.5.3.1 Step size

To choose the step size tk, we use the backtracking approach for gradient projection [19].

The backtracking line search for gradient projection requires the smallest nonnegative

integer mk such that

f̃

(
λk1(t

k), λk2(t
k),Λk

3(t
k)

)
≤ f̃(λk1, λ

k
2,Λ

k
3)− γ

(
∇f̃λ1∆λ

k
1 +∇f̃Tλ2

∆λk2 + tr(∇f̃TΛ3
∆Λk

3)

)
,

where ∆λk1 = λk1−λk1(tk), ∆λk2 = λk2−λk2(tk), ∆Λk
3 = Λk

3−Λk
3(t

k), tk = ηmkt0, γ ∈ (0, 0.5),

t0 > 0, and η ∈ (0, 1). The proposed backtracking approach in (2.18) finds a step size tk

which reduces the objective function sufficiently. However to avoid making a small step

in each iteration, we start with a large enough step size t0 which satisfies the following
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condition:

f̃

(
λk1(t

0), λk2(t
0),Λk

3(t
0)

)
> f̃(λk1, λ

k
2,Λ

k
3)− γ

(
∇f̃λ1∆λ

k
1 +∇f̃Tλ2

∆λk2 + tr(∇f̃TΛ3
∆Λk

3)

)
.

Algorithm 3 Accelerated CNMA for exact rank recovery

Choose λ01 = λ11 > 0, λ02 = λ12 = 0,Λ0
3 = Λ1

3 = 0, a0 = a1 = 1, η ∈ (0, 1), γ ∈ (0, 0.5),
µ > 1, t0 > 0, K, υ
for k = 1 to K do
λ̄k1 = λk1 +

ak−1−1
ak

(λk1 −λ
k−1
1 ), λ̄

k
2 = λk2 +

ak−1−1
ak

(λk2 −λk−1
2 ), Λ̄k

3 = Λk
3 +

ak−1−1
ak

(Λk
3 −

Λk−1
3 ){Acceleration}

Ψ′k = Ψ̂ +
1λ̄

k
2

T

λ̄k
1

+
Λ̄k
3

λ̄k
1

(U, S, V T ) = svd(Ψ′k)
Ψ̃k+1 = U(S − 1/λ̄k1)+V

T {Soft thresholding}

while f̃

(
λk1(t

0), λk2(t
0),Λk

3(t
0)

)
≤ f̃(λ̄k1, λ̄

k
2, Λ̄

k
3) − γ

(
∇f̃λ̄1

∆λ̄k1 + ∇f̃T
λ̄2
∆λ̄

k
2 +

tr(∇f̃T
Λ̄3
∆Λ̄k

3)

)
do

t0 = µnkt0 {line search (wolf condition)}
end while

while f̃

(
λk1(t

k), λk2(t
k),Λk

3(t
k)

)
> f̃(λ̄k1, λ̄

k
2, Λ̄

k
3) − γ

(
∇f̃λ̄1

∆λ̄k1 + ∇f̃T
λ̄2
∆λ̄

k
2 +

tr(∇f̃T
Λ̄3
∆Λ̄k

3)

)
do

tk = ηmkt0 {line search (backtracking condition)}
end while
λk+1
1 = [λ̄k1 − tk∇f̃(λ̄1)]+, λk+1

2 = λ̄
k
2 − tk∇f̃(λ̄2), Λk+1

3 = [Λ̄k
3 − tk∇f̃(Λ̄3)]+

ak+1 = (1 +
√

4a2k + 1)/2, and t0 = tk. {updating the dual variables}
if Duality-Gap ≤ υ then

break
end if

end for
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2.5.3.2 Acceleration

The general convergence rate for gradient approach is O( 1k ), where k is the iteration

number. In [86], it is proved that the extrapolation step makes the convergence faster

as much as O( 1
k2
). We define the extrapolated solution λ̄k as follows:

λ̄k1 = λk1 +
ak−1 − 1

ak
(λk1 − λk−1

1 )

λ̄
k
2 = λk2 +

ak−1 − 1

ak
(λk2 − λk−1

2 )

Λ̄k
3 = Λk

3 +
ak−1 − 1

ak
(Λk

3 − Λk−1
3 )

where ak =
1+

√
4a2k−1+1

2 . For the pseudo code for the proposed CNMA see Algorithm 3.

To illustrate that the proposed acceleration improves the convergence from O(1/k) to

O(1/k2), we present a plot of the duality gap vs. the number of iterations for the original

CNMA and accelerated CNMA in Fig. 2.3. The evaluation of the SVD in each iteration
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Figure 2.3: Comparison of duality gap for M = 50, L = 80, T = 10, n = 1000, α = 0.1,
and β = 0.01 for CNMA vs. accelerated CNMA
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is expensive and is O(min{M,L}3). As in [27, 74, 108], we use the PROPACK package

to compute a partial SVD. Because PROPACK can not automatically calculate the

singular values which are greater than specific value τ , we use the following procedure.

To facilitate the computation of singular value 5 at a time, we set b0 = 5 and update

bl+1 for l = 0, 1, . . . as follows:

bl+1 =

 Rank(Ψ̃k+1) if Rank(Ψ̃k+1) < bk

Rank(Ψ̃k+1) + 5 if Rank(Ψ̃k+1) ≥ bk.

This procedure stops when bl+1 = bl. Partial SVD calculation reduces the cost of the

computation significantly, especially in the low-rank setting. The pseudo code for calcu-

lating SVD is in Algorithm 4.

Algorithm 4 SVD calculation using PROPACK

Choose r0 = 0, and i = 5
in step l
bl = rk−1 + 1
repeat

[USV ]bl = SVD(Ψ′k)
bl = bl + i

until skbl−i ≤
1
λk
1

rk = max{j : skj > 1
λk
1
}

Ψ̃k+1 =
∑rk

j=1(s
k
j − 1

λk
1
)ukj v

k
j

2.6 Experimental results

We evaluate both theoretical and computational aspects of the confidence-constrained

rank minimization problem. For the theoretical part, we provide the followings: 1)

Sensitivity analysis of rank recovery accuracy as a function of ϵ, and 2) Phase diagram
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analysis applied to a synthetic dataset to show that the exact rank recovery obtained

by CNMA is consistent with the sufficient conditions proposed by Theorem 1. For

the computational part, we provide a runtime comparison between CNMA and HDP

and show the applicability of CNM for large datasets. For HDP, we use an efficient

implementation of the algorithm in Matlab 1 provided by the authors of [107]. Note that

in all of our experiments, we fixed the confidence value 1 − δk = 0.9 and consequently

set k = 3.

2.6.1 Sensitivity with respect to ϵ

We would like to illustrate the effect of ϵ on rank recovery. Theorem 1 suggests that by se-

lecting ϵ = ϵ∗ (2.11), rank minimization guarantees exact rank recovery with probability

1− δ. To examine the effect of varying ϵ on rank recovery accuracy, we consider the fol-

lowing setup. We consider a range of values for ϵ = [ϵ∗/16, ϵ∗/8, ϵ∗/4, ϵ∗/2, ϵ∗, 2ϵ∗, 4ϵ∗, 8ϵ∗

, 16ϵ∗]. The value of ϵ∗ based on (2.11) is equal to 0.2550. We generate matrix Ψ with

M = 50, L = 50, T = 10, α = 0.1, and β = 0.01 following the model in Section 2.2.1

and sample Ψ̂ 10 times. For each value of ϵ, we solve CNM in (2.14) for each of the ten

realization of Ψ̂ using CVX and CNMA and evaluate the rank of the recovered matrix

Ψ̃∗. The rank evaluation is done by counting the number of singular value of matrix Ψ̃∗

exceeding a threshold to avoid miscounting due to numerical errors. The threshold is

defined based on the empirical distribution of the smallest nonzero singular values of the

true matrix Ψ (i.e., mean minus three times the standard deviation). We compute mean

(µ) and standard deviation (σ) of the recovered rank for matrix Ψ̃ and plot the error bar

([mean-std, mean+std]) for both CVX and CNMA. Rank estimates as a function of ϵ for

1http://www.gatsby.ucl.ac.uk/ ywteh/research/software.html
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CVX and for CNMA are shown in Figures 2.4(a) and 2.4(b), respectively. Figures 2.4(a)

and 2.4(b) support Theorem 1 by indicating that the choice of ϵ = ϵ∗ (2.11) leads to exact

rank recovery, since for only ϵ = ϵ∗ the exact rank is recovered for 10 out of 10 leading

to µ = 10 and σ = 0. In other words, as we deviate from ϵ∗ the true rank of matrix Ψ

can no longer be recovered. We provide the following explanation. When we increase

ϵ, the confidence-constrained set may include low-rank matrices which are not in the γ-

neighborhood of matrix Ψ. Hence, rank minimization inside the confidence-constrained

set may lead to a recovery of a low-rank matrix. On the other hand, as we decrease ϵ

the confidence-constrained set may not include the true matrix Ψ. Therefore, the rank

of the recovered matrix Ψ̃ may be higher than the rank of matrix Ψ. By comparing

Figures 2.4(a) and 2.4(b), we can see that the performance of CNMA is comparable to

that of CVX. To assess the effect of the number of CNMA iterations on accuracy, we ter-

minate the algorithm after 200, 500, and 1000 iterations and present the rank recovery

results in Figures 2.4(b). Comparing the graphs in Fig. 2.4(b), we observe that with an

increased number of iterations the results approach that of CVX. Moreover, CNMA with

a smaller number of iterations correctly recovers the rank at ϵ = ϵ∗. This hints at the

potential reduction in computational complexity that CNMA can provide by reducing

the number of iterations. For the relaxed CNMA graph in Fig. 2.4(b), we removed the

positivity and sum to one constraints to assess the importance of the probability matrix

constraints. We observe an increase in variation from the true rank at ϵ = ϵ∗ (2.11).

This suggests that including the probability constraints can improve the rank recovery

accuracy.
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Figure 2.4: This figure shows the sensitivity of rank recovery to the value of ϵ. We scan
through a range of values of ϵ and plot the mean of the recovered rank including the
confidence intervals for (a) CVX and (b) CNMA.

2.6.2 Phase diagram analysis

We use the notion of phase diagram as proposed in [44] to evaluate probability of exact

rank recovery using CNMA for a wide range of matrices of different dimensions (i.e., vo-
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cabulary size terms × number of documents) and different number of topics and compare

it with the sufficient conditions proposed by Theorem 1. We would like to show that the

condition proposed in Theorem 1 for rank recovery is still valid when rank minimization

is replaced with nuclear norm minimization. We generate N = 50 i.i.d realizations of

Ψ using the sampling process in Section 2.2.1 with M = 500, n = 1000, α = 0.01,

β = 0.001, over a grid of (L, T ), with L ranging through 40 equispaced points in the

interval [100, 4000], and T ranging through 24 equispaced points in the interval [5, 120].

In Fig. 2.5(a), each pixel intensity corresponds to the empirical estimate of P (σT > 2ϵ),

i.e.,
∑N

i=1 I(σ
(i)
T > 2ϵ)/N , where σT is the smallest non-zero singular value. To eval-

uate correct rank recovery probability, for each pixel in phase diagram we produce 20

realization of the pair (Ψ, Ψ̂). We run CNMA for each of the 20 realizations of Ψ̂ and

compared the rank of the recovered matrix Ψ̃∗ with the true rank of matrix Ψ. The

rank of matrix Ψ̃∗ is computed following the procedure described in Section 2.6.1. In

Fig. 2.5(a), the white area corresponds to success region2 (the region where the rank

recovery is guaranteed with high probability based on Theorem 1). In Fig. 2.5(b), the

white area corresponds to exact rank recovery obtained by CNMA. Since the area for ex-

act rank recovery probability obtained by CNMA covers the success region, the sufficient

condition proposed by Theorem 1 appear to hold for the heuristic replacement of nuclear

norm minimization. Comparing Figures 2.5(a), and 2.5(b) suggests that the sufficient

condition for exact rank recovery proposed in Theorem 1 can be further improved. This

could be attributed to the fact that the proposed sufficient conditions for exact rank

recovery involve several bounds.

The LDA model in Section II depends on two hyperparameters α and β. When α is

small the effective number of topics per document is small. Similarly, when β is small the

2This notation is used in [44]



44

L

T

 

 

1000 2000 3000 4000

20

40

60

80

100

120 0

0.2

0.4

0.6

0.8

1

(a)

L

T

 

 

1000 2000 3000 4000

20

40

60

80

100

120 0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.5: (a) P (σT > 2ϵ) for M = 1000, n = 1000, α = 0.01, and β = 0.001 (b)
P̂ (exact rank recovery) obtained by CNMA.

effective number of words per topic is small. Intuitively, with small α and β the model

is simpler (i.e., fewer topics and fewer words per topic). We are interested in evaluating

the impact of α and β on the rank recovery rate. In Fig. 2.6, the left hand column shows

the phase diagram for exact rank recovery obtained by CNMA for different values of

α, and β. As we decrease the value of hyperparameters, the wider area for exact rank
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recovery can be covered by CNMA in phase diagram. The middle and left hand side

graphs show the singular value scree plot of matrix Ψ̂ for the point indicated by darker

and lighter pointer on the phase diagram, respectively. The scree plots illustrate the fact

that as we decrease α and β, Ψ becomes more distinct, i.e., the gap between the smallest

non zero singular value and the following one is more distinguished. Hence, its rank is

easier to recover. Moreover, by comparing the scree plots in the middle and left hand

columns, it is clear that when the exact rank cannot be recovered by CNMA, the gap in

the singular values of matrix Ψ̂ cannot be found easily. We would like to emphasize that

although the scree plot can be use to study the rank of a matrix, it does not provide a

complete solution to the problem, i.e., it fails to suggest an admissible estimate for Ψ.

Without probability constraints, an SVD can be use to obtain a low-rank estimate for

Ψ. However, in the presence of probability constraint the problem is NP-hard [83].

2.6.3 Computational complexity comparison

We compare the CPU runtime of CNMA with HDP. We consider (M,L) = [(80, 60)

(100, 90) (150, 120) (200, 150) (300, 200) (600, 500)]. We compute the CPU runtime using

a MATLAB built in function {cputime}. CNMA and HDP algorithm run on a standard

desktop computer with 2.5 GHz CPU (dual core) and 4 GB of memory. Figure 2.7(a)

shows the CPU runtime comparison for CNMA vs. HDP. In Fig. 2.7(a), the x-axis

shows the dimension of the matrix L×M and the y-axis shows the elapsed CPU time in

seconds. Figure 2.7(a) shows that the runtime of HDP is longer than that of CNMA by

at least an order of magnitude. Note that we compared the runtime of CVX (using SDPT3

as an SDP solver) with that of CNMA and observed that the runtime of CVX is longer

than that of CNMA by over two orders of magnitude. This suggests that CNMA, i.e.,
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Figure 2.6: This figure shows the effect of the value of the hyperparameters α and β on
rank recovery rate. The first column is the phase diagram of P (σT > 2ϵ) as a function
of the number of topics and the vocabulary size. Each row corresponds to a different
setup of the hyperparameters α and β. (a) α = 1, β = 1 (d) α = 0.5, and β = 0.1
(g) α = 0.1, and β = 0.01. The second column is the plot of the singular values for
the setting indicated by black arrows. The last column is the plot of the singular values
indicated by white arrows. Note that the black arrow in the phase diagram corresponds
to the success region proposed by Theorem 1 and the white arrow corresponds to the
fail region.
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our proposed algorithmic implementing of CNM, provides a fast and feasible solution

to practical size problems and diminishes the computational limitations associated with

generic solvers.

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

L × M

C
PU

 e
la

ps
ed

 ti
m

e

 

 

CNMA, No. topics = 10
HDP, No. topics=10
CNMA, No. topics = 20
HDP, No. topics=20

(a)

Figure 2.7: Runtime comparison between CNMA and HDP.

2.7 Applications

As the previous section suggests, the proposed computationally-efficient algorithmic im-

plementation of CNM can be used to solve problem of realistic dimensions. In this sec-

tion, we would like to illustrate that the low-rank solution obtained by CNMA provides

competitive results to that of LDA, HDP, and the optimal low-rank SVD approximation

of matrix Ψ̂ in terms of classification accuracy on two real image datasets and three real

text datasets.
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2.7.1 Image datasets

We consider two image datasets MSRCv23, and Corel10004. MSRCv2 image dataset con-

tains 591 images in 23 object classes. We perform a multiclass classification for MSRCv2

using the 8 row classes: ’book’, ’grass, cow’, ’tree, grass, sky’, ’bike, building’, ’sign’,

’water, boat’, ’aeroplane, grass, sky’, ’road, building’ resulting in a dataset with 240 im-

ages in 8 different classes. Corel1000 image dataset contains 1000 images in 10 different

classes each includes 100 images. We consider 7 classes: ’buildings’, ’buses’, ’flowers’,

’elephants’, ’horses’, ’food’ and ’mountains’ in our simulation. Note that we excluded

the classes which contained images with different format of RGB representations. We

randomly sampled 50 images in each class resulting in 350 images in 7 classes.

To obtain matrix Ψ̂, we take the approach of representing each image as a collection of

blocks and mapping each block to a discrete index associated with the closest dictionary

template. We separate each image to several 10 × 10 × 3 blocks. To construct the

dictionary, we run k-means on the collection of blocks from all images to obtain L

cluster centroids. The L centroids are used as the dictionary templates and each block

is mapped to the index of the closest dictionary template. We run CNMA, LDA, and

HDP to obtain matrix Ψ̃∗
CNMA, Ψ̃

∗
LDA, and Ψ̃∗

HDP , respectively. To find the optimal

low-rank approximation of Ψ̂, we project the columns of Ψ̂ into its top d-largest left

singular vectors where d scans through the dimension of matrix Ψ̂. We use multi class

SVM with Gaussian kernel for classification [32]. Parameters C and γ of SVM model

are learned by k-fold cross validation where k = 5.

In Figures 2.8 and 2.9, the classification accuracies obtained by running SVM on

Ψ̃∗
CNMA, Ψ̃

∗
LDA, and Ψ̃∗

HDP as well as on different low-rank SVD-based approximations

3http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
4http://wang.ist.psu.edu/docs/related/
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Figure 2.8: Multiclass classification accuracy for MSRCv2 dataset with number of clus-
ters (a) 200 (b) 500.

of matrix Ψ̂ are shown. The classification accuracy provided by matrix Ψ̃∗
CNMA is com-

petitive with that of the others. Since CNMA and HDP determine the number of topics

in an automated fashion, the accuracy for each was computed without the need to scan

through the different number of topics. The number of dimensions is only relevant for

the LDA and SVD approaches, in which the number of topics is an additional input
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to the algorithm. In both Figures 2.8 and 2.9, the vertical line shows the rank of the

recovered matrix Ψ̃∗. We observe that the classification accuracy for the SVD based

dimension reduced Ψ̂ remains stable for ranks greater than Rank(Ψ∗). This suggests

that the number of rank proposed by CNMA can be considered for dimension reduction

of matrix Ψ̂. Moreover, Ψ̃∗
CNMA produces competitive performance results to that of

Ψ̃∗
LDA and Ψ̃∗

HDP .

In [71], supervised LDA was run on MSRCv2 dataset. The highest classification

accuracy obtained by running variational Bayes on LDA in [71] is 69%, which is 5%

percent below the results obtained by CNMA. We have to emphasize that since CNM

is an unsupervised approach for dimension reduction, its classification accuracy can be

further improved by introducing class label information to CNM. We also ran similar

simulations using the SIFT representation of the features proposed by [76] instead of

blocks. The sparsity of matrix Ψ̂ obtained by SIFT representation is lower than the

sparsity of Ψ̂ obtained using a block representation. The theory we present in this

section and the numerical evaluations in Section 2.6.2 suggest that when α and β are

large (lower sparsity), the rank recovery success region is diminished. This is consistent

with the decrease in performance we observed.

2.7.2 Text datasets

We evaluate the classification accuracy of the proposed CNMA approach with HDP, LDA

and SVD approaches on TDT25, Reuters6, and 20Newsgroup7 datasets. The TDT2 cor-

pus consists of data collected during the first half of 1998 and taken from 6 sources

5http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
6http://www.daviddlewis.com/resources/testcollections/reuters21578/
7http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 2.9: Multiclass classification accuracy for Corel1000 dataset with number of clus-
ters (a) 200 (b) 500.

including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI), and 2 television

programs (CNN, ABC), total 11201 documents in 96 different categories. The 20 News-

groups dataset is a collection of approximately 20,000 newsgroup documents, partitioned

(nearly) evenly across 20 different newsgroups. Reuters-21578 corpus contains 21578

documents in 135 categories. We use here the ModApte version of the Reuters dataset.
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Documents with multiple category labels are discarded leaving 8293 documents in 65

categories. In our experiments we removed documents with low number of words. Ta-

ble 2.2 shows the summary of each dataset that we use in our analysis. We compare

Table 2.2: Text Dataset summary

TDT2 20Newsgroup Reuters

No. of documents 3807 4342 3228

Vocabulary size 4350 4612 3071

No. of category 30 20 10

Minimum no. of words per document (nd) 180 150 50

CNMA with HDP, LDA, and low-rank SVD approximation of matrix Ψ̂. We use multi-

class liblinear SVM8, which is well suited for document classification. We use 5-fold cross

validation to optimize the parameter C of the SVM algorithm. Figure 2.10 shows the

results of classification for different datasets. We omitted the legend of Fig. 2.10(a) and

Fig. 2.10(b) which are identical to the legend of Fig. 2.10(c). By comparing the results

in Fig. 2.10, we observe that the performance of CNMA is competitive with HDP, LDA,

and SVD. Moreover, the number of topics found by both CNMA and HDP algorithms is

quite similar. This suggests that the dimension of the latent space discovered by HDP

can be recovered by CNMA as well.

8http://www.csie.ntu.edu.tw/cjlin/liblinear/
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Figure 2.10: Classification accuracy for (a) TDT2, b) 20Newsgroup, and (c) Reuters
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2.8 Appendix

2.8.1 Derivative of λ1
2 ∥D 1

λ1

(Ψ′)∥2F with respect to λ1

The derivative of λ1
2 ∥D 1

λ1

(Ψ′)∥2F with respect to λ1 is

dλ1
2 ∥D 1

λ1

(Ψ′)∥2F
dλ1

=
1

2
∥D 1

λ1

(Ψ′)∥2F +
1

λ1
∥D 1

λ1

(Ψ′)∥∗ −
1

λ1
tr((1λ22 + Λ3)

TD 1
λ1

(Ψ′))).(2.18)

Proof:

Using the product rule, the derivative of λ1
2 ∥D 1

λ1

(Ψ′)∥2F with respect to λ1 can be

expressed as:

dλ1
2 ∥D 1

λ1

(Ψ′)∥2F
dλ1

=
1

2
∥D 1

λ1

(Ψ′)∥2F +
λ1
2

d∥D 1
λ1

(Ψ′)∥2F
dλ1

. (2.19)

Since D 1
λ1

(Ψ′) = U(S − 1
λ1
I)+V

T , we have ∥D 1
λ1

(Ψ′)∥2F = tr

(
D 1

λ1

(Ψ′)TD 1
λ1

(Ψ′)

)
=

tr
(
(S − 1

λ1
I)2+

)
. Therefore, the second term on the RHS of (2.19) is

λ1
2

d

dλ1
(∥D 1

λ1
(Ψ′)∥

2
F ) =

λ1
2

d

dλ1
tr

(
(S − 1

λ1
I)2+

)
= λ1tr

(
d(S − 1

λ1
I)

dλ1
(S − 1

λ1
I)+

)

= λ1tr

(
dS

dλ1
(S − 1

λ1
I)+

)
+

1

λ1
tr

(
(S − 1

λ1
I)+

)
= λ1tr

(
dS

dλ1
(S − 1

λ1
I)+

)
+

1

λ1
∥D 1

λ1

(Ψ′)∥∗. (2.20)

Since tr
(

dS
dλ1

(S − 1
λ1
I)+

)
= tr

(
(dΨ

′

dλ1
)TD 1

λ1

(Ψ′)

)
[90], we have λ1tr

(
dS
dλ1

(S − 1
λ1
I)+

)
=
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− 1
λ1
tr((1λT2 + Λ3)

TD 1
λ1

(Ψ′))) and consequently

λ1
2

d∥D 1
λ1

(Ψ′)∥2F
dλ1

= − 1

λ1
tr((1λT2 + Λ3)

TD 1
λ1

(Ψ′))) +
1

λ1
∥D 1

λ1

(Ψ′)∥∗. (2.21)

Substituting (2.21) into (2.19), we obtain (2.18).

2.8.2 Proof of probability bound for estimation error

To prove the probability bound for the estimation error of rank recovery in CRM,

we defined two random quantities Q =
∑M

d=1 ndQd and Q′ =
∑M

d=1Qd, where Qd =∑L
l=1(Ψld − Ψ̂ld)

2. We use the one-tailed Chebyshev’s inequality for random variable X

as following:

P
(
X ≥ E(X) + k

√
V ar(X)

)
≤ 1

1 + k2
. (2.22)

To compute the Chebyshev bound, we need to evaluate mean and variance of random

quantity Qd. First we start with calculation of the expected value of random variable

Qd.

E(Qd) =

L∑
l=1

E(Ψ̂ld −Ψld)
2

= Var(Ψ̂ld) =
L∑
l=1

Ψld(1−Ψld)

nd

=
1

nd
(1−

L∑
l=1

Ψ2
ld) (2.23)

Note that Var(Ψ̂d) =
Ψld(1−Ψld)

nd
.
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2.8.2.1 V ar(Qd)

The variance of Qd can be calculated as follows (for notational ease we define Iij =

I(Xi = j)):

Var(Qd) =
L∑
l=1

L∑
m=1

(
E

[(
1

nd

nd∑
i=1

Iil −Ψld

)2( 1

nd

nd∑
j=1

Ijm −Ψmd

)2]
−

E

[(
1

nd

nd∑
i=1

Iil −Ψld

)2]
E

[(
1

nd

nd∑
j=1

Ijm −Ψmd

)2])
(2.24)

We compute the second term on the RHS of (2.24) as follows:

E

[(
1

nd

nd∑
i=1

Iil −Ψld

)2]
E

[(
1

nd

nd∑
i=1

Ijm −Ψmd

)2]
=

Ψld(1−Ψld)

nd
× Ψmd(1−Ψmd)

nd

For the first term on the RHS of (2.24), we have:

E

[(
1

nd

nd∑
i=1

Iil −Ψld

)2( 1

nd

nd∑
j=1

Ijm −Ψmd

)2]
=

1

n4d

(∑
i

∑
j

∑
k

∑
t

E

[(
Iil −Ψld

)(
Ijl −Ψld

)(
Ikm −Ψmd

)(
Itm −Ψmd

)])

To evaluate E [(Iil −Ψld) (Ijl −Ψld) (Ikm −Ψmd) (Itm −Ψmd)], we consider all the al-

ternatives of i, j, k, l as follows (the enumeration of each alternative is specified in the

bracket):

1. [nd] i = j = k = t

(Iil −Ψld)
2 = Iil (1− 2Ψld) + Ψ2

ld

E
[(
Iil (1− 2Ψld) + Ψ2

ld

) (
Iim (1− 2Ψmd) + Ψ2

md

)]
=
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δlmΨld (1− 2Ψld)
2 +Ψld (1− 2Ψld)Ψ

2
md +Ψ2

ldΨmd (1− 2Ψmd) + Ψ2
ldΨ

2
md

2. [4nd(nd − 1)] (i = j = k ̸= t, i = j = t ̸= k, i = k = t ̸= j, j = k = t ̸= i)

E
[
(Iil −Ψld)

2 (Iim −Ψmd) (Itm −Ψmd)
]
= 0

3. [nd(nd − 1)] i = j ̸= k = t

E
[
(Iil −Ψld)

2
]
E
[
(Ijm −Ψmd)

2
]
=

Ψld(1−Ψld)

nd
× Ψmd(1−Ψmd)

nd

4. [2nd(nd − 1)] (i = k ̸= j = t, i = t ̸= j = k)

2E [(Iil −Ψld) (Ijm −Ψmd)]
2 = 2 [δlmΨld −ΨldΨmd −ΨldΨmd +ΨldΨmd]

2

= 2 (δlmΨld −ΨldΨmd)
2 = 2

(
δlmΨ2

ld (1− 2Ψld) + Ψ2
ldΨ

2
md

)

5. [6nd(nd − 1)(nd − 2)] (i = j ̸= k ̸= t, and all the combinations of 3 out of 4)

E
[
(Iil −Ψld)

2 (Ikm −Ψmd) (Itm −Ψmd)
]
= 0

6. [nd(nd − 1)(nd − 2)(nd − 3)] i ̸= j ̸= k ̸= t

E [(Iil −Ψld) (Ijl −Ψld) (Ikm −Ψmd) (Itm −Ψmd)] = 0
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By adding all the alternatives from one to six and organizing them, we get the following

expression for V ar(Qd):

V ar(Qd) =
2

n2d

L∑
l=1

L∑
m=1

(
δlmΨ2

ld (1− 2Ψld) + Ψ2
ldΨ

2
md

)
+

1

n3d

L∑
l=1

L∑
m=1

(
δlmΨld (1− 2Ψld)

2 +Ψld (1− 2Ψld)Ψ
2
md +Ψ2

ldΨmd (1− 2Ψmd) + Ψ2
ldΨ

2
md

−Ψld(1−Ψld)Ψmd(1−Ψmd)− 2
(
δlmΨ2

ld(1− 2Ψmd) + Ψ2
ldΨ

2
md

))
=

2

n2d

( L∑
l=1

Ψ2
ld − 2

L∑
l=1

Ψ3
ld + (

L∑
l=1

Ψ2
ld)

2

)

+
1

n3d

(
8

L∑
l=1

Ψ3
ld − 6(

L∑
l=1

Ψ2
ld)

2−2

L∑
l=1

Ψ2
ld

)
(2.25)

The first component on RHS of (2.25) can be bounded using Cauchy-Schwartz as
(∑

Ψ1.5
ld Ψ0.5

ld

)2 ≤∑
l Ψ

3
ld

∑
l Ψld. Hence,

(∑
l Ψ

2
ld

)2 ≤∑l Ψ
3
ld. Thus,

2

n2d

( L∑
l=1

Ψ2
ld − 2

L∑
l=1

Ψ3
ld + (

L∑
l=1

Ψ2
ld)

2

)
≤ 2

n2d

( L∑
l=1

Ψ2
ld − 2(

L∑
l=1

Ψ2
ld)

2 + (
L∑
l=1

Ψ2
ld)

2

)

=
2

n2d

( L∑
l=1

Ψ2
ld − (

L∑
l=1

Ψ2
ld)

2

)
=

2

n2d
(t− t2) =

2

n2d
(1/4− (t− 1/2)2) ≤ 1

2n2d
,

where t =
∑L

l=1Ψ
2
ld. For the second component term on RHS of (2.25) since

∑
l Ψ

3
ld ≤∑

l Ψ
2
ld, we have

1

n3d

(
8

L∑
l=1

Ψ3
ld − 6(

L∑
l=1

Ψ2
ld)

2 − 2

L∑
l=1

Ψ2
ld

)
≤ 6

n3d

( L∑
l=1

Ψ2
ld − (

L∑
l=1

Ψ2
ld)

2

)
=

6

n3d
(1/4− (t− 1/2)2) ≤ 3

2n3d
.
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The mean of Q and Q′ can be bounded as follows:

E(Q) =
M∑
d=1

ndE(Qd) =M −
M∑
d=1

L∑
l=1

Ψ2
ld ≤M,

E(Q′) =
M∑
d=1

E(Qd) =
M∑
d=1

1

nd
−

M∑
d=1

L∑
l=1

Ψ2
ld ≤

M∑
d=1

1

nd
, (2.26)

since −
∑M

d=1

∑L
l=1Ψ

2
ld ≤ 0. Note that Qd, d = 1, . . . ,M are i.i.d. random variables,

thus the variance of Q and Q′ can be computed as the sum of variance of Qd.

V ar(Q) =
M∑
d=1

n2dV ar(Qd) ≤
M

2
+

3

2

M∑
d=1

1

nd

V ar(Q′) =

M∑
d=1

V ar(Qd) ≤
M∑
d=1

1

2n2d
+

M∑
d=1

3

2n3d
. (2.27)

Using the one-tailed Chebyshev inequality, we have the following probability bound for

Q and Q′:

P

(
Q ≥M + k

√√√√M

2
(1 + 3/M

M∑
d=1

1

nd
)

)
≤ 1

1 + k2
,

P

(
Q′ ≥

M∑
d=1

1

nd
+ k

√√√√(

M∑
d=1

1

2n2d
+

M∑
d=1

3

2n3d
)

)
≤ 1

1 + k2
.

Alternatively, we say w.p. 1−δk, ,δk = 1
1+k2

, we have Q =
∑M

d=1

∑L
l=1 nd

(
Ψ̂ld−Ψld

)2

≤

ϵ2(δk), where

ϵ2(δk) = ϵ∗2(δk) =M + k

√√√√M

2

(
1 + 3/M

M∑
d=1

1

nd

)
,
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and Q′ =
∑M

d=1

∑L
l=1

(
Ψ̂ld −Ψld

)2

≤ ϵ′2(δk), where

ϵ′
2
(δk) = ϵ′∗

2
(δk) =

M∑
d=1

1

nd
+ k

√√√√( M∑
d=1

1

2n2d
+

M∑
d=1

3

2n3d

)
.
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Chapter 3: Entropy Estimation Using the Principle of Maximum

Entropy

3.1 Introduction

Information theory quantities such as entropy and mutual information are widely used

in data analysis, signal processing, and machine learning. When an underlying model

for data is unavailable, sample-based entropy estimation is required. Entropy estimation

has been applied in anomaly detection, image segmentation, estimation of manifold di-

mension and feature selection (e.g., [88]). We consider the estimation of the entropy of

a continuous random variable characterized by a PDF. In the discrete case, raw counts

are used to estimate the probability for each discrete value and consequently, entropy

is estimated using the plug-in method. In the continuous case, two main approaches

exist. In the first approach, the PDF is approximated and then the result of the ap-

proximation is plugged into the entropy formula (e.g., kernel density, histogram). In the

second approach, the entropy is estimated directly from samples (e.g., sample spacing,

nearest neighbors, and entropic spanning graph, see [16] for a review).

The main contribution of this section is developing a new entropy estimator based on

the principle of maximum entropy and greedy m-term approximation. We also provide

the analysis of the estimation error, specifically an in probability error bound in terms of

the problem parameters (e.g., number of samples, number of the approximation terms).

The error of the proposed estimator is O(
√

log n/n); only a factor of
√
log n away from
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the classical statistical parameter estimation error O(
√

1/n). Using numerical examples,

we demonstrate the superiority of our algorithm as compared with the other well known

algorithms.

App. error

Est. 

error

(a)

Figure 3.1: Maximum entropy approach for approximating p(x) with p∗λ(x) and estimat-
ing with pλ̂(x)

3.2 Problem formulation

We consider the estimation of the entropy of random variable X from n i.i.d. samples of

it. Let X be a random variable with a PDF p(x). The entropy of X is given by

H(p) = Ep[− log p(x)] = −
∫
p(x) log p(x)dx. (3.1)

We are interested in an entropy estimator Ĥ : X n → R ofH(p), which takes x1, x2, . . . , xn ∈

X as the input. We seek a consistent estimator in the following sense:

lim
n−→∞

Ĥn(x1, . . . , xn) −→ H(p) in probability. (3.2)

We are also interested in quantification of the estimation error H(p)− Ĥ(p).
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3.3 Solution framework

To estimate the entropy given in (3.1), two approximations are typically considered. The

first involves replacing the expectation with a sample average. The second involves the

more challenging task of estimating p(x) or log p(x). To address the second approxima-

tion, we consider a maximum entropy approach to model p(x).

3.3.1 Maximum entropy framework for entropy estimation

Assume that you have access to the expected value of m different features {ϕj(x)}mj=1

(e.g., mean E[x] and second-order moment E[x2]) w.r.t to PDF p(x). Even if m is

large, one cannot identify p(x) uniquely. Maximum entropy principle allows for finding

a unique distribution among all distributions that satisfy a set of constraints:

max
p
H(p) s.t. Ep[ϕj(x)] = αj , j = 1, 2, . . . ,m, (3.3)

where H(p) is given in (3.1), ϕj(x) is a feature function, and αj is the expected value

of the jth feature. The distribution that solves the constrained maximization in (3.3) is

given by

pλ(x) = exp(

m∑
j=1

λjϕi(x)− Z(λ)), (3.4)

where λ ∈ Rm is the solution to the set of equations Epλ [ϕj(x)] = αj for j = 1, 2, . . . ,m

and Z(λ) = log
∫
exp(

∑m
j=1 λjϕj(x))dx. Substituting the PDF given by (3.4) into (3.1),
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yields a parametric expression for the entropy:

H(pλ) = Z(λ)−
m∑
i=1

λjEpλ [ϕj(x)]. (3.5)

The set of PDFs P = {pλ|λ ∈ Rm} provides an approximation space for p. The set

P is convex [38] and as a results, a unique p∗λ ∈ P can be found, which minimizes the

Kullback-Leibler (KL) divergence between the distribution p and its approximation pλ

given by D(p||pλ) =
∫
p(x) log(p(x)/pλ(x))dx (see illustration in Fig. 3.1(a)). Such pλ∗

satisfies Ep[ϕj ] = Epλ∗ [ϕj ] for j = 1, 2, . . . ,m. The entropy of pλ∗ is given by

H(pλ∗) = min
λ
Z(λ)−

m∑
j=1

λjEp[ϕj(x)]. (3.6)

Barron et. al. showed that under certain conditions, there exists a choice of m ϕj ’s

allowing for an accurate approximation of p(x), i.e., 0 ≤ Dkl(p∥pλ∗) = H(pλ∗)−H(p) ≤

c/m [8]. This approximation capability of the maximum entropy framework is key to

our method suggesting the idea of replacing H(p) with H(p∗λ).

Since only observations x1, x2, . . . , xn from p(x) are available, one cannot obtain λ∗

based on p(x). Instead, λ̂ is obtained by maximizing the likelihood or equivalently by

minimizing the negative log-likelihood Z(λ)−
∑m

j=1 λjEp̂[ϕj(x)], where p̂ is the empirical

distribution for which Ep̂[f(x)] =
1
n

∑n
i=1 f(xi). The entropy of pλ̂ is given by

H(pλ) = min
λ
Z(λ)−

m∑
j=1

λjEp̂[ϕj(x)]. (3.7)

The sample-based entropy estimated in (3.7) provides an estimate to (3.6). By con-

centration of measure, i.e., the property that Ep̂[f(x)] → Ep[f(x)] one can show that
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(3.7) converges to (3.6) in probability. Motivated by the approximation and estimation

capabilities of the framework, we proceed with the description of two specific estimators

and their properties.

3.3.2 Proposed estimators

There are two key issues which have to be addressed in finding an optimum estimator

for the entropy using the framework of maximum entropy. The first issue is to find

the optimum λ in (3.7) which can be done by a variety of convex optimization tools.

Specifically for this model, iterative scaling is a common approach [17]. The second

issue is to find the best set of ϕ’s which provides an accurate approximation for the true

entropy. For that end, we define a collection of feature functions ϕ given by Φ = {ϕθ|θ ∈

Θ} with Θ ⊆ Rd. Suppose ϕθ1 , . . . , ϕθm are the features used to approximate p(x). Thus,

the entropy estimator is:

Ĥ(m)(θ1, . . . , θm) = min
λ
Z(λ; θ)−

m∑
l=1

λlEp̂[ϕθl(x)]. (3.8)

While the solution to λ is straightforward following the maximum entropy approach, the

choice of θ is not trivial. Two estimators are proposed to address the selection of θ in

(3.8) and analysis of the error is provided.
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3.3.2.1 Brute-force m-term entropy estimator

We propose the following estimator

Ĥ
(m)
1 = min

θ1,...,θm,λ1,...,λm

Z(λ; θ)−
∑

λlEp̂[ϕθl(x)]. (3.9)

The solution to (3.9) presents a strategy for finding the ϕj in (3.7). The joint minimiza-

tion of θ1, . . . , θm presents a computational challenge. However, the estimator perfor-

mance can allow us to understand the limitations of the approach.

Theorem 6 Let H̃
(m)
1 = Ĥ

(m)
1 − C/2m. The estimation error associated with H̃

(m)
1

satisfies:,

|H̃(m)
1 −H(p)| ≤ C

2m
+
ML√
n

√
2(log

2m

δ
) (3.10)

with probability at least 1− δ, where C = 1
2e

|| log p−log pλ∗ ||∞ || log p||L1, ||ϕθ||∞ ≤M , and

||λ||1 ≤ L.

Theorem 6 decomposes the error of estimating the entropy into two parts: approximation

error and estimation error (analogous to the familiar bias and variance decomposition in

classical statistics). The first term on the RHS is corresponding to approximation error.

Increasing the number of terms m provides a rich basis for the space that includes the

target function log p(x) and hence reduce the error. Simultaneously, the estimation error

is increased. The second term is the estimation error which decreases as the number of

samples n increases. Constant C depends on the ||f ||∞ where f(x) = log p(x). Com-

mon in approximation theory, the approximate function f(x) is assumed to be bounded

||f ||∞ ≤M . The details of the derivation of parameter C are given in [8]. Due to space

limitation the details of the proof are provided in [10]. However, we proceed with some
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intuition. Consider the decomposing the error as:

Ĥ
(m)
1 −H(p) = min

θ1,...,θm
D(p||pθ(λ∗))︸ ︷︷ ︸

Approximation error

+
m∑
l=1

λ∗lEp−p̂[ϕθl ]︸ ︷︷ ︸
Estimation error

. (3.11)

Barron et. al. has shown in [8] that ap proximation error can be bounded asD(p||pθ(λ∗)) ≤

C/m. Hoeffding’s inequality provides a bound on the difference between empirical

mean and true mean of a function of i.i.d. bounded random variable [61]. By apply-

ing the Hoeffding inequality to the estimation error we can bound the estimation error

by ML√
n

√
2(log 2m

δ ). To find the rate of convergence based on the number of the samples

n, we present the following corollary:

Corollary 7 Let the number of features used to approximate p(x) be m =
√
n, then with

probability 1− δ the estimation error is bounded by

|H̃(m)
1 −H(p)| ≤ C1

√
log n

n
+ o(

√
log n

n
), (3.12)

where C1 = CML
√

1
2 log

2
δ .

This corollary suggests that the overall error is O(
√

log n/n); only a factor of
√
log n

away from the statistical estimation error O(
√

1/n). While computationally demanding,

the performance of the proposed estimator illustrates the merit in the maximum entropy

framework.
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3.3.2.2 Greedy m-term entropy estimator

Greedy approaches for approximating functions with m-terms from a given dictionary D

were shown to be effective [41]. Greedy m-term approximations offer a computationally

efficient alternative to joint optimization of m-term approximations. We consider the

greedy approach for the following entropy estimator due to its computational efficiency.

We would like to arrive to the m-term approximation of log p(x), of the form gm(x) =∑m
j=1 λjϕθj (x) by adding one term at a time. Start by initializing g0(x) = 0. The lth

iteration considers constructing gl(x) based on gl−1(x) through

gl(x) = (1− 1

l
)gl−1(x) +

1

l
βϕθ(x), (3.13)

where β and θ are obtained by

min
β,θ

Z(gl(x))− Ep̂[gl(x)]. (3.14)

The minimization in (3.14) is convex w.r.t. β when θ is held fixed leaving the main

difficulty to optimization w.r.t only a single variable θ. After m iterations, we obtain

gm(x) of the form gm(x) =
∑m

j=1 λjϕθj (x). Substituting the values of {λj , ϕθj}mj=1 into

Ĥ
(m)
2 = Z(λ)−

m∑
j=1

λjEp̂[ϕθj ], (3.15)

yields the proposed entropy estimate. Despite the potential sub-optimality of the greedy

approach, the method provides consistent entropy estimates. Its accuracy is examined

in the following theorem.
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Theorem 8 For Ĥ
(m)
2 defined in (3.15) and m =

√
n with probability at least 1− δ,

|Ĥ(m)
2 −H(p)| ≤ K11 + logm

m
+
K2

m
+
K3

m2
(3.16)

for m ≥ 4, where K1 ≤ 8LM
√

2 log 1
2δ , K2 ≤ 8L2M2, and K3 ≤ K̄3

1.

Due to space limitation, we omit the proof for this theorem, which is available in [10].

Similar to Theorem 6, this bound decomposes the error into approximation error and

estimation error. The first term on the RHS is related to the estimation error where

the second and third terms are related to the approximation error. We proceed with a

corollary, which expresses the convergence rate of the algorithm in terms of the number

of samples n.

Corollary 9 If we select the number of terms m as m =
√
n in H̃

(m)
2 from (3.15), the

estimation error of H̃
(m)
2 is bounded with probability 1− δ by

|Ĥ(m)
2 −H(p)| ≤ C30.5

log n

n
+ o(

√
logn

n
),

where C3 = K1 +K2 +K3.

While the greedy method is typically expected to present performance inferior to that

of the brute-force estimator, its asymptotic error is of the same order. From a compu-

tational point of view, the greedy approach is significantly faster than the brute force

method. We proceed with the computationally efficient greedy m-term estimator. In the

next section, the performance of the estimator is numerically evaluated and compared

to alternatives.

1K̄3 = 48( 32L
9M9

81
+ 16L8M8

9
+ 40L7M7

9
+ 20L6M6

3
+ 20L5M5

3
+ 4L4M4 + 8L3M3

3
)
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3.4 Simulations

In this part we compare the performance of well known entropy estimation approaches

with the greedy m-term estimator defined in Section 3.3.2.2 on data drawn from three

univariate continuous distributions as well as on experimental sensor network data. The

estimators considered in this comparison study are: (i) Histogram: the plug-in estima-

tor for the histogram density estimation using a constant bins width chosen according

to [101]. (ii) KDE: the kernel density estimator with the optimal bandwidth chosen ac-

cording to [24]. (iii) Sample spacing: the classical sample spacing approach with m = 5.

(iv) Nearest neighbors: the nearest neighbor estimator with k = 5. (v) Greedy m-term:

the proposed approach with a dictionary of 1500 features ϕ including polynomials xi and

trigonometric basis [sin(2πix), cos(2πix)] for i = 1, . . . , 500. To indicate the number of

terms m, we used the L1 norm to restrict the complexity of the approximated function.

3.4.1 Synthetic dataset

We consider three univariate distributions: truncated normal with µ = 0.5 and σ = 0.2,

uniform between (0, 1), and truncated mixture of five Gaussians with µ = [0.3, 0.5, 0.7, 0.8,

0.85] and σ = [0.09, 0.01, 0.009, 0.001, 0.0005] respectively. For each distribution, samples

of size [100, 200, 500, 1000, 2000] were considered and 10 runs of the experiment were con-

ducted. The left column of Fig. 3.4 depicts the distributions and the right column shows

the accuracy of algorithms in terms of mean square error. For the two simple classical

example (truncated normal, uniform) all algorithms perform very closely. However, in

the mixture of Gaussians example m-term estimator outperforms the other algorithms.

Note that there is no Gaussian basis in the dictionary D.
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Figure 3.2: Toy examples
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Figure 3.3: Toy examples

The approximation of five mixture of Gaussians using the m-term approximation was

performed and the result is depicted in Fig. 3.5. This example illustrates the approxi-

mation of the true density. The figure is in log scale since log p(x) is approximated by a

linear combination of the features ϕj ’s.

3.4.2 Anomaly detection in sensor network

We considered the use of the greedy m-term estimator for anomaly detection. An ex-

periment was set up on a Mica2 platform, which consists of 14 sensor nodes randomly

deployed inside and outside a lab room. Wireless sensors communicate with each other
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Figure 3.4: Toy examples
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Figure 3.5: Graph of p(x) vs. the approximated p(x) using m-term approximation
approach

by broadcasting and the received signal strength (RSS), defined as the voltage measured

by a receiver’s received signal strength indicator circuit (RSSI), was recorded for each

pair of transmitting and receiving nodes. There were 14 × 13 = 182 pairs of RSSI

measurements over a 30 minute period, and each sample was acquired every 0.5 sec.

During the measuring period, students walked into and out of lab at random times,

which caused anomaly patterns in the RSSI measurements. Finally, a web camera was

employed to record activity for ground truth. The mission of this experiment is to use

the 182 RSS sequences to detect any intruders (anomalies). Fig. 3.6 shows the results of

the greedy m-term estimator and nearest neighbor. Due to space limitation, we omitted
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the results of other algorithms on this dataset. We observe that the entropy peaks at

times of anomaly in a similar fashion for both methods. Though the two methods are

based on different frameworks, similar entropy estimates are produced.
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Figure 3.6: Anomaly detection in sensor network data using the nearest neighbor and
m-term estimator
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Chapter 4: Convergence Analysis for Entropy Estimation Using the

Principle of Maximum Entropy

4.1 Introduction

In this report we analyze the error of entropy estimation for an unknown density function

p(x) using the principle of maximum entropy approach. We propose two estimators for

entropy estimation which is called brute-force and greedy m-term approximation. The

derivation of the error bound of two estimators is provided here. First, we start with

the definition of the problem, model assumptions, and restrictions. Then we define the

estimators and prove the bound on the error for each estimator.

4.2 problem definition

We are given n i.i.d. samples x1, . . . , xn from an unknown probability density function

p(x) and we want to estimate the entropy which is defined by

H(p) = −Ep[log p(x)] = −
∫
X
p(x) log p(x)dx. (4.1)

where X is a bounded support. We use the principle of maximum entropy to approximate

p(x) and then use the definition (4.1) to estimate the entropy.
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4.2.1 Principle of maximum entropy

For a set of m feature functions ϕθl(x)’s (l = 1, . . . ,m) over the space of the data samples

X , maximum entropy framework among all density functions fits a density function which

is consistent with the set of constraints and otherwise is uniform as follows:

max
p(x)

H(p)

s.t.

Ep[ϕθl(x)] = Ep̂[ϕθl(x)], (4.2)

where Ep̂[g(x)] =
1
n

∑n
i=1 g(xi) is the empirical mean of g(x). The obtained solution

from (4.2) is a general form of distribution in the class of exponential family which can

be represented as:

p(x;λ) = e
∑m

l=1 λlϕl(x)−Z(λ), (4.3)

where λ = [λ1, . . . , λm] are the Lagrangian multipliers correspond to the set of constraints

Ep[ϕl(x)] = Ep̂[ϕl(x)], and Z(λ, θ) = log
∫
e
∑m

l=1 λlϕl(x). Substituting the PDF given by

(4.3) into (4.1), yields a parametric expression for the entropy:

H(p(x;λ)) = Z(λ)−
m∑
l=1

λlEp(x;λ)[ϕl(x)]. (4.4)

The set of PDFs P = {p(x;λ)|λ ∈ Λ} provides an approximation space for p(x). We

propose the following estimator:

Ĥ(m) = Z(λ̂)−
m∑
l=1

λ̂lEp̂[ϕl(x)], (4.5)
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where

λ̂ = argmin
λ
Z(λ)−

m∑
l=1

λlEp̂[ϕl(x)]. (4.6)

p(x;λ) in (3.4m) is the one which maximizes the entropy for the set of given ϕl(x). To

minimize the entropy, we search over the space of the feature functions ϕθl(x), θ ∈ Θ

to find the best set of the feature functions which minimizes the entropy. Thus, the

estimator is defined as:

Ĥ(m) = min
θ,λ

Z(λ, θ)−
m∑
l=1

λlEp̂[ϕθl(x)]. (4.7)

4.3 Approximation and model assumption

Suppose we have a continuous function f ∈ C1, defined on a compact interval f :

C[Rd] → R. Based on Weierstrass-Stone theorem every continuous function on the

compact interval can be approximated uniformly by polynomials. It means the polyno-

mial functions on the compact interval are dense enough to approximate any continuous

function on that interval. Note that the only requirement for Weierstrass-Stone theorem

is the continuity of f on the compact interval.

For example for a given polynomial basis ϕθ(x) = {xθ|θ ∈ N}, we can write function

f as a linear expansion of the basis ϕθ as follows:

f =

∫
ϕθ(x)λ(θ)µ(dθ) (4.8)

where λ(θ) is the coefficient corresponding to the basis function ϕθ(x) and µ is the

measurement defined on the space of Θ. We use the same idea to approximate the
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log p(x) on the compact interval. We assume that log p(x) is continuous on the compact

interval and it can be written as a linear expansion of basis ϕθ(x) as follows:

log p(x) =

∫
ϕθ(x)λ(θ)µ(dθ), (4.9)

where ϕθ(x) ∈ Φ1, and λ(θ) ∈ R. Note that the set of Φ1 is not restricted to the

polynomial basis and it includes all the basis functions such as trigonometric, and splines

basis functions. However, the expansion in (4.9) always exists for log p(x) based on the

Weierstrass-Stone theorem by just having the polynomials as feature functions. The

continuity of log p(x) implies that ∥ log p(x)∥∞ is finite.

To make sure that ∥ log p(x)∥∞ is finite, we make the assumptions that ∥ϕθ∥∞ ≤M

, and
∫
|λ(θ)|µ(dθ) ≤ L are finite. Because λ(θ) ∈ R, it can be positive or negative.

Moreover we assume p(x) has bounded support (e.g.
∫
X dx = C). To make λ(θ) always

positive, we define Φ2 = {−ϕθ(x)|θ ∈ Θ} and Φ = Φ1 ∪ Φ2. Thus, we redefine log p as

follows:

log p(x) =

∫
ϕθ(x)λ̃(θ)µ(dθ) (4.10)

where ϕθ(x) ∈ Φ and λ̃(θ) ≥ 0. Having λ̃(θ) ≥ 0, we can define a probability measure

on the space of Θ by λ̃(θ).

4.4 Entropy estimators

We propose a brute force m-term entropy estimator, and a greedy m-term estimator

to estimate the entropy based on the maximum entropy framework. In the brute force

approach we optimize the estimator w.r.t. the parameters λ and θ jointly, where in
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the greedy approach the optimization is done in m step and in each step we optimize

the estimator for one value of θ and the coefficient corresponds to it. The brute force

optimization is a challenging task due to the presence of parameter θ which makes the

optimization non-convex. Moreover, there is no straight forward way of optimizing the

estimator over the space of Θ jointly. On the other hand, the greedy approach provides

a convenient way of handling this problem. In the following each estimator is explained

and a bound for the error of estimation in each case is proposed. To be able to bound the

error we need to make some restrictions on the space of the parameters of the estimators

which is explained in detail in each section.

4.4.1 Brute-force m-term entropy estimator

Problem definition

We propose the following estimator

Ĥ
(m)
1 = min

θ,∥λ∥1≤L
Z(θ, λ)−

m∑
l=1

λlEp̂ϕθl(x). (4.11)

To be able to bound the error of estimation, we restrict ∥λ∥1 ≤ L. The feature functions

ϕθ(x) is also bounded ∥ϕθ(x)∥∞ ≤M . We define λ̂(θ) and λ∗(θ) as follows:

λ̂(θ) = arg min
∥λ∥1≤L

Z(θ, λ)−
m∑
l=1

λlEp̂ϕθl(x) (4.12)

λ∗(θ) = arg min
∥λ∥1≤L

Z(θ, λ)−
m∑
l=1

λlEpϕθl(x) (4.13)

Theorem 10 ∀λ, ∥λ∥ ≤ L, and ∥ϕθ∥∞ ≤ M the estimation error associated with Ĥ
(m)
1
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with probability at least 1− δ satisfies:

−ML
√
d+ 2 logm√
n

≤ Ĥ
(m)
1 −H(p) ≤ C1

2m
+
ML

√
d+ 2 logm√
n

(4.14)

where d = 2 log 2
δ , and C1 = 27(e2LM − 1− 2LM − 14/9L2M2).

We define the error of estimation in this approach E(m) as follows:

E(m) = Ĥ
(m)
1 −H(p) = min

θ,∥λ∥≤L
Z(λ; θ)−

m∑
l=1

λlEp̂[ϕθl(x)]−H(p), (4.15)

and separately obtain RHS and LHS inequality in (4.14).

4.4.1.1 Right hand side inequality

In this part we want to show that E(m) is bounded above by

E(m) ≤ C1

m
+
ML

√
d+ 2 logm√
n

, (4.16)

where d = 2 log 2
δ .

Proof We start with E(m) as defined in (4.15) as follows:

E(m) = min
θ,∥λ∥1≤L

Z(λ; θ)−
m∑
l=1

λlEp̂[ϕθl(x)]−H(p)

= min
θ

min
∥λ∥1≤L

Z(λ; θ)−
m∑
l=1

λlEp̂[ϕθl(x)]−H(p)

= min
θ
Z(λ̂(θ); θ)−

m∑
l=1

λ̂l(θ)Ep̂[ϕθl(x)]−H(p) (4.17)
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Since λ̂l(θ) is the minimizer of (4.17), for λ∗(θ), we have:

E(m) ≤ min
θ
Z(λ∗(θ); θ)−

m∑
l=1

λ∗l (θ)Ep̂[ϕθl(x)]−H(p)

= min
θ
Z(λ∗(θ); θ)−

m∑
l=1

λ∗l (θ)Ep[ϕθl(x)] +

m∑
l=1

λ∗l (θ)(Ep[ϕθl(x)]−Ep̂[ϕθl(x)])−H(p)

= min
θ
D(p||p(x;λ∗(θ), θ)) +

m∑
l=1

λ∗l (θ)(Ep[ϕθl(x)]− Ep̂[ϕθl(x)]), (4.18)

where D(p||p(x;λ∗(θ), θ)) = Ep[log p − log p(x;λ∗(θ), θ)]. Note that the RHS of (4.18)

is obtained by adding and subtracting
∑m

l=1 λ
∗
l (θ)Ep[ϕθl(x)]. The first term in RHS of

(4.18) is the approximation error and the second term is the estimation error. The

estimation error can be bounded by applying Hoeffding inequality with probability at least

1− δ as follows (see Appendix 4.5.2):

|
m∑
l=1

λ∗l (θ)(Ep[ϕθl(x)]− Ep̂[ϕθl(x)])| ≤
ML

√
d+ 2 logm√
n

(4.19)

Plugging back (4.19) into (4.18) yields:

E(m) ≤ ML
√
d+ 2 logm√
n

+min
θ
D(p||p(x;λ∗(θ), θ)) (4.20)

minθD(p||p(x;λ∗(θ), θ)) can be bounded by min0≤αl≤1,|β|≤L,θl D(p||pgl), where pgl is ob-

tained by a greedy approach. min0≤αl≤1,|β|≤L,θl D(p||pgl) can be bounded as follows (see

Appendix 4.5.1):

min
0≤αl≤1,|β|≤L,θl

D(p||pgl) ≤ 12L2M2

l + 2
+

27(e2LM − 1− 2LM − 2L2M2)

(l + 2)2

≤ 12L2M2 + 27(e2LM − 1− 2LM − 2L2M2)

(l + 2)
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≤ 12L2M2 + 27(e2LM − 1− 2LM − 2L2M2)

l
. (4.21)

If we put l = m in (4.21) for the error in step m, thus

min
θ
D(p||p(x;λ∗(θ), θ)) ≤ C1

m
, (4.22)

where C1 = 27(e2LM − 1 − 2LM − 14/9L2M2). Plugging back (4.22) into (4.20) yields

(4.16).

4.4.1.2 Left hand side inequality

We want to show that:

E(m) ≥ −ML
√
d+ 2 logm√
n

, (4.23)

where d = 2 log 2
δ .

Proof We start with

E(m) = min
θ
Z(λ̂(θ); θ)−

m∑
l=1

λ̂l(θ)Ep̂[ϕθl(x)]−H(p), (4.24)

and reorganize it as follows:

E(m) = min
θ
Z(λ̂(θ); θ)−

m∑
l=1

λ̂l(θ)Ep[ϕθl(x)]−
m∑
l=1

λ̂l(θ)(Ep̂[ϕθl(x)]− Ep[ϕθl(x)])−H(p)

= min
θ
D(p||p(x; λ̂(θ), θ))−

m∑
l=1

λ̂l(θ)(Ep̂[ϕθl(x)]− Ep[ϕθl(x)]). (4.25)
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Since minθD(p||p(x; λ̂(θ), θ)) ≥ 0, therefore,

E(m) ≥ −
m∑
l=1

λ̂l(θ)(Ep̂[ϕθl(x)]− Ep[ϕθl(x)]). (4.26)

Applying Hoeffding inequality to the RHS of (4.26) with probability at least 1 − δ, we

have

−|
m∑
l=1

λ̂l(θ)(Ep[ϕθl(x)]− Ep̂[ϕθl(x)])| ≥ −ML
√
d+ 2 logm√
n

(4.27)

(see Appendix 4.5.2). Plugging back (4.27) into (4.26) yields (4.23).

4.4.2 Greedy m-term approximation

We consider approxiamting log p(x) by gl − Z(gl) where gl =
∑l

k=1 λlϕθl(x) as in the

previous section and Z(gl) =
∫
egldx. Let g0 = 0. We construct gl recursively according

to g∗l = gl(α
∗
l , β

∗
l , θ

∗
l ), where

gl(αl, βl, θl) = (1− αl)gl−1 + αlβlϕθl l = 1, . . . ,m. (4.28)

and

α∗
l , β

∗
l , θ

∗
l = arg min

0≤αl≤1,|βl|≤L,θl
Z(gl(αl, βl, θl))− Ep̂[gl(αl, βl, θl)]. (4.29)



83

Note that to be able to bound the error we restrict 0 ≤ αl ≤ 1, |βl| ≤ L, and ∥θl∥∞ ≤M .

We propose the following approximation:

Ĥ
(l)
2 = Z(g∗l )− Ep̂[g

∗
l ], l = 1, . . . ,m. (4.30)

We define the error associated with Ĥ
(l)
2 as follows:

E(l) = Ĥ
(l)
2 −H(p) = min

0≤αl≤1,|βl|≤L,θl
Z(gl)− Ep̂[gl]−H(p). (4.31)

Theorem 11 For m =
√
n, and ∥ϕθl∥∞ ≤ M , the estimation error associated with

Ĥ
(m)
2 with probability at least 1− δ satisfies:

−K1
√
d+ 2 logm

m
≤ Ĥ

(m)
2 −H(p) ≤ K1

√
d+ 2 logm

m
+

6K2

m+ 2
+

27K3

(m+ 2)2
, (4.32)

where d = 2 log 2
δ , K1 = 2LM , K2 = 2L2M2, and K3 = e2LM − 1− 2LM − 2L2M2.

We start with the definition of the error in step l and express it in terms of the error in

step l− 1. This recursion helps to configure how the error decays in each step by adding

one term at a time.

4.4.2.1 Right hand side inequality

We want to show that with probability at least 1− δ

E(m) ≤ K1
√
d+ 2 logm

m
+

6K2

m+ 2
+

27K3

(m+ 2)2
. (4.33)
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Error recursion In this part we want to show that with probability at least 1− δ, the

recursion error is as follows:

E(l) ≤ min
0≤αl≤1

(1− αl)E
(l−1) +

K1αl

√
d+ 2 logm√
n

+ α2
lK2 + α3

lK3, (4.34)

where d = 2 log 2
δ ,K1 = LM ,K2 = 2L2M2,K3 = e2LM−1−2LM−2L2M2, ∥ϕθl∥∞ ≤M ,

and |βl| ≤ L.

Equality error recursion To obtain (4.34), we relate error in step l to the error

in step l− 1 in terms of equality. In other word, we are looking for a relation as follows:

E(l) = min
0≤αl≤1

(1− αl)E
(l−1) +G(αl), (4.35)

where G(αl) is

G(αl) = min
|βl|≤L,θl

(D(p||pgl)−D(p||pgl−1
)) + αl(D(p||pgl−1

) + Ep[βlϕθl ]− Ep̂[βlϕθl ]).(4.36)

Proof We start with (4.31) and add and subtract term Ep[gl], to express the RHS in

terms of the approximation error and estimation error as follows:

E(l) = min
0≤αl≤1,|βl|≤L,θl

Z(gl)− Ep̂[gl]−H(p)

= min
0≤αl≤1,|βl|≤L,θl

Z(gl)− Ep[gl]−H(p) + Ep[gl]− Ep̂[gl]

= min
0≤αl≤1,|βl|≤L,θl

D(p||pgl) + (Ep[gl]− Ep̂[gl]). (4.37)
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Plugging back gl from (4.28) into the second term in the RHS of (4.37) yields:

Ep[gl]−Ep̂[gl] = Ep[(1− αl)gl−1 + αlβlϕθl ]− Ep̂[(1− αl)gl−1 + αlβlϕθl ]

= (1− αl)(Ep[gl−1]− Ep̂[gl−1]) + αl(Ep[βlϕθl ]− Ep̂[βlϕθl ]).(4.38)

Substitute (4.38) into (4.37) yields

E(l) = min
0≤αl≤1,|βl|≤L,θl

D(p||pgl) + (1− αl)(Ep[gl−1]− Ep̂[gl−1]) +

αl(Ep[βlϕθl ]− Ep̂[βlϕθl ]). (4.39)

If we add and subtract (1− αl)D(p||pgl−1
) to (4.39) yields

E(l) = min
0≤αl≤1,|βl|≤L,θl

(1− αl)(D(p||pgl−1
) + Ep[gl−1]− Ep̂[gl−1]) +D(p||pgl) +

α(Ep[βlϕθl ]− Ep̂[βlϕθl ])− (1− αl)D(p||pgl−1
)

= min
0≤αl≤1,|βl|≤L,θl

(1− αl)E
(l−1) + (D(p||pgl)−D(p||pgl−1

))

+α(D(p||pgl−1
) + Ep[βlϕθl ]− Ep̂[βlϕθl ]), (4.40)

where E(l−1) = D(p||pgl−1
) + Ep[gl−1]− Ep̂[gl−1].

Inequality error recursion By bounding G(αl) ≤ F (αl), we show that with

probability at least 1− δ

E(l) ≤ min
0≤αl≤1

(1− αl)E
(l−1) + F (αl), (4.41)
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where F (αl) is

F (αl) = αlK
′
1 + α2

lK2 + α3
lK3, (4.42)

and K ′
1 =

√
d+2 logm√

n
K1, K1 = LM , K2 = 2L2M2, K3 = e2LM − 1− 2LM − 2L2M2.

Proof We start with G(αl) as follows:

G(αl) = min
|βl|≤L,θl

(D(p||pgl)−D(p||pgl−1
)) + αl(D(p||pgl−1

) + Ep[βlϕθl ]− Ep̂[βlϕθl ])

= αlD(p||pgl−1
) + min

|βl|≤L,θl
(D(p||pgl)−D(p||pgl−1

))

+αl(Ep[βlϕθl ]− Ep̂[βlϕθl ]). (4.43)

The second term on the RHS of (4.43) is a random quantity and can be bounded using

the Hoeffding inequality with probability at least 1− δ (see Appendix 4.5.2) as follows:

|Ep[βlϕθl ]− Ep̂[βlϕθl ]| ≤
√
d+ 2 logm√

n
K1 = K ′

1, (4.44)

where d = 2 log 2
δ , and K1 = LM . Plugging back (4.44) into (4.43), with probability at

least 1− δ

G(αl) ≤ αl(D(p||pgl−1
) +K ′

1) + min
|βl|≤L,θl

(D(p||pgl)−D(p||pgl−1
)), (4.45)

where K ′
1 =

√
d+2 logm√

n
K1. We bound term min|βl|≤L,θl(D(p||pgl)−D(p||pgl−1

)) as follows:

min
|βl|≤L,θl

D(p||pgl)−D(p||pgl−1
) = min

|βl|≤L,θl
Ep[log p]− Ep[log pgl ]− Ep[log p] + Ep[log pgl−1

]

= min
|βl|≤L,θl

Ep[gl−1 − Z(gl−1)]−Ep[gl − Z(gl)]
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= min
|βl|≤L,θl

Ep[gl−1 − gl] + Ep[Z(gl)− Z(gl−1)]

= min
|βl|≤L,θl

−αlEp[∆] + Ep[log

∫
egl−1eαl∆l∫
egl−1

],

= min
|βl|≤L,θl

−αlEp[∆l] + Ep[log(Epgl−1
[eαl∆l ])] (4.46)

where ∆l = βlϕθl − gl−1. To bound the log term, we use the inequality log(1+ ϵ) ≤ ϵ and

set ϵ = Epgl−1
[eαl∆l ]− 1. Thus,

min
|βl|≤L,θl

D(p||pgl)−D(p||pgl−1
) ≤ min

|βl|≤L,θl
−αlEp[∆l] + (Epgl−1

[eαl∆l ]− 1) (4.47)

To bound eαl∆l for ||∆l||∞ ≤ 2LM , we use Taylor series expansion as follows:

eαl∆l ≤ 1 + αl∆l +
α2
l∆

2
l

2
+ C3

α3
l |∆3

l |
6

, (4.48)

where C3 =
e2LM−1−2LM− 4L2M2

2
8L3M3

6

. Note that gl, and ∆l can be bounded as follows:

||gl||∞ ≤ |(1− αl)|||gl−1||∞ + |αl||βl|||ϕθl ||∞. (4.49)

Since |βl| ≤ L, ||ϕθl ||∞ ≤M , ||gl−1||∞ ≤ LM , and 0 ≤ αl ≤ 1 therefore

||gl||∞ ≤ (1− αl)LM + αlLM

≤ LM, (4.50)

and

∆l ≤ ||∆l||∞

= ||βlϕθl − gl−1||∞
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≤ ||βlϕθl ||∞ + ||gl−1||∞

≤ LM + LM = 2LM. (4.51)

Thus,

min
|βl|≤L,θl

D(p||pgl)−D(p||pgl−1
) ≤ min

|βl|≤L,θl
−αlEp[∆l] + αlEpgl−1

[∆l] + α2
lEpgl−1

[
∆2

l

2
]

+ α3
lEpgl−1

[
C3|∆3

l |
6

].

Using (4.51) we can bound Epgl−1
[
∆2

l
2 ] ≤ 2L2M2, and Epgl−1

[
C3|∆3

l |
6 ] ≤ e2LM −1−2LM−

2L2M2. Thus,

min
|βl|≤L,θl

D(p||pgl)−D(p||pgl−1
) ≤ α2

lK2 + α3
lK3 + min

|βl|≤L,θl
−αlEp[∆l]

+ αlEpgl−1
[∆l], (4.52)

where K2 = 2L2M2, and K3 = e2LM − 1 − 2LM − 2L2M2. Plugging back (4.52) into

(4.45) with probability at least 1− δ

G(αl) ≤ αl(D(p||pgl−1
) +K ′

1) + α2
lK2 + α3

lK3

+ min
|βl|≤L,θl

αl(Epgl−1
[∆l]− Ep[∆l]). (4.53)

To bound min|βl|≤L,θl αl(Epgl−1
[∆l]− Ep[∆l]), we start with simplifying the term

min
|βl|≤L,θl

αl(Epgl−1
[∆l]− Ep[∆l]) = min

|βl|≤L,θl
αl(Epgl−1

[βlϕθl − gl−1]−Ep[βlϕθl − gl−1])

= αl(Ep[gl−1]− Epgl−1
[gl−1])

+ min
|βl|≤L,θl

αl(Epgl−1
[βlϕθl ]− Ep[βlϕθl ])
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(4.54)

We can simplify αl(Ep[gl−1]− Epgl−1
[gl−1]) as follows:

αl(Ep[gl−1]− Epgl−1
[gl−1]) = αl(Ep[gl−1 − Z(gl−1)] + Z(gl−1)

− Epgl−1
[gl−1 − Z(gl−1)]− Z(gl−1))

= αl(Ep[log pgl−1
]− Epgl−1

[log pgl−1
])

= αl(Ep[log pgl−1
− log p] + Ep[log p]

− Epgl−1
[log pgl−1

− log p]−Epgl−1
[log p])

= αl(−D(p||pgl−1
)−D(pgl−1

||p) + Ep[log p]− Epgl−1
[log p])(4.55)

Plugging back (4.55) into (4.54) yields:

min
|βl|≤L,θl

αl(Epgl−1
[∆l]− Ep[∆l]) = αl(−D(p||pgl−1

)−D(pgl−1
||p) + Ep[log p]− Epgl−1

[log p])

+ min
|βl|≤L,θl

αl(Epgl−1
[βlϕθl ]−Ep[βlϕθl ]) (4.56)

We use the mean value theorem to bound min|βl|≤L,θl Q(θl, βl) where Q(θl, βl) =

(Epgl−1
[βlϕθl ]− Ep[βlϕθl ]). Based on the mean value theorem

min
|βl|≤L,θl

Q(θl, βl) ≤ min
|βl|≤L

EΠ(Q(θl, βl)), (4.57)

where

EΠ(Q(θl, βl)) = Epgl−1
[

∫
βlϕθlΠ(θ)dθ]− Ep[

∫
βlϕθlΠ(θ)dθ], (4.58)
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and Π = λ̃(θ)µ(dθ)/
∫
λ̃(θ)µ(dθ) is a probability measure on Θ. Moreover

min
|βl|≤L

EΠ(Q(θl, βl)) ≤ EΠ(Q(θl, β
′)), β′ =

∫
λ̃(θ)µ(dθ)

≤ Epgl−1
[

∫
ϕθl λ̃(θ)dθ]−Ep[

∫
ϕθl λ̃(θ)dθ]

≤ Epgl−1
[log p]− Ep[log p] (4.59)

Thus,

min
|βl|≤L,θl

αl(Epgl−1
[βlϕθl ]− Ep[βlϕθl ]) ≤ αl(Epgl−1

[log p]− Ep[log p]). (4.60)

Plugging back (4.60) into (4.56) yields

min
|βl|≤L,θl

αl(Epgl−1
[∆l]− Ep[∆l]) ≤ αl(−D(p||pgl−1

)−D(pgl−1
||p)). (4.61)

If we substitute (4.61) into (4.53), then with probability at least 1− δ

G(αl) ≤ αlK
′
1 + α2

lK2 + α3
lK3 − αlD(pgl−1

||p). (4.62)

Since αlD(pgl−1
||p) ≥ 0, then with probability at least 1− δ

G(αl) ≤ F (αl), (4.63)

where F (αl) = αlK
′
1 + α2

lK2 + α3
lK3.
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Solve recursion error Given

E(l) ≤ min
0≤αl≤1

(1− αl)E
(l−1) + αlK

′
1 + α2

lK2 + α3
lK3, (4.64)

and αl =
3

l+2 , we have

E(l) ≤ K ′
1 +

6K2

l + 2
+

27K3

(l + 2)2
. (4.65)

Proof See Appendix 4.5.3.

Error bound in step m By setting l = m and m =
√
n in (4.65) for the error in step

m we have

E(m) ≤ K1
√
d+ 2 logm

m
+

6K2

m+ 2
+

27K3

(m+ 2)2
, (4.66)

where d = 2 log 2
δ .

4.4.2.2 Left hand side inequality

We want to show that

E(m) ≥ −K1
√
d+ 2 logm

m
. (4.67)
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Proof We start with the definition of E(l)

E(l) = min
0≤αl≤1,βl,θl

D(p||pgl) + (Ep[gl]− Ep̂[gl]). (4.68)

Since min0≤αl≤1,|βl|≤L,θl D(p||pgl) ≥ 0, thus

E(l) ≥ min
0≤αl≤1,|βl|≤L,θl

(Ep[gl]− Ep̂[gl]) (4.69)

Using the Hoeffding inequality with probability at least 1 − δ (see Appendix 4.5.2) as

follows:

−|Ep[gl]− Ep̂[gl]| ≥ −K1
√
d+ 2 logm√

n
. (4.70)

By setting m =
√
n and plugging back (4.70) into (4.69), we have

E(l) ≥ −K1
√
d+ 2 logm

m
. (4.71)

Evaluating E(l) at l = m

E(m) ≥ −K1
√
d+ 2 logm

m
. (4.72)
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4.5 Appendix

4.5.1 proof of minλ,θD(p||p(x;λ∗(θ), θ)) ≤ 27(e2LM − 1 − 2LM −

14/9L2M 2)

Let g0 = 0. We construct g∗l recursively as follows:

g∗l = gl(α
∗
l , β

∗
l , θ

∗
l ), (4.73)

where

gl = (1− αl)gl−1 + αlβlϕθl , (4.74)

and α∗
l , β

∗
l , and θ

∗
l are chosen by

α∗
l , β

∗
l , θ

∗
l = arg min

0≤αl≤1,|βl|≤L,θl
−Ep[log pgl ]. (4.75)

Let Al = min0≤αl≤1,|βl|≤L,θl D(p||pgl), where pgl = egl−Z(gl), and Z(gl) = log
∫
egldx. We

want to show that

Al ≤
6K2

l + 2
+

27K3

(l + 2)2
, (4.76)

where K2 = 2L2M2, and K3 = e2LM − 1− 2LM − 2L2M2.

Proof We start with Al as follows:

Al = min
0≤αl≤1,|βl|≤L,θl

D(p||pgl)
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= min
0≤αl≤1,|βl|≤L,θl

Ep[log p] + Z(gl)− Ep[gl]

= min
0≤αl≤1,|βl|≤L,θl

Ep[log p] + Z(gl−1 + αl∆l)− Ep[gl−1 + αl∆l], ∆l = βlϕθl − gl−1

= min
0≤αl≤1,|βl|≤L,θl

Ep[log p]− Ep[gl−1] + Z(gl−1) + Z(gl−1 + αl∆l)− Z(gl−1)− αlEp[∆l]

= min
0≤αl≤1,|βl|≤L,θl

D(p||pgl−1
) + logEpgl−1

[eαl∆l ]− αlEp[∆l]

= Al−1 + min
0≤αl≤1,|βl|≤L,θl

logEpgl−1
[eαl∆l ]− αlEp[∆l]. (4.77)

We use the Taylor series log(1 + ϵ) ≤ ϵ to bound the log term. Thus

Al ≤ Al−1 + min
0≤αl≤1,|βl|≤L,θl

(Epgl−1
[eαl∆l ]− 1)− αlEp[∆l]. (4.78)

For ∆l ≤ 2LM , we can bound eαl∆l ≤ 1 + αl∆l + α2
l∆

2
l /2 + α3

l
C3|∆3

l |
6 , where C3 =

e2LM−1−2LM−2L2M2

4/3L3M3 . Thus,

Al ≤ Al−1 + min
0≤αl≤1,|βl|≤L,θl

Epgl−1
[αl∆l + α2

l∆
2
l /2 + α3

l

C3|∆3
l |

6
]− αlEp[∆l]

≤ Al−1 + min
0≤αl≤1

(α2
lK2 + α3

lK3 + αl min
|βl|≤L,θl

Epgl−1
[∆l]− Ep[∆l]) (4.79)

where K2 = Epgl−1
[∆2

l /2] ≤ 2L2M2, and K3 = Epgl−1
[
C3|∆3

l |
6 ] ≤ e2LM − 1 − 2LM −

2L2M2. By expanding

Epgl−1
[∆l]− Ep[∆l] = Epgl−1

[gl−1]− Ep[gl−1] + Ep[βlϕθl ]− Epgl−1
[βlϕθl ], (4.80)

we can reorganize Epgl−1
[gl−1]− Ep[gl−1] as:

Epgl−1
[gl−1]− Ep[gl−1] = (Ep[gl−1 − Z(gl−1)] + Z(gl−1)− Epgl−1

[gl−1 − Z(gl−1)]− Z(gl−1))

= αl(Ep[log pgl−1
]− Epgl−1

[log pgl−1
])
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= αl(Ep[log pgl−1
− log p] + Ep[log p]− Epgl−1

[log pgl−1

− log p]− Epgl−1
[log p])

= αl(−D(p||pgl−1
)−D(pgl−1

||p) + Ep[log p]−Epgl−1
[log p]) (4.81)

Thus,

Al ≤ Al−1 + min
0≤αl≤1

(α2
lK2 + α3

lK3 + αl(−D(p||pgl−1
)−D(pgl−1

||p) + Ep[log p]− Epgl−1
[log p])

+ αl min
|βl|≤L,θl

Ep[βlϕθl ]− Epgl−1
[βlϕθl ]) (4.82)

We use the mean value theorem to bound min|βl|≤L,θl Q(θl, βl) where Q(θl, βl) =

(Epgl−1
[βlϕθl ]− Ep[βlϕθl ]). Based on the mean value theorem

min
|βl|≤L,θl

Q(θl, βl) ≤ min
|βl|≤L

EΠ(Q(θl, βl)), (4.83)

where

EΠ(Q(θl, βl)) = Epgl−1
[

∫
βlϕθlΠ(θ)dθ]− Ep[

∫
βlϕθlΠ(θ)dθ], (4.84)

and Π = λ̃(θ)µ(dθ)/
∫
λ̃(θ)µ(dθ) is a probability measure on Θ. Moreover

min
|βl|≤L

EΠ(Q(θl, βl)) ≤ EΠ(Q(θl, β
′)), β′ =

∫
λ̃(θ)µ(dθ)

≤ Epgl−1
[

∫
ϕθl λ̃(θ)dθ]−Ep[

∫
ϕθl λ̃(θ)dθ]

≤ Epgl−1
[log p]− Ep[log p] (4.85)
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Thus,

min
|βl|≤L,θl

αl(Epgl−1
[βlϕθl ]− Ep[βlϕθl ]) ≤ αl(Epgl−1

[log p]− Ep[log p]). (4.86)

If we plug back (4.86) into (4.82) therefore,

Al ≤ min
0≤αl≤1

(1− αl)Al−1 + α2
lK2 + α3

lK3 − αD(pgl−1
||pgl). (4.87)

Since −αlD(pgl−1
||pgl) ≤ 0, thus

Al ≤ min
0≤αl≤1

(1− αl)Al−1 + α2
lK2 + α3

lK3. (4.88)

If we solve it for αl (see Section 4.5.1.1), then we have

Al ≤
6K2

l + 2
+

27K3

(l + 2)2
. (4.89)

4.5.1.1 Solve the recursion

Given

Al ≤ min
0≤αl≤1

(1− αl)Al−1 + α2
lK2 + α3

lK3, (4.90)
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and αl =
3
l , we have

Al ≤
6K2

l + 2
+

27K3

(l + 2)2
. (4.91)

Proof By induction, we show that if Al−1 ≤ 6K2
l+1 + 27K3

(l+1)2
, then Al ≤ 6K2

l+2 + 27K3
(l+2)2

. We

start with

Al ≤ (1− 3

l + 2
)Al−1 +

9K2

(l + 2)2
+

27K3

(l + 2)3

≤ (1− 3

l + 2
)(

6K2

l + 1
+

27K3

(l + 1)2
) +

9K2

(l + 2)2
+

27K3

(l + 2)3
. (4.92)

We have to show that:

(1− 3

l + 2
)(

6K2

l + 1
+

27K3

(l + 1)2
) +

9K2

(l + 2)2
+

27K3

(l + 2)3
≤ 6K4

l + 2
+

27K3

(l + 2)2

l − 1

l + 2
(
6K2

l + 1
+

27K3

(l + 1)2
) +

9K2

(l + 2)2
+

27K3

(l + 2)3
≤ 6K2(l + 2) + 27K3

(l + 2)2

l − 1

l + 2
(
6K2(l + 1) + 27K3

(l + 1)2
) +

9K2(l + 2) + 27K3

(l + 2)3
≤ 6K2(l + 2) + 27K3

(l + 2)2

(4.93)

The LHS can be simplified further as follows:

(6l4 + 33l3 + 54l2 + 21l − 6)K2 + (27l3 + 108l2 + 54l − 81)K3.

The RHS also can be simplified as follows:

(6l4 + 36l3 + 78l2 + 72l + 24)K2 + (27l3 + 108l2 + 135l + 54)K3.
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Therefore, if we subtract LHS and RHS we get

−3K2l
3 − 24K2l

2 − (51K2 + 91K3)l − 165K3, (4.94)

which is always negative for l ≥ 1.

4.5.2 Proof of p(|
∑m

l=1 λl(
¯ϕθl(x)−Ep[ϕθl(x)])| ≥ ML√

n

√
2 log 2m

δ ) ≤ δ

Define Xl = λl( ¯ϕθl(x)− Ep[ϕθl(x)]). We want to proof that

p(|
m∑
l=1

Xl| ≥ ϵ) ≤ δ, (4.95)

where ϵ = ML√
n

√
2 log 2m

δ .

Proof We start with the LHS of (4.95) as follows:

p(|
m∑
l=1

Xl| ≥ ϵ) ≤ p(
m∑
l=1

|Xl| ≥ ϵ) triangle inequality

p(

m∑
l=1

|Xl| ≥ ϵ) ≤ p(∪m
l=1|Xl| ≥ ϵ)

p(∪m
l=1|Xl| ≥ ϵ) ≤

m∑
l=1

p(|Xl| ≥ ϵl), (∀ϵl ≥ 0,

m∑
l=1

ϵl = ϵ) union bound (4.96)

Specifically we choose ϵl =
||λl||1M

√
2 log 2

δl√
n

, where ||ϕl||∞ ≤ M . Thus, if we show that
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p(|Xl| ≥
||λl||1M

√
2 log 2

δl√
n

) ≤ δl, then based on (4.96)

p(|
m∑
l=1

Xl| ≥ ϵ) ≤
m∑
l=1

p(|Xl| ≥ ϵl)

≤
m∑
l=1

δl = δ. (4.97)

To prove p(|Xl| ≥
||λl||1M

√
2 log 2

δl√
n

) ≤ δl, we proceed as follows:

p(|Xl| ≥ ϵl) = p(|λl
n∑

i=1

(ϕl(xi)− E[ϕl(x)])| ≥ nϵl). (4.98)

Because p(−||λl||1M ≤ |λlϕl(xi)| ≤ ||λl||1M) = 1, by applying Hoeffding inequality:

p(|λl(ϕ̄l(xi)− E[ϕl(x)]|) ≤ 2e
−2n2ϵ2l

n(2M||λl||1)2 = δl (4.99)

If we choose ϵl =
||λl||1
||λ||1 ϵ, therefore

δ =

m∑
l=1

δl = 2me
−nϵ2

2(ML)2 . (4.100)

Thus δ
m = 2e

−nϵ2

2(ML)2 = δl, and ϵ =
ML√

n

√
2 log m

2δ .
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4.5.3 proof of E(l) ≤ K ′
1 +

6K2

l+2 + 27K3

(l+2)2

Consider the following recursion:

E(l) ≤ min
α

(1− α)E(l−1) + αK ′
1 + α2K2 + α3K3. (4.101)

where K ′
1 = K1

√
d+2 logm

m , d = 2 log 2
δ , K1 = LM , K2 = 2L2M2, K3 = e2LM−1−2LM−

2L2M2 > 0. We want to show that

E(l) ≤ K ′
1 +

6K2

l + 2
+

27K3

(l + 2)2
. (4.102)

Proof By induction, we show that if E(l−1) ≤ K ′
1 +

6K2
l+1 + 27K3

(l+1)2
, then E(l) ≤ K ′

1 +

6K2
l+2 + 27K3

(l+2)2
. We start with (4.101)

E(l) ≤ (1− 3

l + 2
)E(l−1) +

9K2

(l + 2)2
+

27K3

(l + 2)3

≤ (1− 3

l + 2
)(K ′

1 +
6K2

l + 1
+

27K3

(l + 1)2
) +

3K ′
1

l + 2
+

9K2

(l + 2)2
+

27K3

(l + 2)3
.(4.103)

We have to show that:

(1− 3

l + 2
)(K ′

1 +
6K2

l + 1
+

27K3

(l + 1)2
) +

3K ′
1

l + 2
+

9K2

(l + 2)2
+

27K3

(l + 2)3
≤ K ′

1 +
6K4

l + 2
+

27K3

(l + 2)2

l − 1

l + 2
(K ′

1 +
6K2

l + 1
+

27K3

(l + 1)2
) +

3K ′
1

l + 2
+

9K2

(l + 2)2
+

27K3

(l + 2)3
≤ K ′

1(l + 2)2 + 6K2(l + 2) + 27K3

(l + 2)2

l − 1

l + 2
(
K ′

1(l + 1)2 + 6K2(l + 1) + 27K3

(l + 1)2
) +

3K ′
1(l + 2)2 + 9K2(l + 2) + 27K3

(l + 2)3
≤

K ′
1(l + 2)2 + 6K2(l + 2) + 27K3

(l + 2)2
(4.104)
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The LHS can be simplified further as follows:

(l5 + 8l4 + 25l3 + 38l2 + 28l + 8)K ′
1 + (6l4 + 33l3 + 54l2 + 21l − 6)K2

+(27l3 + 108l2 + 54l − 81)K3.

The RHS also can be simplified as follows:

(l5 + 8l4 + 25l3 + 38l2 + 28l + 8)K ′
1 + (6l4 + 36l3 + 78l2 + 72l + 24)K2

+(27l3 + 108l2 + 135l + 54)K3.

Therefore, if we subtract LHS and RHS we get

−3K2l
3 − 24K2l

2 − (51K2 + 91K3)l − 165K3, (4.105)

which is always negative for l ≥ 1.

4.5.3.1 Bound for the error in step one

We want to show that

E(1) ≤ K ′
1 + 2K2 + 3K3. (4.106)

Proof Using (4.37) for error in step one we have:

E(1) = min
|β1|≤L,θ1

D(p||pg1) + (Ep[g1]− Ep̂[g1]), (4.107)
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where g1 = β1ϕθ1. Note that g0 = 0 and α1 = 1. We can follow the same procedure as

we did in Section 4.4.2.1 to bound E(1). Note that pgl−1
= pg0 is the uniform distribution

pu which is defined as

pu =


1∫

X dx
x ∈ X

0 o.w.
(4.108)

where X is the support of p(x). By applying Hoeffding inequality to the second term in

the RHS of (4.107), we have

E(1) ≤ K ′
1 + min

|β1|≤L,θ1
D(p||pg1) (4.109)

where K ′
1 =

LM
√
d+2 logm√

n
, d = 2 log 2

δ . Thus,

min
|β1|≤L,θ1

D(p||pg1) = min
|β1|≤L,θ1

Ep[log p] + Z(g1)− Ep[g1]

= min
|β1|≤L,θ1

Ep[log p] + log

∫
e∆1 pu
pu

− Ep[∆1], ∆1 = β1ϕθ1

= min
|β1|≤L,θ1

Ep[log p] + logEpu [e
∆
1 ]− Epu [log pu]− Ep[∆1].(4.110)

We can bound logEpu [e
∆
1 ] by applying the Taylor series to the log and exponent term

(see (4.47), and (4.48)). Therefore,

min
|β1|≤L,θ1

D(p||pg1) ≤ K ′
2 +K ′

3 + Ep[log p]− Epu [log pu] + min
|β1|≤L,θ1

Epu [∆1]− Ep[∆1],(4.111)

where K ′
2 = K2

4 , and K ′
3 = eLM − 1 − LM − L2M2/2. If we use the same idea of the
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mean value theorem (see (4.57)) thus,

min
|β1|≤L,θ1

Epu [∆1]−Ep[∆1] ≤ Epu [log p]− Ep[log p] (4.112)

Plugging back (4.112) into (4.111) yields

min
|β1|≤L,θ1

D(p||pg1) ≤ K ′
2 +K ′

3 + Ep[log p]− Epu [log pu] + Epu [log p]−Ep[log p]

≤ K ′
2 +K ′

3 −D(pu||p). (4.113)

Knowning that −D(pu||p) ≤ 0, if we plug back (4.113) into (4.109) yields

E(1) ≤ K ′
1 +K ′

2 +K ′
3. (4.114)

Since E(1) ≤ K ′
1 +K ′

2 +K ′
3 and since Ki ≥ 0, thus

E(1) ≤ K ′
1 + 2K2 + 3K3. (4.115)
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Chapter 5: Confidence-Constrained Maximum Entropy Framework

for Learning Multi-instance Data

5.1 Introduction

Multi-instance learning (MIL) refers to a class of learning problem where each object

represented as a bag of instances. For example, a document (bag) comprises of words

(instance), an image (bag) consists of local region patches (instance), and a webpage

(bag) is a list of links (instance). MIL has been applied to many areas in machine

learning and signal processing e.g., drug activity detection [42], text classification [3,

124], object detection in image [109], and content-based image categorization [36, 123].

Machine learning algorithms are described as either supervised or unsupervised. Multi-

instance learning (MIL) refers to the prediction problem or supervised learning [3, 36,

42, 112] in which the main goal is to predict the label of an unseen bag, given the label

information of the training bags. On the other hand, learning from multi-instance data

in an unsupervised manner is called grouped data modeling [22, 23, 107] in which the

main goal is to uncover the underlying (hidden) structure of the data in the input.

In the supervised MIL, each bag is associated with a class of label and the goal is

to predict an unseen bag given all instances inside the bag. Due to the ambiguity of

the label information related to instances and weak association between instance-level

information and bag-level information, supervised MIL is a challenging task. Since the

introduction of the MIL approach in machine learning and signal processing, numerous
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algorithms have been proposed either by upgrading traditional algorithms to MIL e.g.,

citation kNN [112], MI-SVM and mi-SVM [3], neural network MIL [96], or devising

a new algorithm specifically for MIL e.g., axis-parallel rectangles (APR) [42], diverse

density (DD) [80], EM-DD [122], and MIBoosting [115]. MIL has been studied in an

unsupervised setting in [60,119,121].

In all of the above mentioned algorithms, the instance-level similarity metric has

been used such as Hausdorff or Mahalabonis distance [65, 111, 112, 116]. The instance-

level metrics are computationally expensive and increases quadratically in the number of

instances in each bag [116]. Moreover, instance level metrics cannot reflect the structure

similarity defined in the bag level and it is difficult to identify the characteristic of each

bag using instance-level similarity [52]. For example, images with similar objects in some

regions and many other incompatible objects in other regions could not be identified

in the same class using the instance-level metric [111]. Some kernel approaches have

been proposed which consider the statistical properties of the instances to measure the

similarity in the bag-level [52]. Each bag is mapped to a single point, then a kernel is

used to classify at the bag-level. The problem of computational complexity associated

with instance-level metrics has been solved by trying to represent each bag with few

samples in a very high dimension e.g., single-blob-with-neighbors (SBN) representation

for each image [81]. Moreover, this abstract representation can avoid significant effects

of noise in each bag. That is because in labeling each bag, it is positive if and only if one

instance inside the bag is positive. Thus, having a rich representation of each bag may

introduce some noise in each bag which can not be captured by instance-level similarity.

A statistical representation of each bag can address this problem.

In this work, we consider the problem of associating each bag with a probability

distribution obtained by the principle of maximum entropy. Assuming that each instance
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in a bag is generated i.i.d. from an unknown density function, we fit to each bag a density

function exploiting the statistical property of instances which can capture the structure of

the data at the bag level. This approach has several advantages over existing approaches.

First, the problem can be solved in a convex framework. Second, it maps each bag of

instances into a point in the probability distribution space which captures the structure

of the data. In this framework each bag is parameterized by a vector which carries all the

information about the instances inside each bag. This approach brings the problem of

multi-instance learning from instance-level into bag-level where it is convenient to learn

a meaningful metric and computationally is less complex. Third, a meaningful metric

can be defined over the space of distributions to measure the similarity among bags.

Moreover, the computational complexity significantly drops from quadratically in the

number of instances to quadratically in the number of features.

Our contributions in this work are: 1) we introduce a new framework for MIL using

the principle of maximum entropy approach, 2) a metric defined over the space of the

distributions is introduce to measure the similarities among bags in MIL, 3) we proposed

confidence-constrained maximum entropy to learn the space of distributions jointly, 4)

an accelerated proximal gradient approach is proposed to solve the convex optimization

problem, 5) the performance of the proposed approach is evaluated in terms of rank

recovery in the space of distributions and compared with regularized MaxEnt, and 6)

we examined the classification accuracy of CCMaxEnt on four real world dataset and

compared the results with the state-of-the-art algorithms in MIL.
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5.2 Problem statement

Suppose we are given a set of N bags {X1, X2, . . . , XN}, where Xi ∈ X . The instances

in the bag are denoted as {xi1, xi2, . . . , xini}, where ni is the total number of instance

in bag i. We consider the problem of unsupervised learning of distribution for each bag

using the maximum entropy framework. The goal is to 1) provide a latent representation

for each bag Xi using a generative model pλi
obtained by maximum entropy, 2) provide a

joint probability framework with some regularization which takes into account the model

complexity and insufficient number of samples, 3) provide a framework to examine the

accuracy of the estimation obtained by the proposed framework. The representation as a

distribution (instead of a set of points) allows bags to be represented in the same space,

i.e., pλi
∈ P. This approach provides a framework where structure can be introduced

at the probability distribution level rather than at the instance level. For example,

dimension reduction can be performed in the distribution space P rather than in the

instance space X .

Mapping each bag to a distribution using the maximum entropy approach provides

an abstraction in data representation. In this representation, each density pλi
correspond

to one bag Xi. Thus, the similarity measurement between two bags Xi and Xj is

equivalent to measuring the distance between the corresponding densities pλi
and pλj

in the space of the probability. We use KL-divergence between two densities pλi
and

pλj
. The complexity for computing bag-level similarity measures after summarizing each

bag by a statistic is superior to that of instance-level similarity based methods such as

Hausdorff distance.
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5.3 Maximum entropy framework for multi-instance data

We consider the maximum entropy framework for modeling multiple-instance datasets

by treating multi-instance examples as probability distributions. We are interested in the

development of a framework that will allow convenient incorporation of structure (e.g.,

geometric, low-dimension) in the distribution space. The problem of density estimation

can be define as follows. Given an i.i.d. set of samples X = {x1, x2, . . . , xn} from an

unknown density function p, find an estimator for p. We use the framework of maximum

entropy to estimate p [2]. In the maximum entropy framework one is interested in

identifying a unique distribution given a set of constraints on generalized moments of

the distributions: Ep[ϕj ] = αj where ϕ ∈ Rm is feature function defined over the space

of the samples. The basis functions ϕ summarize the statistical property of samples by

mapping each sample into a single point. It is assumed that the unknown distribution

p can be parametrized by a set of coefficients λ ∈ Rm, and that an estimate of these

parameters can be obtained by solving a convex optimization problem. This framework

has the advantage of not restricting the class of the distribution to a specific density and

considers a wide range of density functions in the class of exponential family. In fact, it

is shown that with a rich set of basis function ϕ, the approximation error decreases in

order of O(1/m) where m is the number of basis [15]. We explain the maximum entropy

approach below.

5.3.1 Single density estimation (SDE)

The maximum entropy (MaxEnt) framework for density estimation was first proposed

by Janes [64] and has been used in many areas of computer science and signal process-
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ing including natural language processing [18,40], species distribution modeling [47,92],

text classification [87, 125], and image processing [102] . The maximum entropy frame-

work [37] finds a unique probability density function (p.d.f) over X that satisfies the

constraints Ep[ϕ(x)] = α, where ϕ(x) ∈ Rm is feature transformation defined over X .

In principle, many p.d.f.’s can satisfy the constraints. The maximum entropy approach

selects a unique distribution among them. The problem of single density estimation in

the maximum entropy framework can be formulated as:

maximize H(p) (5.1)

subject to Ep[ϕj ] = Ep̂[ϕj ]∫
p(x)dx = 1,

where H(p) = −
∫
p(x) log p(x)dx is the entorpy of p(x), Ep[ϕj ] =

∫
p(x)ϕjdx and

Ep̂[ϕj ] =
1
n

∑n
l=1 ϕj(xl) is the empirical mean of ϕ(x). It can be shown that a solu-

tion to (5.1) can be represented as follows:

pλ(x) = exp
(
λTϕ(x)− Z(λ)

)
, (5.2)

where Z(λ) = log
∫
expλTϕ(x). We will now derive the maximum-likelihood (ML)

estimator for the parameter λ in pλ given n i.i.d. observations x1, . . . , xn. First, note

that assuming the form of p.d.f. in (5.2), the log likelihood can be written as

L = log p(x1, x2, . . . , xn) =

n∑
i=1

(λTϕ(xi)− Z(λ)) = n(λTEp̂[ϕ(x)]− Z(λ)). (5.3)
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Note that
∑n

i=1 ϕ(xi) = nEp̂[ϕ(x)]. Thus, we can write the negative log-likelihood

function as follows:

−L = −nEp̂[λ
Tϕ(x)− Z(λ)]

= nEp̂[log p̂]− nEp̂[λ
Tϕ(x)− Z(λ)]

= nD(p̂∥pλ) + Υ, (5.4)

where Υ = nEp̂[log p̂] is a constant andD(p∥q) = Ep[log p−log q]. Therefore, maximizing

the log-likelihood in (5.3) w.r.t. λ is equivalent to minimizing the KL-divergence in (5.4)

w.r.t. λ. Thus, λ̂ can be obtained as a result of the following optimization problem:

λ̂ = argmin
λ
nD(p̂∥pλ)

= argmin
λ
n(Z(λ)− λTEp̂[ϕ(x)]), (5.5)

where ϕ̄ =
∑n

l=1 ϕ(xl)/n ∈ Rm. There are several algorithms for solving MaxEnt e.g.,

iterative scaling [40] and its variants [47,92], gradient descent, Newton, and quasi-Newton

approach [78, 99]. The ML optimization problem is convex in terms of λ and can be

solved efficiently using Newton’s method. Newton’s method requires the first and second

derivative of the objective function w.r.t. λ. These derivatives are given below.

∇λ = n(Ep(λ)[ϕ]− ϕ̄)

∇2
λ = n(Ep(λ)[ϕ]Ep(λ)[ϕ]

T − Ep(λ)[ϕϕ
T ]) (5.6)

Algirthm 5 lists Newton’s method. MaxEnt can overfit data due to low number of

samples or large number of feature function ϕ [46,47]. Regularized MaxEnt is proposed
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Algorithm 5 Single density estimation algorithm

Input: X = {x1, x2, . . . , xn} sample from bag X, K, ϕ ∈ Rm, λ0 ∈ Rm.
Output: λ ∈ Rm and Z
for k = 1 to K do

∆λk = −∇2
λk

−1∇k
λ

Find tk using backtracking
λk+1 = λk + tk∆λk

end for

to overcome the issue of overfitting in MaxEnt [34, 46, 56, 67, 70]. Regularized MaxEnt

can be either formulated as relaxing the equality in (5.1) [34, 56] or putting a prior on

the p.d.f. in (5.2) [34, 67] (Laplace prior yields l1 regularization and Gaussian prior

yields l2 regularization). Algorithms for solving regularized MaxEnt are proposed in

[34,46,47,56,67]. Convergence analysis for regularized MaxEnt is provided in [15,46,47].

The problem of single density estimation is presented to introduce the maximum entropy

framework for density estimation. In the next section, we show how to use the maximum

entropy framework for multiple density estimation in MIL.

5.3.2 Multiple density estimation (MDE)

Multiple density estimation (MDE) for MIL can be done following the same principle

as explained for single density estimation in the previous section. In MDE each bag is

represented by one distribution and the cost function for MDE, due to bag independence,

is the sum of the cost functions for all bags. MDE can be solved using the following

minimization:

λ̂ = argmin
λ

N∑
i=1

niD(p̂i∥pλi
)
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= argmin
λ

N∑
i=1

ni(Z(λi)− λTi ϕ̄i), (5.7)

where λ̂ = [λ̂1, . . . , λ̂N ] and λ = [λ1, . . . , λN ]. MDE formulation proposed in (5.7) consid-

ers the density estimation for each bag individually. This individual estimate addresses

the nature of each dataset separately and ignores the fact that the underlying structure

of the data can be shared among all datasets. This might cause a poor generalization

performance due to the low number of samples for some datasets [45]. One the other

hand, we can pool data and considers all the data comes from one density which in fact

ignores the important differences among the datasets. A middle ground approach is to

use regularization to force the joint density estimation while keep the origin of each data

uninfluenced. Hierarchical density estimation [46] formulates the problem of MDE using

l1 regularization. The regularization defined on each data separately and on the group

of the data defined in the hierarchy. Note that the hierarchal structure of the data is

a prior information. However, in most cases in the real world applications the relations

among the datasets are unknown beforehand, e.g., in text or image datasets. In the fol-

lowing, we proposed a framework for learning jointly in the space of distributions using

the principle of maximum entropy.

5.3.3 Rank recovery in the space of distributions

In this section, we introduce the concept of rank recovery in the space of distributions.

Later, we show how rank recovery can help in jointly learning the space of distributions.

The dimension of the space of distributions is controlled by the size of the basis ϕ =

[ϕ1, ϕ2, . . . , ϕm]T . Often the size of ϕ is large to allow accurate approximation of the
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distribution space. Hence, we are interested in finding a smaller basis that provides a

fairly accurate replacement to the original basis ϕ. We consider the problem of finding

a new basis in the span of ϕ. Suppose a smaller basis ψ can be obtained by ψ = ATϕ,

where ψ = [ψ1, ψ2, . . . , ψk]
T and A is a m × k matrix, where k < m. Instead of using

λTi Φ involving m terms, one can use βTi ψ involving only k terms. In this case, ϕTΛ =

ψTβ = ϕTAβ, where Λ = [λ1, λ2, . . . , λN ] and λi ∈ Rm, which results in Λ = Aβ such

that A ∈ Rm×k and β ∈ Rk×N . Hence Λ = Aβ is a low-rank matrix.

5.3.4 Regularized MDE (RegMDE) using MaxEnt

To obtain a low-rank solution for Λ, we can solve a regularized nuclear norm MDE.

The nuclear norm of a matrix ∥X∥∗ is defined as the sum of the singular values of

matrix X. The nuclear norm is a special class of Schatten norm which is defined as

∥X∥p = (
∑

i σ
p
i )

1
p . When p = 1, ∥X∥p is equal to the nuclear norm. Nuclear norm

enforces sparsity on the singular value of matrix X which results in low-rank structure.

The heuristic replacement of rank with nuclear norm has been proposed for various

application such as matrix completion [29, 97], collaborative filtering [103], and multi-

task learning [93].

In RegMDE, a regularized nuclear norm is added to the objective function in (5.7)

yielding:

minimize

N∑
i=1

ni(Z(λi)− λTi ϕ̄i) + η∥Λ∥∗, (5.8)

where η is the regularization parameter. RegMDE can be viewed as maximum a pos-

teriori (MAP) criterion using a prior distribution over matrix Λ of the form Ce−η∥Λ∥∗ .
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This is similar to the interpretation of l1-regularization for sparse recovery as MAP with

a Laplacian prior. A quasi-Newton approach has been proposed to solve RegMDE [9].

RegMDE can also be formulated as a constrained MDE as follows:

minimize

N∑
i=1

ni(Z(λi)− λTi ϕ̄i),

subject to ∥Λ∥∗ ≤ ν, (5.9)

where ν ≥ 0 is a tuning parameter. For each value of η in (5.8) there is a value of ν in (5.9)

which produces the same solution [54]. One of the main challenges in regularized and

constrained ML is the choice of regularization parameters η and ν, respectively. Often,

a criterion for selection a value for regularization parameter that guarantees exact rank

recovery is unavailable. There is an extensive discussion in [14] for exact rank recovery

in regularized and constrained MDE. We propose the concept of confidence-constrained

rank minimization for jointly learning the space of distributions which overcome the

issues of parameter tuning with regularized and constrained MDE.

5.3.5 Confidence-constrained MaxEnt (CCMaxEnt)

We propose confidence-constrained MaxEnt for learning the space of distributions jointly.

Using the properties of the maximum entropy framework, an in-probability bound on the

objective function in (5.7) can be obtained. The probability bound on the log-likelihood

function allows us to define a confidence set. A confidence set is a high-dimensional

generalization of the confidence interval which we use to restrict the search space of the

problem. Search inside the confidence set guarantees a low-rank solution. Hence, in this

approach the roles of ML objective and rank constraint are reversed. We consider rank
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minimization subject to ML objective constraint. The CCMaxEnt is given by:

minimize Rank(Λ)

subject to

N∑
i=1

niD(pλ̂i
∥pλi

) ≤ ϵ(δ), (5.10)

where ϵ(δ) is an in-probability bound for the estimation error. Note in this formulation

the tuning parameter ϵ(δ) can be obtained by bounding
∑N

i=1 niD(pλ̂i
∥pλi

) (see Ap-

pendix 5.7.1). Since (5.10) involves rank minimization which is non-convex, we provide

an alternative convex relaxation to (5.10) in the following.

5.3.6 CCMaxEnt nuclear norm minimization

In general, rank minimization problems are NP hard [82]. Various algorithms have

been proposed to solve the general rank minimization problem locally (e.g., see [58,83]).

A heuristic replacement of the rank minimization with a nuclear norm minimization

is commonly proposed [50, 97]. To solve the rank minimization problem proposed in

(5.10), we propose the widely used approach of replacing the rank minimization with the

tractable convex optimization problem of nuclear norm minimization. In the following,

CCMaxEnt nuclear norm minimization is proposed as a convex alternative to (5.10):

minimize ∥Λ∥∗

subject to

N∑
i=1

niD(pλ̂i
∥pλi

) ≤ ϵ. (5.11)

We denote the solution to (5.11) by Λ̂∗. Since the nuclear norm is a convex function,

and the set of the inequality and equality constraints construct a convex set, (5.11)
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is a convex optimization problem. This nuclear norm regularization encourages a low-

rank representation to feature space, i.e., all features can be represented as a linear

combination of a few alternative features. Assume Λ = USV T =
∑

j ujsjv
T
j is the

singular value decomposition of Λ, then

λTi ϕ(x) =

k∑
j=1

sj(e
T
i vj)(u

T
j ϕ(x))

=
k∑

j=1

sj(e
T
i vj)ψj(x) = βTi ψ(x) (5.12)

where k is the rank of matrix Λ. Similar to principle component analysis, where each

data point can be approximated as a linear combination of a few principle components,

each bag can be represented as a distribution using a linear combination of only a few

basis functions ψ1(x), . . . , ψk(x). This method facilitates a dimension reduction in the

space of distributions.

5.4 Proximal gradient approach to solve CCMaxEnt nuclear norm

minimization

The optimization problem in (5.11) can be written as follows:

minimize f(Λ)

subject to g(Λ̂,Λ) ≤ ϵ, (5.13)
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where f(Λ) = ∥Λ∥∗ and g(Λ̂,Λ) =
∑N

i=1D(pλ̂i
∥pλi

)ni. The Lagrangian dual of (5.13) is

L(Λ, z) = f(Λ) + z(g(Λ̂,Λ)− ϵ), (5.14)

where z ≥ 0 is the dual variable. Given ∇g(Λ̂,Λ) is Lipschitz continuous with parameter

τg = Nm2 (see Appendix ), where N is total number of bags and m is total number of

feature functions, a quadratic upper bound for (5.14) can be written as:

f(Λ) + z(g(Λ̂,Λ)− ϵ) ≤ f(Λ) + z(g(Λ̂,Λ0) + (Λ− Λ0)
T∇g(Λ̂,Λ0) +

τg
2
∥Λ− Λ0∥2F − ϵ)

= ∥Λ∥∗ + z(
τg
2
∥Λ− Λ′∥2F − 1

2τg
∇g(Λ̂,Λ0)

2 − ϵ)

= Q(Λ,Λ0), (5.15)

where Λ′ = Λ0 − 1
τg
∇g(Λ̂,Λ0). Q(Λ,Λ0) is a quadratic bound on the Lagrangian L. We

consider minimizing Q(Λ,Λ0) w.r.t. Λ due to its closed form solution. The solution to

the minimization of Q(Λ,Λ0) w.r.t. Λ is

Λ̂∗(z) = D 1
τgz

(Λ′) (5.16)

where Dα(X) is the soft-thresholding operator on the singular values of matrix X (for

proof see [27]) defined by Dα(X) = U(S−αI)+V T , where X = USV T is the SVD of X.

To find z∗ we have to maximize Q(Λ̂∗(z),Λ0) w.r.t. z. Since parameter z is a scalar, we

propose a greedy search approach to find the optimum z.
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5.4.1 step size

In the proximal gradient approach, Λ will be updated in each iteration based on 1/τg. In

fact, 1/τg plays the role of step size. However, in practice it is usually very conservative

to set a constant step size τg [108]. As long as the inequality L(Λ, z) ≤ Q(Λ,Λ0) is hold,

the step size can be increased. Therefore, a linesearch-like algorithm is proposed to find

a smaller value for τg which satisfies the inequality.

5.4.2 Acceleration

The convergence rate for the proximal gradient approach is O(1/k) where k is the number

of iteration [74, 108]. The convergence rate of the gradient approach can be speed up

to O(1/k2) using the extrapolation technique proposed in [86] given the fact that the

gradient is Lipschitz continuous. In our problem, the gradient of g(Λ̂,Λ) is Lipschitz

continuous with τg = Nm2 where N is total number of bags and m is total number of

features.

The only costly part of the proximal algorithm is the evaluation of the singular values

in each iteration. Note that in each iteration of soft-thresholding operator we need to

know the number of singular values greater than a threshold. As in [14, 27, 73, 108],

we use the PROPACK package to compute a partial SVD. To accelerate the proximal

gradient approach for CCMaxEnt, we use the acceleration technique proposed in [86].

The pseduo code for CCMaxEnt nuclear norm minimization is proposed in Algorithm 6.
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Algorithm 6 CCMaxEnt nuclear norm minimization

Input: Xi = {xi1, xi2, . . . , xini} sample from bag Xi, i = 1, . . . , N , K, ϕ ∈ Rm,
Λ1,Λ0 ∈ Rm×N ,a1 = a0 = 1, z1−, z

1
+, and α ∈ (0, 1).

Output: λ∗i ∈ Rm and Z(λ∗i )
for j = 1 to . . . do

zk =
zk−+zk+

2 {Dual variable update}
for k = 1 to K do

Λ̄ = Λk + ak−1−1
ak

(Λk − Λk−1)

while L(Λ̄k, zk) ≤ Q(Λ̄k, Λ̄k−1) do
τkg = ατk−1

end while
Gk = Λk − 1

τkg
∇g(Λ̂, Λ̄k) {Proximal step}

Compute Λk+1 = D zk

τ

(Gk) {proximal update}

ak+1 =
1+
√

1+4ak

2
end for
{Line search for dual variable z}
if g(Λ)− ϵ ≥ 0 then
zk+1
− = zk

else
zk+1
+ = zk

end if
if
∑

iD(pλ̂i
∥pλi

)ni − ϵ < consTol then
break

end if
end for

5.5 Experiments

In this section, we evaluate both theoretical and computational aspect of CCMaxEnt

compare to RegMDE for rank recovery in the space of distributions. For the theoretical

part we provide a phase diagram analysis to evaluate the performance of both CCMax-

Ent and RegMDE in rank recovery. We then provide an illustration of distribution space

dimension reduction using CCMaxEnt and RegMDE. Moreover, we show that CCMax-

Ent introduces a metric which can be used in object similarity recognition in image
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processing.

5.5.1 Phase diagram analysis

We use the notion of phase diagram [44] to evaluate probability of rank recovery us-

ing CCMaxEnt and RegMDE for a wide range of matrices Λ of different dimensions

(i.e., features size × number of bags) and different number of topics (rank of matrix

Λ). We construct distributions using low-rank matrix Λ and draw i.i.d samples using

rejection sampling (data are generated in 2D space). Figure 5.1 shows the contour plot

of the first 4 distributions used in our experiment. For the random samples drawn from

the constructed distributions, we obtain Λ̂ by maximum likelihood estimation (e.g., see

(5.7)). Note that Λ̂ is a noisy version of matrix Λ and is full rank. We consider two

Figure 5.1: Contour plot of the first 4 distributions used in our experiment

different setups for number of bags: N = 50 and N = 500. We would like to illustrate

the performance of CCMaxEnt and RegMDE in small (N = 50) and large (N = 500)
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scale problems in terms of rank recovery. For N = 50 bags, we vary the number of

features and number of topics (rank of matrix Λ) over a grid of (m,T ) with m (number

of features) ranging through 7 equispaced points in the interval [20, 50] and T (rank of

matrix Λ) ranging through 10 equispaced points in the interval [2, 20] (see Fig. 5.2).

Each pixel intensity in phase diagram corresponds to the empirical evaluation of the

probability of exact rank recovery. For each pixel in the phase diagram we produce 10

realization of Λ̂ (each Λ̂ is obtained using rejection sampling and then maximum like-

lihood estimation). We run CCMaxEnt and RegMDE for each of 10 realization of Λ̂

and compare the rank of the obtained matrix Λ∗ with the rank of the true Λ. The rank

evaluation is done by counting the number of singular values of matrix Λ∗ exceeding a

threshold. The threshold is defined based on the empirical distribution of the smallest

nonzero singular values of the true matrix Λ (i.e., mean minus three times the standard

deviation). To find the regularization parameter η in RegMDE (5.8), we use a cross

validation approach and continuation technique [77, 108]. The continuation technique

in nuclear norm minimization is similar to the path following algorithm in solving l1

regularized regression (LASSO) proposed in [49]. Convergence analysis of continuation

technique is shown in [59]. For cross validation, we consider a range of regularization

parameter η = {10−4, 10−3, . . . , 103, 104}. For each value of η, we separate data into

train and test sets (70% train and 30% test), and evaluate the test error using the ob-

jective function in (5.8), then select η∗ as the value corresponding to the lowest test

error. For continuation technique, we set η to a large value (η0 = ∥Λ̂∥2F ) and repeatedly

solve the optimization problem (5.8) with a decreasing sequence of ηk until we reach

the target value η̄ (ηk = max(1e−1ηk−1, η̄)) where η̄ = 1e−3η0. Due to large value of

η in the beginning of the algorithm, matrix Λ∗ is low-rank and in each iteration we

increase the rank of Λ∗. Note that the value of constant 1e−3 in η̄ = 1e−3η0 and 1e−1 in
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ηk = max(1e−1ηk−1, η̄) is set manually based on preliminary experiments. The stopping

criteria for CCMaxEnt is the combination of MaxIter ≤ 100, objTol < 1e−2, and consTol

< 1e−1 where MaxIter is the maximum number of iteration of main algorithm, objTol is

the tolerance of objective function ∥fk−1
min − fkmin∥1, and consTol is the tolerance for violat-

ing the confidence constraint ∥
∑

iD(pλ̂i
∥pλi

)ni− ϵ∥. The stopping criteria for RegMDE

is the same as for CCMaxEnt except that objTol is not used. Figure 5.2(a), 5.2(b), and

5.2(c) show the phase diagram results for exact rank recovery with CCMaxEnt, Reg-

MDE (cross validation), and RegMDE (continuation technique) for N = 50. The white
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Figure 5.2: Comparison of probability of exact rank recovery obtained by (a) CCMaxEnt,
(b) RegMDE with cross validation and (c) RegMDE with continuation technique for
N = 50.

region in Fig. 5.2(a) and Fig. 5.2(b) correspond to the probability of exact rank recovery
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obtained by CCMaxEnt and RegMDE, respectively. The white area in Fig. 5.2(a) is

wider than the white areas in Fig. 5.2(b) and Fig. 5.2(c). This is because the proximal

gradient method makes more progress per iteration than the L-BFGS algorithm, but

both run for the same number of iterations. The class of L-BFGS algorithms is usually

slow for non-smooth problems [117]. Moreover, in the proximal gradient approach used

in CCMaxEnt, we use a quadratic bound on the main objective function which results

in a closed-form expression for the proximal operator. Based on Eckart-Young [104] a

low-rank matrix has the lower error in terms of quadratic cost function. Another obser-

vation is that the white area in RegMDE with continuation technique is slightly wider

than RegMDE with cross validation technique. This could be due to the fact that in

the continuation technique we start we a very low-rank matrix Λ and increase the rank

gradually until we reach a targeted value, whereas in the cross validation technique we

keep the regularization parameter constant throughout the optimization.

For N = 500, we scan the number of features and number of topics (rank of matrix

Λ) over a grid of (m,T ) with m ranging through 19 equispaced points in the interval

[100, 1000] and T ranging through 20 equispaced points in the interval [5, 100]. Due to the

high computational complexity of scanning through different values of η in RegMDE with

cross validation, and better result in terms of rank recovery in RegMDE with continuation

technique on small scale data (N = 50), we compare rank recovery between CCMaxEnt

and RegMDE with continuation technique in this case. Figure 5.3(a) and 5.3(b) show

the phase diagram results for exact rank recovery with CCMaxEnt, RegMDE (cross

validation), and RegMDE (continuation technique) for N = 500. We observe that the

white area in CCMaxEnt approach is wider than the white areas in RegMDE approach.
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Figure 5.3: Comparison of probability of exact rank recovery obtained by (a) CCMaxEnt
and (b) RegMDE with continuation technique for N = 500.

5.5.2 Parameter estimation error

We compare the test error vs. runtime for both CCMaxEnt and RegMDE on a synthetic

dataset. We construct a low-rank matrix Λ and generate i.i.d. samples from the low-

rank distribution and estimate matrix Λ̂ using maximum likelihood estimation. Then

we obtain matrix Λ∗ using CCMaxEnt and RegMDE. We consider N = 50, m = 100,

T = 5, and T = 20. We randomly choose 70% of the data as a training set and test

on the rest of the data over 10 different realizations. The test error is evaluated as∑
i Z(λi)− λTi ϕ̄, where i indexes all bags in the test set. Figure 5.4 shows the results of

test error vs. runtime 1. Figure 5.4(a) shows the result for T = 5. Since initially finding

the true model with correct rank in CCMaxEnt is computationally expensive (due to

dual variable update), we observe that RegMDE is performing better than CCMaxEnt

in the beginning. However, we see that overall the test error in CCMaxEnt decreases

faster than RegMDE. In Fig. 5.4(b), the result is shown for T = 20. We see that by

increasing the complexity of the model, it takes longer for CCMaxEnt and RegMDE to

1We run all algorithms on a standard desktop computer with 2.5 GHz CPU (dual core) and 4 GB of
memory implemented in MATLAB.
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find the correct model.
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Figure 5.4: Comparison of test error vs. runtime for N = 50, m = 100, and (a) T = 5,
(b) T = 20.

5.5.3 Dimension reduction

The purpose of this section is to illustrate how dimension reduction can be achieved

using the ψ obtained by CCMaxEnt. Since all the datasets are high dimensional, we use

PCA as a preprocessing step. Figure 5.5 depicts the whole process of implementing our

approach for one image in the Corel1000 dataset [48]. We use the block representation of

the image followed by PCA to reduce the dimension. The image is represented as a bag

of instances where each instance corresponds to a small rectangular patch of pixels. The

feature vector describing each patch is the raw pixel intensities (RGB) with PCA applied

to reduce the dimension. We perform the CCMaxEnt approach to learn a p.d.f. over the

block representation of the image. After performing the nuclear norm minimization in

(5.11) on the Corel1000 dataset, we select one image as an example. Then, we choose

the first few bases of matrix ψ obtained by (5.12) to represent the image as a linear
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Figure 5.5: The whole MaxEnt process from bag representation to fitting a distribution.
The figures from left to right shows the following: (1) how an images is represented as
a bag of instances (blocks), (2) The 2D PCA features of each instance (3) the density
fitted to the data using the maximum entropy principle.

combination of these basis functions. Figure 5.6 shows that the contour plots of these

basis functions. To provide intuitive understanding, we name each basis ψ following the

content of the image corresponding to instances near the peaks of ψ. The first column

of Fig. 5.6 is an image and its corresponding estimated density. The other columns show

each ψi and the part of the image that corresponds to that ψi.
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Figure 5.6: Dimension reduction in the space of the distribution obtained by the bases
ψ. The first column shows the image and corresponding density estimation. The other
columns show each ψ and part of the image that corresponds to that ψ.
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5.5.4 KL-divergence similarity

For classification and retrieval, it is useful to have a similarity measure between bags.

The Kullback-Leibler (KL) divergence between two estimated distributions provides such

a similarity measures. The KL divergence between two distributions obtained by the

maximum entropy approach has a closed form:

D(pλi
∥pλj

) = (λi − λj)
TEpλi

[Φ]− (Zi − Zj). (5.17)

We symmetrize the divergence by adding D(pλi
∥pλj

) +D(pλj
∥pλi

).

D(pλi
∥pλj

) +D(pλj
∥pλi

) = (λi − λj)
T (Epλi

[Φ]− Epλi
[Φ]). (5.18)

Figure 5.7 shows a set of images and their nearest images identified by KL-divergence

similarity. We clearly observe that by using the KL-divergence similarity, the nearest

neighbors are relevant to the main images which validates the efficacy of the proposed

similarity measure.

Figure 5.7: Top: Query image. Bottom: Nearest-neighbor based on KL-divergence.
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5.5.5 Application

We also evaluate the classification accuracy of the proposed KL-divergence based simi-

larity measure when used in distance-based multi-instance algorithms such as Citation-

kNN [112] and bag-level kernel SVM [52]. We compare KL-divergence to bag-level dis-

tance measures that rely on pairwise instance-level comparisons, namely average Haus-

dorff distance [112] and the RBF set kernel [52], both in terms of accuracy and runtime.

The comparison is conducted over four datasets, i.e., the Corel1000 image dataset [48]

Musk1, Musk2 [42], and Flowcytometry [31]. The Corel1000 [48] image dataset consists

of 10 different classes each containing 100 images. We use 50 randomly subsampled

images from 4 classes: ‘buildings’, ‘buses’, ‘flowers’, and ‘elephants’. We represent each

image (bag) as a collection of instances, each of which corresponds to a 10 × 10 pixel

block, and is described by a feature vector of all pixel intensities in 3 color channels

(RGB). The Musk1 dataset [42] describes a set of 92 molecules of which 47 are judged

by human expert to be musks and the remaining 45 molecules are judged to be non-

musk. The Musk2 dataset [42] is a set of 102 molecules of which 39 are judged by

human experts to be musks and the remaining 63 molecules are judged to be non-musks.

Each instance corresponds to a possible configuration of a molecule. The Flowcytometry

dataset consists of 5d vector reading of multiple blood cell samples for each one of 43

patients. For each patient, we have two similar cell characterstics with respect to the

antigens surface which are called 1) chronic lymphocytic leukemia (CLL) or 2) mantle

cell lymphoma (MCL). Each patients are considered as a bag and the blood samples are

instances in the bag. Table 5.1 summarizes the properties of each dataset.
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Table 5.1: Datasets

Dataset bags no. of class Ave. inst/bag dim

Corel1000 (4class) 200 4 950 300

Musk1 92 2 4.5 166

Musk2 102 2 64.7 166

Flowcytometry 43 2 5664 5

5.5.6 Experimental setup

We use classification accuracy as an evaluation metric. In all experiments, we use the

preprocessed datasets obtained by PCA. We perform 10-fold cross validation over all

datasets. As baselines, we implement a modified version of Citation-kNN [112] replacing

the Hausdorff distance with KL-divergence, and a bag-level SVM with the kernel for

two bags X and X ′ defined as K(X,X ′) = e−γDKL(X,X′), K(X,X ′) = e−γDHaus(X,X′),

and the RBF set kernel used by [52]. Below we state the ranges of all tunning pa-

rameters for these algorithms used in our experiments. We compared CCMaxEnt with

RegMDE with cross validation and RegMDE with continuation technique. We use a grid

of {10−4, 10−3, . . . , 103, 104} for the regularization parameter η. All of the datasets use

features with dimension reduced by PCA. We use a grid of {2, 3, 4, 5, 6, 7} for the fea-

ture dimension after applying PCA. The Citation-kNN algorithm has two parameters-

the number of nearest neighbors k, and the number of “citers” k′. We use a grid of

{1, 5, 10, 15, 20} for k and {5, 10, 15, 20, 25} for k′. The SVM has two parameters- the

bandwith of RBF kernel γ, and the penalty factor C. We use a grid of {2−9, 2−8, . . . , 20}

for γ, and a grid of {20, 21, . . . , 29} for C. For the basis functions used in constructing the

maximum entropy distribution space, we propose ϕ2k = cos(gTk x) and ϕ2k−1 = sin(gTk x),

where gk ∼ N (0, I) i.i.d for k = 1, 2, . . . ,m/2. In [94], a similar transformation is used

to approximate Gaussian kernels.
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5.5.7 Classification accuracy experiments

The results of classification accuracy for citation-kNN for four datasets are shown in

Fig. 5.8. We compared the classification accuracy with Citation-kNN using KL-divergence

and Hausdorff distance. The KL divergence is computed from 3 different distribution

estimates: 1) RegMDE(CV): regularized MDE with cross validation, 2) RegMDE(CT):

regularized MDE with continuation, and 3) CCMaxEnt: confidence-constrained maxi-

mum entropy. We observe that CCMaxEnt performs slightly better than RegMDE in

musk and image datasets where in Flowcytometry dataset RegMDE(CT) is performing

better. However, the difference is not very significant. Overall, Hausdorff distance has

better classification accuracy than the other approaches which can be due to measuring

distance in the instance level. Figure 5.9 shows the results for bag-level SVM with the

RBF set kernel, the average Hausdorff distance kernel, and the KL divergence kernel

obtained by RegMDE and CCMaxEnt. In general, KL divergence is performing bet-

ter than Hausdorff distance. Accuracy results are very close to all methods using KL

divergence.

5.5.8 Runtime

To compare the computational complexity of our algorithm with standard MIL algo-

rithms, we run Citation-kNN and MI-SVM using the MIL toolkit2 on the Corel1000

image dataset for different numbers of instances in each bag. To evaluate how the run-

time of each algorithm depends on the number of instances in the dataset, we randomly

sample varying number of instance from each bag. In Fig. 5.10, the x-axis shows the

2http://www.cs.cmu.edu/ juny/MILL/
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(b) Citation-kNN, Musk1
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(c) Citation-kNN, Musk2
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(d) Citation-kNN, Flowcytometry

Figure 5.8: Classification accuracy results for (a) Corel1000, (b) Musk1 (c) Musk2 and
(d) Flowcytometry.

number of samples in each bag and the y-axis shows the elapsed CPU time in seconds.

We compare the time complexity of standard MIL algorithm with RegMDE (CV), Reg-

MDE (CT), and CCMaxEnt. The runtime of Citation-kNN and SVM is significantly

longer than RegMDE and CCMaxEnt by several orders of magnitude. Hence our pro-

posed approach achieves superior runtime and similar accuracy to two standard MIL

algorithms. The computational complexity of RegMDE and CCMaxEnt during train-

ing is O(Nndm), where n is average number of instance per bag, d is the dimension of
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(a) SVM, Corel1000
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(b) SVM, Musk1
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(c) SVM, Musk2
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(d) SVM, Flowcytometry

Figure 5.9: Classification accuracy results for (a) Corel1000, (b) Musk2 (c) Musk1 and
(d) Flowcytometry. Set level RBF kernel accuracy is provided for reference.

instances, and m is the number of basis functions ϕ and during test is O(Nm). The

computational complexity of Hausdorff distance during test is O(n2N). The Haussdorff

distance based approach requires no training.
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Figure 5.10: Time comparison among Citation-kNN, MI-SVM, RegMED, and CCMax-
Ent.

5.5.9 Discussion

RegMDE and CCMaxEnt approach for MIL is significantly faster than other algorithms

when there are a large number of instances in each bag. RegMDE and CCMaxEnt achieve

this speedup by summarizing the instances in each bag, thereby avoiding instance-level

processing in later steps. Moreover, using regularization helps in utilizing the information

of other similar bags when constructing a density estimate.

5.6 Conclusion

In this work, we propose a confidence-constrained maximum entropy approach for multi-

instance learning problem. The proposed approach used the idea of representing each

bag in the space of distribution. This approach summarizes the high volume data in

multi-instance learning utilizing the statistical properties of each bag. We proposed the

framework of maximum entropy to fit density for each bag. Moreover, we introduce

regularization for learning the space of distribution which is conveniently handled in this



134

framework.

5.7 Appendix

5.7.1 Proof of probability bound for
∑N

i=1D(pλ̂i∥pλi)ni

To find the probability bound for the random quantity
∑N

i=1D(pλ̂i
∥pλi

)ni, we use

Markov’s inequality. Markov’s inequality for random variable X and a positive scalar a

is defined as follows:

p(|X| ≥ a) ≤ E(X)

a
. (5.19)

In fact Markov’s inequality relates the probability of random variable X to its ex-

pectation. Since p(
∑N

i=1D(pλ̂i
∥pλi

)ni ≥ 0) = 1, we propose the following bound for the

random quantity
∑N

i=1D(pλ̂i
∥pλi

)ni

p(
N∑
i=1

D(pλ̂i
∥pλi

)ni ≥ ϵ(δk)) ≤
1

k
, (5.20)

where ϵ(δk) = kNm
2 , N is the number of datasets, and m is the number of feature

functions. To do so, we have to obtain the E

[∑N
i=1D(pλ̂i

∥pλi
)ni

]
. We first consider the

quantity D(pλ̂i
∥pλi

) and expand it as follows:

D(pλ̂i
∥pλi

) = (λ̂i − λi)
T ϕ̄i(x)− (Z(λ̂i)− Z(λi)) (5.21)

Using the Taylor series expansion around λi in (5.21), an upper bound can be obtained
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as follows:

D(pλ̂i
∥pλi

) ≤ (λ̂i − λi)
T ϕ̄i(x)− ((λ̂i − λi)

T Ż(λi) +
1

2
(λ̂i − λi)

T Z̈(λi)(λ̂i − λi)).

Since ϕ̄i(x) = Ż(λ̂i), thus

D(pλ̂i
∥pλi

) ≤ (λ̂i − λi)
T (Ż(λ̂i)− Ż(λi))−

1

2
(λ̂i − λi)

T Z̈(λi)(λ̂i − λi)

≤ (λ̂i − λi)
T Z̈(λi)(λ̂i − λi)−

1

2
(λ̂i − λi)

T Z̈(λi)(λ̂i − λi)

≤ 1

2
(λ̂i − λi)

T Z̈(λi)(λ̂− λi). (5.22)

Note that in the firs line of (5.22) we use the first order Taylor series expansion of

(Ż(λ̂i)− Ż(λi)). We take the expectation of D(pλ̂i
∥pλi

) as follows:

E

[
D(pλ̂i

∥pλi
)

]
≤ 1

2
E

[
(λ̂i − λi)

T Z̈(λi)(λ̂− λi)

]
=

1

2
E

[
tr
(
Z̈(λi)(λ̂− λi)(λ̂i − λi)

T
)]

=
1

2
tr

(
Z̈(λi)E

[
(λ̂− λi)(λ̂i − λi)

T

)
]

)
=

1

2
tr
(
Z̈(λi)Cov(λi)

)
=

1

2
tr

(
Z̈(λi)

Z̈(λi)
−1

ni

)
=

m

2ni
. (5.23)

Note that we used the fact that Cov(λi) =
Z̈(λi)

−1

ni
. Since D(pλ̂i

∥pλi
), i = 1, . . . ,m are
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independent random variables, to obtain E

[∑N
i=1D(pλ̂i

∥pλi
)ni

]
we can write

E

[ N∑
i=1

D(pλ̂i
∥pλi

)ni

]
=

N∑
i=1

niE

[
D(pλ̂i

∥pλi
)

]

≤
N∑
i=1

mni
2ni

=
Nm

2
. (5.24)

Therefore, using the Markov’s inequality with probability δk where δk = 1
k we have

∑
i=1

ND(pλ̂i
∥pλi

)ni ≥ ϵ(δk), (5.25)

where ϵ(δk) =
kNm
2 .

5.7.2 Proof of Lipschitz continuity for ∇g(Λ̂,Λ)

In this section, we want to show that ∇g(Λ̂,Λ) is Lipschitz continuous with constant

τg = Nm2 where N is total number of bags and m is total number of feature functions.

We prove that the Hessian matrix ∇2g(Λ̂,Λ) is bounded which is stronger than Lips-

chitz continuity of the gradient ∇g(Λ̂,Λ). The Hessian of g(Λ̂,Λ) is equivalent to the

covariance of the feature functions ϕ. Thus,

∇2g(Λ̂,Λ) = Epλ(ϕϕ
T )−

(
Epλ(ϕ)Epλ(ϕ)

T

)
≤ Epλ(ϕϕ

T )

V TEpλ(ϕϕ
T )V ≤

∫
(V Tϕ)2pλdx
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≤ ∥V ∥2
∑
i

ϕ2i

≤ Nm2 (5.26)
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Chapter 6: Conclusion

6.1 Contributions

In the following, we list a brief summary of our contributions in this dissertation. We

categorize the contributions based on learning multi-instance data in the discrete and

continuous domain. Specifically, in the discrete domain

1. We proposed sufficient conditions for exact rank recovery in topic models as a rank

minimization problem and provided a new framework for parameter free confidence-

constrained convex optimization as an alternative to rank minimization problem,

which can overcome the issues of Bayesian inferences such as i) computational

complexity associated with sampling methods, ii) approximation associated with

variational Bayes approach [6], and iii) computational complexity associated with

hyperparameter tuning [110].

2. We provided an analytical evaluation of the sufficient conditions for exact recovery

of the number of topics in topic models. Moreover, we provided a bound on the

sum of squared errors in terms of the model parameters such as number of docu-

ments, vocabulary size, and number of words in each document. We showed that

the reconstruction error is O(
√
M/n), where M/n is the ratio of the number of

document to the number of words per document.

3. We provided an accelerated algorithm to solve the proposed convex optimization

problem. We reformulate the problem in the dual form. By evaluating the duality
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gap, we were able to provide accuracy guarantees for the algorithm. We evaluate

our theoretical results on synthetic datasets. Finally, we applied the proposed

method on two image datasets and three real world text datasets to illustrate how

the method can be applied to perform dimension reduction.

In the continuous domain,

1. We developed a new entropy estimator based on the principle of maximum entropy

and greedym-term approximation. We also provided the analysis of the estimation

error, specifically an in-probability error bound in terms of the problem parameters

(e.g., number of samples, number of the approximation terms). The error of the

proposed estimator is O(
√

log n/n); only a factor of
√
log n away from the classical

statistical parameter estimation error O(
√

1/n). The application of the method to

anomaly detection in sensor networks was demonstrated. Our proposed estimator

was shown to be competitive with other approaches.

2. We proposed the maximum entropy framework for entropy estimation. The pro-

posed estimators deploy m-term approximation to estimate the entropy. In ad-

dition to a brute-force estimator, we introduced a low computational complexity

greedy m-term entropy estimator. Theoretical analysis of the proposed estimators

shows that the estimation error is O(
√

log n/n). As with other entropy estimation

methods, the proposed method can be used for a variety of applications. The appli-

cation of the method to anomaly detection in sensor networks was demonstrated.

Our proposed estimator was shown to be competitive with other approaches.

3. We introduced a new framework for MIL using the principle of maximum entropy

approach. A metric defined over the space of the distributions was introduced to

measure the similarities among bags in MIL.
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4. We proposed confidence-constrained maximum entropy to jointly learn the space

of distributions and an accelerated proximal gradient approach was proposed to

solve the convex optimization problem.

5. The performance of the proposed approach was evaluated in terms of rank recovery

in the space of distributions and compared with regularized MaxEnt. We examined

the classification accuracy of CCMaxEnt on four real world dataset and compared

the results with the state-of-the-art algorithms in MIL.

6.2 Publications

In this part, a list of our publications which were written during the course of the Ph.D.

is provided.

1. Behmardi, B., Briggs, F., Fern, X., and Raich R. Confidence-Constrained Maximum

Entropy Framework for Learning Multi-instance data, IEEE Transactions on Signal

Processing, submitted, 2012.

2. Behmardi, B. and Raich, R. On confidence-constrained rank recovery in topic mod-

els, IEEE Transactions on Signal Processing, Volume: 60, Issue: 10, page(s): 5146–

5162 [14].

3. Behmardi, B., Briggs, F., Fern, X., and Raich R. Regularized joint density estima-

tion for multi-instance learning, In Proceedings of IEEE International Workshop

on Statistical Signal Processing, page(s): 740-743, 2012 [9].

4. Behmardi, B. and Raich, R. Convex optimization for exact rank recovery in topic

models, In Proceedings of IEEE International Workshop on Machine Learning for
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Signal Processing, page(s): 1-6, 2011 [12].

5. Behmardi, B. and Raich, R. On provable exact low-rank recovery in topic models,

In Proceedings of IEEE International Workshop on Statistical Signal Processing,

page(s): 265-268, 2011 [13].

6. Behmardi, B., Raich, R., and Hero, A.O., Entropy estimation using the principle of

maximum entropy, In Proceedings of IEEE International Conference on Acoustics,

Speech and Signal Processing, page(s): 2008-2011, 2011 [15].

7. Behmardi, B. and Raich, R. Isometric correction for manifold learning, AAAI

symposium on manifold learning, pages: 1-9, 2010 [11].

6.3 Future research

In the following, we present a few directions for future research.

1. Theoretical proof for nuclear norm minimization: The rank function in

CRM was heuristically replaced with nuclear norm in CNM. Nuclear norm mini-

mization produces a low-rank solution in practice, but a theoretical characterization

of when CNM can produce the minimum rank solution was not investigated. The

mathematical characterization of minimum rank solution was provided in the case

where the constraints were affine [97, 98]. The extension of theoretical guarantees

to the nonlinear set of inequalities is an open research direction.

2. Supervised approach: Our approach is an unsurprised technique in dimension

reduction. Developing a new model which accounts for the useful discriminative

information in the dataset is another future research direction.
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3. Exact evaluation of the sufficient conditions: The sufficient conditions pro-

posed in this dissertation in the discrete domain depends on the distribution of

the smallest singular value σT of matrix Ψ. In our experiment, we evaluated the

probability of P (σT ≥ 2ϵ∗) empirically. Knowing the distribution of the small-

est singular value of matrix Ψ results to the exact computation of P (σT ≥ 2ϵ∗).

Note that the distribution of the smallest singular value is highly dependent to the

sampling process used for generating matrix Ψ. This limits the generality of the

approach. However, one can consider a special case of the sampling process (e.g.,

LDA) and develop the bound including the hyperparameters of the LDA sampling

process.
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[80] O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In
Proceedings of Advances in Neural Information Processing Systems, pages 570–576,
1998.

[81] O. Maron and A.L. Ratan. Multiple-instance learning for natural scene classi-
fication. In Proceedings of 15th International Conference on Machine Learning,
1998.

[82] R. Meka, P. Jain, C. Caramanis, and I.S. Dhillon. Rank minimization via online
learning. In Proceedings of the 25th International Conference on Machine learning,
pages 656–663. ACM, 2008.

[83] R. Meka, P. Jain, and I.S. Dhillon. Guaranteed rank minimization via singular
value projection. In Proceedings of Conference on Advances in Neural Information
Processing Systems, 2010.

[84] K. Mohan and M. Fazel. Reweighted nuclear norm minimization with application
to system identification. In Proceedings of Conference on American Control, pages
2953–2959. IEEE, 2010.

[85] S. Negahban and M.J. Wainwright. Estimation of (near) low-rank matrices with
noise and high-dimensional scaling. Submitted to the Annals of Statistics, 2009.

[86] Y. Nesterov. A method of solving a convex programming problem with convergence
rate O (1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.



150

[87] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classifi-
cation. In IJCAI workshop on machine learning for information filtering, volume 1,
pages 61–67, 1999.

[88] M. Nilsson and W.B. Kleijn. On the estimation of differential entropy from
data located on embedded manifolds. IEEE Transactions on Information The-
ory, 53(7):2330–2341, 2007.

[89] J. Paisley, X. Liao, and L. Carin. Active learning and basis selection for kernel-
based linear models: a bayesian perspective. IEEE Transactions on Signal Pro-
cessing, 58(5):2686–2700, 2010.

[90] T. Papadopoulo and M. Lourakis. Estimating the jacobian of the singular value
decomposition: Theory and applications. Computer Vision-ECCV 2000, pages
554–570, 2000.

[91] P.O. Perry and P.J. Wolfe. Minimax rank estimation for subspace tracking. IEEE
Journal of Selected Topics in Signal Processing, 4(3):504–513, 2010.

[92] S.J. Phillips, M. Dud́ık, and R.E. Schapire. A maximum entropy approach to
species distribution modeling. In Proceedings of the twenty-first international con-
ference on Machine learning, page 83. ACM, 2004.

[93] T.K. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations,
algorithms, and multi-task learning. Submitted to SIAM Journal on Optimization,
2009.

[94] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Proceed-
ings of Advances in Neural Information Processing Systems, 20:1177–1184, 2007.

[95] D. Ramage, E. Rosen, J. Chuang, C.D. Manning, and D.A. McFarland. Topic
modeling for the social sciences. In NIPS Workshop on Applications for Topic
Models: Text and Beyond, 2009.

[96] J. Ramon and L. De Raedt. Multi instance neural networks. In Proceedings of
ICML-2000, Workshop on Attribute-Value and Relational Learning, pages 53–60,
2000.

[97] B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization, 2007. SIAM Review, 52:471–501,
2010.

[98] B. Recht, W. Xu, and B. Hassibi. Necessary and sufficient conditions for success
of the nuclear norm heuristic for rank minimization. In Proceedings of 47th IEEE
Conference on Decision and Control, pages 3065–3070. IEEE, 2008.



151

[99] R. Salakhutdinov, S.T. Roweis, Z. Ghahramani, et al. On the convergence of bound
optimization algorithms. In Uncertainty in Artificial Intelligence, volume 19, pages
509–516, 2003.

[100] G. Salton and M.J. McGill. Introduction to modern information retrieval. McGraw-
Hill, 1986.

[101] D.W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605, 1979.

[102] J. Skilling and RK Bryan. Maximum entropy image reconstruction-general algo-
rithm. Monthly Notices of the Royal Astronomical Society, 211:111, 1984.

[103] N. Srebro, J.D.M. Rennie, and T. Jaakkola. Maximum-margin matrix factoriza-
tion. In Proceedings of Conference on Advances in Neural Information Processing
Systems, volume 17, pages 1329–1336, 2005.

[104] G.W. Stewart. On the early history of the singular value decomposition. SIAM
review, pages 551–566, 1993.

[105] M. Steyvers and T. Griffiths. Probabilistic topic model. Handbook of Latent Se-
mantic Analysis, pages 1–15, 2007.

[106] G. Tang and A. Nehorai. Lower bounds on the mean-squared error of low-rank
matrix reconstruction. Signal Processing, IEEE Transactions on, 59(10):4559–
4571, 2011.

[107] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581, 2006.

[108] K.C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear
norm regularized linear least squares problems. Pacific Journal of Optimization,
6:615–640, 2010.

[109] P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection.
In Proceedings of Advances in Neural Information Processing Systems, volume 18,
pages 1417–1426, 2006.

[110] H. Wallach, D. Mimno, and A. McCallum. Rethinking LDA: Why priors matter. In
Proceedings of Conference on Advances in Neural Information Processing Systems,
volume 22, pages 1973–1981, 2009.

[111] H. Wang, H. Huang, F. Kamangar, F. Nie, and C. Ding. Maximum margin multi-
instance learning. In Proceedings of Advances in Neural Information Processing
Systems, volume 15, pages 341–349, 2011.



152

[112] Jun Wang, Zucker, and Jean-Daniel. Solving multiple-instance problem: A lazy
learning approach. In Pat Langley, editor, Proceedings of International Conference
on Machine Learning, pages 1119–1125, 2000.

[113] M. Wax and T. Kailath. Detection of signals by information theoretic criteria.
IEEE Transactions on Acoustics, Speech and Signal Processing, 33(2):387–392,
1985.

[114] M. Welling, C. Chemudugunta, and N. Sutter. Deterministic latent variable models
and their pitfalls. In Proceedings of International Conference on Data Mining, 2008.

[115] X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances.
Advances in Knowledge Discovery and Data Mining, pages 272–281, 2004.

[116] Y. Xu, W. Ping, and A.T. Campbell. Multi-instance metric learning. In Proceedings
of IEEE International Conference on Data Mining, pages 874–883, 2011.

[117] J. Yu, SVN Vishwanathan, S. Günter, and N.N. Schraudolph. A quasi-newton
approach to nonsmooth convex optimization. A. McCallum and S. Roweis, editors,
951:1216–1223, 2008.

[118] Z.J. Zha, X.S. Hua, T. Mei, J. Wang, G.J. Qi, and Z. Wang. Joint multi-label multi-
instance learning for image classification. In Proceedings of IEEE International
Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008.

[119] D. Zhang, F. Wang, L. Si, and T. Li. M 3 ic: maximum margin multiple in-
stance clustering. In Proceedings of International Joint Conferences on Artificial
Intelligence, volume 9, pages 1339–1344, 2009.

[120] M.L. Zhang and Z.H. Zhou. A k-nearest neighbor based algorithm for multi-
label classification. In Proceedings of IEEE International Conference on Granular
Computing, volume 2, pages 718–721, 2005.

[121] M.L. Zhang and Z.H. Zhou. Multi-instance clustering with applications to multi-
instance prediction. Applied Intelligence, 31(1):47–68, 2009.

[122] Q. Zhang and S.A. Goldman. Em-dd: An improved multiple-instance learning
technique. In Proceedings of Advances in Neural Information Processing Systems,
volume 14, pages 1073–1080. Cambridge, MA: MIT Press, 2001.

[123] Q. Zhang, S.A. Goldman, W. Yu, and J.E. Fritts. Content-based image retrieval
using multiple-instance learning. In Proceedings of International Workshop on
Machine Learning, pages 682–689, 2002.



153

[124] Z.H. Zhou, K. Jiang, and M. Li. Multi-instance learning based web mining. Applied
Intelligence, 22(2):135–147, 2005.

[125] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum
entropy method. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 274–281.
ACM, 2005.




