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We investigate in this thesis, the problem of stabi-

lity of thermo-viscoelastic fluid flow between rotating

coaxial cylinders. By using the thermo-viscoelastic

constitutive equations given by Eringen, we reduce the

equations of motion into a form suitable for stability

analysis. The course of reduction which we follow yields

some interesting intermediate results. The solution for

the steady state couette flow problem is found. Interest-

ingly enough, the velocity field for this problem is found

to be identical with the classical viscous case and the

case of a Reiner-Rivlin fluid, but the temperature and

pressure fields are different. The non-dimensional forms

of the equations of motion governing the couette flow of

thermo-viscoelastic fluids in a heat reservoir are given.

These equations are reduced further by considering a small



gap between the cylinders and by imposing some physically

reasonable mechanical and geometrical restrictions on the

flow. This results in a secular equation which forms a

characteristic value problem. The solution of the charac-

teristic value problem has been obtained and this yields a

criterion for stability in terms of a critical Taylor number.

In general, the critical values of Taylor numbers are found

to be higher than corresponding ones in classical hydrody-

namic stability problems, which implies that thermo-visco-

elastic fluids are more stable, in a couette flow, than

classical viscous fluids under a similar situation. Com-

paring this result with existing investigations in non-

Newtonian fluids we find that, like Bingham fluids, thermo-

viscoelastic fluids are more stable than viscous and

Reiner-Rivlin fluids.
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STABILITY OF FLOWS OF

THERMO-VISCOELASTIC FLUIDS BETWEEN

ROTATING COAXIAL CIRCULAR CYLINDERS.

I. INTRODUCTION

1.1 Hydrodynamic Stability

The equations of fluid dynamics, complex in nature

as they are, admit steady state solutions to some visco-

metric flow problems. Each of these flows is characterized

by a parameter involving the criterion for its stability

and it can only be realized for a certain range of values

of this parameter. Outside this range the original pattern

of the flow cannot be maintained. This is owing to its

inability to sustain itself in the presence of disturbances

to which any physical system may be subject. The influence

of disturbances superposed on a given steady laminar flow

might, in course of time, change it into a turbulent flow

or into another type of laminar flow. In both cases, the

original flow is said to be unstable with respect to the

superposed disturbances. This differentiation of stable

from unstable patterns of possible flows is what originates

the problems of hydrodynamical stability.

In considering the stability of a system, the question

that arises would be whether a disturbance superposed on
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a steady laminar flow would gradually die down in time or

whether the amplitude of disturbances continue to grow

causing the system to depart from its initial state without

ever reverting to it. In the former case the flow is said

to be stable, while in the latter case it is said to be

unstable.

Clearly, a system is stable if it is stable with

respect to every mode of disturbance. The initial steady

flow is characterized by a set of fluid parameters such

as the channel geometry, velocity field, pressure gradient,

thermal or magnetic fields, etc. When small disturbances

are superposed on the flow, if instability sets in, the

state which separates the original stable state prom the

final unstable stable state is known as the marginal state.

Thus the marginal state is a state of neutral stability.

Instability could occur in two ways depending on the

manner in which the disturbances are superposed. One, if

the disturbances are aperiodic and the resulting flow is

unstable, then this type of instability is known to set

through steady motions. This phenomenon is known as the

principle of exchange of stabilities. In the second type

of instability, if the disturbances introduced are periodic,

resulting in oscillatory motions in the fluid, then this

phenomenon is known as overstability, Chandrashaker (1961).
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1.2 Stability Problems of Classical

Viscous Fluid Flows

Since the latter part of the nineteenth century, a

variety of stability problems of ideal and viscous fluids

have been attempted and solved. We give here a brief

account of the most important of these problems for pur-

poses of reference as well as our own investigations later

in this thesis.

The Benard Problem

Although the phenomenon of thermal convection of a

viscous fluid was recognized as early as 1797 by Count

Rumford, it was not until 1900, an experimental study of

the stability of a horizontal fluid layer heated from

below was made by Benard. Rayleigh (1916, 1920) considered

the same problem both experimentally and theoretically and

observed the flow taking cellular patterns. Taylor (1917,

1921, 1923) discussed the above stability problem under

the influence of rotation. He found theoretically that

the effect of rotation on the thermal convectional flow

was to stabilize it and confirmed this result by his own

experiments. Chandrashaker (1954, 1956, 1957) investigated

the stability of a viscous fluid layer heated from below

in the presence of a magnetic field and concluded that

the magnetic field inhibits the onset of instability in
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the above problem.

The Stability of Couette Flow

In the 136nard and related problems, the instability

is caused by an outside adverse temperature gradient.

For the Couette Flow such as the flow between rotating

circular cylinders this is not the case. It is found

that instability is caused by a prevailing adverse gradient

of angular momentum. For this problem also, the effects

of a magnetic and thermal fields have been studied. In

addition, the effects of the presence of a pressure gra-

dient on the stability of a Couette Flow were studied by

Rayleigh (1920) , Taylor (1923) and Lin (1955).

The Stability of General Flows in Curved Channels

The stability of viscous flows in curved channels

presents a wide variety of problems of which the stability

of couette flow is one, Dean (1928), Reid (1958) and DePrima.

The Stability of Superposed Fluids

In the case of superposed fluids, instability is caused

by a different means than in the problems already mentioned.

Two causes of instability exist in this case. One is the

presence of a density gradient and the other is the exist-

ance of relative horizontal motion between two layers of

fluids superposed over each other, Rayleigh (1900),
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Taylor (1950), Chandrashaker (1955) and Reid (1959).

The Stability of Jets and Cylindrical Flows

The onset of instability in jets and cylindrical

flows is caused by surface tensions and the geometry of

the channel, [Rayleigh (1954), Chandrashaker and Fermi

(1953), Simon (1958) and Volkov (1959)].

1.3 Stability Problems of Non-Newtonian Fluid Flow

Non-Newtonian fluids such as high polymer solutions,

paints, condensed milk, etc., generally have a more complex

behavior than viscous fluids. These fluids require more

complex constitutive equations which complicate the

mathematical nature of the problem. Very few problems

for non-Newtonian fluids have been investigated. We

present in the following sections in brief some of the

investigations of stability of non-Newtonian fluids which

have appeared in recent years.

Stability of a Bingham Fluid in Couette Flow

Graebel (1962) by considering a constitutive equation

given by Oldroyd, eq. (2.3.3), analyses the stability of

a Bingham fluid (Bingham plastic) between two co-rotating

circular cylinders. It' was found that the non-Newtonian

nature of the fluid acts as a stabilizing agent.
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Stability of a Non-Newtonian Couette Flow

in the Presence of a Circular Magnetic Field

Using a Reiner-Rivlin model, (eq. 2.3.2), Narasimhan

(1963) investigated the stability of flow of a non-Newton-

ian liquid between two rotating cylinders in the presence

of a circular magnetic field. He found that the non-

Newtonian behavior of the fluid facilitates the onset of

instability and hence the non-Newtonian Couette flow is

less stable than the classical viscous Couette flow in

the presence of a circular magnetic field.

1.4 Purpose and Need for the Present Investigation

Although stability problems of a wide variety of

classical viscous flows have been investigated to date,

there is, as mentioned before, very little work done on

similar problems concerning varieties of non-Newtonian

or viscoelastic fluids under different mechanical or

electrical influences. Hence it seems reasonable and

important to investigate stability problems of viscoelastic

fluids in detail.

Since viscoelastic fluids exhibit many interesting

thermal properties, it seems important to consider the

thermal aspects of the stability as well. Hence, in the

present investigation, we consider the stability problem
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of a thermo-viscoelastic fluid flow between two rotating

coaxial circular cylinders which are maintained at differ-

ent constant temperatures.

1.5 Plan of the Present Investigation

Chapter one is devoted to the introduction of

hydrodynamical stability problems and to familiarize the

reader with some of the existing investigations on the

subject. Since the non-linear constitutive equations of

thermo-viscoelasticity are relatively new, the second

chapter will present a brief account of their derivation

and of obtaining various approximations to suit different

situations. Chapter three will bring us into the heart

of the stability problem of a rotating circular annulus

of thermo-viscoelastic fluids. The fourth chapter presents

the solution of this stability problem in terms of a

criterion for stability. Finally, the last chapter sum-

marizes the method used and discusses the results and

compares them with existing work in stability of Newtonian

as well as non-Newtonian fluids. Further scope and

suggestions for future research in the field are also

given.
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II. NON-LINEAR THERMO-VISCOELASTIC FLUIDS

2.1 Introduction

This chapter will be devoted to the foundations and

development of the non-linear constitutive equations

governing the behavior of thermo-viscoelastic fluids

following Eringen (1963). First, we discuss the limita-

tions of existing theories and methods used to handle

problems of thermo-viscoelastic nature. Secondly, we

give the foundations of the non-linear theory of thermo-

viscoelasticity. We close this chapter by giving an account

of the existing investigations of thermo-viscoelastic

fluid flow problems.

2.2 Some Basic Concepts of

Continuum Mechanics and Thermod namics

Before we proceed to develop a set of constitutive

equations for thermo-viscoelastic materials, it would be

helpful to briefly review some concepts of continuum

mechanics and thermodynamics and adapt them to the situ-

ation where we need them.

Consider a general coordinate system with X or

XL to denote the undeformed state, x or x
k

to denote

the deformed state. Any material, regardless of its

mechanical and thermal properties, must satisfy certain

conservation principles. Following is a list of the



mathematical expressions of these principles.

Conservation of Mass

Dp

at
+ (pv2") = 0, (2.2.1)

where p is the mass density, t the time, and v
k = k

is the velocity. A comma (,) preceeding a subscript

indicates covariant differentiation with respect to the

coordinates in the deformed state if the subscript is a

miniscule (e.g. 9,) or to that of the undeformed state

if the subscript is a majuscule (e.g. L). Diagonally

repeated indices imply summation over the range (1,2,3).

Conservation of the Linear Momentum

Tkm + p(fm - am ) = 0,I 2, (2.2.2)

where T
km

, f
m

and a
m

are the contravariant components

of the stress tensor T, the body force 4 and the

acceleration a E V.

Conservation of Angular Momentum

For a non-polar case (that is in the absence of

couple stresses and body couples),

T
mk

= Tk m

which implies that the stress tensor is symmetric.

Conservation of Energy

(2.2.3)

9



pE =
c1,

Trakd - k
Zip 2, pQ,

10

(2.2.4)

where E is the time rate of change of the specific

internal energy 6, q
k are the contravariant components

of the heat flux vector q; Q is the supply of energy;

and d
km

are the components of the deformation-rate

tensor d defined by

2dson = vk,m + vm (2.2.5)

Bodies with the same geometry and mass but of differ-

ent materials generally react differently to similar

outside effects. This is owing to the fact that each

material has its own special internal constitution.

Mathematically, this is expressed by the so-called consti-

tutive equations. To be properly formulated, a constitutive

equation has to satisfy certain invariance principles. Of

these, the following three are of particular importance in

the course of this analysis.

(a) Principle of Determinism: For our purposes

this principle can be stated as: The stress T(x, t)

and the heat flux 5,(x, t) at the spatial point x and

time t are determined by the past history of the motion

of an arbitrarily small neighborhood of the material point

X and the past thermodynamic history of this neighborhood.

The stress T and the heat flux q are in general func-

tionals of certain kinematic and thermodynamic variables
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which both characterize materials with memory. However,

we should restrict our study only to the class of materials

that are conscious of an initial state X and a present

state x but oblivious to the intermediate configurations.

(b) Principle of Equipresence: Any independent

variable appearing in either the stress equation or the

heat flux equation--these equations make up a set of

thermomechanical constitutive relations--must also appear

in the other. In other words, this principle states that

T and q should be functions of the same kinematic and
ti

thermodynamic variables.

(c) Principle of Material Objectivity: This prin-

ciple in effect states that the response of the material

to a given event must be independent of the observer, i.e.,

mathematically, constitutive equations must remain invar-

iant under any rigid motion of spatial coordinates.

We consider now the concepts of thermodynamics that

will be referred to later on. Consider a body B with

volume V and mass M and an internal total energy E.

In continuum mechanics we assume that the body possesses

a 'specific internal energy' such that

E = edM = fpedV, (2.2.6)
V V

we also assume that the caloric equation of state has

the form (Eringen 1961, 63)
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6 = (n, ctm), (2.2.7)

where E is some prescribed function of the specific

entropy n and the Cauchy deformation tensor c
tm

is

defined as:

L L
c = X X .

Zm Im (2.2.8)

By differentiating with respect to time, eq(2.2.7) we

obtain

= (1L) + ) (2.2.9)
On 57 'km km'

fl

In analogy with classical thermodynamics we set

(ag\
1-1)c

(

ila _ ag
ac

(2.2.10)

and call 0, 'temperature' and the thermodynamic

tension.

We know
tin

= -(c vn
'm

+ cnm ' 56

vn ), the proof of

this is simple and is found in Eringen (1961). With this

on hand we can rewrite eq. (2.2.9) as

where wnm

E = 6rj 2y
tm

c
nt

d
nm - 2ykmc

nt
w (2.2.12)

is the spin tensor defined by

-2wnm = vn,m V. (2.2.13)

Since the specific internal energy e is an object-

ive quantity we could show following Eringen (1961) that



DE
=

DE
Dckm

c
mn Dcnm

c
mk

13

(2.2.14)

The Cauchy deformation tensor c is symmetric, which

implies that y
km is also symmetric. Using the above

facts, in eq. (2.2.4) we obtain:

k

Arl

q 0
= 1(T + 2 py, n mk qkc )d P

e km nm 0 2 k PeQ
,k

(2.2.15)

Eq.(2.2.15) is known as the Entropy Production equation.

The total entropy of the body B is given by

H
fpndV.
V

Eq.(2.2.15) can be rewritten as

r piidv -cq dv = f eAdv,
eJ,k iv

q
k
0

where eA = (Tkm + 2 py,,ncnm)d
e

,kmk + pQ, (2.2.16)

Applying the Green-Gauss Theorem to eq. (2.2.16) we obtain

jr0AdV .

v
(2.2.17)

Since 8 > 0, the Classius-Duhem inequality yields

eA > 0. (2.2.18)

This inequality provides some restrictive conditions on

the constitutive equations.

From the caloric equations of state, eq.(2.2.7) and

the definition of temperature eq.(2.2.10), we find that
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= = f(fl, c), (2.2.19)

which could be solved for fl giving

n = 11(0, c). (2.2.19)

Substituting, eq.(2.2.19) in eq.(2.2.7) we obtain

6 = e[11(e, C), C] = c) , (2.2.20)

where 6 is some explicit function of 0 and z, which

is generally different from

From eq.(2.2.20) we obtain

= a + Akmc
km '

(2.2.21)

_ (D9 ,
A
km

E-
(a!

K =
a ( ' Dckm

are respectively the 'specific heat' and a 'modified

thermodynamic tension.' Substituting eq. (2.2.21) in

eq.(2.2.4) we obtain

p
nc

nm'
I dmk qk

k
+ pQ. (2.2.22)a = (Tkm + 2pX

k ,

We now compare the thermodynamic coefficients K

and X
kn with the corresponding coefficients in eq.(2.2.15).

For this purpose we take the material derivative of

eq.(2.2.21), obtaining:

c
(4;9 0+ (4g. )'ickm mti

(2.2.23)

Substituting eq.(2.2.23) in eq.(2.2.9) we obtain the

following relations:
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K = 0
ae

(--) X = Y ) (2.2.24)km 'km 7F
0

with 8 and c as independent variables. The heat

conduction eq. (2.2.22) can now be written as:

pa = [T + 2oX n 2111 ,4mk

(1kkm cnm cnm'1 ' ,kkn
8

(2.2.25)

As a special case for Newtonian viscous fluids, the

caloric equation of state takes the form

6 =
1

01, ) (2.2.26)

where 1 is the specific volume. In this case the

thermodynamic tension 1kn
is identified as the 'thermo-

dynamic pressure' defined by:

and the temperature

7T E
@E- (
DV)

(DE\
01-1/v

(2.2.27)

(2.2.27a)

The specific enthropy given by the heat conduction equation

now becomes

pa = (Tkm + pL + 16kmjdnik - qkk + pQ, (2.2.28)

where 6 km is the usual Kronecker delta. The equation of

continuity eq. (2.2.1) and the relation p) = - (4;)
" e

have been used to obtain eq.(2.2.27).

For incompressible fluids where the equation of
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continuity becomes d
kk = 0 the heat conduction equation

takes the final form:

pa = T dmk k

km
+ pQ. (2.2.29)

Now that we have developed all the necessary fundamental

concepts we pass on to the development of a non-linear

constitutive theory for thermo-viscoelastic materials.

2.3 Non-Linear Constitutive

Theory of Thermo-viscoelasticity

In the last century, viscoelastic behavior of mater-

ials has been the subject of extensive studies by a number

of workers. But it was not until the last two decades

that these studies entered the non-linear realm. Although

the desire for rigor motivated this extension, the failure

of linear theories to explain such phenomena as the

Poynting and Kelvin effects in elasticity was an important

force which has brought accelerated developments in this

field.

Before going into the basic concepts of thermo-

viscoelasticity we give a brief account of existing
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constitutive equations of viscoelastic or general Maxwell-

Voigt materials. Each of these theories has its own

limitations. However, we discuss here only their limita-

tions when used in problems involving thermal fields.

For a detailed discussion of the limitations of these

theories we refer the reader to Eringen (1962).

In the next paragraph, we list, for the sake of

future reference, various phases of development of consti-

tutive equations for non-linear materials.

Newtonian Fluids

T = (-p + AO)I + 2pD, (2.3.1)

where I = Identity tensor,

T = Stress tensor,

p,X1 = Coefficients of viscosity,

D = Deformation-rate matrix,

0 = Dilatation

p = Hydrostatic pressure.

Eq. (2.3.1) successfully explains the behavior of

some fluids, such as certain gases, water, alcohol and

other similar fluids. But it fails to explain phenomena

like the Merrington effect (the swelling of a fluid at

the exit of a tube) Merrington(1943), and the Weissenberg

effect (the climbing of a fluid on a rotating rod) Weis-

senberg (1947), both very common among industrial fluids
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such as high polymer solutions, pastes, paints, colloidal

solutions, paper pulp, etc. These limitations give rise

to the constitutive equations which follow, Coleman, Noll,

and Markowitz (1965).

Reiner (1945) and Rivlin (1948) Fluids

T = -PI + alD + a2D2
,

where a
1
= Coefficient of viscosity,

a
2
= Coefficient of cross-viscosity,

T = Stress tensor,

D = Deformation-rate tensor,

P = hydrostatic pressure.

(2.3.2)

The above constitutive equation for the fluid is

found to explain the normal stress effects mentioned

above.

Oldroyd Fluids 1950)

(1 +
Al Detij - 2k1(dimtin dimtim)

3= 2p(1 + A2 )d - 8pk d. dm2 3t ij 2 1mdm.

where A
1
= relaxation-time constant

A.. = A. . + A. . v
m + A .vm . + A. . ,

Dt 13 a t 13 13,m m3 im,3

(2.3.4)

3
A1 . . being a given tensor,
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t!.
13

= deviatoric part of the stress tensor,

k
1

and k
2
= arbitrary scalar constants,

A2 = retardation time constant.

Rivlin-Ericksen Fluids (1955)

T = a I +
0-

ak(ffk + T1), (2.3.5)

k=1

where a
k

(k = 0, 1, N) are unknown functions of

the invariants of the kinematic tensors (1)
, D

(2)
, see,

D
(n) which are defined as follows:

D(r) = Ildr)11
ij

1) 1dij = T(vi,j + vj,i) , and

dr.) d-1)) + vm (11.-1) + vm.
1 3 13 13,m im , 7

+
r-1)

v
m

.im ,1
(r > 2) (2.3.5a)

and 11.

k
are certain tensor products formed from the k

kinematic matrices liD

(1)
, D

(2)
,

(n)
; upc is the

transpose of 7k.

Green-Rivlin Fluids (1957)

t13. . =

where

N=0 -co

t

...)( 013..
1:4151...pNqN

(t, T
1

X g
Plql 1

(T )...g
pNqN

( T
N
)dT

1
dTN'

if T
N

)

(2.3.6)
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the kernels g. . pNqN are continuous functions
13

of the indicated arguments and also of D
(0)

D
(1)

,

pq pq

D (v)
, defined in Rivlin-Ericksen's theory,

pq

g (T) E :(111)
pq

t13. . E stress tensor.

Noll Fluids (1958)

T1

CO

(2.3.7)

G (s)), (2.3.8)

where

is the constitutive functional and G(s) is the

history of the relative deformation gradient.

Clearly these theories were not made to account for

any thermal properties. So, when e. problem involves a

thermal gradient, the classica:: heat conduction equation

has to be used. This leads to inaccuracies because there

is no account of any interactions between the thermal

field and other mechanical fields.

Some workers have given non-linear theories of

thermoelasticity, Green and Adkins (1961), Green, England

and Flavin, (1961). Earlier, Truesdell (1951), had given

a theory of thermoviscous materials. But no work on a

non-linear theory of thermo-viscoelasticity has appeared

in the literature until 1963 when Eringen and Koh published

their general non-linear theory of thermo-viscoelasticity,
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[Eringen, Koh (1963)].

If a viscoelastic material is characterized by an

expression of the stress components T.. as a polynomial
13

in the gradients of the displacement, velocity, acceleration,

(n-1) th acceleration, then according to Rivlin and

Ericksen (1955), each of these stress components can be

expressed as a polynomial in the components of the kine-

matic tensors:

-1 _ K
c.. = x. x
13 1,

, (2.3.9)

where c
1 is known as Finger's deformation tensor, and

the Rivlin-Ericksen tensors:

(r-1)
Da.

r)
=
_ 13 -1) vm + a . v .

(r-1) m
a.( + a.(. r

13 at 13,m mi ,3

+ a .vm n > r > 2 .

m3
(2.3.10)

Furthermore, the stress matrix T E HT. .

1311
is a matrix

polynomial in the matrix variables

c-1 -E II c71.11,11(
1)11

= II a
1. )11

, a(n) 1.1)
1 13 3 11'Ij

(2.3.11)

with coefficients that are scalar polynomials in the

simultaneous invariants of these matrix variables.

Following.Eringen (1963) we consider that a viscoelastic

material in a thermal state is characterized by two sets

of constitutive equations, one for stress and one for

heat flux. The stress tensor T and the heat flux
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bi-vector h are polynomial functions of the kinematic

tensors c
1

, d, the thermal gradiant bi-vector b, the

density p, and the temperature 0 where c
1

and d

are respectively defined by eq. (2.3.9) and eq. (2.3.10)

and the following:

b E
II bijll E

II e'k 0,0 ,

h E II hijll E II eijk gkll

where eijk is the permutation symbol.

and

So in effect we have:

- -1T = f(c , d, b; p,e) ,

" -1h = f(c , d, b; p,e).

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

Note that this satisfies the principles of determinism

and equipresence discussed in section 2 of this chapter.

As for the axiom of material objectivity, it can be easily

shown that c
-1

, d and b are all objective. This

implies that T and h are invariant for every rigid

motion of the spatial frame, i.e., T..
ij

and hij are

both hemitropic functions of their arguments, whence

and h are objective.

The details for the reduction of the matrix polyno-

mials in two symmetric matrices (c 1
and d) and one

antisymmetric matrix b to represent a symmetric matrix

T and an antisymmetric matrix h are lengthy and will
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not be given here but refer the reader to Lringen (1963)

for them.

The final results are:

T=a1I+a2c 1 +a3d+a4- c-2 +a5d2 +ab2- - -

+ a 7 (c
11d + dc ) + a 8 (db - bd) + a

+ a
10

(c 1d2 + d 2
c
-1

) + a11 (dc + c-2- -

be -1)

+
12

(db
2 + b2d) + a

13
(c
-1

b 2 + b 2
c
-1

) + a14 (bc
2 - c 2b)

+ a
15

(bd
2 - d

2 b) + a
16

(c
-2d 2 + d2c-2) + a

1
(d

2
b
2 + b2

d2)

+ a
18

(b
2
c
-2 + c-2b 2

) + a
19

(c
1
bc

2
- c-2 1

c )-

+ a
20

(dbd
2

- d
2 bd) + a

21
-1.2

(bc - b
2
c
-1

)--

+ a
22

(bdb2 - b
2
db) + a

23
(bc

-2
b
2

- b
2
c
-2

b)--

+ a24(bd2
b
2

- b
2
d
2
b) + a25(c- 1db - bdc 1

)

+
a26 (dc lb - be

oNe
ld) + a27 (dbc

-1 - c lbd)

+

+

+

+

a (c
-2 db - bdc2

) +
28 -

a
30

(d
2 bc 1 - c-1bd2

)

a
32

(b
2
c

1d + do 1b2)

a (c
-1

d
2
b bd

2
c
-1

)34

a
29

(c
-2bd - dbc-2 )

+ a
3

d
2
c

1b - be-1d2 )

+ a
33

(b
2
dc

1 + c-1db 2
)- ,

+ a (dc
-2

b - be -2d)35
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+ a38(d2b 2 c-1 + c-1b2 d 2
) + a39(b 2 d2 c-1 + c-1 d2 2

)

+ a40 (b 2 c-2d + dc-2b 2
) + a 41 (c 2b 2 d + db 2 c 2

)

+ a42 (c-ldbc -2 c-2bdc-1) + a43 (c-1bdc 2 - c-2 dbc 1)

+ a (dbc -1d2 - 2 -1 + a45 (dc-lbe - d_212c-ld)44 --- bd)

1 2 2 -1 -1 2
+ (146 (12 c- d1?- 12- c- ) (147 (.1. a d-c_ 122 ,9,

- 1412,

(2.3.16)

and

, - -h = 8110 + S2 (c 1 l) + (33(bd + db) + 84(bc 1 + c b).Se Ao. se

+
5

(c 1d2 - d2c1)
+

6
(db2 - b2d)

+
7

(c-1b 2 - b2c1)-- - - -
+ S 8

(bc- 2 + c 2b) +
9

(bd2 + d2 b) + 13 10 (dc, 2 - c2d)-- -
1311 (c-2 d

2 - d2c-2) 12 (d
2
b

2 - b 2 d 2)

+ 13 (c-2b 2 - b2c-2)
+ 14 (c-1dc 2 - c 2 dc -1)- -

+ 15 (dc 1d2 d2 c 1d)
P'16 (9-

1
91

2
c-

2 c 2d2c1)-- -
-2d2 d2 2 c-2

+ (dc d) + P, (c-1b2c-2 - c-2b2c-1)817

1
(Q-2

2 21224)
+ P'20 la 4- 1045 )

+ 21 (dc lb + be 1d) + 22 (c -2db + bdc 2)-- - - -
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+
27 (dc 2b + be 2d) +

28
(c

1
b
2
d - db 2

c
1

)

(c
-2

d
2b + bd2

c
-2

) +
30

(d
2
c

2
b + be -2d2)0,0 -.

+
31

(d
2
b
2
c

1 - c 1
b
2
d
2

) + 32(la
2d2 1

- c 1
d
2
b
2

)

+ 33 (b
2
c
-2d - dc-2b 2

) +
34(c

2b 2d - db2
c

2
)

1 2 2 1+ P,35(c, 1245_ + ) + R
36

(dc
1bd 2 + d 2bc 1

d)

+ R 37 (bdc
1
b
2
+ b 2

c
-1

db) . (2.3.17)

The constitutive coefficients a.
1

and 13i are

polynomials of the following invariants:

tr c-1, tr d tr c ld,
-1

ti

tr c
-2

, tr d
2

, tr c
-3

, tr d
3

tr c
-1

d
2

, tr c
-1

b
2

, tr dc
-2

, tr db
2

,

tr c
-2

d
2

, tr d2 b 2
, tr b

2
c
-2

tr be-1d2, tr c-1 dd
2

, tr dbc -2 r c-1bd,

tr be 2d2, tr c-1d 2
b
2

, tr db 2
c
-2

,

tr dc
-1bc-2 , tr c 1

dbd2 , tr dbc 1
b
2

,

tr c
-1

bc
-2

b
2

, tr bdb 2
d
2

, tr bdc 2
d
2

,

tr c
-1

bd
2
b
2

, tr bc-1d 2
c
2

, tr dbc-2b 2
. (2.3.18)

With secondary coefficients in general being functions

of p and 0.

From these general results the constitutive equations
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for a large class of special materials can be obtained.

The constitutive equations for thermo-viscous and

thermoelastic fluids are derivable without much difficulty.

But these two fluids are limiting cases of a large class

of fluids characterized by equations (2.3.16) and (2.3.17).

Between these two cases, there lies a wide spectrum of

materials which exhibit both elastic and dissipative

(viscous) characteristics. One may classify these thermo-

viscoelastic materials into different groups in various

manners of classification depending on the extent of

fluidity or elasticity of the material.

A method of defining special thermo-viscoelastic

materials may be achieved by classifying the materials

according to the combined degree of the independent vari-

ables c
-1

, d and b appearing in each term of the

constitutive equations. Let the degrees of c
-1

, d and
ti

b appearing in a term be denoted respectively by M, Nti
and P; then the combined degrees of that term is

1M + N + PI.

To illustrate this, let's consider the case of the

zero order theory.

Zero Order Theory: For this case M = N = P = 0.

Therefore, all the constitutive coefficients, with the

exception of al, are equal to zero. The constitutive

equations are then:
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T = a I1
h = 0
ti

where a
1

is a function of p and e. Clearly the materials

characterized by these two equations are the ideal or non-

viscous fluids, where a
1

is equal to the negative of the

hydrostatic pressure.

Second Order Theory for the Rivlin-Ericksen Visco-

elastic Materials: This is a class of materials which

has been studied in recent years. We have mentioned about

this class of materials in section 2 of this chapter. The

stress tensor is assumed to be a matrix polynomial in the

kinematic acceleration matrices al, g2. ..., an. However,

for large n's the constitutive equations become too

unwieldy. To avoid this we will make the assumption that

T = f(a a ) . A strong motive for this assumption is
-1' -2

that for viscometric flows, quite accidentally, the Rivlin-

Ericksen tensors vanish for n > 3.

Generalization of the RivlinErickser viscoelastic

theory into the thermo-viscoelastic theory following

Eringen (1963) gives us the following modification:

T = f(a b; p, 0).- -1' a
-2' '

(2.3.19)

Since T is a hemitropic function of the symmetric tensors

a
1'

a2 and one anti-symmetric tensor b we simply apply

the results given by eqs.(2.3.16) and (2.3.17) by changing

c
-1

into a1 and d into a2. Then we apply the
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'combined degrees' approximation technique to it with

max 1M + N + PI = 2. We obtain the second order approxi-

mation of the constitutive equations of the general

Rivlin-Ericksen fluid in viscometric flows exhibiting

thermal effects. These equations are:

and

T =a1I-a2a
1
+ a3a

2
+a4 (a

I
)

2 +a5 (a
2

2
) + a6 b

2

- ---
+ a

7
(a

1
a
2
+ a

2
a
1

) + a
8
(alb - ba

2
) + a

9
(alb - ba

1
)-- -- -- --

h = 131,t + (3

2
(a

1
a
2 -

- a
2--
a) +

3
(ba2 + a2 b)

+ 13

4
(ba

1
+ a b)

- -

(2.3.20)

(2.3.21)

where the coefficients a. and 1$. are polynomials in

the invariants:

tr al, tr a2, tr ala2, tr (al)
2

tr (a
2

)

2

'
tr b 2

.

These coefficients can be explicitly expressed as follows:

al a1000 a1100 tr a1010 tr

tr a a + a* tr a tr a+ a
1110 1110 1 --2

+ a
1200

tr (a
1 1

)

2
+ a* 200 1

tr (a-)
2

a1020 tr (,S2)

2

+ a*1020 -
tr (a

2
)

2
+

a1002 tr b
2

a2
a

2 2100
+ x2200 tr a a2110 tr 2



a
3 a3010 + a

3020
tr a

2
+ a

3110 tr a=

=
131 131001 + 1101 tr a

1
+

1011
tr

2
,

(2.3.22)
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with all the remaining coefficients a. and 13. and all

the secondary coefficients a.
rst and f3.

first
being in

i

general functions of p and e.

The notations a
i rst' 13 irst are explained as follows:

the first index i = 1, 2, ... in these coefficients

corresponds to the subscript of the primary coefficient

a.
1

or V and the succeeding three indexes r, s, t =

0, 1, 2, ... denote respectively the partial degrees of

a_1 , a2, of the particular terms (matrix products)

whose coefficient is airst or
13.irst'

Using the above constitutive theory, Eringen (1963)

solved the problem of a simple shearing flow of a thermo-

viscoelastic fluid.

In the next chapter, we apply this constitutive

theory for the study of stability of thermoviscoelastic

fluid flows between two rotating coaxial circular cylinders.



30

III. STABILITY OF THERMO-VISCOELASTIC FLUID

FLOWS BETWEEN TWO ROTATING COAXIAL CYLINDERS

3.1 Introduction

In this chapter we formulate the stability problem

physically and mathematically. In the course of solving

the stability problem, we solve the steady state Couette

flow for incompressible thermo-viscoelastic fluids. Also,

we present the general equations in the non-dimensional

form for the perturbed Couette flow. Before we pass on

to the final solution of the stability problem in Chapter

IV we present the plane layer approximation technique

which is commonly used in the case of a narrow gap between

two cylinders.

3.2 Formulation of the Problem

We consider the stability of incompressible laminar

flow of a thermo-viscoelastic flow between two rotating

coaxial cylinders with radii R1 and R
2

(R
2
> R

1
).

The inner and outer cylinders are maintained at constant

temperature el and 02 respectively (02 > el). We

first investigate a steady state flow under the above

conditions. Next, we investigate the influence of small

periodic disturbances superposed on the steady flow.
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We introduce a cylindrical coordinate system (r, z)

where z is chosen along the common axis of the cylinders,

and r and (I) are chosen as the radial and azimuthal

coordinates respectively. The velocity components are

u, v and w, along the radial, tangential and axial

directions respectively.

The fluid dynamical equations of incompressible

thermo-viscoelastic liquids are:

and

Dv
i

= T .ij pfi
P Dt ,3

(3.2.1)

PO/11 i
= 0, (3.2.2)

and the equation of heat conduction is:

pa = T16md
mk q PQ,

where p and K are the mass density and the specific

heat respectively. The external forces are represented

by f and the energy supply by Q and
ti

-13
d.. =

(vi ,j
+ v3 . .).

2 ,3 ,1

We will adopt the following constitutive equations

for the stress tensor T and the heat flux bi-vector h

respectively:

1 2 1 1 ,2 ,2,T =aI+aa+aa+ab+a (ab - ba) +a kab pa',
1-- 2- 3,- 4 5- 6

(3.2.3)



where

,

h = b + 0 (ba
1

+ ate) + (ba2 2+ oh)1 2 -- 3

b = HeijkO,N,

= II eiikell

(3.2.4)

are temperature gradient bivector and heat flux bivector

respectively and

1
a.. = 2d. .,
13 13

2
a.. = a. . + a. . + 2v .v

m
,13 1,3 3,1 m,1 ,m

where a is the acceleration vector.

The Equations of Motion

The equations of motion can be written in physical

components in cylindrical coordinates:

au Du v au au v2
+ u77.- + 7 + w ,-;

1 D
Trr

+
1

T
r

[

aTrz Trr-T (14
]

=
cp

+ + + f
p ar r a(p az r r,

(3.2.5)

Dv Dv
+
v av + w av

+
uv

at u Dr r acp az r

, aT DT aT _

[

1

ark +
1 (14

+
cpz

+
4

ar r acp az F + fV
(3.2.6)

aw aw v aw aw77 + u 77 + 7 + w az

32
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1
[aTrz 1

3111(1)z alizz Trz + fz,
p ar r acp az

and

au u 1 Dv aw_
@r r r acp az
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= ' ' [2 au] 32u ( ) 2 a
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1 DO Del [ 2 DO ( Dv aw) ae (1 au+ a
4 [7 az D(i) a5 r Dr az aq) r TT;

Dv 2v 1 DO+
Dr r r az

(Du Dw)
az Dr + a DO (1 D2v

6 r ar r ata.4)

1 Du av u D2v 1 (Dv )2

a(i) r D(PDr r 2 \ Dcp

v a
2v 1 aw av2 2- Tr) TEr acp

1 D
2v u Dv v au 1 Du 1 au v au

""r7 w D()Dz F aq) ac rat u Dr r

w Du v2 1 au 2 1 (Dv 2 1 awe u2

r r r r22 2 aq) aq)) r2 D4) r 2

+2v Du 2u Dv D
2w Du Dw uD

2
w v D 2w

r 2 aq) r2 aq) DtDz az Dr Dr 2 r azacp

1 Dv Dw (Dw2 ) a
2w (Du 2 2 (Lw)

az aq) az @z2 az) az

DO 1 D2u 71 Du Du u 2u
1 Dv au v D7 r .757; + 7. Tin-. + 7 a (pa r r 2 aq) act) 2 2r Dc1)

1 aw Du + w D2u v Dv @

2v au av ua 2v
3

r @GP az r Dc)Dz r 2 Dcp DtDr Dr Dr afar
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1 Dv Dv v Dv aw Dv a
2v v Du v Dv

cp
+ + w -r -rr Dr D r 2 a q) aq) az aq)az r ar r ar

uv 1 Dv u Dv w Dv 2 au Du 2 Dv av
r2 r at r ar r az r Dr acP r Dr ac¢

+ + u2 aw aw 2 Dv 2 Du) 1 DO (32u au au
r ar acp r ar 7. Dr 7 ataz TE ar

D
2u 1 Dv Du v D aw au a

2u v av+ u + + + + w 2czar r a r azacp az az az2 r az

+ + + u +
32w Du aw D2w v 32w 1 av aw v aw
atar Dr Dr Dr 2 r araq) + r ar acl)

aw aw + w a
2w

2
au Du Dv av v av

Dr az Graz Dr az Dr az r az

nz Dv Dv av
-t- ar az v az)] (3.2.13)

aw
32w 2 2

T = al + a2 2 77 + 2(13 -a.ETE + Du aw i- aw -t- v aw[zz az Dr u Dr F Dzag)

_Dv _Dw _a2w 911)2 avz )
2

+ ( azDw)
2

r az acp az az2 az

r/2a4) (-H ± 2a5 32Z-

az az
ae ( Du a

6 F Dr ataz az Dr u azar
2 DO (D2 v Du Dv a

2v

v 2v 1 av av aw Dv 92v u Dv v Du
7 azD,c0 r az aq) az az w az 2 r az r az
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+
1 a

2w 1 Du aw
+ + w1 av aw w a

2w a
2w

r ataq) aq) ar
r
2 acp aq)

acP
F 2 -51-57

aw aw +2 2 au au +2 2 av av 2 aw aw v av
aq az r acp az az aq) az r az

2 ae (a2u au au a
2
u 1 Dv au a

2
u

aci) ataz + az ar azar r 7 aza(p

aw au 3
2
u 2v av 3

2w au 3w
u

a
2w+

az az w
az

2 r az atar ar ar
ar

2

a
2
w 1 av aw aw aw aw a

2w (au )
2

r aracp 7 ar ae ar az w araz ar

av Dv 0 v av
2

aw 3w - 2v av)] (3.2.14)+ 2
ar az r az 3r 3z az

The heat conduction equation is:

pK ae
=

km
- qk

k
+ pQ,

at
MA

where

Tmkd = 2 T
rr

Du 1 D + u aw
km ar

+ 2 T
(14 [r ri + 2 Tzz

caZ

+ 2 T [1 au
+

av
- 17-] + 2 T au al

cpr r acb ar rz az ar

+ 2 T av[-- + 1 aw
qhz az r

(3.2.15)

rr ,
zz have been defined in equations 2.3.8 through

2.3.13,

k ,

aq aq
div q = Tr- krqr/ F a az

, (3.2.16)



where

hrcp = f3,

1

1 a0
77 7- P2

q
r

= rh
(pz'

q =
1

-- ,

(i)
r
h
rz

q
z
= rh

rcp'
(3.2.17)
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2 ae (a
2
u 3u a2u v a2u2 (77.)

2

+ u --I
r z atar

Dr

2
au aw au a

2
u v Dv (av\

2v
+ Tr" + w DrDz 2 T-7 + V57) 41)

1 3
2
v 1 au av v 3

2
v 1 (Dv"\

2 v a
2v

r atacp a(1) ar acPar r2 (:))
r
2

a(1)
2

1 au av u a
2
v av v Du 1 Du u Du

ac) az r acPaz
r
2 acp

r
2 a(1) r at r Dr

v Du v 3u v2
2

1 (Du (a ) 2 12 (4)2)

r
2 aq) raz 2 2 aq) 2 0r r

2v au 2u Dv
+ + u

1 a0 a
2
u Du 3u a

2
u

r
2 9(1)

r
2 ac) r Dr ataz az Dr azar

+
1 Dv Dw v D 2

u aw Du a
2
u 2v Dv a

2w
aq) az

+
DzD() az w Dr az atar

3z

+
Du aw

u
a2w v a2w 1 av 3w v aw aw aw

ar ar
ar

2 aracP r ar aq) a(1) ar 3z

+ w a
2
w + 2 + 2au au ay Dv 2v Dv

araz ar az ar az ar 3z
- 2v 314 -)

DO fa2v Du av a2v v 92v + 1 av av
ac) ataz az Dr u Dzar r azall) r az aq)



h =rz

Dw Dv
w

+
D2v u Dv v Du 1 D

2w 1 au Dw
az az

Dz
2 @z @z r ata(I) r D(I) Dr

1 Dv Dw v D2w w D 2w 1 aw Dw 2 au au
r2 Dyl) aq) r2

@,:p2
r @O z D(I) az Dcp @z

+2 Dv Dv 2 Dw Dw 2u Dv
r D(I) az r aq) az Dr az

v Du)]-
r az

[+ 13 Dz4 az 7 aci) 7 Dr DDO

(Dv
7 a1

aw)
(I) g)

2 ae (1 Dv u Du

_1@('u Dw)]
r Dr az 7F. (3.2.18)

DO 1 De (D2
v au Dv D2 v v D 2v

_ u _
1 D(I) 2 r az DtDz az ar czar r DzD(1)

1 Dv Dv Dw Dv D2v u Dv v Du 1 D
2w

D(I) Dz az w "Tz-2- 7 77 r DtD(I)

1 au Dw 1 Dv Dw v D2w w
2w 1 aw Dw

r D(I) Dr r2 D(I) aq) r2 a(p2 r D(I)az D(I) az

2 Du Du 2 Dv Dv 2 Dw Dw u Dx/ v Du)
Dq) az r D(I) az r 7 az

(
1 De 1 D2u 1 Du Du u D2u 1 Dv Du
r Dr 7 @t4 r a (i) Dr r D(I)Dr r2 a q) D(I)

v D2u 1 aw Du w D2u 2v Dv D
2v Du Dv

r2
D4)2

r D(I) az T r D(I)Dz r2 7 atar Dr Dr

2v 1 Dv au v Dv Dw Dv a
2v

u=NM NOMINI U
afar r Dr

r
2 @it D(I) az Oar

43
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21 Dv Dv v Dv aw Dv v v au
+

u Dv
7 Dr DcI) r2 ac D(1) Dz w aci)Dz 7. 3r 7 Dr

n UV 1 Dv u av _v av w Dv 2 au Du

r
2 r at Dr 72 aq) Dz 7 Dr 7

2 Dv Dv + 2 3w Dw 2u av 2v au , DO (a
2
u4MMO 111 =Ma .IM .1 .MM.

r Dr 4 r Dr aq)
mom "'

Dr ar ar Dr atar

(Du )
2

a2u v D2u v au aw Du
ar

Dr
2 D r4

r
2 94) 2 77 Ti

W
3
2
u n v Dv

-r
(av)2 (aw)2 32w

+
DW

araz r ar Dr Dr ataz az ar

+ u D2w v a2w 1 Dv Dw (aw)
2

D
2
w 30 2

arDz 7 a F .57 a(p az) w 6)
az

M 7)

2

+ (x")!)] ae /av
2 D3 r Dz cz D: D(a

Du) 1 DO I 1 Du Dv
+

21
ar F Dr I F Dr ar r

(3.2.19)

h [1 ae
+ + +

[2 De (1 a2v 1 au av u a2v
(Pz 1 r Dr 2 r Dr ataq) r Dcl) ar r a(par

-r -r
1 (av )

2
_,_ v a

2
v 1 aw Dv E. a

2v u av
r
2 4

r
2 4 2 r

-r -r
az r D(Paz

r
2 TT

22v Du 1 Du u Du v Du w au

r
2 D(1) at Dr

r
2 Dcf) Dz 2 r2 acl)r r

1 (Dv)
2

1 (Dw)
2

u
2

2v au

r r
2u av a

2w

r
2 D(I)

r
2 D(I) 2 2 D(1) 7 atDz
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2 2au aw D
2u v D 2w 1 Dv aw (3w + a w

az+ + 2 u +ar r aza(1) TE - TE) wDr az

/3u\2 (Dv taw\2) 1 ae a2u Du Du
az) az) az r az ataz az Dr

a2u + 1 av au v 32u aw au a
2u

u r2 a(, ag) r azacl) az uz az

2v Dv a
2w au aw a

2w
+ v a 2w

+ 1 av aw+ + 2 a7547 ar acpDr az atar ar Dr
Dr

v aw aw aw a
2w au Du av av

r2 aci) ar az w araz ar az az

v Dv aw aw av ae (1 D2u 1 au au+ 2 + 2 2v ma ammo.. momr az Dr az az acp r ata(1) r Tri) ar

u 32u 1 av Du v a
2u 1 Du au w a 2u

ONENO7 acpar r2 a Its a (1) r2 2 r acp az r aq)az
ag)

2v av a
2v Du Dv a

2v
+ 1 Dv Dv v Dv

r2 aq)
+ atar ar Dr afar r c5r r 2 7-1)

aw Dv wD
2
v v Du u Dv uv 1 Dv u Dv

az DOz Far F Dr
r
2 r at r Dr

v Dv w Dv 2 Du au 2 Dv av 2 aw aw
r2 D qb r az +r ar aq) + 7 a r + 77 7

2 Dv 2v Du 2 ae aw 1 av 2u
r u Dr Dr Dr +

16 4 r ar az r aq) r

((1 DO au
+

aw a6 1 au
+

av v
7 az Dr 7 1.- 7 Tr- r (3.2.20)
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Since the cylinders are concentric, we have a symmetry

about their common axis. This implies that the physical

properties of the problem do not depend on the azimuthal

@coordinate, i.e., E 0 throughout the whole system.

This simplifies the foregoing equations considerably.

Boundary conditions:

We assume that the inner and outer cylinders revolve

with constant angular velocities 01 and Q2 respectively.

The no-slip boundary conditions imply that at the boundar-

ies

and

u = 0 = w (3.2.21)

v(R
1

) = -0
1
R
1

v(R
2

) = Q
2
R
2

The heat resevoir situation implies that

e(R1 ) = el, e(R
2

) =
2'

(3.2.22)

(3.2.23)

3.3 Steady State Flow of Thermoviscoelastic

Fluids Through Rotating Coaxial Cylinders

We consider the problem which was formulated in

section 3.2, and assume we have a fully developed flow

in the annulus formed by two infinite rotating coaxial

cylinders. This assumption relieves the mathematical

system formed by this problem of its dependence on z,

so we have:
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and

a

at
0 (steady flow),

= 0 (axial symmetry),
aci)

= 0 (infinite channel).

Also, we assume that there does not exist any outside

forces imposed on the system and there is no outside supply

of energy into the system. This means that

f = 0,

and Q = 0. (3.3.1)

By comparison with Newtonian fluids, a, is the

negative of the hydrostatic pressure, i.e.,

a
1
= - P. (3.3.2)

and a
2

is the coefficient of viscosity.

Let the temperature at any ;.point inside tLe annulus be

represented by w such that:

0 = e
1
+ Or, z, t), (3.3.3)

which for the steady state case reduces to:

e e
1
+ Or). (3.3.3a)

For the steady state flow, the physical components

of the stress matrix become:

3 [ r rrr = -P + a
al 2

a (v2
T

a NT
TTry = a2 [r ar ij]

\

(3.3.4)

(3.3.5)
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T
rz

= - a
5 4-E (i7A- ' (3.3.6)

2

T = -P + a
4 Dr '

(,21 (3.3.7)

T
(1)z

= 0 , (3.3.8)

1

2

(4)2T
zz

= -P (3.3.9)
r "FE:

The equations of motion become:

v
2

+ a 2 (227
a)

2

P r Dr 3[ Dr \ar Dr

()1 a (v2 a
4 4 2

)]
F Dr r r Dr

0 = a

0 = -

r v (\
2 [Dr ( Dr 1))

D IT

Dr VE]

2 (D17)2

r \ar)

(3.3.10)

(3.3.11)

[ a
ai ...a_ ( y 2__ a a (1 .

5 ar ar Dr \r) r ar ar \rj
(3.3.12)

The unknowns are p, v, and i, so we do not need

the heat conduction equation to solve the system. But it

provides us with a means of checking for the correctness

of solutions obtained. The boundary conditions are:

r = R u = 0 = w, v = R
1
Q 0 = 01

r = R2, u = 0 = w, v = R
2
Q
2'

= 02

(3.3.13)

(3.3.14)

,The steady state solutions of the equations (3.3.10) to

(3.3.14) are:



v = A
+ Br,

1 2 A. !fin (r + + D,

2A =
1
aR

1
R
2

2
/ (R

1

2
- R

2
)

2
R - (a+1)R

2

B =
1

(R - R)
2

2a . - 1,
1

2B(02 - 01)
c=

2
kn

A + BR])

+ BR2

(e
2
e

1
)2,n(A+BR

2

2
)

D
/A + BR22\\

kn
+ BRi

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)
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Now to obtain an expression for the pressure gradient, we

substitute eqs. (3.3.15) and (3.3.16) into eq. (3.3.10) and

the result is:

dP = (.?1- + Bry AB 2 12 2
2dr r r

+ a
3 3

_A -5. 2B]
r r r

a
4 c

2

r
(A + Br

2
)

2
(3.3.21)

A notably interesting result comes out of the solution

of the steady state problem, namely, the velocity field is

the same as that of a similar problem for Newtonian fluids,



while the thermal and the pressure gradient field are

different.

3.4 Non-dimensional Form of the Perturbed Problem

We assume a steady state flow and superpose small

disturbances on the system such that

m
P

17= 1 + v
s

, v' = (u', v', w 1), (3.4.1)

(3.4.2)

(3.4.3)

Pp = P' Ps,

ep = 0' + 0s,
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where v', p', 0' are small perturbations in the velocity

field, the pressure field and the thermal field respec-

tively; the subscript s indicates the steady state fields

while the subscript p indicates the final perturbed

fields. All perturbations are assumed to be functions of

the coordinates r, c and z and of the time t. We

recall that

v
s -
= v

s
(r) ,

s
= (0, v,

Ps Ps(r),

s
= 8

s
(r).

(3.4.4)

(3.4.5)

(3.4.6)

A very helpful and physically realistic assumption to

make is to take the disturbances as infinitesimal and

_axisymmetric. Thus
ae

= 0 and quadratic terms and higher

order terms in disturbances should be negligible. The

assumption that the disturbances are infinitesimal allows



us to write the following expressions for the perturba-

tions.

u' = eiwt f(r) cos Az,

= eiwt g(r) cos Az,

w' = e
iwt

h
1
(r) sin Az,

= eiwt q
1
(r) cos Az,

p' = eiwt ff(r) cos Az,

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)
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where f, g, h1, q, and Tr are the amplitudes of the

corresponding disturbances; w is a constant which can

be complex, A is the wave number of the disturbance.

It is simple to see that for damped disturbances the real

part of w has to be zero. With these assumptions on

hand, and making use of equations (3.3.10), (3.3.11),

(3.3.12), (3.4.7), (3.4.8), (3.4.10) and (3.4.11) in the

equations of motion (3.2.7), (3.2.7a) and the heat conduc-

tion equation (2.3.13a) we obtain in non-dimensional form

for steady disturbances (w = 0):

2a2
f
1
+ (DD* -a2)g+G

1
D2 + 4 D + 1-

4 2

G
2 DD* f1 = 0,

1 -
1

(3.4.12)

2

Tat (c2 1- - y'd)g. + (DD* - a-) f
1
+ G

3
a2 [Ry +

X21 D2

+ 2 (a
2

g
+ )11 + G4 [2- -1"

( 1 y ) 1 ,

1
2

( 1



and

where

= 0

8 1

2
(D z-)g (01(C)fl + (1)2(C)D*fi (03(C)g

(3.4.13)

+ G5(D*D - a2
)(11 + (1)4(C)Dfl + (P5(C)fl - (P6(C)D*

+ a
2

(I)

7
(Of

1
+ a

2
(1)

8
(C)g a

2
(I)

9
(C)q

1
= 0,

D* == D =
R
2

' DC '

a = AR2,

2BR
2

2
p

f,
a2

1

-4ABR
2

2
p

T =
a
2

B 2y = - A R
2

,

2G =a cR2,

G2 = a5c pABR22 ,

G
3

= G1T,

G
4a

4
cB

2
R
2

2
p

(Taylor number)

(Modified Taylor number)

4
(a

2
)

2
A(0

2
-0

1
)

(3.4.14)

(3.4.15)
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BR
2
2

G5 =
Pia

2
(82-01)

1
pAB

A22ABR
2

kriC + B
2

R2 2 +
2R 22

c
2 2 2

n ,, AB 1- zB 2
K.

2 Ainc - z --] - [2 2 4 2 2R2 c 2A (A+Bc R2)

2BR2c 2
c 2

2A2
A+BR 22 c

2

2a
(1)2 (C)

a3
2P BA3 (1-11C

2) 2

24a3 c2
R2

(P3 (C)
a2 yc2)2

S2 c

(P4(c) 2A2B (1 - y 2) '

(32 [ 1 2cyC
P 2A Bc(1 - YC2)

A
2 B(1 yc2 2]

2c 2cyc2
(1)6 (C) p [A2 B(1 - yc2)

A
2B(1 yC

2)2] '

(32 cc
(07 ( C)

P '- YC2)

(1)8 (C)

Eq33c

a2AC (1 yc2) '
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c9(C) =
B
3
BR

2

2 R
2 4AB

a
2
(0

2
- 61) A

+
3 4

R2C
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Equations (3.4.12), (3.4.13) and (3.4.14) define in

non-dimensional form of the general perturbed problem where

the perturbations are steady.

Non-dimensional Form of the Boundary Conditions

The walls of the cylinders are rigid, which implies:

Ri
f = 0 = g, hl = 0 at c = R1, 1.

2

The equation of continuity is:

D*f + h
1
= 0,

R
1which implies that D*f = 0 at c = T, 1.
2

Using eq. (3.4.14) we get

R1
f
1
= 0 = D *fl, g = 0 at c = 1.

The heat reservoir situation gives:

R1
at C == 0

ql 1 R
2

q
1

= 6
2

at c = 1

3.5 The Plane Layer Approximation

Solving eqs. (3.4.12), (3.4.13) and (3.4.14) proves

to be a very difficult matter. Hence we consider the
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case of a narrow gap between the cylinders. In this case

we find that we can apply the plane layer approximation

technique. This changes the geometry of the problem from

cylindrical to planar, which could be fairly well approxi-

mated when:

1
R

(R
2

R
1

) << (R
2

+ R1) ) = . (3.5.1)

This assumption introduces the following simplifications

in the derivatives:

D* = D =
dr'

DD* = D*D = D2 d
2

= (3.5.2)
dr

2

Also from eq. (3.5.1) it follows that we may neglect

terms of order
(R2

2

R0

JZ

and smaller in all of

our equations. As an illustration of this technique we

consider

2aR
2

2 r - RA 1B + = Q
2 1 R

2
+ R

1
(R

1
- R

2
) R

1

2(R
2
- R

1
)

Set x = where x « 1.R
1
+ R

2

Then
R
1 2 x

R2 2 + x

2
2R

2 4 + 4x + x
2

IConsider = (4 + 4x + x2
)

R
1
(R

1
+ R

2
) 4(1 - x/2)

2(1 + 4 4 + S..) ; 1 4 x
2



1
3x

+ = 1

2
(

2
+

3(R
2

- R )

R
1
+ R2

/

R2 \I + R1 /R2

R1)(
= ( 2 - 1 + 7)

2

Thus B + A
2

= Q
r

R2 z/ R2 R

- R1

R2 R2 - R1
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The equations of the perturbed problem in dimensional

form can be written as (for steady disturbances):

a2
2

- 2 B + 7 g +
p

(DD* - X2)2f +
A

3 (2B
r

10A) D2 2A 8B (4A2 12A)]

r2 r3 r2 r2 r4
g

2

a4 [[ "s 3 "s) 2X2 "s
r2 ar2 r3 Dr

r
2 Dr ql

(3.5.3)

4B2Bf + a2 [(DD* - X2)gi + (2BD2 +

(3A Al)
f + a5 2 Ms DD*f = 0,

r
4 p r Dr (3.5.4)

and - 8 7-- g -
a2

D
[A ( I

*/ r

2ABknr A2
1

2r
3 2

+ B r2



a
3

2 A2

- 2 - 2
B
2
knr AB

2
r
5

r
3

c2
kn

Br2

rA
2

+ Br2

a
3

a
4 c2

r
2Ar(A + Br 2

)

B)1(4 A2 - 2
r
2

A

r
4

a
2 2

4 2
D-(3

r
-f 4

P r
3 Dr g]

+ (D*D 2
) qi + F DL +

[ ,

Dr

(32
2

DO
s 2

Des

2
D
2
0
s 2

De s
--

2
-r

r Dr
Dr

- (B + q
2 4A

2
) 2

4 1
r

D*f + X2 30s I 3

ar
f +

2 D
AX

O

8

r
2 Dr

= 0. (3.5.5)

If we apply the plane layer approximation technique to

eqs. (3.5.3), (3.5.4) and (3.5.5), and non-dimensionalize

we obtain:

2
-

a2)2f
2

(N
1
+ N

2
E)D2 + (N

3
+ N4E) D

a

IN
g + (N7 + N

8
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(3.5.7)
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(3.5.8)

where E, Ni, and M.
3

are non-dimensional quantities
defined as:

= (r - R1)/(R2 - R1), 0 < < 1, D = didE.
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Equations (3.5.6), (3.5.7) and (3.5.8) will be used

in the next chapter to establish the characteristic value

problem the solution of which will yield the stability

criterion for thermo-viscoelastic fluids between two

corotating cylinders. The boundary conditions for this

problem are:

f = 0 = Df at E = 0, 1

g = 0 at = 0, 1

(3.5.9)

(3.5.10)

q1 e e
2

at E = 0, 1 respectively.

(3.5.11)
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IV. CHARACTERISTIC VALUE PROBLEM

OF THE STABILITY ANALYSIS

4.1 Introduction

Having deduced the non-dimensional equations which

govern the flow of thermo-viscoelastic fluids between two

concentric cylinders, we shall use them to reduce the

stability problem into a characteristic value problem.

This is done by expanding one of the unknowns involved

by an infinite series of a set of orthogonal, complete

functions, Chandrashaker, (1961). An infinite order

secular equation results from this analysis involving T, the

Taylor's number. We solve for T from this equation for

each non-dimemsional wave number a by a suitable approx-

imation technique. The least positive T we find is the

critical Taylor's number which yields the criterion for

stability.

4.2 Reduction of the Stability_ Problem

to a Characteristic Value Problem

Our starting point in the analysis of reducing the

stability problem to a characteristic value problem is

eqs. (3.5.6), (3.5.7) and (3.5.8). Let's represent f by

a doubly infinite series of the form:
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00 00

cmn sin mri.0 sin n7C . (4.2.1)

m=1 n=1

where can are unknown coefficients and which satisfies

the boundary conditions given by eq. (3.5.9). Substituting

eq. (4.2.1) in eq. (3.5.7) and solving for g we get:

m n

g =

00 00

m =1 n=
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Eq. (3.5.8) can be written as:
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In order to illustrate the present stability analysis,

we consider certain types of thermo-viscoelastic fluids

governed by the following relations:

We set N
38

= N
31

i.e. M
9
= 0. This reduces the

above differential equations into the following form:

2
N
39

+ E--] 41 = Q(E), (4.2.9)
31

where Q(E) is the right hand side of eq. (4.2.8).

Eq. (4.2.9) is a non-homogeneous Airy's equation. Airy's
3

functions Ai(i N39/N31E) and Bi(VN39/N31) are solutions

of the homogeneous equation and are defined by

m Ai(VN39/N31E)
3k

00

Ai -,--- cl 2] 3k (4) c 3k (a
2 3)kk=0 3k!

Bi =

3 3k+1AWN
39 /N310x
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3
N
39

/N
31

)

3k
0.

c1 E 3k (Is) + c
2

E 3k (2)
3k=0 k 3k! k=0 k

(
where a + 1 3k = (3a + 1) (3a + 4)...(3a + 3k - 2) for

3
k

3 ..13k+1
Bi(VN39/N31,,,

(3k + 1) !
-a

arbitrary a and k = 1, 2, 3..., where c
1

and c
2

are
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Airy's constants, Abramowitz (1967). Hence the solution of

eq. (4.2.9) is:

qi p(E) = mnAl(V1N39 /N31 qE) + Bi(VN39/N31 qE) + p(E),

(4.2.12)

where p and q are determined by the boundary condi-mn

tions and qp is the particular integral of eq. (4.2.9)

and can be readily obtained by the method of variation of

parameters involving the Wronskian of Ai(VN39/N31E) and
3

Bi(VN39/N31E), [Elementary differential equations, Boyce

and DePrima]. Eqs. (4.2.12), (4.2.13), and (4.2.14) act-

ually stand for two separate sets of equations, one for

the case m = n, the other for the case m n. Finally,

to obtain the characteristic value problem, we substitute

eqs. (4.3.1), (4.3.2), (4.3.3) and (4.3.12) in eq. (3.5.6)

and then integrate between 0 and 1 obtaining:

00 CO

c [F (a, T, Ni, a)] = 0, i = 1 to 39, (4.2.15)mn mnm=1 m=1

where F is defined by:

1 1
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4
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0 0

1 1 1\
+ (N5 - N4 - 1) g + (N - -Ni 2) ( ig -fig1

0 0/
1 1

N q + N (q I

,)

+ (a
2
N - N ) jr q7 1

0
8 1

g g 0
4-

/ irri
+ a 2

N
12 ql J/q1

0

where q1 and g and f are known.

(4.2.16)
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Eqs.(4.2.15) form a set of linear holaogeneous equa-

tions which can be solved for the coefficients
mn

provided there exist nontrivial solution 3 of

IF (a, T, Ni, a) I1 = 0 (4.2.17)
Inn

m, n = 1, 2, ..., i = 1 to 39.

The solving of eq. (4.2.17) for a minimum positive

real value of T constitutes the characteristic value

problem. For given values of Ni, i = l 39, R2/R1 and

(0
2 1

) a value of a is chosen and ecf. (4.2.17)

is solved for the lowest positive value of T. This

procedure is repeated for different values of a until

the minimum lowest value of T is found. The solving

of the infinite order characteristic ect. (4.2.17) is

accomplished by the approximate method of setting the

finite determinant made up of the first k rows and

columns equal to zero and solving for T. The usefulness

of this method is determined by how rapidly the lowest

positive value of T approaches its limit as k

For the classical viscous fluid case, Chandrashaker (1954)

has found that a very rapid convergence is expected. For

non-Newtonian fluids, Narasimhan (1963) and Graeb 1 (1962)

have independently shown that this holds true also. In

our present investigation also the above procedure has

been found to be rapidly convergent.
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4.3 Solution of the Characteristic Value

Problem and Critical Taylor Numbers

As an illustration of the above stability investiga-

tion, we choose the following set of data:
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and 0.5 < N
31

< 1.

The relation for N
31 was chosen to facilitate comparison

with the stability analysis of other workers in the case

of classical viscous fluids.
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a a ,
1

.5 4.2 1.785 x 10
3

1. 4.5 1.86S' x 10
4

1.25 5.3 2.30 x 10
4

t
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V. SUMMARY, DISCUSSION AND SCOPE OF FURTHER WORK

5.1 Summary and Discussion

In the previous chapters we have presented Eringen's

theory of thermo-viscoelasticity and applied it to the

problem of stability of couette flow between two heat

reservoirs. In the course of this application we have

solved the steady state problem and reduced the stability

problem into a characteristic value problem and obtained

the solution for it. Comparing the results given in Table

I with the existing stability investigations, we find that

thermo-viscoelastic fluids in a couette flow in the absence

of a magnetic field are more stable than classical viscous

fluids in the same situation. In the non-Newtonian realm,

the results obtained physically indicate that thermo-

viscoelastic fluids, like Bingham plastics, are more stable

than viscous fluids under similar conditions, unlike Reiner-

Rivlin fluids which have been found to be less stable than

viscous fluids. This behavior of the flow is essentially

due to the viscoelastic nature of the fluid under thermal

as well as rotation effects.

5.2 Scope of Further Work

The present investigation of stability of thermo-
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viscoelastic fluid flow between two rotating coaxial

cylinders maintained at constant temperatures has been

restricted to narrow gap width between the cylinders in

order to simplify the complex nature of the problem.

But, it should be definitely possible to extend this

problem to the wide gap case. Further, it should be

interesting to consider the influence of a superposed

electromagnetic field or density gradient field on the

stability of the flow, in the case of conducting fluids.

Also, further investigations into the interactions of

thermo-viscoelastic character of the fluid with a variety

of different combinations of rotational, thermal, magnetic

and density fields should prove to be of great interest in

technological as well as theoretical studies of stability

of non-Newtonian fluids in general.
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