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[1] Sandbars are ubiquitous, yet not well understood
beach features that change their position and shape in
response to changing wave conditions. We propose and test
a simple empirical model consisting of two coupled linear
differential equations that represents bar dynamics in terms
of wave forcing and two other state variables: (1) the mean
cross-shore bar position and (2) the alongshore variability
about that mean. Model coefficients are constrained by
fitting to a 2-month data set, and the modeled behavior is
examined with a stability analysis. The system is found to
be stable and, hence, predictable. Rates of change of the
bar position and its alongshore variability are found to be
significantly coupled, such that prediction of one variable
requires information about the other. The system response
time is slow compared to the storm wave cycle such that
the bar response continually orbits time-varying
equilibrium points in the state variable phase plane.
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1. Introduction

[2] It is somewhat counter-intuitive that unconsolidated
sand, resting on an ocean beach under the action of ocean
waves, will typically form a beach profile that is not
monotonic, but instead features one or more local shallows
called sand bars. Observations from a variety of locations
show that beaches with bars are common [Plant et al., 1999;
Ruessink et al., 2003; Alexander and Holman, 2004].
Moreover, the horizontal planform (or morphology) of sand
bars can vary substantially, from those with no alongshore
variation (linear bars) through a variety of patterns that can
be quasi-periodic or even irregular [Sonu, 1973; Wright and
Short, 1984; Lippmann and Holman, 1990].
[3] A particularly clear example of sandbar response,

which also serves as the data set for this paper, was
observed during Hurricane Bonnie from the period 01
August 1998 to 30 September 1998 at the Army Corps
of Engineers’ Field Research Facility, near the town of
Duck, N.C., USA. The cross-shore position and along-
shore variation of a nearshore sandbar were monitored
using time-averaged video imagery (Figure 1) obtained
from seven cameras mounted on a 43 m high tower. White
foam produced as waves break in the relatively shallow
water over sandbars is used to reveal bar position and
shape [Lippmann and Holman, 1989]. Bonnie produced

offshore wave heights of nearly 3 m (Figure 2a). Begin-
ning a few days prior to the hurricane’s landfall, a clearly
identifiable sandbar with some minor alongshore irregu-
larity was located about 50 m offshore (Figure 1a); then,
this bar migrated about 25 m offshore in association with
the largest storm waves (Figure 1b). Over the subsequent
2 weeks, the alongshore-uniform sandbar developed into a
chain of crescentic bars that migrated slowly onshore
(Figure 1c).
[4] This sequence of response has been widely observed

elsewhere [Short, 1975; Wright et al., 1985; Lippmann and
Holman, 1990; Ranasinghe et al., 2004] and the recog-
nizable bar patterns have been called morphodynamic
states with names like ‘‘longshore bar-trough’’ (Figures 1a
and 1b) and ‘‘rhythmic’’ (Figure 1c) that can form a
discrete basis set of morphology descriptors. Transitions
between states are assumed to occur at threshold values of
some variable (perhaps wave height or a combination of
wave and sediment parameters), and each state is assumed
to instantly respond to and exist in equilibrium with,
for example, a particular range of wave heights [Wright
et al., 1985; Lippmann and Holman, 1990]. Typically
predictions from this class of models have not been
accurate [Sonu and James, 1973; Ranasinghe et al.,
2004], which we hypothesize is, in part, due to the un-
modelled feedback mechanisms and discrepancies between
the longer response time scale of sand bars and the shorter
time scales of variation of wave forcing.
[5] A number of existing models address the time

evolution of arbitrary sand bar profiles by coupling sedi-
ment transport models with measurements of relevant flow
properties [e.g., Thornton et al., 1996; Gallagher et al.,
1998; Hoefel and Elgar, 2003; Henderson et al., 2004].
While explicitly recognizing the dynamic nature of the
system and producing skillful predictions (when compared
to measured profile change), these and other models do
not explicitly examine the feedback between the hydrody-
namic and bathymetric components of the sand bar sys-
tem. In particular, these models assume that alongshore
variability is either unimportant or adequately captured by
the measured flow properties that sample only the 1-D
(cross-shore) dynamics. These models do not address the
possible role that the commonly-observed alongshore var-
iations of bathymetry (e.g., Figure 1c) and the resulting
circulation may have on sediment transport balances.
[6] Here, we take a different, macroscopic approach and

use a dynamical feedback model to capture both the
response of sandbars to wave forcing as well as the
coupling between the mean sand bar position and along-
shore variations in that position (and the associated
hydrodynamics, by inference). We use observations to
constrain the feedback model and describe the system’s
stability and behavior. Alongshore variations in bar crest
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position are found to play an important role in mean bar
position response.

2. Theory

[7] The preponderance of published results showing
beaches returning to recognizable morphodynamic states
supports the idea that sandbar patterns are driven by
negative feedback toward some sort of time-varying equi-
librium. But, it is also possible that the system exhibits
unexpected behavior due to feedback between its different

components. We propose a simple model for predicting
horizontal bar response where the change in the along-shore
mean bar position, x, and change in the horizontal amplitude
of the alongshore-variable component of the bar pattern, a,
depend on each other and on the incident wave height in the
following linearized feedback model

_x
_a

� �
¼ A

x

a

� �
þ B

1

F

� �
: ð1Þ

[8] The matrix A describes the interaction between x and
a, and F is a forcing function here chosen to be a function of
the offshore root mean square wave height (Hrms): F(t) =
[Hrms(t)]

p. The matrix B describes the linear response of the
system to the forcing plus a constant that accounts for non-
zero mean values of x and a.
[9] Our model does not explain the existence of bars, the

particular length scale of alongshore variability that might
occur, or any details of the fluid dynamics or sediment
transport over the bar system. Instead it explores the
macroscopic variability of the state variables and the nature
and consequences of feedback between the variables. Typ-
ically, nonlinear models have been used to reveal interesting
dynamics in many science fields, ranging from biology
[May, 1976] to meteorology [Lorenz, 1984]. While the
behavior of an actual bar system is most likely very
nonlinear [Reniers et al., 2004], the linear approximation
(equation 1) admits both stable (i.e., equilibrium-seeking)
and unstable dynamics. The form of equation 1 is typically
used in prediction and control theory [Kalman, 1960] and
has been chosen here to facilitate a straightforward stability
analysis of the sandbar dynamics. The approach has been
applied successfully in analysis of tidal morphodynamics
[van Goor et al., 2004] and it can be fruitful even if the
interactions captured by matrix A are only qualitatively
accurate [Phillips, 1992].
[10] The nature of the dynamics of the model (equation 1)

is completely determined by the particular values of the
interaction coefficients (matrix A) and forcing coefficients
(matrix B). These values are obtained by fitting to obser-
vations. With coefficients established, the equilibrium val-
ues (x0, a0) for any particular value of forcing can be

Figure 1. Mapped imagery of nearshore region (with substantial cross-shore exaggeration) for 23 and 28 August (a, b)
and 9 September (c). Red line indicates bar positions estimated for each image. A pier is visible in the central region of each
image, extending across the entire domain (this region was omitted from the analysis). Arrows indicate the shoreline (SL,
where the dry beach meets the water) and the dune line (DL, where the beach ends).

Figure 2. (a) Time series of wave height measured in 8 m
water depth, about 1 km offshore. (b) Observed (dots) and
predicted (solid line) bar position and (c) amplitude of the
crescentic-scale alongshore variability. A bar position of
zero corresponds to the minimum observed position.
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computed by setting the left hand side of equation (1) to
zero:

x0
a0

� �
¼ � A½ ��1

B
1

F

� �
� B0

1

F

� �
: ð2aÞ

[11] The equilibrium values are a linear function of the
forcing (equation 2a). The equilibrium state is called an
attractor and the system is stable if the dynamics drive the
bar components towards equilibrium.
[12] To find out whether the system is stable or unstable,

a perturbation (such as might be introduced by a change in
wave conditions) can be assumed to exhibit exponential
growth with a timescale of l:

x� x0
a� a0

� �
¼ x

a

� �
elt : ð2bÞ

[13] This leads to an eigenvalue problem

l x
a

� �
¼ A

x
a

� �
; ð3Þ

where l are eigenvalues of the corresponding system
(equation 3), with eigenvectors x and a. The sign of the real
part of l dictates the stability of this system; the presence of
an imaginary component indicates oscillation. The eigen-
vectors describe the nature of the coupled response between
bar position and crescentic amplitude.

3. Methods

[14] Imagery was obtained from five collocated cameras
(data available on http://cil-www.oce.orst.edu/argus02a/
1998/, cameras c0–c4) that provided a panoramic view of
the coast. The raw imagery was processed on site to produce
time-exposure images, which removed rapidly fluctuating
features (such as individual waves) that vary over a 10
minute averaging period. Using standard photogrammetry,
the images were projected to a plane located at sea level,
and then the images were merged at hourly (daylight)
intervals into a series of maps (Figure 1). Using a well
established approach for finding nearshore features [Plant
and Holman, 1997; van Enckevort and Ruessink, 2003], the
bar location as a function of alongshore position was
identified in the maps at 50 m spacing. Remote sensing
artifacts due to tide and wave height variations were
corrected by interpolating bar positions to mean tide level
and mean wave height. (The tide and wave height data are
available on http://www.frf.usace.army.mil/.) Interpolation
was performed over time and space, removing variations
with an alongshore length scale <100 m and time scale
<3 days. Interpolation errors were computed [Plant et al.,
2002] in order to determine the reliability of bar position
estimates. This procedure produced one estimate of the
cross-shore bar position as a function of alongshore coor-
dinate at 0.5 day intervals. From these data, the alongshore
averaged (over the 4 km study area) bar position, x, and
crescentic-scale amplitude, a, were computed for each time
interval. While the term crescentic is used here for conve-
nience, we make no requirement on actual bar shape and

define a as the root mean variance in the band 200 m < L <
1000 m, obtained from an alongshore Fourier decomposi-
tion of bar position data.
[15] The coefficient matrices A and B were estimated by

integrating equation 1 over successive 0.5 day intervals and
fitting the model to the observed changes in x and a using
linear regression. Out of 121 observations, 21 were rejected
because the interpolation procedure failed to achieve an
80% reduction in sampling errors. The best prediction skill
of the model resulted from p = 2 (using 0,1,2,3 as trials
for p). The skill was tested by initializing the model with the
first observations of x and a and then driving the model
forward with observed wave heights (Figures 2a, 2b,
and 2c). The skill (R2) of 0.9 was significant at the 95%
confidence level.

4. Results

[16] The estimated coefficients for the Hurricane Bonnie
data set were

A ¼ �0:071� 0:03 d�1
� � �0:70� 1:0 d�1

� �
0:0047� 0:001 d�1

� � �0:022� 0:03 d�1
� �

" #
;

B ¼
0:50� 1:0 md�1

� �
2:1� 0:4 mdð Þ�1

h i
�0:014� 0:03 md�1

� � �0:040� 0:01 mdð Þ�1
h i

2
64

3
75;

where the uncertainty indicates the standard deviation of the
estimated values (not the standard error). Several broad
conclusions can be made. The negative values on the
diagonal of A (the self-interaction terms) indicate a
stabilizing tendency because a positive perturbation pro-
duces a negative response and vice versa. If the diagonal
terms are both negative, the off-diagonal cross interaction
terms do not change the stability of the system so long as
they have opposite signs, as is the case in our example. (Or,
at least this is the most likely situation given the uncertainty
in the parameter estimation.) The values in the second
column of B describe how different wave heights affect the
bar response. In the absence of coupling, an increase in
wave height would drive positive changes in bar position
and negative changes in crescentic amplitude. However,
after accounting for the coupling by computing B0, we find
that the equilibrium crescentic amplitude actually increases
with increasing wave height, i.e.,

x0 ¼ 4:28þ 14:95F
a0 ¼ 0:28þ 11:26F:

ð4Þ

[17] The solution of the eigenvalue problem (equation 3)
yielded a complex eigenvalue (l = �0.05 ± 0.05i). The sign
of the real part of the eigenvalue is negative, indicating that
the system is stable. If the forcing is held constant and the
system is perturbed, the bar position and amplitude will
return to equilibrium with a decay timescale of <(l)�1, or
about 20 days. The imaginary part of the eigenvalue
indicates that an oscillation is superposed upon the expo-
nential decay. The period of this oscillation, T =
(2p)=(l)�1, which is about 120 days, is long compared to
the decay time scale such that when bar position and
amplitude are plotted as trajectories in a phase portrait
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(Figure 3a) the system is shown to return to equilibrium
along a spiraling path. The oscillations will be heavily
damped before completing even one cycle.
[18] The nature of the response is further characterized by

the complex eigenvectors (x = �1.00, a = 0.04 ± 0.07i),
which describe the relative magnitudes and a phase shift of
bar position and crescentic amplitude response. The differ-
ence in magnitudes of the vector components is proportional
to the observed difference in variability of bar position and
amplitude response (Figures 2b and 2c). The complex phase
shift (f = Tan�1[=(a/x)/<(a/x)]) indicates how a perturba-
tion in one component drives a response in the other. A
phase shift of 0 indicates no interaction between bar
position and crescentic amplitude, while a phase shift of
90 degrees (quadrature) means a perturbation in bar position
will drive a response only in the amplitude. The estimated
phase shift was 115 degrees, indicating partial quadrature.
For example, if a sandbar’s crescentic amplitude is at
equilibrium but the bar position is displaced offshore of
its equilibrium (see Figure 3a), the bar position will have a
negative response (onshore migration) and the amplitude
has a positive response (amplitude increase). The amplitude
change will then feed back into the response of the bar
position, thereby deflecting the trajectories away from any
direct path toward equilibrium.

5. Discussion

[19] These results lead to several important conclusions.
First, the dynamics of the modeled sand bar system are
stable. This implies that time series of the coupled bar
position-amplitude system are inherently predictable, even
if the wave conditions are changing (Figures 2a, 2b, and 2c).
Figures 3b–3d show how the time series were modeled
using the observed wave height. The time-varying forcing
caused the equilibrium state of the system to vary. The bar
position and crescentic amplitude responses adjust to the
variations, but their relatively slow response, compared to
changes in the wave height, does not allow them to reach
equilibrium.
[20] Second, this analysis indicates that feedback

between bar position and the crescentic amplitude is im-
portant. Specifically, the cross-interaction is important such
that bar migration depends strongly on amplitude and vice
versa. The cross-interaction is responsible for the spiraling
approach towards equilibrium and explains the hysteresis
associated with observed morphologic state changes. That
is, an increase in wave height (a storm) may drive a sandbar
offshore and, initially, cause a reduction in crescentic
amplitude. At this point, if the wave height decreases (the
storm has passed), the bar will not reverse its response (first
migrate onshore, then increase amplitude), but will instead
immediately experience an increase in amplitude and then
slowly migrate onshore. For instance, Figure 3b shows
offshore migration and a decrease in amplitude driven by
a relatively short-lived increase in wave height. This re-
sponse is consistent with previous interpretations of bar
behavior during storms and is consistent with the data used
in this study (Figures 2b and 2c). Continuing through the
sequence as the wave height drops rapidly from 2 m
(Figure 3b) to 1 m (Figure 3c) to less than 1 m
(Figure 3d), we predict an increase in crescentic amplitude
and onshore migration. The modeled response orbits around
the changing equilibrium points in the phase portrait,
reflecting the complicated interaction between sandbars,
waves, and circulation patterns driving sediment transport.
[21] The analysis of the dynamics was largely unchanged

by varying by one standard deviation the estimated inter-
action terms in the matrix A. This suggests that the
parameter estimates were sufficiently accurate to character-
ize the system dynamics. Only in one case, where the sign
of the term A12 changed from �0.7 (alongshore variability
drives onshore bar migration) to 0.3 (alongshore variability
drives offshore bar migration), was there a qualitative
change in the system dynamics. With the sign change in
this parameter, the corresponding stability analysis pre-
dicted strongly stable response only if perturbations of the
bar and alongshore variability had opposite signs (e.g., bar
position offshore of equilibrium and alongshore variability
smaller than equilibrium). If perturbations of bar position
and alongshore variability had the same sign (e.g., bar
offshore of equilibrium and large alongshore variability),
weakly stable response was predicted with a response time
of 100 days. The possibility for the bar system’s stability to
depend on the system state is an interesting concept, but it is
not one that can be addressed with the present data set.
[22] We must emphasize that our results characterize a

particular realization of sandbar response with the assump-
tion that the model (equation 1) describes small perturba-

Figure 3. Phase portraits. The sticks (whose origins lie on
a regular grid of dots) point in the direction of dynamical
flow corresponding to a particular wave height.
(a) Hypothetical situation for constant wave height equal
to the mean value (0.64 m). Spiraling curves show the
modeled trajectories for several different initial conditions
converging at the equilibrium state. (b–d) Phase portraits
corresponding to observed wave height on 28 August
(Figure 3b), 29 August (Figure 3c), and 9 September
(Figure 3d). A straight dashed line marks the locus of all
equilibria and the particular equilibrium state for each phase
portrait is marked with a filled circle that falls on that line.
(The open circle in Figure 3b indicates that the equilibrium
state does not lie within the domain.) The modeled
trajectory (curve, updated in each phase portrait) was
initialized at the observed state on 23 August and driven by
the time-varying wave height.
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tions from some mean state. If there are large variations in
the mean bar position, or in the characteristic length scale of
the alongshore variations, or in some un-modeled compo-
nent of the system (such as wave period or direction), then
the model coefficients might need to be re-evaluated. For
instance, it is well documented that there is an offshore bar
at the study site (located at a cross-shore coordinate ranging
between 300 m and 400 m), that periodically disappears,
affecting the wave conditions at the inner bar that was the
focus of this study. Specifically, Plant et al. [1999] analyzed
several decades of bar position data and found different
characteristic response times for inner and outer bars. (They
also found that a response time that varied with wave height
was required to explain an inter-annual trend of offshore bar
migration. To apply this to our analysis would require that
the parameters in the interaction matrix vary with wave
height. It appears that this is not necessary to capture the
important dynamics of our shorter term analysis of much
smaller perturbations to the bar system.) Application of
the present analysis approach to a different geographic
location, where there might be significantly altered details
of wave, current, and sediment transport processes, would
also require re-evaluation of the model parameters, with the
possibility of identifying different system dynamics.
[23] The observed link between horizontal variability in

bar morphology (and, presumably, the associated flow
circulation) and the rate of onshore bar migration may be
of more than academic interest. Current attempts to model
cross-shore bar migration almost invariably assume 1-D
dynamics, wherein the dominant physics can everywhere be
modeled in terms of cross-shore balances involving hydro-
dynamics over a previous beach profile and the changes of
that profile due to induced sediment transport. The results
from this paper suggest that horizontal circulation may play
an important role, particularly in facilitating onshore trans-
port and bar movement after storms. Two-dimensional flow
and sediment transport models exist [Falques et al., 2000;
Reniers et al., 2004], but they have not yet demonstrated
significant predictive skill in comparisons to field observa-
tions. This suggests that the dominant feedback mechanisms
are, as yet, inaccurately parameterized in these detailed
coupled models.
[24] Finally, the predicted equilibrium state varies with

changes in wave height in an unexpected way. While this
and previous studies predict that the equilibrium bar posi-
tion moves offshore with increasing wave height, the
present model predicts that the equilibrium crescentic am-
plitude increases with increasing wave height (equation 4,
Figures 3b–3d). This is opposite to conclusions from
previous studies [Wright and Short, 1984; Ranasinghe et
al., 2004], which suggest that the observed reduction in
amplitude during storms meant that the equilibrium state
must include long straight bars. We emphasize that these
conclusions relate only to equilibrium states (which appear
to be largely unreachable) and note that the observed and
modeled amplitudes in this study (Figure 2c), which were
not at equilibrium, show a decrease in amplitude immedi-
ately following the storm. Direct observation of equilibrium
is missing because the wave height subsides rapidly after a
passing storm. In support of the present model’s prediction,
we note that a geometric constraint is imposed by the
shoreline, limiting the crescentic amplitude as a bar

approaches the shore. Because the equilibrium bar position
increases with increasing wave height and the amplitude is
coupled to the bar position, the equilibrium amplitude may
be enslaved to both the bar position and shoreline con-
straints.

6. Conclusions

[25] A simple, empirical dynamical model of sand bar
behavior is presented that represents the macroscopic
dynamics in terms of two, coupled differential equations
describing the evolution of the alongshore mean (x) and
alongshore, band-limited standard deviation (a) of sand bar
position. Each equation is driven by a time-varying wave
forcing and each allows interactions between the variables
to occur. In contrast to equilibrium bar models whose tests
are confused by the need to make arbitrary assumptions of
an averaging time scale for wave forcing, time evolution is
handled naturally and the system need never approach
equilibrium. After a least squares solution for system
coefficients based on two months of observations, exami-
nation of the system stability revealed several important
properties. The dynamics were found to be stable, indicating
a tendency for the system to return to equilibrium—a result
that is consistent with previous interpretations and that also
suggests that the system is inherently predictable. The two
state variables were found to be coupled such that disequi-
librium in one also drives variation in the other. For
example, under calm conditions, the shoreward migration
of the bar must be coupled to a growth of alongshore bar
variability and, presumably, the development of horizontal
circulation. The idea that horizontal circulation may facili-
tate onshore migration is a paradigm shift from traditional
models that assume one-dimensional dynamics only. Con-
sistent with observations, offshore bar migration under
storms is initially associated by a bar straightening. Model
predictions of eventual growth of alongshore variability
under storms are rarely realized due to the long response
time of the bar system compared to that of storms. Overall,
the modeled response is a sand bar system that continually
orbits time-varying equilibrium points in the state variable
phase plane.
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