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Investigation of a Hybrid Quasi-Diffusion/Monte Carlo Method
for Solving Multigroup Criticality Problems in Slab Geometry

1 Introduction

There is increasing interest in “hybrid methods” for the purpose of accelerating

the convergence of the fission source and eigenvalue in k-eigenvalue radiation trans-

port problems. Hybrid methods are methods that make use of two or more methods

for solving radiation transport problems. In the past there have been two general

approaches in the field of numerical radiation transport: Monte Carlo methods

and deterministic methods. Currently, however, there is more and more interest in

combining the two methods to form hybrid methods in the hopes of making use of

the more desirable qualities of each, while minimizing the disadvantages.

The equation that governs radiation transport is an integro-differential equation

that can be solved analytically only for very simple problems, but can be solved

numerically for more complex problems. In deterministic methods the transport

equation is converted into a system of algebraic equations by discretizing each of

the independent variables in the equation. Common numerical methods used for

discretizing the angular variable include SN methods and PN methods. In SN

methods the angular dependence of the flux is represented by a discrete set of

directions (or rays) whereas in the PN method, functional expansions are used to

discretize the angular variables [Dud. 1976]. Another commonly used method is

Monte Carlo. Monte Carlo makes use of pseudo-random numbers to track individ-

ual histories through a system that are representative of particles of radiation.

For systems which are mostly governed by diffusion, for example commercial

nuclear reactors, diffusion theory is commonly used. However, diffusion theory
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assumes weak angular dependence and breaks down near boundaries or where

material properties change dramatically over distances comparable to a mean free

path. Diffusion theory is also inaccurate near localized sources and in strongly

absorbing media. Generally diffusion theory is valid in weakly absorbing media

several mean free paths from any sources or boundaries.

Another method which will also be discussed extensively in this thesis is quasi-

diffusion which was first proposed as a deterministic method by Gol’din in 1964

[Gol. 1964]. It was later implemented successfully by Miften and Larsen with

newly-derived boundary conditions in 1993 [Mif. 1993].

The hybrid method discussed in this thesis makes use of quasi-diffusion in

conjunction with standard analog Monte Carlo. The objective is to accelerate the

convergence of the fission source in Monte Carlo k-eigenvalue calculations where

the fissionable components are loosely-coupled and fission source convergence is

extremely slow. For this type of problem, the complications go beyond the slow

convergence of the fission source. Because of the statistics involved in Monte

Carlo calculations and the loose coupling between components of these problems,

unphysical spatial gradients in the initial fission source may never be damped out or

may be amplified. The hybrid method proposed in this thesis is specifically geared

toward criticality problems with high dominance ratios that are very challenging

for standard Monte Carlo methods.

1.1 Literature Review
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1.1.1 Analog Monte Carlo

Monte Carlo for the solution of complex problems was made possible by the

invention of the first electronic computer in 1945. In fact it was only two years after

the invention of the first electronic computer that John von Neumann outlined a

letter to Robert Richtmyer, the Theoretical Division leader at Los Alamos, regard-

ing a possible statistical approach to solving the problem of neutron diffusion in

fissionable material [Met. 1987].

John von Neumann’s interest in random numbers was triggered by discussions

with Stan Ulam whose extensive mathematical background made him aware that

with the development of the electronic computer statistical sampling techniques

were now possible. Before the development of the electronic computer the per-

formance of such calculations had ceased to be considered because the tedious-

ness of the calculations and length of time required was too great an impediment

[Met. 1987].

However it is reported that John von Neumann was not the first to use Monte

Carlo in the study of neutron behavior. According to Emilio Segre, a student and

collaborator of Enrico Fermi, nearly 15 years earlier Fermi had used statistical

methods when he was studying the moderation of neutrons in Rome. He did not

publish anything on the subject, but used the method to solve many problems

with a small mechanical adding machine. After the invention of the first electronic

computer, which was called the ENIAC, Fermi had an instrument built, later called

the FERMIAC, which developed neutron genealogies in two dimensions and was

able to accommodate two neutron energies, slow and fast [Met. 1987].

Monte Carlo was the name suggested by N. Metropolis for the statistical method

and was inspired by Stan Ulam’s uncle who would borrow money from relatives
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because he “just had to go to Monte Carlo.” [Met. 1987]

Analog Monte Carlo, also called direct simulation, can be thought of in much

the same way as an analog circuit where the input is proportional to the output. For

example, a radiation particle entering with a weight of one will never have a weight

greater than one. It will either remain alive with a weight of one or be absorbed and

die. In a shielding problem, using analog Monte Carlo, a particle that is tallied at

the other side of the shield actually made its way through the shield without being

absorbed. This is quite different than with non analog Monte Carlo. With implicit

Monte Carlo particles often change weight as they move through material and

tallies are often based on fractions of the original particle. Implicit Monte Carlo

is used to solve thermal radiative transfer problems. Many variance reduction

techniques make use of implicit Monte Carlo including: absorption suppression,

splitting and Russian roulette, weight windows, and many others [Lew. 1993].

Monte Carlo methods have spread rapidly and today are used extensively

in the study of radiation transport. They are used in the nuclear and medical

physics industries for a large range of problems including criticality, reactor calcu-

lations, shielding, and dose. The Monte Carlo N-Particle Transport Code, MCNP,

available from the Radiation Safety Information Computational Center, RSICC,

[MCNP 2009], is the most commonly used Monte Carlo code for radiation trans-

port calculations.

1.1.2 Quasi Diffusion

Quasi-diffusion was first introduced into the area of deterministic methods in 1964

by Gol’din [Gol. 1964]. Troshchiev et al. was the first to report results from

quasi-diffusion’s use as a true acceleration scheme [Tro. 1968], obtaining the same
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solutions from the acceleration scheme as the unaccelerated transport equations.

In 1979, Aksenov and Gol’din applied the quasi-diffusion method to the two-

dimensional stationary equation of neutron transport and showed that the quasi-

diffusion method retains its efficiency for two-dimensional problems [Aks. 1979].

A Fourier stability analysis of Goldin’s [Gol. 1964] quasi-diffusion method for

iteratively solving discrete-ordinates problems was performed in 1990 by Cefus and

Larsen. They showed that the method was stable and rapidly converging for all

mesh sizes [Cef. 1990].

In 1993, Anistratov and Gol’din [Ani. 1993] published their work on nonlinear

methods for solving particle transport problems, which they called Quasi Projective

(QP) methods. The quasi-diffusion method and nonlinear flux methods (both first

and second flux methods) were considered with both consistent and independent

differencing schemes.

In 2005 Hiruta, Anistratov, and Adams published work on a splitting method

for solving the coarse-mesh discretized low-order quasi-diffusion equations [Hik. 2005].

This methodology was developed for reactor physics calculations and was shown to

effectively split a problem into two parts: a tensor diffusion problem that captures

a significant part of the transport solution in the central part of an assembly, and

a calculation for the complicated behavior of the transport solution near assembly

boundaries [Hik. 2005]. Also in 2005, Anistratov published his work on consis-

tent spatial approximation of the low-order quasi-diffusion equations on coarse

grids [Ani. 2005]. Anistratov’s proposed homogenization procedure reproduced

accurately the complicated large-scale behavior of the transport solution within

assemblies.

Miften and Larsen derived new boundary conditions for quasi-diffusion and
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successfully implemented them in 1993 [Mif. 1993]. Two years later, Urbatsch

used these boundary conditions in his development of a hybrid Monte Carlo/quasi-

diffusion method in his PhD thesis work [Urb. 1995]. His hybrid method was the

basis for the research presented in this thesis. The method shown in this thesis

differs from Urbatsch’s work in the order and number of iterations between the

quasi-diffusion and the Monte Carlo in an attempt to do more of the work in the

lower order and less computationally expensive solver. This thesis also extends

the method to multiple energy groups, whereas Urbatsch’s work focused on the

energy-independent transport equation. In addition, Wiedlandt acceleration was

used to accelerate the convergence of the quasi-diffusion solve in the one-group

eigenvalue problems.

1.1.3 Hybrid Methods

Hybrid methods for radiation transport make use of two or more methods for

solving radiation transport problems. The hybrid method in this thesis makes use

of both quasi-diffusion and analog Monte Carlo techniques. Monte Carlo is used

to calculate functionals (Eddington factors) that are then used in the solution of

the quasi-diffusion equations.

Other hybrid methods have been developed making use of quasi-diffusion for

problems with high dominance ratios. Larsen and Yang published their work in

2007 on Monte Carlo Functional methods for estimation of k-eigenvalues and eigen-

functions [Lar. 2007]. In 2008 Larsen and Yang applied their work on Monte Carlo

Functional Methods to the solution of k-eigenvalue problems [Lar. 2008].

In addition to criticality problems, hybrid methods have been and are being

developed for source detection and shielding problems. In the early-mid 1990’s



7

a commercial British code MCBEND was released. In MCBEND a Monte Carlo

module was merged with a diffusion module to calculate weight windows. In the

late 1990’s LANL developed the AVATAR package. The AVATAR package made

use of a discrete-ordinates code to generate direction-dependent weight windows

for MCNP. Although the AVATAR package no longer exists, in recent years ORNL

has released the CADIS package which provides automated software links between

an existing discrete-ordinates code and an existing Monte Carlo code. CADIS has

the advantage that the user only has to write one input deck and the code does all

the rest.

In 2003 Haghighat and Wagner published a review on Monte Carlo variance

reduction with deterministic importance functions [Hag. 2003]. In addition to

other researchers work, Haghighat and Wagner’s publication reviews their own

methodology which is used in the CADIS package. In 2005 Smith and Wagner

did a study on manual and automated Monte Carlo variance reduction with a

deep penetration reactor shielding problem [Smi. 2005]. Their work is applicable

to the analysis of reactor problems where reactor transients cause a reduction in

moderator temperature, increasing the attenuation of neutrons and decreasing the

response of excore detectors.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

I. Derivation of Mono-Energetic Quasi-Diffusion in Slab Geometry

II. Discretization of the Mono-Energetic Quasi-Diffusion Equation in Slab Ge-

ometry
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III. Derivation of Quasi-Diffusion with Multiple Energy Groups in Slab Geometry

IV. Monte Carlo Transport

V. Implementation of the Hybrid Method

VI. Mono-energetic Results

VII. Multi-Group Results

VIII. Conclusions
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2 Methods

2.1 Introduction

The purpose behind the hybrid Monte Carlo method discussed in this chapter is

to accelerate the convergence of the fission source in Monte Carlo k-eigenvalue

calculations where the fissionable components are loosely-coupled. In addition to

the complications caused by the slow convergence of the fission source, the statistics

involved in Monte Carlo calculations and the loose coupling between components of

these problems may cause unphysical spatial gradients in the initial fission source

to persist or be amplified. The less “communication” between regions, the greater

the possibility of this situation. It is even possible in problems where a region is

neutronically isolated from its neighbors, that all the particles could end up in one

region.

The hybrid method makes us of an iteration scheme between Monte Carlo trans-

port and a quasi-diffusion low order (QDLO) equation. The majority of the work

is done in the QDLO solver which makes use of functionals (Eddington factors)

obtained from the Monte Carlo code. This decreases computational time since one

iteration in the QDLO code can be much less expensive than one iteration in the

transport Monte Carlo code.

This method is based on the quasi-diffusion method, first proposed by Gol’din

[Gol. 1964] in 1964 with boundary conditions derived by Miften and Larsen in 1993

[Mif. 1993].

We begin with the derivation and discretization of the quasi-diffusion equations

in slab geometry, followed by a discussion of the analog Monte Carlo method used
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to obtain the Eddington factors. The iteration method used in this work will then

be discussed.

2.2 Derivation of Mono-energetic Quasi-Diffusion in Slab Geometry

The mono-energetic, one-dimensional integro-differential transport equation for a

slab of width L with vacuum boundaries is shown below, where ψ represents the

angular flux, Σt, Σs, and Σf are the total, scattering, and fission cross sections,

respectively, ν is the number of neutrons produced per fission, k is the multiplica-

tion faction (k-eigenvalue), and µ is component of the neutron’s direction vector

along the x-axis.

µ
∂ψ(x, µ)

∂x
+ Σt(x)ψ(x, µ) =

1

2
(Σs(x) +

νΣf (x)

k
)

∫
ψ(x, µ) dµ, (1)

ψ(0, µ) = 0, µ > 0, (2)

ψ(L, µ) = 0, µ < 0, (3)

The angular moment of the angular flux ψ, is defined in Equation 4, where φ0 is

the scalar flux.

φn(x) =

∫ 1

−1

µnψ(x, µ) dµ, (4)

The transport equation, Eq. (1), integrated over angle is shown below in Equa-

tion 5.

dφ1(x)

dx
+ Σt(x)φ0(x) = (Σs(x) +

νΣf (x)

k
)φ0(x) (5)

The transport equation is multiplied by µ and integrated over angle to obtain a

relationship between φ1(x) and φ2(x) as shown in Equation 6.

dφ2(x)

dx
+ Σt(x)φ1(x) = 0 (6)
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Equation 6 is then solved for φ1(x) to yield:

φ1(x) = − 1

Σt(x)

dφ2(x)

dx
(7)

Substituting Equation 7 into Equation 5 yields:

− d

dx

1

Σt(x)

d

dx
φ2(x) + Σa(x)φ0(x) =

νΣf (x)

k
φ0(x) (8)

No approximation to the transport equation has been made at this point.

A definition for an ”Eddington factor”’, λ2 is shown in Equation 9.

λ2(x) ≡ φ2(x)

φ0(x)
=

∫ 1

−1

µ2ψ(x, µ) dµ∫ 1

−1

ψ(x, µ) dµ

(9)

The first term in Equation 8 is then multiplied and divided by φ0(x) while the

remaining terms are multiplied and divided by λ2 to obtain the elliptic equation

for λ2(x)φ0(x) shown in Equation 10.

− d

dx

1

Σt(x)

d

dx
λ2(x)φ2(x) +

Σa(x)

λ2(x)
λ2(x)φ0(x) =

νΣf (x)

kλ2(x)
λ2(x)φ0(x) (10)

2.2.1 Vacuum Boundary Conditions

The vacuum boundary conditions at x = 0 and x = L, as derived by Miften and

Larsen, are obtained by integrating Equation 2 over µ > 0:

0 =

∫ 1

0

µψ(0, µ) dµ−
∫ 0

−1

µψ(0, µ) dµ+

∫ 1

0

µψ(0, µ) dµ+

∫ 0

−1

µψ(0, µ) dµ,

=

∫ 1

0

|µ|ψ(0, µ) dµ+

∫ 0

−1

|µ|ψ(0, µ) dµ+

∫ 1

0

µψ(0, µ) dµ+

∫ 0

−1

µψ(0, µ) dµ,

=

∫ 1

−1

|µ|ψ(0, µ) dµ+

∫ 1

−1

µψ(0, µ) dµ. (11)
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The integration and manipulation for the right hand boundary condition is shown

below.

0 =

∫ 0

−1

µψ(L, µ) dµ−
∫ 1

0

µψ(L, µ) dµ+

∫ 0

−1

µψ(L, µ) dµ+

∫ 1

0

µψ(L, µ) dµ,

= −
∫ 0

−1

|µ|ψ(L, µ) dµ−
∫ 1

0

|µ|ψ(L, µ) dµ+

∫ 0

−1

µψ(L, µ) dµ+

∫ 1

0

µψ(L, µ) dµ,

= −
∫ 1

−1

|µ|ψ(L, µ) dµ+

∫ 1

−1

µψ(L, µ) dµ. (12)

The Eddington factors for the boundaries are defined in Equations 13 and 14

and are essentially a ratio of the total current and flux at the surface.

λ1(0) =


∫ 1

−1

|µ|ψ(0, µ) dµ∫ 1

−1

ψ(0, µ) dµ

 (13)

λ1(L) =


∫ 1

−1

|µ|ψ(L, µ) dµ∫ 1

−1

ψ(L, µ) dµ

 (14)

Equation 7 at x = 0 and x = L is then rewritten by multiplying and dividing the

right hand side by φ0(0) and φ0(L) and substituting in Equation 9 to obtain:

φ1(0) = − 1

Σt(x)

d

dx
λ2(0)φ0(0), (15)

φ1(L) = − 1

Σt(x)

d

dx
λ2(L)φ0(L). (16)

The last term in Equations 11 and 12 are φ1(0) and φ1(L) respectively. Substituting

Equations 13 and 15 into Equation 11 and Equations 14 and 16 into Equation 12,

the left and right vacuum boundary conditions become

0 = λ1(0)φ0(0)− 1

Σt(0)

d

dx
λ2(0)φ0(0), (17)
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0 = λ1(L)φ0(L) +
1

Σt(L)

d

dx
λ2(L)φ0(L). (18)

Multiplying both sides by λ2(0)/λ1(0) and λ2(L)/λ1(L) the left and right boundary

conditions can be written as shown in Equations 19 and 20.

0 = λ2(0)φ0(0)− λ2(0)

λ1(0)Σt(0)

d

dx
λ2(0)φ0(0) (19)

0 = λ2(L)φ0(L) +
λ2(L)

λ1(L)Σt(L)

d

dx
λ2(L)φ0(L) (20)

Equations 10, 19, and 20 constitute the QDLO equations used in this thesis, derived

without approximation from the transport problem described by Equations 1, 2,

and 3.

2.2.2 Reflecting Boundary Conditions

With reflecting boundaries, the net flow through the surface is zero, such that

J(0) = 0, (21)

J(L) = 0. (22)

Recalling the definitions for current in Equations 15 and 16, the reflecting boundary

conditions can also be written as shown below:

0 = − 1

Σt(x)

d

dx
λ2(0)φ0(0), (23)

0 = − 1

Σt(x)

d

dx
λ2(L)φ0(L). (24)
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2.3 Discretization of the Mono-Energetic Quasi-Diffusion Equation in
Slab Geometry

The QDLO equations were discretized in space using a standard finite volume

method. We begin with the QDLO modified diffusion equation shown in Equa-

tion 25, where φ̃(x) = φ0(x)λ2(x):

− d

dx

1

Σt(x)

d

dx
φ̃(x) +

Σa(x)

λ2(x)
φ̃(x) =

1

k

νΣf (x)

λ2(x)
φ̃(x) (25)

The QDLO equation is discretized by integrating over a cell width from xi− 1
2

to

xi+ 1
2

as shown in Equation 26.

−
∫ x

i+1
2

x
i− 1

2

[
d

dx

1

Σt(x)

d

dx
φ̃(x)

]
dx+

∫ x
i+1

2

x
i− 1

2

Σa(x)

λ2(x)
φ̃(x) dx =

∫ x
i+1

2

x
i− 1

2

νΣf (x)

kλ2(x)
φ̃(x) dx

(26)

Integrating and substituting in the definition of current, J (Equation 27) into

Equation 26 yields

J(x) = φ1(x) = − 1

Σt(x)

dφ̃

dx
(27)

J(xi+ 1
2
)− J(xi− 1

2
) +

Σa,i

λ2,i

φ̃i∆xi =
1

k

νΣf,i

λ2,i

φ̃i∆xi. (28)

The surface current, Ji+ 1
2

is defined by Equations 29 and Equation 30 where D is

like a modified diffusion coefficient and is equal to 1
Σt

.

Ji+ 1
2

= J(xi+ 1
2
) = −

Di+1

(
φ̃i+1 − φ̃i+ 1

2

)
∆xi+1

2

, (29)

Ji+ 1
2

= J(xi+ 1
2
) = −

Di

(
φ̃i+ 1

2
− φ̃i

)
∆xi

2

. (30)

Equations 29 and 30 are set equal to each other and solved for φ̃i+ 1
2

to obtain

φ̃i+ 1
2

=
Di+1φ̃i+1∆xi +Diφ̃i∆xi+1

Di+1∆xi +Di∆xi+1

. (31)
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Equation 31 is then inserted into Equation 29 to obtain an expression for Ji+ 1
2

in

terms of known quantities.

Ji+ 1
2

=

[
− 2DiDi+1

Di+1∆xi +Di∆xi+1

]
φ̃i+1 +

[
2DiDi+1

Di+1∆xi +Di∆xi+1

]
φ̃i. (32)

A similar expression for Ji− 1
2

is shown below

Ji− 1
2

=

[
− 2DiDi−1

Di∆xi−1 +Di−1∆xi

]
φ̃i +

[
2DiDi−1

Di∆xi−1 +Di−1∆xi

]
φ̃i−1. (33)

Equations 32 and 33 are inserted into Equation 28 to obtain

−
[

2DiDi−1

Di∆xi−1 +Di−1∆xi

]
φ̃i−1

+

[
2Di+1Di

Di+1∆xi +Di∆xi+1

+
2DiDi−1

Di∆xi−1 +Di−1∆xi
+

Σa,i∆xi
λ2,i

]
φ̃i

−
[

2Di+1Di

Di+1∆xi +Di∆xi+1

]
φ̃i+1 =

1

k

νΣf,i∆xi
λ2,i

φ̃i. (34)

2.3.1 Discretization of Vacuum Boundary Conditions

Recalling the definition for current in Equation 27 and inserting into Equations 19

and 20 yields

φ̃(0) = −λ2,0

λ1,0

J(0), (35)

φ̃(L) =
λ2,L

λ1,L

J(L). (36)

The volume discretized definitions for J(0) and J(L) as defined in Equation 30 and

shown below in Equations 37 and 38 where Ji− 1
2

= J(0) and Ji+ 1
2

= J(L).

J(0) = −D1(φ̃1 − φ̃(0))
∆x1

2

(37)

J(L) = −DI(φ̃(L)− φ̃I)
∆xI

2

(38)
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Equations 37 and 38 are inserted into 35 and 36 and solved for φ̃(0) and φ̃(L) to

find

φ̃(0) =
2λ2,0D1

λ1,0∆x1 + 2λ2,0D1

φ̃1, (39)

φ̃(L) =
2λ2,LDI

λ1,L∆xI + 2λ2,LDI

φ̃I . (40)

Using the definitions for φ̃(0) and φ̃(L) in the the boundary conditions for J(0) and

J(L) gives an expression for the boundary current in terms of cell-average fluxes:

J(0) = − 2λ1,0D1φ̃1

λ1,0∆x1 + 2λ2,0D1

, (41)

J(L) =
2λ1,LDI φ̃I

λ1,L∆xI + 2λ2,LDI

. (42)

These last two equations are inserted into Equation 28 to obtain discretized equa-

tions for the left and right boundaries[
2D2D1

D2∆x1 +D1∆x2

+
2D1λ1,0

λ1,0∆x1 + 2λ2,0D1

+
Σa,1∆x1

λ2,1

]
φ̃1

−
[

2D2D1

D2∆x1 +D1∆x2

]
φ̃2 =

1

k

νΣf,1∆x1

λ2,1

φ̃1; (43)

−
[

2DIDI−1

DI∆xI−1 +DI−1∆xI

]
φ̃I−1

+

[
2DIDI−1

DI∆xI−1 +DI−1∆xI
+

2DIλ1,L

λ1,L∆xI + 2λ2,LDI

+
Σa,I∆xI
λ2,I

]
φ̃I +

=
1

k

νΣf,I∆xI
λ2,I

φ̃I (44)

Equations 34, 43, and 44 have the form of a tri-diagonal matrix and can be

solved for cell average φ̃ values using a standard tri-diagonal matrix solver.
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2.3.2 Discretization of Reflecting Boundary Conditions

Inserting JI− 1
2

= J(0) = 0, and/or J 1
2

= J(0) = 0 into Equation 28 yields[
2D2D1

D2∆x1 +D1∆x2

+
Σa,1∆x1

λ2,1

]
φ̃1 −

[
D2∆x1 +D1∆x2

]
φ̃2

=
1

k

νΣf,1∆x1

λ2,1

φ̃1 (45)

−
[

2DIDI−1

DI∆xI−1 +DI−1∆xI

]
φ̃I−1 +

[
2DIDI−1

DI∆xI−1 +DI−1∆xI
+

ΣaI∆xI
λ2I

]
φ̃I

=
1

k

νΣfI∆xI
λ2I

φ̃I (46)

.

2.4 Derivation of One-Dimensional Quasi-Diffusion with Multiple En-
ergy Groups in Slab Geometry

The energy-dependent, one-dimensional integro-differential transport equation for

a slab of width L with vacuum boundaries is described in Equations 47, 48, and

49.

µ
∂ψ(x, µ,E)

∂x
+ Σt(x,E)ψ(x, µ,E) =

1

2

∫
Σs(x,E

′ → E)ψ(x, µ,E ′)dE ′dµ

+
χ(x,E)

2k

∫
νΣf (x,E

′)ψ(x, µ′, E ′)dE ′dµ′, (47)

ψ(0, µ, E) = 0, µ > 0, (48)

ψ(L, µ,E) = 0, µ < 0. (49)

The angular moment of the angular flux φ is defined in Equation 50, where φ0 is

the scalar flux.

φn(x) =

∫ 1

−1

µnψ(x, µ,E) dµ, (50)
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Integrating 47 over angle gives Equation 51.

∂φ1(x,E)

∂x
+ Σt(x,E)φ0(x,E) =

∫
Σs(x,E

′ → E)φ0(x,E ′)dE ′

+
χ(x,E)

k

∫
νΣf (x,E

′)φ0(x,E ′)dE ′. (51)

The transport equation, Equation 47, is multiplied by µ and integrated over angle

to obtain a relationship between φ1(x,E) and φ2(x,E):

dφ2(x,E)

dx
+ Σt(x,E)φ1(x,E) = 0. (52)

Equation 52 was solved for φ1(x,E) and is shown below in Equation 53.

φ1(x,E) = − 1

Σt(x,E)

dφ2(x,E)

dx
(53)

Substituting the relationship between φ1(x,E) and φ2(x,E) into Equation 51 yields

− d

dx

1

Σt(x,E)

d

dx
φ2(x,E) + Σt(x,E)φ0(x,E) =

∫
Σs(x,E

′ → E)φ0(x,E ′)dE ′

+
χ(x,E)

k

∫
νΣf (x,E

′)φ0(x,E ′)dE ′, (54)

with no approximation.

A definition for an “Eddington factor”, λ2(x,E), is shown in Equation 55.

λ2(x,E) ≡ φ2(x,E)

φ0(x,E)
=

∫ 1

−1

µ2ψ(x, µ,E) dµ∫ 1

−1

ψ(x, µ,E) dµ

. (55)

The first term in Equation 54 is multiplied and divided by φ0(x,E) while the re-

maining terms are multiplied and divided by λ2(x,E) to obtain the elliptic equation
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for λ2(x,E)φ0(x,E) shown in Equation 56.

− d

dx

1

Σt(x,E)

d

dx
λ2(x,E)φ0(x,E) +

Σt(x,E)

λ2(x,E)
λ2(x,E)φ0(x,E)

=

∫
Σs(x,E

′ → E)λ2(x,E ′)φ0(x,E ′)

λ2(x,E ′)
dE ′

+
χ(E, x)

k

∫
νΣf (x,E

′)

λ2(x,E ′)
λ2(x,E ′)φ0(x,E ′)dE ′ (56)

Defining λ2(x,E)φ0(x,E) as φ̃0(x,E) gives Equation 57.

− d

dx

1

Σt(x,E)

d

dx
φ̃0(x,E) +

Σt(x,E)

λ2(x,E)
φ̃0(x,E)

=

∫
Σs(x,E

′ → E)φ̃0(x,E ′)

λ2(x,E ′)
dE ′

+
χ(x,E)

k

∫
νΣf (x,E

′)

λ2(x,E ′)
φ̃0(x,E ′)dE ′ (57)

The boundary conditions were developed in the same manner for the energy-

dependent equation as they were for the mono-energetic equation and the same

process was used to develop the discretized equations.

2.5 Monte Carlo Transport

Monte Carlo transport methods are used extensively in the nuclear physics field.

Monte Carlo methods are based on physical probabilities and make use of repeated

sampling of random or pseudo-random numbers. The equation that governs the

transport of radiation is an integro-differential equation that is not easy to solve an-

alytically without approximation. While Monte Carlo is especially nice for solving

neutron transport problems, it has some major limitations. The main limitation

with Monte Carlo methods is the computational time necessary to obtain a solu-

tion for many problems. Theoretically, if an infinite number of histories are run, a
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perfect solution without approximation can be obtained. However, since the error

decreases with the square root of the number of histories it can take a very large

number of histories to obtain a suitable answer. This is the reason that much

research is focused on coupling deterministic methods with Monte Carlo Methods.

Monte Carlo transport is also exceedingly easy to understand and implement.

Basically, particles (histories) of radiation are created and followed through their

life to determine physical parameters.

In this section, the focus is on the development of the probabilistic interpreta-

tion of neutron transport used to calculate the fission source and Eddington factors

used in the hybrid method discussed in this thesis. Much of this material is found

in Computational Methods of Neutron Transport [Lew. 1993].

In Monte Carlo, each individual neutron undergoes a random process that is

governed by simple statistical laws. For example, a neutron born into a problem

can either be absorbed, fission (a type of absorption), scatter, or leak out of the

problem. Each of these events has a certain probability of occurrence based on the

cross sections of the background material. If the problem has reflecting boundaries,

absorption and scattering are the only options.

Every material has scattering, capture, and fission cross sections. These cross

sections are dependent on the material and the energy of the radiation interacting

with the material. The total cross section is the sum of all the material cross sec-

tions. There are two ways of defining cross sections: microscopic and macroscopic.

Microscopic cross-sections characterize the probability of a neutron interaction

with an individual nucleus. It can be defined as the effective area per single nucleus

for a given interaction. The units for microscopic cross-sections are interaction−cm2

neutron−nucleus .

Because the size of the nucleus is so small, microscopic cross-sections are often
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measured in units of barns (b), where a barn is equal to 10−24cm2.

Macroscopic cross sections characterize the probability of neutron interaction

in a chunk of material (the target) and can be defined as the probability per unit

length that a neutron will undergo a particular type of interaction. Macroscopic

cross sections have units of interactions
neutron−cm and are equal to the atom density of the

material multiplied by its microscopic cross section.

2.5.1 Probabilistic Interpretation of Events

Consider a one-group, isotropically-scattering slab, 0 < x < L cm, with vacuum

boundaries. A random neutron born anywhere in this slab has three possible

outcomes; absorption in the slab or leakage out of the left or right edge. Suppose

we wish to calculate the probability that a random neutron will leak out the left

edge or right edge, respectively; PL and PR, and the probability that the neutron

will be absorbed somewhere in the slab, PAB. Since these are the three only possible

outcomes it is also true that PL + PR + PAB = 1.

The sampling method used in Monte Carlo is based on pseudo random numbers,

between 0 and 1. As an example consider A1, A2, A3, ..., An to be independent

mutually exclusive events with probabilities p1, p2, p3, ..., pn, respectively. Since

they are mutually exclusive, p1 + p2 + p3 + ... + pn = 1 and p1 can be thought of

as a subinterval of the unit interval from 0 to 1. If a random number, ξ, where

(0 ≤ ξ ≤ 1), lies in the interval p1 + ...+ pi−1 ≤ ξ < p1 + ...+ pi then ξ determines

event Ai.

For a given sampling for the example considered above a sequence of random

numbers ξk(k = 1, 2, 3, ..n) is generated, and if ξk is an element of subinterval nk

where (1 ≤ nk ≤ n), then a sequence of events, Enk
, occurs, where each event Ei
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occurs with probability pi.

The probability density function (PDF) can be used to derive the probabilistic

interpretation of events.

p(x) = {pi i− 1 ≤ x < i 1 ≤ i ≤ n} (58)

A PDF of a random variable is a function which describes the density of probability

at each point in the sample space. The probability of a random variable falling

within a given set is given by the integral of its density over the set. A PDF is a

continuous function that when integrated over all x is equal to 1.

Using the PDF, the cumulative probability distribution function (CPDF) of x

is defined as the probability that x lies between 0 and X.

P (x) =

∫ x

0

p(t) dt (59)

The event x can be calculated in terms of ξ by setting the CPDF equal to the

random number ξ. If ξ is a random number in the interval 0 ≤ ξ < 1, then x will

fall on the interval i− 1 ≤ x < i with a probability of pi and event Ei will occur

with probability pi

The advantage of using CPDFs to describe the probabilistic interpretation of

events is that they work well for PDFs that are continuous functions of a variable.

Equation 60 determines x as a function of ξ such that x lies on the interval between

x and x+ dx with the probability p(x) dx:

ξ = P (x) =

∫ x

0

p(t) dt (60)

The disadvantage of using CPDFs is that they can be used in a Monte Carlo code

only if Equation 60 can be explicitly solved for x as a function of ξ. There are

other methods used for those equations that cannot be solved explicitly for ξ.
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2.5.2 Analog Monte Carlo Sampling

The location of birth of a neutron in a particular cell was determined from the

PDF shown in Equation 61.

p(x) =


0, 0 ≤ x < xL,

1
xR−xL

xL ≤ x < xR,

0, xR ≤ x < L.
(61)

where xL and xR are the left and right cell boundaries and L and x are the right

edge of the slab and the birth place of the neutron, respectively.

The CPDF is defined in Equation 62.

P (x) =

∫ x

a

p(t) dt =


0, 0 ≤ x < xL,
x−xL

xR−xL,
xL ≤ x < xR,

1, xR ≤ x < L.

(62)

where P (x) is the probability that the neutron is born between a and x. If ξ is set

equal to P (x) with the requirement that 0 < ξ < 1 then ξ = x−xL

xR−xL
and x can be

determined from Equation 63.

x = xL + (xR − xL) ξ (63)

Assuming that a random neutron is born isotropically in its direction cosine µ,

the pdf for the direction of flight is p(µ) = 1
2
, where µ = cos θ and −1 ≤ µ ≤ 1.

The direction is then obtained by defining the CPDF as shown below in Equation

64 and setting it equal to a random number ξ where 0 < ξ < 1.

P (µ) = ξ =

∫ µ

−1

1

2
dµ,

ξ =
µ+ 1

2
,

µ = 2ξ − 1.

(64)

The probability of collision of a neutron between s and s+ds, where s represents

the length of the path traversed by the neutron, is given by p(s) ds = Σte
−Σts,
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where Σt ds is equal to the probability of having a collision in ds and e−Σts is the

probability of a particle traveling a distance s without a collision. From this it can

be seen that the pdf can be defined as shown in Equation 65, where
∫∞

0
p(s) ds = 1.

p(s) = Σte
−Σts (65)

The CPDF is shown in Equation 66.

P (s) =

∫ s

0

p(t) dt,

=

∫ s

0

Σte
−Σts ds,

= 1− e−Σts.

(66)

Setting the CPDF equal to a random number ξ where 0 < ξ < 1 the distance to

collision can be calculated from Equation 67.

s = − 1

Σt

ln ξ (67)

In analog Monte Carlo, once the neutron has a collision, the type of collision

(scattering or absorption), can be determined from the scattering ratio which is

equal to Σs

Σt
. If the random number ξ is less than Σs

Σt
the event is a scattering event

and if it is greater than Σs

Σt
the event is an absorption event. If the event is a

scattering event a new direction of flight is sampled and the history continued and

if the event is absorption the history is terminated. In those problems that deal

with multiple energies, if the neutron scatters, there is an additional sampling to

determine whether the neutron changes energy as a result of the scattering event.

Absorption suppression (also called survival biasing or implicit capture), is a

non analog Monte Carlo method used to decrease the variance. In absorption

suppression, [Lew. 1993], a particle’s history is not terminated by absorption and
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the criterion Σs

Σt
is no longer used to determine whether the particle will survive

the event or not. Instead, all collisions are treated as scattering events, where the

weight of the particle at the ith collision is reduced by the survival probability:

wn,i+1 = wn,i

(
1− Σa

Σt

)
. (68)

Although this procedure lengthens the computing time per history, since the num-

ber of collisions is increased, it is more than offset by the reduction in variance,

providing a good criteria for history termination is used.

2.5.3 Tracking Procedures and Tallies

The tracking procedure in the slab geometry Monte Carlo solver is performed as

follows. On the first generation the birth location of a neutron history is determined

based on Equation 63 and an equal number of neutron histories were assigned to

each cell. A random number is used to determine the direction of flight of the

history as shown in Equation 64 and the distance to collision is calculated using

Equation 67. If the distance to collision is greater than the distance to the cell edge,

the neutron’s path length, path length squared, and path length multiplied by µ2

are tallied. The neutron is then moved to the cell edge and a new random number

is used to calculate the distance to collision using Equation 67. This process is

continued until the distance to collision is less than the distance to the cell edge.

When this occurs the tallies mentioned above are recorded and a random number is

used to determine whether the collision is a scatter or absorption event. If the event

is a scattering event, a random number is used to determine, based on scattering

cross-sections, what energy group the neutron had scatters to and Equation 64

is used to determine a new direction. For the mono-energetic Monte Carlo the

neutron does not change energy groups. If the event is an absorption event, a
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random number is used to determine whether the event is capture or fission. If

the absorption event is a capture the history is terminated. If the event is a fission

event the location of the event is saved before terminating the history. The fission

sites are then used in the next generation to determine the birth location of the

neutrons (histories). The fission distribution was used to determine how many

histories to give birth to at each fission site.

Initially in this work, an attempt was made to use the cell averaged fission

distribution to determine the weight of histories in each cell. An equal number

of histories were started in each cell and the location of birth was determined

randomly, rather than keeping track of the individual fission site locations. It

was found using this averaging method that in those places where large gradients

occurred, the fission distribution was not accurately preserved. In addition an at-

tempt was made to linearize the sampling procedure in each cell (sample based on

the slope of the fission distribution in each cell), but although this method per-

formed better as would be expected, it still did not preserve the fission distribution

as accurately as was desired.

The track length is tallied using the standard track length estimator shown in

Equation 69.

xn =
∑
i

wn,iln,i (69)

where xn is the track length in cell n, wn,i is the weight of particle i in cell n, and

ln,i is equal to the length traveled by particle i in cell n.

The total track length tallied for each cell was used to calculate the cell-averaged

flux in each cell using Equation 70.

φ̄n =
xn

(∆xn) (Ntot)
(70)
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Equation 71 was used to tally the square of the track length.

x2
n =

∑
i

wn,iln,i
2 (71)

The sum of the the square of the track length and the sum of the track length

tallies were than used to calculate the standard deviation of the track length in each

cell as shown in Equation 72. The derivation of the sample standard deviation can

be found in Lewis and Miller’s book Computational Methods of Neutron Transport

[Lew. 1993].

S =

(
N

N − 1

)1/2
{

1

N

N∑
n=1

x2
n − x̂2

}1/2

(72)

The standard deviation of the track length is used to calculate the standard devi-

ation of the cell averaged flux and the cell averaged fission source distribution in

each cell.

The Eddington factors calculated by the Monte Carlo code for use in the quasi-

diffusion part of the hybrid method are obtained as an average of the angle squared,

weighted by the track length flux estimate shown in Equation 73.

λ2,m =

N∑
i=1

K(i)∑
k(i)=1

(µ2
i li wi)k(i),m

N∑
i=1

K(i)∑
k(i)=1

(li wi )k(i),m

(73)

where λ2m is the Eddington functional for cell m, N the total number of particles,

and li is the track length in cell m for track k(i) of particle i.

At the boundaries the Eddington factor, λ2, is the ratio of an angle-weighted

surface current estimate and a surface flux estimate [Lew. 1993] as shown for the

left and right boundaries respectively in 74 and 75.

λ2(0) =

N∑
i=1

|µi(0)|wi(0)

N∑
i=1

(wi(0)/ |µi(0)|)
(74)
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λ2(L) =

N∑
i=1

|µi(L)|wi(L)

N∑
i=1

(wi(L)/ |µi(L)|)
(75)

In addition to the Eddington factor at the boundaries there are also Eddington

functionals at the boundaries, λ1, which are calculated from a ratio of the particle

current and a surface flux estimate at the surface as shown in Equation 76 and 77,

respectively.

λ1(0) =
wi(0)

ΣN
i=1 (wi(0)/ |µi(0)|)

(76)

λ1(L) =
wi(L)

ΣN
i=1 (wi(L)/ |µi(L)|)

(77)

The variance estimates of λ1 and λ2 are expected to be smaller than the vari-

ances associated with the Monte Carlo estimates for flux. This is because the λ′s

are constrained between zero and one, while flux values throughout the system

can differ by many orders of magnitude. In addition the statistical errors tend to

cancel, since the λ′s are ratios of similar quantities.

2.6 Implementation of the Hybrid Method

The iteration scheme for this hybrid method involves making an initial guess for

the Eddington factors of 1/3, which is consistent with diffusion theory. The QDLO

equation is then iterated until convergence and the resulting fission source distri-

bution and k-eigenvalue are used as the initial guesses in the transport Monte

Carlo code. Several Monte Carlo fission generations are then calculated to gener-

ate improved estimates of the Eddington factors and boundary functionals. This

new data is then used in the QDLO solver along with the source distribution and

k-eigenvalue from the Monte Carlo as initial guesses and the problem is iterated

again until convergence. This process is continued a specified number of times.
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The Eddington factors and boundary functionals are calculated from the track

length in each cell as shown in Section 2.5.3.

The QDLO equations were solved using a standard finite volume discretization

for cell averaged fluxes as shown in Section 2.3. Power iteration was used to

calculate the k-eigenvalue and fission source distribution in the QDLO.
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3 Results

3.1 Introduction

In this chapter, we describe several test problems which will be used to assess the

performance of the new hybrid MC/QD in comparison with standard Monte Carlo

and discrete ordinates methods. We begin with mono-energetic test problems, in-

cluding a test problem formulated by Urbatsch [Urb. 1995] designed to be slowly

convergent for standard Monte Carlo. We then consider several multigroup prob-

lems to demonstrate the efficacy of the low-order quasi-diffusion solver to speed

convergence on the fission source. Numerical results from these problems are used

to evaluate the hybrid method from the perspectives of accuracy and efficiency,

and we discuss the physical reasons behind the trends we observe.

3.2 Mono-energetic Results

Results will be shown for three different problems. Problem 1 is a homogeneous

problem defined by Miften and Larsen [Mif. 1993]. This problem is composed of

50 cells, each 1.0 cm across. The cross sections of the material are shown in Table

1. The boundary conditions are reflecting on the left hand side and vacuum on the

right. Figure 1 shows the spatial refinement of this problem 1.

Region Σt Σt νΣf

1 1.0 0.2 0.8

Table 1: Material Properties (Problem 1)

Problem 2 is a two region problem composed of 8 cm of fuel followed by 8 cm of

moderator. The 16.0 cm slab is discretized into 16 equal cells, 1.0 cm in thickness.
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Fuel:   Σt = 1.0, Σs = 0.7, νΣf = 0.3071     Problem 2: Homogeneous Slab 16 cm 

16 cm 

Fuel:   Σt = 1.0, Σs = 0.7, νΣf = 0.3071      

Absorber:   Σt = 1.0, Σs = 0.001, νΣf = 0.0      

Problem 2 

50 cm 

Problem 1 

t s                       fFuel:   Σ  = 1.0, Σ  = 0.2, νΣ  = 0.8      

Figure 1: Problem 1

Table 2 show the material properties of the fuel and moderator. We consider two

variations of this problem: reflecting boundary on the left/vacuum boundary on

the right, and vacuum boundary on left/reflecting boundary on the right.

Region Σt Σs νΣf

1 1.0 0.7 0.3071
2 1.0 0.001 0.0

Table 2: Material Properties (Problem 2)

Problem 3 is a heterogeneous problem defined by Urbatsch [Urb. 1995]. This

problem has 39 regions of alternating fuel and moderator materials. Region one is

1.0 cm of moderator discretized into 8 equal length cells, followed by a region of

fuel 2.0 cm in length and discretized into 16 equal length cells. The fuel is followed

by another 1.0 cm region of moderator and another 2.0 cm region of fuel. This

pattern continues for all 39 regions, ending with a 1.0 cm region of moderator. The

cross-sections of fuel and moderator are the same as those of Problem 2. Both the

left and right hand boundaries are vacuum. A pictorial representation of Problem

3 is shown in Figure 3 and 4 below.
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Fuel:   Σt = 1.0, Σs = 0.7, νΣf = 0.3071     Problem 2: Homogeneous Slab 16 cm 

16 cm 

Problem 2 

t s                       f

t s                             fAbsorber:   Σ  = 1.0, Σ  = 0.001, νΣ  = 0.0      

Fuel:   Σ  = 1.0, Σ  = 0.7, νΣ  = 0.3071      

Figure 2: Problem 2
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Figure 3: Problem 3

3.2.1 Test Problem #1

Problem 1 was solved using 50,000, 500,000 and 5,000,000 histories per MC genera-

tion. In each case, the fission source distribution, multiplication factor and slowest
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converging value of the cell-average Eddington factor are calculated and displayed

for various choices of the number of Monte Carlo generations per QD solve (1, 5,

10, 25, 50, and 100). Figures 5, 6, 9 and 10 show that the statistical variation

of the fission source calculated by the hybrid method decreases with the number

of histories per generation and with the number of generations. This is a direct

consequence of the reduced statistical variation in the Eddington Factors as the

number of histories is increased. [See Figures 7 and 11.] This increase in histories

can be obtained by increasing either the histories per generation or the number of

generations averaged per QD solve - both lead to more accurate Eddington Factors

and better overall results from the hybrid method.

The k-eigenvalue converged very quickly for Problem 1. Figures 8 and 12 show

the statistical variation in the multiplication factor with the number of histories

per Monte Carlo solve. Table 3 is a summary of the k-eigenvalues for the various

simulations of Problem 1. The SN solution for this problem using the S64 Gauss-

Legendre angular quadrature and the simple corner balance spatial discretization

on the same spatial mesh yields a k-eigenvalue of 0.99960, which is the same as

all k-eigenvalues obtained from the hybrid method. The k-eigenvalue obtained

from averaging the last 2000 generations of 2500 generations for analog MC using
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5,000,000 histories per generation was 0.999576± 0.000438. In this test problem,

the hybrid method was much more rapidly convergent than standard Monte Carlo.

The computational power to run the analog MC problem was much greater than

the hybrid runs and the result was a less precise and less accurate calculation

of the k-eigenvalue. In additional analysis, it would be of value to make use of

a computational timer to determine to greater accuracy the computational time

difference between the two methods. In general an entire QD solve was as fast or

faster than one MC generation. As a comparison, we look at the case using 1MC

per QD solve, Table 3. Multiplying the number of MC solves by the number of

histories per solve (25 x 50,000 = 1.25 x 106) and comparing with analog Monte

Carlo (2500 x 5,000,000 = 1.25 x 1010), we find that even the case using 1 MC

generation per QD solve and 50,000 histories per generation, which according to

the above approximation equaled approximately 2 x 10−4 the computational power,

yielded a more accurate k-eigenvalue than analog MC with 2500 generations and

5,000,000 histories per generation.
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Figure 5: Problem 1: Fission source distribution with 50,000 particles per genera-
tion.
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Figure 6: Problem 1: Fission source distribution with 50,000 particles per genera-
tion on the left edge of the slab.
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Figure 7: Problem 1: Convergence of Eddington factors with 50,000 particles per
generation.

3.2.2 Test Problem #2

The results from Problem 2, with reflecting boundary on the left and a vacuum

boundary on the right are shown in the figures below. We have performed cal-

culations of this problem with 1600, 16000, 160000, and 1600000 particles per

generation, and various choices for the number of Monte Carlo generations per QD

solve.
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Figure 8: Problem 1: Convergence of the k-eigenvalue with 50,000 particles per
generation.
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Figure 9: Problem 1: Fission source distribution with 5,000,000 particles per gen-
eration.

Figure 13 shows the fission source distribution for Problem 2 using 1600 parti-

cles per generation after a total of 25 QD solves. A closer view of the left edge of

the slab is shown in Figure 14.

Increasing the number of particles per generation by two orders of magnitude

further increases the accuracy of the fission source distribution, as shown in Figures

15 and 16 respectively.
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Figure 10: Problem 1: Fission source distribution with 5,000,000 particles per
generation on the left edge of the slab.
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Figure 11: Problem 1: Convergence of Eddington factors with 5,000,000 particles
per generation.

Figures 17 and 18 show the convergence of the slowest converging Eddington

factor for Problem 2 with 1600 and 1600000 particles per generation and 1, 5,

20, 25, 50, and 100 averaged MC solves per QD solve. The Eddington factors for

Problem 2 converge within a couple iterations. The fluctuations seen in the figures

is a result of the statistical error in the MC calculation of the Eddington factors.

The multiplication factor was also found to converge quickly for Problem 2, as

shown in Figures 19 and 20. The best estimate of the k-eigenvalue was found by
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Pr. 1 50,000 500,000 5,000,000

1 0.999600±1e-6 0.999600±5e-7 0.999600±3e-7
5 0.999601±9e-7 0.999600±5e-7 0.999600±3e-7
10 0.999601±9e-7 0.999600±5e-7 0.999600±4e-7
25 0.999601±6e-7 0.999601±5e-7 0.999600±4e-7
50 0.999600±5e-7 0.999600±5e-7 0.999600±5e-7
100 0.999601±5e-7 0.999600±4e-7 0.999600±5e-7

Table 3: k-eigenvalue (Problem 1); particles per generation vs. number of MC runs
averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues from 25
QD iterations.

averaging the results from each QD solve as shown in Table 4. The simple corner

balance result, with S64 Gauss-Legendre quadrature, is 0.53217. The analog MC

k-eigenvalue obtained with 464000 particles per generation and averaging the last

2000 of 2500 generations was 0.532209 ±0.000728. Both the SN and analog MC

eigenvalue fall within one standard deviation of all the k-eigenvalues listed in Table

4. This shows that the hybrid method performs well for calculating the k-eigenvalue

of Problem 2 with a reflecting boundary on the left hand side and vacuum on the

right.
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Figure 13: Problem 2: Fission source distribution after 25 QD iterations with 1600
particles per generation.
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Figure 14: Problem 2: Fission source distribution on the left edge of the slab after
25 QD iterations with 1600 particles per generation.

3.2.3 Test Problem #2b

Problem 2b has the same material compositions as Problem 2, but with a vacuum

boundary on the left and a reflecting boundary on the right. Figures 21 and 22

show the fission source distribution with 160,000 histories per MC generation and

1, 5, 10, 25, 50, and 100 MC generations per QD solve. As can be seen in the

figures, the fission source distribution agrees well with that obtained from the

simple corner balance method using the S64 Gauss-Legendre quadrature set. In

addition the most widely varying Eddington factor and the k-eigenvalue converge
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Figure 15: Problem 2: Fission source distribution with 1,600,000 particles per
generation
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Figure 16: Problem 2: Fission source distribution on the left edge of the slab after
25 QD iterations with 1,600,000 particles per generation.

within the first couple iterations as shown in Figures 23 and 24.

The k-eigenvalue obtained from analog Monte Carlo with 160,000 histories per

generation and a total of 10,000 generations was 0.342541±0.000824. This k-value

is the average of the last 9500 generations; the first 500 were skipped. The multi-

plication factors obtained from the simple corner balance method with S64 and S128

angular quadratures were 0.34247 and 0.34251 respectively. Considering the error

bars on the analog MC eigenvalue, it compares very well with the values obtained

from the SN method. Table 5 contains the eigenvalues from the hybrid method
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Figure 17: Problem 2: Convergence of the Eddington factor with 1600 particles
per generation.
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Figure 18: Problem 2: Convergence the of Eddington Factor with 1,600,000 parti-
cles per generation.

using 160,000 and 1,600,000 histories per MC generation and averaging 1, 5, 10, 25,

50, and 100 MC generations per QD generation after a total of 25 iterations. The

MC/QD hybrid results differ in reactivity from the analog MC and SN methods by

approximately $0.90. It is possible that the strong gradient in the solution is not

sufficiently resolved in the hybrid method calculation. We plan to increase the spa-

tial resolution near the boundary to see if this effect is mitigated. As will be seen

in the multigroup results, increasing the spatial resolution significantly increases

the accuracy of many of the results.
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Figure 19: Problem 2: Convergence of the k-eigenvalue with 1600 particles per
generation.
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Figure 20: Problem 2: Convergence of the k-eigenvalue with 1,600,000 particles
per generation.

3.2.4 Test Problem #3

Problem 3 is a difficult problem for standard analog Monte Carlo because of its

high dominance ratio of approximately 0.996 [Urb. 1995]. We solve this problem

with analog Monte Carlo with an initial fission source distribution that is twice

as large in the right half of the problem as it is in the left half. Figures 25 and

26 show that the fission source distribution is converging very slowly over 20000

analog Monte Carlo generations.
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Pr. 2 1600 16,000 160,000 1,600,000

1 0.531670±0.002549 0.531785±0.000799 0.532014±0.000301 0.531984±0.000093
5 0.531765±0.001878 0.531909±0.000682 0.532145±0.000239 0.532064±0.000065
10 0.531853±0.001200 0.532008±0.000550 0.532127±0.000144 0.532081±0.000040
25 0.531674±0.000945 0.532034±0.000281 0.532121±0.000107 0.532095±0.000032
50 0.532002±0.000706 0.532055±0.000222 0.532100±0.000066 0.532094±0.000023
100 0.532083±0.000505 0.532035±0.000168 0.532107±0.000043 0.532096±0.000016

Table 4: k-eigenvalue (Problem 2); particles per generation vs. number of MC runs
averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues from 25
QD iterations.
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generation.
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Figure 24: Problem 2b: Convergence of the k-eigenvalue with 160,000 particles per
generation.

Figure 27 compares the fission source obtained from analog Monte Carlo and

deterministic transport with S32, S64, and S128 angular quadratures. The MC fis-

sion source shown in Figure 27 was a result of 464000 histories per generation

and a total of 20000 generations. The difference between the MC and SN solu-

tions is most likely caused by the Monte Carlo fission source not being sufficiently

converged.
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Pr. 2b 160,000 1,600,000

1 0.343026±0.000231 N/A
5 0.343215±0.000216 N/A
10 0.343265±0.000160 N/A
25 0.343307±0.000125 N/A
50 0.343291±0.000071 N/A
100 0.343289±0.000044 0.343293±0.000015

Table 5: k-eigenvalue (Problem 2b); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.
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Figure 25: Problem 3: Convergence of the fission source with 50-1000 analog MC
generations.

Figures 28, through 33 show the fission source distributions for Problem 3

with 1, 5, 10, 25, 50, and 100 MC generations per QD solve and 464,000 and

4,640,000 histories per MC generation. The largest cell-averaged difference be-

tween the SN fission source distribution and fission source distribution obtained

from the MC/QD hybrid method for 464,000 histories per MC generation is 15%

for 1MC/QD iteration and 3.9% for 100MC/QD iteration. For MC/QD hybrid

results using 4,640,000 histories per MC generation the largest difference is 3.5%

for 1MC/QD and 1.8% for 100MC/QD. The hybrid method was employed with
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Figure 26: Problem 3: Convergence of the fission source with 1000-20000 analog
MC generations.
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Figure 27: Problem 3: Comparison of the fission source distributions from SN and
analog Monte Carlo.

the initial fission source distribution skewed to the right as discussed above.

Figures 30 and 34 show the convergence of the most widely varying Eddington

factor. The maximum change in the Eddington factors from iteration to iteration

converges within the first couple iterations.

Similarly, Figures 31 and 35 show the convergence of the k-eigenvalue as a
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function of the number of QD solves. The k-eigenvalue was also found to converge

within the first few iterations. Table 6 shows the average k-eigenvalue for the

problems shown in Figures 28 through 35. The k-eigenvalues obtained using the

simple corner balance method with S32, S64, S128, and S256 angular quadratures

were 0.59908, 0.59918, 0.59920, and 0.59921 respectively. All these multiplication

factors fall below those obtained from the hybrid method, though it does slightly

increase with angular resolution. The analog Monte Carlo k-eigenvalue 464,000

histories per generation and a total of 20000 generations was 0.599214±0.000840.

[The first 500 generations were skipped and the last 19500 generations were used in

the eigenvalue averaging.] All the MC/QD runs fall within one standard deviation

of the analog MC eigenvalue result.
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Figure 28: Problem 3: Fission source distribution with 464,000 histories per MC
generation.

3.3 Multi-Group Results

Multi Group results will be shown for four different problems. Problem 4 is a

homogeneous problem with two energy groups. This problem is composed of 16

cells, each 0.125 cm across. Table 7 contains the material properties for Problem
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Figure 29: Problem 3: Fission source distribution on the right side of the slab with
464,000 histories per MC generation.
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Figure 30: Problem 3: Convergence of the Eddington factors with 464,000 histories
per MC generation.

4. We considered two variations of this problem: reflecting boundaries on both the

left and right, and vacuum boundary on the left/reflecting boundary on the right.

A pictorial representation of Problem 4 is shown below in Figure 36.

Problem 5 is a two region, two energy group problem comprised of 1.0 cm of

fuel followed by 1.0 cm of absorber. The fuel and absorber regions are both broken
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Figure 31: Problem 3: Convergence the of k-eigenvalue with 464,000 histories per
MC generation.
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Figure 32: Problem 3: Fission source distribution with 4,640,000 histories per MC
generation.

into 8 cells of length 0.125 cm. The material properties for both regions are shown

in Table 8 Three variations of this problem are considered: reflecting boundaries

on both the left and right, reflecting boundary on the left/vacuum boundary on

the right, and vacuum boundary on the left/reflecting boundary on the right. A

pictorial representation is shown in Figure 37.

Problem 6 is exactly the same as Problem 5 except each 0.125 cm cell is broken
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Figure 33: Problem 3: Fission source distribution on the right side of the slab with
4,640,000 histories per MC generation.
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Figure 34: Problem 3: Convergence of the Eddington factors with 4,640,000 histo-
ries per MC generation.

into five 0.025 cm cells. All the same variations were considered as were considered

in Problem 5.

Problem 7 is the same spatially as Problem 3. The cross-sections of fuel and

moderator are the same as those of Problem 5. Both the left and right hand

boundaries are vacuum. A pictorial representation of Problem 7 is shown in Figures

38 and 39.
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Figure 35: Problem 3: Convergence of the k-eigenvalue with 4,640,000 histories
per MC generation.

Pr. 3 464,000 4,640,000

1 0.599322±0.000183 0.599326±0.000089
5 0.599492±0.000118 0.599444±0.000045
10 0.599446±0.000101 0.599483±0.000031
25 0.599480±0.000059 0.599486±0.000024
50 0.599471±0.000055 0.599488±0.000017
100 0.599483±0.000037 0.599494±0.000012

Table 6: k-eigenvalue (Problem 3); particles per generation vs. number of MC runs
averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues from 25
QD iterations.

Problem 8 is a two region problem with 4 energy groups. The problem is

comprised of 1.0 cm of absorber, followed by 1.0 cm of fuel. Both the absorber

and the fuel regions are divided into 8 equal cells, each 0.125 cm across. The

cross sections for the fuel (region 1) and absorber (region 2) are shown in Table

9. Two different sets of boundary conditions were analyzed for this problem: both

boundaries reflecting, and right hand boundary condition vacuum/left boundary

condition reflecting. Figure 40 is a pictorial representation of Problem 8.

Problem 9 is the same as Problem 8, except that each 0.125 cm cell is broken
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Region Σt1 Σs1→1 Σs1→2 νΣf1
1 1.5 0.5 0.8 0.0

Σt2 Σs2→1 Σs2→2 νΣf2
1.5 0.0 0.3 0.8

Table 7: Material Properties (Problem 4)
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Region 1 2
Σt1 1.5 1.2

Σs1→1 0.5 0.4
Σs1→2 0.8 0.5
νΣf1 0.0 0.0
Σt2 1.5 1.2

Σs2→1 0.0 0.0
Σs2→2 0.3 0.001
νΣf2 0.8 0.0

Table 8: Material Properties (Problem 5)
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Figure 39: Problem 7: Regions
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Region 1 2 Region 1 2
Σt1 1.5 1.2 Σt3 1.5 1.2

Σs1→1 0.1 0.1 Σs3→1 0.0 0.0
Σs1→2 0.5 0.5 Σs3→2 0.0 0.0
Σs1→3 0.2 0.2 Σs3→3 0.5 0.05
Σs1→4 0.2 0.2 Σs3→4 0.5 0.15
νΣf1 0.0 0.0 νΣf3 0.0 0.0
Σt2 1.5 1.2 Σt4 1.5 1.2

Σs2→1 0.0 0.0 Σs4→1 0.0 0.0
Σs2→2 0.1 0.1 Σs4→2 0.0 0.0
Σs2→3 0.6 0.6 Σs4→3 0.0 0.0
Σs2→4 0.4 0.2 Σs4→4 0.5 0.001
νΣf2 0.0 0.0 νΣf4 0.8 0.0

Table 9: Material Properties (Problem 8)
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Figure 40: Problem 8

into 5 cells of 0.025 cm in width.

3.3.1 Test Problem #4a

Problem 4a (Problem 4 with both boundaries reflecting) was solved using 320,000

histories per MC generation. The fission source distribution and slowest converging

value of the cell-averaged Eddington factor are calculated and displayed in Figures
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41 and 42 for various choices of the number of Monte Carlo generations per QD

solve (1, 5, 10, and 25). The k-eigenvalue converged exactly to 0.533333 in the first

iteration for all simulations.
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Figure 41: Problem 4a: Fission source distribution with 320,000 particles per
generation
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Figure 42: Problem 4a: Convergence of Eddington factors with 320,000 particles
per generation.

3.3.2 Test Problem #4b

Problem 4b (Problem 4 with left boundary vacuum/right boundary reflecting) was

solved using 320,000 histories per MC generation. The fission source, multiplication
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factor, and slowest converging value of the EF are shown in Figures 43 through 46.
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Figure 43: Problem 4b: Fission distribution with 320,000 histories per MC gener-
ation.
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Figure 44: Problem 4b: Fission distribution with 320,000 histories per MC gener-
ation at left edge.

Table 10 shows the average of the eigenvalue from 25 QD iterations. The

S256 Gauss-Legendre angular quadrature and the simple corner balance spatial

discretization on the same spatial mesh yields a k-eigenvalue of 0.45713. As can be

seen in Table 10 the MC/QD hybrid method predicted the k-eigenvalue accurately
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Figure 45: Problem 4b: Convergence of k-eigenvalue with 320,000 histories per
MC generation.
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Figure 46: Problem 4b: Convergence of Eddington factors with 320,000 histories
per MC generation.

to 4 significant figures, but was consistently high in the 5th significant figure. The

reactivity difference predicted between the S256 method and the MC/QD method

was approximately $0.03. This difference is mostly likely a result of an unresolved

spatial discretization. The Gauss-Legendre angular quadrature method with simple

corner balance spatial discretization is locally 3rd order, globally 2nd order accurate

and the finite volume discretization of the QD low order equations is locally 2nd

order, globally 1st order accurate. For this reason the MC/QD method has a
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greater truncation error in the spacial discretization.

Pr. 4b 320,000

1 0.457073±0.000276
5 0.457171±0.000092
10 0.457169±0.000051
25 0.457179±0.000025
50 0.457185±0.000017
100 0.457185±0.000012

Table 10: k-eigenvalue (Problem 4b); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.

3.3.3 Test Problems #5a, 5b, and 5c

Problem 5a (Problem 5 with both boundaries reflecting), 5b (Problem 5 with

left boundary reflecting/right boundary vacuum), and 5c (Problem 5 with left

boundary vacuum/right boundary vacuum) were solved using 320,000 histories per

MC generation. In each case the fission source distribution, multiplication factor,

and slowest converging value of the cell-averaged Eddington factor are calculated

and displayed in Figures 47 through 57 for various choices of the number of Monte

Carlo generations per QD solve (1, 5, 10, 25, 50, and 100). The S256 Gauss-

Legendre angular quadrature and the simple corner balance spatial discretization

on the same spatial mesh yields 0.38139, 0.37159, and 0.24695 for Problems 5a,

5b, and 5c respectively. The MC/QD using 100 Monte Carlo generations per QD

solve predicted the k-eigenvalue higher, Table 11, then the S256 Gauss-Legendre

angular quadrature method with simple corner balance spatial discretization by

0.13%, 0.13%, and 0.43%, respectively and subsequently a reactivity difference of

$0.49, $0.50, and $2.53, respectively. Refining the mesh improved the accuracy of

the MC/QD result as will be shown in Problem 6.
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Figure 47: Problem 5a: Fission distribution with 320,000 histories per MC gener-
ation.
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Figure 48: Problem 5a: Fission distribution with 320,000 histories per MC gener-
ation in the middle of the slab.

3.3.4 Test Problems #6a, 6b, and 6c

Problem 6a (Problem 6 with both boundaries reflecting), 6b (Problem 6 with

left boundary reflecting/right boundary vacuum), and 6c (Problem 6 with left

boundary vacuum/right boundary vacuum) were solved using 320,000 histories per

MC generation. In each case the fission source distribution, multiplication factor,

and slowest converging value of the cell-averaged Eddington factor were calculated

for various choices of the number of Monte Carlo generations per QD solve (1, 5,
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Figure 49: Problem 5a: Convergence of k-eigenvalue with 320,000 histories per MC
generation.
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Figure 50: Problem 5a: Convergence of Eddington factors with 320,000 histories
per MC generation.

10, 25, 50, and 100). Table 12 shows the k-eigenvalue obtained for each MC/QD

run.

The S256 Gauss-Legendre angular quadrature and the simple corner balance

spatial discretization on the same spatial mesh yields 0.38139, 0.37159, and 0.24695

for Problems 6a, 6b, and 6c respectively. The MC/QD using 100 Monte Carlo

generations per QD solve predicted the k-eigenvalue higher then the S256 Gauss-

Legendre angular quadrature method with simple corner balance spatial discretiza-
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Figure 51: Problem 5b: Fission distribution with 320,000 histories per MC gener-
ation.
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Figure 52: Problem 5b: Convergence of k-eigenvalue with 320,000 histories per
MC generation.

tion, resulting in a reactivity difference of $0.015, $0.015, and $0.10, respectively.

As can be seen in comparison with Problem 5, Table 12, refining the mesh improved

the accuracy of the MC/QD result significantly.

3.3.5 Test Problems #7

Problem 7 was solved using 4,640,000 histories per MC generation. In each case

the fission source distribution, multiplication factor, and slowest converging value
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Figure 53: Problem 5b: Convergence of Eddington factors with 320,000 histories
per MC generation.
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Figure 54: Problem 5c: Fission distribution with 320,000 histories per MC gener-
ation.

of the cell-averaged Eddington factor are calculated and displayed in Figures 58

through 64 for various choices of the number of Monte Carlo generations per QD

solve (1, 5, 10, and 25). Table 13 shows the k-eigenvalues for each QD/MC run.

S256 Gauss-Legendre angular quadrature method with simple corner balance spatial

discretization gave a k-eigenvalue of 0.40648. The k-eigenvalue obtained for the

QD/MC method using 25 MC generations per QD solve was 0.406899±1.35e-4.

The reactivity difference between the QD/MC method using 25 MC generations
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Figure 55: Problem 5c: Fission distribution with 320,000 histories per MC gener-
ation in the middle of the slab.
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Figure 56: Problem 5c: Convergence of k-eigenvalue with 320,000 histories per MC
generation.

per QD solve was $0.37. Refining the mesh for the QD/MC method resulted in a

more accurate k-eigenvalue as will be shown in Problem 7b.

3.3.6 Test Problems #7b

Problem 7 was solved using 4,640,000 histories per MC generation. In each case the

fission source distribution, multiplication factor, and slowest converging value of

the cell-averaged Eddington factor are calculated for various choices of the number
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Figure 57: Problem 5c: Convergence of Eddington factors with 320,000 histories
per MC generation.

Pr. 5 5a 5b 5c

1 0.380999±0.00391 0.371345±0.00309 0.247028±0.00412
5 0.381726±0.000803 0.371958±0.000643 0.247791±0.000908
10 0.381798±0.000392 0.372003±0.000315 0.247921±0.000459
25 0.381858±0.000151 0.372055±0.000125 0.247974±0.000186
50 0.381879±0.000075 0.372070±0.000070 0.248000±0.000099
100 0.381881±0.000040 0.372069±0.000036 0.248013±0.000060

Table 11: k-eigenvalue (Problem 5); Each MC run was done with 320,000 histories
per generation and each k-eigenvalue is an average of the eigenvalues from 25 QD
iterations.

of Monte Carlo generations per QD solve (1, 5, 10, and 25). Table 14 shows the k-

eigenvalues for each QD/MC run. S256 Gauss-Legendre angular quadrature method

with simple corner balance spatial discretization gave a k-eigenvalue of 0.40648.

The k-eigenvalue obtained for the QD/MC method using 25 MC generations per

QD solve was 0.406475±1.36e-4. The reactivity difference between the QD/MC

method using 25 MC generations per QD solve was $0.004. As can bee seen

comparing Problem 7 with Problem 7b, refining the mesh for the QD/MC method

resulted in a more accurate k-eigenvalue.
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Pr. 6 6a 6b 6c

1 0.380631±0.00393 0.371002±0.00305 0.246145±0.00413
5 0.381250±0.000824 0.371482±0.000631 0.246836±0.000864
10 0.381338±0.000419 0.371551±0.000310 0.246908±0.000444
25 0.381383±0.000167 0.371588±0.000139 0.246964±0.000187
50 0.381399±0.000085 0.371598±0.000067 0.246977±0.000087
100 0.381405±0.000047 0.371604±0.000040 0.246992±0.000045

Table 12: k-eigenvalue (Problem 6); Each MC run was done with 320,000 histories
per generation and each k-eigenvalue is an average of the eigenvalues from 25 QD
iterations.
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Figure 58: Problem 7: Fission distribution with 4,640,000 histories per MC gener-
ation and 1 MC generation/QD iteration.

3.3.7 Test Problems #8a and 8b

The results for Problem 8a (Problem 8 with both boundaries reflecting) and Prob-

lem 8b (Problem 8 with left boundary vacuum/right boundary reflecting) are shown

in the figures below. We have performed calculations of this problem with 16000,

160000, and 1600000 histories per generation, and choices of 1, 5, 10, 25, 50, and

100 Monte Carlo generations per QD solve.
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Figure 59: Problem 7: Fission distribution with 4,640,000 histories per MC gener-
ation and 5 MC generation/QD iteration.
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Figure 60: Problem 7: Fission distribution with 4,640,000 histories per MC gener-
ation and 10 MC generation/QD iteration.

The fission source distribution for the calculations for Problem 8a are shown in

Figures 65 through 68, the convergence of the the k-eigenvalue are shown in Figures

69 through 70, and the slowest converging Eddington factor shown in Figures 71

through 72.
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Figure 61: Problem 7: Fission distribution with 4,640,000 histories per MC gener-
ation and 25 MC generation/QD iteration.
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Figure 62: Problem 7: Fission distribution with 4,640,000 histories per MC gener-
ation in the middle of the slab.

As was seen in previous problems, the convergence of the fission source distri-

bution is a direct function of the number of histories per generation used in the

MC to solve for the Eddington factors. This can be accomplished by increasing

the number of histories per MC generation or by increasing the number of MC

generations per QD solve.
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Figure 63: Problem 7: Convergence of k-eigenvalue with 4,640,000 histories per
MC generation.
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Figure 64: Problem 7: Convergence of Eddington factors with 4,640,000 histories
per MC generation.

Figures 69 through 70 show that the k-eigenvalue converges for Problem 8a

after only a couple iterations. However, as shown in Table 15 a more accurate

and precise k-eigenvalue can be obtained by averaging the k-eigenvalues from all

QD iterations. In all calculations performed a total of 25 MC/QD iterations were
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Pr. 7 4,640,000

1 0.406224±0.00326
5 0.406790±0.000670
10 0.406861±0.000335
25 0.406899±0.000135

Table 13: k-eigenvalue (Problem 7); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.

Pr. 7b 4,640,000

1 0.405836±0.00330
5 0.406356±0.000686
10 0.406434±0.000345
25 0.406475±0.000136

Table 14: k-eigenvalue (Problem 7b); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.

done. A more precise k-eigenvalue could be obtained by increasing the number of

QD iterations and averaging the eigenvalues from all iterations. The k-eigenvalue

obtained for Problem 8a from the simple corner balance method using the S256

Gauss-Legendre quadrature set was 0.21259. Although the S256 value falls within

one standard deviation of many of k-eigenvalues for the calculations performed

on Problem 8a listed in Table 15 most of the averaged QD eigenvalues are high

in the fourth significant figure with a difference of reactivity of approximately

$1.00. Results from Problem 9, show that this difference is a result of the spatial

discretization.

Figures 71 through 72 show the slowest converging Eddington factor for each

calculation of Problem 8a. The accuracy of the Eddington Factors is a function of

the total number of histories used in the MC solver. The total number of histories
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can be increased by either increasing the number of histories per generation or by

increasing the number of MC generations per QD solve.
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Figure 65: Problem 8a: Fission distribution with 16,000 histories per MC genera-
tion.
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Figure 66: Problem 8a: Fission distribution with 16,000 histories per MC genera-
tion at right edge.

The fission source distribution for the calculations for Problem 8b are shown

in Figures 73 through 76, the convergence of the the k-eigenvalue are shown in

Figures 77 and 78, and the slowest converging Eddington factor shown in Figures

79 and 80.
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Figure 67: Problem 8a: Fission distribution with 160,000 histories per MC gener-
ation.
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Figure 68: Problem 8a: Fission distribution with 160,000 histories per MC gener-
ation at right edge.

As was seen in previous problems, the convergence of the fission source distri-

bution is a direct function of the number of histories per generation used in the

MC to solve for the Eddington factors. This can be accomplished by increasing

the number of histories per MC generation or by increasing the number of MC

generations per QD solve.

Figures 77 and 78 show that the k-eigenvalue converges for Problem 8b after

only a couple iterations. However, as shown in Table 16 a more accurate and
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Figure 69: Problem 8a: Convergence of k-eigenvalue with 16,000 histories per MC
generation.

0.2

0.202

0.204

0.206

0.208

0.21

0.212

0.214

0 5 10 15 20 25

k-
e

ig
e

n
va

lu
e

QD iteration #

Problem 8a (Ref_Ref)
160,000 histories/MC generation (25mI)

1MC_QD

5MC_QD

10MC_QD

25MC_QD

50MC_QD

100MC_QD

Figure 70: Problem 8a: Convergence of k-eigenvalue with 160,000 histories per MC
generation.

precise k-eigenvalue can be obtained by averaging the k-eigenvalues from all QD

iterations. In all calculations performed a total of 25 MC/QD iterations were done.

As discussed above a more precise k-eigenvalue could be obtained by increasing

the number of QD iterations and averaging the eigenvalues from all iterations.

The k-eigenvalue obtained for Problem 8b from the simple corner balance method

using the S256 Guass-Legendre quadrature set was 0.20515. Table 16 shows that

the averaged MC/QD eigenvalues are high in the fourth significant figure with a
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Figure 71: Problem 8a: Convergence of Eddington factors with 16,000 histories
per MC generation.
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Figure 72: Problem 8a: Convergence of Eddington factors with 160,000 histories
per MC generation.

difference of reactivity of approximately $1.00. Results from Problem 9b, show

that this difference is a result of the spatial discretization.

Figures 79 and 80 show the slowest converging Eddington factor for each cal-

culation performed for Problem 8b. Figures 79 and 80 show that the accuracy of

the Eddington factors is a function of the total number of histories used in the

MC solver. The total number of histories can be increased by either increasing the

number of histories per generation or by increasing the number of MC generations
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Pr. 8a 16,000 160,000 1,600,000

1 0.212241±0.00217 0.212457±0.00233 N/A
5 0.212845±0.000490 0.212833±0.000497 N/A
10 0.212859±0.000357 0.212883±0.000254 N/A
25 0.212912±0.000169 0.212892±0.000104 N/A
50 0.212891±0.000091 0.212905±0.000052 N/A
100 0.212909±0.000073 0.212909±0.000035 0.212904±0.000025

Table 15: k-eigenvalue (Problem 8a); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.

per QD solve.
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Figure 73: Problem 8b: Fission distribution with 16,000 histories per MC genera-
tion.

3.3.8 Test Problems #9a and 9b

Results for Problem 9a (Problem 9 with both boundaries reflecting) are shown in

Table 17. We have performed calculations of this problem with 16000 and 160000

histories per generation, and choices of 1, 5, 10, 25, 50, and 100 Monte Carlo

generations per QD solve.

Results for Problem 9b (Problem 9 with left boundary vacuum/right boundary
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Figure 74: Problem 8b: Fission distribution with 16,000 histories per MC genera-
tion at right edge.
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Figure 75: Problem 8b: Fission distribution with 1,600,000 histories per MC gen-
eration.

reflecting) are shown in Table 18. We have performed calculations of this problem

with 16000, 160000, and 1,600,000 histories per generation, and choices of 1, 5, 10,

25, 50, and 100 Monte Carlo generations per QD solve.

The k-eigenvalue result for Problem 9a using the S256 Guass-Legendre quadra-

ture set and simple corner balance discretization was 0.21259 which falls within

one standard deviation of all the MC/QD hybrid results for Problem 9a listed in
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Figure 76: Problem 8b: Fission distribution with 1,600,000 histories per MC gen-
eration at right edge.
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Figure 77: Problem 8b: Convergence of k-eigenvalue with 16,000 histories per MC
generation.

Table 17. Comparing the k-eigenvalues from Problem 9a with Problem 8a show

that increased spatial resolution significantly increased the accuracy of the MC/QD

hybrid method.

Similarly, for Problem 9b the k-eigenvalue obtained using the S256 Gauss-

Legendre quadrature set and simple corner balance discretization was 0.20515

which falls within one standard deviation of all the MC/QD hybrid results for
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Figure 78: Problem 8b: Convergence of k-eigenvalue with 1,600,000 histories per
MC generation.
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Figure 79: Problem 8b: Convergence of Eddington factors with 16,000 histories
per MC generation.

Problem 9b listed in Table 18. Again, comparing the k-eigenvalues from Problem

9b with those from Problem 8b it can be seen that the increased spacial resolution

in Problem 9 significantly increased the accuracy of the MC/QD hybrid method.
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Figure 80: Problem 8b: Convergence of Eddington factors with 1,600,000 histories
per MC generation.

Pr. 8b 16,000 160,000 1,600,000

1 0.205005±0.00184 0.205088±0.00180 0.205095±0.00178
5 0.205356±0.000463 0.205350±0.000370 N/A
10 0.205365±0.000288 0.205428±0.000213 0.205427±0.000186
25 0.205444±0.000167 0.205440±0.000094 N/A
50 0.205449±0.000076 0.205442±0.000051 N/A
100 0.205455±0.000076 0.205454±0.000031 0.205453±0.000019

Table 16: k-eigenvalue (Problem 8b); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.

Pr. 9a 16,000 160,000

1 0.212152±0.00266 0.212176±0.00231
5 0.212585±0.000700 0.212520±0.000474
10 0.212580±0.000348 0.212544±0.000254
25 0.212644±0.000212 0.212566±0.000123
50 0.212577±0.000131 0.212598±0.000068
100 0.212563±0.000092 0.212596±0.000038

Table 17: k-eigenvalue (Problem 9a); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.
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Pr. 9b 16,000 160,000 1,600,000

1 0.204725±0.00215 0.204811±0.00186 0.204774±0.00179
5 0.205163±0.000623 0.205071±0.000410 N/A
10 0.205147±0.000308 0.205104±0.000208 0.205122±0.000186
25 0.205148±0.000154 0.205135±0.000101 N/A
50 0.205127±0.000093 0.205153±0.000046 N/A
100 0.205120±0.000066 0.205154±0.000028 0.205161±0.000018

Table 18: k-eigenvalue (Problem 9b); particles per generation vs. number of MC
runs averaged per QD solve. Each k-eigenvalue is an average of the eigenvalues
from 25 QD iterations.
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4 Conclusions

4.1 Introduction

This chapter will discuss the results presented in Section 3. This includes an analy-

sis of the results of the mono-energetic and multigroup hybrid Quasi-diffusion/Monte

Carlo method compared to analog Monte Carlo and SN Gauss Legendre quadra-

ture set with simple corner balance discretization. The accuracy and precision of

the Quasi-diffusion/Monte Carlo method will all be discussed based on material

properties, discretization, and required computational power and the reasons for

trends seen will be explained. This section will end with some ideas for future

work.

4.2 Conclusions and Future Work

The hybrid MC/QD method was shown to accurately and precisely predict the

k-eigenvalue and fission source distribution for 9 different test problems, many of

which had significant spacial gradients and large dominance ratios. For the simple

test problems it was clear that the MC/QD method was much more efficient.

However, as was shown in the problems with multiple energy groups, increased

spatial resolution was necessary to obtain the accuracy desired. Depending upon

the difficulty of the problem and the necessary spatial resolution required, the

MC/QD hybrid method performs with varying degrees of efficiently. As the spatial

resolution was increased, more computational work was required in the Monte

Carlo code to calculate the Eddington Factors and this significantly increase the

computational time.
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The accuracy of the Eddington factors, and subsequently the accuracy of the

k-eigenvalue and fission distribution, was found to be directly proportional to the

number of histories performed during the MC solve. Increasing the number of

histories per generation or increasing the total number of generations per MC

solve were equally effective.

The k-eigenvalue converged rapidly (generally within a couple MC/QD gen-

erations). However, the precision of the k-eigenvalue was greatly increased by

averaging many generations.

Finite volume discretization was used in the LOQD solver. Future work using

other discretization methods that have a higher order of accuracy, like simple corner

balance, would be of value. With a higher order discretization scheme it may be

possible to decrease the spatial resolution in the LOQD solver and thus decrease

the computational time required.

There needs to be more work done to determine quantitatively the total com-

putational power required in order to compare more effectively the MC/QD hybrid

method with standard Monte Carlo. An addition to the program that would make

the quantification much easier would be a subroutine that has an algorithm for

splitting the regions into increasing numbers of cells until a spatial resolution is

reached such that the k-eigenvalue does not significantly change with increased spa-

tial resolution. In addition, it would be interesting to see if the spatial resolution

required is effected by the number of energy groups in a problem.

Future work that would also be of value would be to investigate how the

MC/QD hybrid method performs in two or three dimensional problems.
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