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IMPEDANCE BRIDGE BALANCING 

USING PERTURBATION THEORY 

I. INTRODUCTION 

AC impedance bridges are variable in two parameters 

that are proportional to the real and imaginary compo- 

nents or to the magnitude and phase of the unknown 

impedance. These bridges are balanced by adjusting two 

arms, and the adjustment after balance provides informa- 

tion about the unknown impedance. 

To better understand the problems of automating ac 

impedance bridges, consider the procedure used by a 

human operator to balance one. The circuit shown in 

Fig, 1,1 is one of the more common capacitance bridges 

and will serve to illustrate the procedure. The two 

variable quantities in this bridge are Rv and RD, where 

X 
is proportional to , and the dissipation factor of Rv 

Cx is proportional to RD. To begin, Rv is adjusted for 

a minimum indication on the null detector; this will not 

be a true null since RD D 
is presumably not at its cor- 

rect setting. Next RD is adjusted to obtain a better 

balance. R, can now be adjusted nearer to its balance 

point, and R may then be adjusted more precisely. 

Alternate adjustment of Rv and RD will result in a null 

as precise as the capacitance measuring system is capable 

of resolving 
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To manually balance an ac impedance bridge, the 

operator must determine whether the variable arms need 

to be increased or decreased by trying one direction or 

the other and noting whether it increases or decreases 

the null detector reading. The operator must also learn 

to adjust both variable arms with the information pro- 

vided by only one error signal, the detector voltage. 

The principal difficulty in automating the balance 

of ac bridges is separating the output signal of the un- 

balanced bridge into two signals that will provide suffi- 

cient information to bring it to balance (7, p. 205 -209). 

To date, the most practical method of separating the sig- 

nals has been the use of phase -sensitive detectors 

(1, p. 110 -1.16), but this method can practically be 

employed only if there is a constant phase relationship 

between the two control signals and some reference sig- 

nal such as the bridge generator voltage. This is the 

case for some impedance bridges, but not the one shown 

in Fig. 1 . 1 w 

A second source of difficulty with phase -sensitive 

detectors is maintaining the proper phase relationships. 

To resolve to the accuracy often desired of a bridge, a 

sharply tuned detector is used to increase the signal- 

to-noise ratio. Unfortunately, this also implies a 

sharp phase shift at the resonant frequency. A phase 
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plot for such a detector using a twin ®T network in a 

feedback path is illustrated in Fig. 1.2. 

It is readily apparent from Fig. 1.2 that a slight 

shift in frequency of the bridge generator will result 

in a substantial change in the phase relationship be- 

tween the generator and detector output. 

McGrath and Rideout, in an article published by the 

IRE Professional Group on Automatic Control (5, p. 35 -42), 

describe a perturbation scheme whereby they perturb the 

parameters of interest by a small amount, at a frequency 

much lower than that of the driving voltage. What they 

describe is a control system whereby sinusoidal pertur- 

bations of different frequencies are used and the signals 

separated with tuned amplifiers. It would appear, how- 

ever, that one might consider an ac bridge in this same 

manner. 

McGrath and Rideout also point out that square- -wave 

perturbation rather than sine -wave would work equally 

well, as would two different phases rather than different 

frequencies. Since square wave perturbations may be 

obtained easier than sine -wave and different phases 

easier to obtain than different frequencies, these 

innovations will be of considerable interest. For 

instance, the perturbations may be established by use of 

magnetic reed switches switching a small resistance or 
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capacitance in or out of the respective arms of an 

impedance bridge. 

In this case the signal, whose phase is of interest, 

is no longer at the frequency of the bridge generator but 

at the frequency of the perturbator, which may be only 

0.01 of the bridge generator frequency. Looking again 

at the phase plot for a tuned detector, it can be seen 

that at such a frequency the output phase is virtually 

independent of frequency. 

Thus, a tuned detector can be used without the 

danger of losing the necessary phase information due to 

a slight shift in the signal frequency. It is only 

necessary to restrict the Q of the tuned amplifier so 

that the sum or difference frequencies of the bridge 

generator and perturbation signal will be passed without 

severe attenuation. With perturbation frequencies on 

the order of 0.01 of the generator frequency, this will 

not be much of a restriction. 

This paper will outline a technique using perturba- 

tion methods that will produce a control signal for each 

of the variable arms. It will be shown that these con- 

trol signals will provide sufficient information to drive 

their respective variable arms to balance. A working 

model of such a bridge was built and is discussed. No 

attempt was made to actually automate the bridge, but 
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the necessary signals for driving a servo system or 

digital balancing system have been derived and demon- 

strated. 
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II. PERTURBATION THEORY 

To see how the perturbation approach might be 

used with an ac bridge, consider the case of a simple ac 

resistance bridge (see Fig. 2.1). The generator fre- 

quency is much higher than the perturbation frequency. 

The output will be the generator frequency modulated by 

a square wave at the perturbation frequency, as can be 

seen from the equations for the output voltage: 

R 
a a c 

e - - 
Rb 

R 
a a a a c 

e = 
Rb 

T 
2- 

O 

Eg s i nwt 

T 
T Eg sinwt 

2 

where T is the period of the perturbation signal, w the 

frequency of the generator voltage, and E the peak 
g 

generator voltage. 
R 

There are three cases of interest: (I) a 
Ra + Rb 

R R 
larger than 

R + R (II) R + R 
smaller than 

c d a b 
R R 
c 

R. + R + 
and (III) 

+ 
equal to the average of 

c d p a b 
R R 

Rc + Rd 
and 

+ + p 
The output for each of these 

cases will appear as shown in Figs. 2.2 through 2.7. 

If the dc component is removed from these outputs, 

the result is a square wave that goes through null and 

then reverses phase. Thus, by use of a phase- sensitive 

R 

Ra + Rc + Rd + p 

' 

R R 
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Figure 2.1. Perturbed Resistance Bridge. 
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detector referenced to the perturbation generator, the 

necessary information for balancing the bridge can be 

obtained. 

To show that this method works for a bridge variable 

in two parameters, consider again the capacitance bridge 

shown in Fig. 1.1, in particular, the half bridge con- 

taining the variable arms with the addition of perturb- 

ing elements as shown in Fig. 2.8. 

Balance of the bridge occurs when the voltage ead 

equals the corresponding voltage of the other half of 

the bridge eac. Vector AB in Fig. 2.9 represents the 

voltage eab. Assume the generator impedance is low 

enough that its output is not affected by changes of 

settings of RV and R. If RD is held constant while RV 

is varied, the locus of points at the tip of the vector 

that represents ead is a circle with its center on the 

perpendicular bisector of AB. Similarly, if RV is held 

constant and RD is varied, the locus is a circle that 

has its center on the Y axis. As can be seen in Fig. 

2.9, these loci form families of circles. Appendix A 

gives the derivation of these loci. 

If the perturbation switches, Sl and S2, are driven 

at the same frequency but with a 90° phase shift between 

them a pair of phase -sensitive detectors can be used to 

separate the two output signals. Each detector will be 
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referenced to the phase of one of the switches. Since 

the two signals are 90° apart, the interaction of the 

two detectors will be at a minimum. A perturbation 

cycle that results in a 90° phase difference between 

switches is: both switches closed for one fourth the 

period of the cycle, one open (Si) one closed (S2) for 

the second quarter period, both closed for the third 

quarter, and one closed (S1) the other open (S2) for the 

last quarter. 

In Fig. 2.10, point D represents the voltage ead 

with both perturbing elements shorted. D1 represents 

voltage ead with switch Sl open and S2 closed, D2 

represents ead with S1 and S2 open, and D3 represents 

ead with S1 closed and S2 open. Assume that C1 repre- 

sents the corresponding voltage of the other half of the 

bridge (i.e., eac in Fig. 1.1). The voltage at the 

input of the detector is the vector difference of these 

two vectors. The magnitude of the detector voltage is 

the distance from C1 to D, D1, D2, or D3, depending on 

the point in the perturbation cycle at which it is 

sampled. A plot of this envelope can be made correspond- 

ing to a plot of the detector output after rectifying 

and filtering. A plot for the point C1 is shown in 

Fig. 2Ál1, 

To better see what information is contained in this 
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waveform , consider it one section at a time with regard 

to what the perturbation switches are doing. This can 

be seen with the aid of Table 2.1. The output desired 

is proportional to the difference between the output 

with the switch of interest open and the output with the 

switch closed. The output which determines the posi- 

tioning of RU is the output at time a plus that at time 

c (S1 closed) minus that at times b and d (S1 open). 

The output for determining the position of RD is the out- 

put at time a plus that at time b (S2 closed) minus that 

at times c and d (S2 open). 

u S1 
+ 
3 

S2 

Time 

a b c d 

closed open open closed 

closed closed open open 

ea =D -C eb =D1 
1 
-C ec =D2 -C ed =D3 

3 
-C 

Output 

Table 2.1. Switch Sequence Table 

This formulation minimizes the influence of switch 

Si on the output that controls RD. This This can be seen by 

use of Table 2.1 and the equation for the output used to 

control RD, ea +eb- ec -ed. It has the effect of summing 

the output of Si to 0 since it is a closed condition 
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minus a closed condition plus and open condition minus 

an open condition. Similarly the equation for the out- 

put used to control Rv is ea- ®eb 
-ec +ed and results in a 

closed minus a closed plus an open minus an open condi- 

tion as far as S2 is concerned. Applying these equa- 

tions to Fig. 2.11, it can be seen that the output for 

controlling RD and Rv are both positive. Inspection of 

Fig. 2.10 shows that both parameters should be increased 

to obtain balance. 

As another example, assume that C2 is the output 

voltage for the other bridge half (eac). A plot for the 

detector envelope is shown in Fig. 2.12. The output for 

controlling RD is negative as is the output for control- 

ling Rv Again by inspection of Fig. 2.10 this agrees 

with what is required, since in this case both parameters 

must be decreased to reach balance. 

The final point of interest is C, which is located 

midway between D and D2 and midway between D1 and D3. A 

plot of this envelope is shown in Fig. 2.13. Since 

D- C =D2 -C and D1- C =D3 -C the outputs for control of RU and 

RD equals 0 indicating a balanced condition. 

To show that this system gives the correct phase 

and balance information at or near balance with small 

perturbations, assume the arc segments are small enough 

to be considered straight lines. The loci of points 
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Figure 2.13. Detector Output With Balance at C. 

representing the voltage ead while RU is varied are a 

family of straight parallel lines. The loci of points 

obtained by varying RD are also a family of straight 

parallel lines which intersect the lines described by 

varying RU at some fixed angle. This forms a linear co- 

ordinate system as shown in Fig. 2.14. 

The phase for controlling RU is equal to the dis- 

tance from p (an arbitrary point) to D3 minus the dis- 

tance of p to D2 plus the distance p to D1 minus the 

distance p to D. These lengths can be broken down into 

two components, one parallel to the constant RD lines and 

the other perpendicular to them (see Fig. 2.15). Since 

the constant RD lines are parallel, the perpendicular 

distances from two points on one of these lines to 

another constant RD line will be equal. The only thing 

of interest in the difference between the two distances 

is the polarity so only the distances parallel to the 

constant RD lines need be considered. A one -dimensional 

coordinate system can therefore be used to describe the 

outputs individually as shown in Fig. 2.16 It then 

becomes obvious that for p on the low side of the 

e 
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perturbation points, the difference of the two distances 

(i.e., pD -pD1, pD3 -pD2, pD -pD3 and pD1 -pD2) always taken 

in the same sequences, will be one polarity whereas if p 

is on the high side the differences will have the oppo- 

site polarity. Further, when p is equidistant between 

the two perturbation points, the difference will be 0. 

The path the parameters will take to reach balance will 

tend to follow the lines perpendicular to their constant 

value lines rather than follow the constant value lines 

of the other parameter. These lines intersect at the 

point described as the null point, however, so balance 

will still be achieved. 

To show that the proper phase information is avail- 

able no matter how far from balance the bridge is, con- 

sider the way the output could change phase. Except for 

going through the null point the only other way would be 

by traversing a path along the constant parameter lines 

that would separate the two points by more than 180 °. 

This is impossible, however, within the limits of the 

described loci for this bridge. Thus it is seen here 

that the phase information will always be correct. 
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III. EXPERIMENTAL RESULTS 

An experimental model was built using the concepts 

described. The basic bridge used was an ESI Model 290 

Universal Impedance Bridge (see Fig. 3.1). It was used 

as a capacitance bridge, but the principle could be 

extended to inductance or ac resistance bridges. 

The variable arms are RU and RD and are the para- 

meters to be perturbed. The perturbation is accomplished 

by means of reed switches that switch small values of 

resistance in and out of the circuit. 

In order to obtain the driving signal for the per - 

turbating switches, an astable multivibrator was used to 

drive a pair of flip -flops as shown in Fig. 3.2. The 

output of the flip -flops is a pair of square waves with 

a 90° phase difference and half the repetition rate of 

the astable multivibrator (see Fig. 3.3). 

Assume initially x y z are in the non -conducting, or 

up -state and x y z are in the conducting or down -state, 

then as x goes down and x up, flip -flop z will change 

state while y remains as before as shown in Fig. 3.3. 

When X again changes state, flip -flop Y changes 

state while Z remains unchanged. The output of Y and Z 

may now be used to drive reed switches that will switch 

small impedances in and out of the bridge circuit. 
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Figure 3.1. Capacitance Bridge With Perturbing 
Elements. 

Figure 3.2. Generator for Driving Perturbation 
Switches. 

e gen 
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X 

Y 

Z 

Figure 3.3. Multivibrator and Flip -Flop 
Waveforms. 

The phase- sensitive detector for this system con- 

sists of a mechanical demodulator, four memory capacitors 

and buffer stages, and two summing amplifiers. The de- 

modulator is driven from the same flip -flops that drive 

the perturbation switches. The circuit for this demod- 

ulator is shown in Fig. 3.4. 

The four outputs, ea, eb, ec, ed, correspond to the 

four time intervals described in Table 2.1. The output 

at time interval a occurs when sl and s2 are closed. 

This is equivalent to the logic statement Y and Z where 

Y is the flip -flop controlling sl and Z is the one con- 

trolling s2. Similarly, the logic statements for the 

other three time intervals are b = Y and Z, c = Y and Z, 

and d = X and Z. These outputs from the summing ampli- 

fiers were then used to drive indicating meters, although 

they could have been used to drive a servo system to 

balance the bridge by varying RD and Rv. A block diagram 

of this system is shown in Fig. 3.5. 
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Eó=ea+eb-ec -e 
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The balance equations for the bridge used are: 

RU = RA 
C 
S 

L' (1) RD = RX 
CX 

(2) 

S S 

These equations assume p <` RU and q (( RD. For the 

derivation of these equations, see Appendix B. 

The balance equations indicate RU and RD will be 

lower by half the magnitude of their perturbing elements 

at balance than they would be without the perturbations. 

Table 3.1 lists a group of measurements made with the 

bridge described together with the values for Rv and RD 

calculated from the balance equations (1) and (2). 

The measured values of RD, even with perturbations 

as great as 20% of its magnitude, were as close to the 

calculated value as could be resolved on the bridge. The 

measured and calculated values for 
RV 

likewise were with- 

in the resolution capabilities of the bridge. Perturba- 

tions exceeding 1% of Rv, however, required that the 

detector be attenuated so greatly that a sharp null could 

not be attained. Large perturbations were necessary with 

large unbalances, but did allow a closer null to be 

found. By decreasing the magnitude of the perturbation 

and increasing the detector sensitivity after an approxi- 

mate null is found a sharper null can be attained. 

Starting from a random bridge setting, a null to the 

resolution capabilities of the bridge could be found 

- 2 
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within four iterations of the above procedure. 

Nominal 
Value of 
Unknown C 

Perturbation Magni- 
tude in Ohms 

Bridge 
Balance 
in Ohms 

Calculated 
Values in Ohms 

p (RV arm) arm) arm) (RD 
V D V RD 

0 0 10011 49 10011 49 

1 nF 1 0.16 10011 49 10011 49 

10 1.6 10006 48 10006 48 

100 16 9962 41 9961 41 

0 0 9995 15.2 9995 15.2 

100 nF 1 0.16 9995 15.2 9995 15.1 

10 1.6 9990 14.3 9990 14.3 

100 16 9941 6.5 9945 7.2 

0 0 10016 9.2 10016 9.2 

10 4F 1 0.16 10016 9.1 10016 9.1 

10 1.6 10011 8.0 10011 8.2 

100 16 9966 0.0 9966 1.2 

Table 3.1. Empirical and Theoretical Values of RD and 
RV for Various Perturbation Magnitudes and 
Unknown Capacitors. 
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IV. SUMMARY AND CONCLUSIONS 

It has been demonstrated that an ac impedance 

bridge can be automated using perturbation techniques. 

This technique has the advantage that it can be used 

with bridges for which there is no constant phase rela- 

tion between the output signals and the generator. The 

phase information is contained in the perturbations, 

which are at a frequency far below the generator fre- 

quency. This allows a tuned detector to be used for a 

more precise balance without concern for losing phase 

information due to phase shifts within the tuned 

detector. 

The principal disadvantage of this system is that 

with the capacitance bridge described, the two variable 

arms are dependent upon one another. For low loss 

capacitors, the degree of dependence is negligible and 

should have little or no effect on the balance procedure. 

As the dissipation factor increases, the bridge will 

still balance properly, but the balance time will be 

significantly increased. 

The output voltage from most impedance bridges con- 

tinuously decreases to a null as the bridge is balanced. 

The output voltage from the perturbation bridge, however, 

is nearly constant; assuming the amplitude of the per- 

turbation is constant, until the variable arm is within 
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P/2 of balance, where P is the magnitude of the perturba- 

tion. Considering this fact, and that the magnitude of 

the perturbation and the gain of the detector must be 

varied in accordance with the degree of unbalance of the 

bridge, it would seem that a programmed digital balancing 

system would be better than a servo -balance system. Such 

a system could be programmed to begin each measurement 

with maximum perturbation magnitudes and detector attenu- 

ation, then with each successive refinement of the 

measurement, the amplitude of the perturbation and the 

detector attenuation can be reduced until the error 

introduced by the non -linearity of the perturbations is 

less than the accuracy of the bridge. The program could 

be to first complete one perturbation cycle, then compare 

the outputs of the phase sensitive detectors with a 

reference. If either or both outputs are above the 

reference level, their phase information could be used 

to adjust the variable arms to bring the bridge closer 

to balance. The perturbation cycle would then be re- 

peated and the outputs of the phase -sensitive detectors 

checked. If both the outputs are below the reference 

level, the perturbation magnitude and detector attenua- 

tion would be reduced and the above process repeated 

until final balance is reached. 
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APPENDIX A 

Loci of Half Bridge Output 

d 
o 

AAA. 
RV 

b 
XS RD 

Figure A -l. Half of Capacitance Bridge. 

If the voltage across ab is normalized to a unit 

vector with its tail at the origin and lying on the X 

axis, the X -Y coordinates of the tip of the vector, AD, 

representing the voltage across ad as Rv and RD are 

varied, is found as follows: 

RV 
eab - RV + RD - jXS - x + jY (1) 

RU(RU + RD + jXS) 
- x + jy 

(RV + RD)2 
XS2 

RV 
(Rv 

+ RD) 
x = 

(Rv 
+ RD)2 

XS2 

RV-_S 

Y - 
(RV + RD)2 

2 XS2 

(2) 

(3) 

(4) 

The locus of the tip of AD as RV is varied while RD is 

held constant can be determined by removing Rv from 

equations (3) and (4). 

+ 

+ 

+ 



y _ _ BvXS XS 
x RV(RV + RD) RV + RD 

xRV + xRD XS xRV XS xRD 

RV = XS - RD 

Substituting this value of RV into equation (4) 

(3(7)(s 

S 
RD)Xs 

(YXS 
RD)Xs 

Y - - 
2 2 2 

(ÿXs - RD + RD) + XS 
X2XS 

+ XS 
Y 

2 2 

YXS + yXS = YXS 
RD 

x2 + y2 - x + yX = 0 

S 

(5) 

(6) 
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R2 R 

7 X 2 

2 

(x2 - x + 4) + (Y2 + + 4 XD2) = 4 + 4 
S S S 

RD 2 2 
1 

(X - 2)2 + (y + 2 X) = (2)2 + (2 ) 
s s 

(7) 

Equation (7) describes a family of circles whose centers 

lie on the perpendicular bisector of the vector AB. 

To determine the loci of the tip of AD with RV held 

constant and RD varied, remove RD from equation (5). 

RD = 
Y 

XS - RV (8) 

_ 

- 

_ 

- 
= 

- - 

- 

1 



Substituting this value of RD into equation (4) 

S RV 
Y 2 2 

(RV XS - Rv) S X2 XS + XS 

2 

y XS + yXS Rv 
x2XS + y2XS - yRv = 0 

R 2 2 

x2 + ( y2 X - yV + ) _ RV2 
S 4XS 4XS 

2 7 2 RV 
V 

2 

x + (Y - TX-) = (2X ) 
S S 

(9) 
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Equation (9) describes a family of circles whose centers 

Ry 
lie on the Y axis at the point 

2X . 

S 

x 

Y 

= 
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APPENDIX B 

Bridge Balance Point With Consideration Given 
Perturbation Magnitude 

Consider first two special cases: 

Capacitance Bridge With Capacitance Bridge With 
RD = RX = q = 0 XS = XX = p = 0 

Figure B -1 Figure B -2 

Balance occurs when e 
o 

+ ea = O. Where e 
o 

is the out - o 

put voltage with the perturbation switch closed and eó 

is the output voltage with it open. 

For the first case the balance equations are: 

-jXX -jXS -XX -jXS 
+ = 0 

Assume 
R X 

1 

V s 

(1) 

Then equation (1) simplifies to: 

(2) 

2 

X 
RA-JXX RV-JXS RA-JXX RV-JXS+ p 

R 

Si 

° egen egen 

p 
- 

2XX 2X5 
pX5 

0 
Rv -JXX RA -1X5 (RA -jxS)2 
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Separating and equating the real and imaginary components 

of equation (2) to 0 yields: 

2XXRÚ m 2XSRARV + pXSRA = 0 (3) 

2RVXX - 2RAX5 + pXSXX = 0 (4) 

Solving equation (4) for RV 

V RAXS p XX 2 

The balance equations for the second case are: 

RA RV RA V = 0 
RA+RX RV+RD RA+RX RV+RD+q 

Assume 
R 

gR 
1 

V D 

Rx 
RD + RD (RV- RRRX) + (2g + q 2 -RVRX) RV = 0 

A A A 

RX 
R 
V(R - 

R- - A 

RX q 
RD = RVRA - 

R 2 2qR 
R2 (1+ 

x 
) (1- 

A 
) V RA RARV_ + V 

2 

(5) 

(6) 

(7) 

(8) 

As can be seen from equations (5) and (8), the 

balance point occurs at a point lower by half the mag- 

nitude of the perturbing resistance than it would without 

the perturbation. This assumes only that the magnitude 

1) 

R 
= 

+ 

1) 
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of the perturbation is small compared to the variable 

arms. 

To show that this solution holds for the general 

case, consider the balance equations for the complete 

bridge with no perturbations. 

C , 
RV = R 

` sJ 

RA XX RD 
- 

RX XX 

Applying the above results to these balance equa- 

tions produces the following equations which should be 

the balance equations for the perturbed bridge. 

RU = RA 
XS 

s P (9) RD = RX 
XS 

- q (10) 
XX 

This can be shown by substituting the values for RU and 

RD into the balance equations for the perturbed bridge. 

This consists of four equations, one for each time 

interval of the perturbation cycle. The absolute value 

of these equations can then be algebraically summed to 

represent the outputs of the two phase -sensitive detec- 

tors. The two expressions for the detector outputs are: 

For control of RD eo IGaI + IGcI IGdI 

For control of Rv eö = 
'Gal 

° 
IGbI -IGcI +IGdI 

where Ga, Gb, Gc, Gd are the transfer functions of the 

bridge at times a, b, c and d for the conditions shown 

in Table B -l. 

= IGbI 

- 



S
w
i
t
c
h
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Time 

a b c d 

S1 Closed Open Open Closed 

S2 Closed Closed Open Open 

Table B -l. Switch Sequence. 

The four equations corresponding to the time intervals 

of Table B -1 for the bridge shown in Figure B -3 are: 

Figure B -3. Perturbed Capacitance Bridge 

Ga = 
ZA 

- 
Z 
2 

where: 
R 

1 2 

Gb 
RA Rv+p 

Z = RA+RX 
ao CX 

Z2 = RU+RD 
"S 

G - c Z1 Z2+p+q 

RA Rv 
Gd 

- 

RA RV+p 
C- 

ú 
íc+ 

, 
m 

RA 

D CS 

gen o 

Z2+p 

Z2+q 

- 
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Substituting the values found in equations (9) and (10) 

for Rv and RD. 

XS P 

RA R 

_ 

AXX 2 where: X - G 
a Z P+q S 

1 Z (1 
1 2Z )XX - 

1 
1 XX 

0)CX 

Assuming 2Zq «C 1 

1 

PXS p+q 
2XX 

11. iota 

Ga 
Z1 

PXS P-q 
2XX 

+ RA2Z1 

Gb 

PXS P+q 
- 2XX 

+ 
R A2Z1 

Gc 
Z1 

PXS p-q 
2XX RA 2Z1 

Gd - 

1 

What is desired is the algebraic sum of the 

absolute value of the transfer functions. However, all 

that is needed is to determine whether or not they sum 

to zero. This can be determined by the algebraic sum 

of their squares. 

_ 

XS cuCS 

- 

- 

21 

= 



G2+G2-G2-G2 = [K2_2KRAP+ d 
4Z 

Z1 A Z1 A Z1 

- (R 
n )2 -K2+2KR p+q (R 

P+g) 2+ K2-2KR pg + (R P g) 2 

A Z1 A Z1 A Z1 A Z1 A Z1 

XS 
Where: K = 

G2-G2-G2+G2 = 1 LK2-2KR p±gH(R p+q)2-K2+2KR p+q . 
a b c d 4Z2 A Z1 A Z1 A Z1 

1 

39 

= 0 

-(R p-q)2-K2+2KR p+q (R p+g 2 )+K2-KR p q +(R p 
g)2 

= 0 
A Z1 A Z1 A Z1 A Z1 A Z1 

Thus it is shown that equations (9) and (10) are 

the balance equations for the perturbed bridge. 

p+g)-K2+2KR p+q 
a c 


