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For the west coast of North America, from northern California to southern 

Washington, a habitat suitability prediction framework was developed to 

support wave energy device siting. Concern that wave energy devices may 

impact the seafloor and benthos has renewed research interest in the 

distribution of marine benthic invertebrates and factors influencing their 

distribution. A Bayesian belief network approach was employed for learning 

species-habitat associations for Rhabdus rectius, a tusk-shaped marine 

infaunal Mollusk. Environmental variables describing surficial geology and 

water depth were found to be most influential to the distribution of R. rectius. 

Water property variables, such as temperature and salinity, were less 

influential as distribution predictors. Species-habitat associations were used to 

predict habitat suitability probabilities for R. rectius, which were then mapped 

over an area of interest along the south-central Oregon coast. Habitat 

suitability prediction models tested well against data withheld for cross-

validation supporting our conclusion that Bayesian learning extracts useful 

information available in very small, incomplete data sets and identifies which 

variables drive habitat suitability for R. rectius. Additionally, Bayesian belief 

networks are easily updated with new information, quantitative or qualitative, 

which provides a flexible mechanism for multiple scenario analyses. The 

prediction framework presented here is a practical tool informing marine 

spatial planning assessment through visualization of habitat suitability. 
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A Bayesian Approach to Habitat Suitability Prediction 

 

Introduction 

Wave Energy Development and the Benthic Environment 

The wave climate, coastal infrastructure, and electrical power demand 

along the west coast of North America provide great potential for wave energy 

development in the region (Bedard et al., 2005).  However, little is known 

about general direct or indirect impacts of wave energy developments.  

Impacts to migratory mammals and birds and fisheries habitat are of primary 

concern, and while these impacts are highly uncertain there is very little 

information about how wave energy developments impact benthic 

communities specifically. 

Many processes of wave energy development potentially affect benthic 

communities through myriad stressors that vary in severity, intensity, and 

duration (Boehlert and Gill, 2010).  Perhaps the most obvious stressors are 

alterations to the seafloor (Gill, 2005; Pelc, 2002), abrasion or mutilation of 

organisms (Abelson and Denny, 1997), and the artificial reef effect (Gill, 2005; 

Inger et al., 2009; Langhamer and Wilhelmsson, 2009), all of which may occur 

during various phases of development, maintenance and decommissioning. 

Less obvious potential stressors are removal of kinetic energy or 

altering flow conditions (Commission, C. E., C. Ocean, and P. Council; 2008; 

Millar et al., 2007; Shields et al., 2011), acoustic effects and vibration, and 

electromagnetic effects, which are largely unknown (Boehlert and Gill, 2010).  

Altering flow conditions may cause benthic sediment scouring, interference 

with flow-dependent sessile, sedimentary or filter feeder species (Shields et 
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al., 2011), and alter recruit settlement.  Crab and lobster larvae have been 

shown to be attracted to reef noise (Montgomery et al., 2006) where acoustic 

effects generated by wave energy converters may interfere. Finally, 

electromagnetic effects may be detectable by species that have 

electroreception sensory capabilities (Gill, 2005). Electromagnetic fields 

associated with wave devices may attract, deter or injure aquatic animals 

(Cada et al., 2009) 

Environmental effects of wave energy developments are highly 

uncertain, and research is needed to develop an understanding of potential 

impacts (Boehlert and Gill, 2010; Gill, 2005).  The paucity of benthic impact 

estimates stems largely from the lack of seafloor mapping and benthic 

community surveys in areas of potential wave energy development, especially 

in the Pacific Northwest (Boehlert et al., 2008). Although considerable effort 

has been made to map the region’s ocean floor (Goldfinger et al., 2012), most 

of the mapping has been in very nearshore waters that are less suitable for 

wave energy development. On a regional scale, in waters considered ripe for 

development, seafloor mapping and benthic surveys are significantly lacking. 

Why worry about marine sedimentary biodiversity? 

Marine ecosystems are incredibly diverse and the vast majority of 

species are invertebrates residing in (infauna) and on (epifauna) the 

sediments (Snelgrove, 1999). Of these invertebrates, most are polychaetes, 

crustaceans, mollusks and nematodes. Additionally, the seafloor sediments 

contain microbiotic species consisting of bacteria and protists which are poorly 

known.  Snelgrove, (1997) estimates that less than 1% of worldwide marine 

species in sedimentary habitats are presently known. This is partly due to 

limitations of conventional seafloor survey methods (Wright and Heyman, 

2008), logistics and effort (Snelgrove, 1999).   
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Although marine sedimentary ecosystems are poorly understood, there 

are significant ecological “products” benefiting life on earth (Snelgrove, 1999). 

The loss of marine sedimentary biodiversity would have cascading deleterious 

effects worldwide. Some “products” and services provided include: the 

reduction of atmospheric carbon dioxide through global carbon and 

geochemical cycling (Kristensen et al., 1992); a direct food source or prey for 

fisheries species humans consume (Reynolds, 2002); pollutant uptake and 

bioaccumulation (Farrington, 1991); and water clarity through filtration 

(Scheffer, 1999).  

Naturally, humans have a tendency to protect the things we understand 

and therefore love (think of polar bears and whales). It is difficult to imagine 

Earth without the iconic polar bear, thus it is easier to be proactive in support 

of their conservation. It is also natural that humans tend to be less 

precautionary with regard to processes we do not fully understand and 

therefore find more difficult to love (think of worms and marine bacteria). This 

is true especially when the economic benefits of their protection are muted by 

the much more apparent benefits of alternatives to their protection (wave 

energy development). Conservation of marine sedimentary biodiversity and 

wave energy development are not necessarily mutually exclusive activities. As 

such, this study hopes to contribute to both understanding marine sedimentary 

diversity and distribution and the procession of a precautionary approach to 

management. 

Species distribution modeling and predictive mapping 

Species distribution models (SDMs) describe empirical relationships 

between species distributions and environmental variables thought to 

influence the ability of the environment to support a species (Franklin, 2009). 

SDMs are also referred to as habitat suitability models when describing the 
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suitability of a habitat to support a species (Franklin, 2009). When used to 

predict in a geographical space, they have been called “predictive habitat 

distribution models” (Guisan and Zimmerman, 2000). In this study, we use the 

term habitat suitability as described by Franklin (2009). We also equate the 

terms presence/absence and true/false with habitat suitability probability 

(HSP). 

Why model species distribution? 

 Advancements in remote sensing and geographic information systems 

and science (GIS) have accelerated interest in, and capacity to create, 

meaningful SDMs. We create SDMs to make sense of complex species-

environment interactions and test hypotheses about species range 

characteristics. Additionally, governmental and non-governmental 

organizations are often charged with biological resources assessment and 

spatial planning decisions on regional scales. SDM products, such as habitat 

suitability maps, have been used to support various spatial planning and 

resource management decisions. Furthermore, there are usually strong 

financial incentives for using existing data to make predictions where 

surveying species is cost-prohibitive (Rushton et al., 2004), especially in the 

marine environment. 

 This document details research nested within a greater effort to survey 

the seafloor and benthos in areas of potential wave energy development 

(Boehlert et al., 2011). Utilizing species abundance and environmental data 

collected during the benthic survey, we developed a predictive habitat 

suitability modeling framework to support assessment of regional spatial 

planning alternatives, particularly within the context of marine renewable 

energy siting. We develop probabilistic Bayesian belief networks utilizing data 

mining techniques to define species-environment relationships warranted by 

the data. 
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Probability theory, uncertainty and graphical networks 

Why bother with uncertainty? 

Reasoning about any realistic domain requires leaving many facts 

unknown, unsaid, or crudely summarized (Pearl, 1988). There will always be 

exceptions to rules we develop in order to make sense of complex problems 

we wish to understand. We cannot afford to enumerate the exceptions and 

unambiguously define the conditions of our rules, so we summarize them 

(Pearl, 1988). Summarization is a “compromise between safety and speed of 

movement...in the minefield of judgment and belief” where we reason with 

exceptions (Pearl, 1988). Given inherent uncertainty in marine environmental 

data, especially of the benthos, probabilistic graphical networks are 

appropriate for gleaning the limited information within these data sets.    

Probabilistic networks 

Bayesian belief networks are graphical representations of relationships 

defined by our reasoning about the world. Networks encode fundamental, 

qualitative relationships of direct dependency as nodes in a graph connected 

by arcs or links (Pearl, 1988). Many patterns of human reasoning can only be 

explained by our inclination to follow pathways laid out by such networks 

(Pearl, 1988). 

Belief networks play a central role in probability theory, where the aim is 

to provide a coherent account of how beliefs should change given partial or 

uncertain information (Pearl, 1988). Humans are bad at estimating quantities 

and therefore prefer to describe the world qualitatively. We therefore find 

probabilities useful because they are the “numerical summarization of 

uncertainty” (Pearl, 1988). The precise magnitude of our belief is less 

important than the specific structure of reasoning (i.e. the context and 

assumptions of the belief and the source of information that would change our 
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belief) (Pearl, 1988). Thus, we are able to combine rough estimates in the 

manner we combine exact quantities thereby making the most of available 

information while constraining damage caused by imprecise estimates. 

Further, working with probabilities in a coherent model of reality prevents 

inconsistent conclusions which helps troubleshoot our inferences (Pearl, 

1988). 

Bayesian belief networks (BBNs), also called belief nets, causal 

networks (Duda et al., 2001) or influence diagrams (Pearl, 1988), are graphical 

representations of mathematical models where each variable is presented as 

a node (Uusitalo, 2007) that can take on two or more possible values. BBNs 

are directed acyclic graphs (Duda et al., 2001) where links between nodes 

describe the dependence or causal influences between variables. A link from 

node A to node B usually indicates that A causes B, that A partially causes B 

or predisposes B, that B is an imperfect observation of A, that A and B are 

functionally related, or that A and B are statistically correlated (Norsys 

Netica®). The strength of influence A on B is expressed by conditional 

probabilities (Pearl, 1988). 

Conditional probability 

McCarthy (2007) contains a very concise explanation of conditional 

probability theory and the following is modified from that explanation. 

Conditional probability theory can be expressed as follows, with A and B being 

outcomes that can be switched arbitrarily: 

P(A and B) = P(B) x P(A∣B). 

In English, this equation states that the probability of events A and B 

occurring together is equal to the probability of event A occurring “given the 

truth or occurrence” of event B, multiplied by the probability of event B. 
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For example, let’s say we are interested in the conditional probability 

that worms are present given an observation that mud is present. Let’s 

assume that worms are present in mud with a probability of 0.20 and in a 

particular study area, mud is present with a probability of 0.70. We can 

rearrange the expression above as follows, 

P(worm∣mud) = P(worm and mud) / P(mud) = 0.20 / 0.70 = 0.29, 

and calculate the probability that worm will be observed in the study area. 

Bayes rule is based on conditional probability (McCarthy, 2007; Pearl, 

1988) and can be written in this example, as follows: 

P(worm∣mud) = P(worm) x P(mud∣worm) / P(mud). 

Duda et al., (2001) express this informally in English by saying that 

posterior probability = prior probability x likelihood / evidence 

The posterior probability can be thought of as the ‘answer’ to our question of 

worm occurrence and therefore habitat suitability. The prior probability is a 

measure of our prior knowledge of worm occurrences. In other words, a prior 

distribution is a measure of how likely we are to observe worms before worms 

are actually observed. Priors are best defined by existing observational data 

sets. Although, priors can be defined by experts and, as a last resort, they can 

be set uniformly essentially expressing complete uncertainty. The method for 

determining priors has been hotly debated. The likelihood is the probability of 

observing mud given worms are present. The evidence is the probability of 

observing mud independent of worms. 
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Bayesian inference 

Bayesian methods provide formalism, under the rules of probability 

theory, for reasoning about partial beliefs under conditions of uncertainty 

(Pearl, 1988). In other words, Bayesian methods and probability theory allow 

us to make inferences about the distribution of species and habitat using 

partial or uncertain information.   

Inference allows for the possibility of answering questions such as 

“what is the chance that this ocean space is suitable habitat given a change in 

sediment composition?” or “how much can we expect habitat suitability to 

change given a rise in average temperature?” Because of the graphical nature 

and immediate propagation of results, the BBN approach allows visualization 

of ‘what-if’ scenarios with little effort. Examining a model’s response to 

perturbations is the beginning of exploring and expanding the domain 

knowledge base. 
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Methods 

Data 

Regional Sampling  

 Regional data were collected at six sites spanning the states of 

Washington, Oregon, and California along the west coast of North America 

(Figure 1). The southernmost site in the state of Oregon was arbitrarily chosen 

as a case study site for mapping surficial geologic habitat and predicting 

habitat suitability (Figure 2). Species density and environmental variable data 

were collected in each of the six sampling areas (Table 1). For a detailed 

description of the sampling methods for the benthic survey, see Boehlert et al. 

(2011) and references therein. Briefly, a total of 184 cores were taken using a 

0.1 m2 box corer and a CTD cast was conducted. Sampling stations for box 

coring were randomly selected using a Generalized Random Tessellation 

Stratified survey design. Upon landing the corer on the deck, a subsample of 

sediment was retained for later analyses. The remaining sample was sieved 

on 1 mm mesh. The invertebrates within the sieved sample were collected and 

preserved in formalin. Upon return to the lab, invertebrate specimens were 

identified and enumerated.  

Additionally, shipek grab samples were collected such that unique 

habitats, as identified by multibeam acoustic data, were adequately sampled. 

Sediment grain size analyses were performed and used in conjunction with 

box corer sediment data to ensure that surficial geologic habitat classification 

was of the highest quality. Invertebrate data was not collected from Shipek 

samples. For more information on multibeam acoustic survey methods and 

surficial geologic habitat classification see Appendix A and Goldfinger et al. 

(2012). 
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Figure 1. Sampling areas (N=6) over the region. Samples collected were used 
to create the species preference knowledge base. The Siltcoos, Oregon site 
was used as a case study for creating surficial geologic habitat and habitat 
suitability prediction maps.
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Figure 2. We used the southernmost site in the state of Oregon as a case study (115 km2). The map shows sample 
stations within the case study site. Box core samples were processed for sediment grain size distribution and 
species density (1/10 m2), CTD casts were taken at each box core station for water characteristics and used in 
model construction. Shipek grab samples were processed for sediment grain size distribution. All samples were 
used to create surficial geology habitat maps. The background image is a hill-shade relief raster (1m cell) with 10m 
depth contours (100m to 120m).
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Table 1. Environmental variables used in the modeling process, the units of 
measurement, the data type, and observed domain range. Rhabdus rectius is 
the species of interest. Individuals were counted per box core sample. 

Organism of interest 

Rhabdus rectius was identified as one of the most prevalent mollusk 

species observed and selected for use as the target in the case study (Figure 

3). Rhabdus rectius is a marine mollusk in the class Scaphopoda, which are 

identified by curved, open-ended tusks up to 6 cm in length (Reynolds, 2002). 

Their tusks taper from the wider head end to the narrower end where their 

respiratory currents exit. Scaphopods are carnivorous infaunal organisms that 

burrow headfirst into the sediment where they survive primarily on 

foraminiferans and other microorganisms (Reynolds, 2002). The global 

biogeographic patterns of Scaphopod diversity have been studied only 

preliminarily but, in general, they are found worldwide in marine sediments as 

deep as 6000 m with diversity decreasing with depth and toward polar regions 

(Reynolds, 2002).  

Scaphopods seem to be an important component of their ecosystems. 

Ciliates and bacteria are associated with specific cell surfaces of Rhabdus 

rectius (Reynolds, 2002), in an assumed commensal relationship. Somewhat 

larger scaphopods are mutualistically associated with cnidarians such as 

anemones, corals and barnacles (Reynolds, 2002). Parasitism has been 
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observed in Rhabdus rectius where flatworms replace the gonad (personal 

communication referenced in Reynolds, 2002). Additionally, scaphopods are 

preyed upon by ratfish and discarded shells provide refuge for a variety of 

spinunculans and hermit crabs (personal communication referenced in 

Reynolds, 2002). 

 

Figure 3. A Rhabdus rectius specimen featuring the tusk-like shell. 

Model Construction 

Conceptual framework 

Creating an influence diagram is one of the first steps in the creation of 

a Bayesian Belief Network of the predictive modeling framework (Marcot et al., 

2006). The influence diagram begins to address questions about which factors 

influence the target response variable, in this case, occurrence of benthic 

organisms. Guisan and Zimmerman (2000), stress that “an underlying 

conceptual framework” is crucial to “the formulation of an ecological model.” 

Expert opinion and supplemental literature synthesis are commonly used to 

develop a conceptual diagram of boxes and arrows that illustrates the known 

or theoretical relationships between the target variable and predictor variables 

(Alameddine et al., 2011). 

 It is generally believed that distribution patterns of marine benthic 

fauna are determined largely by temperature, salinity, depth, surface 

productivity, and sediment dynamics over broad scales and by biological 
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interactions, sediment geochemistry, and near-bed flow processes at finer 

scales (Snelgrove, 1999). However, the synergies between marine benthic 

invertebrates and the factors that influence their distribution are poorly 

understood. Initially, we assume that each variable exerts some influence on 

the target species and that each predictor variable is independent of the rest 

(i.e. there are no synergistic interactions between variables). However unlikely, 

this is a practical starting point for a modeling exercise such as this, where our 

first aim is to develop a framework of methods for predicting regional habitat 

suitability. Furthermore, including these synergies may be unnecessary for 

adequate predictions. As a result, we do not consider ecological interactions 

(such as food availability). Rather, we only consider physical environmental 

variables such as sediment and water column properties as factors influencing 

regional habitat suitability (Figure 4). The next step in the modeling framework 

is to convert the influence diagram into a belief network. 

 

Figure 4. An influence diagram is one of the first steps in creating a BBN. On a 
regional scale, extremes in physical environmental factors, such as depth and 
temperature, are thought to limit species range and therefore the potential 
suitability of a given habitat to support species. 

Basic model construction 

Bayesian Belief Networks (BBNs) are directed, acyclic graphical 

representations of complex systems.  Basic model construction follows a two-
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step process, each step briefly introduced here and described in detail below. 

The first step is model structure development and the second is model 

parameterization. Model structure is a graphical representation of the 

relationship between the target variable (response variable) and its 

environmental predictor variables. Model parameterization requires 

quantification of the relationships defined by the model structure. 

Parameterization (i.e. the population of conditional probability tables (CPTs)) 

occurs after accepting a model structure. 

 In the model structure, variables are represented by nodes, and the 

relationships between variables are defined by links (sometimes called arcs). 

Creating the BBN model structure can be done manually, automatically or 

using a hybridization of manual and automated methods. We use an automatic 

structure-generating technique in the Netica® software package. As noted in 

the previous section, we initially consider only direct correlation between 

predictor variables and the target variable (see naïve Bayesian networks 

below). 

Data Partitioning 

Before model structure development can begin, the data set was 

prepared for Netica® as a spreadsheet of appropriately named predictor 

variables, assigned special characters for missing data points, and rounded 

numerals. The data set was then partitioned to set the stage for later 

assessing prediction success. 

Robust measures of prediction success make use of independent data 

(i.e. data not used to develop the prediction model) (Fielding and Bell, 1997). 

We used K-fold partitioning to independently cross-validate models. K-fold 

data partitioning methods are described well in Aguilera et al. (2010). The 

simplest method randomizes and partitions the original data set into training 
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and testing subsets (K=2).  Huberty (1994) provides a 75/25 percent ‘rule of 

thumb’ for calculating the training to testing ratio in presence/absence models.  

A more robust validation method is to divide the initial data set into K subsets 

(K>2) with each subset acting as the testing data once while the remaining 

sets are combined to act as the training subset.  We randomly divided the 

original data (N=184) into four equal subsets (K=4). Each of the four subsets 

(N=46) acted as a testing partition while the remaining three subsets were 

combined (N=138) to act as the training set. Subsequently, four-fold cross-

validation created four models to be used during model assessment. 

To be clear, data partitioning is a model assessment technique only. 

None of the training/testing models should be used for prediction purposes 

(Fielding and Bell, 1997). The final prediction model was constructed with the 

entire data set to include all possible environments and facilitate model 

comparison, whereas the training models only consider a subset of the 

possible environments. The prepared and partitioned data set was imported to 

Netica® to begin model structuring. 

Model structure 

Variables and their domains: discretizing predictor variables 

The first step of model structuring is discretization. Discretization, also 

referred to as binning, is the process of separating continuous variables, such 

as water depth and temperature, into manageable bins that cover the 

continuous variable space. Each discrete bin is a model state (i.e, a possible 

state of the world we are modeling). Netica® software requires discretization 

of continuous variables, which always results in a loss of statistical power 

(Uusitalo, 2007).  Finding the optimal discretization method for continuous 

variables is an area of active research and remains one of the more 

challenging tasks associated with developing BBNs with continuous variables 
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(Almeddine et al., 2011). Thus, discretization optimization is beyond the 

purview of this study. 

Unsupervised and supervised are the two basic discretization methods. 

First consider unsupervised discretization, where bins are created 

automatically by either an equal-interval or equal-frequency method. The 

equal-interval method divides the continuous data range, as defined by the 

data set, into equal bin sizes or widths. The equal-frequency method divides 

the data range such that equal data samples (or as close to equal as possible) 

fall within each state regardless of bin width.  

Supervised discretization is the alternative to automatic binning. 

Supervised discretization occurs by manually placing bin cutoffs at expected 

environmental thresholds, standards or technological constraints. Assigning 

thresholds in this manner is critical to making a meaningful and useful model 

(Almeddine et al., 2011; Marcot et al., 2006). Marcot et al. (2006) develop a 

theoretical model where every aspect of the BBN is manually created in a 

supervised fashion. This is not the goal of the work presented here where we 

created a BBN automatically with supporting data. 

Both discretization methods are sensitive to the number of continuous 

values in each bin. For example, data range outliers may cause sparsely 

populated bins in the equal-interval method (Almeddine et al., 2011; Liu, et al., 

2002). Alternatively, many occurrences of a particular value may result in 

occurrences of that value in more than one bin (Liu et al., 2002). If possible, 

Lui et al. (2002) recommend performing data outlier detection and discretizing 

continuous variables so as to maintain a minimum of six cases per bin (Liu et 

al., 2002). Cursory examination revealed no obvious outliers nor were there 

any bins with fewer than six cases. 
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Netica® defaults suggest three to five bins per variable with twenty 

percent rounding. Fewer bins results in higher model accuracy but less 

precision and there is little effect on threshold values above twenty percent 

rounding. All variables (nodes) are continuous in this study and therefore were 

discretized to three states with zero percent rounding. This ensures that 

approximately equal numbers of samples fall within each node state. Again, 

the entire data set (every partition) is used during discretization, not 

individually partitioned data sets, which would result in incomparable model 

boundaries and wild model variance. 

The next step in model structuring is defining the causal linkages. The 

links between variables are essential for reasoning plausibly about a domain 

(Pearl, 1988). This process is also completed manually or automatically. 

Causal interpretation of structure 

Explaining the directed links between variables can be a major 

challenge faced when using Bayesian networks (Sebastiani and Perls, 2008). 

Directed links from effects to causes elicit comments that the arcs should be 

“the other way around” regardless that they only represent a convenient 

factorization of the joint probability of the network variables (Sebastiani and 

Perls, 2008). Netica® suggests that to classify, predict or diagnose a target 

variable with the best accuracy, it is best to capture its relation to as many 

predictor variables as possible with many links leaving the target variable. This 

model structure is called a naïve Bayesian network (NB) (see naïve Bayesian 

networks below). Netica® further posits that while the relationships have been 

captured, they are only considered in isolation and any synergies between 

variables have been ignored. This research employs the NB structure simply 

as a starting point for the development of the modeling framework. 
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Naïve Bayesian networks 

Figure 5 illustrates that the naïve Bayesian network is a simple network 

linking the target variable to all the environmental variables (Duda et al., 

2001). NB networks strongly assume conditional independence between 

environmental variables given the state of the target variable. Conditional 

independence assumptions ignore synergistic relationships between variables, 

such as species interactions or how water temperature varies with latitude and 

water depth. 
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Figure 5. NB and TAN belief network models for Rhabdus rectius. Each node 
represents an environmental variable of the original data set. Continuous 
environmental variables were discretized to three states. The target node, 
Rhabdus rectius, was discretized to true/false states.  

We performed sensitivity analyses (refer to sensitivity analysis section) 

to determine the most influential variables. We reversed the links of the 

strongest two predictor variables so that they enter the target variable. In 

essence, this considers the synergies between the most influential variables of 

the target node, and for the rest of the variables, considers them, but not all 

the synergies between them. 
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Tree-augmented naïve Bayesian networks (TAN). 

Structure learning techniques attempt to remove the strong 

assumptions of independence in NB models by finding correlations among 

attributes that are warranted by the data (Friedman et al., 1997) and improve 

modeling accuracy (Aquilera et al., 2010). One such technique is the tree-

augmented naïve Bayes network (TAN) structure (Figure 5). Netica® uses its 

sensitivity to findings function to automatically induce the TAN structure 

(personal communication). The target variable has no parents and each 

environmental attribute has as parents the target variable and at most one 

other environmental attribute (Friedman et al., 1997). 

Model induction is an area of active research, an especially appealing 

method when little is known about the dependencies between variables in a 

complex system. However, structure learning algorithms have been shown to 

miss dependencies (Almeddine et al., 2011). Given that structured learning 

algorithms are not perfect and environmental data are inherently noisy, 

domain expert supervision of the structured learning process is more 

appropriate (Almeddine et al., 2011; Marcot et al., 2006). 

TAN models were discretized in exactly the same manner as NB 

models to facilitate comparison of modeling techniques and include all 

possible environments.  Model training and validation techniques are 

described in the following section. 
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Eliciting model parameters 

Parameterization 

Counting learning is the simplest true Bayesian parameter learning 

algorithm offered in the Netica® software package. Parameter learning 

proceeds from a state of ignorance at each node (i.e all CPTs have uniform 

probabilities) unless there are data that support prior information. The counting 

algorithm only updates the beliefs of nodes with cases that supply values for 

itself and its parents, thus counting learning is not recommended when there 

are latent variables or missing data. We do not intend to describe latent 

variables and our data set contains very few missing values therefore counting 

learning is acceptable. However, the original data set is very small with less 

than 200 individual cases and any cases skipped during the learning process 

would further reduce the data available for learning. 

Importantly, Netica® algorithms respect expert defined model structure 

and parameters before learning commences. It is therefore possible to 

predefine relationships between variables and their parameters, then update 

the parameters as new data become available (see future work section 

below). This applies to all of Netica’s® learning capabilities. 

Handling Missing Data 

To account for missing data, we adopted the two-step, expectation-

maximization (EM) learning algorithm, which begins when the expectation (E) 

step first computes the expected value for missing data. The maximization (M) 

step then maximizes a particular function for net parameters given the original 

data set and expected values. 
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Model validation and performance assessment 

Each training model was validated with the complimentary testing 

subset described in the data partitioning section. We tested model prediction 

error through the computation of confusion matrices. We tested the target 

variable’s sensitivity to findings at predictor nodes with the Netica® software.   

Confusion matrices 

The performance of a presence/absence model is normally summarized 

in a confusion matrix. We compared observations of species 

presence/absence to model predictions of presence/absence and translate 

them to a confusion matrix of true/false outcomes. Species absence indicates 

a false habitat suitability whereas species presence indicates true habitat 

suitability (Table 2). Confusion matrix values were calculated following 

methods detailed in Fielding and Bell (1997) and used as initial performance 

measures (Table 3). 

 

Table 2. Theoretical confusion matrix for two-state output models.
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Table 3. Performance measures calculated according to Fielding and Bell (1997).
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Presence/absence models are normally judged by the number of 

prediction errors they create. In testing presence/absence models there are 

four possible outcomes, of which two types are erroneous: false-positives and 

false-negatives sometimes referred to as error type-I (commission) or error 

type-II (omission), respectively. A false-positive error occurs when the model 

incorrectly predicts presence when the observation actually was absence. 

Incorrectly predicting absence when the observation actually was presence is 

called a false-negative error. If both prediction and observation are true it is 

called a true-positive. The last possible outcome is a correct prediction of a 

false observation, which is called a true-negative. The overall rate of error is 

the primary performance assessment metric in SDMs but other metrics can 

improve understanding of the value of its predictions. 

Sensitivity (Se) is the probability that the algorithm correctly classified 

the case as true (true-positive rate of actual values). Specificity (Sp) is the 

probability that the algorithm correctly predicted the case as negative (true-

negative rate of actual values). The false-positive rate (FPR) is the rate of 

false-positive errors and the false-negative rate (FNR) is the rate of false-

negative errors. Positive predictive power (PPP) is the probability that a case 

is true when it is predicted true (true-positive rate of predicted values). 

Negative predictive power (NPP) is the probability that a case is false when it 

is predicted false (true-positive of predicted values). Prevalence (P’) is the 

number of presences divided by the number of cases. In other words, P’ is the 

a priori information for species occurrence as determined by the original data 

set, and as such, shall not change between models. Kappa (Ka) uses all of the 

values in the confusion matrix and is a good single metric for assessing 

classifier improvement over chance (Fielding and Bell, 1997; Forbes, 1995). 

The Ka statistic measures the proportion of all possible cases of presence or 

absence that are predicted correctly by the model (Manel et al., 2001). Ka 

statistic values range from [0-1] with the following quality of agreement: poor 
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Ka < 0.4; good 0.4 < Ka < 0.75 and excellent Ka > 0.75 (Fielding and Bell, 

1997). Landis and Koch (1977) offer an alternative definition for quality of 

agreement: slight to fair Ka < 0.4; moderate 0.4 < Ka < 0.6; substantial 0.6 < 

Ka < 0.8 and almost perfect Ka > 0.8.  

Error rate, predictive power measures and Ka give some indication of 

model performance but should be used with caution because they are 

influenced by P’, especially error rate. For example, it is possible to achieve a 

95% correct classification rate when P’ is 5% by classifying all cases as 

negative (Fielding and Bell, 1997). Therefore, a model’s predictive value 

should not hinge on error rate alone. Error rate, PPP, and Ka decrease with 

decreasing P’, while NPP increases.  Ka is less affected by low prevalence but 

may fail when one class far exceeds the other (Fielding and Bell, 1997).  

Sensitivity Analysis 

Sensitivity analyses were conducted using a custom report generated 

with Netica® then ranked by mean percent variance reduction. Variance 

reduction is a measure of the sensitivity of the target variable to a finding at an 

environmental variable. We used the sensitivity analyses to justify alterations 

to link directionality in the NB prediction model. Regardless of sensitivity, the 

link between MedianGS was necessarily reversed to prevent violation of the 

acyclicity of BBNs. 

Influence of temperature 

For the NB model only, a separate sensitivity test was performed using 

hypothetical inputs for temperature. This was essentially a ‘what if’ scenario 

where the goal was to test the effects of temperature on model outputs by 

running the model two times; once with temperatures always in the highest 

state, then again with the temperatures always in the lowest state, while all 



27 

 

other inputs remain unchanged. The posterior habitat suitability probabilities 

were mapped in the GIS for each temperature run and a ‘difference’ raster 

was created by using map algebra functions in the GIS. 

Receiver Operating Characteristic Curve 

In Figure 6 are examples of receiver operating characteristic (ROC) 

curves, which are threshold-independent measures of model performance 

(Deleo, 1993). The ROC curve is obtained by plotting all sensitivity values 

(true-positive fraction) against (1-specificity) values (false-positive fraction) at 

each available cutoff. High performing models will have a curve that 

approaches the top left corner. The AUC is a single measure of overall 

accuracy that is not dependent upon a particular threshold. Area under the 

function (AUC) was calculated using the trapezoid method (Table 4). 
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Figure 6. ROC curves for each training-testing NB and TAN model. 
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Table 4. Area under the curve (AUC) was calculated for each model using the 
trapezoid rule. Results were averaged to determine a plausible performance 
metric for the prediction model. 

Mapping Predictions 

Incorporating case files 

The paucity of relevant data can make predicting habitat suitability 

challenging in the marine environment. BBNs allow us to make probabilistic 

inferences about environmental variables based on learned relationships 

warranted by observational data. Thus, it is possible to make accurate 

predictions with limited information.   

We compiled in a case file of rows and columns (cases and variables) 

of available information for environmental predictor variables. (Appendix A). 

Each case file row represented a location with an associated water depth and 

surficial geologic habitat (SGH) class, a surrogate for median grain size (MGS) 

(the model node for SGH is called Gridcode). The case files were incorporated 

as positive findings in both NB and TAN model structures. Posterior 

probabilities were inferred for remaining variables, including the target 

variable. Posterior probabilities were appended to the original case file and 

imported into a geographic information system (GIS) for further analyses. 
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Habitat suitability raster analyses 

Each model output is essentially a geographic coordinate grid of 

environmental variables with an additional posterior probability attribute 

attached to every location. Every output has the same spatial extent, which 

facilitates comparison between models when mapped in a GIS. Output grids 

were converted to eight-meter resolution rasters and compared. 

Confidence raster analyses 

During a model run, each node carries with it a measure of error in the 

form of one standard deviation around the expected value of that node, 

including the target variable. Therefore, for each instance in a case file, the 

calculated posterior probability for Rhabdus rectius carries with it and measure 

of confidence. This measure is a final accounting of error propagation 

throughout the network. A confidence raster for the TAN model was created 

for assessment of our confidence in each posterior probability value. 
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Results 

Model sensitivity 

Variance reduction 

 The first step of model assessment is to test the target sensitivity to 

findings at each node (Table 5). Results indicate the rank order of influence on 

the target did not change between models while percent variance reduction 

changes were negligible. Longitude is the strongest predictor variable 

responsible for, on average, a 31% ± 4.9% variance reduction in both models.  

Not surprisingly, sediment properties rank among the most influential 

variables. Each variable describing sediment characteristics is responsible for 

at least 20% reduction of the variance for a respective finding entered at that 

variable, whereas variables describing water column properties rank the 

lowest at <10.2% variance reduction with temperature very low at 1.5%.  
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Table 5. Sensitivities were computed with the Netica® software sensitivity 
function using training-testing partitions. Values indicate the percent variance 
reduction at the target node as a result of a finding entered at a particular 
environmental variable node. Then the sensitivities were ranked by the mean 
value and used to identify which linkages to reverse in the NB model. 

Influence of Temperature 

The temperature sensitivity test revealed that by simply adding 

temperature as input, HSP values increased slightly (Table 6 and Figure 7). 

On the low end, increases ranged between approximately 0.03 and 0.08, and 

on the high end, increases ranged between approximately 0.01 and 0.02. 

Additionally, both temperature runs decreased the possible range of HSP 

values approximately 0.02 to 0.06. The low temperature model run had the 

greatest influence on overall HSP.  
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Table 6. This table compares the ranges of posterior probabilities for the 
standard NB model (No Temp) with the addition of Temperature variable 
pegged at each extreme.  

 

Figure 7. This figure demonstrates how the addition of temperature increased 
overall HSP while at the same time decreased the range of possible posterior 
probabilities. 

Model construction 

Figure 8 and Figure 9 both are three-state discretized models with the 

following modification. In each model, the link from MedianGS to the target 

was reversed to facilitate acceptance of the Gridcode variable (i.e. to facilitate 

the population of the CPT). For both models, sensitivity analyses identified 

Longitude and TOC as the two variables with the greatest influence on the 
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distribution of Rhabdus rectius. In the NB model, the links from Longitude and 

TOC to the target were reversed to account for the possible synergistic 

relationships between them and the target variable. Doing so caused 

automatic insertion of links from MedianGS to TOC and Longitude and from 

Longitude to TOC. For the TAN model, reversing the links of the most 

influential variables was unnecessary. However, the link between MedianGS 

and Latitude was necessarily reversed to prevent cyclicity, which violates rules 

of BBN structure. 

 

Figure 8. In this NB prediction model, gray nodes indicate a finding has been 
entered for a particular map cell in the study area. For every cell, the model 
output is a probability distribution for the species node, Rhabdus rectius. This 
particular set of findings suggests a very high probability of habitat suitability. 
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Figure 9. In this TAN prediction model, gray nodes indicate a finding has been 
entered for a particular map cell in the study area. For every cell, the model 
output is a probability distribution for the species node, Rhabdus rectius. This 
particular set of findings suggests a very high probability of habitat suitability. 

Model validation and performance assessment 

Confusion matrices 

The results of the confusion matrix calculations are summarized (Table. 

7). As expected, species prevalence (P’) did not differ between models. Mean 

error rates were quite low for both the NB model (0.14 ± 0.08) and TAN model 

(0.08 ± 0.03) with considerable overlap (Figure 10).  Mean true-positive rates 

(Se) and variation decreased from 0.84 ± 0.15 in the NB model to 0.79 ± 0.12 

in the TAN model. Mean true-negative rates (Sp) increased from 0.86 in the 

NB model to 0.95 in the TAN model, while the variance decreased from ± 0.09 

to ± 0.01. FPR and FNR are inversely related to Se and Sp and as such, 

behaved accordingly. Ka statistics increased to 0.75 ± 0.10 in the TAN model 

from 0.63 ± 0.17 in the NB model.
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Table 7. The table shows values for each metric calculated with the confusion matrix. 
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Figure 10. Mean error rates and standard deviations are compared. Mean 
error rate is 14% and standard deviation 8% for the NB model. Mean error rate 
is 8% with a standard deviation of 3% for the TAN model. 

Receiver Operating Characteristic Curve 

For both model types and each training-testing set, ROC curves 

were plotted (Figure 6) and the respective AUC calculated (Table 4). 

NB model C and TAN models A, B and C all follow the Chance diagonal 

with AUC values of 50.0. In both ROC plots, the All curve represents 

the prediction model, which used the entire data set for training instead 

of partitions. The AUC for the NB All data model produced was 88.1 

while the TAN All data model produced an AUC of 95.1. 
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Spatial application of habitat suitability probability 

NB versus TAN models 

 The NB model produced posterior probabilities for the target, Rhabdus 

rectius, which ranged from approximately 0.37 to 0.93 (Figure 11). The highest 

probabilities were observed in southern habitats of finer grain size while the 

lowest probabilities were found in association with rocks. There was a marked 

increase in HSP with decreasing latitude over the study area. In the south, the 

range of HSP was from approximately 0.83 to 0.93 (range = 0.10) and in the 

north that spread was approximately 0.37 to 0.83 (range = 0.46). Thus, 

surficial geology appears to have a greater influence on the posterior 

probabilities in the northern latitude state. 
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Figure 11. The habitat suitability map spatially depicts posterior probabilities for the NB model. Probabilities range 
from approximately 0.37 to 0.93 with darker colors representing higher probabilities. 
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The TAN model produced posterior probabilities for the target, Rhabdus 

rectius, which ranged from 0.00 to approximately 0.97 (Figure 12). Again, a 

latitudinal influence is marked by a horizontal delineation in the map center. In 

general, HSPs were very high except for areas known to contain rocks. The 

TAN model expressed a very slight decrease (approximately 0.03) in HSP 

toward the southern portion when the sediment grain size was finest, while 

with HSP increased slightly (approximately 0.06) toward the southern portion 

when sediment grain size was coarser. Otherwise, there was a similar pattern 

of weak influence by grain size in the southern portion of the study area as 

with the NB model.  
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Figure 12. The habitat suitability map spatially depicts posterior probabilities for the TAN model. Probabilities range 
from approximately 0.00 to 0.97 with darker colors representing higher probabilities
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NB model temperature sensitivity test 

 This HSP difference map allows a visualization of the location and 

magnitude of the temperature sensitivity test (Figure 13). Between the two 

runs, possible HSP values varied as little as 0.01 to as much as 0.05 with the 

greatest changes occurring in the northern portion of the study area. The 

smallest change occurred in the southern portion of the study area where 

sediments were finest while the greatest change occurred over rock substrates 

in the northern portion. This sensitivity analysis revealed the same north 

versus south pattern of sediment influence.  
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Figure 13. HSP map showing the difference between the NB temperature-high and temperature low runs. 



44 

 

Confidence raster for TAN model 

 Confidence values for the TAN model range from approximately ± 0.01 

to ± 0.49 (Figure 14) A striking result is that the northern portion of the map 

contains both extremes in the range of confidence values. Predictions over 

sandy mud habitat to the north have high measures of confidence (± 0.96 ± 

0.18) while probabilities associated with rocky habitat show almost complete 

uncertainty (0.57 ± 0.49). We predicted, with great certainty, a suitability of 

approximately 0.00 ± 0.01over rocky substrate in the southern portion. In 

general, we observed a comparable decrease in confidence as posterior 

probabilities approached uncertainty (0.50). 
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Figure 14. The confidence raster shows one standard deviation for each posterior probability value. Values can 
range from 0.00 (high certainty) to 0.50 (complete uncertainty). 
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Discussion 

Modeling Approach 

A shifting paradigm 

 Most species distribution modeling techniques employ a null hypothesis 

testing approach when considering the relationships between the target 

variable and the predictor variables (Rushton et al., 2004). Predictor variables 

are accepted and included into the model if they decrease the model variance 

by a suitable amount or if the regression coefficient is significantly different 

than zero (Rushton et al., 2004). This forces the modeler to make decisions to 

include or exclude predictor variables based on levels of arbitrary statistical 

significance (Rushton et al., 2004). Burnham and Anderson (2002) question 

the value of the null-hypothesis testing approach to distribution modeling 

because, in experiments, the scientist has control over the target and predictor 

variables and randomization of the treatment and controls. Complete control is 

difficult in field experiments especially in the marine environment. 

Furthermore, the ability to compare the influence of predictor variables on the 

overall distribution of suitable habitat provides an interesting approach toward 

understanding the processes linking habitat suitability. 

 The use of Bayesian methods in this study differs from the traditional 

modeling approach in that all predictor variables were included regardless of 

the magnitude of their influence on the target variable. This allows for a more 

complete representation of the abiotic factors influencing species distribution 

and therefore habitat suitability. Additionally, sensitivity findings analyses do 

provide interesting insight toward understanding which predictor variables may 

contribute to overall suitability. Bayesian belief network methods differ from 

direct interpolation of species data using geostatistical methods, such as 

krigging, which limit the investigation of environmental correlates thus 
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preventing extrapolation over similar environments (Franklin, 2009). 

Additionally, the intuitive graphical interface of a BBN and rapid propagation of 

posterior probabilities facilitates exploring hypothetical scenarios of inference. 

Rapid inference is a very interesting strength of the BBN approach but the 

utility and value of any model depends on its intended use and the 

performance should be assessed accordingly. 

Interpretation of HSP maps  

When interpreting the results of this modeling process, it is essential to 

understand that our learning data set was collected over a regional scale but 

the HSP maps provided are on a local scale. The local scale HSP maps 

essentially represent ‘postage stamp’ within a regional prediction model. For 

this reason is difficult to immediately appreciate the predictive capacity of 

these models. 

Ecological realism and the origin of prediction error 

The best model is usually the one with the lowest error rate. When 

considering relative performance, we must consider both accuracy and cost. 

Fielding and Bell (1997) recommend exercising caution when making 

statements about model accuracy. The statement of model error should justify 

the choice of error measure. In other words, the intended use of model 

predictions will determine which performance metrics are most informative. 

Almost all errors are either algorithmic or biotic in nature (Fielding and Bell, 

1997). Algorithmic errors are limitations imposed by the classification algorithm 

and data collection processes. Biotic errors force us to consider the ecological 

context of predictions. 
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Algorithmic errors 

Performance 

Data partitioning and testing with independent data is a robust method 

for model performance assessment. However, the data partitioning method 

can influence error rates. Dual partitioning (K=2) is the simplest method but 

the accuracy assessment is highly dependent on data contained within a 

single partition, especially with very small data sets. Our small data set, when 

partitioned, leaves just enough training and testing data to derive meaningful 

performance assessment results. Both confusion matrices exhibit the effects 

of partitioning, although much more noticeably for data sets B and D of the NB 

model (Table 7). Data set B has the highest overall prediction error rate (0.26) 

and lowest Ka statistic (0.42) of all models while data set D is the opposite 

with a 0.04 error rate and 0.88 Ka statistic. Small training partitions can reduce 

accuracy whereas larger testing partitions reduce the variance of error. Thus, 

there are trade-offs between developing an accurate classification rule and 

sufficiently assessing model performance. 

The effects of partitioning can be seen again by examining the ROC 

curves and AUC values. Testing partitions contained insufficient data for 

Netica® to determine cutoff divisions, which explains the Chance results.  

While it is true that the All models likely overestimate model performance, it is 

revealing of the partitioning and data set size effects. Perhaps an average of 

models A-D including the All model will provide a closer estimate.  

The true-positive (Se) and true-negative (Sp) rates for both models 

suggest the models are making accurate and balanced predictions, especially 

the NB model. FPR (0.14) and FNR (0.16) are similarly low and balanced in 

the NB model indicating non-discrimination between error types. The TAN 

model appears quite good at predicting species absence with a high true-
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negative rate of 0.95, which suggests that low P’ may be affecting the model 

performance. For example, if this model’s intended use was for conservation 

of Rhabdus rectius, we would require a reduced FNR relative to FPR. We 

could tolerate incorrectly predicting true habitat suitability whereas incorrectly 

predicting habitat as unsuitable would be more harmful.  

The Ka statistic is less affected by low P’ . For the NB model, a Ka of 

0.63 suggests a quality of agreement ranging from good to substantial while 

the TAN model exhibits excellent or substantial quality of agreement (Ka = 

0.75).  

Revisiting the ROC curves and AUC values, we can make additional 

assessments of model performance that are less affected by P’ and 

thresholds. Measures derived from confusion matrices assume that both error 

types are equivalent (Fielding and Bell, 1997). It is possible to alter the 

thresholds to mimic the costs associated with error types, if desired. The ROC 

values are obtained by applying a 0.5 threshold value to the continuous output 

variable that lies in the interval [0,1]. If the threshold is changed, the values of 

the confusion matrix will change (Fielding and Bell, 1997). Since these models 

assume 50-50 threshold values, information contained in the ROC curves 

should be relatively straightforward. The AUC value of 77.5 for the NB model 

means that 77.5% of the time a prediction is better than chance (Deleo, 1993). 

Sampling design 

Two examples illustrate the scenario where suitable habitats have been 

inadequately sampled. The most obvious example is the spatial limitation of 

our sampling design. This study adopted a sampling design targeting areas on 

the continental shelf considered suitable for wave device placement rather 

than adopting a sampling design that targeted a more realistic potential range 

of benthic invertebrates. For example, Scaphopods are known to exist to 
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depths well beyond what is suitable for current technological constraints of 

anchored wave devices. Sampling should be to the scale appropriate for the 

ecological processes thought to determine species distribution (Rushton et al., 

2004). Rhabdus rectius are very small organisms, and once recruited could 

not travel great distances on their own. It is unlikely that most infaunal species 

move great distances about the landscape, or move at rates that would cause 

difficulty in sampling, however they may form clusters that our sampling design 

may have missed. Cluster detection and analyses should be performed and/or 

accounted for in the belief network.  

Collecting instantaneous measurements of environmental variables is a 

major source leading to less well-defined links between variables (Almeddine, 

et al., 2011) and a possible source of error. Marine environmental data is 

inherently variable, especially the ephemeral characteristics of the overlying 

water column. Marine sediments and water properties change on different time 

scales over the study area and this presents a challenge for developing model 

parameters. One solution is to perform robust multivariate outlier detection to 

identify and minimize the impact of outliers (Alameddine, et al., 2010). 

However, variables describing water properties had little influence on Rhabdus 

rectius yet those variables change more ephemerally than do sediment 

variables. Sediment variables do change but are relatively more stable, 

especially at most of the depths surveyed for this project. So, in this particular 

study, this may be a smaller source of error than in other studies. 

Limitations of habitat classification 

When using the SGH surrogate for MedianGS, the issue of SGH 

misclassification arises immediately. The issue is about the degree of certainty 

that the classified habitat is actually that habitat. A few examples illustrate the 

issue clearly.  
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The first example of SGH classification error is the simplest to consider. 

Sediment samples are processed for grain size distribution which is numeric 

value on a continuum. A grain size value does not hold as much value as a 

sediment type or class for most mapping purposes. At some point the grain 

size value has to be translated into classes by rules we define. For the 

purposes of habitat suitability prediction requiring grain size, consider making 

grain size distribution maps instead of cross-walking from grain size to a class 

then back to grain size. This circuitous technique certainly loses information 

along the way and propagates uncertainty. These maps could be updated 

periodically and perhaps used for other purposes. Another solution is to add 

the sediment classes to the original data set used for learning. This would not 

change the uncertainty accrued during the classification stage but would 

prevent the need for a surrogate node during modeling. 

Another error begins during multi-beam data acquisition and 

processing. Sounding artifacts are detectable along the nadir beam tracks and 

areas where soundings are sparse. In essence, these artifacts introduce ‘hot’ 

soundings (representative of highly reflective substrate, such as rock) that are 

nearly impossible to remove. The ‘hot’ soundings propagate through the 

mapping process and are misclassified because they imitate more reflective 

substrate. Artifacts are somewhat smoothed out during GIS mapping but not 

entirely. The next example is due to the fact that rock mapping methods are 

semi-quantitative requiring a considerable amount of expert supervision 

(Appendix A). Some rocky areas may be over-represented and vice versa. 

The result is an imperfect account of accuracy. 

Very few circumstances would permit a benthic infaunal organism, such 

as Rhabdus rectius, to inhabit rock substrates. One exception is when the rock 

substrate is buried in a layer of sediment that is otherwise suitable for the 

burrowing organism. Contemporary SGH mapping techniques cannot 
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differentiate between rock substrates with and without a soft sediment surficial 

layer, at least not in a cost-effective way on a regional scale. Thus, modified 

rock substrates may be misclassified as purely rock. While these imperfections 

in the SGH mapping process are noted, the total area misclassified is 

minuscule relative to the prediction scale and has a negligible effect on 

regional habitat suitability prediction. 

Biotic errors 

Species niche concept 

The Hutchinsonian species niche is defined as the environmental 

dimensions within which that species can survive and reproduce. Furthermore, 

the realized ecological niche is defined as a subset of the fundamental 

physiological niche, where biotic factors are excluded. Territory size is 

probably not fixed for a species but varies with the individual. In this study, we 

are less concerned with the variance of an individuals’ range (very small scale 

for infauna) rather we are more interested in the utilized niche on a regional 

scale. We could consider the global range (fundamental niche) of the species, 

or Scaphopoda for that matter, but the result would likely indicate that our 

entire region is highly suitable. This provides little use for a regional spatial 

planning initiative. Rather, we accept that the region of the world is highly 

suitable but consider how habitat suitability varies within the region.  

Biotic errors represent “unaccounted for ecologically relevant 

processes” (Fielding and Bell, 1997) such as unsaturated habitat, biotic 

interactions and latent variables influencing species occurrence. For example, 

a benthic infaunal species may not occupy all suitable habitats because the 

species has not yet reached equilibrium with the environment. This scenario is 

an example of unsaturated habitat.  
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Organisms may be in their current positions because of past events 

rather than current events (Fielding and Bell, 1997). For example, the 

continental shelf submarine environment has experienced significant 

geological change since the last glacial maximum. An advancing coastline 

leaves in its wake a shallow sea of altered surficial geology, increased seafloor 

surface area and exposure to dynamic currents. These historical events 

influence the distribution of potential habitat and dispersal of benthic 

organisms.    

Benthic species are not only influenced by the physical seafloor 

characteristics but by the water column properties and movement above them. 

The whim of ocean currents subject many benthic organisms to an uncertain 

fate during early life ontogeny. Larval dispersal and recruitment success raises 

the issue of the role of population dynamics. Some habitats may be sources of 

larvae for dispersal whereas other habitats may be sinks for dispersed larval 

organisms. Although areas of the ocean may appear to be suitable because 

we observed species there, they may in fact be unsuitable sink habitats where 

metapopulations are slowly shrinking. 

Furthermore, species interactions such as predation by ratfish, noted 

earlier, could further contort model performance and prediction interpretations. 

A species will not have unconstrained habitat selection and therefore exist 

within an ecological ‘bubble’ influencing their preferences. Failure to 

incorporate these considerations into prediction models can influence the 

value of such models. While some of these issues would be difficult to 

incorporate within a predictive model, the models that do are more ecologically 

meaningful (Rushton et al., 2004) and perhaps more useful.  
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Spatial context of errors 

Previous model performance metrics do not account for spatial context 

of errors. Two different models can create identical errors but produce different 

prediction maps. Spatial autocorrelation is an issue rarely accounted for in 

predictive model and any efforts to address these issues should benefit the 

understanding of the predictive utility.   

Future action 

Model modifications and validation 

Independent testing 

 The simplest way to assess any model is to compare model predictions 

with observed data (Rushton et al., 2004). At each available opportunity, effort 

should be made to go to a new area within the model bounds and repeat the 

sampling methods. Ideally, the area should be mapped with multi-beam sonar. 

Using this combined data, create surficial geologic habitat maps. For BBN 

testing purposes, make predictions at the new site with the existing model(s) 

and compare with the organism occurrences found there.  

Update the knowledge base 

Once the test has been completed, the new data that was gathered 

should be used in an exercise of updating the knowledge base. Rather than 

repeating the modeling process with the new data set appended to the old, 

one should incorporate the new cases into the existing model to update the 

conditional probability tables. Of course, one could rebuild the models from 

scratch if warranted. For example, if the new data is outside of the existing 

model bounds, the modeling process should be repeated. One should then 

compare model parameters, performance measures and spatial predictions. 
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Avoid proximal variables  

Examination of the TAN HSP and confidence rasters (Figure 12 and 

Figure 14) begs the question, “What is it about latitude that causes the large 

difference in posterior probabilities and confidence for rocky substrates?” The 

answer begins with our definition of rocky substrate. Unlike the all other SGH 

classes, we have defined rocky substrate as known with complete certainty 

(i.e we are absolutely certain our classification of rocks is accurate). However, 

as noted in the Limitations of habitat classification section and Appendix A, 

use of a discrete SGH classifier as a surrogate for a continuous grain size 

variable introduces a different form of uncertainty. 

 Since the SGH variable was not used in the learning process, 

decisions had to be made regarding its placement in the model structure and 

parameterization (see Appendix A). The largest grain size state in the 

MedianGS node is 211.5 µm (fine sand) to 578.5 µm (coarse sand). We know 

that rock does not belong in this MedianGS state but, in an effort to facilitate 

initial model development, we did not create an additional state for rocky 

substrate. Thus, the model views rocky substrate as sand, which increases the 

probability of observing Rhabdus rectius, even though we have never sampled 

rocky substrate. This is why we see posterior probabilities of 0.57 ± 0.49 over 

rocky substrate in the northern latitude state. Conversely, we observe 

probabilities 0.00 ± 0.01 over rocky substrates in the southern latitude state 

because Rhabdus rectius was never observed in grain sizes greater than 

211.5 µm south of 43.57 N. 

There are several solutions to this kind of problem but the best solution 

for the foreseeable future is to create a grain size distribution map for the 

region. This would eliminate the need for the SGH proxy thus improving 

accuracy and confidence and greatly simplifying the model. 
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Hypothesis generation 

Sensitivity 

A great strength of BBN modeling is the ability to incorporate disparate data 

types and make inferences about uncertain or unknown relationships between 

variables. One could collect or synthesize empirical data, expert opinion 

and/or theory, build it into the model and make inferences. For example, one 

of these models above could be modified to include a Predation node whose 

influence on Rhabdus rectius is theoretically negative. The magnitude of this 

negativity is questionable, but playing out ‘what-if’ scenarios allows sensitivity 

exploration. Sensitivity testing can be thought of as an assessment of the 

influence an environmental variable has on the target species. This can be a 

very useful tool for exploring other relationships as well. The NB model 

temperature sensitivity test was an attempt to illustrate this approach.  

 Temperature seemed to be an appropriate candidate for an additional 

uncertainty test where we could simulate a ‘warming’ trend, in the context of 

climate change. The sensitivities to changes in temperature were not huge yet 

they were noticeable and may reveal more if mapped over the regional scale. 

In hindsight, we should have considered using a different variable or 

introducing another, such as a theoretical biotic interaction, because not only 

did the ‘built-in’ Netica® sensitivity testing reveal Temperature had little effect 

on the target, but it also exhibited a bimodal response curve. This probably 

further disguised the sensitivity. Nevertheless, studying the sensitivities and 

responses to perturbation in model findings can perhaps shed light on old 

problems and inspire new questions. 



57 

 

Probabilistic Inference 

Although we are immediately concerned with the species variable 

output, we may be interested in the results at other nodes. An immediately 

intuitive way to investigate inference is to force the target variable to a 

maximum and examine how the predictor variable curves behave (Figure 15). 

This exercise essentially reveals the organism’s preferences for the predictor 

variables. Examining the response curves for cases where Rhabdus rectius 

was present (True) shows unimodal distributions for all predictor variables. 

One exception, which is true for both model types, is the bimodal distribution 

for the temperature variable.  
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Figure 15. Both models were forced to show the prior distributions for cases 
where the target species, Rhabdus rectius, was present. The resulting curves 
can be thought of as the target’s preferences for the environmental variables 
or the abiotic conditions necessary for target occurrence. 

Model integration with developing marine spatial planning tools 

This study serves as stepping stone toward the development of a 

holistic marine spatial planning decision-support tool called Bayesian Analysis 

for Spatial Siting (BASS). At the time of this writing, the status of BASS is 

nascent, however it holds promise to be one of the most unique approaches to 

management of marine resources. The methods described here can be used 

in isolation and may add value when used in conjunction with tools such as 
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BASS, which incorporates and combines many models like the ones 

presented here with stakeholder input. This approach of merging science with 

qualitative, values-based information is a novel approach to making decisions. 

Furthermore, the decision-making power of BASS should increase as 

individual models are created, updated and refined. 
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Appendix A. The classification and incorporation of grain size values  

Surficial geologic habitat classification 

  The Oregon state waters mapping effort made significant progress 

toward improving the quantity and quality of environmental data available for 

predictive mapping, specifically through collection of high-resolution multi-

beam sonar data and classification of surficial geologic habitat (SGH). State 

waters SGH mapping techniques combined high-resolution multi-beam sonar 

information with grain size analyses to characterize surficial geology. The 

result was a conversion from observed numerical grain size values to a 

classified surficial geologic habitat (SGH). We employed these methods 

similarly with the following modifications. 

The SGH map created for this study is an eight-meter resolution raster 

(Figure 1). We used median rather than mean grain size values for our 

maximum likelihood habitat classification. Every raster cell received a positive 

integer ‘gridcode’ representative of the particular SGH class found there. The 

gridcode value of zero was reserved for the rock habitat class. Bathymetry and 

backscatter rasters were examined to roughly determine where rocks exist. A 

rugostiy raster was created then compared with bathymetry and backscatter 

and reclassified to account for rocks. Rocks were reclassified as zeros while 

everything else received a value of one. This new raster was multiplied by the 

original SGH raster resulting in a new SGH raster including rocks. 
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Figure 1. The map shows surficial geologic habitat (SGH) types found in the study area. Box core samples were 
processed for environmental variables, species density (1/10 m2), and used in model construction. Shipek grab 
samples were processed for sediment grain size distribution. All samples were used to create the SGH map. 
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Habitat as grain size surrogate 

 SGH data is available regionally, although the quality varies. Ideally, 

SGH is determined through rigorous seafloor sampling and grain size 

analyses because it will produce the most detailed and accurate maps. 

Unfortunately, grain size analyses are patchy on a regional scale. In general, 

sediment properties are thought to play a major role in the distribution of 

benthic infauna. Therefore, it was necessary to find an acceptable surrogate 

for median grain size (MGS) if we are to later make useful predictions on a 

regional scale. 

MGS is determined by analyzing the grain size distribution of a seafloor 

sediment sample.  Since grain size information is used to most accurately 

classify SGH, it was a reasonable solution to let SGH serve as a surrogate for 

MGS. 

Gridcode node 

The surrogate node, Gridcode, represents all possible SGHs identified 

in the Oregon state waters mapping project (Figure 2). This node was 

introduced simply to allow the model to accept SGH as an input. Linking the 

two nodes together required populating a conditional probability table (CPT) 

for the child node. Recall, the CPT is a numerical table quantifying the unique 

possible combinations between linked variables. Populating the CPT required 

identifying within which MedianGS state a given SGH finding would fall when 

entered into the model. MedianGS and SGH both are representations of the 

grain size continuum; however the bin widths are determined differently. 
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Figure 2. The Gridcode node represents the surficial geologic habitat (SGH) 
classes possible to date as defined by the Oregon state waters mapping 
project. SGH is a surrogate for MedianGS. 

Gridcode classes are defined by how grain size characteristics align 

with the habitat classification scheme. For a thorough description of SGH 

characterization see the Oregon state waters mapping report (Goldfinger, et 

al., in-press). Recall that discretization divided the MGS node states into bins 

with approximately equal cases. These learned states did not align with 

sediment class breaks along the grain size continuum so the overlap between 

MGS and SGH needed to be determined. 

For a given SGH finding entered into the model, within which MGS 

state(s) will it fall? For a sample to earn an SGH class of ‘Gravel’, 90 percent 

of the grain size distribution has to contain particles greater than 2000 μm. By 

definition, the remaining ten percent of sample has an equal chance of falling 

within SGH classes smaller than 2000 μm. The remaining ten percent was 

divided between classes accordingly (Figure 3). The percentages were 

summed and entered into the CPT (Table 1). 
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Figure 3. The grain size continuum showing the gravel SGH classification scheme with MedianGS node state 
widths overlay. Percentages within MedianGS node states were summed to determine the probability of the gravel 
falling within a given MedianGS state when gravel is entered as a Gridcode node finding. This diagram is not to 
scale. 
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Table 1. The table shows the possible unique combinations for both nodes. 
Probabilities are calculated by summing the bin percentages described in 
Figure 3. 



 

 

 


