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The concept of a process is often used in connection with opera-

tions of parts of a computer system. This thesis discusses processes

in terms of their use as representations of a physical object or sys-

tem. Five primitives are introduced as operators for allowing process-

es to be run in a piecemeal fashion. A function package is presented

which supplements UCI LISP and allows the user to define LISP func-

tions as processes which (conceptually) run in parallel. The process

functions are presented as a package which supplements the LISP system.

The functions SUSPEND, RESUME and TERMINATE allow the user to tempor-

arily stop the execution of an instance, continue the execution of an

instance, or destroy an instance of a process, respectively. The

ACCESS function allows one instance to look up variable values local

to another instance. The START function is used as a process control-

ler and begins the execution of the processes. Two illustrations of

the function package are given. The first example, a growth model of

a stand of grand fir trees, has been implemented and illustrates



parallel processing in a numerical simulation environment. The second

example is the Lee algorithm for finding the shortest path through a

directed weighted graph. This example has not been implemented, but

is discussed as an example of parallel processing in a symbolic compu-

tational environment.
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An Implementation of a Parallel
Processing Package in LISP

I. SCOPE AND PURPOSE OF RESEARCH

The function package which is presented here is intended as a

beginning at the development of a general purpose parallel processing

package for LISP. A package called PLISP is being implemented at

Stanford as of this writing, but work is still being done on it. The

intent of PLISP is to implement parallel processing in a semantic

analysis environment.
(8)

Many of the concepts which are being pre-

sented here are adaptations of those ideas used in SIMULA. Many more

ideas are contained in SIMULA which are not implemented in the package,

but these can easily be added by the programmer who writes the code

for the processes. Although the functions and programming suggestions

to be presented are not elegant and complex, they do represent a start-

ing point from which a parallel processing simulator can be developed

in LISP. The functions given in Appendix A are a workable set of

functions and do much of the work necessary for a parallel processing

simulator.
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II. INTRODUCTION

In physical systems which have observable characteristics, com-

ponent parts of the system often operate in parallel. Alternatively,

the different parts of a system operate simultaneously to produce some

effect. Breaking the system down into its component parts, these parts

can be thought of as individual processes, each interacting with other

processes and producing some result, either directly observable or not

directly observable. It is these processes which operate in parallel

which will be dealt with.

In implementing a parallel processing package, it is important to

note that strict parallelism is not possible on a single processor

machine. Thus, a simulator is necessary. It is worth noting that in

the early days of the computer, programming was done in machine lan-

guage and was slow and tedious. Programs which were written were

usually mathematical in nature and were highly machine dependent.

With the advent of assemblers, the programmer was able to get away

from using machine addresses for variables and at the same time use a

mnemonic code for the operation code of the instruction. Although

this simplified matters slightly, programming was still slow, and

one program instruction corresponded to one machine instruction.

When compilers appeared, the programmer was freed from having to do

much of the bookwork in programming. For the first time, programs

became more problem oriented than machine oriented, and compilers

generated many machine instructions for each program instruction.

However, even with compilers taking away much of the drudgery from
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writing programs, many physical systems were simulated in terms of

mathematical models. That is, the relationships between the parts of

a system could be expressed mathematically and these expressions could

be evaluated with respect to a discrete increasing time variable to

find the state of a system at any particular time. With parallel pro-

cessing, the program becomes oriented more toward the system. Blocks

of code are written which represent all of the desired characteristics

of the particular part of the system, and these blocks of code are exe-

cuted in parallel with other blocks of code which represent other parts

of the system. Thus, parallel processing brings the program one step

further away from machine dependence and one step closer to the struc-

ture of the physical system itself.

The function package which will be presented here has been imple-

mented on the PDP-10 computer of the University of Oregon using UCI LISP.



4

Aspects of Parallel Processing: Processes

A process as considered in this paper will consist of a formaliza-

tion of an independent computation. It is a set of instructions which

is carried out by a machine without regard to any other concurrently

executing set of instructions. Formally, a process consists of a state

variable set X, a state, a state space, a computation, an action, and

an action function. The state variable set X is an indexed set and is

possibly infinite. The state is an assignment of values to all ele-

ments of the state variable set. The state space, then consists of

the set of values which each state can assume. A computation is a

sequence of states from the state space. The action is the assignment

of values to the state variables, and the action function maps states

into actions. If the action function is given an initial state, a

computation can be generated.
(1,9)

In the context of a computer, the memory itself can be thought of

as being the state variable set. The state space would then be the

set of all values which each word in memory could contain. The compu-

tation consists of a sequence of states from the state space, where

each state is the contents of memory. The action function is the pro-

gram which is being executed, and the action is the execution of the

program itself. The process P is defined as an ordered triplet;

P = (S, A, I)

where S is the state space, A is the action function, and I is the

initial state.

Although the single process has a great many applications, the
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use of this kind of programming structure forces the programmer to

consider the interactions between parts of a system rather than the

individual natures of the parts of the system themselves. It is per-

haps more useful to consider a programming structure which allows the

user to construct a program in terms of the characteristics of the

system's parts rather than strict interaction between parts. Using

this structure, the programmer must concentrate on defining the system

components as acting entities in themselves rather than as relation-

ships between system parts. Defined as an individual entity, a com-

ponent has more of a capacity to act in the model of the system. As a

model of either a physical or conceptual system, it should reflect that

other parts of the system are acting both in concert and simultaneously.

Continuing this analogy between the system and its representation, it

follows that the execution of these processes which represent component

parts of the system should be simultaneous. This leads to the idea of

parallel processing.
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Aspects of Parallel Processing: Parallel Processes

The simultaneous execution of two or more processes will be called

parallel processing. In many situations, it is desirable to have inter-

action between processes to direct the execution of the processes them-

selves. This interaction may occur at specific points during execution,

but the process will perform much of its work in isolation. Interac-

tion between processes is achieved by allowing the executing process

to access specific memory cells local to other processes for the

retrieval of information. These memory cells are not global in the

sense that they are immediately accessable to each process; they must

be sought out by the executing process. Once needed information is

retrieved, execution in isolation is resumed.

In examining a situation in which more than one object acts, it

is often useful to consider each object individually. Each object

has characteristics which are of interest to the programmer, and can

be represented in a computer program. For example, in a simple preda-

tor/prey system, both of the species are living animals, and the two

species interact. The predator eats the prey as its primary food.

The predator's population grows, and the prey's number diminishes.

When the number of prey is no longer sufficient to sustain life, the

population of predators diminishes. When the predator's population

diminishes, the prey can increase in number and the cycle begins

again.

Each of the species exists at the same time and lives in the

same physical space. In that respect, they resemble interacting pro-
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cesses which execute simultaneously. Thus, each of the species, pre-

dator and prey, can be simulated with processes both executing

simultaneously and interacting with each other. Hence, this simple

system lends itself well to parallel processing.

Another kind of parallel processing application is found in a

computer operating system. Large computer systems often use data

channels which function as minicomputers to perform the functions of

input and output. Although the data channel gives information to and

receives information from the central processing unit (CPU), it per-

forms its functions independent of the CPU. Thus, the CPU may be

executing a user program while the data channel is executing an input/

output operation. Although this system can be simulated through

parallel processing, it is important to note that two processors are

functioning, and are, therefore, actually operating in parallel. Two

distinct processors perform their functions simultaneously rather than

being simulated by a body of code running on a single processor. In

analyzing a computer system, the two processors are represented as

distinct processes; their operation is often used as a classical exam-

ple of simultaneous execution. (1)

A third example is that of the Lee algorithm for finding the

shortest path through a directed network.
(2)

The algorithm starts by

sending a simulated pulse through each directed edge of the graph from

the start node (source node). The pulse moves some distance at each

simulated time step. As each pulse reaches a new node, new pulses

are initiated from the new node along each directed edge adjacent to

it. Eventually, some pulse will reach the end node, and at that point,
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the path taken to reach the end node (sink node) can be traced. Using

a single process, only one pulse can be moved at a time step, but if

parallel processing is used, each pulse in the graph is moved the same

distance before the next time step is reached.
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Simulation of Parallel Processes

For two or more processes to run in parallel, it is necessary for

these processes to be executing on two different processors. In prac-

tice, however, it is extremely rare that this happens, particularly in

a modelling situation. Processes which are conceptually executed in

parallel must generally be implemented on a single processor. When

this happens, the result is not parallel processing, but quasi-parallel

processing, and requires a simulation of its own. The idea of quasi-

parallel processing will be referred to as parallel processing and is

discussed in the next section.

A simulation is an imitative representation and in many systems

utilizes a discretely increasing time variable. In many instances, the

time variable, which is an integral part of the system, is held con-

stant while all necessary computations are carried out. In a heir-

archical program structure containing a calling program and sub-pro-

grams, conceptual parallelism may be easily achieved in this way. The

calling program holds the value of time constant while all needed sub-

programs are executed.

In a parallel processing environment, the same idea of holding the

value of time constant during computations of subprograms is the same,

but there is no heirarchical structure to the program. For example,

in one situation, process A may be suspended while process B executes

to completion. In another situation, this arrangement may be reversed

and the one-time "calling process" becomes the "called process." The

structure of the execution of processes may not be predictable, but
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the idea of completing necessary computations within a simulated time

interval still holds.

If a system of gears is being examined, the system is represented

physically as a series of objects which are interconnected. The rota-

tion of the driving gear x degrees causes the rotation of an attached

gear y degrees, and so on. In the physical system, the rotations occur

simultaneously. This is simulated by defining processes which represent

gears and executing them in parallel. In actually running the process-

es, the driving gear is rotated x degrees independent of any of the

other gears. The attached gear is rotated y degrees where y is a

function of x, and all of the other gears in the system are rotated

similarly. This is done before any time variable in the system is

updated. (3)

Parallel processing also has applications other than simulation

involving a time variable. An example of a non-simulation application

would be an English sentence parser. A process could be programmed

which would find all possible parse trees for the subject of a sentence,

and another process could be programmed for finding all parse trees for

the predicate of the same sentence. These two processes would execute

in parallel to produce all possible parsings of a sentence. In this

application, a time variable is not considered since the processes are

designed to perform a task rather than simulate the characteristics of

an object.

An example of this kind of process is seen in the parsing of the

sentence "The ball and the box are both blue." The subject parser will

receive the phrase "The ball and the box" while the predicate parser
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will receive the words "both blue." The subject parser will begin by

constructing a tree for the words "The ball." While this is happening,

the predicate parser will recognize "blue" as an adjective. Upon

recognizing the word "both", it must make information available to

the subject parser to construct a tree for a compound subject.

Three of the most widely used simulation languages, GPSS,

SIMSCRIPT, and SIMULA use the idea of representing objects in a system

as subroutines or blocks of code. Although all three do not contain

parallel processing simulators, they each represent a simulated system

as a collection of interacting objects. (15)

SIMULA is a simulation language which contains a function package

for the simulation of parallel processing. The language has a block

structure and is quite similar to ALGOL in appearance. The blocks

which are defined in a SIMULA program are executed as processes in a

manner which is discussed in the next section. The language itself

contains many features which strongly influenced the development of the

function package which will be presented. Most notably, the idea of

breaking a process up into small pieces is used in the LISP function

package. The idea of centralizing the storage areas and defining one

process to represent a class of objects are ideas which also come from

SIMULA.

In SIMULA the concept of an event notice is used to bind together

blocks of code with variables which refer to specific instances of that

object which is represented by the code.
(3,6)

The event notice con-

sists of an entry in the system process scheduler which contains a

pointer to a block of code for the process, a pointer to a data struc-
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ture containing variable values local to the process code, and a unique

name. The name is used to refer to the instance of the process.

SIMULA allows the user to define a block of code to be used for

the representation of a generalized object. This same block of code

is used to represent every specific object within the same class.

Unique instances of that object are distinguished using unique names

called reference variables, and the local variable values. For example,

consider a process VEHICLE containing the local variable NUMBEROFSEATS.

One instance of VEHICLE might have "BUS" as the value of its reference

variable and the corresponding value of NUMBEROFSEATS equal to 40.

Another instance of VEHICLE could have "SPORTSCAR" as the value of its

reference value with NUMBEROFSEATS having the value two. In this way,

one block of code can represent a variety of objects. This idea has

been exploited in the function package to be presented here.

Each process body may have a number of reference variables associ-

ated with it. By convention, the reference variable in SIMULA is used

to access the particular instance of a process. When a process is

referenced through the reference variable, it has the appearance of

defining a specific, unique object rather than a class of objects. This

convention also eliminates the problem of referencing a process and

finding that unwanted variable values are bound to the local variables.

Referencing a process by starting or resuming its execution causes

local variable values associated with the reference variable to be

bound to the local variables of the process.

SIMULA also allows the accessing of variable values which are

local to process instances other than the one currently executing.
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Associating the local variable values with a reference variable simpli-

fies the problem of finding the proper instance of the process and the

proper value of the desired variable.

Each instance of a process may be in one of four possible states

active, passive, suspended, and terminated. If the process is currently

executing, it is in the active state. This means that an event notice

has been constructed for it, and its execution has been initiated. An

instance which is in the passive state has had an event notice construc-

ted for it, but its execution has not yet begun. An instance which is

in the suspended state has an event notice associated with it, and is

"partially executed." The execution of the instance has been started,

and has been stopped before the instance has run to completion. At the

time of suspension, the variable values local to the instance are stored

to facilitate the resumption of the instance's execution. An instance

which is in the terminated state is one which has been run to comple-

tion. The termination of an instance causes the removal of the event

notice from the scheduler. Following termination, the instance cannot

be resumed, and variable values which were local to it cannot be acces-

sed any longer.

These four states define the possible phases of execution of an

instance of a process. Instances which are in the active, passive or

suspended state have variable values associated with them which may be

accessed by the active instance. These states of execution arise from

the structure of the parallel processing simulator as presented in the

next section.
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III. IMPLEMENTATION

Extension of Coroutine Structure
in a Parallel Processing Simulator

Since true parallel processing cannot occur on a single CPU

machine, a method of processing must be set up which simulates parallel

processing on a single processor. To do this, the set of processes to

be run in parallel are defined as under a control structure similar to

that of coroutines. Coroutines are executed in a piecemeal fashion,

shifting control back and forth between each other. For example, given

two coroutines A and B, A will begin its run first (see Fig. 1) and

execute until point Al is reached. Then it will jump to B, and B

will execute until point Bl. When B reaches Bl, it will jump back to

routine A, and resume execution from where A left off; point A2 which

immediately follows Al. This process of trading control between the

two routines during execution is a fundamental idea in the implementa-

tion of parallel processing. A process P is executed to a certain

point Pl, at which point execution is temporarily suspended. Depend-

ing upon the programming situation, a new process may be started, an

already suspended process may resume execution, or a process may be

terminated. Thus, four primitives of parallel processing emerge:

START, SUSPEND, RESUME, and TERMINATE. In modeling a real-world situa-

tion, the parts of the system interact, so in a simulation situation,

processes interact. Therefore, each process must have the capability

of accessing any variable which is local to another process instance.

This gives rise to a fifth primitive, ACCESS which allows variable
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values to be retrieved from other instances.

Extending this same idea to include more than one routine, con-

sider four processes which are to execute in parallel. One of the

routines will begin its execution first, say A (see Fig. 2). A will

execute to some point Al, at which time the SUSPEND primitive will be

used to save the local environment. Execution will begin for some

other process, C, which will execute to point Cl. SUSPEND will then

be needed again for saving the environment local to process C. The

control will similarly pass to process D, which will execute in the

same manner. Once point Dl is reached, however, control may pass back

to process A which will continue its execution at point A2, which

immediately follows point Al in the process. Process A runs to com-

pletion, and terminates. Control then passes from the terminated A

process. Let B begin its execution. B executes to some point Bl,

and is suspended. B will then pass control to D, which executes to

termination. C is then resumed from point C2 and executed to termina-

tion. The only process, which has not been run to execution is B, which

is then resumed and executed to conclude the run. It should be noted

that the processes in this example may in fact be four distinct pro-

cesses, four instances of the same process, or any combination of

distinct processes and instances of the same process.
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Figure 1. Flow of control of two coroutines

Figure 2. Hypothetical flow of control among four processes
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The Function Package

The concept which is perhaps most basic to the implementation of

the function package is the breaking up of control among the executing

instances. Each process will begin execution, execute to some point,

and relinquish control to another process, only to be resumed at a

later time.

Functions are therefore needed for performing the necessary opera-

tions of beginning execution at some arbitrary point in the process.

The START and RESUME functions perform these operations. SUSPEND is

needed for stopping the execution of a process and storing the execu-

tion environment before it has run to completion. A place is needed

in which these environments can be stored - the REFLIST. Once an

instance has executed to completion, it is no longer needed. The

TERMINATE function removes the instance from the run. In many cases,

it is desirable to allow instances to interact. This is done by allow-

ing the currently executing process to access variables local to another

instance. The ACCESS function is used to look-up variable values

associated with other instances. These functions, START, RESUME,

SUSPEND, TERMINATE, and ACCESS are the five primitive functions of the

function package, and perform operations analogous to the primitives

given in the previous section. The name REFLIST refers to a data

structure which contains information from all instances in the run.

The environment of two coroutines is one in which all variables

used by either routine are global. The coroutines are structured to

execute in a completely predictable way. Since this is not necessarily
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the case for a set of parallel processes. The execution environment of

the processes is quite different. The same variable may have different

values depending upon what instance of a process it is associated with.

Each "variable" may then have many values, one for each process

instance in which it occurs. Each of these values is local to the

process, although it may be accessed externally if desired.

Control of the processes may be unpredictable. The scheduling of

the processes may be set up initially, but the processes may reschedule

each other. Instances may even be terminated, and their execution

deleted. Thus, although coroutines and processes use a similar mechan-

ism for execution, they have basic differences which preclude defining

processes as an extension of coroutines.
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Considerations in Implementation

There are space limitations which must be considered in imple-

menting a package. In using a program to describe a physical system,

each object in the system could have its own process definition. How-

ever, when a substantial number of objects is to be considered, there

seems to be no need for storing many copies of the same code. Rather

than keep a copy of the process code for each object, each object is

given a name, and a process is associated with that name. This name is

called a reference variable and refers to a specific instance of the

process. This reduces the storage requirement within the machine by

representing similar or identical objects by the same code.

One reason for keeping a copy of the process code is the conve-

nience of storing the local variables as seen from the programmer's

point of view. Each process has its own local storage area where

variable values are kept. However, it is not necessary to keep many

copies of the process code when only the variable values distinguish

between instances. The variable names and values may be kept in a

list and associated with a reference variable. This makes each

instance of a process unique although many instances may share the

same code. It also necessitates writing code for saving the environ-

ment of the instance, but each process function is written only once.

Thus, with a minimum of programming effort, the duplication of code

and waste of storage space can be eliminated.

Under the LISP system, there are two classes of variables;

global variables and local variables. Global variables are accessible
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to all functions; local variables are restricted to the confines of an

executing function. With the storage of variable names and values in

the reference list, a third type of variable is generated which can be

examined using the package functions. The variables in the associa-

tion list are neither global nor local since local variables are lost

when a function finishes execution. The variables in the association

list will be called run variables since they are in existence only

during the parallel processing run.

Once a name has been associated with each process, the next step

is to associate a list of variable values with the reference variable/

process body pair. By keeping a list of variable values separate from

the process body, the problem of one instance of a process using the

same local variable values as another instance of the same process is

avoided. This list of local variable values needs only to be substi-

tuted into the process body when execution begins or resumes, and saved

when the execution of the instance of the process is suspended.
(4,5)

Saving the process environment will insure that even though interaction

with other processes is needed, each instance of a process remains

distinct. All of this information is saved in REFLIST.

Each process is represented as a LISP function, and may be defined

using the DE macro. For reasons described later, the process must be

defined using the LISP PROG feature. This is necessary to allow the

process function to jump to a label which is the return point for the

partially executed instance. In this implementation, the process

definition may not be recursive, but recursive sub-functions may be

used. After saving the execution environment, the process must execute
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a RETURN function to remove unnecessary information from LISP's stacks.

This RETURN function is another factor in the requirement of the PROG

feature in that it can only be executed from a PROG.

In the implementation of this parallel processing simulator, a

list has been set up which contains the information necessary for using

one set of code for many processes and holding information local to

that instance of the process. It is called the reference list and is

bound to the LISP atom REFLIST in the function package (see Fig. 3).

REFLIST is a list of lists, each sublist having the same structure as

every other sublist. The order of the sublists within the reference

list initially defines the order in which the processes will be exe-

cuted.

The first element of a reference list sublist is the reference

variable, or the name through which the unique instance of the process

is accessed. The second element of the sublist is the name of the

process which is to be associated with the reference variable. The

third element of the sublist is a label which marks the point at which

execution will resume when that instance of the process is to continue.

The fourth and final element of the sublist is an association list of

variable names and their values at the time that the execution of

that particular instance of the process was suspended. In the event

that the process execution has not begun, this list will contain the

variable names and their initial values. The association list con-

sists of dotted pairs of variable names and corresponding values. The

sublist written in LISP takes the form:

(REFVAR PROCNAME LABEL ((VAR1 . VALUE1)(VAR2 . VALUE2) . . .)).



22

The reference list is a list of the following sublists:

REFLIST = ((REFVAR1 PROCNAME1 LABEL1 ((V11 . VAL11)(V12 . VAL12) . . .))

(REFVAL2 PROCNAME2 LABEL2 ((V21 . VAL21)(V22 . VAL22) . . .))

(REFVARN PROCNAMEN LABELN ((VN1 . VALN1)(VN2 . VALN2) . . )))
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Figure 3. Internal structure of the reference list

((R1 P1 LAB1 ((A . 1)(B . 2)))(R2 P2 LAB2 ((C . 3)(D . 4)(E . 5))))
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Primitive Functions

When an instance of a process is to be resumed, the process must

first retrieve its environment, or variable bindings, from the proper

sublist within the reference list. This is easily accomplished as the

sublist referring to the desired instance of the process is placed at

the beginning of the reference list by the START function.

The START function is used to begin the execution of the processes.

Its argument is the name of the reference variable which is to be han-

dled first. START contains a loop which evaluates processes based on

the variable (atom) NEXT. If the atom NEXT is bound to the characters

"NEXT", then the next process in the reference list is initiated. If

the atom NEXT is bound to the name of a reference variable, then the

process associated with that reference variable begins or resumes execu-

tion. Thus, START becomes a controller for process execution. In the

event that the reference list becomes empty, the run is concluded. An

empty reference list signifies that all of the processes have been run

to conclusion, and have been terminated. An example of a call to START

is:

(START (QUOTE CONTROL)).

This would start a simulation run with the execution of a process call-

ed CONTROL.

Before another process is resumed from a currently running one,

the run variable names and their values must be put into the proper

sublist in the reference list. This is done by the function SUSPEND.

SUSPEND takes as its two arguments the list of dotted pairs of variable
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names and values and the label which constitutes the return point for

that instance of the process. This function updates the reference list

entry, and depends solely on the programmer to supply it with all of

the appropriate information for updating the reference list sublist.

The SUSPEND function is called by:

(SUSPEND (LIST (CONS (QUOTE B) B))(QUOTE LABEL2)).

The function (LIST (CONS (QUOTE B) B)) generates the list of the dotted

pair of the name B and the value of B.

The first attempt at implementing the SUSPEND function was to have

used an approach which was different from the current running version.

The variable names and values which formed the process environment

were to have been retrieved from LISP's context stack and special push-

down list. The only argument to have been used was the literal name

of the return point label. After several unsuccessful attempts at

implementing this idea, it was discovered that the context stack con-

tains entries which are used by the LISP interpreter. The presence

of these items caused unpredictable context stack references and made

the approach infeasible. As a result, the SUSPEND function was changed,

and the responsibility for storing the variables was placed on the user.

All of the variables which the user decides should be saved must appear

in the list which constitutes the first argument of SUSPEND. The

SUSPEND function replaces the association list in the reference list

sublist with the list given as its first parameter. Thus, any variable

name which does not appear in the first argument to SUSPEND will not be

in the reference list entry after SUSPEND is executed whether or not

it was ever there. If a variable is deemed temporary and its value is
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nOt important to the execution of the process, it need not be saved at

suspension time.

Following the storing of run variables by the SUSPEND routine,

the process must perform a normal exit, which is accomplished by the

execution of .a (RETURN T) function. This is necessary to remove any

variable bindings which may accumulate on LISP's special push-down

list and context stack.

The RESUME function allows the programmer to designate the

instance which will execute after the suspension of the currently

executing process. The argument of the function is a reference vari-

able. An example of the function call is:

(RESUME (QUOTE WALK))

This designates an instance whose reference variable is WALK to con-

tinue execution after the currently running instance is exited. If

designation of the next running instance is unnecessary, the function

may be called:

(RESUME (QUOTE NEXT))

If the latter form of RESUME is used, the reference list becomes

a scheduler for the run. The instances execute in the order in which

they appear in the reference list. The first form of RESUME given

above allows the instances to reschedule themselves and each other.

When this form is used, the reference list is no longer used as a

scheduler, and is used only in the capacity of a data storage area.

The TERMINATE function does exactly as the name implies. When

an instance of a process is run to completion, or when some other

condition occurs which necessitates the termination of an instance of
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a process, the TERMINATE function will cause the removal of that

instance. The argument for TERMINATE is the name of a reference vari-

able. The function must be specified in the process body by the pro-

grammer and should be the last function executed by a process. If the

TERMINATE function is not called at the conclusion of a process, the

START function will enter an infinite loop; always returning to resume

a process which will not terminate.

Once an instance of a process has been terminated, there is no

way of accessing any run variables which were local to it. The function

takes the storage space which held a sublist of the reference list, and

returns that space to free storage. In the event that the process

tries to terminate an instance which has already been terminated, no

error is returned. An example of the function call is:

(TERMINATE (QUOTE SPECIES1))

When it becomes desirable to access information (i.e. a value of

a variable local to an instance which is not currently executing), the

ACCESS function must be used. The argument of the function is a dotted

pair consisting of first the reference variable as the first atom and

the local variable name as the second atom. The function looks for

the appropriate sublist of the reference list and finds the association

list given in the sublist. If the variable name is found, the function

returns the value associated with that instance of the variable. In

the event that the variable name is not found after the correct instance

of the process has been found, the function will return useless infor-

mation.

The ACCESS function should be used with caution. In the event
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that the named reference variable does not exist within the reference

list, an error is returned. An example of a call to the ACCESS func-

tion is:

(ACCESS (QUOTE (SPECIES . GENUS)))

The user is cautioned that after a call to ACCESS which returns a valid

variable value, the reference list have been rotated and left in a

state which will probably not be the same as before the call. The

function (CHECK (QUOTE CURRENTNAME)) will cause the REFLIST to be

rotated to its position prior to the call to ACCESS.

In the example of grand fir growth given in the next section, the

ACCESS function is used to allow the tree instances to look-up the

value of time contained in the system clocking process, CLOCK. This

value of time is used to determine whether or not the processes should

terminate.
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Utility Functions

Five utility functions are presented in this section ROTATE,

PUTVAL, PUTLAB, CHECK, and CADDDAR. The functions presented here

support the primitive functions given previously. These utility func-

tions are used in manipulating the processes and associated data struc-

tures. In most cases, these functions are called by the primitive

functions to perform specific tasks. An additional function, COMMENT

is provided to allow documentation by the user. This section also

contains descriptions of three atoms: REFLIST, which must be used in

a parallel processing run; CURRENTNAME, which may be used as a conve-

nience to the user; and NEXT, which is internal to the function package.

The CHECK and ROTATE functions are used for storing data into or

retrieving data from the reference list and work with the first sublist

of the reference list. The CHECK functions, for example, may be used

to check for a reference variable's presence in the reference list and

to rotate the list for the purpose of leaving the sublist containing

the reference variable in the first position. The CHECK function can

then be used in scheduling and is simpler than maintaining a stack of

pointers to the reference list. It is easy to implement and easy to

comprehend.

The ROTATE function is used to produce a rotation of the reference

list. It rotates to the left with the first sublist of the reference

list becoming the last sublist. It is used by the CHECK function

during the search for a given reference variable, and by the START

function to rotate the reference list prior to executing the "next"
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process. ROTATE has no parameters. An example of its call is:

(ROTATE)

The PUTVAL function supports the SUSPEND function by performing

the first half of the operation of saving the execution environment;

storing the association list of variable names and values into the

first sublist of the reference list. It does not check to see whether

the reference list is in the proper position before any stores are

made. The programmer is expected to execute (CHECK (QUOTE CURRENTNAME))

before SUSPEND is called to be certain that the first sublist in

REFLIST is the sublist associated with the currently running process.

An example of its call is:

(PUTVAL (QUOTE ((A . 1)(B . 2)(C . 3)))).

The PUTLAB function performs the second half of the operation of

saving the environment of the executing process. Its argument is the

label which marks the return point for the executing process. The

function stores the label into the first sublist of the reference list

without checking to be certain that it corresponds to the currently

executing process. An example of a call to the function is:

(PUTLAB (QUOTE LABEL2)).

It is called by the SUSPEND function, although it may be used separ-

ately by the user.

The COMMENT function takes a list of atoms as an argument and

returns immediately after binding these atoms to a list which is lost

after the function is exited. The net effect of this is that the

COMMENT function allows the user to insert remarks into the body of

the process and function definitions. The COMMENT function is actually
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executed by the LISP interpreter, but nothing is evaluated during

execution and its execution time is negligible. An example of its call

is:

(COMMENT TEST OF PLUME CASE NUMBER TWO).

The CHECK function is used to search the reference list to deter-

mine if the reference list contains a sublist which has as its first

element the reference variable given in the call to the function. If

the CHECK function finds the sublist containing the given reference

variable, the function exists and the reference list is left rotated

with the sublist containing the given reference variable as the first

sublist. In this case, the function returns the value T, or "true."

In the event that the reference variable is not found in any of the

sublists of the reference list, the reference list is left as it was

before the function was called, and the value NIL, or "false" is

returned. CHECK operates by rotating the reference list and checking

the first sublist for the given reference variable, which is done in

a loop. An example of a call to the function is:

(CHECK (QUOTE RABBIT)).

The CADDDAR function was written as a simple function to access

the association list in the first sublist of the reference list. In

most instances, the first sublist of the reference list will contain

the sublist from which information is desired. In LISP code, this is

the (CAR REFLIST). The first element of the sublist is the reference

variable, and is accessed through (CAAR REFLIST). The second element

is the process name, and is accessed through (CADAR REFLIST). The

third element is the return point label, and is accessed through



32

(CADDAR REFLIST). These four functions, CAR, CAAR, CADAR, and CADDAR

are built into LISP while CADDDAR had to be written and implemented in

the function package. An example of its call is:

(CADDDAR REFLIST).

This function returns the list of dotted pairs of variable names and

values.

The package contains several useful atoms, one of which must be

used. The name REFLIST in the package is set as an atom, and it is

up to the user to bind it to the proper list. No other name may be

used for the reference list since all of the functions use the name.

The reference list may be bound to REFLIST through the function:

(SETQ REFLIST (QUOTE (*****)))

The ***** in the function call represents the contents of the refer-

ence list.

The atom CURRENTNAME is in the package as a convenience for the

programmer. Upon entering the process, the atom may be set to the

name of the reference variable of the instance just entered using

the function:

(SETQ CURRENTNAME (CAAR REFLIST)).

Having the reference variable bound to CURRENTNAME is useful for

returning the reference list to the position it was in when the pro-

cess instance was entered. For example, during the execution of the

process, it may be necessary to use the ACCESS function to look-up

the value of a variable which is local to another instance. The use

of ACCESS will change the position of the reference list. If the

reference list is not rotated back to its original position before
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the SUSPEND function is used, the association list and return point

label will be placed into the wrong sublist. This happens because

SUSPEND stores into the reference list's first sublist without check-

ing for position. This situation is remedied by using the function:

(CHECK CURRENTNAME)

This rotates the reference list to the proper position before SUSPEND

stores into it.
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Setting Up The Process

Setting up the process to run, the programmer must first use the

name LABEL as the only parameter to the process function. The PROG

feature must be used. As a convenience, the user may set CURRENTNAME

using the function (SETQ CURRENTNAME (QUOTE *****)) where ***** is

the literal name of the process. The process variables must then be

moved from the reference list and bound to the variable names inter-

nal to the process body. The function (SETA B (ACCESS (CONS (CAAR

REFLIST)(QUOTE B)))) is used to accomplish this. The variable name

is given here as "B", and it is assumed that the reference list is in

the proper position (i.e. (CAAR REFLIST) is the name of the reference

variable of the process which is currently executing). The next func-

tion which is called is the function which causes the jump to the

proper label inside the process. This function is (EVAL (CONS (QUOTE

GO)(LIST LABEL))). Following this function call, the label of the

first "statement" of the process will appear.

When a process is to be suspended, the SUSPEND function is used

to save the execution environment. The following will save one vari-

able value and the return point label:

(SUSPEND (LIST (CONS (QUOTE B) B)) (QUOTE LABEL2)).

In the event that the process contains a local temporary variable its

value need not be saved. The SUSPEND function does not update the

association list under the reference variable, it stores a new list

in the proper place in the sublist. Therefore, if a variable value

is to be accessed by the ACCESS function, it must appear in the list
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given as an argument to the SUSPEND function.

If a specific instance of a process is to be resumed, the RESUME

function is called to set the proper information. The function call

(RESUME (QUOTE TRAVEL)) will cause the resumption of an instance of a

process referred to by the literal TRAVEL. In the event that the

specification of a next process is not necessary, the function may

be called (RESUME (QUOTE NEXT)). This may be desirable for purposes

of clarity in reading the program. If (RESUME (QUOTE NEXT)) is omitted,

there will be no ill effects. The START function will simply process

the next instance in the REFLIST. To exit a process, the function

(RETURN T) is necessary.

The TERMINATE function may be called at any time, and may termi-

nate any given instance, including the currently running one. If the

TERMINATE function is called on a currently executing process, the

sublist referring to it is removed from the reference list, and the

process will continue executing until a RETURN function is executed.

The use of the (RETURN T) function forces the process to be non-

recursive. The reason for this is based upon the implementation of the

function package. There is no conceptual reason why a process could

not be recursive. The idea which is basic to parallel processing is

the idea of simultaneous execution, and this concept is completely

independent from the structuring of the individual processes. Recursive

as well as iterative processes should be allowed to execute. The pro-

blem comes in when the LISP interpreter is considered. In implementing

a recursive function, it is necessary to mark the point at which execu-

tion of the function resumes when the function ends its recursive calls.
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The interpreter does keep track of this return point, but it is inac-

cessible to the user. This forces the parallel processing package func-

tions, which have the appearance of being user functions (as viewed by

the interpreter) to mark their own return points using labels, and

jump to these labels when execution is resumed. A LISP (GO LABEL)

expression is used for this. These two functions, (RETURN T) and

(GO LABEL), each require the PROG feature in LISP to be used. Under

UCI LISP on the PDP-10 Computer at the University of Oregon, the PROG

feature does not allow recursion.
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IV. EXAMPLE SIMULATIONS

Grand Fir Growth Model

As an example of the use of the system, a growth model of grand

fir trees will be considered. The model will be run for a simulated

period of 100 years using decade resolution. The model considers

quantities which are measurements of the tree as well as the number

of trees of that size which can be supported by a one-acre stand. The

quantities modeled are the diameter of the tree at breast height

(d.b.h.), the height of the tree, the height of the crown base (HCB),

and the stand density.
(16)

The tree which is represented here is the "typical" tree in the

stand. It is represented by the mean measurements of the trees in the

stand (see Fig. 4 for a description of the measurements of the tree).

The diameter at breast height is given in inches, the height of the

tree and the height of the crown base in feet, and the stand density

in number of trees per acre. These quantities are represented in the

program by the variables Xl, X2, X3, and X4, respectively.

The changes in the above quantities are represented by equations

in the program which are designated f functions. The f functions

represent the increment accumulations for the modeled quantities over

a ten year period. The equation f
1,1

gives the diameter increment

accumulation for ten years growth. The f22 equation gives the height

increment accumulation for ten years growth. The f
3,3

equation gives

the height of the crown base increment accumulation for ten years
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Height of Crown Base

d.b.h.

Figure 4. Tree measurements used in the growth model
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growth, and f44 gives the tree mortality accumulation for a ten year

period. The convention of using a double subscript for the equation

names comes from the FLEX modeling paradigm,
(14)

from which this

example was taken. The f functions refer to the flux of some quantity

and its corresponding affect on the state variable. In the FLEX system,

flows of a quantity are represented using a function of state variables.

The equantion f., represents a flow into compartment j from compartment
iJ

i. It is often useful to represent a compartment in terms of the total

flow through it. The equation f.. then represents the sum of the flows
11

into the compartment minus the flows out of the compartment. These

equations have been modified for use in the example, although their

difference from those f functions found in the FLEX representation is

minimal. The double subscript has been incorporated into the function

names under the LISP system to aid in identifying correspondence

between the model in the FLEX paradigm, and the same model implemented

here.

The FLEX equations are:
2

+11x2 e(7.5632+.4776(1nX1)-.96661n(X4(.04+.027X1+.00405X/)))
1,1 1 1

f =e
(3.10707+.46651(1n(0.5f

1,1
)-.34633(1nX

1
)))

2,2

f
3,3

=Max (X
3'

(-30.142+.61X
2
+9.1781n(f

1,1
))) X

3

f
4,4

= -.113X
4

Representations of these same functions under the LISP system are found

in Appendix C. The FLEX paradigm uses the f functions for adding vari-

able increments to update the values of the X variables. Updating the

variables is done by the following :
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X
1

= X
1

+ f
1,1

X
2

= X
2

+ f
2,2

X = X + f
3 3 3,3

X
4

= X
4
+ f

4,4

Each of the f functions is evaluated before the X variables are updated.

Following the modification of the X variables, these same variables are

output, and the variables are re-evaluated for the next simulated ten

year period.

The process function GFIR is the process body which represents

the two instances of a stand of trees (see Fig. 5). As stated previ-

ously, the only parameter needed is the return point label which is

passed to the process from the START function. The list of variables

given next contains the names of the variables which LISP views as

local. The local variable list contains the names of the X variables

which will be output for examination as well as the variables which

will temporarily hold the values of the f functions during the execu-

tion of each instance.

All of the PROG variables are considered local by the LISP system,

but in terms of the simulation package, they may be either temporary

variables or run variables. In this process, the variables which begin

with the letter X are run variables, while the variables which begin

with the letter F are temporary variables. The variable CURRENTNAME

is set to the value of the reference variable of the currently execut-

ing process. This is done to facilitate checking the position of the

reference list later in the process.
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(DEFPROP GFIR
(LAMBDA(LABEL)
(FROG (Xl X2 X3 X4 F11VAL F22VAL F33VAL F44VAL)

(COMMENT CURRENTNAME SET TO REFERENCE VARIABLE)
(SETQ CURRENTNAME (CAAR REFLIST))
(COMMENT RESTORE ENVIRONMENT)
(SETA Xl (ACCESS (CONS CURRENTNAME (QUOTE X1))))
(SETQ X2 (ACCESS (CONS CURRENTNAME (QUOTE X2))))
(SETQ X3 (ACCESS (CONS CURRENTNAME (QUOTE X3))))
(SETQ X4 (ACCESS (CONS CURRENTNAME (QUOTE X4))))
(COMMENT CHECK TIME VALUE)
(COND ((*GREAT (ACCESS (CONS (QUOTE TIME) (QUOTE DECADES)))

10)

(TERMINATE CURRENTNAME)
(RETURN T))

(T (EVAL (CONS (QUOTE GO) (LIST LABEL)))))
(COMMENT COMPUTE FUNCTION VALUES)

LAB1 (SETQ F11VAL (Fll X1 X4))
(SETQ F22VAL (F22 Xl X2 F11VAL))
(SETQ F33VAL (F33 X1 X2 X4))
(SETQ F44VAL (F44 X4))
(COMMENT UPDATE VARIABLES)
(SETQ Xl (*PLUS X1 F11VAL))
(SETQ X2 (*PLUS X2 F22VAL))
(SETQ X3 (*PLUS X3 F33VAL))
(SETQ X4 (*PLUS X4 F44VAL))
(PRINT

(LIST CURRENTNAME
(ACCESS (CONS (QUOTE TIME) (QUATE DECADES)))
X1

X2

X3

X4))

(COMMENT CHECK THE REFLIST)
(CHECK CURRENTNAME)
(SUSPEND
(LIST (CONS (QUOTE Xl) Xl)

(CONS (QUOTE X2) X2)
(CONS (QUOTE X3) X3)
(CONS (QUOTE X4) X4))

(QUOTE LAB1))
(RESUME (QUOTE NEXT))
(RETURN T)))

EXPR)

Figure 5. Source listing of GFIR process function
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The next group of statements is used to retrieve the execution

environment from the reference list. The conditional statement is

used to determine whether or not the instance should terminate at that

point. The ACCESS function is used to retrieve the DECADES variable

value which is a run variable of the TIME instance of the CLOCK pro-

cess. This illustrates the interaction of two instances through their

variable values. In the code, the function (CONS (QUOTE TIME)(QUOTE

DECADES)) evaluates to (TIME . DECADES) which is the dotted pair of

reference variable and run variable name needed as the argument of

ACCESS.

If the execution is to continue, the control jumps to the LAB1

label. At this label, the f functions are evaluated and their results

stored temporarily. These results are used to update the X variables

which are printed along with the process name and the system time in

units of decades. The process is then suspended and the environment

saved. The CHECK function is used to set the reference list to the

proper position so the association list and return point label can be

stored in the proper place. This is necessary since the ACCESS func-

tion has been called during the execution of the instance. ACCESS

did not deal with the variables of the currently running instance, so

the reference list has been left in a rotated state. Following the

suspension of the currently running process, the RESUME function is

used to indicate that the next entry in the reference list is to be

resumed.

The CLOCK process is a simple function used for incrementing

the value of the time variable DECADES during the run (see Fig. 6).
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(DEFPROP CLOCK
(LAMBDA (LABEL)
(PROG (DECADES)

(SETA CURRENTNAME (CAAR REFLIST))

(SETA DECADES (ACCESS (CONS CURRENTNAME (QUOTE DECADES)))
(SETA DECADES (ADD1 DECADES))
(COND ((EQ DECADES 11)(SETQ REFLIST NIL))

(T (PUTVAL (LIST (CONS (QUOTE DECADES) DECADES)))))))
EXPR)

SUSPEND

CLOCK Ti)

Set CURRENTNAME
to REFVAR

4.

RESTORE
ENVIRONMENT

4,

INCREMENT
DECADES

DESTROY
REFLIST

Figure 6. Source listing and flowchart of CLOCK function
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Like the GFIR process, it begins by setting CURRENTNAME to its refer-

ence variable, although nothing is gained through this action. The

next statement retrieves the last value of DECADES from the reference

list. The DECADES variable is then incremented by one. The value of

DECADES is then tested to determine whether or not the run should be

terminated, the CLOCK process sets the reference list to NIL. When

this is done, the process is exited, and control is returned to the

START function. START checks REFLIST, finds it to be empty, and stops

the run. If the run is to be continued, the CLOCK function saves its

environment of one variable using the PUTVAL function. Note that since

CLOCK has no label in it, the use of (EVAL (CONS (QUOTE GO) (LIST

LABEL))) is unnecessary as is the use of the SUSPEND function. The

PUTVAL function stores only an association list.

Figure 7a gives the reference list for the run. The X variables

in the reference list entries represent the initial conditions for the

run. The DECADES variable in the TIME entry gives the initial value

of time as the simulation starts.

Output from the program consists of one line for each executed

GFIR process. The first element of the output line (list) is the

reference variable for the process (see Fig. 7b). The second element

is the time increment in decades. The next four elements are the

data items calculated by the run. They are X
1,

X2, X
3

and X4; the

diameter at breast height, the height of the tree, the height of the

crown base, and the stand density. The units for each have been given

previously. These output lines are paired as each of the two GFIR

instances is evaluated during each time step. This is an aid in com-
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((STAND1 GFIR LAB1 ((Xi . 7.0) (X2 . 60.0) (X3 . 30.0) (X4 . 292.0)))
(STAND2 GFIR LAB1 ((Xi . 6.0) (X2 . 45.0) (X3 . 20.0) (X4 . 350.0)))

(TIME CLOCK NIL ((DECADES . 1))))

Figure 7a. Reference list for tree simulation

(STAND1.1 9.7453287 73.671079 39.750917 259400400)
(STAND2 1 8.9304752 60.275111, 30.371440-310.45000)
(STAND1 2 11.539682, 83.516432 514350788 229.73654)
(STAND2 2 10.705576 70.569764 43.651391 275.36915)
(STAND1 3 13.014390 91.911458 58.628967 203.77631)
(STAND2 3 12.141639 7(j.222085 51.327551 244.25243)
(STAND1 4 14.325335 99.478412 64.392556 Up). 74959)
(STAND2 4 13.408917 86.965809 57.301621 216.65191)
(STAND1 5 15.539959 106.49804 69.329276' 160.32489)
(STAND2 5 14.578079 94.118125 62.375795 192.17024)
(STAND1 6.16.694617 113.12613 734736114 142.20817)
(STAND2 6 15.686431 100.85115 66.882077 170445500)
"(STAND' 7 17.811638 119.45988 77.772269 126.13865),
(STAND2 7' 16.756549 _107.27076 70.994837 151.19359)
(END OF
T

'RUN)

Figure 7b. Output from tree simulation
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paring the progress of the two stands as the output lines from STAND1

is adjacent to the output lines from STAND2, where STAND1 and STAND2

are the reference variables for the two GFIR instances.

In terms of the interaction the GFIR processes do not interact at

all with each other while both of these processes interact with the

CLOCK process. In this simulation, there is no need for the GFIR pro-

cesses to interact, since each represents a separate stand of trees

which is homogeneous with respect to type and size. The CLOCK process,

however, is used to keep track of the time which is simulated; a quan-

tity which influences both the GFIR processes (see Fig. 6). This

influence makes interaction between GFIR and CLOCK mandatory. The flow

of control in this simulation will start with one GFIR process, move to

the other instance of GFIR, and then to the CLOCK process (see Fig. 8).

This pattern is repeated until a system time of ten decades is reached.

When this happens, the GFIR processes terminate themselves as they are

entered, and the CLOCK process sets the reference list to NIL, a mea-

sure which is certain to terminate the run. When the reference list

becomes NIL, the process evaluating function, START, yields control to

the LISP system, and the simulation run is over.

In terms of the actual execution of the processes, this run indi-

cates a simple structure of execution. The RESUME function is used

only with (QUOTE NEXT) as its argument, and the result is the inter-

ative structure found in the flowchart of figure 9. Had the RESUME

function been used with a reference variable name, this iterative

structure would have broken down into a linear structure.

This illustration is indicative of the kind of work which is nor-
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Figure 8. Interaction among the three instances

(DECADES
10)

START

1

STAND1
(GFIR)

STAND2
(GFIR)

4,

TIME
(CLOCK)

STOP

(DECADES 10)

Figure 9. Structure of the simulation
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mally done in simulation, but is somewhat out of character for LISP.

The power of LISP is derived from its non-numeric data structure orien-

tation and its built-in recursion.

In the implementation of this example, functions had to be written

for the extraction of square roots (SORT), as well as exponential (EXP)

and logarithmic (LOG) functions. The basic arithmetic operations are

available in LISP, but the user must provide functions for anything

other than these. In spite of this obstacle, this kind of simulation

is still feasible.

The processes are iterative in nature, a feature which is avail-

able through the LISP PROG function, but some of the support functions

are written in pure LISP (i.e. written without the PROG feature). In

this particular example, recursion is not needed, and a variation of

iterations is implied in the way the simulation runs. The GFIR process

is called repeatedly and alternates between two running environments.

Each time the instance is resumed, it restarts execution at the same

label. In effect, this creates a loop with a time delay built into it.

The process is suspended at the bottom and resumed in the middle. This

illustrates vividly the point that the return point label may be loca-

ted anywhere in the process body, depending upon the needs of the pro-

grammer.

The five primitive functions all come into play in this process.

The ACCESS function is used for restoring the process environment.

The TERMINATE function is called when the time reaches ten decades.

The SUSPEND function saves the process environment prior to the call

to the RESUME function. The jump to the return point label is illus-
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trated along with the CHECK and COMMENT utility functions.
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The Lee Algorithm

This section presents a discussion of the Lee Algorithm which is

used to find the shortest distance through a weighted directed graph.

This algorithm has not been implemented, but is included as an illus-

tration of non-numerical computation. As the reader will recall, the

Lee algorithm works by sending a simulated pulse through each edge of

a directed graph.
(2)

This pulse travels through the graph and ini-

tiates new pulses when it reaches a new node. The algorithm is ini-

tiated by sending a pulse through each edge adjacent to the start node.

The algorithm terminates when a pulse reaches the end node.

Implementing this algorithm would require an additional data struc-

ture. This new data structure, called INFO will be used to hold infor-

mation about the graph itself. It is basically a list of edges which

includes the weight of each edge. This information is used by the

instances of the PULSE process to direct the pulses through the graph.

Figure 10 contains an example graph and its associated INFO structure.

Each edge in the graph has an entry in INFO. For example, there exists

an edge between node A and node B in the graph, and the edge has weight

one. This edge is represented by the entry (A B 1) in INFO. At each

time step, the pulses travel a distance of one along an edge. This

distance is arbitrary, but is satisfactory for processing a graph of

this size.

The reference list for this run will consist of three entries

initially; one entry for each pulse which is to travel through the

edges adjacent to the start node A, and one entry for the system
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clocking process. For simplicity, the clocking process will not be

discussed in detail. It suffices to mention that the clocking process

is the last process to be executed during each time step.

The reference variables will initially reflect the names of the

edges on which the pulse is moving; for example AB or AC. The process

name will be PULSE for each process. The return point label will be

the first label in the process. The association list will take on the

same form as in the previous example, but in this instance, the vari-

able value slot will be filled by a data structure. The association

list will contain only one entry since each instance represents only

one pulse, and the appropriate information is easy to represent in a

single data structure. The variable name will be the same as the ref-

erence variable to facilitate retrieving the associated data structure.

INFO = ((A B 1)(A C 2)(B C 2)(C D 2))

Figure 10. Example graph and its associated INFO list



52

The first element in the data structure is the name of the node toward

which the pulse is traveling. The second element is the length of the

edge along which the pulse is traveling. The third element is the dis-

tance the pulse has traveled along the edge, and the last element is

the list of nodes which the pulse has passed through. The reference

list entry will look like:

(AB PULSE LABEL1 ((AB . (B 1 1 (A)))))

As the processes run, the size of the reference list will not

decrease until the end node is reached. As a pulse passes a node, new

pulses are generated, one for each edge leaving the node. These new

pulses will have new reference variable names, new run variable names,

and a list of visited nodes which will include all previous nodes

(from the pulse entering the node just visited) as well as the last

node visited. The name of the next node to be visited is taken from

the INFO list along with the distance to that node. The distance

traveled along the new edge is (n * d 1), where 1 is the length of

the last edge is taken from the instance of the pulse which visited

the last node, d is the distance traveled by a pulse during one time

step, and n is an integer greater than zero such that n * d is greater

than or equal to the length of the last edge.

The algorithm for the process is then:

1) for each entry in REFLIST do statements 2 through 5

2) is entry referring to CLOCK? If yes, go to 5; If no, go to 6

3) is pulse at or past end node?

If yes, search REFLIST for any other pulses which are at

or past the end node. Output the nodes visited for each
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pulse found and stop.

4) is pulse at or past a new node?

If yes, initiate new pulse instances using:

a) look up next-node and distance to next-node in INFO

b) add old next-node to old nodes-visited giving new-

nodes visited.

c) distance traveled = n*d - old distance-to-node.

d) generate new atom from first two elements of INFO

entry. Use this for reference variable and run

variable names.

e) use same process name and label.

Append these new instances to REFLIST, delete the instance

representing the pulse before it past the most recent node,

and go to 2.

If no, increment distance traveled along edge, rotate REFLIST

go to 3.

5) increment time value

6) rotate REFLIST; go to 2

This algorithm is easily applied to the graph in figure 10. The

reference list is set up with three entries, one for each of the two

pulses initiated in edges AB and AC, and one for the system clock.

REFLIST takes the form:

((AC PULSE LABEL ((AC . (C 2 0 (A)))))

(AB PULSE LABEL ((AB . (B 1 0 (A)))))
(TIME CLOCK LABEL1 ((SECONDS . 0))))

After the first time increment, the pulse in edge AB reaches B, and

the pulse in AC is halfway to C. The reference list becomes:
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((BC PULSE LABEL ((BC . (C 2 0 (A B)))))
(AC PULSE LABEL ((AC . (C 2 1 (A)))))
(TIME CLOCK LABEL1 ((SECONDS . 1))))

The pulse in AC reaches C during the next time step, and the pulse in

BC is halfway between B and C. The reference list becomes:

((BC PULSE LABEL ((BC . (C 2 1 (A B)))))
(CD PULSE LABEL ((CD . (D 2 0 (A C)))))
(TIME CLOCK LABEL1 ((SECONDS . 2))))

The next time step finds edge CD with pulses in it, separated by one

unit of distance. The reference list becomes:

((CD PULSE LABEL ((CD . (D 2 0 (A B C)))))
(CD PULSE LABEL ((CD . (D 2 1 (A C)))))
(TIME CLOCK LABEL1 ((SECONDS . 3))))

The last time step is needed for the leading pulse in CD to reach D.

At this point, the node D is added to the list of nodes visited, and

the run stops after printing the list of nodes (A C D).

This example shows that the function package can be used for a

very different problem. Rather than using the function package for

a numerically-oriented simulation model, the same functions may be

used for finding the shortest path through a directed graph. The

process function PULSE itself will have very much the same form as

the GFIR process function. The process will be executed straight

through rather than being suspended in mid-execution and resumed at

a later time. The SUSPEND function will be used to update the refer-

ence list entry of a pulse which is between nodes, but the process

must have the capability of generating a new pulse instance and

appending the information for that pulse onto the reference list.

The RESUME function will again be used with the function (QUOTE NEXT)

as its argument since the structure of execution of the processes will
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be iterative. This time, however, the number of sublists in the

reference list will vary during the run. The TERMINATE function will

not be needed if only one shortest path is desired. The run could also

be structured to output the paths through the graph in order of their

length. In this case, the TERMINATE function could be used to destroy

the pulses as they pass the end node. If only one shortest path is

needed, the PULSE process could destroy the reference list when the

shortest path is found. In accessing the environment of the PULSE

instance, simplicity is gained by using the same name for the reference

variable and the run variable. The function:

(SETA CURRENTNANE (CAAR REFLIST))

will be executed first upon entering the process. To retrieve the

environment, the ACCESS function is called using CURRENTNANE twice:

(ACCESS (CONS CURRENTNANE CURRENTMANE))

Again, the START function is used to begin the execution of the simu-

lation run.

LISP is oriented toward list processing rather than numerical

computation. Since the function package is written in LISP, it

naturally assumes many of the characteristics of LISP. Although this

second example is more in the character of LISP, the grand fir tree

model shows that LISP, and the function package can handle numerical

computations as well as the list processing for which it was intended.
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V. CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH

Using the primitive functions in the package, the user will be

equipped with some powerful tools for creating a simulation model, an

implementation of a parallel processing parser, or any of a number of

other applications. However, it should also be noted that the other

utility functions may be used when the full power of the five primitive

functions is not needed. For example, if the process is looping at the

time of suspension and the proper label is already contained in the

reference list entry, the PUTVAL function may be used for storing the

association list since storing the return point label will be unneces-

sary. Using the utility functions in this way can save on some of the

bookwork which is necessary in using the functions.

Another interesting application involves the use of the LISP pri-

mitive functions on the reference list. The reference list is not pro-

tected from modification by any means. A symbol may be generated and

placed in a list along with the proper information such as a process

name, label, and initial variable values. This list may be appended

to the reference list, and in this way, a new instance of a process

may be generated at execution time. Using this technique, the refer-

ence list becomes a dynamic data structure, shrinking and swelling dur-

ing the simulation run. This technique was illustrated in the discus-

sion of the Lee algorithm and is useful when the total number of

instances needed for a run is not initially known. The user specifies

the instances needed to begin the run, and the process instances gener-

ate new instances as needed.
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This function package was written to provide a basis for parallel

processing in LISP. It has been implemented as a group of utility func-

tions and data structures supplementing the LISP system rather than

being integrated into it. This has been done because of a problem with

the LISP system. LISP contains a context stack and special push-down

list for holding information while recursive functions are executing.

These structures hold data such as variable values and return point

markers; information which the function package could use to great

advantage. However, LISP also uses these two data structures for hold-

ing temporary pointers, a fact which is invisible to the user. These

pointers make examination of the context stack and special push-down

list difficult, as the investigator never quite knows what will be in

these structures.

An avenue for further investigation is the implementation of these

functions as an integrated part of the LISP system. The advantages to

the user would be immediate. The execution environments of the pro-

cesses could be saved using information in LISP's tables and stacks.

This would simplify the calling of the SUSPEND function. The processes

themselves could be defined as recursive functions and the point of

return for continued execution could be stored by the LISP system

rather than forcing the user to use a label and (GO LABEL) expression.

Similarly, upon entering or resuming a process, the system could restore

the environment for that instance, and the user would not have to per-

form as much bookkeeping. The user could then concentrate on treating

the process as being strictly functional as opposed to performing a

function and juggling its environment as well.
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The function package allows a great deal of flexibility in the

scheduling of the events which take place during the run. The RESUME

function can be used to schedule the next instance to be executed, or

it can specify the next event as being whatever is next in the refer-

ence list. This flexibility must be used with caution, however. In

the tree model discussed earlier, if the GFIR processes reschedule

each other and the CLOCK function is not allowed to execute until the

GFIR processes are terminated, the trees simulated will have the appear-

ance of growing to maturity within one ten-year period.

This function package does not force the user to use a rigorous

execution structure for the process instances. The processes are not

treated as subroutines or functions which are always subservient to

a calling routine. Processes execute without returning a value to a

calling program, and for that reason, can be executed in any order.

The processes may be scheduled by the user, or written in a way which

causes them to schedule themselves.

The user should note that the package functions are an aid in

simulating parallel processing, and as such, provide a minimum of

error checking. There is no provision for detecting a deadlock, and

once a deadlock occurs, there is nothing in the package which will aid

the user in breaking the deadlock. An infinite loop can form if one

instance is in the reference list which is never terminated by any

other instance, and does not terminate itself.

The Grand Fir growth model is a program which does not make the

best possible use of LISP, and a few remarks on its performance are in

order. LISP is a language which is oriented toward manipulating sym-
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bols rather than numbers. Some basic numeric functions are available

in LISP, but functions such as SQRT, LOG, and.EXP had to be written by

the programmer and run under the LISP interpreter. The numeric func-

tions, the interpretive LISP system and the time-sharing operating

system of the PDP-10 were three factors which caused the run to give

very poor response time. The output in figure 7b took nearly an hour

to compute and print.

A second disadvantage of the function package in this form is the

large amount of core space which is taken up by the functions when they

are loaded into the LISP interpreter. The functions themselves take

up approximately 20K core locations. This leaves very little room for

defining processes without expanding core. The Grand Fir simulation

was run during the PDP-10's non-peak traffic hours when 40K locations

were available.

The slow response time of the Grand Fir program is due partially

to the numerical nature of the computations involved; test cases involv-

ing non-numeric computations gave much better response times. However,

the problem of limited storage space remains an important unresolved

consideration. An additional avenue for further investigation is the

minimization of storage space used by the function package.

This function package is presented as a beginning at developing

functions and data structures needed for the simulation of parallel

processing in LISP. Parallel processing in LISP can be used to great

advantage not only with simulations, but also with symbolic computa-

tions such as graph traversals and parsing algorithms. Although this

function package has been implemented as a group of functions and data



60

structures, the functions could be better implemented as compiled

functions integrated into the LISP system. The functions would execute

faster in this form as well as having the advantages already mentioned.

However, the functions in their present state show that the approach

used is feasible.
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Appendix A Listings & Flowcharts of Package Functions

ACCESS

(DEFPROP ACCESS
(LAMBDA(PAIR)
(COND ((CHECK (CAR PAIR))

(CDR (ASSOC (CDR PAIR) (CAI)D1)AR REFLIST))) )

(T (PRINT (QUOTE (ERROR IN ACCESS - REFVAR NOT FOUND))))))
EXPR)

PURPOSE: used to look up values of variables local to other processes

PARAMETER: dotted pair of reference variable and local variable name

CALLED BY: user program

COMMENTS: returns garbage if local variable name is not found

PRINT ERROR
MESSAGE

ACCESS

EFVAR e-REFLIST
LOOKUP AND

RETURN VALUE



CADDDAR

(DEFPROP CADDDAR
(LAMBDA (L)

(CAR (CDDDAR L)))
EXPR)

64

PURPOSE: utility function

PARAMETER: a list, usually REFLIST in function package

CALLED BY: function package

COMMENTS: easy way of accessing association list in CAR REFLIST

CADDDAR

RETURN FOURTH
ELEMENT OF FIRST

SUBLIST OF L
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CHECK

(DEFPROP CHECK
(LAMBDA(REFVAR)

(FROG (COUNT)
(COND ((NULL REFLIST)NIL)

((EQ REFVAR (CAAR REFLIST)) T))
(SETQ COUNT (LENGTH REFLIST)

A (COND ((EQ COUNT 0)(RETURN NIL)))
(COND ((EQ REFVAR (CAAR REFLIST))(RETURN T)))

(ROTATE)
(SETQ COUNT (SUB1 COUNT))
(GO A)))

EXPR)

PURPOSE: see if reference variable is in REFLIST

PARAMETER: reference variable

CALLED BY: package functions

COMMENTS: if reference variable is found, REFLIST is left with REFVAR
in CAR and T is returned. If not found, REFLIST is left as

it was, and NIL is returned.

CHECK )
J.

REFLIST EMPTY

4-K

REFVAR e CAR REFLIS

4 14

COUNT LENGTH
OF REFLIST

COUNT = 0

REFVAR e CAR REFLIS

LN
ROTATE REFLIST
COUNT COUNT -1

RETURN NIL

RETURN T

RETURN NIL

RETURN T
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COMMENT

(DEFPROP COMMENT
(LAMBDA (L) NIL)

FEXPR)

PURPOSE: allows the user to insert comments into the body of the func-
tion

PARAMETER: comment string

CALLED BY: user program

COMMENTS: none
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PUTLAB

(DEFPROP PUTLAB
(LAMBDA(LABEL)
(SETA #A (CAAR REFLIST))
(SETA //B (CADAR REFLIST))

(SETA //C (CADDDAR REFLIST))
(SETA REFLIST (APPEND (LIST #A #B LABEL I /C))(CDR REFLIST))))

EXPR)

PURPOSE: store return point label into first sublist of REFLIST

PARAMETER: label to be stored

CALLED BY: SUSPEND function

COMMENTS: does not check to see that proper sublist is in CAR REFLIST

PUTLAB

#A = FIRST ITEM
OF REFLIST

Jr

//B = SECOND ITEM

OF REFLIST

4.

//C = FOURTH ITEM

OF REFLIST

PUT TOGETHER
NEW LIST

MAKE IT FIRST
ELEMENT

OF REFLIST

RETURN
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PUTVAL

(DEFPROP PUTVAL
(LAMBDA(LIST)
(SETA #A (CAAR REFLIST))
(SETA #B (CADAR REFLIST) )
(SETA #C (CADDAR REFLIST))
(SETA REFLIST (APPEND (LIST (LIST #A #13 #C LIST))(CDR REFLIST))))

EXPR)

PURPOSE: put list of variable names and values into first sublist of
REFLIST

PARAMETERS: function name

CALLED BY: user program

COMMENTS: no checking for correct entry in CAR REFLIST

PUTVAL

4

#A FIRST ITEM
OF CAR REFLIST

#B SECOND ITEM
OF CAR REFLIST

#C THIRD ITEM
OF CAR REFLIST

Jf

PUT TOGETHER
NEW LIST

MAKE IT FIRST
SUBLIST

OF REFLIST

RETURN
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RESUME

(DEFPROP RESUME
(LAMBDA(REFVAR)

(COND ((EQ REFVAR (QUOTE NEXT))
(SETQ NEXT (QUOTE NEXT))
(RETURN T))

((CHECK REFVAR)(SETQ NEXT REFVAR))
(T (PRINT (QUOTE (ERROR IN RESUME REFVAR NOT FOUND))))))

EXPR)

PURPOSE: set NEXT variable for continuation of a process after suspen-
sion

PARAMETER: reference variable

CALLED BY: user program

COMMENTS: Sets NEXT variable as a flag for START, which uses it to
find the appropriate process

RESUME 7)

( REFVAR = "NEXT"

1
( REFVAR e REFLIST

IN

XIPNEXT = "NEXT"

PRINT
ERROR IN RESUME

NEXT = REFVAR

--0
RETURN

RETURN T

RETURN



ROTATE

70

(DEFPROP ROTATE
(LAMBDA NIL
(COND ((NULL REFLIST) NIL)

((NULL (CDR REFLIST)) NIL))
(SETQ REFLIST (APPEND (CDR REFLIST)(LIST (CAR REFLIST)))))

EXPR)

PURPOSE: rotate reflist if two or more entries are present

PARAMETER: none

CALLED BY: CHECK routine or user program

COMMENTS: none

ROTATE

MOVE CAR(REFLIST)
TO END OF REFLIST

RETURN
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START

(DEFPROP START
(LAMBDA(REFVAR)
(PROD NIL

(COND ((CHECK REFVAR)(EVAL (LIST (CADAR REFLIST) (QUOTE
(CADDAR REFLIST))))))

A (COND ((NULL REFLIST)(PRINT (QUOTE (END OF RUN)))(RETURN T))
((EQ NEXT (QUOTE NEXT))
(ROTATE)

(SETA NEXT (QUOTE NEXT))
(EVAL (LIST (CADAR REFLIST)(QUOTE (CADDAR REFLIST))))
(GO A))

((CHECK NEXT)(SETO NEXT (QUOTE NEXT))
(EVAL (LIST (CADAR REFLIST)(QUOTE (CADDAR REFLIST))))
(GO A)))))

EXPR)

PURPOSE: begin the run and control execution

PARAMETER: reference variable

CALLED BY: user

COMMENTS: none

START

( REFVAR e REFLIST Y

REFLIST EMPTY

EVALUATE
PROCESS

PRINT
"END'OF RUN"

RETURN
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NEXT e REFLIST RETURN

ROTATE REFLIST NEXT "NEXT"

NEXT = "NEXT"
EVALUATE
PROCESS

EVALUATE
PROCESS



SUSPEND

(DEFPROP SUSPEND
(LAMBDA(VALS LABEL)
(PUTVAL VALS)
(PUTLAB LABEL))

EXPR)

73

PURPOSE: save execution environment and return point label

PARAMETER: reference variable

CALLED BY: user program

COMMENTS: none

(:I SUSPEND

PUTVAL VALS

PUTLAB LABEL

4,

RETURN
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TERMINATE

(DEFPROP TERMINATE
(LAMBDA(REFVAR)
(SETA REFLIST (TERM1 REFVAR REFLIST)))

EXPR)

(DEFPROP TERM1
(LAMBDA(REFVAR REFLIST)
(COND ((NULL (CHECK REFVAR)) REFLIST)

(T (CDR REFLIST))))
EXPR)

PURPOSE: terminates process associated with reference variable

PARAMETER: reference variable

CALLED BY: user program

COMMENTS: no error if reference variable not found in reference list
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Appendix B Definitions

An argument is an independent variable used by a function. In

terms of its application, it is a particular value supplied to the

function at the time the function is to be executed.
(10)

An atom is a unit which cannot be divided further. In LISP, an

atom may be a variable or a function name and is represented by a

sequence of characters containing no blanks.
(10)

A binding is a one-to-one correspondence between formal parameters

and actual parameters. A LISP binding consists of the assignment of a

pointer to the value of a variable.
(10)

A dotted pair is a special kind of two element list. A normal

two element list (A B) in LISP contains two words of memory. The first

half of the first word contains a pointer to a variable location A,

and the second half contains a pointer to the second word of the list.

The second word is divided in half as well. The first half points to

the location B, and the second half points to NIL, the list terminat-

ing symbol. In the case of the dotted pair (A . B), only one word of

memory is contained in the list. The first half of the word points

to the location A, while the second half points to B.
(10)

An element is an atom, a list of atoms, or a list of lists.
(12)

An environment is that part of the world which the processor can

directly sense or alter.
(11)

A function is a unit of computer code which performs some action
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and returns a single value to its caller.

An instance is an example or a case of an object. Given an object

"vehicle", two instances of it are "car" and "bus". The word "instance"

is used to distinguish between different occurrences of the same pro-

cess, each having different sets of local variable values.

A list is an ordered collection of data. Recursively defined, a

list is an atom or a list of lists.

A parameter is a characteristic element which governs the actions

of a function.

A processor is a pair (D, I) where D is a physical device which

can be placed in specified initial states and I is an interpretation

of its physical status. Each sequence of states from an initial state

is a computation of the processor. (9)

A simulation is an imitative representation of the functioning

of an object or system.

A stand is a group of plants growing in a continuous area.

A state variable is an elementary quantity which can assume cer-

tain well-defined values.
(9)

A state variable set is a set of state variables.
(9)
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Appendix C Support Functions Used in the Example

Flt

(DEFPROP Fil
(LAMBDA(X1 X4)
(*PLUS (MINUS X1)

(SQRT

(*PLUS (*TIMES X1 X1)
(EXP

(PLUS 7.5632699

(*TIMES 0.47760000 (LOG X1))
(*TIMES -0.96660000

(LOG

(TIMES X4
(PLUS 0.40000000E-1

(*TIMES 0.26999999E-1 X1)
(TIMES 0.40499999E -2 X1X1

)))))))))))
EXPR)

PURPOSE: flow function for box #1 of tree model

PARAMETERS: diameter of tree at breast height, number of trees/acre

CALLED BY: tree model process

COMMENTS: from FLEX-form

RETURN

e
7.5632 +.47761nX

1
+.96661n (X4(.04 +0.027X

1
+0.00405X

1
))
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F22

(DEFPROP F22
(LAMBDA(X1 X2 F11VAL)
(EXP

(PLUS 3.2032000
(*TIMES 0.46649999 (LOG (*PLUS F11VAL 0.5E-1)))
(*TIMES -0.34632999 (LOG X1))
(*TIMES -0.96129999E-1 (LOG X2)))))

EXPR)

PURPOSE: flow function for box #2 at tree model

PARAMETERS: trunk diameter at breast height, value of Fli flow function

CALLED BY: Tree model process

COMMENTS: from FLEX-form

( F22

RETURN

e
3.2032 +.466511n(0.05+f11(X1,X4))-.34331nX

1
-.96131n(X

2
)
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F33

(DEFPROP F33
(LAMBDA(X1 X2 X4)

(*PLUS (MINUS X3)
(MAX X3

(PLUS -41.139997
(*TIMES 0.60999999 X2)
(*TIMES 9.1779998

(LOG
(TIMES X4

(PLUS 0.40000000E-1
(*TIMES 0.26999999E-1 Xl)
(TIMES 0.40499999E-2 Xl Xl))))

)))))
EXPR)

PURPOSE: flow function for box #3 of tree model

PARAMETERS: height of tree, height of tree crown base, value of
flow function Fli

CALLED BY: tree model process

COMMENTS: taken from FLEX-form

MAX[X
3'

(-41.14 + .61X
2

+ 9.1781n(f
11

(X
1'

X
4
)))]-X

3



F44
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(DEFPROP F44

(LAMBDA (X4)

(*TIMES -0.113 X4))
EXPR)

PURPOSE: flow function for box #4 of tree model

PARAMETER: number of trees/acre

CALLED BY: tree model process

COMMENTS: from FLEX-form

RETURN

-.113 X4



SQRT

(DEFPROP SQRT
(LAMBDA (Y)

(PROG (M G H)
(SETQ G Y)

A (SETQ H (*QUO Y G))
(SETQ M (*TIMES 0.5 (*PLUS G H)))
(COND (( *LESS (ABS (*DIE G H)) 1.0E-5) (RETURN M))

(T(SETQ G M)(GO A)))))
EXPR)

PURPOSE: extract square root of a number

PARAMETER: number

CALLED BY: User program

COMMENTS: Newton's method

SQRT

4,

G4--Y

4,

Y,
H /G

4,

M 4 1/2(G + H)

( IG -416:1.0X10 -5

4, 14

G M

RETURN M
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LOG

(DEFPROP LOG
(LAMBDA(X)

(PROG (XM1 TERM SUMM ITT)
(SETQ SUMM 0.0)
(SETQ ITT 1.0)
(SETQ TERM (*QUO (SUB1 X) X))
(SETQ XMl TERM)

A (SETQ SUMM (*PLUS SUMM (*QUO TERM ITT)))
(SETQ ITT (ADD1 ITT))
(SETQ TERM (*TIMES TERM XMl))
(COND (( *LESS (*QUO TERM ITT) 1.05-5) (RETURN SUMM)) (T (GO A)))

))

EXPR)

PURPOSE: extract natural log of a number

PARAMETER: positive number

CALLED BY: user program

COMMENTS: Taylor series expansion

LOG

515MM

ITT 4- 1
XMlt- TERM4- (X-1 )/X

----11SUMM4-SUMM
TERM
ITT

ITT4-ITT+i

TERMt-TERM * XMI

TERM4c.
1.0X10

-5

ITT
RETURN SUM



EXP

(DEFPROP EXP
(LAMBDA(X)

(PROG (TERM
(SETA
(SETQ
(SETA

A (SETQ
(SETQ

(COND

(SETQ

(GO A)

EXPR)

SUMM ITER)
SUMM 1.0)
ITER 1.0)
TERM (*QUO X ITER))
SUMM (*PLUS SUMM TERM))
ITER (ADD1 ITER))
(( *LESS TERM 1.05-5) (RETURN SUMM)))
TERM (*TIMES TERM (*QUO X ITER)))

))

PURPOSE: exponential function e
x

PARAMETER: number

CALLED BY: user program

COMMENTS: Taylor series expansion

EXP

SUMMA-1
ITER4-1

TERME-
x
/
ITER

le

SUMM4-SUMM+TERM

ITERE-ITER+1

TERM< 1.0X10 -5

N

TERMf-TERM*
X

ITER

RETURN SUM

83


