AN ABSTRACT OF THE THESIS OF

Lisa C. Grubisha for the degree of Master of Science in Botany and Plant Pathology presented on June 22, 1998. Title: Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences.

Abstract approved:
 Redacted for Privacy
 Joseph W. Spatafora

Rhizopogon is a hypogeous fungal genus that forms ectomycorrhizae with genera of the Pinaceae. The greatest number and species of Rhizopogon are found in coniferous forests of the Pacific Northwestern United States, where members of the Pinaceae are also concentrated. Rhizopogon spp. are host-specific primarily with Pinus spp. and Pseudotsuga spp. and thus are an important component of these forest ecosystems. Rhizopogon includes over 100 species; however, the systematics of Rhizopogon have not been well understood. Currently the genus is placed in the Boletales, an order of ectomycorrhizal fungi that are primarily epigeous and have a tubular hymenium. Suillus is a stipitate genus closely related to Rhizopogon that is also in the Boletales and hostspecific with Pinaceae. I examined the relationship of Rhizopogon to Suillus and other genera in the Boletales. Infrageneric relationships in Rhizopogon were also investigated to test current taxonomic hypotheses and species concepts. Through phylogenetic analyses of large subunit and
internal transcribed spacer nuclear ribosomal DNA sequences, I found that Rhizopogon and Suillus formed distinct monophyletic groups. Rhizopogon was composed of four distinct groups; sections Amylopogon and Villosuli were strongly supported monophyletic groups. Section Rhizopogon was not monophyletic, and formed two distinct clades. Section Fulviglebae formed a strongly supported group within section Villosuli. Taxonomic revisions were proposed. Suillus, Truncocolumella, and the Gomphidiaceae were transferred to the Rhizopogonaceae. In Rhizopogon, sections Amylopogon, Rhizopogon, and Villosuli were elevated to subgenera. Subgenus Roseoli was erected to accommodate the second section Rhizopogon clade. In section Fulviglebae, Stirps Vinicolor, Rhizopogon ochraceisporus, R.subclavitisporus, and R. clavitisporus were transferred to subgenus Villosuli while the remaining species in section Fulviglebae were transferred to subgenus Rhizopogon.
© Copyright by Lisa C. Grubisha
June 22, 1998
All Rights Reserved

Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences

by

Lisa C. Grubisha

A THESIS
submitted to

Oregon State University
in partial fulfillment of the requirements for the degree of

Master of Science

Master of Science thesis of Lisa C. Grubisha presented on Lune 22, 1998

APPROVED:
Redacted for Privacy
Major Professor, representing Botany and Plant Pathology

Redacted for Privacy

Chair of Department of Botany and Plant Pathology

Redacted for Privacy
Dean of Graduhte School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Redacted for Privacy
Lisa C. Grubisha, Author

ACKNOWLEDGMENT

Many individuals and organizations have contributed to the realization of this thesis. This study was funded by the Mycology Team, USDA Forest Service, Pacific Northwest Research Station. The Mycological Society of America's Alexander H. and Helen V. Smith Research Fund provided financial support for me to visit the University of Michigan Herbarium to examine Alexander H. Smith's type collections of Rhizopogon. Financial support for sequencing of type collections came from the Hardman Award for Native Plant Research. Additional financial support, for the project and myself, came from the personal research funds of Joseph Spatafora. I would like to personally thank several individuals that I believe deserve special mention.

I am indebted and grateful to my advisor and committee members. I appreciated their guidance and encouragement through the joys and struggles. I would like to express my sincere thanks to my advisor, Joey Spatafora, for welcoming me to his lab, offering this wonderful project to me, and introducing me to the world of fungal molecular systematics. Through the years he opened many doors for me, for which I will always be grateful. I thank my committee members Jim Trappe and Randy Molina. Their humor and commitment was greatly appreciated during my studies and research endeavors.

The enthusiasm expressed by Dr. Jeff Stone and Dr. Aaron Liston was a constant source of inspiration. Dr. Efren Cázares also deserves a personal thanks; he passed on his knowledge on truffles, especially of Rhizopogon
taxonomy, and offered insightful comments on a earlier parts of this thesis. He always gave me good advice.

I could not have completed this study without the support of several fellow graduate students and friends. Ankie Camacho and Dr. Ari Jumpponen provided the initial idea for the study and subsequently offered creative ideas on project direction throughout the study. Jamie Platt was a constant source of knowledge, especially relating to laboratory protocols and procedures, and imaginative ideas on various aspects of my research. Dr. Teresa Lebel shared her truffling techniques and provided many thoughtful insights concerning Rhizopogon systematics. I always appreciated the interactions and refreshing communication I had with Kei Fujimura, Jane Smith, Lori Winton, and Bill Daly.

Finally, I would like to thank a few important people in my life that I do not see very often. First I thank my parents, Miriam and Drago, and my sisters, Vida and Diane, for their unyielding support and love. Their humor and encouragement were always a source of light in my life.

CONTRIBUTION OF AUTHORS

Dr. Joseph W. Spatafora participated at all stages of the study including design, data collection and analysis, molecular phylogenetics expert, and editing. Dr. James Trappe was not only the taxonomy consultant and guru, but he participated in the study design, two trips to Idaho to collect specimens, and editing. Dr. Randy Molina also contributed a great deal to these chapters including initiation, design, intellectual development, editing, and advisor on concepts of host specificity and Rhizopogon mycorrhizae. All authors passed on knowledge and experience from their various fields of expertise to me and without such assistance this thesis would not have been completed.

TABLE OF CONTENTS

Page
CHAPTER 1: INTRODUCTION 1
CLASSIFICATION 2
EVOLUTION OF THE HYPOGEOUS HABIT IN RHIZOPOGON 4
TAXONOMY 6
HOST SPECIFICITY 8
ECOLOGICAL ROLE 9
RIBOSOMAL DNA 11
Large subunit (25S) rDNA 12
Internal transcribed spacer regions 12
CHAPTER 2: PHYLOGENETICS OF RHIZOPOGON AND RELATED GENERA WITHIN THE BOLETALES: EVIDENCE FROM NUCLEAR LARGE SUBUNIT rDNA SEQUENCES 15
ABSTRACT. 16
INTRODUCTION 17
MATERIALS AND METHODS 19
Fungal specimens 19
Nucleic acid extraction, polymerase chain reaction, and DNA sequencing 19
Phylogenetic analysis. 23
RESULTS 24
25 S rRNA sequence variation. 24
Parsimony analyses 24
DISCUSSION. 27
$25 S$ variability and utility 27
Taxonomic relationships in the Boletales 28
Boletoid radiation 28

TABLE OF CONTENTS (Continued)

Page
Suilloid radiation 29
Taxonomic revisions 30
ACKNOWLEDGMENTS. 32
LITERATURE CITED 32
CHAPTER 3: RE-EXAMINATION OF INFRAGENERIC RELATIONSHIPS WITHIN RHIZOPOGON BASED ON nrDNA INTERNAL TRANSCRIBED SPACER SEQUENCES 37
ABSTRACT 38
INTRODUCTION. 39
MATERIALS AND METHODS. 42
Fungal specimens 42
Nucleic acid extraction, polymerase chain reaction, and DNA sequencing. 42
Phylogenetic analysis 47
Choice of outgroup 48
RESULTS 49
Parsimony analyses. 49
ITS sequence analysis 52
DISCUSSION 55
Sequence analyses 55
Phylogenetic relationship between Rhizopogon and Suillus 57
Examination of infrageneric relationships in Rhizopogon 57
Section Rhizopogon 58
Section Fulviglebae 62
Section Villosuli. 63
Section Amylopogon 65
Host specificity and evolution 66
Taxonomic revisions. 68
ACKNOWLEDGMENTS 70

TABLE OF CONTENTS (Continued)

Page
LITERATURE CITED 71
CHAPTER 4: CONCLUSIONS 77
SUMMARY 77
Rhizopogon systematics 77
Utility of ribosomal DNA 80
RECOMMENDATIONS FOR FUTURE RESEARCH 81
Generic relationships in the Boletales 81
Species concepts in Rhizopogon 81
BIBLIOGRAPHY 83
APPENDICES 94
APPENDIX 1: Morphological characters used to distinguish the four sections of Rhizopogon based on A. H. Smith's classification (Smith, 1964; Smith and Zeller, 1966) 95
APPENDIX 2: PAUP NEXUS alignment file of 53 sequences of the internal transcribed spacer (ITS) regions 1 and 2 and the 5.8 S subunit from Rhizopogon, Suillus, Gomphidius, Truncocolumella, and Chroogomphus used in the maximum parsimony analyses in Chapter 3. 96

LIST OF FIGURES

Figures Page
2.1. Strict concensus cladogram of 70 equally parsimonious trees of 943 steps recovered from maximum parsimony analyses of 25 S nrDNA sequences when all amiguous areas of alignment were excluded 25
2.2. One of two equally parsimonious trees of 1031 steps recovered from maximum parsimony analysis of 25 S nrDNA sequences when all nucleotide positions were included 26
3.1. Strict consensus cladogram of 80 equally parsimonious trees of 739 steps based on complete ITS nrDNA sequences when indels were coded with "I" and ambiguous areas of the alignment were excluded 51
3.2. The cladogram presented in Fig. 3.1 with multiple-base insertion /deletions (indels) mapped to respective branches 54
3.3. Strict consensus cladogram of 32 equally parsimonious trees using binary (presence/absence) gap coding 67

LIST OF TABLES

Table Page
2.1. Genbank number, voucher, and collection location of species examined for DNA analysis 20
3.1. Genbank number, voucher, and collection location of species from which the internal transcribed spacer regions and 5.8 S subunit were sequenced 43
3.2. Results from maximum parsimony analysis of four insertion/deletion (indel) coding strategies 50
3.3. ITS 1 and ITS 2 size and length variation for Suillus and Rhizopogon. 52
3.4. Taxonomic divisions in Rhizopogon section Rhizopogon based on spore width and peridium coloration as defined by A. H. Smith (Smith and Zeller, 1966) 59

DEDICATION

I dedicate this thesis to my parents, Miriam and Drago Grubisha. Their support always came when I needed it most, and they had the insight to fly me home to Wisconsin for a break from work.

PREFACE

"These dingy, unattractive, potato-like fungi are the Russulas of the underworld--unappreciated except by squirrels. Whereas the Russulas' brittle flesh is irresistible to those who like to trounce things, the Rhizopogons' rubbery texture is a blessing to those who like to bounce things."

[^0]
SYSTEMATICS OF THE GENUS RHIZOPOGON INFERRED FROM NUCLEAR RIBOSOMAL DNA LARGE SUBUNIT AND INTERNAL TRANSCRIBED SPACER SEQUENCES

CHAPTER 1

INTRODUCTION

Rhizopogon Fries (Basidiomycota, Boletales) is a genus of sequestrate fungi ectomycorrhizal mostly with conifers. The sporocarps are globose to pyriform usually $1-6 \mathrm{~cm}$ in diameter, in some cases up to 15 cm in size (Smith and Zeller, 1966). Rhizopogon spp. lack a columella. When fresh and mature they have a rubbery texture. The peridium structure may be simplex (composed of single layer of hyphae), or duplex (two distinct hyphal layers) (Zeller and Dodge, 1918). Martin (1996) described five types of peridial structure, four simplex and a single duplex, based on number of hyphal layers and arrangement, and presence of globose cells: Roseolus-type, Abietis-type, Luteolus-type, Corsicus-type, and Villosulus-type (duplex). The peridium encloses the gleba, which consists of lacunose chambers lined with hymenia. When dried, the gleba varies from very brittle, literally crumbling when sliced with a razor blade, to bone hard. Statismospores are fusoid to oblong or ellipsoid or sometimes versiform, $5-15(-25) \times 1.5-8 \mu \mathrm{~m}$, smooth, with a single, wall, that is thin in most species but may be up to $2 \mu \mathrm{~m}$ thick (Smith and Zeller, 1966), and the spores of some species are amyloid (Rhizopogon section Amylopogon, Smith, 1964). According to Castellano et al. (1989) Rhizopogon
is the only genus of hypogeous fungi that has species with the combination of both smooth and amyloid spores.

CLASSIFICATION

Based on overall gross morphology, 19th century mycologists lumped false-truffles, puffballs, bird's nest fungi, earth stars, and stinkhorns in an artificial grouping of Gasteromycetes (Miller and Miller, 1988; Hibbett et al, 1997). Until relatively recently, these fungi were classified by taxonomists in various orders in the class Gasteromycetes in the Phylum Basidiomycota. A more natural classification system was achieved when ecological data were combined with microanatomical data gathered through scanning and transmission electron microscopy (Smith, 1973; Miller and Miller, 1988). As early as 1933, Morse speculated that the then-called gasteromycete Podaxis and the agaric Coprinus were related taxa based on morphological similarities. Current molecular data indicate that the hypogeous fungi have arisen independently several times in both the Ascomycota and Basidiomycota (Bruns et al., 1989; Vilgalys et al., 1993; Hibbett et al., 1997; O'Donnell et al., 1997). If taxonomy is to reflect evolutionary history, then genera need to be arranged in monophyletic groups (Vilgalys et al., 1993). True and falsetruffles now have been removed from the Gasteromycetes and placed in orders and families that reflect molecular phylogenetic hypotheses in recognition that evolutionary morphological reduction has produced trufflelike morphologies along many independent phylogenetic lines. The four
groups still recognized as "Gasteromycetes" include puffballs, bird's nest fungi, earth stars, and stinkhorns (Alexopoulos et al., 1996). The continued use of this artificial grouping results from uncertainty about phylogeny of these groups with respect to other fungal lineages. However, Hibbett et al. (1997) have demonstrated that the puffballs have arisen within the Agaricales several times.

Rhizopogon has been placed in two orders (three if we include the Agaricales of Singer which includes the boletes) and three families. Until recently, Rhizopogon was placed in the class Gasteromycetes, order Hymenogastrales. Gäumann and Dodge erected the family Rhizopogonaceae in 1928. Dodge (1931) then described the genus Alpova Dodge and placed it in the Rhizopogonaceae. Fischer (1933) erected the Melanogastraceae, and included Alpova in this family. Hawksworth et al. (1995) list Alpova in the Melanogastraceae and placed Truncocolumella Zeller, Amogaster Castellano, and Rhizopogon in Rhizopogonaceae. In 20th century studies, Rhizopogon was placed in the Hymenogastraceae (Smith and Zeller, 1966; Smith, 1971; Bruns and Szaro, 1992), Rhizopogonaceae (Zeller, 1939, 1941; 1948, 1949; Lange, 1954; Smith, 1973; Miller and Miller, 1988; and Martin, 1996), and Boletaceae (Miller, 1983; Castellano et al., 1989; Molina et al., 1992; Allen et al., 1998). Although Rhizopogon differs strikingly from Suillus and other boletes in gross morphology, evidence from scanning electron microscopy of Rhizopogon spores support placement of Rhizopogon in the Boletales and Boletaceae (Hawker, 1975). Current evidence based on phylogenetic studies of
mitochondrial (Bruns et al., 1989; 1990; 1992; 1998) and nuclear ribosomal DNA sequences (Baura et al., 1992; Kretzer et al., 1996) further demonstrate the close relationship between Rhizopogon and Suillus.

EVOLUTION OF THE HYPOGEOUS HABIT IN RHIZOPOGON

Presently mycologists agree that epigeous and hypogeous fungi are phylogenetically related, although historically a consensus on the direction of evolution was lacking (Heim, 1971; Thiers, 1971, 1984; Trappe and Maser, 1977). The possible phylogenetic relationship between Rhizopogon and Suillus was hypothesized by Malençon in 1931. This hypothesis was reiterated several times (Smith 1971; Thiers, 1971, 1975, 1984) but agreement on what characters were primitive and derived was not reached. Smith and Singer (1959) proposed the direction of evolution of the "Gastroboletus Series" is from a hypogeous Rhizopogon ancestor through Truncocolumella and Chamonixia to the secotioid Gastroboletus to Boletus. Smith (1966, 1971, 1973) was a firm advocate that Rhizopogon possessed primitive characters from which Suillus and finally Gomphidius arose. Others disagreed and hypothesized just the opposite, that Rhizopogon is derived from a bolete ancestor (Thiers, 1971, 1975, 1984; Bruns et al. 1989). Smith argued that Rhizopogon is ancestral because it possesses primitive characters and lacks complex morphology (Smith and Zeller, 1966; Smith, 1971). Thiers (1971, 1975) suggested that Rhizopogon evolved from a bolete ancestor. Later Thiers (1984) outlined probable ecological and climatic pressures that would favor
selection of hypogeous growth forms. His ideas centered around his observations from years of experience in the xeric mountains of Idaho and the Sierra Nevadas of California. He hypothesized that in response to a xeric climate with extended periods of drought, selection favored fruitifications in which the pileus did not pull away from the stipe. This resulted in the loss of ballistospory and stipe. The epicutus developed into a peridium and surrounds the hymenium. A chambered gleba resulted from constraints imposed on the hymenium during development from the surrounding peridium. This lacunose gleba thus retained moisture from humidity. This change in morphology subsequently resulted in a change from air dispersal of ballistospores to animal dispersal of statismospores.

Considerable molecular evidence supports the hypothesis that Rhizopogon and Suillus are indeed close relatives and that Suillus is more closely related to Rhizopogon than to other boletes (Bruns et al., 1989, 1990, 1992, 1998; Baura et al., 1992). Bruns et al. (1989) hypothesize that an accelerated rate of morphological evolution can best be explained by rapid morphological divergence resulting from selective pressures which may have acted on a small number of developmental genes. Furthermore, the dearth of intermediate forms provides indirect evidence of intense selective pressures.

As for the issue of the direction of evolution between epigeous and hypogeous fungi, currently there is support for both hypotheses in different lineages of fungi: molecular evidence supports hypotheses of the evolution of Rhizopogon from a gilled boletoid ancestor (Bruns et al., 1989), and there is
also molecular evidence suggesting that stinkhorns are derived from a Hysterangium-like ancestor (Colgan et al., 1997).

TAXONOMY

The first Rhizopogon descriptions came from European mycologists (Molina et al., in press). A thorough historical review on the taxonomy of Rhizopogon is presented by Martin (1996) and additional insights are provided by Molina et al. (in press). Important early contributions toward North American taxonomic studies of Rhizopogon are by Zeller and Dodge (1918), Coker and Couch (1923), and Zeller (1939, 1941,1948). By far the most comprehensive taxonomic study of the genus was undertaken by Alexander Smith (Smith and Zeller, 1966). In this work, Rhizopogon was divided into two subgenera, Rhizopogonella and Rhizopogon, that were further broken into two and four sections, respectively. He placed 137 species into the four sections, Amylopogon, Fulviglebae, Villosuli, and Rhizopogon, of Rhizopogon subgenus Rhizopogon based on macroscopic and microscopic characters and chemical reactions and bruising of the sporocarp. Later Trappe (1975) transferred the four species in subgenus Rhizopogonella to Alpova. Our current understanding of the genus Rhizopogon is that of Smith and Zeller (1966) without subgenus Rhizopogonella.

Subsequently, 25 new North American species have been described, the known distribution of some species was expanded, and some species described in Smith and Zeller (1966) have been reduced to synonomization (Smith,

1966, 1968; Harrison and Smith, 1968; Trappe and Guzmán, 1971; Hosford, 1972, 1975; Hosford and Trappe, 1980; Miller, 1986; Cázares et al., 1992; Allen et al., 1998).

Despite this rich history, the taxonomy of Rhizopogon remains poorly understood. Smith and Zeller (1966) point out that, because the sporocarp is so reduced morphologically, few taxonomically informative characters are found on dried specimens. He maintained that characteristics of the fresh specimens were extremely important in species identification. He placed importance on peridial structure, color when fresh, and color changes due to bruising and reactions to KOH and FeSO_{4} in his classification scheme (Appendix 1). Smith and Zeller (1966) also recognized that these characters are often missing from descriptions of early taxonomic work, including type descriptions. Many species that stain red often have been misidentified as R. rubescens (Smith and Zeller, 1966). Complicating matters further missing or undesignated type specimens in early European collections (e.g. R. luteolus Fries and R. roseolus Corda) and the use of European keys for identification of North American species have lead to confusion in species identification.

A gradient of developmental stages adds to the difficulties in species identification. Because hypogeous fungi develop more slowly than epigeous fungi, several developmental stages may be found in a single collection (Molina and Trappe, 1994). Ontogenetic stages of a single species may have been described as different species by Smith in Smith and Zeller (1966) (J. Trappe, personal communication). In addition, Smith and Zeller (1966)
placed 11 species morphological affinities to section Villosuli in other sections. Additionally, some species with truncate spores were placed in section Rhizopogon, not section Fulviglebae. Smith's contribution to the understanding of the taxonomy of the genus Rhizopogon cannot be overstated; however, even he noted that certain areas of his work on Rhizopogon would need to be re-examined.

HOST SPECIFICITY

Ectomycorrhizal fungi may be host-specific for a particular genus or have a broad range of hosts. Many Rhizopogon species show strong hostspecificity for either Douglas-fir (Pseudotsuga spp.) or Pinus spp. (Molina et al., in press). Species in Rhizopogon section Villosuli are found exclusively in Douglas-fir forests (Molina and Trappe, 1994; Molina et al., in press). These species also demonstrate the same host-specificity with Douglas-fir in pure culture synthesis (Molina and Trappe, 1994) and when co-cultured with Douglas-fir and other conifers (Massicotte et al., 1994). Molina and Trappe (1994) found that in pure culture synthesis studies, species within a given Rhizopogon section tended to form mycorrhizae with the same hosts giving further support to Smith's (Smith, 1964; Smith and Zeller, 1966) sectional hypotheses.

The other three sections also show a degree of host-specificity or hostpreference with certain conifer genera: species in Rhizopogon section Fulviglebae stirps Vinicolor are found with Douglas-fir, Rhizopogon section

Rhizopogon is usually found with pines or mixed pine forests, and Rhizopogon section Amylopogon tend to be found with pines and true firs (Abies spp.) or mixtures of Pinaceae. Molina and Trappe (1994) and Molina et al. (in press) suggest that, because of the diversity and abundance of Pinaceae in Pacific Northwestern North America, this region has been a major area for the evolution and speciation of Rhizopogon.

Rhizopogon spp. form ectomycorrhizae with five genera of Pinaceae: Pinus, Abies, Tsuga, Picea, and Pseudotsuga (Molina and Trappe, 1992). Rarely do they form ectomycorrhizae with non-Pinaceace hosts. Rhizopogon mengei form ectomycorrhizae with Adenostoma fasiculatum, Rosaceae (Allen et al., 1998). A few Rhizopogon spp. form ectomycorrhizae with chlorophyllous and achlorophyllous members of the Ericaceae: Pacific madrone (Arbutus menziesii Pursh) and common bearbery (Arctostaphylos uva-ursi (L.) Spreng) form arbutoid mycorrhizae with Rhizopogon spp. in pure culture synthesis (Molina and Trappe, 1982a) and in spore inoculation studies when co-cultured with Pinus ponderosa (Molina et al., 1997). Molecular evidence and field observations of sporocarp formation demonstrate that R. ellenae form ectomycorrhizae with the snow plant, Sarcodes sanguinea (Bidartondo et al., 1998).

ECOLOGICAL ROLE

In addition to being an important ectomycorrhizal genus in the Pinaceae forests of the Pacific Northwest, it is also an important ecosystem
component in forest food webs. Hypogeous fungi make up a substantial part of the diet of mycophagous rodents (Maser et al., 1978; Maser et al., 1985). Colgan (1997) demonstrated that diets of the Townsend's chipmunk (Tamias townsendii) and the northern flying squirrel (Glaucomys sabrinus) were dominated by hypogeous fungi and that Rhizopogon was the dominant fungus found in their diet. The northern spotted owl (Strix occidentalis caurina) preys on the northern flying squirrel (Forsman et al., 1984; Carey, 1992). Thus, Rhizopogon forms important linkages in the forest community through mycorrhizal symbioses with forest trees and its role in the food web of flying squirrels and spotted owls.

Because the taxonomy of Rhizopogon is confused, the status of rare and endangered Rhizopogon species is unclear. If indeed there are rare species of Rhizopogon in the Pacific Northwest, it is important to correctly document their occurrence. Castellano (1997) includes 22 putative rare or endangered species of Rhizopogon found in Oregon on a RED list for Oregon macrofungi. Eight species of Rhizopogon are also listed as Strategy 3 fungi in the Forest Ecosystem Management Assessment Team (FEMAT) Record of Decision (USDA, 1994). Geographical areas where strategy 3 fungi are found are considered high priority for management by the USDA Forest Service and Bureau of Land Management. Because species concepts in the genus Rhizopogon remain confused, species rarity may be under or over
estimated which has important implications for the preservation of the species, for the organisms linked to Rhizopogon through mycorrhizal symbioses or forest food webs, and for forest management.

RIBOSOMAL DNA

Ribosomal DNA (rDNA) is commonly used in fungal systematic studies. It is a tandem repeat of three rRNA genes $(18 \mathrm{~S}, 5.8 \mathrm{~S}$, and 25 S in fungi) and internal and external transcribed spacer regions (ITS and ETS, respectively) separating these genes (Bruns et al., 1991; Hamby and Zimmer, 1992; Hibbett, 1992). The tandem repeats are separated by the intergenic spacer region (IGS) that is not transcribed (Hamby and Zimmer, 1992). The IGS is also referred to as the nontranscribed spacer (NTS) region (Bruns et al., 1991; Hibbett, 1992). Through concerted evolution the tandem repeats homogenize rapidly (Arnheim et al., 1980; Zimmer et al., 1980; Dover and Falvell, 1984) and, in general, act as a single copy gene (Bruns et al., 1991).

Some of the attractive features of rDNA are that: 1) it is ubiquitous in living organisms (Hamby and Zimmer, 1992); 2) it is tandemly repeated and easily amplified through polymerase chain reaction (PCR) (Mullis and Falona, 1987; Saiki et al., 1988) (Baldwin et al., 1995); 3) it is a multigene copy in which the motif of alternating gene and spacer regions provide varying levels of nucleotide substitution for addressing questions at higher and lower taxonomic levels (Bruns et al., 1991; Hamby and Zimmer, 1992; Hibbett, 1992); and 4) the more conserved genes provide sites for universal primer
attachment for all eukaryotes from which the less conserved regions may be amplified through PCR (White et al., 1990; Bruns et al., 1991).

Large subunit (25S) rRNA

The large subunit rRNA gene has provided resolution at various taxonomic levels. It is generally useful for analyzing relationships at the familial or generic level (Hibbett and Vilgalys, 1993; Moncalvo et al., 1995; Feibelman et al., 1997; Lutzoni, 1997). Within the large subunit DNA, there are conserved and variable regions. The variable regions are commonly referred to as divergent domains in eukaryotes (Hassouna et al., 1984). They can form stem-loop structures and are a reason for the increase in size of the large subunit rRNA from prokaryotes to eukaryotes (Michot and Bachellerie, 1987).

Internal transcribed spacer region

In molecular systematics, the internal transcribed spacer (ITS) region generally refers to the ITS-1 region, the 5.8 S subunit, and the ITS-2 region. The ITS-1 and ITS-2 are flanked by the 18 S and 25 S , respectively. Although the ITS-1 and ITS-2 regions are part of the repeat unit and are transcribed, they are not part of the actual ribosome (Baldwin, et al., 1995). As a result, a higher degree of nucleotide substitutions and insertion/deletion events (indels) occur within these two spacer regions. ITS-1 and ITS-2 regions typically
provide sufficient resolution for addressing phylogenetic questions at the intergeneric and intrageneric level in fungi (Lee and Taylor, 1991; Baura, 1992; O'Donnell, 1992; Henrion et al., 1994; Hibbett et al., 1995; Monclavo et al., 1995; Kretzer et al., 1996; Harrington and Potter, 1997; Holst-Jensen et al., 1997; Liu, et al., 1997). Although the insertion of gaps into sequence alignment is necessary to maximize positional homology of characters, the placement of indels can be problematic and ambiguous (Baldwin et al., 1995). The problem is that multiple possibilities exist for equally good indel alignments. Indels may contain phylogenetic information, or the indel itself may reflect a phylogenetic history, even if the indel is not considered informative in phylogenetic analyses.

Recoding gaps for phylogenetic analysis is found in phylogenetic studies more often, especially in the plant literature. Gaps may be recoded as a fifth (Swofford, 1993) or binary (presence/absence) character (Wojciechowski et al., 1993), scored as missing data, or excluded entirely from the analysis. Multiple position gaps would be overinflated if every position is recoded as a 5th character (Hibbett et al., 1995). A way to score multiple-base gaps is by adding an additional character to the gap to score the presence of the gap as informative (Bruns et al., 1992).

In this thesis, through phylogenetic analyses of nucleotide sequence data from the nuclear ribosomal large subunit rRNA gene and the internal transcribed spacer region (ITS1, 2 and 5.8 S subunit), I examine the phylogenetic relationship of Rhizopogon and Suillus to determine the
monophyly of these closely related genera. This is accomplished in the studies presented in both Chapters 2 and 3. In Chapter 2, I also investigate the placement of Rhizopogon and Alpova in the Boletales. I re-examine infrageneric relationships in Rhizopogon based on the classification of A. H. Smith (Smith and Zeller, 1966) and then determine the nature of the relationship with Suillus in Chapter 3.

CHAPTER 2

> PHYLOGENETICS OF RHIZOPOGON AND RELATED GENERA WITHIN THE BOLETALES: EVIDENCE FROM NUCLEAR LARGE SUBUNIT rDNA SEQUENCES

Lisa Grubisha, James M. Trappe, Randy Molina, and Joseph W. Spatafora.

Abstract

The phylogenetic relationship between the closely related fungal genera Suillus and Rhizopogon and their placement in the Boletales was tested through maximum parsimony analyses of large subunit (25S) nuclear ribosomal DNA sequences. Genera included in the analyses were Boletus, Tylopilus, Xerocomus, Phylloporus, Boletellus, Suillus, Rhizopogon, Alpova, Truncocolumella, and Melanogaster. Species from the Agaricales, Russulales, Ganodermataceae, and Polyporaceae were also included. The average 25S sequence length was 874 base pairs. Conserved regions of sequence alignment interspersed with variable regions were observed for all species. Analyses were conducted with and without these variable regions. In both analyses, the Boletales is strongly supported. Within the Boletales, distinct suilloid and boletoid radiations are also strongly supported. The Boletaceae, as currently conceived, is not monophyletic, and the Melanogastraceae is included in the boletoid radiation. Alpova is polyphyletic and Boletus is not monophyletic. The suilloid radiation consists of Suillus, Rhizopogon, and Truncocolumella; these genera are incorporated into the family Rhizopogonaceae. Suillus and Rhizopogon are both monophyletic genera.

Key words: Boletales, Rhizopogonaceae, Suillus, Rhizopogon, Alpova, large subunit rDNA, phylogeny

INTRODUCTION

The Boletales is a large order of Basidiomycetes. Kreisel (1969) placed 11 families in the Boletales that include pored, gilled, resupinate, and hypogeous fungi; however, the Boletales was not always recognized as an order. Smith and Thiers (1971) placed 11 genera, 10 epigeous and one secotioid, in the Boletaceae (Agaricales). Pegler and Young (1981) recognized six families in the Boletales. Singer (1986) classified the boletoid pored and gilled fungi in the Agaricales; the pored boletes were placed in either the Boletaceae or Strobilomycetaceae, while the related gilled fungi where placed in the Paxillaceae or Gomphidiaceae, and the hypogeous fungi were not included in the Agaricales.

Bruns and Szaro (1992) recognized two distinct groups in the boletes as "suilloid" and "boletoid" radiations of the Boletaceae. Suillus was the only genus of the Boletaceae in the suilloid radiation. Gomphidius and Chroogomphus were in the Gomphidiaceae, and they considered Rhizopogon in the Hymenogastraceae. Thus, the Boletaceae was not monophyletic in their independent and combined analyses of DNA sequences of mitochondrial and nuclear small subunit rRNA genes. Extensive sampling of rRNA genes from both mitochondrial (Bruns et al., 1989; Bruns and Szaro, 1992; Bruns et al., 1998) and nuclear (Baura et al., 1992; Bruns and Szaro, 1992; Kretzer et al., 1996; Grubisha et al., 1998) loci demonstrate Suillus, Rhizopogon, Gomphidius, and Truncocolumella to be more closely related to each other than to other boletes.

Boletales are ectomycorrhizal with woody angiosperms and gymnosperms. Suillus, Rhizopogon, Truncocolumella, and the Gomphidiaceae are obligately ectomycorrhizal and strongly host-specific with genera of the Pinaceae (Molina et al., 1992). Some sections and species in Suillus and Rhizopogon are host specific with either Pinus spp. or Douglasfir (Pseudotsuga spp.) (Molina et al., in press).

Gäumann and Dodge (1928) erected the Rhizopogonaceae to accommodate Rhizopogon. Dodge (1931) placed Alpova in the Rhizopogonaceae. Later Fischer (1933) included Alpova in the Melanogastraceae. Because the phylogenetic placement of the Melanogastraceae has been uncertain, it has been typically placed in the Melanogastrales in the Gasteromycetes. Trappe (1975) discussed the possible evolutionary relationship of Alpova, Melanogaster, and Rhizopogon. As the sporocarp matures in these genera, the glebal cell walls gelatinize, and, in Alpova and Melanogaster, the basidia autolyse "...leaving the spores suspended in slime" (Trappe, 1975). The most valuable characters for taxonomic separation of these genera include: presence or absence of clamp connections and a hymenial pallisade, spore wall characteristics including color, thickness, laminations, and nature of the basal pore (Trappe, 1975). He concluded that the evolutionary line of Rhizopogon-Alpova-Melanogaster is a continuum and, because Rhizopogon and Melanogaster differ distinctly but Alpova shares characteristics with both, the latter is the obvious intermediate genus.

Nuclear large subunit (25S) ribosomal DNA (rDNA) analyses have been useful for addressing questions at both lower and higher taxonomic levels (Vilgalys and Hester, 1992; Hibbett and Vilgalys, 1993; Vilgalys and Sun, 1994; Chapela et al., 1994; Moncalvo et al., 1995; O'Donnell et al., 1997;

Fiebleman et al., 1997; Platt et al., in prep). The 25S gene is characterized by possessing alternating "core" and "variable" regions (Hassouna et al., 1984; Michot and Bachellerie, 1987). Twelve variable domains have been identified in eukaryotes, including the yeast, Saccharomyces carlsbergensis (Hassouna et al., 1984). Large subunit sequences may vary in length as a result of these variable domains.

In this study, we conduct phylogenetic analyses of DNA sequences from the nuclear ribosomal large subunit gene of several genera of the Boletales. Our specific objectives were to: 1) further clarify relationships between the suilloid and boletoid radiation of the Boletales, 2) determine if Rhizopogon and Suillus are monophyletic groups, and 3) examine the phylogenetic placement of the genus Alpova.

MATERIALS AND METHODS

Fungal specimens

Fifteen collections from species of the Boletales were selected for DNA extraction (Table 2.1) and an additional 24 large subunit rDNA sequences from Basidiomycota taxa were obtained from GenBank (Table 2.1).

Nucleic acid extraction, polymerase chain reaction, and DNA sequencing

The protocol for nucleic acid extraction was an SDS-lysis buffer or $2 X$ CTAB method, modified from Bruns et al. (1990) and Doyle and Doyle (1987), respectively. The large subunit (25S) region of the nrDNA was amplified via

Table 2.1. Genbank number, voucher, and collection location of species examined for DNA analysis. Species listed only by Genbank number were not sequenced in this study.

Species	GenBank accession number	Voucher number $^{\text {a }}$	Herbarium

Table 2.1. (continued).

Species	GenBank accession number	Voucher number	Herbarium²
Pleurotus populinus	U04159		
Pleurotus ostreatus (Jacq. ex Fr.) Kummer	U04147		
Polyporus sp. Fr.			
Rhizopogon hawkerae Smith	AF071458	JMT15299	OSC
Rhizopogon occidentalis Zeller \& Dodge	AF071453	JMT 17564	OSC
Rhizopogon olivaceotinctus A. H. Smith	AF071455	HT 53027	SFSU
Rhizopogon parksii Smith	AF071459	JMT 19446	OSC
Rhizopogon smithii Hosford	AF071460	JMT 12321	OSC
Rhizopogon subpurpurascens Smith	AF071461	JMT 19168	OSC
Rhizopogon truncatus Linder	AF071462	JMT 17993	OSC
Rhizopogon truncatus Linder	AF071463	LCG 212	OSC
Rhizopogon villosulus Zeller	AF071464	JMT 19466	OSC
Russula mairei Sing.	U11926		
Suillus capives (Opat.) Smith \& Thiers	AF071535		
Suillus sinuspaulianus (Pomerleau \& Smith) Dick \&	AF071536		
Snell		AF071465	JMT 19184

polymerase chain reaction (PCR) (Mullis and Fallona, 1987; Saiki et al., 1988), using primer pairs LR0R (Monclavo et. al., 1995) and LR5 (Vilgalys and Hester, 1990). Reaction mixtures were made to a total volume of $50 \mu \mathrm{~L}$ containing double-distilled $\mathrm{H}_{2} 0,2 \mu \mathrm{~L}$ diluted (1:100) DNA template, 10 mM Tris-HCl (pH 8.3), 50 mM potassium chloride, 0.005% Tween 20, 0.005% NP$40,62.5 \mu \mathrm{M}$ dNTPs for each of the four deoxyribonucleotide triphosphates, 2.5 $\mathrm{mM} \mathrm{MgCl}, 0.5 \mu \mathrm{M}$ of each primer, and $25 \mathrm{U} / \mathrm{ml}$ Taq or Tfl polymerase. When Tfl was used magnesium sulfide was substituted for the magnesium chloride. Reaction mixtures were topped off with $25 \mu \mathrm{~L}$ of mineral oil and amplified with a MJ Research Programmable Thermal Controller (PTC)-100 thermal cycler (Watertown, Massachusetts). Thermal cycling parameters for amplification consisted of one initial cycle with denaturation at 95 C for 3 \min. The following conditions were performed for 35 cycles: denaturation at 95 C for 1 min , annealing at 50 C for 30 s , and extension at 72 C for 45 s (extension temperature of 74 C when $T f$ polymerase was used in the reaction mixture). The final cycle was set with an extension at 72 C for 2 min . This was followed by a cycle at 4 C for 15 minutes. PCR products, in 5μ aliquots, were electrophoresed on 1\% agarose gels (Gibco-BRL ultraPURE, Life Technologies) stained with ethidium bromide. Bands were visualized using a transilluminater and sizes were estimated using a 100 bp low mass ladder (Gibco-BRL, Life Technologies).

The PCR products were purified for DNA sequencing either by 3 M ammonium acetate and isopropanol precipitation or by using a QIAquik Gel Extraction Kit (QIAGEN, Inc., Valencia, CA) and following manufacturer's instructions. The PCR products were sequenced with primers LR3 (Vilgalys and Hester, 1990), LR0R, and LR 5 on an ABI 377 automated sequencer in the Central Services Laboratory at the Center for Gene Research and

Biotechnology at Oregon State University. Sequences were aligned on a Power Macintosh 7600/132 by direct examination using SeqApp version 0.6 (Carmean, 1994) and a color font. Alignment gaps were added to maximize positional homology.

Phylogenetic analysis

Maximum parsimony analyses were performed using PAUP* version 4.0 (Swofford, 1998). One hundred heuristic searches were conducted with random sequence addition and tree bisection-reconnection (TBR) branchswapping algorithms, collapsing zero-length branches and saving all minimal-length trees (MUL-PARS). Filobasidiella, the telomorph of the basidiomycetous yeast, Cryptococcus, was chosen as the outgroup for phylogenetic analyses. Four regions of ambiguous alignment were observed in all species. Two maximum parsimony analyses were run: 1) all positions and alignment gaps were included and gaps treated as missing data, and 2) a culled data set when all areas of ambiguous alignment were excluded and remaining gaps treated as missing data. To measure relative support for the resulting clades, 500 bootstrap replications (Felsenstein, 1985) were performed only on phylogenetically informative characters with the following parameters: 5 random sequence additions, TBR, and MUL-PARS off.

RESULTS

$25 S r$ RNA sequence variation

The 25 S sequence averaged 874 bp in length across all species and ranged from 824 bp in Crinipellus campanella to 904 bp in Rhizopogon occidentalis. The average sequence length for the major taxonomic groupings are as follows: boletoid radiation of the Boletales is 867 bp , suilloid radiation of the Boletales is 889 bp , Russulales is 880 bp , Agaricales is 861 , Ganodermataceae is 876 bp . Four regions of ambiguous alignment were observed and accounted for the length variation between taxa.

Parsimony analyses

An alignment of 935 nucleotide bases was analyzed by maximum parsimony. In the culled data set, 70 most parsimonious trees of 943 steps were recovered (Figure 2.1). From the alignment of 935 nucleotide base pairs, 89 ambiguously aligned positions and uninformative positions were excluded, while 250 characters were considered parsimony informative. The consistency index (CI) was 0.417 , the retention index (RI) was 0.661 , and the rescaled consistency index was 0.276 . The Boletales clade is strongly supported as shown with a bootstrap value of 99 . The suilloid radiation comprised the genera Rhizopogon, Suillus, and Truncocolumella and formed a distinct, strongly supported clade with a bootstrap value of 98 . Boletus, Tylopilus, Xerocomus, Boletellus, Phylloporus, Alpova, and Melanogaster formed the boletoid radiation. Although this clade is also well-supported by a bootstrap

Figure 2.1. Strict concensus cladogram of 70 equally parsimonious trees of 943 steps recovered from maximum parsimony analyses of 25 S nrDNA sequences when all amiguous areas of alignment were excluded. Bootstrap values are noted above the respective internode. $\mathrm{CI}=0.417, \mathrm{RI}=0.661$.

Figure 2.2. One of two equally parsimonious trees of 1031 steps recovered from maximum parsimony analysis of 25 S nrDNA sequences when all nucleotide positions were included. Bootstrap values are noted above the respective internode. $\mathrm{CI}=0.422, \mathrm{RI}=0.665$.
value of 93 , generic concepts within the boletoid radiation are not resolved. The Boletales form a sister group to the Agaricales in these analyses, and, although this relationship is only weakly supported, it agrees with results from other studies (Hibbett et al., 1997; Begerow et al., 1997). When all positions were included in the analyses, two equally parsimonious trees were recovered, each of 1031 steps (Figure 2.2). The CI was 0.422 , the RI was 0.665 , and the RC was 0.281 . In this analysis, 276 characters were parsimony informative. Here, the Russulales formed the sister-group to the Boletales, but the bootstrap value is below 50, thus indicating a lack of support for this topology. As in the first analysis, the Boletales was strongly supported with a bootstrap value of 99 . The suilloid and boletoid radiations were composed of the same genera as before, and strongly supported by bootstrap values of 99 and 92, respectively. All relationships were resolved within the Boletales clade in this analysis. In both analyses, the Boletaceae and Boletus are not monophyletic and Alpova is polyphyletic.

DISCUSSION

25S variability and utility

There are four regions of variable alignment in this sequence data. The inclusion or exclusion of these regions affected only the resolution within the Boletales; the remaining clades recovered from the separate analyses containing the same resolution and topology. One variable region varies much less in the Boletales than the other orders. The 25 S rRNA gene provided sufficient resolution in this study to address our objectives.

Taxonomic relationships in the Boletales

Boletoid radiation

Suilloid and boletoid radiations of the Boletales as detected by Bruns and Szaro (1992) were based on mitochondria and nuclear small subunit rDNA sequences from Suillus, Rhizopogon, Chroogomphus, Gomphidius, Paxillus, Paragyrodon, Phylloporus, Boletus, and Xerocomus. In a recent phylogenetic study of sequences from the mitochondrial large subunit rRNA gene of 32 genera Bruns et al. (1998) recovered distinct suilloid and boletoid radiations, along with four small clades outside of these main two clades. They found Boletus, Boletellus, Xerocomus, Phylloporus, and Tylopilus in the boletoid radiation. In our study, genera in the boletoid radiation included Boletus, Xerocomus, Boletellus, Phylloporus, Tylopilus, Alpova, and Melanogaster. This group is strongly supported by bootstrap values, but Boletus is not monophyletic. Only weak intergeneric resolution is provided when ambiguous areas of the alignment were excluded. Further taxon sampling is needed to refine generic concepts within the bolete radiation.

Although Alpova was originally placed in the Rhizopogonaceae by Dodge (1931), phylogenetic placement of Alpova and Melanogaster is unclear (Thiers, 1984). Occasionally Alpova has been placed in the Boletaceae (Molina et al., 1992), but more commonly in the Melanogastraceae (Zeller, 1949; Miller and Miller, 1988, Hawksworth et al., 1995). Besl et al. (1996) suggested that Melanogaster was related to the Boletales, and to Paxillus in particular.

Results from this study support placement of Alpova and Melanogaster in the Boletales. Both genera are ectomycorrhizal (Miller and Miller, 1988; Molina et al., 1992) and associate with diverse hosts, e. g., Alpova diplophloeus is associated only with alder. Host association with both gymnosperms and woody angiosperms is observed with other members of the Boletales.

Suilloid radiation

Suillus, Rhizopogon, and Truncocolumella form a distinct, wellsupported clade in these analyses. Evolutionary connections between Suillus, Gomphidius, Truncocolumella, and Rhizopogon, have been previously hypothesized based on taxonomic and ecological data (Smith and Singer, 1959; Singer, 1962; Smith and Thiers, 1964; Heim, 1971; Smith, 1971; Thiers, 1971, 1975, 1984). Molecular evidence supports the suilloid radiation as a cohesive group distinct from other genera of the Boletaceae (Bruns and Szaro, 1992; Bruns et al., 1998, Grubisha et al., 1998). Rhizopogon, Suillus, Gomphidius, Chroogomphus, Brauniellula, Truncocolumella, and Alpova olivaceotinctus were all genera or species found in the suilloid radiation by Bruns et al. (1998). They also found that closely related species and genera had identical or almost identical sequences in their analyses; sequences for some species of Suillus, Rhizopogon, and the Gomphidiaceae were identical. Based on our results and others (Bruns and Szaro, 1992; Bruns et al., 1998) the Boletaceae is not monophyletic, and Suillus is within this separate suilloid radiation. Singer
(1945) segregated Suillus, Psiloboletinus, and Boletinus in the subfamily Suilloideae within the Boletaceae because he believed they were closer to each other than to other boletes. Thiers (1971) suggested that Suillus and Fuscoboletinus may represent a family distinct from the Boletaceae. He based his reasoning primarily on morphological characteristics; compared to other boletes, Suillus fruiting bodies are rather small in size, its spores are usually smaller and often differently shaped than other Boletaceae, and the often decurrent nature of the hymenophore is uncharacteristic of other Boletaceae. In phylogenetic analyses of nucleotide sequences, Suillus forms a sister group to Rhizopogon. Along with Truncocolumella, these three genera form a well supported group distinct from the Boletaceae. Further evidence for the close relationship between Rhizopogon and Suillus has been documented in other studies (Bruns et al., 1989; Baura et al., 1992; Kretzer et al., 1996; Grubisha et al., 1998). This relationship warrants placement of these three genera in a family separate from the Boletaceae.

Taxonomic revisions

Affinities between Gomphidius, Suillus, Rhizopogon, and Truncocolumella are more evident in microscopic characters than gross morphological characters. Similarities of the Gomphidiaceae to Suillus is seen in size, shape, and color of the spores (Smith and Thiers, 1964; Thiers, 1971; Pegler and Young, 1981), the conspicuous cystidia that stain dark brown in KOH (Smith and Thiers, 1964; Thiers, 1975), and the divergent gill trama
(Thiers, 1971; Pegler and Young, 1981). Macroscopically the decurrent hymenophore, veil, and ixotrichodermal pileipellis in the Gomphidiaceae resemble those of Suillus (Pegler and Young, 1981). Truncocolumella and Rhizopogon show affinities to this group in spore characters, lacunose to poroid gleba, and trama of the glebal plates (Thiers, 1971).

Suillus, Rhizopogon, and Gomphidiaceae display similar mycorrhizal associations. All are host-specific with genera in the Pinaceae with only rare exception (Miller, 1971; Thiers, 1975; Singer, 1986; Molina et al., 1992). Several species are further restricted to specific hosts such as Pinus spp. (Suillus, Rhizopogon, Gomphidiaceae), Larix Adans., (Suillus, Gomphidiaceae), or Pseudotsuga (Suillus, Rhizopogon section Villosuli, Truncocolumella citrina, Gomphidiaceae) (Thiers, 1975; Molina et al., 1992). Some species of Gomphidius and Suillus often fruit together, e.g., Gomphidius subroseus and Suillus lakei are often found together in association with Pseudotsuga menziesii (Agerer, 1990). Singer (1986) discussed how the pairs Gompidius roseus/Suillus bovinus and Gomphidius maculatus/Suillus grevillei not only are typically found together, but often have concrescent hyphae and basal portion of their stipes.

Gomphidius was put in its own family, the Gomphidiaceae, by Maire in 1933 (Miller, 1971; Pegler and Young, 1981) and Singer (1945) erected the subfamily Suilloideae. Gäumann and Dodge recognized the Rhizopogonaceae in 1928. Following priority of the family and subfamily rank of these groups, we propose that Suillus and the Gomphidiaceae be
transferred to the Rhizopogonaceae, the oldest familial name of the three.
Truncocolumella has been previously placed in the Rhizopogonaceae (Zeller, 1949; Smith, 1973). Based on evidence from phylogenetic analyses of molecular data of these genera, mycorrhizal host associations, and microscopic and morphological affinities we believe these genera form a distinct group from the rest of the boletes. We also acknowledge placement of the Melanogastraceae in the boletoid radiation of the Boletales. Rhizopogon olivaceotinctus, transferred to Alpova by Trappe (1975), is returned to the genus Rhizopogon where it had been originally described as R. olivaceotinctus A. H. Smith (Smith and Zeller, 1966).

ACKNOWLEDGMENTS

This study was funded by the Mycology Team, USDA Forest Service, Pacific Northwest Research Station. We would like to thank Tim Szaro and Dr. Tom Bruns for unpublished sequences of Suillus cavipes and Suillus sinuspaulianus, Bruce Caldwell for a Rhizopogon truncatus specimen, and Ankie Camacho and Jamie Platt for a Boletus edulus collection.

LITERATURE CITED

Agerer, R. 1990. Studies on Ectomycorrhizae XXIV: Ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwigia 50: 1-63.

Baura, G., T. M. Szaro, and T. D. Bruns. 1992. GastroSuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia 84: 592-597.

Begerow, D., R. Bauer, and F. Oberwinkler. 1997. Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can. J. Bot. 75: 2045-2056.

Besl., H., R. Dorsch, and M. Fischer. 1997. Zur verwandtschaftlichen Stellung der Gattung Melanogaster (Melanogastraceae, Basidiomycetes). Z. Mykol. 62(2): 195-199.

Bruns, T.D., Fogel, T.J. White, and J.D. Palmer. 1989. Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339: 140-142.

Bruns, T.D., Fogel, and J. W. Taylor. 1990. Amplification and sequencing of DNA from fungal herbarium specimens. Mycologia 82(2): 175--184.

Bruns, T. D., and T.M. Szaro. 1992. Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol. Biol. Evol. 9: 836--855.

Bruns, T. D., T. M. Szaro, M. Gardes, K. W. Cullings, J. J. Pan, D. L. Taylor, T. R. Horton, A. Kretzer, M. Garbelotto, and Y. Li. 1998. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular Ecology 7: 257-272.

Carmean, D. 1994. SeqApp version 0.6. Simon Frazier University.
Chapela, I. H., S. A. Rehner, T. R. Schultz, and U. G. Mueller. 1994. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266: 1691-1694.

Dodge, C. W. 1931. Alpova, a new genus of Rhizopogonaceae, with further notes on Leucogaster and Arcangeliella. Ann. Mo. Bot. Gard. 18: 457265.

Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Feibelman, T. P., R. L. Doudrick, W. G. Cibula, and J. W. Bennett. 1997. Phylogenetic relationships within the Cantharellaceae inferred from sequence analysis of the nuclear large subunit rDNA. Mycol. Res. 101(12): 1423-1430.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Fischer, Ed. 1933. Gastromyceteae. In: Engler \& Prantl. Die Naturl. Pflanzenfam. (II ed.) 7a: 1-122.

Gäumann, E. A. and C. W. Dodge. 1928. P. 468. In: Comparative Morphology of Fungi. McGraw-Hill Book Company, Inc. New York.

Grubisha, L. C., J. M. Trappe. R. Molina, and J. W. Spatafora. 1998. Chapter 3. Re-examinination of infrageneric relationships in the genus Rhizopogon based on nrDNA internal transcribed spacer sequences. L. C. Grubisha, Masters Thesis, Oregon State University.

Hassouma, N., B. Michot, and J. P. Bachellerie. 1984. The complete nucleotide sequence of mouse 28 S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research 12(8): 3563-3582.

Hawksworth, D. L., P. M. Kirk, B. C. Sutton, and D. N. Pegler. 1995. Dictionary of the Fungi, 8th Edition. CAB International, Cambridge, UK.

Heim, R. 1971. The interrelationships between Agaricales and Gasteromycetes. Pp. 481-504. In: Evolution in the Higher Basidiomycetes, an International Symposium. Ed. R. H. Peterson. The University of Knoxville Press, Knoxville.

Hibbett, D. S. and R. Vilgalys. 1993. Phylogenetic relationships of Lentinus (Basidiomycotina) inferred from molecular and morphological characters. Syst. Bot. 18(3): 409-433.

Hibbett, D. S., E. M. Pine, E. Langer, G. Langer, and M. J. Donoghue. 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. 94: 12002-12006.

Kreisel, H. 1969. Grundzüge eines natürlichen Systems der Pilze. 245pp. Jena: Gustav Fischer.

Kretzer, A., Y. Li, T. Szaro, and T. D. Bruns. 1996. Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: Phylogenetic and taxonomic implications. Mycologia 88(5): 776-785.

Michot, B. and J. P. Bachellerie. 1987. Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69: 11-23.

Miller, O. K. 1971. The genus Gomphidius with a revised description of the Gomphidiaceae and a key to the genera. Mycologia 63: 1129-1163.

Miller, O. K., Jr., and H. H. Miller. 1988. Gasteromycetes: Morphology and Developmental Features. Mad River Press, Eureka, CA.

Molina, R., H. Massicotte, and J. M. Trappe. 1992. Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Mycorrhizal Functioning, An Integrative Plant-Fungal Process. Ed. by M. F. Allen, Pp. 357-423, Chapman and Hall, New York.

Molina, R., J. M. Trappe, L. C. Grubisha, and J. W. Spatafora. 1998. Rhizopogon. In: Ectomycorrhizal Fungi: Key Genera in Profile. Ed. Cairney and Chambers Springer-Verlag. In press.

Moncalvo, J., H. Wang, and R. Hseu. 1995. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25 S ribosomal DNA sequences. Mycologia 87(2): 223-238.

Mullis, K. B. and F. A. Fallona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335-350.

O'Donnell, K., E. Cigelnik, N. S. Weber, and J. M. Trappe. 1997. Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18 S and 28 S ribosomal DNA sequence analysis. Mycologia 89(1): 48-65.

Pegler, D. N. and T.W. K. Young. 1981. A natural arrangement of the Boletales, with reference to spore morphology. Trans. Br. Mycol. Soc. 76(1): 103-146.

Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. G. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer -directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Singer, R. 1945. The Boletineae of Florida with notes on extralimital species: II. The Boletaceae (Gyroporoideae). Farlowia 2(2): 223-303.

Singer, R. 1962. The Agaricales in modern taxonomy, 2nd ed. Koenigstein, Germany: Koeltz Scientific Books.

Singer, R. 1986. The Agaricales in modern taxonomy, 4th ed. Koenigstein, Germany: Koeltz Scientific Books.

Smith, A. H. and R. Singer. 1959. Studies on secotiaceous fungi-IV Gastroboletus, Truncocolumella and Chamonixia. Brittonia 11: 205223.

Smith, A. H., and H. D. Thiers. 1964. A contribution toward a monograph of North American species of Suillus. Ann Arbor, Michigan.

Smith, A. H. and H. D. Thiers. 1971. The Boletes of Michigan. University of Michigan, Ann Arbor, Michigan.

Smith, A. H. 1971. Taxonomy of ectomycorrhiza-forming fungi. In: Hacskaylo E, ed. Mycorrhizae. Washington, DC: U.S. Department of Agriculture, Forest Service, Miscellaneous Publication 1189, 1-8.

Smith, A. H. 1973. Agaricales and related secotioid Gasteromycetes. Pp. 421450 In: The Fungi IVB, A Taxonomic Review with Keys: Basidiomycetes and Lower Fungi. Academic Press, London.

Swofford, D. L. 1998. Paup*: Phylogenetic analysis using parsimony, version 4.0 for Macintosh. Computer program distributed by Sinauer Associates Inc., Sunderland, Massachusetts.

Thiers, H. D. 1971. Some ideas concerning the phylogeny and evolution of the boletes. Pp. 423-440. In: Evolution in the Higher Basidiomycetes, an International Symposium. Ed. R. H. Peterson. The University of Knoxville Press, Knoxville.

Thiers, H. D. 1975. The status of the genus Suillus in the United States. Beiheft Nova Hedwigia 51: 247-278.

Thiers, H. D. 1984 The secotioid syndrome. Mycologia 76(1): 1-8.
Trappe, J. M. 1975. A revision of the genus Alpova with notes on Rhizopogon and the Melanogastraceae. Beiheft Nova Hedwigia 51: 279-309.

Vilgalys, R. and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified DNA from several Cryptococcus species. J. Bacteriol. 172(8): 4238-4246.

Vilgalys, R. and B. L. Sun. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. Natl. Acad. Sci. 91: 45994603.

Zeller, S. M. 1949. Keys to the orders, families, and genera of the Gasteromycetes. Mycologia 41(1): 36-58.

CHAPTER 3

RE-EXAMINATION OF INFRAGENERIC RELATIONSHIPS WITHIN RHIZOPOGON BASED ON nrDNA INTERNAL TRANSCRIBED SPACER SEQUENCES

Lisa C. Grubisha, James M. Trappe, Randy Molina, and Joseph W. Spatafora.

Abstract

Rhizopogon (Basidiomycota, Boletales) is a genus of hypogeous fungi ectomycorrhizal mostly with members of the Pinaceae. This large genus comprises an estimated 100^{+}species, with the greatest diversity found in coniferous forests of the Pacific Northwestern United States. In this study, maximum parsimony analyses of nuclear ribosomal DNA internal transcribed spacer sequences of 41 Rhizopogon and 10 Suillus species were conducted to test infrageneric sectional relationships in Rhizopogon and examine phylogenetic relationships with the closely related epigeous genus, Suillus. Sequences from 10 Rhizopogon type collections were included in these analyses. Insertion/deletion events (indels) were problematic yet reflected taxonomic divisions. Separate analyses that addressed differential indel coding revealed no significant differences in tree topology. The results strongly supported the sister relationship of Rhizopogon to Suillus. The average length of the ITS region varied between 468-584 bases for the four sections of Rhizopogon and was 459 bases long for Suillus. Rhizopogon section Rhizopogon is not monophyletic and comprised two clades; one characterized by possessing several long indels. Rhizopogon sections Amylopogon and Villosuli formed well-supported clades, but species concepts within these sections were unresolved with respect to certain species. Four species from section Fulviglebae formed a strongly supported clade nested within section Villosuli. Infrageneric taxonomic revisions are proposed.

Key words: Boletales, Rhizopogonaceae, Rhizopogon, Suillus, ITS, indel coding, phylogeny

INTRODUCTION

Rhizopogon Fries (Rhizopogonaceae) is a basidiomycete genus containing more than 100 species (Martin, 1996). Rhizopogon is ectomycorrhizal mostly with Pinaceae and it's worldwide distribution correlates with natural and exotic Pinaceae forests (Molina et al., in press). Despite this cosmopolitan range, a large diversity of species is found in pine (Pinus L.) and Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests of the Pacific Northwestern United States (Smith and Zeller, 1966). Rhizopogon is a common ectomycorrhizal fungus in these coniferous forests and thus an important component of the forest ecosystem. Rhizopogon spp. are primary dietary components of many forest mammals such as the northern flying squirrel (Glaucomys sabrinus) (Maser et al., 1985; Colgan III, W., 1997); this mammal is the primary prey for the northern spotted owl (Strix occidentalis caurina) (Forsman et al., 1984; Carey et al., 1992), a threatened and endangered species in the Pacific Northwest.

The systematics of Rhizopogon remains in a state of flux that dates back to the early 19th century before type collections were designated, notes on fresh characters were scanty, and only gross morphological characters were used to describe species (Lange, 1954; Smith and Zeller, 1966; Smith, 1971). Our current understanding of Rhizopogon taxonomy is based primarily on a
landmark publication by A. H. Smith (Smith and Zeller, 1966) who significantly increased the number of described North American species to 137 including redescribed "European" species found in North America. Smith and Zeller (1966) divided the genus into two subgenera, Rhizopogonella and Rhizopogon. Species in subgenus Rhizopogonella were subsequently moved to Alpova (Trappe, 1975). Subgenus Rhizopogon was divided into four sections, Amylopogon, Fulviglebae, Rhizopogon, and Villosuli, based on macroscopic and microscopic sporocarp characters and color changes on the peridium from chemical reactions and bruising of the sporocarp (Smith, 1964; Smith and Zeller, 1966) (Appendix 1).

Although Smith's important contribution towards understanding the systematics of this important fungal genus cannot be overstated, several unanswered questions remain. For instance, he placed several species with morphological affinities with section Villosuli in other sections, e.g., R. vinicolor, R. clavitisporus, etc.. He also may have described ontogenetic variations as separate species. Smith (Smith and Zeller, 1966) emphasized that this major taxonomic work was based on techniques available at the time and future revision was expected.

Hypotheses regarding the evolutionary relationship between Suillus and Rhizopogon are not new (Malençon, 1931; Heim, 1971; Thiers, 1971, 1984), and molecular evidence supports the hypothesis that Suillus and Rhizopogon are closely related (Bruns et al., 1989, 1990, Bruns and Szaro, 1992, Kretzer et al., 1996; Bruns et al., 1998). Judging from gross morphology, they
do not appear to share a recent common ancestor, but both genera possess boletoid spores and are ectomycorrhizal with conifers. Bruns et al. (1989) suggested that an accelerated rate of morphological change compared to molecular change occurred and may be explained by selective pressures acting on certain developmental genes. Questions remain concerning the nature of this relationship. Has Rhizopogon been derived several times within Suillus, or is it a monophyletic, but closely related genus?

Phylogenetic analyses of the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA (nrDNA) are commonly used for addressing questions of systematics at the intergeneric and intrageneric level in fungi (Lee and Taylor, 1991; Baura et al., 1992; O'Donnell, 1992; Henrion et al., 1994; Hibbett et al., 1995; Moncalvo et al., 1995; Kretzer et al., 1996; Kretzer and Bruns, 1997; Harrington and Potter, 1997; Holst-Jensen et al., 1997; Liu, et al., 1997) and plants (reviewed in Baldwin et al., 1995). Through phylogenetic analyses of nrDNA ITS sequences, the objectives of this study are: 1) to further qualify the phylogenetic relationship between Rhizopogon and Suillus; 2) to categorize infrageneric sectional relationships in Rhizopogon, and 3) to develop hypotheses for evolution of host-specificity for the genus.

MATERIALS AND METHODS

Fungal specimens

Species representing the sections Amylopogon, Fulviglebae, Rhizopogon, and Villosuli of the genus Rhizopogon were selected for phylogenetic analysis of nucleotide data (Table 3.1). Forty collections used for DNA extraction were from the University of Michigan Herbarium (MICH) and the Mycological Collection of the Oregon State University Herbarium (OSC). Pieces of ten of these were donated from type collections by MICH. Specimens of Boletus edulus, B. piperatus, and Alpova trappei were also included (Table 3.1). GenBank numbers are given in Table 3.1 for sequences from 10 Suillus spp., Rhizopogon subcaerulescens, Truncocolumella citrina, Chroogomphus vinicolor, and Gomphidius glutinosus.

Nucleic acid extraction, polymerase chain reaction, and DNA sequencing

The protocol for nucleic acid extraction was modified from either a SDS-lysis buffer (Bruns et al., 1990) or a 2 X CTAB method (Doyle and Doyle, 1987). The ITS region of the nrDNA was amplified via polymerase chain reaction (PCR) (Mullis and Fallona, 1987; Saiki et al., 1988). Primer pairs ITS-5 and ITS-4, ITS-5 and ITS-2, ITS-4 and ITS-3 (White et al., 1990) and ITS-1F and ITS-4B (Grades and Bruns, 1993) were used.

It was difficult to obtain DNA sequences from most of the type specimens from MICH. A further modification of the DNA extraction

Table 3.1. Genbank number, voucher, and collection location of species from which the internal transcribed spacer regions and 5.8 S subunit were sequenced. Species listed only by Genbank number were not sequenced in this study.

Species	Voucher number ${ }^{1}$	Geographic location	Herbarium ${ }^{2}$	GenBank accession number ${ }^{3}$
Alpova trappei Fogel	JMT 16394	California, USA	OSC	AF074920
Boletus edulus Bull.:Fr.	LCG 184	Oregon, USA	OSC	AF074921
Boletus piperatus Fr.	LCG 185	Oregon, USA	OSC	AF074921
Choogomphus vinicolor (Peck) Miller				L54095
$\begin{aligned} & \text { Gomphidius glutinosus } \\ & \text { (Schaeff.:Fr.) Fr. } \end{aligned}$				L54114
R. burlinghamii A. H. Smith	JMT 17882	California, USA	OSC	AF058303
R. colossus A. H. Smith	AHS 49480 (Holotype)	Oregon, USA	MICH	$\begin{aligned} & \text { AF071441 } \\ & \text { AF071442 } \end{aligned}$
R. diabolicus A. H. Smith	AHS 68424 (Paratype)	Washington, USA	$\overline{\mathrm{MICH}}$	$\begin{aligned} & \text { AF071444 } \\ & \text { AF071443 } \end{aligned}$
R. ellenae A. H. Smith	AHS 66137 (Holotype)	Idaho, USA	MICH	$\begin{aligned} & \text { AF071445 } \\ & \text { AF071446 } \end{aligned}$
R. ellenae A. H. Smith	JMT 17476	Oregon, USA	OSC	AF058311
R. evadens A. H. Smith	AHS 65484 (Holotype)	Oregon, USA	MICH	AF062927
R. evadens A. H. Smith	JMT 16402	California, USA	OSC	AF058312
R. fuscorubens A. H. Smith	JMT 17446	South Carolina, USA	OSC	AF058313

Table 3.1. (Continued).

Species	Voucher number ${ }^{1}$	Geographic location	Herbarium ${ }^{2}$	GenBank accession number ${ }^{3}$
R. gilkeyae A. H. Smith	JMT 19383	Oregon, USA	OSC	AF058304
R. hawkerae A. H. Smith	AHS 68417	Washington, USA	MICH	AF071447
	(Paratype)			AF071448
R. luteolus Fr.	JMT 22516	Uppsala, Sweden	OSC	AF062936
R. occidentalis Zeller \& Dodge	JMT 17564	Oregon, USA	OSC	AF058305
R. occidentalis Zeller \& Dodge	LCG 211	California, USA	OSC	AF062939
R. ochraceisporus A. H. Smith	AHS 65963 (Paratype)	Idaho, USA	MICH	AF071439
R. ochraceisporus A. H. Smith	JMT 17944	Oregon, USA	OSC	AF058306
R. ochraceisporus A. H. Smith	JMT 17916	Oregon, USA	OSC	AF062935
R. ochraceorubens A. H. Smith	AHS 59643	Idaho, USA	MICH	AF062928
	(Holotype)			
R. ochraceorubens A. H. Smith	JMT 19192	Idaho, USA	OSC	AF071440
	(Topotype)			
R. parksii A. H. Smith	JMT 17679	Oregon, USA	OSC	AF062930
R. parksii A. H. Smith	JMT 19446	Oregon, USA	OSC	AF058314
R. parvulus A. H. Smith	AHS 68364	Idaho, USA	MICH	AF071449
	(Paratype)			AF071450
R. rogersii vSmith	JMT 17228	Oregon, USA	OSC	AF071437
R. roseolus Corda	JMT 17998	California, USA	OSC	AF062931
R. rubescens (Tul. \& Tul.)Tul. \& Tul.	JMT 8227	California, USA	OSC	AF058315

Table 3.1. (Continued).

Species	Voucher number ${ }^{1}$	Geographic location	Herbarium ${ }^{2}$	GenBank accession number ${ }^{3}$
R. semireticulatus A. H. Smith	JMT 7899	Oregon, USA	OSC	AF058307
R. semireticulatus A. H. Smith	JMT 17562	Oregon, USA	OSC	AF062940
R. smithii Hosford	JMT 12321	California, USA	OSC	AF062932
R. sp. nov.	JMT 17466	Oregon, USA	OSC	AF071438
R. subcaerulescens A. H. Smith				M91613
R. subgelatinosus A. H. Smith	JMT 7624	Oregon, USA	OSC	AF062937
R. subpurpurascens A. H. Smith	AHS 65669 (Paratype)	Idaho, USA	MICH	AF062929
R. subpurpurascens A. H. Smith	JMT 19168	Idaho, USA	OSC	AF058308
R. subsalmonius A. H. Smith	JMT 17218	Oregon, USA	OSC	AF062938
R. succosus A. H. Smith	JMT 19321	West Virginia, USA	OSC	AF062933
R. villescens A. H. Smith	JMT 17681	Oregon, USA	OSC	AF058309
R. villosulus Zeller	AHS 59143	Idaho, USA	MICH	AF071451
R. villosulus Zeller	JMT 19466	Washington, USA	OSC	AF058310
R. vinicolor A. H. Smith	JMT 17899	Oregon, USA	OSC	AF058316
R. vinicolor A. H. Smith	JMT 20787	Idaho, USA (check)	OSC	AF062941
R. vulgaris (Vitt.) M. Lange	JMT 19154	Oregon, USA	OSC	AF062934
R. zelleri A. H. Smith	JMT 12974	New Mexico, USA	OSC	AF062942
Suillus americanus (Peck) Snell				L54103
S. brevipes (Peck) Kuntze				L54111

Table 3.1. (Continued).

Species	Voucher number ${ }^{1}$	Geographic location	Herbarium ${ }^{2}$	GenBank accession number ${ }^{3}$
S. caerulescens Smith \& Thiers				L54096
S. cavipes (Opat.) Smith \& Thiers				L54085
S. grevillei (Klotzsch) Singer				M91614
S. granulatus (Fries) Kuntze				L54113
S. luteus (Fries) Gray				L54100
S. lakei (Murrill) Smith \& Thiers				L54086
S. sinuspaulianus (Pomerleau \& Smith) Dick \& Snell				L54078
S. tomentosus (Kauffmann) Singer, Snell \& Dick				L54106
Truncocolumella citrina Zeller				L54097

${ }^{1}$ LCG, Lisa C. Grubisha, AHS, Alexander H. Smith; JMT, James M. Trappe
${ }^{2}$ MICH, Herbarium of the University of Michigan; OSC, Mycological Collection of the Oregon State University Herbarium
${ }^{3}$ When one GenBank number is given it is for the sequence of the entire ITS region, ITS 1 , ITS 2 and 5.8 S subunit. When two GenBank numbers are given one is for the ITS 1 and partial 5.8 S subunit sequence, and the second is for the sequence for the ITS 2 region and partial 5.85 subunit.
succeeded. After the tissue was ground in liquid nitrogen and SDS or 2 X CTAB buffer was added, the tubes were incubated alternately between the 60 C waterbath and an ethanol/dry ice bath for five minute intervals several times. Furthermore, most successfully sequenced type specimens did not amplify or sequence well unless amplified as the separate and smaller ITS 1 and ITS 2 spacer regions.

PCR amplification, quantification, purification, sequencing, and alignment of sequences were previously described (Grubisha et al., 1998). In this study the annealing temperature was changed to 53 C . The ITS-1 and ITS2 spacer regions and 5.8 S subunit were sequenced with combinations of the primers ITS-5, ITS-2, ITS-4, ITS-3, ITS-1F, and ITS-4B.

Phylogenetic analysis

An alignment of 892 nucleotide bases representing the ITS-1, ITS-2, and 5.8 S subunit was analyzed for four different insertion/deletion (indel) treatments. The PAUP NEXUS alignment file is included as Appendix 2. Alignment gaps were treated as follows: 1) All set--all characters were included and gaps treated as missing data; 2) Culled set--multiple-base indels and areas of ambiguous alignment were excluded, remaining gaps treated as missing data; 3) Indel " I " coded set-- a new character " I " was inserted to indels, ambiguous areas deleted, and remaining gaps treated as missing data; and 4)

Binary coded set--indels were excluded and re-coded as presence/absence $(0,1)$
in the data matrix at the end of the alignment, remaining single-base gaps treated as missing, and ambiguous areas of the alignment were deleted.

Maximum parsimony analyses were performed using PAUP* version 4.0 (Swofford, 1998). One hundred heuristic searches were conducted with random sequence addition and tree bisection-reconnection (TBR) branchswapping algorithms, collapsing zero-length branches and saving all minimal-length trees (MUL-PARS). To measure relative support for the resulting clades, 100 bootstrap replications (Felsenstein, 1985) were performed only on phylogenetically informative characters with the following parameters: 5 random sequence additions, TBR, and MUL-PARS off.

Choice of outgroup

Entire ITS sequences were obtained from Boletus edulus, B. piperatus, and Alpova trappei, with the intention of using species from the boletoid radiation of the Boletaceae as a more distantly related outgroup; however, sequences from these species were highly divergent and simply too difficult to align with Suillus and Rhizopogon sequences. Introduction of excessive and ambiguous alignment gaps was necessary and resulted in the loss of phylogenetic information. These outgroup species were removed from the alignment and not included in the phylogenetic analyses. Thus, the outgroup chosen for these analyses was selected from within the Rhizopogonaceae of the Boletales: Truncocolumella citrina, Chroogomphus vinicolor, and

Gomphidius glutinosus and were easily aligned with Suillus and Rhizopogon sequences.

RESULTS

Parsimony analyses

No major differences in tree topology could be inferred from the four indel treatments. Bootstrap values varied slightly, but remained essentially unchanged, except for the Culled set (treatment 2), when all ambiguous areas and large indels were removed. In this case somewhat lower bootstrap values were recovered. Results from the four analyses are summarized in Table 3.2. The number of most parsimonious trees ranged from 16 for the All (treatment 1) and Culled sets (treatment 2) to 32 for the Binary coded set (treatment 4) and 80 for the Indel " I " set (treatment 3). Tree length ranged from 630 for the Culled set to 931 steps for the All set.

The strict consensus tree for the Indel " I " coded treatment is presented in Fig. 3.1. Maximum parsimony analysis yielded 80 trees of 739 steps. For these trees, the consistency index (CI) was 0.512 , retention index (RI) was 0.801 , and the rescaled consistency index (RC) was 0.411 . There were 234 parsimony informative characters. Bootstrap values greater than 50% are indicated above the respective internode.

Table 3.2. Results from maximum parsimony analysis of four insertion/deletion (indel) coding strategies.

	Indel coding			Most parsimonious trees					
Analysis Treatment ${ }^{1}$	Gaps as missing	"I" inserted to indel	Presence/ absence $(0,1)$	Number of Characters ${ }^{2}$	Number	Length	Cl	RI	RC
1	yes	no	no	291	16	931	0.522	0.767	0.400
2	yes	no	no	199	16	630	0.515	0.792	0.408
3	yes	yes	no	234	80	739	0.512	0.801	0.411
4	yes	no	yes	221	32	687	0.516	0.801	0.414

${ }^{1}$ Different treatments of indels (see text for further discussion):
1 = All set: all characters states were included, even ambiguous areas of the alignment, all gaps scored as missing data;
$2=$ Culled set: ambiguous areas of alignment and large inserts were excluded, gaps treated as missing data;
3 = Indel " 1 " set: ambiguous areas of alignment excluded, character " 1 " inserted into gaps;
$4=$ Binary coded set: ambiguous areas of alignment excluded; large gaps excluded and coded as presence/absence.
${ }^{2}$ Number of parsimony informative characters included in the analysis.

Figure 3.1. Strict consensus cladogram of 80 equally parsimonious trees of 739 steps based on complete ITS nrDNA sequences when indels were coded with "I" and ambiguous areas of the alignment were excluded. Bootstrap values are indicated at the respective internode. $\mathrm{CI}=0.512$, $\mathrm{RI}=0.801$. Placement of species in sections of genus Rhizopogon is according to Smith and Zeller (1966).

Length variation of the ITS 1 and ITS 2 between Suillus and Rhizopogon and within Rhizopogon sections is recorded in Table 3.3. The $5.8 S$ region was 159 bases long for all taxa, with four exceptions that differed

Table 3.3. ITS 1 and ITS 2 size and length variation for Suillus and Rhizopogon.

	Average size and length variation		
Taxa	ITS 1	ITS2	ITS + ITS 2
Suillus	209	249	459
	$205-218$	$247-251$	$456-465$
Rhizopogon			
	247	256	510
	$218-344$	$232-284$	$461-621$
section			
Amylopogon	224	262	468
		$248-264$	$466-468$
section	220		
Fulviglebae		248	468
Section	318	$246-248$	$466-468$
Rhizopogon A			
	$282-344$	267	584
Section	223	$254-284$	$544-621$
Rhizopogon B		254	477
Section	219	$242-267$	$465-490$
Villosuli	$218-220$	247	471

${ }^{1}$ Alignment length of the ITS $1=420$ and ITS $2=313$ bases.
${ }^{2}$ Section Rhizopogon A refers to the group of species that have long indels in the ITS. These also form the basal section Rhizopogon clade in Fig. 3.2.
Section Rhizopogon B includes species from section Rhizopogon lacking the long inserts in ITS and forming the second, more derived clade in Fig. 3.2.
only by 1 base. Determination of the length of the ITS 1 , ITS 2 , and 5.8 S subunit was based on the 5.8 S length of Rhizopogon subcaerulescens and Suillus sinuspaulianus as identified by Cullings and Vogler (in press). The average range between Rhizopogon sections was 219-318 bp for the ITS 1 and $247-267 \mathrm{bp}$ for the ITS 2. The alignment length of the ITS 1 was 420 bp and ITS 2 was 313 bp . The majority of the long indels was restricted to the ITS 1 . The ITS 2 was easily aligned, except for two areas which were excluded from all analyses.

Most species sampled from section Rhizopogon possess 2 long inserts of 24 and 33 bp . Within this group, R. succosus and R. luteolus contain two additional inserts of 8 and 11 (R. luteolus has a two base-pair deletion in this insert) bases long. R. smithii and R. evadens (JMT 16402) share two long inserts of 9 and 29 bases. Three species, R. rubescens (R. roseolus), R. vulgaris, and R. burlinghamii, sampled from section Rhizopogon, lack these inserts. Multiple-base indels are mapped onto a phylogram in Figure 3.2. Indel 14 and 27 represents an AG rich region in the beginning of the ITS 1 in the basal section Rhizopogon clade and Suillus, respectively. A TC rich region that ranges in length between 4-11 bases also in the basal section Rhizopogon clade, indel 16, and Suillus, indel 28, are also included on Fig. 3.2. These two areas were excluded as ambiguous alignment areas in three of the four maximum parsimony analyses. They are included on Fig. 3.2 although the alignment is not certain, because the indel itself is believed to show

Figure 3.2. The cladogram presented in Fig. 3.1 with multiple-base insertion /deletions (indels) mapped to respective branches. Solid bar indicates insertions, open bar indicates deletions. Position in alignment is as follows: $1=193-195,2=160-163,3=624-630,4=638-639,5=152-155,6=58-82,7=290-318$, $8=141-151,9=120-124,10=156-159,11=190-196,12=156-159,13=190-194,14=$ $58-82,15=109-112,16=141-151,17=233-264,18=190-196,19=55-58,20=47-54$, $21=67-77.22=267-288,23=190-195,24=830-834,25=221-229,26=290-318,27=$ $58-82,28=141-151,29=185-288$. Placement of species in sections of the genus is according to Smith and Zeller (1966)
phylogenetically important information; both of these indels are not present in the more derived clades of genus Rhizopogon. The indels followed sectional concepts as defined A. H. Smith (Smith and Zeller, 1966).

DISCUSSION

Sequence analyses

Multiple-base indels, especially in ITS analyses, are commonly treated as missing data or are excluded entirely from phylogenetic analyses. A universal method to code indels resulting from length variable sequences in phylogenetic analyses is presently unclear (Liston, et al., in press). Excluding indels or treating them as missing data may result in the loss of phylogenetic information (Baum et al., 1994). Single-base gaps in a conserved region may be treated as a fifth character (Swofford, 1993); however, coding all nucleotide positions of a single event multiple-base gap as fifth characters will result in overweighing the gap (Baum et al., 1994; Hibbett et al., 1995). Another approach is the insertion of an additional character to a multiple-base indel so as to retain any phylogenetic information and record the presence of the indel itself as informative but not overweigh the gap as a series of independent characters (Bruns et al., 1992; Hibbett et al., 1995; Kretzer et al., 1996, Kretzer and Bruns, 1997). Alternatively, a long indel may be downweighed by recoding the parsimony informative characters as a single character (HolstJensen et al., 1997). Recoding gaps as binary, presence/absence, characters is
not uncommon (Wojciechowski et al., 1993; Hibbett et al., 1995; Manos, 1997; Moller and Cronk, 1997; Vargas et al., 1998; Downie et al., 1998). Another method is to use test statistics to determine the level of noise versus phylogenetic signal in indels. Lutzoni (1997) determined indel-rich and indel-poor regions of an ITS alignment and tested these regions for presence of phylogenetic signal from g_{1} values and the PC test. Indel rich regions were rejected if the phylogenetic signal as determined by the g_{1} values and the PC test was considered artifactual. Hibbett et al. (1995) discuss gap coding strategies.

The degree of multiple-base indels present in this alignment of Rhizopogon ITS sequences seems to be uncommon and has not previously appeared in published alignments. In addition, most of the indels strongly related to taxonomic groupings. Several approaches of indel coding were attempted to determine their importance in adding support for these groups. Results indicate the indels offer additional support but are not crucial to resulting tree topology; data strongly support the resulting topology when indels are excluded.

Tree topology did not significantly differ between the four analyses run with the different treatment of indels. Variations in tree topology from these analyses were restricted to 1) the placement R. gilkeyae between basal to section Villosuli or basal to the section Fulviglebae clade, and 2) the branching order of R. subcaerulescens, R. subgelatinosus, and R. semireticulatus (JMT 7899). Bootstrap values were slightly higher in the indel
coded analyses, an observation consistent with other studies that compared coding indels.

Phylogenetic relationship between Rhizopogon and Suillus

Sister-group relationship between Suillus and Rhizopogon is strongly supported by the results presented here. Suillus and Rhizopogon both form well-supported monophyletic groups with bootstrap values of 100 and 97 , respectfully. Suillus species in this study associate with a variety of conifer hosts as indicated by Kretzer et al. (1996). Although previous studies have shown that Suillus and Rhizopogon are closely related, the monophyly of these two respective genera was uncertain due to limited species sampling and because the choice of loci was less variable than the ITS region. We attempted to include enough species from both genera to represent the range of conifer associates. Similar results were observed in a recent phylogenetic study of the large subunit nrDNA sequences of Suillus, Rhizopogon, Truncocolumella, Alpova, and other genera from the boletoid radiation of the Boletaceae (Grubisha et al., 1998).

Examination of infrageneric relationships in Rhizopogon

Most sectional relationships, as defined by Smith (1964; Smith and Zeller, 1966), are well-supported. Sections Villosuli and Amylopogon are strongly supported groups with bootstrap values of 100. Section Rhizopogon
is not monophyletic and forms two well-supported non-sister clades with high bootstrap values of 100 and 98 . The other section that deviates from Smith's classification is that some species of section Fulviglebae, are nested within section Villosuli and form a strongly supported group by a bootstrap value of 100 .

Section Rhizopogon

Smith and Zeller (1966) divide Rhizopogon section Rhizopogon into two subsections, two series, and 11 stirps. In this study, we sampled 15 sequences from 12 species representing both subsections and series and six stirps. The subsections are separated by spore width: species in subsection Rhizopogon have spores 3-5 $\mu \mathrm{m}$ wide, whereas species in subsection Angustispori have spores $1.6-3 \mu \mathrm{~m}$ wide. In both subsections the next division depends on whether the peridium (1) develops yellow colors during development and bruises red, (2) lacks yellow at all developmental stages and bruises red, or (3) lacks yellow coloration and does not bruise red (Table 3.4).

In Rhizopogon section Rhizopogon species that stain red and have most spores $3 \mu \mathrm{~m}$ or more wide are placed in subsection Rhizopogon stirps Rubescens. Three species sampled from stirps Rubescens are R. rubescens, R. succosus, and R. roseolus. Only R. luteolus was sampled from subsection Rhizopogon stirps Luteolus. Rhizopogon succosus and R. luteolus share several morphological characters but are distinct species (Miller, 1986; Hosford and Trappe, 1988). Based on peridium coloration, microscopic characters, and

Table 3.4. Taxonomic divisions in Rhizopogon section Rhizopogon based on spore width and peridium coloration as defined by A. H. Smith (Smith and Zeller, 1966).

Rhizopogon section Rhizopogon	Spore width ($\mu \mathrm{m}$)	Peridium coloration		
		Yellow ${ }^{1}$	Bruises red	Other
Subsection Rhizopogon	3.5-5			
Strips Rubescens		yes ${ }^{2}$	yes	
Stirps Luteolus		yes	no	
Subsection Angustispori	1.6-3			
Series Lutei		yes		
Stirps Vulgaris		yes	yes	
Strips Ochraceorubens		yes	no	
Series Versicolores ${ }^{3}$		no		yes
Stirps Subsalmonius			no	peach-pink to salmon pink
Stirps Evadens			yes	

${ }^{1}$ Yellow color refers to whether the peridium develops yellow colors during some time of its development, and should not be confused with bruising yellow.
${ }^{2}$ A. H. Smith identifies three species in Stirps Rubescens that do not have a yellow stage, including R. roseolus Corda sensu Smith.
${ }^{3}$ Only two of the seven stirps in Series Versicolores are mentioned here.
the glass-hard consistency of the dried gleba, Miller (1986) suggested that a better placement of R. succosus is in stirps Luteolus. These observations are supported by the data presented here. The relationship between these two species is supported by a bootstrap of 100 . In addition to being morphologically similar, they share similar long insertions in the ITS 1 sequences.

Smith (Smith and Zeller, 1966) placed R. vulgaris in subsection Angustispori, stirps Vulgaris because it has narrow spores, stains red, and is yellow at some point of its development. Smith did recognize the similarity of species in stirps Vulgaris with those in stirps Rubescens and mentions that stirps Vulgaris is a continuation of stirps Rubescens into the narrow spored species. Rhizopogon rubescens sensu Smith and Zeller has yellow coloration on the peridium whereas R. roseolus sensu Smith and Zeller does not. Smith's descriptions of R. rubescens, R. vulgaris, and R. roseolus, included in Smith and Zeller (1966) are based on examinations of North American collections. These three species were originally described from Europe in the nineteenth century (Molina et al., in press). This study supports the close relationship of these species, sensu A. H. Smith. Rhizopogon rubescens, R. roseolus, R. vulgaris, and R. burlinghamii, form a distinct clade separate from the other species sampled from section Rhizopogon. These species also lack several large indels present in species found in the other section Rhizopogon clade. These results and the morphological similarities of these species support their separation from section Rhizopogon.

The two holotypes from MICH that were sampled from section Rhizopogon, R. ochraceorubens and R. evadens, are from subsection Angustispori, series Lutei and Versicolores respectively. Species in series Versicolores do not have a yellow ontogenetic stage. Rhizopogon ochraceorubens and R. fuscorubens are closely related and placed in strips Ochraceorubens. Smith indicates that the major difference between these two
is the rhizomorphs on the peridium of R. fuscorubens dry black and the peridium dries yellow. The rhizomorphs on the peridium of R. ochraceorubens do not dry black and the peridium dries red. When revived in KOH , the sectioned peridium is bright red for both species and very prominent in the holotype specimen. Rhizopogon occidentalis, originally placed in stirps Rubescens, appears to be closely related to both R. ochraceorubens and R. fuscorubens, although the sectioned peridium lacks the bright red reaction to KOH . All three species fruit in association with pines and generally form ectomycorrhizae only with pines in pure culture syntheses (Molina and Trappe, 1982, 1994). Rhizopogon occidentalis will form mycorrhizae with Arctostaphylos and Arbutus spp. if pines are present as the primary host (Molina et al., 1997).

Two species were sampled from Series Versicolores, R. subsalmonius and R. evadens and belong to stirps Subsalmonius and Evadens respectively. Rhizopogon subsalmonius does not stain red when cut. Rhizopogon evadens stains red, but the peridium is white and lacks yellow coloration. The peridium does not stain bright red when sections are treated with KOH . Hosford $(1972,1975)$ placed R.smithii in Rhizopogon section Rhizopogon. He indicates that R. smithii shares several microscopic and peridial characteristics with R. evadens var. evadens, but R. evadens var. evadens differs in lacking a yellow stage and intense olive green reaction to FESO_{4} on the fresh peridium, as seen in R. smithii. The results of this study show that R. evadens var. evadens and R. smithii are closely related.

Section Fulviglebae

The four species sampled from section Fulviglebae were selected because they shared some peridial characters with section Villosuli and, as with the Villosuli, are associated with Douglas-fir. They form a tight clade with a bootstrap value of 100 within section Villosuli. Because these species are such a distinct clade, this placement may be considered a sister-group to section Villosuli. Rhizopogon gilkeyae does share some morphological affinities with these species. Smith and Zeller (1966) placed it in stirps Viridis (section Villosuli) because the peridium lacks the green to olive reaction to KOH, as do R. vinicolor, R. diabolicus, R. parvulus, and R. ochraceisporus. Smith and Zeller (1966) note that the base of the spores is "obscurely" truncate. Rhizopogon gilkeyae does have flagellate hyphae as do many other members of section Villosuli. This species may represent the transition from stirps Vinicolor to the remaining species in section Villosuli. Rhizopogon parvulus and R. diabolicus are closely related species, both morphologically (Smith and Zeller, 1966) and based on our data. Their relationship to R. vinicolor and R. ochraceisporus remains to be determined.

Species in stirps Vinicolor and R. ochraceisporus (stirps Thaxteri) in section Fulviglebae are morphologically similar. Although Smith and Zeller (1966) mention that within stirps Vinicolor there is a trend towards brownwalled hyphae in the peridium, a characteristic of species in section Villosuli, descriptions of brown-walled hyphae are not included in species descriptions
for stirps Vinicolor. The species in stirps Vinicolor and R. ochraceisporus also associate with Douglas-fir.
R. vinicolor and R. ochraceisporus may be ontogenetic stages of a single species. However, except for glebal color, these two species are very similar morphologically. The two sequences from R. ochraeisporus (JMT 17944 and JMT 17916) are from the same field collection, but were separated because of glebal color. The gleba of 17916 is rusty to olive brown whereas the gleba of JMT 17944 is dark greenish olive. As described by Smith and Zeller (1966) R. vinicolor typically has an olive gleba whereas R. ochraceisporus is rusty. That one R. vinicolor sequence is closer to the paratype of R. ochraceisporus than it is to the other R. vinicolor implies conspecificity of the two species. Unfortunately the paratype of R. vinicolor did not sequence well. Further sampling is needed to address this question, especially sequencing the holotype, paratype, or topotype of R. vinicolor. Rhizopogon vinicolor is strongly host-specific with Douglas-fir. Several studies have demonstrated that R. vinicolor only forms ectomycorrhizae with Douglas-fir, even when other conifers are present (Molina, 1980; Molina and Trappe, 1982, 1994; Massicote et al., 1994; Molina et al., 1997).

Section Villosuli

Smith (1964) recognized twenty-one species of Rhizopogon in section Villosuli. These are separated from the other three sections by having brownwalled hyphae that form a distinct epicutis in the peridium and nontruncate,
nonamyloid spores. Internal transcribed spacer sequences from the holotype of R. colossus and paratypes of R. villosulus and R. hawkerae are similar in these analyses.

Based on the findings presented here, R. colossus, R. villosulus, R. rogersii, R. hawkerae and R. villescens could be a single species that shows variation or several very closely related species. Some years after publication of Smith and Zeller (1966), Smith concluded from additional collecting that R. colossus was a developmental stage of R. villosulus (personal communication to J. M. Trappe), and we agree based on morphological and molecular evidence. Further sampling of types from other species in the Villosuli is needed to clarify the relationships among these species. Perhaps sampling a gene which showed more interspecific variation would be appropriate for these close relatives.

Some species concepts in section Villosuli remain unresolved because of the gradient of ontogenic stages that may currently be identified as individual species and the placement of species with similar morphological characteristics in other sections of Rhizopogon. In this study, four species in section Fulviglebae, R. vinicolor, R. ochraceisporus (paratype), R. diabolicus (paratype), and R. parvulus (paratype) are nested within section Villosuli. Based on morphological similarities and our molecular phylogenetic results, either R. gilkeyae should be moved to section Fulviglebae and this clade considered a sister-group to section Villosuli, or these four species could be transferred to section Villosuli. Because R. gilkeyae is clearly a member of the

Villosuli from a morphological standpoint and the four species in section Fulviglebae differ from the Villosuli primarily in having truncate spores, we suggest the second option. Spore truncation simply reflects the breadth of attachment of the spore to the basidium, a character of doubtful phylogenetic significance. Furthermore, these fungi are all host-specific to Douglas-fir, a character not seen within other Rhizopogon sections (Molina and Trappe, 1994; Massicotte et al., 1994)

Section Amylopogon

Section Amylopogon is monophyletic and forms a well-supported clade with a bootstrap value of 100. The holotype of R. ellenae and a paratype of R. subpurpurascens were sampled. Martin (1996) moved R. ellenae to section Rhizopogon because it does not have amyloid spores. In our results, the holotype of R. ellenae is found in the strongly supported section Amylopogon clade. Smith and Zeller (1966) stated that although not all species in section Amylopogon have amyloid spores, all Rhizopogon species with amyloid spores are placed in this section. Section Amylopogon is supported by anatomy, the olive to green, blue, pink or red reaction of the peridium to KOH , and, when present, amyloid spores. Species in section Amylopogon are the most broad-ranging in the genus in terms of mycorrhizal hosts, but they typically occur in conifer forests with pines and true firs (Abies Mill). Rhizopogon subcaerulescens forms ectomycorrhizae
with Douglas-fir in laboratory conditions (Massicote, et al., 1994), although they are not known to be associated with Douglas-fir forests.

Host specificity and evolution

Rhizopogon spp. show a great deal of host specificity with members of the Pinaceae (Molina et al., 1992). Smith and Zeller (1966) noted that the greatest species diversity occurs in the coniferous forests of the Pacific Northwest of the United States. In general, sections of Rhizopogon show a certain degree of specificity for particular genera of Pinaceae and some species show specificity with either Pinus spp. or Douglas-fir (Molina et al., in press). For several Rhizopogon species host specificity was supported by pure culture synthesis (Molina and Trappe, 1982b, 1994) and spore inoculation studies (Massicote et al., 1994; Molina et al., 1997). These data offer further support to Smith's (1964; Smith and Zeller, 1966) sectional hypotheses (Figure 3.3). Molina and Trappe (1994) and Molina et al. (in press) suggest because of its diversity and quantity of Pinaceae hosts the Pacific Northwestern United States, has been a major area for the evolution and speciation of Rhizopogon and their conifer hosts.

Evolutionary relationships at the generic level of the Pinaceae are not strongly supported in phylogenetic studies (Prager et al, 1976; Price et al., 1987; Chaw et al., 1997; Stefanovic et al., 1998). Hart's (1987) cladistic analysis of morphological characters includes the genera Larix, Pseudotsuga, Pinus,

Figure 3.3. Strict consensus cladogram of 32 equally parsimonious trees using binary (presence/absence) gap coding. Bootstrap values are noted above the respective internode. Primary ectomycorrhizal hosts are listed. Sections are elevated to subgenera and appear to be associated with certain Pinaceae genera, with the exception of subgenus Amylopogon that is associated with a broad range of hosts. Host information is from collection data and pure culture synthesis studies (Molina et al., 1992).

Abies, Picea, and Tsuga, but provides no measure of support for the resulting clades. In that study, Pinus appeared to be the ancestral genus, while the pairs Pseudotsuga/Larix and Abies/Tsuga formed a sister group. Rhizopogon section Rhizopogon appear to be the ancestral Rhizopogon section and is strongly associated with Pinus spp. The degree of host specificity with all species in Rhizopogon section Villosuli to Pseudotsuga to the complete exclusion of other Pinaceae, implies that they have been co-speciating for a long time and may have developed unique recognition factors.

Taxonomic revisions

As suggested by Molina (1980), we propose the elevation of the following sections to subgenera with appropriate emendations:
section Amylopogon to subgenus Amylopogon
section Villosuli to subgenus Villosuli
section Rhizopogon to subgenus Rhizopogon
We propose the erection of subgenus Roseoli with R. roseolus as the type, to accommodate the species in stirpes Rubescens and Vulgaris. We include all species in these two stirps with the realization that further research is needed to further test the proposed classification. The transfer of R. succosus to stirps Luteolus and R. occidentalis to stirps Ochraceorubens.

We propose transfer of the seven species in stirpes Vinicolor to subgenus Villosulus and the erection of section Vinicolor to complement section Villosuli. We include all species in stirps Vinicolor because they are
closely related to R. vinicolor morphologically (Smith and Zeller, 1966) and ecologically (Molina and Trappe, 1994; Massicote et al., 1994), but further morphological and molecular analyses are needed to fully resolve their standing. Rhizopogon ochraceisporus is transferred to subgenus Villosuli, section Vinicolor, but further research is needed to determine its relationship to R. vinicolor. R. clavitisporus and R. subclavitisporus (section Fulviglebae, stirps Clavitisporus) possess brown-walled and flagellate hyphae (Smith and Zeller, 1966). These two species are transferred to subgenus Villosuli, section Villosuli. The remaining species in section Fulviglebae, R. exiguus, R. hysterangioides, R. variabilisporus, R. griseogleba, R. pannosus, R. fragmentatus, R. truncatus, R. tsugae, R. thaxteri, R. atlanticus, and R. lutescens are transferred as section Fulviglebae to subgenus Rhizopogon with R. exiguus as the type of the section. Smith and Zeller (1966) also recognized the similarities between section Fulviglebae and section Rhizopogon. We anticipate, as did Smith, that further research on individual species in the Fulviglebae will lead to refinement and probably additional reclassifications of some species.

While the ITS provided a great deal of resolution to determine subgeneric relationships in Rhizopogon, distinctions between closely related or potentially conspecific species were unclear. A gene that possesses more interspecific variation between closely related species, perhaps the IGS or β tubulin gene, would be desirable for future studies of species concepts.

The inclusion of sequences from type collections reinforced and clarified relationships within Rhizopogon and was invaluable in this study. This database of Rhizopogon sequences may also be used as a database for sequences from Rhizopogon ectomycorrhizal root tips. Bidartondo et al. (1998) demonstrated that R. ellenae form ectomycorrhizae with the snow plant, Sarcodes sanguinea, based on the ITS sequence of the holotype of R. ellenae provided by this study combined with sporocarp collection data.

ACKNOWLEDGMENTS

This study was funded by the Mycology Team, USDA Forest Service, Pacific Northwest Research Station. Additional support came from the Mycological Society of America's Alexander H. and Helen V. Smith Research Fund and the OSU Department of Botany and Plant Pathology's Hardman Award for Native Plant Research to LCG. We are grateful to Dr. Robert Fogel and the University of Michigan Herbarium for donations of pieces from type collections of Rhizopogon for DNA extractions. Dr. David Hibbett offered insightful comments on an earlier version of the sequence alignment and indel coding. Dr. Michael Castellano provided insights and ideas throughout this study. We thank Ankie Camacho, Dr. Efren Cázares, Dr. Ari Jumpponen, Dr. Teresa Lebel, and Jamie Platt for technical advice. Ankie Camacho donated Boletus and Rhizopogon specimens and Dr. Eric Danell donated the R. luteolus specimen.

LITERATURE CITED

Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a variable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82(2): 247-277.

Baum, D. A., K. J. Sytsma, and P. C. Hoch. 1994. A phylogenetic analysis of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences. Syst. Bot. 19: 363-388.

Baura, G., T. M. Szaro, and T. D. Bruns. 1992. Gastrosuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia 84: 592-597.

Bidartondo, M. I, A. M. Kretzer, and T. D. Bruns. 1998. Identity and spatial distribution of the fungal associate of Sarcodes sanguinea (abstract) Inoculum, 49(2): 9.

Bruns, T.D., Fogel, T.J. White, and J.D. Palmer. 1989. Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339: 140-142.

Bruns, T.D., Fogel, and J. W. Taylor. 1990. Amplification and sequencing of DNA from fungal herbarium specimens. Mycologia 82(2): 175--184.

Bruns, T.D., and T.M. Szaro. 1992. Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol. Biol. Evol. 9: 836--855.

Bruns, T.D., R. Vilgalys, S. M. Barns, D. Gonzales, D. S. Hibbett, D. J. Lane, and five others. 1992. Evolutionary relationships within the Fungi: Analyses of nuclear small subunit rRNA sequences. Molecular Phylogenetics and Evolution 1 (3): 231-241.

Bruns, T. D., T. M. Szaro, M. Gardes, K. W. Cullings, J. J. Pan, D. L. Taylor, T. R. Horton, A. Kretzer, M. Garbelotto, and Y. Li. 1998. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular Ecology 7: 257-272.

Carey, A. B., S. P. Horton, and B. L. Biswell. 1992. Nothern spotted owls: influence of prey base and landscape character. Ecol. Monogr. 62: 223250.

Chaw, S. M., A. Zharkikh, H. M. Sung, T. C. Lau, and W. H. Li. 1997.
Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18 S rRNA sequences. Mol. Biol. Evol. 14(1): 56-68.

Colgan, W. III. 1997. Diversity, productivity, and mycophagy of hypogeous mycorrhizal fungi in a variably thinned Douglas-fir forest. Ph.D. Dissertation, Oregon State University, Corvallis, 95 pp.

Cullings, K. and Vogler. 1998. A 5.8 S nuclear ribosomal RNA gene sequence database: applications to ecology and evolution. Molecular Ecology In press.

Downie, S. R., S. Ramanath, D. S. Katz-Downie, and E. Llanas. 1998. Molecular systematics of Apiaceae subfamily Aioideae: Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer and plastid RPOC1 intron sequences. Am. J. Bot. 85 (4): 563-591.

Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Forsman, E. D., E. C. Meslow, and H. M. Right. 1984. Distribution and biology of the spotted owl in Oregon. Wildl. Monogr. 87:1-64.

Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.

Gäumann, E. A. and C. W. Dodge. 1928. P. 468. In: Comparative Morphology of Fungi. McGraw-Hill Book Company, Inc. New York.

Grubisha, L. C., J. M. Trappe. R. Molina, and J. W. Spatafora. 1998. Chapter 2. L. C. Grubisha, Masters Thesis, Oregon State University.

Harrington, F. A. and D. Potter. 1997. Phylogenetic relatinships within Sarcoscypha based upon nucleotide sequences of the internal transcribed spacer of the nuclear ribosomal DNA. Mycologia 89(2): 258267.

Hart, J. A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68(3): 269-307.

Heim, R. 1971. The interrelationships between Agaricales and Gasteromycetes. Pp. 481-504. In: Evolution in the Higher Basidiomycetes, an International Symposium. Ed. R. H. Peterson. The University of Knoxville Press, Knoxville.

Henrion, B., G. Chevalier, and F. Martin. 1994. Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol. Res. 98(1): 37-43.

Hibbett, D. S., Y. Fukumasa-Nakai, A. Tsuneda, and M. J. Donoghue. 1995. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87(5): 618-638.

Holst-Jensen, A., L. M. Kohn, K. S. Jacobsen, and T. Schumacher. 1997. Molecular phylogeny and evolution of Monilina (Sclerotiniaceae) based on coding and noncoding rDNA sequences. Am. J. Bot. 84 (5): 686-701.

Hosford, D. R. 1972. Rhizopogon of the northwestern United States. Ph.D. Dissertation, University of Washington, Seattle, 250 pp.

Hosford, D. R. 1975. Taxonomic Studies on the genus Rhizopogon I. Two new species from the Pacific northwest. Beiheft Nova Hedwigia 51: 163-71.

Hosford, D. R. and J. M. Trappe. 1988. A preliminary survey of Japanese species of Rhizopogon. Trans. mycol. Soc. Japan 29: 63-72.

Kretzer, A., Y. Li, T. Szaro, and T. D. Bruns. 1996. Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: Phylogenetic and taxonomic implications. Mycologia 88(5): 776-785.

Kretzer, A., and T. D. Bruns. 1997. Molecular revisitation of the genus, Gastrosuillus. Mycologia 89(4): 586-589.

Lange, M. 1956. Danish hypogeous macromycetes. Dansk Botanisk Arkiv 16(1): 5-84.

Lee, S. B. and J. W. Taylor. 1992. Phylogeny of five fungus-like Protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol. Biol. Evol. 9(4): 636-653.

Liston, A. W. A. Robinson, D. Pinero, and E. R. Alvarez-Buylla. 1998. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Amer. J. Bot. In press.

Liu, Y. J., S. O. Rogers, and J. F. Ammirati. 1997. Phylogenetic relationships in Dermocybe and related Cortinarius taxa based on nuclear ribosomal DNA internal transcribed spacers. Can. J. Bot. 75: 519-532.

Lutzoni, F. M. 1997. Phylogeny of lichen- and non-lichen -forming Omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Syst. Bio. 46 (3): 373-406.

Malençon, G. 1931. Le série des Astérosporés. Recueil de traveaux crytogamiques dediés a Louis Mangin 399.

Manos, P. S. 1997. Systematics of Nothofagus (Nothofagaceae) based on rDNA spacer sequences (ITS): Taxonomic congruence with morphology and plastid sequences. Am. J. Bot. 84 (8): 1137-1155.

Martin, M.P. 1996. The genus Rhizopogon in Europe. Ed. specials Soc. Catalana. Micol. 5: 173 pp .

Maser, Z., C. Maser, and J. M. Trappe. 1985. Food habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can. J. Zool. 63: 1084-1088.

Massicotte, H. B., R. Molina, D. L. Louma, and J. E. Smith. 1994. Biology of the ectomycorrhizal genus, Rhizopogon II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in monoculture and dual culture. New Phytol. 126: 677-690.

Miller, S. L. 1986. Hypogeous fingi from the Southeastern United States I. The genus Rhizopogon. Mycotaxon 27: 193-218.

Molina, R. 1980. Patterns of ectomycorrhizal host-fungus specificity in the Pacific northwest. Ph.D. Dissertation, Oregon State University, Corvallis, 297 pp .

Molina, R. and J. M. Trappe. 1982b. Patterns of ectomycorrhizal host specificity and potential among Pacific northwest conifers and fungi. Forest Sci. 28 (3): 423-458.

Molina, R. and J. M. Trappe. 1994. Biology of the ectomycorrhizal genus, Rhizopogon I. Host associations, host-specificity, and pure culture syntheses. New Phytol 126: 653-689.

Molina, R., J. E. Smith, D. McKay, and L. H. Melville. 1997. Biology of the ectomycorrhizal genus, Rhizopogon III. Influence of co-cultured conifer species on mycorrhizal specificity with the arbutoid hosts Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137: 519528.

Molina, R., J. M. Trappe, L. C. Grubisha, and J. W. Spatafora. 1998. Rhizopogon. In: Ectomycorrhizal Fungi: Key Genera in Profile. Ed. Cairney and Chambers Springer-Verlag. In press.

Moller, M. and Q. C. B. Cronk. 1997. Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am. J. Bot. 84 (7): 956-965.

Monclavo, J., H. Wang, and R. Hseu. 1995. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and $25 S$ ribosomal DNA sequences. Mycologia 87(2): 223-238.

Mullis, K. B. and F. A. Fallona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335-350.

O'Donnell, K. 1992. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopahtogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr. Genet. 22: 213-320.

Prager, E. M., D. P. Fowler, and A. C. Wilson. 1976. Rates of evolution in conifers (Pinaceae). Evolution 30(4): 637-649.

Price, R. A., J. Olsen-Stojkovich, and J. M. Lowenstein. 1987. Relationships among the genera of Pinaceae: an immunological comparison. Syst. Bot. 12(1): 91-97.

Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. G. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer -directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Smith, A. H. 1964. Rhizopogon, a curious genus of false truffle. The Michigan Botanist 3: 13-19.

Smith, A. H. and S. M. Zeller. 1966. A preliminary account of the North American species of Rhizopogon. Memoirs of the New York Botanical Garden 14: 1-178.

Smith, A. H. 1971. Taxonomy of ectomycorrhiza-forming fungi. In: Hacskaylo E, ed. Mycorrhizae. Washington, DC: U.S. Department of Agriculture, Forest Service, Miscellaneous Publication 1189, 1-8.

Stefanovic, S., M. Jager, J. Deutsch, J. Broutin, and M. Masselot. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Amer. J. Bot. 85(5): 688-697.

Swofford, D. L. 1993. PAUP: Phylogenetic analysis using parsimony, version 3.1 Illionois Natural History Survey, Champaign, Illinois.

Swofford, D. L. 1998. Paup*: Phylogenetic analysis using parsimony, version 4.0 for Macintosh. Computer program distributed by Sinauer Associates Inc., Sunderland, Massachusetts.

Thiers, H. D. 1971. Some ideas concerning the phylogeny and evolution of the boletes. Pp. 423-440. In: Evolution in the Higher Basidiomycetes, an International Symposium. Ed. R. H. Peterson. The University of Knoxville Press, Knoxville.

Thiers, H. D. 1984 The secotioid syndrome. Mycologia 76(1): 1-8.
Trappe, J. M. 1975. A revision of the genus Alpova with notes on Rhizopogon and the Melanogastraceae. Beiheft Nova Hedwigia 51: 279-309.

Vargas, P., B. G. Baldwin, L. Constance. 1998. Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of Sanicula (Apiaceae). Proc. Natl. Acad. Sci. 95: 235240.

White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315322. In: PCR Protocols: A Guide to Methods and Applications. Eds., M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, New York.

Wojciechowski, M. F., M. J. Sanderson, B. G. Baldwin, and M. J. Donoghue. 1993. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am. J. Bot. 80 (6): 711-722.

CHAPTER 4

CONCLUSIONS

SUMMARY

Rhizopogon systematics

In this thesis, I have tested hypotheses of the systematics of the ectomycorrhizal genus Rhizopogon through phylogenetic analyses of nucleotide sequence data from ribosomal DNA. First, the relationship of the genus Rhizopogon with other genera of the Boletales was examined, with special emphasis on the genus Suillus (Chapter 2). Secondly, Smith's (Smith and Zeller, 1966) hypotheses on infrageneric relationships in Rhizopogon were tested (Chapter 3).

The Boletales is a large and complex order. Relationships in the boletoid radiation were not clarified, but Boletus, Boletellus, Xerocomus, Phylloporus, Tylopilus, Alpova, and Melanogaster were well supported as a group. Boletus was not monophyletic and Alpova was polyphyletic in these analyses. Although placement of Melanogaster in the Boletales has recently been suggested (Besl et al., 1996), ours may be the first report of Melanogaster as part of the boletoid radiation within the Boletales. Rhizopogon, Suillus, and Truncocolumella formed a distinct and strongly supported group. The suilloid radiation is a cohesive group of closely related genera. In order to
show the natural classification of these closely related genera, I placed Suillus, and Truncocolumella and the Gomphidiaceae (Gomphidius, Chroogomphus, Cystogomphus, Brauniellula, and Gomphogaster) in the Rhizopogonaceae.

The Boletales are obligately ectomycorrhizal. Genera in the boletoid radiation associate with either gymnosperm or angiosperm hosts. Within and between genera there is a wide range of host associations, although certain genera or species may show a narrow range of host specificity, e. g., Alpova diplophloeus is host specific with alders. This contrasts with the suillioid radiation. A striking feature of the Rhizopogonaceae is the host specificity to Pinaceae with only rare exception. Within Rhizopogon (Chapter 3) and Suillus (Thiers, 1975; Kretzer et al., 1996) certain subgenera or species are host specific with Pinus spp., Pseudotsuga spp., or Larix spp.. Chroogomphus, and Truncocolumella are host specific with Douglas-fir. In general, infrageneric relationships in Rhizopogon as defined by A. H. Smith (Smith and Zeller, 1966) were well supported. Section Amylopogon and Villosuli were both well supported and monophyletic. Many species of section Fulviglebae were nested within section Villosuli. Section Rhizopogonwas not monophyletic. These three sections were elevated to subgenera. A new subgenus, Roseoli, was erected for the Rhizopogon roseolus $/ R$. vulgaris group. A summary of the taxonomic revisions proposed in this thesis is outlined below. Subgenera in Rhizopogon also reflect host associations, e. g., species in subgenus Villosulus are host specific with Pseudotsuga. Groupings within Rhizopogon subgenera Amylopogon and

Rhizopogon remain the same as outlined by Smith and Zeller (1966), but stirps are elevated to sections. Transfer of species between sections and subgenera was discussed in Chapter 3.

Summary of taxonomic revisions:
Rhizopogonaceae
Subfamily Rhizopogonoideae
Rhizopogon
Subgenus Amylopogon
Subgenus Roseoli
Section Roseoli
Section Vulgares
Subgenus Villosuli
Section Villosuli
Section Vinicolores (formerly stirps
Vinicolor)
R. ochraceisporus
R. clavitisporus
R. subclavitisporus

Subgenus Rhizopogon
Section Rhizopogon
Section Fulviglebae
Subfamily Suilloideae
Suillus
Truncocolumella
Subfamily Gomphidioideae (formerly Gomphidiaceae) Gomphidius
Chroogomphus
Cystogomphus
Brauniellula
Gomphogaster

Utility of nuclear ribosomal DNA

Approximately the first 900 bases of the nuclear large subunit rDNA were sequenced to test phylogenetic relationships at the generic level within the Boletales. The internal transcribed spacer regions 1 and 2, and the 5.8S rRNA subunit gene were sequenced to address infrageneric questions in Rhizopogon. These areas of rDNA provided sufficient resolution of intergeneric and infrageneric relationships addressed in each study. The ITS sequences were only alignable for genera in the suilloid radiation of the Boletales, the genera I have placed in the Rhizopogonaceae. It appears that within the Boletales, the ITS is useful for examining intergeneric and infrageneric questions from closely related genera, e. g., the suilloid radiation. Relationships between closely related species could not be clarified in this study.

Areas of ambiguous alignment and multiple-base insertion/deletion (indel) regions were present in both data sets. Indels in the ITS alignment strongly followed taxonomic divisions; however, this was not observed in the large subunit alignment. In the ITS alignment it was not difficult to code most of the indel regions. Coding the indels in the large subunit alignment was not possible because these areas were also considered to be areas of ambiguous alignment.

RECOMMENDATIONS FOR FUTURE RESEARCH

Generic relationships in the Boletales

The new members of the Rhizopogonaceae, Gomphidius, Chroogomphus, and Brauniellula, need to be tested and included in subsequent analyses. I anticipate that within the suilloid radiation they will form a basal group to the sister group of Suillus and Rhizopogon. More genera, e. g., Strobiliomyces, Gyrodon, Leccinum, within the boletoid radiation should be sampled in order to clarify relationships in this group. Sampling of additional Melanogaster and Alpova is needed to further explore the polyphyly of Alpova and the relationship of the Melanogastraceae in the Boletales.

Species concepts in Rhizopogon

Although this thesis has provided clarification on subgeneric concepts in Rhizopogon, infrasubgeneric species concepts remain confused. Further study is needed in all four subgenera. Future molecular phylogenetic studies should employ another gene, perhaps the β-tubulin gene or the intergenic spacer region, not only to substantiate the results presented here, but to locate a gene which offers more reliability in distinguishing closely related species. Special emphasis should be placed on subgenus Villosulus. In subgenus Villosulus species concepts in both section Villosuli and section Vinicolor
need further refinement. Studies of these sections should involve the combination of a detailed morphological study and a molecular phylogenetic analyses.

BIBLIOGRAPHY

Agerer, R. 1990. Studies on Ectomycorrhizae XXIV: Ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwigia 50: 1-63.

Alexopoulos, C. J., C. W. Mims, and M. Blackwell. 1996. Introductory Mycology. John Wiley \& Sons, Inc. New York.

Allen, M. F., J. M. Trappe, and T. R. Horton. 1998. NATS truffle and trufflelike fungi 8: Rhizopogon mengei sp. nov. (Boletaceae, Basidiomycota). Mycotaxon. Submitted.

Arnheim, N., M., Krystal, R. Schmickel, G. Wilson, O. Ryder, E. Zimmer. 1980. Molecular evidence for genetic exchange among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Natl. Acad. Sci. 77: 7323-7327.

Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a variable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82(2): 247-277.

Baum, D. A., K. J. Sytsma, and P. C. Hoch. 1994. A phylogenetic analysis of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences. Syst. Bot. 19: 363-388.

Baura, G., T. M. Szaro, and T. D. Bruns. 1992. GastroSuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia 84: 592-597.

Begerow, D., R. Bauer, and F. Oberwinkler. 1997. Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can. J. Bot. 75: 2045-2056.

Bes1., H., R. Dorsch, and M. Fischer. Zur verwandtschaftlichen stellung der gattung Melanogaster (Melanogastraceae, Basidiomycetes). Z. Mykol. 62(2): 195-199.

Bidartondo, M. I, A. M. Kretzer, and T. D. Bruns. 1998. Identity and spatial distribution of the fungal associate of Sarcodes sanguinea (abstract) Inoculum, 49(2): 9 .

Bruns, T.D., Fogel, T.J. White, and J.D. Palmer. 1989. Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339: 140-142.

Bruns, T.D., Fogel, and J. W. Taylor. 1990. Amplification and sequencing of DNA from fungal herbarium specimens. Mycologia 82(2): 175--184.

Bruns, T. D., T. J. White, and J. W. Taylor. 1991. Fungal Molecular Systematics. Annu. Rev. Ecol. Syst. 22: 525-564.

Bruns, T. D., and T.M. Szaro. 1992. Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol. Biol. Evol. 9: 836--855.

Bruns, T. D., R. Vilgalys, S. M. Barns, D. Gonzales, D. S. Hibbett, D. J. Lane, and five others. 1992. Evolutionary relationships within the Fungi: Analyses of nuclear small subunit rRNA sequences. Molecular Phylogenetics and Evolution 1 (3): 231-241.

Bruns, T. D., T. M. Szaro, M. Gardes, K. W. Cullings, J. J. Pan, D. L. Taylor, T. R. Horton, A. Kretzer, M. Garbelotto, and Y. Li. 1998. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular Ecology 7: 257-272.

Carey, A. B., S. P. Horton, and B. L. Biswell. 1992. Nothern spotted owls: influence of prey base and landscape character. Ecol. Monogr. 62: 223250.

Carmean, D. 1994. SeqApp version 0.6. Simon Frazier University.
Castellano, M. A., J. M. Trappe, Z. Maser, and C. Maser. 1989. Key to Spores of the Genera of Hypogeous Fungi of North Temperate Forests with special reference to animal mycophagy. Mad River Press, Eureka.

Castellano, M. A. 1997. Towards a RED list for Oregon macrofungi. Pp. 222226. In: Conservation and Management of Native Flora and Fungi. Eds., T. N. Kaye, A. Liston, R. M.Love, D. Luoma, R. J. Meinke, and M. V. Wilson. NPSO, Corvallis, Oregon.

Cázares, E., J. Garcia, J. Castillo, and J. M. Trappe. 1992. Hypogeous fungi from northern Mexico. Mycologia 84: 341-359.

Chapela, I. H., S. A. Rehner, T. R. Schultz, and U. G. Muelller. 1994. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266: 1691-1694.

Chaw, S. M., A. Zharkikh, H. M. Sung, T. C. Lau, and W. H. Li. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18 S rRNA sequences. Mol. Biol. Evol. 14(1): 56-68.

Coker, W. C. and J. N. Couch. 1928. The gasteromycetes of the Eastern United States and Canada. Chapel Hill: University of North Carolina Press.

Colgan, W. III. 1997. Diversity, productivity, and mycophagy of hypogeous mycorrhizal fungi in a variably thinned Douglas-fir forest. Ph.D. Dissertation, Oregon State University, Corvallis, 95 pp.

Colgan, W., M. A. Castellano, and J. W. Spatafora. 1997. Systematics of the Hysterangiaceae (abstract). Inoculum 48(3): 7.

Cullings, K. and Vogler. 1998. A 5.8 S nuclear ribosomal RNA gene sequence database: applications to ecology and evolution. Molecular Ecology in press.

Dodge, C. W. 1931. Alpova, a new genus of Rhizopogonaceae, with further notes on Leucogaster and Arcangeliella. Ann. Mo. Bot. Gard. 18: 457265.

Dover, G. and R. Flavell. 1984. Molecular coevolution: DNA divergence and the maintenance of function. Cell 38: 622-623.

Downie, S. R., S. Ramanath, D. S. Katz-Downie, and E. Llanas. 1998. Molecular systematics of Apiaceae subfamily Aioideae: Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer and plastid RPOC1 intron sequences. Am. J. Bot. 85 (4): 563-591.

Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Feibelman, T. P., R. L. Doudrick, W. G. Cibula, and J. W. Bennett. 1997. Phylogenetic relationships within the Cantharellaceae inferred from sequence analysis of the nuclear large subunit rDNA. Mycol. Res. 101(12): 1423-1430.

Fischer, Ed. 1933. Gastromyceteae. In: Engler E Prantl. Die Naturl. Pflanzenfam. (II ed.) 7a: 1-122.

Forsman, E. D., E. C. Meslow, and H. M. Right. 1984. Distribution and biology of the spotted owl in Oregon. Wildl. Monogr. 87:1-64.

Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.

Garrido, N. 1986. Survey of ectomycorrhizal fungi associated with exotic forest trees in Chile. Nova Hedwigia 43: 423-442.

Gäumann, E. A. and C. W. Dodge. 1928. P. 468. In: Comparative Morphology of Fungi. McGraw-Hill Book Company, Inc. New York.

Grubisha, L. C., J. M. Trappe. R. Molina, and J. W. Spatafora. 1998. Chapter 2. L. C. Grubisha, Masters Thesis, Oregon State University.

Grubisha, L. C., J. M. Trappe, R. Molina, and J. W. Spatafora. 1998. Chapter 3. Re-examinination of infrageneric relationships in the genus Rhizopogon based on nrDNA internal transcribed spacer sequences. L. C. Grubisha, Masters Thesis, Oregon State University.

Hamby, R. K. and E. A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 50-91. In: Molecular Systematics of Plants. Eds. P. S. Soltis, D. E. Soltis, and J. J. Doyle. Routledge, Chapman \& Hall, Inc.

Harrington, F. A. and D. Potter. 1997. Phylogenetic relatinships within Sarcoscypha based upon nucleotide sequences of the internal transcribed spacer of the nuclear ribosomal DNA. Mycologia 89(2): 258267.

Harrison K. A. and A. H. Smith. 1968. Some new species and distribution records of Rhizopogon in North America. Can. J. Bot. 46: 881-889.

Hart, J. A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68(3): 269-307.

Hassouma, N., B. Michot, and J. P. Bachellerie. 1984. The complete nucleotide sequence of mouse 28 S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research 12(8): 3563-3582.

Hawker, L. E. 1975. Scanning electron microscopy of basidiospores as an indication of relationships among hypogeous gasteromycetes. Beiheft Nova Hedwigia 51: 123-132.

Hawksworth, D. L., P. M. Kirk, B. C. Sutton, and D. N. Pegler. 1995.
Dictionary of the Fungi, 8th Edition. CAB International, Cambridge, UK.

Heim, R. 1971. The interrelationships between Agaricales and Gasteromycetes. Pp. 481-504. In: Evolution in the Higher Basidiomycetes, an International Symposium. Ed. R. H. Peterson. The University of Knoxville Press, Knoxville.

Henrion, B., G. Chevalier, and F. Martin. 1994. Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol. Res. 98(1): 37-43.

Hibbett, D. S. 1992. Ribosomal RNA and Fungal Systematics. Trans. Mycol. Soc. Japan 33: 533-556.

Hibbett, D. S. and R. Vilgalys. 1993. Phylogenetic relationships of Lentinus (Basidiomycotina) inferred from molecular and morphological characters. Syst. Bot. 18(3): 409-433.

Hibbett, D. S., Y. Fukumasa-Nakai, A. Tsuneda, and M. J. Donoghue. 1995. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87(5): 618-638.

Hibbett, D. S., E. M. Pine, E. Langer, G. Langer, and M. J. Donoghue. 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. 94: 12002-12006.

Holst-Jensen, A., L. M. Kohn, K. S. Jacobsen, and T. Schumacher. 1997. Molecular phylogeny and evolution of Monilina (Sclerotiniaceae) based on coding and noncoding rDNA sequences. Am. J. Bot. 84 (5): 686-701.

Hosford, D. R. 1972. Rhizopogon of the northwestern United States. Ph.D. Dissertation, University of Washington, Seattle, 250 pp .

Hosford, D. R. 1975. Taxonomic Studies on the genus Rhizopogon I. Two new species from the Pacific northwest. Beiheft Nova Hedwigia 51: 163-71.

Hosford, D. R. and J. M. Trappe. 1980. Taxonomic studeis on the genus Rhizopogon, II Notes and new records of species from Mexico and Caribbean countries. Bol. Soc. Mex. Mic. 14: 3-15.

Hosford, D. R. and J. M. Trappe. 1988. A preliminary survey of Japanese species of Rhizopogon. Trans. mycol. Soc. Japan 29: 63-72.

Kreisel, H. 1969. Grundzüge eines natürlichen Systems der Pilze. 245pp. Jena: Gustav Fischer.

Kretzer, A., Y. Li, T. Szaro, and T. D. Bruns. 1996. Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: Phylogenetic and taxonomic implications. Mycologia 88(5): 776-785.

Kretzer, A., and T. D. Bruns. 1997. Molecular revisitation of the genus, Gastrosuillus. Mycologia 89(4): 586-589.

Lange, M. 1956. Danish hypogeous macromycetes. Dansk Botanisk Arkiv 16(1): 5-84.

Lee, S. B. and J. W. Taylor. 1992. Phylogeny of five fungus-like Protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol. Biol. Evol. 9(4): 636-653.

Liston, A. W. A. Robinson, D. Pinero, and E. R. Alvarez-Buylla. 1998. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Amer. J. Bot. In press.

Liu, Y. J., S. O. Rogers, and J. F. Ammirati. 1997. Phylogenetic relationships in Dermocybe and related Cortinarius taxa based on nuclear ribosomal DNA internal transcribed spacers. Can. J. Bot. 75: 519-532.

Lutzoni, F. M. 1997. Phylogeny of lichen- and non-lichen -forming Omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Syst. Bio. 46 (3): 373-406.

Malençon, G. 1931. Le série des Astérosporés. Recueil de traveaux crytogamiques dediés a Louis Mangin 399.

Manos, P. S. 1997. Systematics of Nothofagus (Nothofagaceae) based on rDNA spacer sequences (ITS): Taxonomic congruence with morphology and plastid sequences. Am. J. Bot. 84 (8): 1137-1155.

Martin, M.P. 1996. The genus Rhizopogon in Europe. Ed. specials Soc. Catalana. Micol. 5: 173 pp .

Maser, C., J. M. Trappe, and R. Nussbaum. 1978. Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59: 799-809.

Maser, Z., C. Maser, and J. M. Trappe. 1985. Food habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can. J. Zool. 63: 1084-1088.

Massicotte, H. B., R. Molina, D. L. Louma, and J. E. Smith. 1994. Biology of the ectomycorrhizal genus, Rhizopogon II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in monoculture and dual culture. New Phytol. 126: 677-690.

Michot, B. and J. P. Bachellerie. 1987. Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69: 11-23.

Miller, O. K. 1971. The genus Gomphidius with a revised description of the Gomphidiaceae and a key to the genera. Mycologia 63: 1129-1163.

Miller, O. K. 1983. Ectomycorrhizae in the Agaricales and Gasteromycetes. Can. J. Bot. 61: 909-916.

Miller, O. K., Jr., and H. H. Miller. 1988. Gasteromycetes: Morphology and Developmental Features. Mad River Press, Eureka, CA.

Miller, S. L. 1986. Hypogeous fingi from the Southeastern United States I. The genus Rhizopogon. Mycotaxon 27: 193-218.

Molina, R. 1980. Patterns of ectomycorrhizal host-fungus specificity in the Pacific northwest. Ph.D. Dissertation, Oregon State University, Corvallis, 297 pp.

Molina, R. and J. M. Trappe. 1982a. Lack of mycorrhizal specificity by the Ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol. 90: 495-509.

Molina, R. and J. M. Trappe. 1982b. Patterns of ectomycorrhizal host specificity and potential among Pacific northwest conifers and fungi. Forest Sci. 28 (3): 423-458.

Molina, R., H. Massicotte, and J. M. Trappe. 1992. Specificity phenomena in mycorrhizal symbioses: comunity-ecological consequences and practical implications. In: Mycorrhizal Functioning, An Integrative Plant-Fungal Process. Ed. by M. F. Allen, Pp. 357-423, Chapman and Hall, New York.

Molina, R. and J. M. Trappe. 1994. Biology of the ectomycorrhizal genus, Rhizopogon I. Host associations, host-specificity, and pure culture syntheses. New Phytol 126: 653-689.

Molina, R., J. E. Smith, D. McKay, and L. H. Melville. 1997. Biology of the ectomycorrhizal genus, Rhizopogon III. Influence of co-cultured conifer species on mycorrhizal specificity with the arbutoid hosts Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137: 519528.

Molina, R., J. M. Trappe, L. C. Grubisha, and J. W. Spatafora. 1998. Rhizopogon. In: Ectomycorrhizal Fungi: Key Genera in Profile. Ed. Cairney and Chambers Springer-Verlag. In press.

Moller, M. and Q. C. B. Cronk. 1997. Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am. J. Bot. 84 (7): 956-965.

Moncalvo, J., H. Wang, and R. Hseu. 1995. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and $25 S$ ribosomal DNA sequences. Mycologia 87(2): 223-238.

Morse, E. E. 1933. A study of the genus Podaxis. Mycologia 25: 1-33.
Mullis, K. B. and F. A. Fallona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335-350.

O'Donnell, K. 1992. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopahtogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr. Genet. 22: 213-320.

O'Donnell, K., E. Cigelnik, N. S. Weber, and J. M. Trappe. 1997. Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18 S and 28 S ribosomal DNA sequence analysis. Mycologia 89(1): 48-65.

Pegler, D. N. and T.W. K. Young. 1981. A natural arrangement of the Boletales, with reference to spore morphology. Trans. Br. Mycol. Soc. 76(1): 103-146.

Prager, E. M., D. P. Fowler, and A. C. Wilson. 1976. Rates of evolution in conifers (Pinaceae). Evolution 30(4): 637-649.

Price, R. A., J. Olsen-Stojkovich, and J. M. Lowenstein. 1987. Relationships among the genera of Pinaceae: an immunological comparison. Syst. Bot. 12(1): 91-97.

Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. G. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Singer, R. 1945. The Boletineae of Florida with notes on extralimital species: II. The Boletaceae (Gyroporoideae). Farlowia 2(2): 223-303.

Singer, R. 1962. The Agaricales in modern taxonomy., 2nd ed. Koenigstein, Germany: Koeltz Scientific Books.

Singer, R. 1986. The Agaricales in modern taxonomy., 4th ed. Koenigstein, Germany: Koeltz Scientific Books.

Smith, A. H. and R. Singer. 1959. Studies on secotiaceous fungi-IV Gastroboletus, Truncocolumella and Chamonixia. Brittonia 11: 205223.

Smith, A. H. 1964. Rhizopogon, a curious genus of false truffle. The Michigan Botanist 3: 13-19.

Smith, A. H., and H. D. Thiers. 1964. A contribution toward a monograph of North American species of Suillus. Ann Arbor, Michigan.

Smith, A. H. 1966. New and noteworthy higher fungi from Michigan. The Michigan Botanist 5: 19-25.

Smith, A. H. and S. M. Zeller. 1966. A preliminary account of the North American species of Rhizopogon. Memoirs of the New York Botanical Garden 14: 1-178.

Smith, A. H. 1968. Further studies on Rhizopogon. I. J. Elisha Mitchell Science Society 84: 274-280.

Smith, A. H. 1971. Taxonomy of ectomycorrhiza-forming fungi. In: Hacskaylo E, ed. Mycorrhizae. Washington, DC: U.S. Department of Agriculture, Forest Service, Miscellaneous Publication 1189, 1-8.

Smith, A. H. and H. D. Thiers. 1971. The Boletes of Michigan. University of Michigan, Ann Arbor, Michigan.

Smith, A. H. 1973. Agaricales and related secotioid Gasteromycetes. Pp.421450 In: The Fungi IVB, A Taxonomic Review with Keys: Basidiomycetes and Lower Fungi. Academic Press, London.

Stefanovic, S., M. Jager, J. Deutsch, J. Broutin, and M. Masselot. 1998. Phylogenetic relationships of conifers inferred from partial 28 S rRNA gene sequences. Amer. J. Bot. 85(5): 688-697.

Swofford, D. L. 1993. PAUP: Phylogenetic analysis using parsimony, version 3.1 Illionois Natural History Survey, Champaign, Illinois.

Swofford, D. L. 1998. Paup*: Phylogenetic analysis using parsimony, version 4.0 for Macintosh. Computer program distributed by Sinauer Associates Inc., Sunderland, Massachusetts.

Thiers, H. D. 1971. Some ideas concerning the phylogeny and evolution of the boletes. Pp. 423-440. In: Evolution in the Higher Basidiomycetes, an International Symposium. Ed. R. H. Peterson. The University of Knoxville Press, Knoxville.

Thiers, H. D. 1975. The status of the genus Suillus in the United States. Beiheft Nova Hedwigia 51: 247-278.

Thiers, H. D. 1984 The secotioid syndrome. Mycologia 76(1): 1-8.
Trappe, J. M. and G. Guzmán. 1971. Notes on some hypogeous fungi from Mexico. Mycologia 63: 317-332.

Trappe, J. M. 1975. A revision of the genus Alpova with notes on Rhizopogon and the Melanogastraceae. Beiheft Nova Hedwigia 51: 279-309.

Trappe, J. M. and C. Maser. 1977. Ectomycorrhizal fungi: interactions of mushrooms and truffles with beasts and trees. In: Mushrooms and man: an interdisciplinary approach to mycology. Ed. by T. Walters. Linn-Benton community College, Albany, OR. Pp. 163-179.
U.S.D.A., F.S.: U.S. DOI, BLM. 1994. Record of Decision for amendments to FS and BLM planning documents within range of NSO. 74 p . Plus Attachment A: Standards and Guidelines.

Vargas, P., B. G. Baldwin, L. Constance. 1998. Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of Sanicula (Apiaceae). Proc. Natl. Acad. Sci. 95: 235240.

Vilgalys, R. and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified DNA from several Cryptococcus species. J. Bacteriol. 172(8): 4238-4246.

Vilgalys, R., J. Hopple, and D. S. Hibbett. 1993. Phylogenetic implications of genetic concepts in fungal taxonomy: the impact of molecular systematic studies. Mycol. Helvet. 6: 73-91.

Vilgalys, R. and B. L. Sun. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. Natl. Acad. Sci. 91: 45994603.

White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315322. In: PCR Protocols: A Guide to Methods and Applications. Eds., M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, New York.

Wojciechowski, M. F., M. J. Sanderson, B. G. Baldwin, and M. J. Donoghue. 1993. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am. J. Bot. 80 (6): 711-722.

Zeller, S. M. and C. W. Dodge. 1918. Rhizopogon in North America. Annals of the Missouri Botanical Garden 5 (1): 1-36.

Zeller, S. M. 1939. New and noteworthy Gasteromycetes. Mycologia 31: 1-32.
Zeller, S. M. 1941. Further notes on fungi. Mycologia 33: 196-214.
Zeller, S. M. 1948. Notes on certain Gasteromycetes, including two new orders. Mycologia 60(6): 639-668.

Zeller, S. M. 1949. Keys to the orders, families, and genera of the Gasteromycetes. Mycologia 41(1): 36-58.

Zimmer, E. A., S. L. Martin, S. M. Beverley, Y. W. kan, and A. C. Wilson. 1980. Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc. Natl. Acad. Sci. 77: 2158-2162.

APPENDICES

APPENDIX 1. Primary morphological characters used to distinguish the four sections of Rhizopogon based on A. H. Smith's classification (Smith, 1964; Smith and Zeller, 1966).

Rhizopogon section	Peridium	Hyphae	Gleba	Spores
Amylopogon	layer of interwoven rhizomorphs present; olive to blue or pink in KOH ; form orange to brown pigment balls in Melzer's solution	not welldifferentiated and not forming an epicuticular layer in the peridium		amyloid or dextrinoid
Fulviglebae		in some species brownwalled and forming a distinct epicuticular layer in the peridium	fulvous to cinnamon to dark yellowbrown; often yellow when immature	truncate; inamyloid but sometimes dextrinoid
Rhizopogon ${ }^{1}$			white to olive buff or olive to olivebrown	
Villosuli	reaction to 2\% KOH produces a red or an olive to green or both red to green reaction	brown-walled and forming a distinct epicuticular layer in the peridium		

${ }^{1}$ Smith states that these species lack characters used to define other sections.

APPENDIX 2. PAUP NEXUS alignment file of 53 sequences of the internal transcribed spacer (ITS) regions 1 and 2 and the 5.8 S subunit from Rhizopogon, Suillus, Gomphidius, Truncocolumella, and Chroogomphus used in the maximum parsimony analyses in Chapter 3.

```
\#NEXUS
[LISA.ITS.4.20.98-1318870123 -- data title]
```

begin data;
dimensions ntax $=54$ nchar=927;
FORMAT symbols = "A G C T N X Y W R S K M I 012 3" MISSING=. EQUATE="-=. I=." INTERLEAVE;
OPTIONS MSTAXA=UNCERTAIN [GAPMODE=NEWSTATE];

matrix

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (T)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor (T17899)
R. vinicolor (T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
gTGAAcctgc ggaiggatca ttantcannn ntatantcin gccgagi--gTGAAcctgc ggangatca ttantgann ntatantcnn gccgagi--GTGAACCTGC GGAAGGATCA TTAAAGAA-- I-ATAATCNN --CGAGI--gTgancctgc gganggatca ttantgann ntataitcnn ggccagi--GTGAACCTGC GGAAGGATCA TTAACGAATT CACG-ATTNN GGCGAGI------------- --Aaggatca ttatcgannn ntataatcnn ggcgagi--gTGAACCTGC GGAAGGATCA TTAAAGAANN NTATAATCNN GGCGAAI--gTGAACCTGC GGAAGGATCA TTAACGAANN NTATAATCNN GGCGAGI--gTgancctgc gganggatca ttantgannn ntatantcnn ggceagi--gTgancctgc gganggatca ttatcgannn ntatantcnn gacgail--gtgancctgc ggangeatca ttantgan-- itatantunn ggtcgei--gTGAACCNGC GGAAGGATCA TTAACGAA-- ICGTAATTNN GGCGT-I--gTGAACCTGC GGAAGGATCA TTAACGAA-- ITCTAATCNN GCCGA-I---gTGAAC-TGC GGAAGGA-CA TTAATGAA-- ITATAACANN GGAGG-I--GTGAACCTGC GGAAGGATCA TTAATGAA-T GT--AACANN GGAGG-I--GTGAACCTGC GGAAGGATCA TTAATGAA-T GT--AACANN GGAGG-I---GTGAAC-TGC GGAAGGA-CA TTAATGAA-T GT--AACANN GGAGG-I--GTGAACCTGC GGAAGGATCA TTAATGAA-T GTATAAATNN GGCGA-I--NGNGCGCGGG GNGGNGCNCA TTTCNGNC-T NCANAAATNN GGCGA-I--gTGAACCTGC GGAAGGATCA TTAATGAA-T GTATAAATNN GGCGA-I--GTGAACCTGM GGAAGGATCA TTAATGAA-T GTATAAATNN GGCGA-I--GTGAACCTGC GGAAGGATCA TTAATGAA-T GTATAAATNN GGCGA-I--GTGAACCTGC GGAAGGATCA TTAATGAAAT GTGTAAATGA TGCACTTCTT gTgaicctgc gganggatca ttantganat gtgtanatga tgcactttut gTgancctgc gganggatca ttancgai-- itatantunn ggaggal--gTGAAC-TGC AGAATGATCA TTAACGAA-- ITATAATTNN GGAGGGI---gTGAAC-TGC gGAAGGATCA TTAACGAA-- ITATAATTNN AGAGGGI--gTgadcatgm ggan-gatca tranygan-- itatanttnn agaggei--GTGAACCTGC GGAAGGATCA TTAACGAA-- ITATAAATNN GGAAAGI--gTGAACCTGC GGAAGGATCA TTAACGAA-- ITATAAATNN GGAAAGI---gTGAAC-TGC GGAAGGATCA TTAACGAA-- ITATAAATNN GGAAAGI--gTGAACCTGC GgAaggatca trancean-- Itatanatnn gganagi---gGgacc-tgc cggaggetrm atwamgean- IWwtanttnn gganasi--gTGAACCTGC Ggangeatca trancgan-- Itatanatnn gganagi--gTGAACATGM GgAAGGATCA TTAACGAA-- ITATAAATNN GGAAAGI---gTgaic-tgc ggangeatca trancgan-- itatanatnn gganagi--gTGAACCTGC GGAAGGATCA TTAACGAA-- ITATAAATNN GGTCGGI--GTGAACCWGC GGAAGGATCA TTAACGAA-- ITATAAATNN GGAAAGI---gCgaic-tgc gg-agg-cca trancgea-- itatanatnn gganagi------------ GGARGGTTCA tTAA-GGANN ITtTAATTNN GGAAAGI------------ GGARGGTTCW TTAA-GGANN ITWTAATTNN GGAAAGI--GTGAACCTGC GGAAGGATCA TTAACGAA-- ITATAAATNN GGAAAGI--gTgaicctgc geanggatca trancgan-- itatanatnn ggaiagi--gTgaicctgc ggangatca ttancgan-- itatanatnn gganagi--gtgancctgc ggangatca ttancgan-- itatadatnn gganagi---gTgacc-tgc gganggatca ttancgat-- itatanatnn gganagi------------ --AAGGATCA tTAACGAA-- ITATAATTNN GAGGGGI--gtganctec ggangeatca trancgan-- itatatitnn gaggegi--gTGAACCTGC GGAAGGATCA tTAACGAA-- ITATAATTNN GAGGGGI---GTGAAC-TGC GGAAGGA-CA TTAACGAA-- ITATAATTNN GAGGGGI--gtgancatgc ggangan-ca ttancgan-- itatanttnn gagggi---gTGAAC-TGC GGAAGGATCA tTAACGAA-- ITATAATTNN GAGGGGI---GTGAAC-TGM G-AAGGA-CA TTAACGAA-- ITATAATTNN GAGGGGI---GTGAAC-TGC GGAAGGATCA TTAACGAA-- ITATAATTNN GAGGGGI---

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor (T17899)
R. vinicolor (T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)

60	70	80	90	100

----I----- GGAA---AGG -CGGAGAG-- --TTGTAGCT GGCCCC----
----I----G GGAA---AGG -CGGAGAG-- --TTGTAGCT GGCCTCCA--
----I---GG CCGAT--GGA AAGGAGAGAG GGTTGTAGCT GGCGT---.
----I---- -ATGAA-GGA -CGAGGA--- --CTGTCGCT GGCCTTTC--
----I--GGG GAAGGCCGAG GG---------TTGTAGCT GGCCTTTTTC
----I--GGG AAAGG--GGG GAG------- --TTGTCGCT GGCCTTTTAC
----I--AGG GGGAT--GGG GGAAG----- --CTGTCGCT GGCCTTTTGC
----I----G GGAA---GGA -CGAGAG--- --TTGTCGCT GGCCTTT--C
----I----G GGAA---GGA -CGAGAG--- --TTGTCGCT GGCCTTT--C
----I----G GGAAT-CGAG TCGG------ --CTGTCGCT GGCCTTT--C
----I---CG GGAA---GGA GGGAG----- --CTGTCGCT GGCCTYT---
----I---GG GGGAT--GGA GGGAG----- --CTGTCGCT GGCCTTTTTG
----I---GR GGRATTCGGG GGACAAA--- -GCTGTCGCT GGCCTT----
----I---GA GGAAAACGGG GGATAAAGCA AGCTGTGGCT GGCCTTG---
----I---GA GGAAAACAGG GGTTAAAGCA AGCTGTGGCT GGTCTTG--
----I---GA GGAATGCAGG GGGGAAAAAA AGCTGTCGCT GGCCTTT---
----AGTCGA GGAATAC-AG GGGTAAAACA -GCTGGCTGT CGCTGGTCTT
----AGTCAA GGAATTT-GG GGGAAAAACA -GCTGTCGCT GGCCTTG---
----AGTCGA GGAATTT-GG GGGAAAAACA -GCTGTCGCT GGCCTTG---
----AGTCGA GGAATTT-GG GGGAAAAACA -GCTGTCGCT GGCCTTG---
----AGTCGA GGAATTT-GG GGGAAAAACA -GCTGTCGCT GGCCTTG---
AAGTAGTTGA GGAATGCAGG GGGTTAAAAT AGTTGTTGCT GGCCTTG-TT
AAGTAGTTGA GGAATACAGG GGGTTAAAAT AGTTGTTGCT GGCCTTG---
--------- --------- --------- -- - GCTGTAGCT GGCCTTG--
---------- ---------- ---------- - GCTGTAGCT GGCCTTG---

---------- ---------- ---------- ---
---------- ---------- --------- ----
---------- ---------- ---------- --CTGTCGCT GGCCCTCGC-

---------- --------------------------
---------- ---------- --------- ---CTGTCGCT GGCCCTCGC-
---------- ---------- ---------- --TTGTCGCT GGCCTTC---

---------- --------- ----------------
---------- ---------- ---------- --СTGTCGCT GGCCTCTC--
---------- ---------- ---------- --CTGTCGCT GGCCTCTC--

---------- --------- ------------- --
---------- --------- --------- ----
---------- ---------- --------------
---------- ---------- ------------ --TTGTCGCT GGCCTCGCTC
---------- ---------- ---------- -- TTGTCGCT GGCCTCGCTC
---------- ---------- ---------- --TTGTCGCT GGCCTCGCTC
---------- ---------- ----------- --
---------- --------- ------------ -- TTGTCGCT GGCCTCGCTC
---------- ---------- -------------TTGTCGCT GGCCTCGCTC
---------- ---------- ---------- --NTGTCGCT GGCCTCGCTC
---------- ---------- ------------

Suillus brevipes
S．luteus
S．tomentosus
S．americanus
S．granulatus
S．grevillei
S．cavipes
S．caerulescens
S．lakei
S．sinuspaulinus
Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R．evadens（HT）
R．smithii
R．subsalmonius
R．fuscorubens
R．ochraceorubens（TT）
R．ochraceorubens（HT）
R．occidentalis
R．occidentalis
R．succosus
R．luteolus
R．burlinghamii
R．rubescens
R．roseolus
R．vulgaris
R．colossus（HT）
R．hawkerae（PT）
R．parksii（T17679）
R．parksii（T19446）
R．villosulus（AHS）
R．villosulus（JMT）
R．rogersii
R．gilkeyae
R．zelleri
R．villescens
R．diabolicus
R．parvulus
R．vinicolor（T17899）
R．vinicolor（T20787）
R．ochraceisporus（PT）
R．ochraceisporus（17916）
R．ochraceisporus（17944）
R．subcaerulescens
R．ellenae（HT）
R．ellenae
R．subpurpurascens（PT）
R．subpurpurascens
R．subgelatinosus
R．semireticulatus（17562）
R．semireticulatus（7899）

160	170	180	190	200
－I－－GGAC－T	－TTCGCI	I	－T	
－I－－GGACCT	－TTCGCI	CGI	－TATI	
－I－－－GACCT	AG－GTCI	T I	－T	
－I－－GGAC－T	－TTCGCI	CGI	－TATI	
－I－－－AAC－T	－CTCGCI	GI	－T	
－I－GGAACCT	－TT－GCI	I	－T	
－I－－GAACCC	－TCAGCI	CGI	－TATI	
－I－－GGAC－T	－TTCGCI	CGI	－TATI	
－I－－GGAC－T	－TTCGCI	CGI	－TATI	
－I－－－－ACCI	－TTCGTI	CGI	－TATI	
－I－GGAACGI	－TTGGTI	CGT	CTTTCATATT	I－－－－－CA
－I－GGAGCCC	－－TCGTI	CGT	TTTTCATATC	TTI－－－－CA
－I－－GGACCC	－TTCGTI	CGT	CTTTCAAACT	AI－－－－－－A
－IGAGGAACT	C－TCGAI	CGT	CTTPCATCTI	CA
－TGAGGACCT	C－TCGAI	CGT	CTITCATCTI	CTCA
－TGAGGACCT	C－TCGAI	CGT	CTITCATCTI	TCTCA
TTGAGGACCT	C－TCGAI	－CGT	CTTPCATCTI	TCTCA
－TGAGGACCT	CTTCGAI	－CGT	Ctatcatcte	ATCTCTCTCA
－TGAGGACCT	CTTCGAI	CGT	Ctatcatctc	ATCTCTCTCA
－TGAGGACCT	CTTCGAI	CGT	CTATCATCTC	ATCTCTCTCA
－TGAGGACCT	CTTCGAI	CGT	Ctatcatatc	Atctctetca
－TGAGGACCT	CTTCGAI	－－CGT	Ctatcatatc	Atctctctca
－TGAGGACCT	Cttcganata	GGGGGTGTGT	СтATCATCTC	ATI－CTCTCA
－TGAGGACCT	CTTCGAACTT	－－GGGTGTGT	Ctatcatctc	ATI－CTCTCA
－I－－－I－－－T	СTTCTI	－IGT	TTTTCACAAI	－CTCA
－I－－－I－－－T	СTTCTI	IGT	TTTTCACAAI	CTCA
－エ－－－I－－－T	СTтСтI	－IGT	TTTTCATAAI	CTCA
－I－－－I－－－T	CTTCT	－IGT	CTtTcatala	CTCA
－I－－－GACCI		－IGT	gTtTcatana	TTI－－TCTCA
－I－－－GACCI		－IGT	gTttcatana	TTI－－TCTCA
－I－－－GACCI		IGT	GTTTCATAAA	TTI－－TCTCA
－I－－－GACCI		IGT	GITTCATAAA	TTI－－TCTCA
－I－－－GACCI		IGT	GTtTCATAAA	TTI－－TCTCA
－I－－－GACCI		IGT	GTTTCATAAA	TTI－－TCTCA
－I－－－GACCI		IGT	GTtTCATAAA	TTI－－TCTCA
－I－－－GACCI		IGT	gTTTCAACAA	TTI－－TCTCA
－I－－－GACCI		IGT	GTTTCATAAA	TTエ－－TCTCA
－I－－－GACCI		－IGT	GITTCATAAA	TTI－－TCTCA
－I－－－GACCI		－IGT	GTTTCCAAAAA	TTI－－TCTCA
－I－－－GACCI		－IGT G	GITTCAAAAA	TTエ－－TCTCA
－I－－－GACCI		－IGT G	GTTTCAAAAA	TTI－－TCTCA
－I－－－GACCI		IGT	GTTTCAAAAA	TTI－－TCTCA
－I－－－GACCI		－IGT	GTtTCAAAAA	TTI－－TCTCA
－I－－－GACCI		－IGT G	GTTTCAAAAA	TTI－－TCTCA
－I－－－GACCI		－－IGT G	GTtTCAAAAA	TTI－－TCTCA
－I－－－I－－－T		－IGT T	TTTTCTCTCA	AI－－－－CTCA
－I－－－I－－－T		－IGT T	TTTTCATAAI	－－－－СТСТСА
－I－－－I－－T		－IGT T	TTTTCATAAI	－－－－СТСТСА
－I－－－I－－－T		－IGT T	TTTTCATAAI	－－－－CTCA
－I－－－I－－－T		－－IGT T	TTTTCATAAI	－－－－CTCA
－I－－－I－－－T		－IGT T	TTTTCTCAAI	－－－－CTCA
－I－－－I－－－T		－－IGT T	TTTTCATAAI	－－－CTCTCA
－I－－－I－－－T		IGT T	TTTTCTCAAI	CTC

	260	270	280	290	300
Suillus brevipes			-GG	GCGCGGGGCG	
S. luteus			GG	GCGCGGGG--	
S. tomentosus			GG	GCGCGGGGC	
S. americanus			GG	GCGCGGGGCC	
S. granulatus			GG	GGCGCGGGGC	
S. grevillei			GG	GCGCGGGGCG	
S. cavipes			GG	GCGCGGGGCG	
S. caerulescens			G	GCGCGGGGCC	
S. lakei			G	GCGCGGGGCG	
S. sinuspaulinus			GG	GCGCGGOE--	
Chroogomphus		ATGCCT	CTCCTTT-GG	GAGGGGGG--	
Gomphidius		ATGCCC	CTCCTTC-GG	GAGGGGG-	
Truncocolumella		ATGCCC	TTTCTTTCGG	GAGAGGGGG-	
Rhizopogon evadens	CGAAATCATG	CGAG-TGCCT	TT-CCCT-GC	GGGGGGAGG-	
R. evadens (HT)	CGAAATCGTG	TGAGNNGCCT	TTTCCCTGTG	GGGGGGAGGT	AATTCCCCTT
R. smithii	CGAAACTGTG	CGAGNNGCCT	TTTCCCT-GC	GGGGGGAGGT	GAGCGTCTTT
R. subsalmonius	CAGAACTGTG	Cgagttacct	СтСтСт--GC	GGGGGGAGGT	
R. fuscorubens	CAGAACCGTG	CTAGA-GCCT	стстсtc-tg	CGGGGGA --	
R. ochraceorubens(TT)	CAGAACTGTG	CTAGNN-I--			
R. ochraceorubens(HT)	CAGAACTGTG	CTAGNN-I--			
R. occidentalis	CAGAACTGTG	CTAAA-GCCT	СтСтСтС-т	SGGGGGGA--	
R. occidentalis	CAGAACTGTG	CTAGA-GCCT	СтстстС-т	CGGGGGGA--	
R. succosus	CAGAACTGTG	CTAGA-GCCT	стстететGC	GGGGGGAA --	
R. luteolus	CAGAACTGTG	CTAGA-GCCT	стстететGс	GGGGGAAA --	
R. burlingham		--ATGCCT	CTCTTTC-GG	GAGGGGGG--	
R. rubescens		-ATGCCT	CTCTTTC-GG	GAGGGGGG--	
R. roseolus		ATGCTC	СTССтTC-GG	GAGGGGGG--	
R. vulgaris		ATGCTC	CTCCTTC-Gg	GAGGGGGG--	
R. colossus (HT)		ATGCCT	TTCCTTA-GG	GAGAGGGG--	
R. hawkerae (PT)		ATGCCT	CTCTTTC-GG	GAGGGGGG--	
R. parksii (T17679)		-ATGCCC	CTCCTCC-GG	GAGGGGGG--	
R. parksii (T19446)		- ATGCCC	СтССтСС-GG	GAGGGGGG--	
R. villosulus (AHS)		ATGCCT	CTCTTTC-GG	GAGGGGGG--	
R. villosulus (JMT)		- ATGCCT	TTCCTTA-GG	GAGAGGGG--	
R. rogersii		-ATGCCT	TCTCTTTCGG	GAGGGGGG--	
R. sp. nov		-ATGCCT	CTCCTCC-Gg	GAGGGGGG--	
R. gilkeyae		-ATGCCT	CTCCTCC-GG	GAGGGGGG--	
R. zelleri		--ATGCCT	СTССТСС-GG	GAGGGGGG--	
R. villescens		--ATGCCT	CTCTTTC-GG	GAGGGGG---	
R. diabolicus		--ATGCCT	CTCCTCT-GG	GAGAGGGG--	
R. parvulus		-ATGCCT	СтсСтСт-GG	GAGAGGGG-	
R. vinicolor(T17899)		--ATGCCT	СTCCTCT-GG	GAGAGGGG--	
R. vinicolor(T20787)		-ATGCCT	CTCCTCT-RG	GAGAGGGG	
R. ochraceisporus (PT)		- ATGCCT	СТССТСT-AG	GAGAGGGG--	
R. ochraceisporus (17916)		-ATGCCT	CTCCTCT-GG	GAGGGGGG--	
R. ochraceisporus (17944)		--AtGcct	CTCCTCT-GG	GAGGGGGG--	
R. subcaerulescens		---ATGCCT	СTCCTCC-GG	GAGGGGGG--	
R. ellenae (HT)		--ATGCCT	CTCCTCC-GG	GAGGGGGG--	
R. ellenae		---ATGCCT	CTCCTCC-GG	GAGGGGGG--	
R. subpurpurascens (HT)		--ATGCCT	CTCCTCC-Gg	GAGGGGGG--	
R. subpurpurascens		----ATGCCT	CTCCTCC-GG	GAGGGGGG--	
R. subgelatinosus		----ATGCCT	CTCTTCC-Gg	GAGGGGG	
R. semireticulatus (17562)		--ATGCCT	СтССтСС-Gg	GAGGGGGG--	
R. semireticulatus (7899)		--ATGCCT	СтССтСС-GG	GAGGGGGG-	

	310	320	330	340	350
Suillus brevipes			c	cgcgtcttca	ta---tacci
S. luteus			CC	cgectettc	TA---TACCI
S. tomentosus			ACC	cgcetctica	TA----AGCC
S. americanus			AcC	cgcgtctrca	TA---TACCI
S. granulatus			cc	cgectetrtc	ATM-TCACCI
S. grevillei			ACC	CGCGtcttea	ta---tacci
S. cavipes			ACC	cgcgtcttca	TA---TACCC
S. caerulescens			ACC	cgcetcttca	TG---CACCI
S. lakei			Cc	CGCGTCttca	tG---CACCI
S. sinuspaulinus			cc	cecetcttca	-tacci
Chroogomphus			c	tatetcttct	tcagacacel
Gomphidius			TAC	tatetcttca	ta---tacai
Truncocolumella			- ${ }^{\text {ch }}$ C	tatgtattca	ta----CCAI
Rhizopogon evadens			Cgagt--acc	tatgtattaa	AAA--TACAI
R. evadens (HT)	CCCCGGGGG	gGgagcttg	CGAGAACTCC	tatgtattga	AAAA-TACAI
R. smithii	CCCTGCGgG	G--AGGTTGA	CTAGAACTCC	tatgtattga	AAGA-tacai
R. subsalmonius			CGAGA--ACC	tatgtattta	tahamtacgi
R. fuscorubens		AAGGA	Cganagtacc	tatgettrea	AA---TACAI
R. ochraceorubens(TT)			Acc	tatgtcttca	AAA--TACAI
R. ochraceorubens(HT)			- AcC	tatetcttca	AAA--TACAI
R. occidentalis		-AAGGA	C-AAAGTACC	tatgettea	AAA--TACAI
R. occidentalis		AAGGA	C-AAAGTACC	tatgtcttca	AAA--tacai
R. succosus		-AGGA	CAAAAGTACC	tatgtattca	AA---tacai
R. luteolus		-AgGA	Cganagtacc	tatgtcttca	ta---tacai
R. burlinghamii			-ACC	tatetcttca	ta---CGCCI
R. rubescens			acc	tatgettca	TA---TGCCI
R. roseolus			-ACC	tatgtcttca	ta---tacci
R. vulgaris			- AcC	tatgtcttca	ta---CGCCI
R. colossus (HT)			-ACC	tatctettca	ta---tacai
R. hawkerae (PT)			-ACC	tat	A---tacai
R. parksii (T17679)			-ACC	TATGTCTTCA	-TACAI
R. parksii (T19446)			CC	tatctcttca	ta---TACAI
R. villosulus (AHS)			Acc	tatctettca	ta---tacai
R. villosulus (JMT)			AC	tatetcttc	-tacai
R. rogersii			Acc	татGtcttca	TA---TACAI
R. sp. nov			ACC	tatctettca	ta---TACAI
R. gilkeyae			- ACC	tatctettca	ta---TACAI
R. zelleri			-ACC	tatctettca	TA---TACAI
R. villescens			- ACC	tatctettca	TA---TACAI
R. diabolicus			- ACC	tatctettca	TA---TACAI
R. parvulus			ACC	tatgtcttca	ta---tacai
R. vinicolor(T17899)			ACC	Atgtcatca	TA---tacai
R. vinicolor(T20787)			-ACC	atgettca	ta---TACAI
R. ochraceisporus (PT)			-ACC	tatgtcttca	TA---TACAI
R. ochraceisporus (17916)			ACC	tatgtcttca	TA---tacai
R. ochraceisporus (17944)			------ACC	tatgtcttca	ta--TACAI
R. subcaerulescens			-Acc	tatctcttcg	TA----ACAI
R. ellenae (HT)			-ACC	tatgtctuca	ta--TACAI
R. ellenae			--ACC	tatgtctuca	ta---TACAI
R. subpurpurascens (PT)			------ACC	tatgtcttcg	ta---tacai
R. subpurpurascens			ACC	tatgictuca	ta---TACAI
R. subgelatinosus			-ACC	tatgtcttcg	TA----ACAI
R. semireticulatus (17562)			-ACC	tatgtcttca	ta---TACAI
R. semireticulatus (7899)				ATGTCTtcg	TA----ACAI

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (TT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
$\begin{array}{lllll}360 & 370 & 380 & 390 & 400\end{array}$ TCTTCGTGTA GAAAGTCTTT GAATGTTATT ----ACCATC ATCGAGTCGC TCTTCGTGTA GAAAGTCTTT GAATGTTTT- ----ACCATC ATCGAGTCGC CCTTCGTGTA GAAAGTCWAT GAATGTTTTT ----ACCATC ATCGACTCGC TCTTCGTGTA GAAAGTCTTT GAATGTTTTT ----ACAATC ATCGAGTCGT TCTTCGTGTA GAAAGTCTTT GAATGTTTTT ----ACCATC ATCGAGTCGC TCTTCGTGTA GAAAGTCTTC GAATGTTTAT ----ATTATC ATCGAGCCGC CCTTCGTGTA GAAAGTCTTT GAACGTTAT- --- AAAATC ATCGAGTCGC TCTTCGTGTA GAAAGTCTTT GAATGTTAT- ----ACCATC ATCGAGTCGC TCTTCGTGTA GAAAGTCTTC GAATGTTAT- ----ACTATC ATCGAGYCGC TCTTCGTGTA GAAAGTCTTT GAATGTTTTT TTTTACAATC GTCGAGTCGC CCACAGTTAA GAAAGTCTCA GAATGTTT-- ----ACTATC GTCGAGCCAC --ACAGTTTA GAAAGTCTCA GAACGTTT-- ----ACTATC GTCGAGCCGC TCTTCGTGTA GAAAGTCTCA GAATGTTTTT T---ACTACC GTCGAGTCGC TCTTCGTGTA GAAAGTCTTT GAATGTTT-- ----ACGATC ATAGAGCCGC TCTTCGTGTA GAAAGTCTTT GA-TGTTT-- ----ACGATC ATAGAGCCGC TCTTCGTGTA GAAAGTCTTT GAATGTTT-- --- ACGATC ATAGAGCTGC TCTTCGTGTA GAAAGTCTTT GAATGTTT-- --- ACGATC AGAGAGCCGC TCTTCGTGTA GAAAGTCTTT GAATGTTTT- ----ACTATC ATAGAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATTGAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATTGAGNCGC TCTTCGTGTA AAAAGTCTTA GAATGTTT-- ----ACTATC ATTGAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATTGAGTCGC TCTTTGTGTA GAAAGTCATT GAATGTTT-- ----ACTATC ATTGAGTCAC TCTTCGTGTA GAAAGTCTTT GAATGTTT-- ----ACTATC ATTGAGTCAC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTCCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATAGAGTCGC TCTCCGTGTA CAAAGTCTWA GAATGTTT-- ----ACTATC ATAGAGTTGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGACAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTCCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATAGAGTTGC TCTCCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATAGAGTCGC TCTCCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATAGAGTCGC TCTCCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAAAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTCCGKGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATAGAGTCGC TCTCCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC ATAGAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTTSGTGTA GAAAGTCTAA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTTCGTGTA GAAAGTCTTA GAATGTTT-- ----ACTATC AGAGAGTCGC TCTTCGTGTA GAAAGTCTTT GAATGTTT-- ----ACTATC ATCGAGTCGC TCTTCGTGTA AAAAGTCTTT GAATGTTT-- ----ACTATC ATCGAGTCGC

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916) R. ochraceisporus (17944) R. subcaerulescens R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
$\begin{array}{lllll}410 & 420 & 430 & 440 & * 5.8 S \text { start }\end{array}$ GACttctagg agacgega-t tctutgagac anangrtiat tacanctttc GACTTCTAGG AgACGCGA-T TCTMTGAGAA AAAAGTTIAT TACAACTTTC gactrctagg agacgega-T tctrtgagac Aanagrtiat tacanctutc GACTTCTAGG AGACGCGA-T TCTTTGAGAC AAAAGTTIAT CACAACTMTC gacttctagg agacgega-t tctutgagac ananguttat tacanctutc GACTTCTAGG AGACGCGG-T TCTTTGAGAC AAAAGTTIAT TACAACTMTC gacttctagg agacgeca-t tctttgagac anangitant tachactrtc gactrctagg agaccega-t tctttgagac anaigrtiat tacanctutc gacttctagg agacgecg-t tctttgagac anangrtiat tacaictutc GACTTCTAGG AGACGCGA-T TCTTCGAGAC AAAAGTTIAT TACAACTTTC gacttccage agacgtgge tcgacgagat anaigutiat tacanctutc gacttccagg agacgcgg- tcgecgagac anangttiat cacaictttc gactrctagg agacgegan tcttcgggac anangrtiat tacanctutc gactrctagg agacgegg- tctrtgagat anangrtiat tacanctutc gactuctagg agacgecge- tctutgagat anangutiat tachactutc GACTTCTAGG AGACGCGG- TCTTTGAGTT AAAAGCTIAT TACAACTTTC gactrctagg agacgegg-- tctutcagat anaigrtiat tachactutc GACTTCTAGG AGACGCGGG- TCTTTGAGTT AAAAGTTTAT TACAACTTTC gactrctagg agacgegg- tctutgagt anaigritat tachactutc GACTTCTAGG AGACGCGG- TCTTTGAGTT AAAAGTTTAT TACAACTTTC gacttctagg agacgegge tctutgagtt anangittat tacaictutc GACtTCTAGG AGACGCGGG- TCTtTTGAGTT AAAAGTTTAT TACAACtTTTC gactettagg agatgtgge tctttgagat anaagtttat tacanctttc gactertagg agatgtgge- tctutcagat anangtttat tacanctutc GACTTCTAGG AAACGCGAA- TCTCTGAGAT AAAAGTTAAT TACAACTTTC gactrctagg agaccegai- tctctgagat anaigitalt tacaictutc gactectagg agacgegai- tctutgagat anangttant tacanctutc gactrctagg agacgegan - tctctgagat anangrtait tacanctrtc GACTTCTAGG AGACGCGAA- TCTGTGAGAT AAAAGTTIAT TACAACTTTC gacttctagg agacgegan- tctgtgagat anangttiat tacarctutc GACTTCTAGG AGACGCGAA- TCTTTGAGAT AAAAGTTIAT TACAACTTTC GACTTCTAGG AGACGCGAA- TCTMTGGAGAT AAAAGTTIAT TACAACTMTC gactrctagg agacgegai- tctgrgagat anaigrtiat tacaictrttc gacttctagg agacgegan- tctgegagat anaagtriat tacanctutc gacttctagg agacgegan tctgrgagat anangttiat tacanctutc gactrctagg agacgegan tctrtgagat anangrtiat tacanctrtc gacttctagg agaccegaia ctctrgagat anangrtiat tacanctutc gacttctagg agacgegant tctgrgagat anangrtiat ancanctutc gacttctagg agacgegan - tctgrgagat anangrtiat tacanctutc gTCttctage agtcgcgana -ctctgagat anangutiat tacanctutc gacttctage agacgcgaia - Сtctgagat anangttiat tacaictutc gacttctagg agacgcgaia -ctctgagat anangutiat tachactutc gacttctagg agacgygaia -ctctgagat anangrtiat tacanctrtc gacttctagg agacgegana -ctctgagat anaigetiat tacanctutc gacttctagg agacgtgana -Ctctgagat anangitiat tacanctutc gacttctagg agacgtgana -ctctgagat anangrtiat tachactutc GACTTCTAGG AGACGCGA-T TCTTTTGAGAT AAAAGTTIAT TACAACTTTTC GACTTCTAGG AGACGCGA-T TCTTTGAGAT AAAAGTTIAT TACAACTTTC gacttctagg agacgcga-t tctutgagat anangrtiat tacaictutc gacttctagg agacgcga-t tctutgagat Aanagrtiat tacaictttc GACtTCTAGG AGACGCGA-T TCTTTGAGAT AAAAGrTIAT taCAACtTtTC gacttctagg agacgega-t tctttgagat anangutiat tacanctutc gacttctagg agacgcea-t tctttgagat anangrtiat tacanctutc gactuctagg agacgega-T tctutcagat anangrtiat tacanctutc

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)

460
470
480
490
500
AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATTGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATTGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAATCGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TYGCATYGRN GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAAA-CGCA GCGAAACGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAACGCG AGCAATGGNT -TCTTGGTCN CNNNATCGAT GAAGAACGCA GCGAAACGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT AAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGNN NNCTTGGCNC NNNNATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCNNNTCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGNCTC TCNNNTCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGNN NNCTTGGNNN NNNNATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGNN NNCTTGGNNN NNNNATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCATTGGAT CTCTTGGCTC TCGNATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGNN CCCTTGGNNN NNNNATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAATGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG AGCAACGGAT CTCTTGGCTC TCGCATCGAT GAAGAACGCA GCGAAAAGCG

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)
51052053054050 ATATGTAATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTTATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTAATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTTATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTTATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTAATG TGMATTGCAG ATCTACAGTG AATCATCGAA TCTTYGAACG ATATGTAATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTAATG TGAATTGCAG ATCTACAGTG ATTCATCGAA TCTTAGAACG ATATGTAATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG ATATGTAATG TGAATTGCAG ATCTACAGTG AATCATCGAA TCTTTGAACG

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916) R. ochraceisporus (17944) R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)
$560 \quad 57$
CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TTATCGGTGT TCCGATGAGC ATGCCTGTYT GAGCGTCATT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTYT GAGCGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTC GAGCGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGCGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTC GAGTGTCAGT CACCTYGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTC GAGTGTCAGT CACCTTGCGC TTCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACATTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACATTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGCGTCAGT CACCTTGCGC TCCTTGGTAT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAAC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCATT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCYTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC AWGCCTGGTC GAGTGTCAKT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTY GAGTSTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTTT GAGTGTCAGT CACCTTGCGC TCCTCGGTGT TCCGAGGAGC ATGCCTGTIT GAGTGTCAGT

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)
*5.8S end; start ITS 2 $620 \quad 630 \quad 640 \quad 650$ AAATTCITCA ACCCCTCTCG ATT-TGCTTC GAAAGGGCGC TTGGATG-TT AAATTCITCA ACCCCTCTCG ATT-TGCTTC GAGCGGGTGC TTGGATG-TT AAATTCITCA ACCCCTCTCG ATt-NNCTTC GAGAGGGTGC ttgGata-GT AAATTCITCA ACCCCTCTCG ATT-TGCTTC GAGTGGGG-C TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-TGCTTC GAGAGGGCGC TTGGATG-CT AAATTCITCA ACCCCTCTCG ATT-AGCTTC GAAAGGGCGC TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-TGCTTC GAGCGGGTGC TTGGATG-TT AAATTCITCA ACTCCTCTCG ATT-TGTTTC GAGCGGACGT TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-TGTTTC GAGCGGGCGT TTGGATA-GT AAATTCITCA ACCCCTCTCG ATt-TTCTTC GACTGGGAGT TTGGATA-GT AAATTCITCA ACCCCTCTTG ATT-TGCTTC AAGGGGGAGC TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-TACTTC GAGGGGGAGC TTGGATGGGT AAATTCITCA ACCCCTCTCG ATT-TGCTTC GAGAGGGTGC TTGGATA-GT TAATTCATCA ACCCCTCTCG ATT-AGCTTC GAGGGGGAGC TTGGATA-GT TAATTCATCA ACCCCTCTCG ATT-AGCTTC GAGAGGGAGC TTGGATA-GT TAATTCATCA ACCCCTCTCG ATT-AGGTTC GAGGGGGAGC TTGGATA-GT -AATTCATCA ACCCCTCTCG ATT-AGCTTC GAGAGGGAGT TTGGATA-GT AATCTCITCA ACCCCTCTCG ATT-AGCTTC GAGGGGGAGC TTGGATA-GT AATTTCITCA ACCCCTCTTG ATT-AGCTTC GAGGGGGAGT TTGGATA-GT AATTTCITCA ACCCCTCTTG ATT-AGCTTC GAGGGGGAGT TTGGATA-GT AATTTCITCA ACCCCTCTTG ATT-AGCTTC GAGGGGGAGT TTGGATA-GT AATMTCITCA ACCCCTCTCG ATT-AGCTTC GAGGGGGAGT TTGGATA-GT AATTTCITCA ACCCCTTTCA ATT-AACTTT GAATGGGAGC tTGGATA-GT AATTTCITCA ACCCCTTTCA ATT-AACTTT GAATGGGAGC TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-CGTTTC GAGGGGGAGC TTGGATG-GT AAATTCITCA ACCCCTCTCG ATT-TGTTTC GAGGGGGAGC TTGGATA-GT AAATTCITCA ACCCCTCTTG ATTTTTTTTC GAGGGGGAGC TTGGATG-GT AAATTCITCA ACCCCTCTCG ATT-TTTTTC GAGGGGGAGT TTGGATG-GT AAATTCITCA ACCCCTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCCTCTTG ATT-----I- GAGGGAG-IC TTGGATA-GT AAATTCITCA ACCCTTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCCTCTtG ATrTATMTTT GAgGGAG-IT trgeata-gt AAATTCITCA ACCCCTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCCTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAAKTCITCA ACCCTTCTTG AGT-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCTTCTTG ATt-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCtTCTtG ATt-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCTTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAATTMITCA ACCCTTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCTTCTTG ATt-----I- GAGGGAG-IT tTGGATA-GT AAATTCITCA ACCCTTCTTG ATT-----I- GAGGGAG-IT TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-AGCTTC GAGAGGGCGC TTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-AGCTTC GAGAGGGTGC TTGGATA-GT AAATTCITCA ACCCCTCTCG ATt-AGCTTC GAGAGGGTGC tTGGATA-GT AAATTCITCA ACCCCTCTCG ATT-AGCTTC GAGAGGGCGC tTGGATA-GT AAATTCITCA ACCCCTCTCG ATt-AGCTTC GAGAGGGCGC ttgeata-gt AAATTCITCA ACCCCTCTCG ATT-AGCTTC GAGAGGGCGC TTGGATA-GT AAATTCITCA GCCCCTCTCG ATT-AGCTTC GAGAGGGTGC ttGGATA-GT AAATTCITCA ACCCCTCTCG ATT-AGCTTC GAGAGGGCGC TTGGATA-GT

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)
$\begin{array}{lllll}660 & 670 & 680 & 690 & 700\end{array}$
GGGGGCT-GC CGGAGACACT GGACTC---- -----------------
GGGGGCT-GC CGGAGACACT GGATTC---- -------------------
GGAGGCT-GC CGGAGACCT- GTTTTTT---- ---------------------
GGGGGCT-GC CGGAGACCT- GGAATT---- --------------
GGGGGCT-GC CGGAGACCT- GGTTTC---- ----------------- --
GGGGCT-GC CGGAGATCT- GGACTT---- ------------ --TTCGTCTG
GGGGGCT-GC CGGAGACTT- GGATTC---- -----------------
GGGGGCT-GC CGGAGACCT- GGATTT---- ---------------
GGGGGCT-GC CGGAGACCT- GRATTT---- ---------------
GGGGGCT-GC CGGAGACTC- GAATTC---- ---------------
GGGGGCT-GC CAGAGACTT- GGATTT---- -------------- --

GGGGCT-GC CGGAG----- -----------------------------
GGGGTT-GC CGGAGACTTG GGAC------ ------------ --TAGTTCCA
GGGGTT-GC CGGAGACTTG GGAC-------------------- --

GGGGTT-GC CGGAGTCTT- ---------- ----------------------
gGggittgc aggaiacti- ggactrtt-- ---CATtag- ------TCTA
GGGGTTTGC AGGAAACTTG GG-C------ TTTC--TAG- TTAAAGTCTA
GGGGTTTGC AGGAAACTTG GG-C------ TTTC--TAG- TTAAAGTCTA
GGGGGTTGC AGGAAACTTG GG-CTTTGGC TTTC--TAG- TTAAAGTCTA
GGGGGTTTGC AGGAAACTTG GG-CTTTGGC TTTC--TAG- TTCAAGTCTA
GGGGGTTTGC AGGAAACTTG GATCTTTTTC TTTCATTAGA AAAAAGTCTA
GGGGGTTGC AGGAAACTTG GATATTTT-C TTTAACTAG- AAAAAGTCTA
GGGGGCT-GC CGGAGAT-A GGATTC---- ----------------- --
GGGGGT-GC CGGAGACT-A GGATTC---- -----------------
GGGGGCT-GC CGGAGACT-G GGATTT---- ------------------
GGGGGCT-GC CGGAGACT-A GGACTC---- ------------------
gGgGSttrac cgangactit
GGGGSTT-GC CGGAGACTT-
GGGGGCT-GC CGGAGACTT-
GGGGGT-GC CGGAGACTT-
GGGGGTT-GC CGGAGACTT-
gggegttec cggagactt-
GGGGGTT-GC CGGAGACTT-
GGGGTT-GC CGGAGACTT- GGATTC---- ------------------
GGGGGTr-GC CGGAGACTAA --------------------------------
GGGGTTT-GC CGGAGACTT- ---------- ----------------------
GGGAGTT-GC TGGAGACTT- ---------- ---------------------
GGGGTT-GC TGGAGACTT- ---TTA---- --------------------
GGGGTT-GC TGGAGACTT- ---TTA---- ----------------------
GGGGTT-GC TGGAGACTT- ---TTA---- ---------------------TT
GGGGTT-GC TGGAGACTT- ---TTA---- ---------- ---------TT
GGGGTT-GC TGGAGACTT- ---TTA---- --------------------
GGGGGT-GC TGGAGACTT- ---TTA---- --------------------TT
GGGGTT-GC TGGAGACTT- ---TTA---- --------------------TT
GGAGGTT-GC CGGAGACTT- GGATTC---- ---------- -------
GGAGGTT-GC CGGAGACTC- GGATTC---- ------------------
GGAGGTT-GC CGGAGACTC- GGATTC---- -------------------
GGAGGT-GC CGGAGACTT- GGATTC---- -------------------
GGAGGT-GC CGGAGACTT- GGATTC---- ------------------
GGAGGYT-GC CGGAGACTT- GGATTC---- ------------------
GGAGGTT-GC CGGAGACTC- GGATTC----------------------
GGAGGYT-GC CGGAGACTT- GGATTC---- ------------------

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus(17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)
$\begin{array}{lllll}710 & 720 & 730 & 740 & 750\end{array}$
GGACTCGGGC TCCTCTTAAA TGAATCGGCT TGCGGITCGA CTTTCGACTT GGACTCGGGC TCCTCTTAAA TGAATCGGCT CGCGGITCGA CTTTCGACTT GGACTCGGGC TCCTCTGAAA TGTATTGGCT TGCGGITCGA CTTTCGACTG GGACTCGGGC TCCTCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT GGACTCGGGC TCTCCTGAAA TGTATCGGCT TGCGGITCGA CCTTCGACTT GGACTCGGGC TCTCCTGAAA TGAATGGGCT TGCGGITCGG CTTTCGACTA GGACTCGGGC TCTCCTTAAA TGAATCGGCT TGCGGITCGA CTYTCGACTT GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT GGACTCGGGC TCTCCTGAAA TGCATTGGCT TGCRGITTGA CTTTCGACTT AGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT GGACTTGGGC TCTCCTGAAA TGCATCGGCT TGCGAITTGA CTTTCGACTT GGACTCGGGC TCTCCTGAAA TGCATTGGCT TGCGEITCGA CTTTCTCCTT GGACTCGGGC TCTCCTGAAA TGCATTGGCT TGCGGITCGA TTTTCGACTT GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT GGACTCGGGC TCTCCTGAAA TGCATTGGCT TGCGGITAGA CTTTCGAGTT GGACTCGGGC TCTCCTTAAA TGCATTGGCT TGCGGITAGA CTTTCGAGTT GGACTCGGGC TCTCCTGAAA TGCATTGGCT TGCAGITCGA CTHTCGACTT GGATTCGAGC TCTCCTGAAA TACATTGGCT TGCGGITCGA CTTTCGACTT GGATTCGGGC TCTCCTGAAA TACATTGGCT TTCGGITCGA CTTTCGACTT GGATTCGGGC TCTCCTGAAA TACATTGGCT TTCGGITCGA CTTTCGACTT GGATTCGGGC TCTCCTGAAA TGCATTGGCT TTCGGITCGA CTTTCGACTT GGATTCGGGC TCTCCTGAAA TACATTGGCT TTCGGITCGA CTTTCGACTT GGATTCGGGC TCTCCTGAAA TACATTGGCT TGCGGGTCTA CTTTCGACTT GGATTCGGGC TCTCCTGAAA TACATTGGCT TGCGGGTCTA CTTTCGACTT TGACTCGGGC TCTCCTTAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT TGACTCGGGC TCTCCTTAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT TGACTCGGGC TCTCCTTAAA TGCATTGGCT TGCGGITCGA CTTTCGACTT TGACTCGGGC TCTCCTTAAA TGCATTGGCT TGCGGITCGA CTTTCGACTT -GACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTTGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTYGACTA -GACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT AGACTCGGGC TCTCCTGAAA TGCATTGGCT TGCGAITAGA CTTTCGACTT GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA AGACTCGAGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT AGACTCGAGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTYTCGACTT AGACTCGAGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CITTCGACTT AGACTCGAGC TCTCCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTT AGACTCGGGC TCTTCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTTCTGAAA TGCATTGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTTCTGAAA TGCATTGGCT TGCGGITCGA CTTTCGACTA GGACTCGGGC TCTTCTGAAA TGCATCGGCT TGCGGITCGA CTITCGACTA GGACTCGGGC TCTTCTGAAA TQCATCGGCT TGCGGITCGA CTTTCGACTA AGACTCGGGC TCTTCTGAAA TGCATCGGCT TGCGGITCGA CTYTCGACTA GGACTCGGGC TCTTCTGAAA TGCATTGGCT TGCGGITCGR CTTTCGACTA AGACTCGGGC TCTTCTGAAA TGCATCGGCT TGCGGITCGA CTTTCGACTA
$760 \quad 770 \quad 780 \quad 790 \quad 800$

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)

TGCATGACAA GGCCTTTGGC GTGATAATGA TCGCCGTTCG CCGAAGTGCA TGCATGACAA GGCCTTTGGC GTGATAATGA TCGCCGTTCG CCGAAGTGCA TGCATGACAA GGCCTTTGGC GTGATAATGA TCGCCGCTCG CCGAAGTGCA TGCGCGACAA AGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCGCGACAA GGCCTTCGGC GTGATAATGA TCGCCGTTCG CCGAAGCGCA TGCATGACAA GGCTTTTGGC GTGATAATGA TCGCCGCTCG CCGAAGTGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCATGACAA GGCCTTCGGC GTGATAATGA TCGTCGTCGG CCGAAGTGCA TGCATGACAA GGCCTTCGGC GTGATAATGA TCGTCGTTAG CTGAAGTGCA TGCACGACAA GGCCTTCGGC GTGATAATGA TCGCCGTTCG CCGAAGTGCG TGCACGACAA GGCTTTCGGT GTGATAATGA TCGCCGTCTC CCGAAGCGCA TGCGCGACAA GGCTTTCGGT GTGATGATGA TCGCCGTTCG CCGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CCGAAGCGCA TGCGCGAAAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGTGCA TGCGGGAAAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGCGGGAAAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGCGCGAAAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGTGCA TGCGCGATAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGCGTGACAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGCGTGACAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTGTG CTGAAGCGCA TGTGTGATAA GGCTTTCGGT GTGATAATGA TCACCGTGTG CTGAAGTGCA TGTGCGATAA GGCTTTCGGT GTGATAATGA TCACCGTGTG CTGAAGTGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGTGTA TGCGCGACAA GGCTYTCGGC GTGATAATGA TCKCCGTTCG CTGAAGTGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGTGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGTGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGYGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGTGTA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCGCGACAA GGCTTTCGEC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGTGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGTGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCTCGACAA GGCTTTCGGC GTGATAATGA TCGCCGITCG CCGAAGCGCA TGCTCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CCGAAGCGCA TGCGTGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGTGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA TGCTCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CCGAAGCGCA TGTGCGACAA GGCTTTCGGC GTGATAATGA TCGCCGTTCG CTGAAGCGCA

	810	820	830	40	850
Suillus brevipes	agacaganc	GT	tctanycc--	-I----GTCG	
S. luteus	Agacagatt	GTCCCGTGce	tctantge--	-I----GTCG	
S. tomentosus	CGAACGAATG	gtctcatece	tctantca--	-I----G	
S. americanus	tcatigate	gTccecticce	tctantca--	-I----GTCG	
S. granulatus	atgance	gтcccecgec	TCCAATCC-	-I----GTCG	Acci
S. grevillei	tgatiganc	gтcccetac	atc	-I----GTCC	
S. cavipes	tGAATGAA-G	GTctcgegec	taANAC	-I----G	
S. caerulescens	CGAATGAACC	GTCCCGCGCC	тСtantac--	-I----GTCG	ACG
S. lakei	TGAATGAACC	GTCCTGCGCC	TCTAATAC--	-I----GTCG	ACc
S. sinuspaulinus	Cgattgana	gTcceccace	tctante	-I----GTCG	ACCC
Chroogomphus	tGA-tagat	gтстсяtgec	tccancal	G	ACGA
Gomphidius	tGAACG-AAG	grctcetgec	ccantac	-I----GT	ACCC
Truncocolumella	tGAATG-AAC	втсСсятec	tctantan--	-I----GT	ACtGet
Rhizopogon evadens	tGAATGA	GTtccer	Ytanta--C	GCAT---ICG	
R. evadens (HT)	tGat	GAtctatacc	tctat	ACAT---IN	ACTC
R. smithii	TGAATGAAAG	Gttccetcec	TCTAAT	GCAT---ICG	
R. subsalmonius	tGAATGAA-G	gtcctatge	ctantatac	gcatgre	AC
R. fuscorubens	tGACTGTGAA	GTtccetc	тCTAATAC--	-I----GTCG	
R. ochraceorubens(TT)	tGActerama	GTtccitgec	tctatat	-GT	Act
R. ochraceorubens(HT)	tGACtGTAAA	GTtccetcec	C	-I----GTCG	
R. occidentalis	tgactgtana	тccetec	tctantat--	-I----GTCG	ACCGACGAC-
R. occidentalis	tGACTGTAAA	GT	ctantat--	-I----GT	ACCGACGAC-
R. succosus	taActerana	Gttccetgec	tCtantatt-	-I----GTCG	
R. luteolus	TAACTGTAAA	¢тtccatgec	tctantatt-	-I----GTCG	
R. burlinghamii	teatta	Gttccete	tctantac--	-I----GTCG	
R. rubescens	CGAATGA	тсcate	T	-G	
R. roseolus	tGAatG-AAG	Gttccetgec	tctantact-	-I----GTCG	ACA
R. vulgaris	TGAACG-AAG	gttccetgec	Ctabtacc-	-atce	Acc
R. colossus (HT)	tGAATG-AAG	GI	TCTAATAT--	-I----GTCG	АСт-----СT
R. hawkerae (PT)	TGAATG-AAA	emtrcgecec	CtaAtac--	-I----GTCG	
R. parksii (T17679)	TGAATG-AAA	GTrTCGcec	TCTAATAC-	-I----GTC	
R. parksii (T19446)	tGAATG	GTTT	tctantac--	-	
R. villosulus (AHS)	TGAATG-AAR	T	TCTAATAC--	-I----GTCG	АСт-----Ст
R. villosulus (JMT)	tGAATG	ta	Ctantat--	-I----GTCG	
R. rogersii	tGAatg-aig	Gtrtcgcec	ctantat--	-I---GTC	ACT-----CT
R. sp. nov	tgatteang	GT	tctantac	-I----GT	ACT-----CT
R. gilkeyae	tgatc	gittcececc	tctantat-	-I---GTC	АСт-----CT
R. zelleri	tGAATG-AAG	gittcgecce	tctantat--	-I----GTCG	ACA-----CT
R. villescens	tgatte-aic	grttcecece	tctadtay -	-I----GTCG	ACN
R. diabolicus	TGACTG-AAG	яттtcecce	Tr	-I----GTCG	ACT-----CT
R. parvulus	tGACtG-AAG	GT	taatac	-I----GT	
R. vinicolor(T17899)	tGACtG-AAG	gittcccec	tad	-I----GTC	
R. vinicolor(T20787)	TGACCG-	GTTT	trata	I----GTC	АСт-----CT
R. ochraceisporus (PT)	tGACtG-AAG	Gttrcecgec	Ctantac	-I----GTCG	АСт-----CT
R. ochraceisporus (17916)	tGACtG-AAG	grttcecec	-	-I	ACT-----C1
R. ochraceisporus (17944)	TGACTG-	GItTCGCGC	ctantac-	-I---GT	ACT
R. subcaerulescens	TGACTG-AAC	Gtcccatcce	tctantgt--	-I----GTCG	ACCG----CT
R. ellenae (HT)	tGACCG-AAG	GTtCCGTGCC	ctadatac	-GTCG	CA
R. ellenae	TGACCG-AAG	entccetgc	ctantac--	-	ACCA----CT
R. subpurpurascens (PT)	tgacye-agg	gitccetgec	CTAATAC-	-I---GTC	ACCA----CT
R. subpurpurascens	TGACTG-AGG	Gttccetecc	tCtantac--	-I----GTC	ACCA
R. subgelatinosus	TGACTG-AAC	ercecergec	Ctatac--	-I----GTC	CG----CT
R. semireticulatus (17562)	TGACCG-	gitccetcce	ctantac--	-I----GT	CG----CT
R. semireticulatus (7899)	TGACTG-A	CCCGT			

	86	870	880	890	900
Suillus brevipes			GC	CGtcttcetc	cG
S. luteus			-AgGg	Сятсттстт	tteacg
S. tomentosus	-------CTT	tceas	GG	c	A---TtGACG
S. americanus			GG	CGTCTTCCTT	tagacg
S. granulatus		CGA	-G	CGTCTtcctc	tTgacg
S. grevillei	CT		G	CGTCTtCCTT	A---TTGACT
S. cavipes	-------CC		------GgCC	CGTCTTCtrt	C---TTGACG
S. caerulescens			-GG	CGTCTTCCTT	A---TTGACG
S. lakei				CGTCTTCCTT	ACG
S. sinuspaulinus			-GGG	CGTCTTCTTT	ttgacg
Chroogomphus	CC	Ctcanageg		-GTCtTCCTT	ttatt
Gomphidius	-------TT		GAAGG-----	-GTCTtCCTT	---ctitatc
Truncocolumella	CT	ttaggagagc	GAA	T	Cttcacc
Rhizopogon evadens		tacta		GAA	A-tTttcaca
R. evadens (HT)			ACT	CGTCTTTC--	-TTTGACA
R. smithii			CT	CGTCTTTC--	---ttteaca
R. subsalmonius	Atctt	Actgagaga		GTCTTCACTT	-CAtttgaca
R. fuscorubens	-тттСтСтС	CCAGGGAGGG	GA-------G	TGTCTTCCTT	C-
R. ochraceorubens(TT)	-------TC	CAGTT----	-	G-тсттсСтT	CA
R. ochraceorubens(HT)	------TC	CAGTT-----		G-тСтTCCTT	A-ATT-C
R. occidentalis	-------TA	CAgtagtc--		ct	-AT
R. occidentalis	-TA	gtagtc--		G-TCTTCCTT	A-ATT-GACA
R. succos	-TT	-	TA-------G	GATCTTCTtT	ATAT--GACA
R. luteolus	c	ta-tagtata	AG	GATCttcett	ata
R. burlinghamii	-TTTATT			-GTCTTCCT-	-CATT-GA
R. rubescens	--T1119			-Gтстtcet-	-CATT-GA
R. roseolus	Actatc	GG		-Gтстtcett	-CATT-GAC-
R. vulgaris	Стстatc	TCGGAGAGAA	AgC	CTT	-CATT-GAC-
R. colossus (HT)	tattatcte	taggagagat	AA	GGTCTTCTTT	--ATT-GAC-
R. hawkerae (PT)	TATYATCTC	AGAA	AA	T	--ATT-GAC-
R. parksii (T17679)	tattatc	cgeagaga		-GTCTTCTT-	-CATT-GAC-
R. parksii (T19446)	tattatc	gagas			CATT-GAC-
R. villosulus (AHS)	tattatct	tcgeagagai		T	-ATT-GAC
R. villosulus (JMT)	tattatctc	taggagagan	AA	Gетстtcttt	-AT
R. rogersii	tatta		AA	Tr	--ATT-GAC-
R. sp. nov	tattat-	CgGAgagai		-	-CATT-GAC
R. gilkeyae	tattatct	tcgeagagai	AA	gitctictrt	- ATT-GAC
R. zelleri	tattatcte	cggagagai	AA	GGTCTTCTTT	--ATT-GAC-
R. villescens	tattanc	TCGGAGAGAA	AA	-GCCTYCTTT	--ATT-
R. diabolicus	tattatctc	tcgangagan	AA	GGTCTTCTIT	--A
R. parvulus	tattat	ggagagan		TT	--ATT-GAC
R. vinicolor(T17899)	tattat	gGAgA		GGTCTTCTTT	--ATT-GAC-
R. vinicolor(T20787)	Attatc	AA		T	--ATT-GAC-
R. ochraceisporus (PT)	тattatct	tcgGagagai	AA--------	TT	--ATT-GAC-
R. ochraceisporus (17916)	таттатсtc	tcgangagai	AA	GятСттетtт	--ATT-GAC
R. ochraceisporus (17944)	tattatc-	TCGGAGAGAA	AA	-GNCTTCTTT	-ATT-GAC
R. subcaerulescens	tattatc	ccgeagagan	-	T	--
R. ellenae (HT)	tattatct	ccggagacaa		gтетtcett	--ATT
R. ellenae	тattatcte	CCgGagaga		GGTCTTCCTT	--ATT-GAC
R. subpurpurascens (PT)	tactatc	ccgeagagai	CA	GGTCTTCCTT	-ATT-GAC-
R. subpurpurascens	tactatc	CCGGAGAGAA		GGTCTTCCT	--ATT-GAC
R. subgelatinosus	tattatcte	CCGGAgAGAA	CA-------G	G-тСттССтT	--ATT-GAC-
R. semireticulatus (17562)	таттатст	ccgeagagai	CA	¢СтTCCTT	-ATT-GGC
R. semireticulatus (7899)					

910 915[1234567890123]

Suillus brevipes
S. luteus
S. tomentosus
S. americanus
S. granulatus
S. grevillei
S. cavipes
S. caerulescens
S. lakei
S. sinuspaulinus

Chroogomphus
Gomphidius
Truncocolumella
Rhizopogon evadens
R. evadens (HT)
R. smithii
R. subsalmonius
R. fuscorubens
R. ochraceorubens(TT)
R. ochraceorubens(HT)
R. occidentalis
R. occidentalis
R. succosus
R. luteolus
R. burlinghamii
R. rubescens
R. roseolus
R. vulgaris
R. colossus (HT)
R. hawkerae (PT)
R. parksii (T17679)
R. parksii (T19446)
R. villosulus (AHS)
R. villosulus (JMT)
R. rogersii
R. sp. nov
R. gilkeyae
R. zelleri
R. villescens
R. diabolicus
R. parvulus
R. vinicolor(T17899)
R. vinicolor(T20787)
R. ochraceisporus (PT)
R. ochraceisporus (17916)
R. ochraceisporus (17944)
R. subcaerulescens
R. ellenae (HT)
R. ellenae
R. subpurpurascens (PT)
R. subpurpurascens
R. subgelatinosus
R. semireticulatus (17562)
R. semireticulatus (7899)

ITTTGACC-T CAAATOOO0000000000 ITTTGACC-T CAAATO 000000000000 ITTTGACC-T CAAATO000000000000 ITTTGACC-T CAAATOOOOOO0000000 ITTTGACC-T CGAATOOOOOO0000000 ITTTGACCCT CAAATOOOOO000000000 ITTTGACC-T CAAATO000000000000 ITTTGACC-T CGAATO 000000000000 ITTTGACC-T CGAATO 000000000000 ITTTGACC-T CAAATO 000000000000 ITTTGACC-T CAAATOOO0000000010 ITTTGACC-T CAAATO 000000000010 ITTTGACC-T CAAATO 000000000010 TTTTGACC-T CAAAT0000100000111 TTTTGACC-T CAAATO000100001111 TATTGACC-T CAAAT0000100001111 TTTTGACC-T CAAATO100100000111 TTTTGACC-T CAAATO100100000110 TITTGACC-T CAAATO100100000110 TTTTGACC-T CAAAT0100100000110 ATTTGACC-T CAAAT0100100000110 TTTTGACC-T CAAAT0100100000110 TTATGACC-T CAAAT1100100010110 TTITGACC-T CAAAT1100100010110 TTTTGAAC-T CCAAT0011210100010 TTTTGACC-T CAAAT0011210100010 TTITGACC-T CAAAT0011210100010 TTTTGACC-T CAAAT0011210100010 TTTTGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010201200010
TTTTGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010201200010 -TTTGACC-T CAAAT0010201200010 TTTTGACC-T CAAATO010201200010 TTITGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010201200010 TITTGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010201200010 TTTTGACC-T CAAAT0010210200010 TITTGACC-T CAAAT0010210200010 TTTTGACC-T CAAAT0010210200010 TTTTGACC-T CAAAT0010210200010 TTTTGACC-T CAAAT0010210200010 TTTTGACC-T CAAAT0010210200010 TTTTGGCC-T CAAAT0010210200010 TITTGACC-T CAAAT0010210200010
;
end;
begin PAUP;
[exclude ambig and large inserts, Xlgam.gap3]
[exclude 1-22 47-81 98-124 141-152 167-177 221-264 289-327 343-345 379-384 459-
462 468-475 668-699 828-837 842-881;]

```
[Igap3]
[exclude 1-22 56-81 98-119 120-123 141-151 [152-155] [156-159] [160-164] [166-177]
[196-198] [221-229] 289-327]
[343-345 379-384 459-462 468-475 670-695 [829-836] 844-881;]
```

[allincl.gap3]
[exclude 1-22 459-462 468-475;]
[binary coding, ambig ex]
[1] [2] [3]
[4]
[5] [6] [7]
exclude 1-22 47-54 55-58 59-81 98-119 120-123 141-151 152-155 156-159 160-163
[8] [9] [10] [11] [12]
164-165 166-177 221-229 230-264 265-278 289-327 343-345 379-384 459-462 468-475
[13]
670-695 829-836 844-881;
end;

[^0]: --David Arora in Mushrooms Demystified.

