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This research was motivated by the use of multi-track feeders in the printed

circuit board (PCB) assembly. In a low volume, high mix production environment,

setup time is usually considered more important than processing time. Implementa-

tion of multi-track feeders not only increases the capacity of the surface mount

machines but also reduces feeder changeovers. However, improper planning could

diminish these benefits.

The objective of this research is to develop a process plan to minimize the

feeder setups in multi-track feeder systems. Two problems have been identified:

component to multi-track feeder assignment problem and PCB sequencing problem.

The assignment problem is formulated as a multi-dimension symmetric assignment

problem with an integer-programming model. The objective is to maximize the total

similarity of the component assignment. This optimization model is implemented

for small-sized problems using a commercial solver package. Due to NP-complete

characteristics, heuristic algorithms are developed for solving large-scale problems

and industrial cases. The Hungarian algorithm, designed for asymmetric assignment

problems, is used to reduce problem size in the double feeder case.

The PCB sequencing problem is solved in three stages: component and PCB

grouping, intra- and inter-group PCB sequencing, and feeder setup planning. An

optimal tool switch policy called Keep Tool Needed Soonest is adapted for planning



the multi-track feeder setup. This research also identifies the interrelationship of the 

assignment problem and PCB sequencing problem. An optimal component to feeder 

assignment will show real advantages only when working with a well-planned PCB 

sequence. 

Data obtained from literature are used to verify the heuristic developments. 

The methods are also applied to industrial data for evaluation of performance of 

real-world problems. Experimentation is conducted with simulation data to investi

gate the performance of methodology for different production situations. The results 

show that savings of up to 85% in feeder setups can be realized with a double feeder 

system compared to a single feeder system, with the use of the developed 

methodology. The approach is also robust and efficient for different production 

environments. 
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1.1 

COMPONENT TO MULTI-TRACK FEEDER ASSIGNMENT
 
AND BOARD SEQUENCING FOR
 

PRINTED CIRCUIT BOARD ASSEMBLY
 

CHAPTER 1 INTRODUCTION 

Life cycle for electronic products is shorter than ever as introduction of new 

technologies has become the norm. Competition in the electronic industry include 

both product design and manufacture, and the manufacturing of printed circuit 

boards (PCBs) is a major activity in virtually every segment of electronics manu

facturing. Printed circuit boards are used in all kinds of electronic circuits, from 

simple one-transistor amplifiers to the biggest supercomputers. 

Overview of PCB Assembly Process and Surface Mount Technology 

The technology for making PCB was invented in the 1930s and came into use 

during World War II. Before that time, circuits were constructed with point-to

point soldering; components mounted on an insulating board and interconnecting 

wires were hand soldered to the component leads. In the 1970s and 80s, pin

through-hole (PTH) components like DIP (dual-in-line package), integrated circuits 

(ICs) and leaded resistors were popular. Many designs are now switching to new, 

smaller surface-mount components and complicated, fine pitch leaded and high 

density packages such as ball grid array (BGA). Generally surface-mount packages 

are much smaller than equivalent through-hole packages, so they require smaller, 

more closely spaced pads, thinner traces, and more precise placement and 

soldering. Surface Mount Technology was developed to meet these requirements. 

Surface Mount Technology (SNIT) is increasingly being used in the design 

and manufacture of PCBs. The placement of surface mount components is a 
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critical task in the assembly of PCBs. The surface mount assembly process is a 

high-speed operation involving a series of steps performed by a pick-and-place 

machine. The primary inputs to the process are printed circuit boards, electronic 

components, and assembly control programs. The outputs from the machine are 

PC boards with components mounted on to locations specified through a control 

program. The components are supplied to the machine via feeder carriages in 

different package forms. Usually, PCBs are assembled by several assembly 

machines of different types and limited by the number of components and feeders 

the machine can hold. 

At the start of a new production run, the appropriate assembly programs are 

loaded on to a surface mount machine's controller. The PCB is transferred by con

veyor system to placement location. Location pins are usually used to register and 

secure boards. The positioning system adjusts the pattern coordinates of the PCB. 

The placement head is then moved to a designated position to pick a component. 

With the aid of a vision system, the component is moved to the board site and the 

placement position is adjusted. The component is then placed onto the board. The 

pick-and-place process is repeated until all required components are placed. The 

PCB is released and transferred to the another head or next station. 

A typical pick-and-place machine has three control components: process 

control, machine control, and supporting databases. The process control compo

nent retrieves the data needed for the placement process form the database in real 

time. It also checks if pre-placement activities are required, as for example, prepa

ration of new components. The machine control component is responsible for the 

control and monitoring of all activities associated with machine operation. This 

includes positioning of the carriage and the operation of tape feed and tape cutters 

on the feeders. Finally, the databases store the information required during a 

placement cycle. This includes information about the machine feeders, compo

nents. and placement programs. 
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1.2 PCB Assembly Systems 

The SMT assembly process is commonly classified into three major types 

[62] according to the types of components used by PCBs. The first type contains 

only surface mount components. The second type contains both surface mount and 

PTH components but only surface are mount components mounted on the bottom 

side. Finally, the third type contains only discrete surface mount components glued 

to the bottom side. More than 90 percent of PCBs use combination of PTH and 

surface mount components and are often referred to as mixed assemblies. The 

process sequences and equipment are different for each assembly type. Figure 1.1 

shows the typical process sequence involved in a single-sided PCB mixed 

assembly. 

For different production volumes and requirements, there are different SMT 

equipment alternatives. Generally, these can be classified into four major catego

ries according to the requirements for throughput and flexibility [62]: 

1) High throughput 

2) High flexibility 

3) High throughput and flexibility 

4) Low cost and throughput but with high flexibility 

High throughput type SMT machines are designed to pick and place compo

nents using a servo-driven, cam-actuated, rotary turret placement head (Figure 

1.2a). These machines are often referred to as high-speed placement machines or 

chip shooters, but only support the placement of components packaged in tape or in 

special magazines. The maximum throughput can vary from 10,000 to 60,000 parts 

per hour (pph). However, the actual throughput is dependent on component size, 

feeder type, feeder carriage movement, and the X-Y table movement. Some addi

tional features can increase machine uptime, such as feeder bank that allows 

feeders to be loaded swiftly while the equipment is still in operation. 
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Receive board design 
and specifications , 
component lists, and 
testing requirements 

Screen print solder 
paste onto board 
surface using stencil 

Automatically place 
surface mount 
components onto 
boards using SMT 
machines 

Manually insert PTH 
components that 
require individual 
soldering 

Clean boards, if 
required 

Design component 
placement programs, 
tooling, fixture, and 
solder paste stencils 

Prepare process plans 
including production 
planning, scheduling, 
and shop floor control 

Run PCB through 
oven to reflow solder 
paste and adhere 
components to board 

Run PCBs across 
wave solder machine, 
soldering PTH 
components 

Visually inspect 
boards 

Package and ship 
completed PCBs 

Acquire bare printed 
circuit boards and 
components 

Create kits associating 
specific board and 
components together 

Automatically insert 
PTH components onto 
boards using SMT 
machines 

Load PTH 
components that 
require manual 
insertion 

Perform board testing,1 
commonly in-circuit 
test (ICT) and 
functional test 

Perform repair, touch-
up and final inspection 

Figure 1.1 PCB assembly procedures 
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(a) componen pickup 

component lacement 

(b) component pickup
Feeder carriage 

pick-and-place head 

PCB PCB 
Lr
 

Input conveyor 

Feeder carriage 

component pickup 

Figure 1.2 Pick-and-place machine with (a) rotary turret design (b) gantry design 
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High flexibility machines are also called multifunction placement machines 

and have lower throughput. The pick-and-place mechanism is based on an over

head gantry design (Figure 1.2b). The head will move to fixed feeder carriage 

position to pick a component, carry it to vision system for inspection, and then 

move to board site for placement. The placement speed is dependent on the compo

nent type, size, number of heads, feeder type and arrangement, carriage movement, 

and the distance from the feeder to the placement position. 

In a production environment that needs high throughput and flexibility, a 

more common approach is to combine two types of machines in a line with com

plementary functions. The total throughput is dependent on the capabilities of indi

vidual machines and the assignment of components to machines. 

A low cost and throughput but high flexibility machine is generally needed 

for prototype or laboratory work. Table 1.1 lists the comparisons between general 

high-throughput and high-flexibility machines [77j. 

Table 1.1 Comparison of general high-throughput and high-flexibility machines 

High throughput machine High flexibility machine 

Throughput (pph) 10,000 60,000 6,000 12,000 

Component size (mm) 1.0x0.5 32x32 1.0x0.5 50.8x50.8 

Placement accuracy (+/- mm) 0.1 0.02 

Component lead pitch (min) 0.65mm 0.4mm 

Placement operation Fixed pick and placement Head moves between pick 
location, rotary turret head and placement locations 
and moving X-Y table 

Carriage/Feeders operation Carriage moves feeder to Carriage moves feeder to 
pick position pick position 

Feeder type Tape-and-reel, bulk Tape-and-reel, tube, 
matrix tray 

8mm feeder slots 150/300 (w/ double feeder) 64 



7 

1.3 

Surface-mount components are supplied to the end user in one of three con

figurations: bulk, tube magazine, and tape-and-reel. Tape-and-reel packaging is 

generally preferable for automation. For low-volume or prototype production, the 

tube magazine might be acceptable. Both tape-and-reel and magazine containers 

are clearly marked for efficient material control and easily adapt to the automated 

SMT placement equipment. Loose packaging of chip type components is less 

desirable because the part must be handled with special feeders for the assembly 

equipment. 

Another consideration for selecting SMT machine is the number of feeders or 

the slot capacity. This number is a measure of the machine capacity to process an 

assembly with different part types. The more slots a machine has, the higher its 

capacity. The actual number of part types that can be accommodated, however, 

depends on the parts size and feeder types. 

PCB Assembly Process Planning 

In PCB manufacturing, process planning plays a key role in determining pro

ductivity. As the degree of automation increases and more components are 

involved, the system becomes more complex. It is difficult, or even impossible, to 

manually arrange such a system. The relationships between the process planning, 

production planning, scheduling, and shop floor control, shown in Figure 1.3, are 

not purely serial or hierarchical. The decisions resulting from the interaction 

between them can be categorized into three levels [52J: 

Level 1: (Grouping) Selection of machine groups and part families and 

assignment of families to groups; 

Level 2: (Allocation) Allocation of components to machines when a group 

has more than one machine; and 
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Static Database
 
Design data
 
Bill of material data
 

Process requirementsEquipment specifications 

Production Planning 

Process times 

Process Planning Scheduling/Sequencing 

Shop Floor Control 

Process Optimization 
Feeder Arrangement 
Placement Sequence 

System update
 
Database update
 
Program update
 

Figure 1.3 Relationships of process information and planning 

Level 3: (Arrangement and Sequencing) Arrangement of component feeders 

and sequencing of placement operations for each machine and 

PCB. 

With these decisions, the process optimization objectives can also be sepa

rated into three major strategies: 

1)	 Minimization of process time: Arranging feeder locations on the car

riage and searching for the shortest path of the placement sequence are 

two major tasks to satisfy this goal. 

2)	 Minimization of setup time: Grouping component and board families 

and planning the board sequence can reduce the feeder changeovers. 
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3) Minimization of process and setup times: Simply combining strategies 

(1) and (2) may result in a conflict of objectives. To reduce setup time 

between two consecutive board assemblies by keeping the feeders in 

the same slots is contradictory to minimize the process time by 

rearranging feeder positions for fast pick and place movement. Thus, 

trade off between process time and setup time has to be made based on 

the production volumes and product variety. 

Further review and discussion on optimization and setup strategy selection issues 

will be presented in Chapter 3. 

1.4 Research Objectives 

The motivation of this research originated from discussions with electronic 

companies which can be categorized as low volume, high mix operations. The 

research focus is on the analysis of setup management and the primary goal is to 

develop an optimization model for PCB assembly process with multi-track feeder 

configuration. 

New technologies introduced in industry generate problems and provide new 

challenges. Before the introduction of multi-track feeders, reducing the setups of 

PCB assembly was based on single-feeder configuration in which only the alloca

tion of the feeder was considered. However, if the machine can not hold all the 

parts required by the PCB board, either the board needs to be transferred to another 

machine which inserts the remaining parts, or theparts on the current machine need 

to be reconfigured. The multi-track feeder can increase the capacity of the SMT 

machine so that the machine can assemble more parts without re-configuration. 

However, the PCB assembly line will not benefit from the multi-track feeder by a 

poor setup plan. In fact, performance may deteriorate due to more complicated 

material management, allocation issues, and even human factors considerations. 
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An assignment plan for components to multi-tack feeders, along with board 

grouping and sequencing, would be expected to reduce the feeder changeovers. 

The research methodology starts with the analysis of component families and 

board grouping. A board group is assumed to be assembled on the same machine 

with most common components. The multi-track feeder would accommodate two 

or more components. A model for the double-feeder, component assignment 

problem was first developed and then extended to the multi-track feeder, compo

nent assignment problem. The problem size is a major concern in the development 

of solution algorithms; the CPU time and the quality of results are used as the crite

ria in evaluating the efficiency and effectiveness of the algorithms. 

The sequencing problem is next investigated in two ways: intra-group and 

inter-group. The goal is to divide the PCBs into groups with similar components so 

that a number of components can be handled on one machine. Finally, the multi

track feeder, component assignment is addressed to determine the board sequence 

to minimize the total number of feeder changeovers. The development of solution 

methodology involves application and integration of Group Technology, optimiza

tion, and heuristic algorithms. The algorithms are applied to data sets from indus

try. A random number generator is also developed to generate simulated data sets 

which are used for experimentation and verification. 

1.5 Research Contributions 

This research develops a new methodology for addressing the component, 

feeder assignment and board sequencing, problems. A generalized model for high-

dimension symmetric assignment problem is developed. Heuristics incorporated 

with commercial MIP solver are implemented to approach efficient and near opti

mal solutions for large-size, low-dimension problems. Grouping technology is 

utilized to facilitate the solution of board sequencing problem. Previous compo
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nent/board grouping and sequencing methodologies are adopted and modified for 

improved solutions. Finally, a research approach is developed for combining com

ponent/multi-feeder assignment model and board sequencing problem. 

The application is implemented on data sets from industry company. Experi

mentation on simulated data sets explores the characteristics of the application. 

Suggestions for applying the model developed in this research to different applica

tion areas are presented. 

1.6 Organization of Dissertation 

Chapter 2 describes the problem background and context. An overview of 

the methodology and assumptions made in this research are also presented in this 

chapter. A background literature review is provided in Chapter 3. The mathe

matical modeling and heuristic development for component/multi-track feeder 

assignment problem are discussed in Chapter 4 followed by evaluation and experi

mentation. Chapter 5 presents the methodology for determining the board 

sequence and an approach to solve the overall problem. Application of the meth

odology to several industrial data sets and experimentation on simulated data sets 

are presented in Chapter 6. Finally, Chapter 7 concludes this dissertation with 

summary of results and a discussion of the limitations, tradeoffs and future 

extensions. 
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CHAPTER 2 PROBLEM STATEMENT AND ASSUMPTIONS 

This chapter first describes the application of multi-track feeders on SMT 

machines. This is followed by an example illustrating the problems to be addressed 

including the component-to-feeder assignment and the interaction of assignment 

with board sequencing. The two sub-problems and the overall problem definitions 

are presented along with the assumptions made in developing the solution 

approach. Finally, some comments are made about the current industrial practice. 

2.1 Multi-Track Feeder Configuration 

In the pick-and-place process, the surface mount components are installed on 

the feeders and then put on the carriage slots. Currently, multi-track feeder design 

is available to PCB assembly, which can accommodate more types of components 

and occupy less slot space. Feeders that can accommodate one type of component 

are called single feeders, and those can hold two types of component are double 

feeders (Figure 2.1). For example, a double feeder can hold two 8 mm tape and 

reel components. 

The advantages of using multi-track feeders in SMT assembly machines 

include: 

1. Increased machine input capacity so that large PCBs can be processed. 

2. Decreased setup downtime because of insufficient parts on machine. 

3. Reduced time to load components on to SMT machines, if planned 

appropriately. 
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(a) 

(b) 

Figure 2.1 (a) A single feeder, and (b) A double feeder [13] 

However, there are some drawbacks that discourage the use of multi-track feeders: 

1.	 Increased time to install and uninstall components. This problem 

becomes more significant if configurations are frequently required in a 

low batch size and high product variety process. 

2.	 More expensive than single feeders. 

3.	 Increased effort in process planning, inventory management, and shop 

floor control. 

Component-Multi-track Feeder Assignment Problem 

Consider the following illustrative example. Table 2.1 shows a 0-1 incidence 

matrix of data for four PCBs that are to be produced using eight components. Cells 

2.2 
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with "1" represent the use of a component in the production of a PCB and a "0" 

represents that a component is not used. For example, PCB 2 requires component 

1, 4, and 8, and component 3 is only used by PCB 4. 

Table 2.1 Example of a PCB incidence matrix 

Components 

PCB 1 2 3 4 5 6 7 8 

1 0 1 0 0 1 0 1 0 

2 1 0 0 1 0 0 0 1 

3 0 1 0 1 1 0 1 0 

4 1 0 1 0 0 1 0 1 

In this research, a feeder setup is defined as one feeder being unloaded from 

carriage and replaced by another feeder that is ready for loading. Thus, a feeder 

setup will be required if a component is not available between two consecutive 

board assemblies. 

2.2.1 Single Feeder and Setup Reduction 

Notice that each PCB in Table 2.1 requires no more than four components 

and no less than three. Assume that an SMT machine has four slots so that all 

PCBs can be processed in one pass, and that only single feeders are to be used. 

Table 2.2 shows the single feeder setup with PCB sequence 1-2-3-4. Bold 

numeric text represents the component being used by the PCB currently being 

assembled; plain numeric text represents component that is not used but is installed 

on the carriage. 
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Table 2.2 Example of a single feeder setup 

(A) 
PCB Component setups 

1 2 5 7 6 0 

2 1 8 4 6 3 

3 2 5 4 7 3 

4 1 3 6 8 4 
total 10 

(B) 
PCB Component setups 

1 2 5 7 4 0 

2 2 1 8 4 2 

3 2 5 7 4 2 

4 1 3 6 8 4 

total 8 

From the above example, it is clear that the feeder chosen to be replaced for 

the following assembly affects the total number of feeder setups. Table 2.2 shows 

that replacing component 2 with 1 for PCB 2 will result in an additional setup to 

put component 2 back on line when processing PCB 3. Table 2.2(B) also shows 

that including component 4 in the initial setup can save an additional feeder 

changeover. 

2.2.2 Double Feeder and Setup Reduction 

Now consider the double feeder case. If all the components can be used on 

double feeders, then, no matter how components are arranged and PCBs are 

sequenced, the system requires no feeder setup since the eight components are all 

loaded on the SMT machine. But what if there are only three feeder slots instead of 

four? The double feeders and components will require an arrangement plan 

because only six components can be loaded at any time. Assume that there are 

enough double feeders to hold all components and each feeder will occupy one slot. 

With the same PCB sequence, the double feeder setup is shown in Table 2.3. 
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Table 2.3 Example of double feeder setup with different assignments 

assignment (A)
 

(1,8) (2,7) (3,6) (4,5)
 
PCB Component setups 

1 (2,7) (4,5) (1,8) 0 
2 (2,7) (4,5) (1,8) 0 
3 (2,7) (4,5) (1,8) 0 

4 (2,7) (3,6) (1,8) 1 

total 1 

assignment (B)
 

(1,7) (2,4) (3,5) (6,8)
 
PCB Component setups
 

(1,7) (2,4) (3,5) 0 

2 (1,7) (2,4) (6,8) 
1 

1 

13 (1,7) (2,4) (3,5) 
14 (1,7) (6,8) (3,5) 

total 3 

assignment (C)
 

(1,2) (3,4) (5,6) (7,8)
 
PCB Component setups
 

(1,2) (5,6) (7,8) 0 
2 (1,2) (3,4) (7,8) 
1 

1 

3 (1.2) (4,5) (7,8) 1* 

4 (1,2) (3,6) (7,8) 1 

total 3* 

* Component 3,4,5,and 6 are reassigned to double feeder as (4,5) and (3,6) 

In Table 2.3, eight components are grouped into four pairs and installed onto 

four double feeders. However, only three feeders are on the machine because the 

Machine has three slots. Assignment (A) gives the best result since it has the 

lowest number of setups. Although both assignment (B) and (C) require the same 

number of setups, (C) needs a feeder reconfiguration between assembly PCB 2 and 

3 because the four required components are installed on four different feeders and 

there is not enough spaces for all of them since there are only three slots. Recon

figuring a double feeder takes more time than just loading a feeder to the carriage. 

Besides, changing a component assignment may also require the system database to 
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be updated so that the SMT machine can locate the correct position of feeder and 

components for pick and placement. 

The advantages and disadvantages shown in this double feeder example are 

summarized as follows: 

1.	 Utilizing double feeders can increase the capacity of SMT machines so 

that larger PCBs can be assembled with one pass. 

2.	 Assignment of components to double feeders significantly affects the 

advantages of using them. Poor assignment will not promote the bene

fits and possibly, hold off production. 

3.	 Objective of minimization of process time by arranging feeder loca

tions on carriages becomes more complicated due to the potential con

flicts with the component/feeder assignment problem. 

2.2.3 Problem Assumptions 

In the component-feeder assignment problem, the objective is to develop a 

mathematical model that can maximize the benefit of the multi-track feeder func

tion. Since the issues involved in PCB assembly are interrelated, it is not realistic 

to solve all problems at the same time, not to mention that some problems have 

conflicting objectives. The following set of assumptions are developed based on 

visitations to PCB assembly lines, discussions with engineers, and experiences 

from working in the SMT laboratory in the Department of Industrial and Manu

facturing Engineering at Oregon State University: 

I.	 Feeder can be mounted on any slot: All feeder slots in a machine are 

of the same size, and any component feeder can be assigned to any 

feeder slot. 
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2.	 Constant feeder loading and unloading time: Feeders are loaded or 

unloaded one at a time, and the loading/unloading time is constant for 

all types of feeder. Preparation of feeders and installation of compo

nents are independent of loading and unloading. 

3.	 PCB design data are available: The board-component incidence 

matrix contains the information of board requirements and component 

usage. This information can be obtained from PCB design data. 

4.	 Feeders and components are always available: Feeders and compo

nents are assumed to be available in sufficient quantity through a pro

duction period. Inventory management and shop floor control are 

excluded from problem consideration. 

5.	 Total number of component types required by PCBs is greater 

than the SMT machine capacity: This implicit precondition of the 

assignment problem, as shown in the double feeder setup example dis

cussed above, states that if all types of components used by a group of 

different PCBs can be loaded on SMT machine at the same time, then 

there is no reason for solving the assignment problem since no feeder 

setup is required. However, it is not unusual that at least some PCBs 

require more component types than the machine can accommodate. 

6.	 PCB and component data are preprocessed: Since component types 

that can be installed on multi-track feeder are limited (this also depends 

on the package format and machine's capability), the PCB design data 

are preprocessed and filtered so that only those PCBs with multi-track 

feeder-installable component are selected. 
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2,3 Multi-Track Feeder and Board Sequencing Problems 

Reconsider the example in Table 2.3 with different PCB sequences and the 

feeder setup plans illustrated in Table 2.4. The table shows that the sequence of 

PCB assembly is also a factor to affect the feeder setup. Although assignment (A) 

performs better than assignment (B) in Table 2.3, their performance in terms of 

number of setups, is equivalent in Table 2.4 due to carefully planned sequence in 

(B) saving an additional setup. 

Table 2.4 Example of double feeder setup with different PCB sequences 

assignment (A) 

(1,8) (2,7) (3,6) (4,5) 
PCB Component setups 

1 (2,7) (4,5) (1,8) 0 

4 (2,7) (3,6) (1,8) 1 

2 (2,7) (4,5) (1,8) 1 

3 (2,7) (4,5) (1,8) 0 
total 2 

assignment (B)
 

(1,7) (2,4) (3,5) (6,8)
 
PCB Component setups
 

3 (1,7) (2,4) (3,5) 0
 

1 (1,7) (2,4) (3,5) 0
 
12 (1,7) (2,4) (6,8) 

4 (1,7) (3,5) (6,8) 1 

total 2 

This example shows that the effort of searching for the "best" component-to

feeder assignment can be either augmented or diminished by the sequence of PCBs. 

A planned production sequence can compensate for the weakness of an inadequate 

assignment. Contrarily, a poor sequence can diminish the benefits of a good 

assignment. Another fact shown by this example is that there is no absolute opti
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mal assignment separate from an optimal sequence and vice versa. The interaction 

between the two affects the final results. 

2.4 Overall Problem Statement and Assumptions 

As the previous examples show, the objectives of this research are not only to 

search for an acceptable component-multi-track feeder assignment and a PCB 

sequence, separately, but also to develop an approach that looks at effective combi

nation of both factors. The primary assumptions made in studying the overall 

problem are: 

1.	 High variety, low volume production: The optimization objectives 

are different depending on the production environment, volume and 

product variety. For high volume, low mix production, minimizing 

process time will be more desirable than reducing setup time since a 

large proportion of total operation time is assembly time. On the con

trary, a high mix, low volume production is usually dominated by setup 

time. 

2.	 Due dates are not included: Production schedule will be based on a 

group of PCBs. Individual PCB scheduling within the group is not 

considered. 

3.	 PCB will be processed through the same SMT machine only once 

except double-sided design: This precondition for sequencing prob

lem implies that all PCBs are processed through a line of SMT 

machines. Components are distributed over machines according to 

their functions, capabilities, and workload to complete large PCBs. 

Double-sided design will be treated as two individual boards and given 

different identification numbers. 
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4.	 Components can be loaded on the same machine multiple times but 

can not be duplicated on the line: Although a SMT machine allows 

the duplication of the same component on a line due to high usage fre

quency, it is a waste of feeder space for a system attempting to increase 

the machine capacity in order to cover higher board variety. 

5.	 No interference between any two components: The interference 

between any two components during assembly is caused by poor coop

eration between design, production, and process planning. This issue 

is not related to the feeder setup, assignment, or the sequencing 

problem. 

6.	 PCB design factors are excluded: Double-sided design will be con

sidered as two different single-sided designs since the requirements of 

the process and the components may be different. However, from the 

point of view of assignment and sequencing problems, two PCBs using 

the same types of component are considered identical even though they 

are designed differently. 

7.	 Human factor considerations are excluded: Human factor consid

erations are excluded from this research. For example, assigning com

ponents with similar part numbers together may be prone to operator 

mistakes. Time or costs caused by human error are not considered in 

the model. 

2.5 Current Industry Application 

The component-multi-track feeder assignment problem has been recognized 

to be significant in industry, and some planning applications have been developed 

to deal with it. Some focus on grouping of components according to their usage 
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frequency by PCBs, while others consider grouping by component similarity. For 

both methods, no estimate of effectiveness of the assignment is currently available. 

Moreover, there is a lack of application methodology and results that deal with 

assignment and sequencing problems together. One of the reasons is that the 

sequencing algorithms developed so far are based on single feeder configuration; 

most of these algorithms are not appropriate to be directly applied to the multi-track 

feeder case. 
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CHAPTER 3 BACKGROUND AND LITERATURE REVIEW 

Production in the electronics industry, especially the assembly of printed cir

cuit board, has been thought to be a typical mass-production process for some time. 

Numerous research studies, focused on various aspect of PCB industry to improve 

productivity and quality, have been reported in literature. This chapter discusses 

the research background and reviews related work pertinent to the proposed 

research. 

3.1 Trade-off Between Process Time and Setup Time 

Component placement and machine setup are the two major activities in PCB 

assembly system. The relationship of process time and setup time to production 

determines the selection of the optimization strategy. McGinnis et al. [52] assessed 

different system characteristics and proposed setup strategies for the feeder 

arrangement problem to minimize the movement distance, and for placement 

sequencing problems to minimize the time spent on setups, as well as the compo

nent allocation problem to balance the machine workloads. 

A typical assembly process involves a series of assembly machines. Two 

major categories of machines are distinguished by the mechanism used to perform 

operations. Sequential assembly machine performs sequential pick-and-place 

operations, and a cycle consists of a retrieval and placement of a single component. 

A concurrent assembly machine is equipped with specialized tools or multi-head so 

that more than two operations may be performed concurrently 

If the machines are connected by transportation devices, the PCBs typically 

will be processed in an order following the conveyor system. McGinnis et al. [52] 

referred to the conveyor-linked machines as coupled, and a system with batch 

transfer as decoupled. Setup of a single machine in coupled system effectively 
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idles the entire system. In contrast, a decoupled system may allow other machines 

to continue production during the setup of a single machine. 

Ji et al. [36] introduced linear assignment-based approach for planning com

ponent placement sequences with fixed boards and fixed feeders. The implementa

tion is divided into two elements, namely construction of cost matrix for the assign

ment algorithm and a merge operation for generating the final placement sequence. 

Askin et al. [3] proposed three heuristics for component assignment and 

group formation on a decoupled system: component-assignment/work-load bal

ancing algorithm, work-load balancing algorithm with shortest total processing 

time (SPT), and natural board subfamily algorithm. The objective is to minimize 

the makespan for assembling a batch of boards with a secondary objective of 

reducing the mean flow time. 

Peters and Subramanian [61] proposed four strategies placing different 

importance on the optimization of processing time versus setup time (Figure 3.1). 

100% 
Unique Sequence 
Setup Dependent 

Strategy Setup Strategy 

Tradeoff
 
Setup
 

Strategy
 

Minimum 
Setup Strategy

0% 
0% Importance of setup time 100% 

Figure 3.1 Optimization strategy and the importance of process versus setup times. 
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1.	 Unique setup strategy tends to be used in high product volume, low prod

uct variety applications since it emphasizes the processing time of each 

product. This strategy determines the machine state and placement 

sequence independently for each product. 

2. Sequence dependent setup strategy uses a fixed machine state and place

ment sequence for each product and then determines the allocation of 

products on each machine to minimize the makespan. The process time is 

fixed and the product allocation and sequencing decisions only affect the 

setup time. 

3. Minimum setup strategy chooses the machine state for processing a prod

uct to minimize the setup time from the current machine state. That is, the 

system only performs the required setup for a product on a machine. This 

strategy is typically used in situations with low product volume but high 

product variety. 

4.	 Tradeoff setup strategy is intended to select specific optional setups that 

balance the tradeoff between processing time and setup time, hence it is 

applicable in medium volume, medium variety situations. 

The process time for a PCB basically is a function of the total number of 

components and the time to place a particular component by the machine. The 

actual process time is dependent on the placement sequence and feeder locations of 

the components. Two types of latency [23,26], feeder latency and board latency, 

may increase the process time. During the assembly process, the feeder carriage 

needs to move to the appropriate location for component retrieval, and the speed of 

carriage is relatively slow compared to the pick-and-place device movement. The 

largest feeder distance between two placements that can be moved within the 

placement time is typically referred to as free feeder distance. If the machine has to 

wait for the carriage movement, feeder latency occurs. An equation developed by 
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De Puy [23] may be used to estimate the feeder latency time that is the total feeder 

latency distance divided by the feeder speed. The feeder latency distance is the 

total feeder movement distance adjusted by the total free feeder distance. Moyer 

and Gupta [55] developed a feeder slot allocation heuristic to minimize feeder 

travel distances by utilizing a distance matrix to identify the distance between 

components. However, the component placement sequence is fixed, and the previ

ous or future PCB assemblies are not taken into consideration. 

The board latency occurs when the machine is waiting for the X-Y table or 

pick-and-place head to move to the appropriate position for component placement. 

The objective of most research to date regarding this problem is to minimize the 

movement distance between the retrieval position and the placement position, i.e., 

to minimize the cycle time. The factors to be considered include the position of 

feeder and the retrieval and placement times. Component placement sequence is 

involved to reduce the board latency. The SMT systems are now equipped with 

software to estimate the process time of a particular board according to the machine 

setup. Ellis [26) developed an estimator incorporated with the machine software to 

estimate the process time. 

The travelling-salesman problem (TSP) formulation is widely used in 

research to model the distance-minimization problem. Moyer and Gupta [57] 

developed a heuristic that determines the component placement path based on the 

component coordinates with a moving X-Y positioning table and a turret type 

placement mechanism. 

3.2 Group Technology 

The Group Technology (GT) concept has been successfully applied in cellu

lar manufacturing [6,7,12,19,31,41]. The PCBs and components may be consid

ered analogous to parts and machines and grouped as in cellular manufacturing 
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system [11,22,32,48,71,72]. Many methods have been developed to apply the GT 

concept [20,21,33]. Clustering analysis is one of the most frequently applied 

mathematical tools in GT. King [41] explored the existing cluster analysis methods 

like the single linkage cluster analysis and the bond energy method, and developed 

a new approach called the rank order clustering method. 

The single linkage cluster analysis was developed by Sneath [69] and was 

applied to group analysis in production by McAuley [50]. The method involves a 

hierarchical process of machine grouping in accordance with computed similarity 

coefficients [54,68]. The disadvantage is that once the machine groups have been 

formed it is necessary to assign the components to them. 

McCormick et al. [51] developed the bond energy method and stated that the 

problem of clustering a machine-part matrix by permuting rows and permuting col

umns could be interpreted as a pair of independent quadratic assignment problems. 

For example, a bond is said to exist (see 3.2) between two adjoining column ele

ments a14 and a15 in the incidence matrix (3.1). The goal is to rearrange the row 

and column position and maximize the total bond energy. 

1 2 3 4 5 

1 1 1 

1 
(3.1)2 I 

A Ac 
1 1=3 

14 1 

Column bond energy 

0 0 0 0 0 

1 1 1 1 

1 I o 
A4 )(5 = Row bond energy (3.2) 

1 I 

1 1 (0 
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The rank order clustering method (ROC) was developed by King [41] to 

group machine and component families. The machine-component incident matrix 

is read by row and column 0-1 vectors as a binary word. For example, the first row 

vector in (3.1) can be represented by a binary number, 01011, and converted to the 

decimal number, 11. The matrix is rearranged by the rank order of column and the 

rank for the rows is recalculated. The process is repeated until the rank order does 

not change. Unlike single linkage cluster analysis, which after machine grouping 

require a secondary process of component allocation to the machine groups, the 

ROC performs both tasks together. 

Kusiak [441 compared the matrix model, the p-median model and the classi

cal group technology concept. There are two basic formulations of the clustering 

models: matrix and integer programming formulation. In the matrix formulation, 

judgement regarding the number of clusters and the numbers of elements in each 

cluster is performed by a human, while in the integer programming formulation, 

both of them are determined by the clustering algorithm. The clustering analysis 

starts from a machine-part incidence matrix and rearranges rows and columns. A 

new matrix is identified from matrix (3.1) with two visible families of machines 

and parts. 

1 3 2 4 5 

2 1 1 

(3.3)4 1 1 

=A4x5 I 1 

3 1 1 ] 

This matrix formulation is difficult to represent and to visualize clusters when the 

incidence matrix gets large, and in most cases it is hard to obtain diagonal or close 

to diagonal structure of the clustered matrix. 
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The p-median model transforms the incidence matrix Aq into individual 0-1 

vectors that represent the relationship for each part and machine. The similarity is 

thus defined as: 

1, if a = ajkpf g(ak,a )'where g(ai, , a ) = ik (3.4) 
k=1 0, otherwise 

The similarity matrix P5x5 for (3.1) is: 

1 2 3 4 5 

1 0 0 4 0 1 

2 

P5x5 = 3 

0 

4 

0 

0 

0 

0 

4 

0 

3 

1 

(3.5) 

4 0 4 0 0 3 

5`1 3 1 3 0 

The problem can then be formulated by an integer program (IP) to maximize the 

total sum of similarity: 

n n 

Maximize (3.6) 
1=1 j=1 

Subject to X = 1 , for all i = 1, , n 

= p 
i=t 

for all i = 1,.., 71 and j= n 

E [0, 1} for all i, j 

Solving the above IP results in part families and the corresponding machine cells. 

This model can be used for general grouping problems. Chen et al. [181 developed 

a similar IP model for production planning of flexible manufacturing systems. 

Cheng et al. [20) formulated a 0-1 quadratic programming model solved by a trun

cated tree search algorithm to group machines. 
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3.3 Assignment Problem 

Assignment problems are generally referred to as those problems that seek 

the best "match" or "group" configurations to approach some objective. The 

assignment problems belong to the combinatorial problem, i.e., a type of discrete 

optimization problem. They can be categorized into three groups: 

1. Unbalanced Asymmetric Assignment problem (UAA) 

Consider a set of machine Q = Q1, Q,,} and a set of jobs R = {R1, 

R }, where m and n are not equal. Define c,j as the cost coefficient of assigning Ri 

to Q,, su as the resource required by machine Q, to perform job Rj, and b, as the 

resource capacity of Qi. The assignment problem is to assign each job to exactly 

one machine such that the total resource requirement of the jobs assigned to each 

machine is within the capacity of that machine and the total cost is minimized. 

This assignment problem can be formulated as a pure 0-1 integer linear program: 

n 

(3.7)Minimize I c.xu 
i=1 j=1 

Subject to X = 1, for j = 1 to n 
i=1 

S X S b for i = 1 to m 

xii E (0, 1), for all i, j 
where 

{ 1 if job j is assigned to machine i
xii = 

0 otherwise 

2. Balanced Asymmetric Assignment problem (BAA) 

Consider the above problem except that m and n are equal in this case, and 

there is no resource limitation. The pure 0-1 integer linear programming formula

tion is: 
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n n

Minimize I, I (3.8) 
i=1 j=1 

Subject to for j = 1 to n 

for i = 1 to n 

for all i, j 
where 

1 if job j is assigned to machine i 
= 

0 otherwise 

This assignment problem is also known as the bipartite matching problem 

that finds a complete, or perfect, matching [28,46,58,59]. Each job and machine 

will be assigned only once. However, x11 is not equivalent to xji. This integer-pro

gramming model can be solved directly using commercial computer optimization 

packages. However, with large problems, the computation run time is prohibitive, 

as for many practical production planning problems. A primal and dual algorithm 

called Hungarian method develop by Kuhn [42] solves BAA problem optimally 

and efficiently. The Hungarian method is further improved by Wright [79]. A 

primal method which is "dual to" the Hungarian method is developed by Balinski 

[5] for the assignment and transportation problems. Another matrix-based algo

rithm for the BAA problem is proposed by Ji et al. [35], which is similar to the dual 

simplex method. 

3. Balanced Symmetric Assignment problem (BSA) 

Consider n objects that must be grouped into n/2 pairs. Every object has to 

be in exactly one pair and each pair must consist of two distinct objects. This 

grouping problem is known as symmetric assignment problem, which is similar to 

BAA problem except that an additional restriction is imposed: 

Xji for all i, j (3.9) 
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This restriction forces the assignment to be symmetric, that is, each pair is 

distinct. Note that only square matrix (same dimension in row and column) can 

have symmetric assignment. 

The symmetric assignment problem was originally formulated by Murty [58]. 

Devine [25) developed a relatively simple branch and bound algorithm for the 

symmetric assignment problem to find the pairing of oil wells in order to minimize 

the total drilling cost; the size of problems ranged from 20 to 40. 

3.3.1 Combinatorial Optimization 

Another issue in the assignment problem is optimization. Optimization 

problems can be divided into two broad categories [58]: those with continuous 

variables, that is, they can assume all possible values within their range of varia

tion; and those with discrete variables, in which some or all the variables are 

restricted to assume values within specified discrete sets. The general linear pro

gramming (LP) problems belong to the continuous type, and the combinatorial 

problems are the discrete class of optimization. Although not all combinatorial 

optimization problems can be easily described mathematically, in general, they can 

be formulated as Integer Programming (IP) problems which are more difficult to 

deal with than the LP problems. There are two classes of IP problems: Pure IP, in 

which all decision variables are restricted to only integer values; and Mixed IP, in 

which there are mixed continuous and integer decision variables. In each class, 

there are two subclasses: 0-1 integer decision variables and general non-negative 

integer decision variables. 

The methods that can solve combinatorial optimization problems include 

exact algorithms and heuristic algorithms. Exact algorithms solve problems opti

mally though the solution time may be unacceptable. On the other hand, heuristic 

algorithms solve problems efficiently but do not promise optimal solution quality. 
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A problem's complexity is one factor that determines whether exact or heuristic 

algorithms should be applied. 

3.3.2 NP-Complete Class Problem 

Time complexity is the measurement for an algorithm's computational capa

bility. An algorithm is called polynomial-time algorithm if the required number of 

operations grows as a polynomial pattern with the size of the input. On the other 

hand, an algorithm is called an exponential-time algorithm if it is not of polynomial 

order. It is obvious that an exponential function grows much faster than polyno

mial function as problem size increases. 

If a problem can be solved by a known polynomial-time algorithm, then it is 

defined to be in the complexity class P. A problem is defined to be a NP (non

deterministic polynomial) class if a given solution x is a "yes-no" instance and can 

be verified by a polynomial-time algorithm. Furthermore, a class of NP-complete 

problem is the "most important" problems in NP. Solving a NP-complete class 

problem requires a computational time that grows (in the worst case) exponentially 

with problem size. Many combinatorial optimization problems such as the well-

known Travel Salesman problem (TSP) and the general 0-1 integer programming 

problem belong to the NP-complete class [40]. 

Since the assignment problem is a general 0-1 integer-programming problem, 

it is also a NP-complete class problem, which means the difficulty of the problem 

will grow as the problem size increases. Thus, a proper strategy or methodology is 

required to solve NP-class problem. 
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3.3.3 Exact and Heuristic Algorithm 

Although NP-complete class problems strongly suggest that there are no effi

cient algorithms for solving them optimally, it does not mean there is no exact 

algorithm that can be used. The factor is the problem size. Only small to medium 

sized problems can usually be solved efficiently. However, there are some excep

tions; even though the problem is a NP-complete class, there may be special cases 

in P class which can be solved efficiently, such as the branch-and-bound algorithm, 

dynamic programming techniques, or methods based on the theory of linear 

programming. Two issues are generally encountered when applying these exact 

algorithms to NP-complete class problems: 

1.	 Exact algorithms can not be expected to solve a NP-complete problem 

optimally in a reasonable amount of computation time. 

2.	 The computer resources like memory requirements impose limits on the 

use of exact algorithms. 

These two issues interact because some exact algorithms require an 

increasing amount of memory as the algorithms progress. As more computer 

memory is used, the computation speed slows down. In most cases, the solution 

progress is aborted because CPU time is too large or memory is exhausted. 

Therefore, a heuristic algorithm that solves for near-optimal solutions is commonly 

developed for better efficiency and less computer resource requirements. The dis

advantage of using heuristic algorithm is that there is no easy way of telling how 

close the solution is to optimality. Table 3.1 lists some of the commonly used heu

ristics [67]. Heuristic algorithms may be designed to be flexible in dealing with 

complex real-world problems, easy to design and implement, and to be used in 

combination with exact algorithms. 
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3.4 

Table 3.1 Comparison of commonly used heuristics 

Heuristic Efficiency Solution 
Quality 

Methodology 

Greedy 
Heuristics 

best worst 
Generates a solution by considering each solution 
component one at a time until a feasible solution is 
constructed. 

Neighborhood 
search or 
Local search 

fair fair 

Begins with an initial feasible solution and im
proves it by a sequence of exchanges in a neighbor
hood search. It can be combined with Greedy heu
ristics to obtain an initial solution. 

Relaxes some constraints of the original problem to 
Mathematical yield a solvable relaxed problem. A solution to the

worst best
relaxation	 relaxed problem is then used as initial solution to 

obtain a feasible solution for original problem. 

PCB Sequencing Problem 

The PCB assembly is a sequence-dependent production issue. The sequence 

of PCBs significantly affects the setup time. Due to limited machine capacity, the 

components are required to be loaded/unloaded between two PCB assemblies. 

Therefore, two similar PCBs are likely to be sequenced together to reduce the com

ponent changeovers. Sequencing problem also arises in different manufacturing 

areas that require different tools for multiple jobs. 

Carmon et al. [14] divided PCB assembly sequencing into two large catego

ries: sequence-dependent scheduling (SDS) and group setup (GSU). In the GSU 

method, PCBs are assembled in two stages, the common component stage and the 

residual component stage. In other words, each component can be loaded only 

once, but each PCB (job) can be loaded more than once. Theoretically, the GSU 

method always generates the least total setup time for production plans. However, 

in real practice, this method is difficult to implement because it requires complete 

control on the production schedules and when lot sizes are fairly large, the long 

production makespan generated by this method may be fatal. In SDS, setup is 
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based on the batch sequence. Before a new batch is assembled, all components 

must be in the feeders. That is, the PCB loading is restricted to once only, but each 

component can be loaded more than once. This is a more realistic production 

practice. 

Hashiba and Chang [32] introduced a systematic and practical method to the 

setup reduction problem in the SDS category. Their goal is to reduce setups for 

PCB assembly machines by improving the assembly sequence. An integer pro

gramming formulation was developed to minimize the number of total setups; heu

ristics were then developed for solving the model. The problem is decomposed 

into three parts: 

1.	 Grouping PCB types into some groups, which is based on the component 

commonality among different PCB types. No setup is necessary when 

changing from one PCB type to another in each PCB group. The effec

tive number of PCB types can be reduced from the number of real PCB 

types to the number of PCB groups. 

2.	 Ordering the PCB groups, which determines the assembly order of PCB 

groups. Since no setup is needed in each group, the assembly order in a 

group can be arbitrary. On the other hand, the assembly order among 

groups has significant effect on the number of setups. 

3.	 Assigning setup component types for each job, i.e., the order in which the 

component types should be on the feeders to minimize the total setups. 

Considerations include the unused components left unchanged from pre

vious group. 

Maimon and Shtub [48] combined SDS and GSU methods and formulated a 

mixed-integer non-linear programming model to solve the set-up reduction prob

lem. There are two interrelated problems to be solved simultaneously: 
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1.	 Each PCB should be loaded with at least one group of PCBs and compo

nents on to the assembly machine 

2.	 Each component should be loaded with at least one group of PCBs and 

components on to the assembly machine. 

The two problems interact since each PCB should be loaded on the machine with a 

subset of the groups such that each of the components required for that PCB is a 

member of at least one of the groups in the subset. The objective function is to 

minimize total set-up time of PCBs and components. In addition, in the PCB 

grouping problem the sets are subject to the capacity constraint of the assembly 

machine, i.e., the maximum number of components that can be loaded simultane

ously on to the machine. 

The sequencing problem is frequently viewed as a Travelling Salesman 

Problem (TSP) whose objective is to minimize the travel distance among cities. 

The traditional techniques for an exact solution are branch and bound, dynamic and 

integer programming. Randhawa et al. [63] utilized branch and bound technique to 

evaluate the mean setup time in sequencer scheduling combined with an integer 

programming model to minimize the total sequencing costs. Tang and Denardo 

[75,76] presented a non-LP-based branch-and-bound procedure to deal with a job 

scheduling problem for a flexible manufacturing machine. They also developed an 

optimal tool replacement policy called Keep Tool Needed Soonest (KTNS) to 

minimize the total number of tool switches for a specific job sequence. 

Because of computational complexity, those exact algorithms have been 

found impractical for large problems. Therefore, the use of heuristics becomes 

necessary for industrial problems. Charles-Owaba [17] developed a setup time 

matrix representing mathematical relation between machine setup times and simi

larity of parts. The objective is to derive a sequence that minimizes the machine 
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setup time for a set of parts. Five heuristics for solving this problem were com

pared. 

Genetic algorithm has also been used to solve the sequencing problem. 

Starting with a population of random sequences encoded and decoded as bit 

streams, the algorithm performs crossover, mutation and regeneration processes to 

evolve a new and better sequence from the parent population. The new offspring 

rejoins the population and replaces the inferior member in order to repeat next 

evolving session. Maimon and Braha [49] presented a genetic algorithm approach 

to the component switching problem. They use KTNS policy to evaluate the qual

ity of offsprings. 

Grouping Technology is frequently used to group the jobs or PCBs before the 

sequencing process. Su le [71] developed a tabular method for machine grouping 

and job allocation in cellular manufacturing. This method is then used in [72] to 

group components and PCBs. The PCBs are then sequenced according to the then-

current machine setup within and between groups. 

3.5 Interrelated Problems 

The complexity of the PCB assembly production arises from the interrelated 

decisions of the individual problems. Interactions and conflict of objectives make 

the problems more difficult to solve. Generally, grouping the components and 

PCBs can reduce the problem complexity. Balancing the tradeoffs is required to 

resolve the interactions and conflicts. Research studies focused on developing an 

integrated approach are summarized below. 

Ammons et al. [1] developed a mixed integer programming model of the 

component allocation problem for the unique setup strategy, family setup strategy, 

and a variation of the decompose and sequence strategy. This model is extended by 
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De Puy [23] to include feeder assignment issues. Branch and bound algorithm is 

used to solve the model for both the unique and family setup strategies. 

Moyer and Gupta [56] proposed a heuristic algorithm, referred to as the acy

clic assembly time algorithm, to minimize the system time required to place com

ponents on a circuit board. The algorithm determines an initial process plan for 

component placement sequence and feeder allocation from the given input, and 

then uses a recursive approach to improve the initial solution. 

Sanders [65] investigated operational planning for PCB assembly based on a 

medium-demand, medium-variety production on a mixed-model assembly line with 

two identical machines. Given weekly PCB requirements, the objective is to 

maximize the number of PCB types produced daily. The operational plan deter

mines the subset of PCBs to be produced daily (part selection problem), sequences 

the PCBs (sequencing problem), and assigns each PCB type's components to the 

machines (workload balancing problem). A mixed integer linear programming 

model is developed. Each sub-problem is solved by heuristic procedures. 

Lach [45] focused on minimizing the cycle time for multiple PCB types 

without set-ups by determining the ordering of components in the SMT machine 

feeder carriage, which leads to the lowest production time after the subsequent 

component placement sequence optimization problem has been solved. 

Takvorian [74] developed a dynamic programming formulation and an 

approximation algorithm for solving the PCB sequencing problem. Jiang [37] dealt 

with PCB assembly in a multi-stage, multi-line, and multi-product system. A shop 

floor scheduling methodology called Repetitive Flexible Flow Lines (RFFL) is 

proposed to solve five decomposed sub-problems: (I) Daily product mix and lot 

sizing, (2) Optimal transfer batch determination, (3) Global sequencing with 

sequence dependency of setups, (4) Local stage dispatching, and (5) Dynamic 

events response. 
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Hillier [33] developed an optimal solution technique to assign the PCBs and 

components to the machines and a manual process so as to minimize cost for the 

single machine case and for the multiple machine case where boards are not 

allowed to be set up on more than one process. For multi-process cases, the tasks 

of minimizing and balancing the machine workloads are performed simultaneously. 
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4.1 

CHAPTER 4 COMPONENT TO MULTI-TRACK FEEDER 
ASSIGNMENT PROBLEM 

In this chapter, the double feeder setup example introduced in chapter 2 will 

be discussed and used to illustrate the development of a methodology for the 

assignment problem. Integer programming (IP) models are formulated for the 

problem. Limitations of IP models and application are discussed. Several heuris

tics are developed to compensate for these limitations; these are then evaluated and 

compared. 

Methodology 

As discussed in chapter 2, the component to multi-track feeder assignment 

problem interacts with the board sequencing problem. A planned PCB sequence 

can reduce feeder setups and avoid reconfigurations as in the assignment shown in 

Table 2.3(C) (and reproduced in Table 4.1C). Therefore, the component-feeder 

assignment problem should be dealt with before performing PCB sequencing. 

Since optimal assignment does not exist in isolation, it is appropriate to 

define an objective to measure the quality of assignment. Re-examine the PCB 

incidence matrix in Table 4.1. Notice that PCB 3 and 4 both require four 

components. Those components are better not to be assigned to four separate 

double feeders, otherwise reconfiguration is unavoidable. The assignment (C) 

shows that all pairs of components assigned to the same double feeder are not used 

by the same PCB. Comparing this to the assignment (A) and (B), it can be 

observed that if the common components are put together, the assignment will be 

more effective and avoid feeder reconfiguration. 
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Table 4.1 Example of PCB incidence matrix and double feeder assignments 
reproduced from Table 2.1 and 2.3 

Components 

PCB 1 2 3 4 5 6 7 8 

1 0 1 0 0 1 0 1 0 

2 1 0 0 1 0 0 0 1 

3 0 1 0 1 1 0 1 0 

4 1 0 1 0 0 1 0 1 

Double feeder assignment (A)
 
(1,8) (2,7) (3,6) (4,5)
 

PCB Component setups
 
(2,7) (4,5) (1,8) 0 

2 (2,7) (4,5) (1,8) 0 
3 (2,7) (4,5) (1,8) 0 
4 (2,7) (3,6) (1,8) 

1 

1 

total 1 

Double feeder assignment (B)
 
(1,7) (2,4) (3,5) (6,8)
 

PCB Component setups
 
1 (1,7) (2,4) (3,5) 0 
2 (1,7) (2,4) (6,8) 1 

3 (1,7) (2,4) (3,5) 1 

14 (1,7) (6,8) (3,5) 
total 3 

Double feeder assignment (C)
 
(1,2) (3,4) (5,6) (7,8)
 

PCB Component setups
 
(1,2) (5,6) (7,8) 0 

2 (1,2) (3,4) (7,8) 
1 

1 

3 (1,2) (4,5) (7,8) 1* 

4 (1,2) (3,6) (7,8) 1 

total 3* 

* Component 3,4,5,and 6 are reassigned to double feeder as (4,5) and (3,6) 
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4.1.1 Example Illustration 

To assign common components together, the symmetric matrix in Table 4.2 

is constructed from the incidence matrix in Table 4.1 to measure the degree of 

similarity among parts. The numbers in this matrix represent the number of PCBs 

using both the corresponding components. For example, the similarity value for 

component 2 and 5 is two because they are used by PCBs 1 and 3. 

Table 4.2 Similarity matrix for double-feeder example 

1 0 1 0 1 0 21 

2 0 0 1 G2 0 2 0 

3 0 0 0 01 11 

4 1 1 0 1 0 1 

025 0 0 0 20 
1 

6 1 0 1 0 0 0 1 

7 0 2 0 2 0 01 

1 10 0 

For ease and consistency of representation, the following notation is used in 

this chapter: 

m total number of PCB types; 

n total number of components; 

r number of feeder tracks; 

A (a,j), , the PCB incidence matrix; 

au ijth element of matrix A; au = 0 or 1; 

P (pii),,, the component-component similarity matrix; 

ijth element of matrix P, similarity value between component i and j; 

pi. all similarity values associated with component i; 

x11 decision variable, 1 if component i and j are assigned together, 0 otherwise; 

rf all decision variables associated with component j. 
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According to the similarity matrix in Table 4.2, the similarity values for the 

three assignments in Table 4.1 are displayed in the following table: 

Table 4.3 Similarity measurements for double-feeder example 

Assignment calculation Similarity value 

(A) (1,8) (2,7) (3,6) (4,5) P18+ P27+ P36 4" P45 2+2+1+1=6 
(B) (1,7) (2,4) (3,5) (6,8) PI7+ P24+ P35+ P68 0+1+0+1=2 
(C) (1,2) (3,4) (5,6) (7,8) P12+ P34 + P56+ P78 0+0+0+0=0 

This shows that assignment (A) has the largest similarity value whereas assignment 

(C) has none. The outcome is consistent with the results in Table 4.1 in terms of 

number of feeder setups. 

There are two findings from this illustration. First, it shows that, considering 

only the assignment problem, the higher the similarity value, the less the number of 

feeder setups. The similarity value is thus an effective and logical measurement for 

assignment with the objective of maximizing the sum of similarity values. Second, 

components with high similarity values are usually associated with PCBs using 

more common parts. If similar boards can be grouped and sequenced, then it is 

possible to further reduce feeder setups. This is valuable information that provides 

a connection between the assignment and sequencing problems. 

To extend the discussion to the multi-track feeder case, some basic properties 

of the similarity matrix are summarized: 

1. Symmetry property, the relationship of Ptj is the same as pji; 

2. Diagonal matrix is non-number (i.e., does not exist); 

3. Matrix dimension is r , the number of feeder tracks; and 

4. Matrix size is nr 
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4.1.2 Methodology Description 

Many applications have used the assignment problem as a mechanism for 

representing and solving them. Kusiak [441 used a similar method to deal with the 

clustering analysis. The method starts from an incidence matrix that represents the 

relationship of each part and machine. Although this clustering matrix method is 

difficult to represent and visualize when the incidence matrix gets large, some of 

the work is useful to this research. The transformation of the incidence matrix into 

a similarity measure is defined as: 

1, if aik = a 
Pi; = 8(aik,ask) , where .5(ai, , ask) = (4.1) 

k=1 0, otherwise 

and an integer programming (IP) model to maximize the total sum of similarity is 

formulated as 

(4.2)Maximize pi, xi,
i. 

Subject to xis =1, for all i = 1, , n (4.3) 
I =1 

. = w , where w is number of part families (4.4) 
11
 

F--1
 

x11 . x 
, 

for all = 1,.., n and j= n (4.5) 

Xu E {0, 1) for all i, j (4.6) 

Constraint (4.3) ensures that each part belongs to exactly one part family, 

(4.4) specifies the required number of part families, (4.5) ensures part i belongs to 

part family j only when this part family is formed, and (4.6) ensures integrality of 

the decision variables. Solving the above IP results in part families and the corre

sponding machine cells. Although the constraints are not suitable for the assign

ment problem, the similarity matrix combined with the IP model may be useful. 
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The assignment problem belongs to pure IP class of problems since all deci

sion variables are restricted to 0-1 values. The assignment problem has been exten

sively studied for different applications, however, most of them focus on asymmet

ric assignment problems. The symmetric problems require that all assignments 

should be distinct to each other, which the asymmetric problems don't. An IP 

model for symmetric assignment, more specifically a Balanced Symmetric Assign

ment (BSA) problem, with a minimization objective function is formulated in [58]; 

a branch and bound method is proposed to solve it. 

A pure 0-1 IP formulation for double feeder assignment problem with maxi

mization of similarity values is: 

Maximize 
n n 

PijXij 
i=1 j=1 

(4.7) 

Subject to xj = 1, for j = 1 to n (4.8) 
i=1 

I x4 = 1, for i = 1 to n (4.9) 
J=1 

E {0, 1} for all i, j (4.10) 

= P for all i,j (4.11) 

where 
1 if component i and j are assigned to the same feeder 

x 
0 otherwise 

The constraint (4.11) forces the assignment to be symmetric, that is, each pair 

is distinct. Since the assignment problem is a general 0-1 integer-programming 

problem, it is a NP-complete class problem [30,40]. This suggests that the diffi

culty of solving the problem will grow as the problem size increases. Therefore, 

the optimal solution of the double feeder assignment problem depends upon the 

number of components involved. Tradeoff between solution time and quality of 

results is also a factor to be considered in selecting an appropriate solution tech

nique. The two problems are actually related because exact algorithms usually 

require a large amount of CPU memory as computations progress. This further 
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slows down the computation process. In most cases, the solution progress is forced 

to abort either because the CPU memory is exhausted or the required computation 

time is unacceptable. Heuristic algorithms that solve for near-optimal solutions are 

commonly developed to increase efficiency and reduce computer resource 

dependency. 

4.2 Computation Modeling 

The double-feeder assignment 1P model, as formulated in (4.7) to (4.11), 

states that n components are assigned into n/2 double feeders. It is extended to a 

triple-feeder assignment and a generalized multi-track feeder assignment model. 

4.2.1 Multi-track Feeder Assignment Model Generalized IP Models 

Triple-feeder Assignment model: The objective function remains the same to 

maximize the total sum of similarity value of the assignment. The constraints are 

that each assignment must be distinct from the others, and each component can 

only be assigned once. 

11 n 

Maximize (4.12)L L1 P ijk X ijk
 
i=1 j=1.4:=1
 

Subject to 1, for i = 1 to n (4.13) 
j=i k=I 

= 1, for j = 1 to n (4.14) 

n rt 

1, for k = 1 to n (4.15)E Yijk = 
i=1 .J=1 

X-k E 10, 1 for all i, j, k (4.16) 

for all i, j, k (4.17)Xijk = Xikj = Xjik= Xjki= Xkij= Xkji 
where 

{1 if components i, j,k are assigned to the same feeder 

0 otherwise 
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The symmetric matrix is expanded to three dimensions and the symmetry property 

still holds. 

Now consider that n types of components are to be assigned to rtrack feed

ers. Assume that there are m feeders and n = m x r. The Multi-track feeder 

Assignment model is formulated as: 

n n n 

Maxim ize I (4.18)Pc,c,...c, 
c,=1c, =1 c,=1 

n 11 II 

Subject to (I) 1 1,...I xcic,...c, = 1, for ci = Ito n (4.19) 
c2=1 c3=1 c, =1 

n n n 

(2) 1 1...I xcic,...,, = 1, for c2 = 1 to n (4.20) 
c, =1 c3=1 c,.=1 

(r) 1
n n 

x = 1, for cr = 1 to n (4.21) 
c, =1 c2=1 

for all ci, c2, cr (4.22)10, 1) 

are of the same value for all permutations of {ci, cr} (4.23) 

where 
1 if components c1, c2,..., cr are assigned together 

xe,c, = 0 otherwise 

4.2.2 Multi-track Feeder Assignment Model Application Models 

The difficulties in applying the above generalized formulation to large-scale 

problems result from too many decision variables and constraints. By taking the 

advantage of the symmetry property, the amount of decision variables and 

constraints can be significantly reduced. For example, the Simplified Double-

feeder Assignment (SDA) model can be formulated as: 
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n-1 n 
(4.24)Maximize E pijx, 

i71 

Subject to 
n 

for i = 1 to n (4.25)
x(11)ordered 1,

j =1
j*i 

xji if i > j 
where x(4) 

ordered 7 x,.j if i < j 

E {0, 11, for all i, j (4.26) 

Notice that only the upper or lower half of the matrix (i.e., above or below the 

diagonal) is used as decision variables. The number is reduced from n2 to n(n-1)/2. 

The constraints are reduced from 2n to n due to the symmetry property. 

The Simplified Triple-feeder Assignment (STA) model is: 

Maximize 
n-2 

E 
1 n 

ijk ijk 
(4.27) 

i=I j=i+1 k= j+1 

Subject to 
n nI 

j=1 k= j+1 
(9k ) ordered = 1, for i = 1 to n, j # k # i (4.28) 

Xijk E { 0, 11, for all i, j, k (4.29) 

where 
1 if component i, j, k are assigned together 

xijk 
0 otherwise 

Similarly, the Simplified Multi-track feeder Assignment (SMA) model is: 

nr+1 nr+2 
Maximize E E ... E p r (4.30) 

c1 =1 C2 =CI +1 +i 

n n /I 

Subject to 1, for ci = 1 to n, Cr # ci (4.31)
(c,c2.-ce )ordered = 

c2 =1 =c2 +1 c, =c,_i +1 

X 
2 C 

E 10, 11, for all ci, cr (4.32) 

where 
1 if components c,,c...,c, are assigned together 

x = 
0 otherwise 
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These simplified models are more applicable in practice because of fewer 

decision variables and constraints, thus requiring less computer resources and 

eliminating unnecessary search for optimum. The comparison of general and 

simplified models is summarized in Table 4.4. 

Table 4.4 Comparison of general and simplified assignment models 

Number of Number of 
Assignment IF Model decision variables constraints 

2nGeneral Double feeder n2 

Simplified Double feeder C2= n-1)12 

General Triple feeder n3 31r 

Simplified Triple feeder C3 = n(n- 1)(n-2)/6 

General Multi-track feeder rn 

n! 
Simplified Multi-track feeder = 

(n r)! r! 

n: number of component types; r: number of feeder tracks 

4.2.3 Implementation of the IP Model 

Commercial mixed integer programming solvers are typically limited by the 

number of decision variables and constraints. Also, each solver implements differ

ent algorithms (simplex method, interior-point method, branch-and-bound, etc.) 

and offers different options. Solvers also differ in terms of speed, accuracy, and 

number of iterations that can be performed. 

AMPL with CPLEX solver [29] was chosen to solve the assignment prob

lem. The reason for selecting AMPL is that its model and data can be constructed 
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separately. For new problems, only data file needs to be constructed while the 

model file remains unchanged. CPLEX is the optional solver that works with 

AMPL for mixed integer programming. CPLEX is designed to solve large, 

complex problems where other linear programming solvers fail or are unacceptably 

slow. 

As an example, a small size problem with six boards and nine components is 

presented here to illustrate the double-feeder and triple-feeder assignment models. 

The board-component incidence matrix A6x9 is 

1 2 3 4 5 6 7 8 9
 

1 0 1 1 1 0 0 1 0 0
 

2 1 0 1 1 0 0
 1 11 

1 
(4.33)3 0 1 0 1 1 0 0 0 

=A
6x9 4 1 0 0 1 0 0 01 1 

1 1 15 1 0 0 1 01 

1 1 1 1 1 16 0 0 0 

For the double-feeder case, the component-to-component similarity values 

are calculated by using (4.1), except that 

{1, if a,k=aik =1 
S(aik 

5 
a )k ) 0, otherwise 

The symmetric similarity matrix P9x9 is: 

1 2 3 4 5 6 7 8 9 

1 2 0 2 2 2 1 2 2 

2 1 4 3 / 3 3 3 

3 1 0 0 1 0 0 

4 2 / 4 2 2 (4.34) 
P 5 1 1 2 2 

6 / 2 2 

7 1 I 

8 3 

9 
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The AMPL model is given in Appendix A.1. The data file for (4.34) is listed 

in Appendix A.2. The result shows that one of the optimal assignments is (1,6) 

(2,5) (4,7) (8,9), leaving component 3 alone. The optimal objective value is 12. 

Notice that a dummy component number is added in the data file to pair with the 

last unassigned component. 

The similarity matrix for the triple-feeder case is constructed similar to the 

double feeder formulation with modification on (4.1) 

1, if ad a =ak, =1 
Plk icS(all,aii,ak,), where g(a,,,ai,,ak,)=	 (4.35)

0, otherwise1.1 

This three-dimensional similarity matrix is listed in Appendix A.3. The AMPL 

model and the data file are listed in Appendices A.4 and A.S. One of the optimal 

assignments is (1,3,5) (2,8,9) (4,6,7). The optimal objective value is 5. 

The construction of similarity matrix for higher dimensions is similar to triple 

feeder case. However, the representation of matrix is more complicated as the 

problem dimension grows. 

4.2.4 Discussion 

The use of an IP solver is strongly recommended as long as the problem size 

allows for its use. This is because the resulting solution is optimal. Limitations to 

the use of IP solvers increase as problem size increases. Issues include: 

1.	 Complex model and data construction: As the problem dimension 

increases, i.e., the number of feeder tracks increases, the construction of 

the rp model becomes more complicated. Moreover, the data file also 

becomes difficult to handle as the problem size grows. 
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2. Hardware limitations:	 Without enough computer hardware resources, 

the computation time may be longer than would be acceptable. 

3. Software limitations: Even though the computer resources may be un

limited, software limitations is another issue. Commercial solvers have 

limitations on the number of constraints and decision variables and on the 

maximum number of branches or nodes that can be searched. 

4.	 Constructions of similarity matrix: The real challenge is the construc

tion of the multiple-dimension similarity matrices. It is not difficult to 

realize that such transformation will be a time consuming and prone to 

error. 

It is observed that a poor lower-dimension assignment will never produce a 

good higher-dimension assignment. For example, if pti is zero, then all combina

tions of pij., pj,, pj.i, p.,i, and p.ji in a triple feeder similarity matrix will be zeros. 

With this property, a partial similarity matrix, generally the non-zeros, is sufficient 

to solve the problem. It reduces the load of constructing a complete but huge simi

larity matrix, and eliminates a lot of unnecessary searches. It also provides a 

ground to solve for higher dimension problems. 

4.3 Heuristic Development 

Multi-track systems require more slots than double feeders do. Therefore, the 

system does not benefit from multi-track feeders to increase its capacity as much as 

with double feeders. The heuristic development will focus on double feeders. The 

results are then extended to multiple-feeder problems. 

The first heuristic, Min-Max (MMX), is developed to solve all types of 

multi-track feeder assignment problems. The components with non-zeros similarity 

values are first assigned. The unassigned components, whose similarity values are 

zeros, are then randomly grouped since they do not help to improve the assignment. 
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The second heuristic, SWAP, starts from an initial assignment and performs 

neighborhood search for local optimum. Components are reassigned if the local 

optimal assignment is different from the initial assignment. 

The third heuristic, INTEG, integrates commercial software, MMX and 

SWAP with a problem size reduction procedure in a way that takes all advantage of 

each. The size reduction procedure is designed for the double feeder case. 

These three heuristics are briefly described below. 

4.3.1 Min-Max (MMX) Heuristic A Greedy Search Heuristic Algorithm 

This heuristic uses greedy search to approach the symmetric assignment for 

all types of multi-track feeder problems. The heuristic procedure for the double 

feeder case is described as below; the pseudo-code is provided in Appendix A.S. 

1.	 Construct a non-zero assignment set S = fx(i),x(2), .--,x04}, whose similarity val

ues are {p(1),p(2),...,P(o) = , sorted in descending order with 

ties broken randomly. 

2.	 Enter the top un-crossed assignment with the largest similarity value, say x,1, to 

the solution set. 

3.	 Cross out x,. and x.3. 

4.	 Repeat steps 2, 3 until all assignment variables in S are crossed out. 

5.	 Randomly assign the rest of the unassigned components. 

This heuristic selects the assignment with the largest non-zero similarity 

value to enter the solution set, while at the same time eliminating the remaining 

assignments associated with the entering components. After all the members in the 

non-zero assignment set are crossed out, the remaining unassigned components are 

all mutually exclusive to each other with zero similarity values. A random and 



55 

symmetric selection assignment is performed to complete the multi-track feeder 

assignment. 

As the number of feeder tracks gets larger, the probability that a group of 

components has a zero similarity value increases. In other words, the ratio of zeros 

in a four-track feeder similarity matrix will likely be higher than in a double-feeder 

system. For this reason, this heuristic could be more efficient for multi-track prob

lems because of less component combinations with non-zero similarity values. 

The disadvantage is the relatively low solution quality because the search 

process does not cover enough solution space. The entering and crossing out steps 

may eliminate a better assignment combination. Repeated searching with different 

initial assignments, typically from one of the previous bests, can compensate for 

this shortcoming. The final assignment is chosen from the results. However, a 

tradeoff between the search time and solution quality must be made. 

4.3.2 SWAP A Neighborhood Search Heuristic Algorithm 

The SWAP heuristic performs neighborhood search and exchanges compo

nents between two assignments if a better assignment is found. The procedure, 

based on double feeder configuration, is described as below and the pseudo-code is 

provided in Appendix A.7. 

Step 1.	 Define v = n/2, and construct an initial symmetric solution set S = 

tx(1), x(,), ..., x(0) whose corresponding similarity values are {p(1), 

P(2)1 p(o) = {Po,, P1,12, , 134.1}

Step 2.	 Compare two assignments, say x( and x(2), with components 11, ji, i2, 

and j2. The three possible combinations are: (ihji)(il,/,), 

ji), and (i1, i2)U1, /2). 
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Step 3. Perform a neighborhood search for each combination. If a better 

assignment is found, reassign the components. 

Step 4. Repeat steps 2 and 3 until comparisons between all assignments are 

complete. 

Two key factors affect this heuristic efficiency and quality: the number of 

combinations between two assignments and the initial solution set S. This heuristic 

compares all possible combinations between two assignments to determine the 

local optimum. For a double-feeder case the possible combinations between two 

assignments is C42/2, which is 3; and for triple-feeder case it is C36/2, or 10. 

Although the combinations are increased from 3 to 10, the number of assignments 

to be compared are decreased from n/2 to n/3. Since this heuristic is designed to 

improve the solution based on the initial assignment, the quality of the initial 

assignment affects the final assignment. For this reason, three initial assignments 

are chosen to initiate SWAP heuristic: 

1.	 11111X assignment: The result from Min-Max heuristic are used as a star

ing point for the SWAP procedure. 

2.	 Usage-based assignment (USG): Components with the same or close 

usage frequency are assigned together. The component usage frequency 

is the sum of the columns of PCB incidence matrix. This type of assign

ment was first used in industry to deal with the double feeder assignment. 

3.	 Random feeder assignment (RFA): Components are randomly selected 

for assignment. This is thought to be a no-plan assignment. 

4.3.3 Integrated Heuristic with Problem Size Reduction (Double feeder case) 

As discussed previously, the assignment problem has been extensively 

studied in literature. There are several optimal algorithms to deal with the asym

metric assignment problems. One of them is the Hungarian Algorithm [42], which 
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can optimally solve balanced asymmetric assignment problems by utilizing the 

primal-dual method. The procedure for this algorithm is: 

Step 1.	 Matrix reduction: In an x n square matrix, 

i.	 For each row, subtract the row minimum from each row. 

ii.	 For each column with all positive entries, subtract the column 

minimum from each column. 

Step 2.	 Find the initial allocation: Define the admissible cell as the cell in 

the current reduced matrix with a value of zero. Allocations can be 

made among admissible cells only, and each row and each column 

can have at most one allocation. If more than one admissible cells 

are available, make an allocation arbitrarily. Cross out all other cells 

in the column or row of the allocated cell. The efficient way to select 

initial solution is: 

i.	 Identify the rows or columns with exactly one uncrossed zero 

first, or choose the rows or columns with the least number of 

uncrossed zeros. Break ties arbitrarily and select one uncrossed 

zero. If the zero is selected from a row, then cross out the column 

through the selected zero, or cross out the row through the zero if 

it is selected from a column. 

ii. Repeat Step 2i until all zeros are crossed out. 

iii. If exactly n lines have been crossed, then it represents an optimal 

solution. The zeros identified comprise a solution. If less than n 

lines have been drawn, an optimal solution is not yet found; go to 

Step 3. 

Step 3.	 Redistribute the zeros and go back to Step 2: 

i.	 Subtract the minimum entry among the uncrossed cells from each 

uncrossed cell. 
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ii. Add the minimum value obtained from Step 3i to each cell which 

is both horizontally and vertically crossed out. 

iii. Remove all lines and go to Step 2. 

An example of Hungarian algorithm applied on (4.34) is given in Appendix 

A.B. For balanced symmetric assignment problems, the Hungarian algorithm does 

not guarantee optimal solutions. However the optimal solution from the Hungarian 

algorithm can be used as an upper or lower bound of two-dimensional symmetric 

assignment. Consider a solution set H for a double feeder assignment problem 

solved by Hungarian algorithm: 

H = xij= 1, for all i, j }	 (4.36) 

which is separated into two subsets 

S = x1 = 1 and xji = 1, for all i,j }, symmetric solution subset, and (4.37) 

NS = xii= 1 and xji = 0, for all i, j1, asymmetric solution subset (4.38) 

H S, NS} 

If subset NS = 0, then the solution H is optimum. If NS # 0, then the solu

tion H is not symmetric and, consequently, not a complete solution. Sometimes, 

changing the similarity matrix column and rows' order will result in a different 

solution. It is also discovered that re-solving the sub-matrix formed by NS can 

result in more symmetric sub-solutions, and the optimal value can still be main

tained. The reason is that if there are multiple optimum solutions, some have a 

symmetric subset whereas others do not. Changing the order of matrix rows and 

columns will have Hungarian algorithm pick different initial allocations and hence 

a different final solution. The Hungarian algorithm can thus be applied repeatedly 

to solve the asymmetric subset. The problem size reduction procedure is summa

rized below. 

Step 1.	 Construct a new symmetric matrix PNS for all the elements in subset 

NS. Orders of matrix are rearranged. 
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Step 2. Re-solve PNS using the Hungarian algorithm. 

Step 3. Separate the solution into symmetric and asymmetric subsets, S and 

NS. 

Step 4. Enter symmetric subset S into solution set.
 

Step 5. Repeat step 1 to 4 until one of the termination criteria is met: (a) NS
 

= c, (b) there is no further improvement, or (c) there is forced termi

nation. 

The question now is: Will the reduction procedure lose the optimality prop

erty of the Hungarian algorithm? The answer is: It does not. The proof of this 

property is as follows: 

Let the first solution set obtained from the Hungarian algorithm be denoted 

as H = Si, NS1 }, where Si and NS1 are sub-solution sets. The objective 

function value is 

for every assignment x (4.39)
-4: II (x) = ZSI(X)± Z NS, (x) 

It is known that the Hungarian algorithm solves for optimal solution, which 

means that zll (x) is optimal objective value. Re-solve NS1 and obtain solu

tion {S2, NSA, and 

z,vs, (x) = (x) + z,vs, (x) for every assignment x (4.40) 

Repeating the re-solving step for NSk_i, the solution is { Sk, NSk }, and 

zNSt (x) = zs, (x) + ZNS (x) for every assignment x (4.41) 

Back substitution of these results yields 

ziy (x) = zs, (x) + (x) + + zs, (x) + ZNSA (x) for x (4.42) 

which still preserves the optimal objective value. 
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ISMS cannot be completely solved, it cannot be proved that the optimal sym

metric solution can be found in NS. In fact, the optimal solution obtained by Hun

garian algorithm is convex [46,58,59], whereas the symmetric solution is a non-

convex. This is the reason why the Hungarian algorithm can not be used or modi

fied to solve symmetric assignment problems. Under some circumstances, a sym

metric assignment can be proved optimal if: 

1.	 It is a complete symmetric assignment obtained by the Hungarian algo

rithm, or 

2.	 Its objective function value is the same as the Hungarian algorithm's, or 

3.	 Its objective function value is less than the Hungarian algorithm's by 1, 

and the objective function value obtained by the Hungarian algorithm is 

an odd number. 

Condition 2 above stands because the objective function value from the Hun

garian algorithm can be used as the upper or lower bound of the symmetric assign

ment problem. Condition 3 holds because the objective function values of symmet

ric assignments are always even number, therefore the upper bound for an odd 

objective function value from the Hungarian algorithm will be less by 1. In other 

words, it is impossible to approach a complete symmetric assignment if the objec

tive function value obtained by the Hungarian algorithm is an odd number. 

The integrated heuristic for the double-feeder assignment problem will use 

the commercial package with IP models as long as the computation environment 

allows optimal solution to be obtained. The second choice is using the Hungarian 

algorithm. If a complete symmetric assignment can not be approached, the prob

lem size will be reduced as much as possible. The SWAP or commercial package 

will solve the asymmetric subset if allowed. The heuristic flow is displayed in 

Figure 4.1. 
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Figure 4.1 Integrated Heuristic Flow and Setup Options 
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4.4 Evaluation Study 

Three sets of test problems are used to verify and investigate the performance 

of the heuristics developed for the double-feeder assignment problem. These data 

sets are obtained from literature, through use of a random number generator, and 

from industry. A brief description of the data sets follows. 

4.4.1 Description of Test Problems 

The first set (Data set 1) contains 8 mid-sized problems. They are taken from 

the OR-Library and published in [8,9], and were used in the asymmetric assign

ment problem. The problem size ranges from 100x100 to 800x800, and the opti

mal solution values for the problems are known. This problem set is used to verify 

the Hungarian algorithm. A summary of Data set 1 is given in Table 4.5. 

Table 4.5 Data Set 1 from OR-Library 

Data set LI L2 L3 L4 L5 L6 L7 L8 

Size* 100 200 300 400 500 600 700 800 
Minimum** 1 1 1 1 1 1 1 1 

Mean** 50.96 50.97 51.05 51.03 51.06 51.01 51.01 50.98 
Maximum** 100 100 100 100 100 100 100 100 

28.58Std. Dev.** 28.50 28.56 28.57 28.57 28.59 28.6 28.58 

Opt. Value 305 475 626 804 991 1176 1362 1552 

* square matrix 
** statistics of the matrix elements 

The second set (Data set 2) contains five subsets of matrices ranging from 

18x18 to 2000x2000 with different statistical distributions. They are created using 

a random number generator designed for construction of double feeder similarity 

matrix because it is impossible to control the similarity matrix distributions from a 
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board-component incidence matrix. The generator produces the similarity matrix 

by controlling: 

1. the number of components and PCBs involved, 

2. the random seed number, 

3. the minimum and maximum number in the matrix, and 

4. the mean and standard deviation of the matrix. 

The configuration of these test problems is summarized below: 

Table 4.6 Data Set 2 from the random number generator 

Data set RI R2 R3 R4 R5 

# of PCBs 1000 1000 1000 1000 1000 

Seed random random random random random 
Minimum 0 0 0 0 0 
Mean 50 100 150 200 250 

Maximum 100 200 300 400 500 
Std. Dev. 50 100 150 200 250 
# of Components for each set: 18, 50, 100, 200, 400, 600, 800, 1000, 1200, 

1400, 1600, 1800, 2000 

Data set 2 covers a range of problem sizes. The 18x18 problems are tested 

on AMPL and CPLEX. The other problems are tested for each heuristics except 

SWAP with USG initial assignment. The configuration of the problem set also 

explores the effects of distribution of the matrix and relative size of components 

and PCBs on performance of heuristics. 

The third problem set (Data set 3) is obtained from Tektronix Inc., Beaverton, 

Oregon. These are transformed from seven original PCB-component incidence 

matrices. They are solved using each heuristics and are later used in the 

sequencing problems. Table 4.7 summarizes their characteristics. 
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Table 4.7 Data Set 3 from industry 

DataSet 
A B C D E F G 

# of PCBs 437 458 281 744 620 608 843 
# of Components 695 625 547 796 769 712 826 
Minimum 0 0 0 0 0 0 0 
Mean 1.40 1.68 1.55 1.72 1.68 1.79 1.84 
Maximum 185 185 127 287 268 240 329 
Std. Dev. 6.00 7.20 6.01 8.22 8.07 8.22 9.11 

4.4.2 Computational Results and Analysis 

The mid-sized problems with known optimal solutions, were obtained from 

the literature, are applied on the Hungarian algorithm. An efficient program for the 

Hungarian algorithm was coded by Carpaneto and Toth [15] in Fortran and tested 

on problem size ranging from 50 to 200. The program is adapted and improved 

with study by Wright [79], and finally re-coded in Visual Basic 5.0. Note that the 

optimal solution values given by the Hungarian algorithm are solved as minimiza

tion problems. Therefore, the sign of the similarity values in the original data is 

changed because the double feeder assignment problem is to be solved as maximi

zation problem. For large-sized problems the optimal solutions are unknown, 

except those that meet the optimal criteria in section 4.3.3. The other heuristic 

algorithms are also coded in Visual Basic and tested on a Dell 300MHz with 64 

MB RAM in Microsoft Windows NT 4.0 operation system. 

For each data set, the optimal solution value solved by the Hungarian algo

rithm for asymmetric assignment problem (i.e., upper bound for symmetric assign

ment problem) is compared with the results from the other heuristics. The average 

solution times (in CPU seconds) are also reported. The results for Data set 1 are 

shown in Table 4.8. 
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Table 4.8 Computational results for the Data set 1 

Known	 Average CPU 
10-runs

Optimal Diff. CPU time 

Problem value 1 2 3 4 5 6 7 8 9 10 6% secs std.dev. 
* * *	 * * *Ll 305 * * * * 0 0.19 0.01 
* * * * * * *L2 475 * * * 0 0.50 0.01 

L3 626 * * * * * * * * * * 0 0.89 0.01 

L4 804	 * 0 1.48 0.03* * * * * * * * * 

L5 991 * * * * * * * * * * 0 2.13 0.02 

L6 1176 * * * * * * * * * * 0 2.79 0.02 

L7 1362	 * * * * * * * * * * . 0 4.08 0.02 
* * * * * * * * *L8 1552	 * . 0 5.25 0.06 

* : the same as optimal value
 
Each run solves rearranged matrix
 

The results show that the Hungarian algorithm finds the optimal solution in 

all 10 test runs. Each run solves the rearranged matrix. The average execution 

times are all within five CPU seconds. 

Since Data set 2 is produced by random number generator, there is no associ

ated incidence matrix. All heuristics are used except SWAP/USG. Each data set is 

re-arranged and repeatedly solved by the Integrated heuristic for five runs to search 

for the best solution. The results are shown in Appendix A.9 to A.13 with the 

optimal solutions boxed. It shows that the Hungarian algorithm optimally solved 

the symmetric assignment for all 18x18 problems, and up to the 200x200 problem. 

The Integrated heuristic dominates the solution quality for all data sets. The com

putation times are within 100 seconds. Figure 4.2a displays the number of best 

solutions found by each heuristics. Figure 4.2b shows those solutions that also can 

be verified as optimal solutions. 
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Figure 4.2 The number of (a) best solutions, and (b) optimal solutions found by 
each heuristics. 

Figure 4.2a shows that most of best solutions are found by the Integrated heu

ristic with five runs. In Figure 4.2b, most of the optimal solutions are also found by 

the Integrated heuristic, yet they are more difficult to be obtained as the spread of 

the data increases. Figure 4.3 displays the relationships among solution time, data 

size, data distribution, and heuristics. Note that the spread of the data sets increases 

from R 1 to R5 (see Table 4.6). 
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Figure 4.3 Dependency of computation time on data size, distribution, and 
heuristics. 

When the problem size is larger than 1000, the MMX becomes unacceptably 

slow (Figure 4.3b). Since SWAP/MMX (Figure 4.3d) requires MMX to construct 

initial solution, most of the computation time (over 97%) is spent on MMX. 

Although SWAP/RFA is the fastest heuristic, the solution quality is the poorest. 

These results are summarized below. 
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1.	 The Hungarian algorithm works well on small-sized problems, especially 

under 200x200. Figure 4.3a shows that it is the only one with a consis

tent pattern of computation time increasing with changes in data distribu

tion and problem size. 

2.	 The MMX is inefficient for large problems with many non-zero similarity 

values. The CPU time is dependent on problem size. 

3. The SWAP heuristic is efficient for double feeder problems. The initial 

assignment construction uses most of the CPU time. The problem size is 

the another factor that affects its efficiency. 

4.	 The Integrated heuristic has both high efficiency and solution quality for 

small and large size problems. The computation time is determined by 

the heuristic flow setup, data size and distribution. 

The computation efficiency is further investigated by fitting the CPU times 

into several possible formats including linear, exponential, polynomial, powered, 

and logarithmic. The powered format, shown below, can explain more than 98% of 

data variation based on the R-squared values. The parameters and R-squared 

values for each data sets are listed in Table 4.9. 

X
Y = a( ) Q , where Y = CPU time in seconds, X = data size (4.43) 

200 

Table 4.9 The fitted functions for Data set 2 

RI R2 R3 R4 R5
 

Heuristic a fi' R' a fl R2 a /3 R2 a /3 R2 a /3 R2
 

HA 0.49 1.75 0.99 0.89 1.46 0.99 1.26 1.38 0.99 1.10 1.55 0.99 1.73 1.39 0.99
 

SWAP/RFA 0.20 2.16 0.99 0.21 2.14 0.99 0.21 2.15 0.99 0.22 2.13 0.99 0.20 2.18 0.99
 

INTEG 0.50 2.05 0.98 0.83 1.78 0.98 1.18 1.61 0.99 1.18 1.60 0.99 1.71 1.50 0.99
 

MMX 2.88 3.04 1.00 2.84 3.03 1.00 2.83 3.03 1.00 2.83 3.03 1.00 2.83 3.03 1.00
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The relationships of data sets and parameters a and 13 for each heuristics are 

displayed in Figure 4.4. 

2.0 
HA + a 13 
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SWAP/RFA a -411 p 
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Figure 4.4 The relationships of data sets and fitted equation parameters a and /3 in 
each heuristic. 

Apparently, the fitted equations for SWAP/RFA and MMX are consistent in 

all data sets which means the independence of solution time to data distribution. In 

contrast, the equation parameters are significantly correlated to the data distribution 

in the Hungarian and the Integrated heuristics, confirming previous observations. 

Data set 3 are tested for 10 runs on all heuristics including SWAP/USG. The 

Integrated heuristic is configured such that after two consecutive loops without 

improvement, the reduction procedures will end and then use SWAP/MMX to fin

ish assignment. The CPLEX solver is used with priority if problem size can be 

reduced to its allowable limit. The results are shown in Appendix A.14. The 

boxed results represent the best solutions because the optimal values could not be 

verified. 
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Again the Integrated heuristic approach yields the greatest number of best 

solutions for all data sets, and the CPU times are all within 300 seconds. The 

similarity values from industry data are highly distributed compared to data sets 1 

and 2. The data averages are skewed to the left with long-tailed shape. This major 

difference makes the Hungarian algorithm requires more search loops for initial 

allocations and for distinct admissible cells (zeros) in each column and row. Table 

4.10 compares the actual solution times and the predicted values by using the fitted 

equation (4.43) with parameters a and Q from data set R5 in Table 4.9. 

Table 4.10 Comparisons of actual and predicted computation time for industry data 

Data set Data size HA predicted MMX predicted SWAP/RFA predicted INTEG predicted 
A 695 90.95 9.71 125.42 123.66 4.19 2.97 176.79 11.06 
B 625 60.42 8.38 90.46 89.62 3.32 2.36 103.66 9.44 
C 547 36.36 6.97 59.89 59.81 2.52 1.76 49.10 7.73 
D 796 144.21 11.72 187.68 186.64 5.56 3.99 236.60 13.56 
E 769 143.69 11.17 169.77 168.09 5.29 3.70 192.56 12.88 
F 712 93.51 10.04 134.20 133.07 4.48 3.13 150.26 11.47 

G 826 146.77 12.33 210.54 208.80 5.80 4.33 221.26 14.33 

Two conclusions can be drawn from the above results: 

1.	 The computation times by the MMX and SWAP/RFA heuristics are 

close to the predicted values. Thus, the efficiencies of these heuristics 

are mainly affected by data size. 

2. The results from the Hungarian algorithm do not fit well with the equa

tions at all. The confounding factor of data distribution has a higher 

effect than does data size. Since more than 50% of the computation 

time by the Integrated heuristic is spent on the reduction procedure, i.e., 

the Hungarian algorithm, the Integrated heuristic is also prone to be 

affected by data distribution. 
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Figure 4.5 displays the comparisons of the first reduction procedure between 

data sets 2 and 3 in terms of percentage of the solved symmetric assignments and 

similarity values. 
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Figure 4.5 The percentage of a) symmetric similarity values, and b) number of 
symmetric assignments, solved by the first reduction procedure. 

The figures show that the first reduction, or the Hungarian algorithm, solves about 

90% of symmetric similarity values for Data set 2, and about 80% for Data set 3. 

However, only 60% of total assignments in industry data is reduced compared to 

over 85% reduction in simulated data. The low reduction rate requires more search 

loops before using SWAP heuristic or CPLEX solver to solve the assignments. 

The SWAP heuristics with random and usage-based initial assignment 

require the least computation time to approach final solution. For large-sized 
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problems, they are more attractive than the Integrate or other heuristics, even 

though their solution qualities are not as good as the Integrated heuristics. 

4.5 Chapter Summary and Conclusions 

In this chapter, an integer programming model for multi-track feeder assign

ment is presented to solve the symmetric assignment problem. Heuristic algo

rithms are developed to solve large-scale problems due to the NP-complete 

property. 

The MMX heuristic is constructed with selected and sorted search methods to 

deal with the multi-track problem. To improve the MMX efficiency and solution 

quality, the SWAP heuristic is developed with an initial symmetric assignment, to 

compare assignments and to search for local optimum. It proves to be high effi 

cient if a high quality initial solution can be easily obtained. The Integrated heuris

tic is therefore designed to take advantage of the other methods to approach the best 

solution. Commercial solver is used whenever the problem size allows. The 

Hungarian algorithm is introduced to reduce the problem size by separating sym

metric and asymmetric assignments. The SWAP heuristic with MMX initial solu

tion then completes the assignment problem. 

The heuristics are applied to three data sets to evaluate their performance. 

Data set I from the OR-Library with known optimal solution values is used to ver

ify the coded programs and the efficiency of the Hungarian algorithm. It shows 

that both the algorithm efficiency and solution quality are quite good. Data set 2 is 

generated from random numbers with varied distribution parameters. The simu

lated data ranges from small to large problem sizes and has different spreads. Data 

set 3 is obtained from industry and used to evaluate the application of the devel

oped heuristics on real-world problems. 
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The following conclusions can be drawn from the analysis. 

1.	 The MMX heuristic is highly affected by data size and is not efficient for solv

ing large-scale problems. 

2. The Hungarian algorithm is efficient in reducing the problem size for large-

scale symmetric assignment problems. However, the data distribution signifi

cantly affects the algorithm's performance. 

3. The SWAP algorithm with an initial solution is the most efficient among all 

heuristics and is also independent of data distribution. The solution quality, 

however, is dependent on the quality of the initial assignment. 

4. The Integrated heuristic finds most of the best solutions with impressive effi

ciency. Because of using the Hungarian algorithm to reduce problem size, its 

efficiency is also affected by the data distribution. 

5. The industry data, because of their skewed distributions, require more solution 

time. 

The effect of data distribution and the relationship of similarity value with the 

PCB assembly setup will be further investigated in chapter 6 where the assignment 

problem is examined in combination with board sequencing problem. 
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CHAPTER 5	 PCB SEQUENCING PROBLEM WITH MULTI
TRACK FEEDERS 

This chapter discusses the PCB sequencing problem and its interaction with 

the multi-track feeder assignment problem. A component and board grouping 

methodology is developed to integrate with the component-to-feeder assignment 

method discussed in chapter 4. The sequencing procedure is based on the single 

feeder configuration. The performance is compared with past research due to a 

lack of studies related to double or multi-track feeders. The PCB sequence 

obtained from this methodology is further improved by an optimal tool switch plan 

called Keep Tool Needed Soonest or KTNS. This plan was designed to minimize 

the number of tool switches in flexible manufacturing systems. The tool switch is 

equivalent to the single feeder setup in this research. The KTNS plan is modified 

to work with component-to-feeder assignment and to apply to multi-track feeder 

problems. 

5.1 Methodology 

In the assignment problem, the component-to-component similarity matrix is 

used to assign similar components together. Also, a high similarity value usually 

reflects a group of PCBs that use the same components. This leads to the idea that 

if the PCBs can be grouped by similar components, then the feeder setup within the 

group can be minimized. In fact, in the PCB production environment, some boards 

require identical component types on the same machine but with different amounts 

or different placement positions. The layout and quantity of components will affect 

the processing times but not the feeder setup as long as the component types remain 

the same. Some small boards use components that are a subset of a large board. In 

this case, if the small boards can be grouped and sequenced, in any order, after the 

large board, then there will be no setup required. The above grouping methodology 
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can eliminate identical or possibly subset relationships between PCBs. The mini

mal setups can be approached by sequencing PCBs within and between groups. 

The methodology implemented in this research includes component grouping, PCB 

grouping, intra- and inter-group sequencing (IIGS), and feeder setup planning. 

A number of studies and methods have been developed for the application of 

group technology in different production environments, as summarized in Chapter 

3. Among these research, a tabular method developed by Su le [71] for machine 

grouping in cellular manufacturing, and used in component grouping and schedul

ing for sequencers [72], is adapted and modified to accomplish the grouping tasks 

in PCB sequencing. The PCB sequencing method IIGS is developed similar to 

[72], except the line-balancing problem is ignored. 

A tool switch plan called Keep Tools Needed Soonest or KTNS developed by 

Tang and Denardo [75,76] deals with job scheduling problem for a flexible manu

facturing machine. It has proved to be optimum for minimizing the number of tool 

switches for a specific job sequence. The KTNS policy is modified for solving the 

multi-track feeder problem and fine-tuning the PCB sequence obtained by IIGS 

procedure. The flowchart for the methodology is displayed in Figure 5.1. 

The notations used in this chapter are as follows: 

rn total number of PCB types; 

n total number of components; 

number of track of feeder; 

A (au),,, the PCB incidence matrix; 

ijth element of matrix A; au. 0 or 1; 

a,. ith row of matrix A; the required component types of PCB i; 

a jth column of matrix A; the usage of component j by PCBs; 
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Start 

Grouping components according to the 
similartiy values between components and 
the number of slots on the macine. 

Grouping PCBs according to the similarity 
values between PCB's requirement and the 
component group. The PCBs are grouped 
into the most similar component group. 

Select the largest component group, break 
ties with the largest PCB group, to start 
board sequencing. 

Intra-group segueing: 
Select the next PCB within group 

no 

yes 

no 

Inter-group sequecing: 
Select the next group for sequencing 

yes 

Feeder setup planning: 
Determine which feeder to be load/unload 

( Complete ) 

Figure 5.1 Methodology flowchart 
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P (13 ii)nxn, the component-component similarity matrix; 

pu ijth element of matrix P, similarity value between component i,j; 

all similarity values associated with component i; 

U threshold allowing a component to join a group, 0 S U 5_ 1; 

G,,(k) the kth entered component in group w; 

Giv[.] number of components in group w at that instant; 

maxSV maximal similarity value in P;
 

LSV largest similarity value in P at that instant;
 
G,..[1 

CRA[w] closeness ratio of component A with G,, = P AG(k) G.[];
k=1 

MCRB[wEt] maximal closeness ratio of component B with the entering group 
GWB, in which Gurs[] is less than the number of slots; 

MTV minimal threshold value = LSV x U; 

maxS maximal similarity value between PCB's required components and 

all component groups; 

Su the similarity value between the required components of PCB i 
and component group j in PCB grouping procedures; 

EG the entering group number; 

E1(k) current setup of component k, 1 if component k is on-line, 0 off
line, -1 on-line but not used by the remaining PCBs; 1; 

E2(k) planning setup of component k for next PCB, 1 if component k is 
on-line, 0 off-line, -1 on-line but not used by the remaining PCBs; 

KN number of components to be kept for the next PCB; 

sn number of slots a SMT machine is equipped; 

Bi The ith PCB in production sequence; 

RB; number of component types required by Ili; 

C(k) double assignment vector; component k is assigned with compo
nent C(k); n > k 1; 

or operator, for example 1 or 1 = 1; 1 or 0 = 1; 0 or 0 = O. 
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5.2 Component and PCB Grouping 

Using the tabular procedure developed by Su le [71,72], the components are 

grouped by their similarity values. The PCBs are then assigned to the closest group 

according to their requirements. There are several advantages of this tabular 

method, which this research can incorporate: 

1.	 Use of the component-to-component similarity matrix: The most 

similar components are assigned to either an existing group or a new 

group according to the closeness ratio to each group and a user-defined 

threshold value. In the assignment problem, the components are also 

assigned to the multi-track feeders by their similarity values. 

2.	 User-defined group size: The maximal group size and duplication of 

components in different groups are determined by users. An SMT 

machine has limited slot spaces for feeders, which is an implied 

restriction on the maximum number of components that can be 

installed on the machine at any instant. Therefore, it is necessary to 

control the number of components in a group to avoid exceeding the 

machine limits. 

3.	 Options for component duplication in different groups: The thresh

old value mentioned above is also used in determining duplication of 

components in different groups. Originally, it is designed for grouping 

machines, in which duplication of machines in different groups 

involves cost and space consideration. Changing the threshold value 

will also result in different number of groups. 

The grouping procedures are detailed in Appendix B.1. Figure 5.2 and 5.3 display 

the flowcharts for component and PCB grouping, respectively. 
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Figure 5.2 Component grouping procedures 
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Figure 5.3 PCB grouping procedures 
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In Figure 5.2, when a pair of components with the largest similarity value is 

selected from the component-to-component similarity matrix, there are four cases 

to be considered: both are already assigned to the same group, both are not assigned 

to any group, only one is assigned to a group, or both are already assigned to dif

ferent groups. The decision for case I is to ignore the current request and check for 

the next component since both components are already assigned together. Simi

larly, case 2 is straightforward - a new group is created for the two components. 

In case 3, the unassigned component certainly has to be taken care of, but the 

one that has already been assigned to a group also needs re-evaluation. The thresh

old U for allowing a component to join a group is weighted by the similarity value 

of both components to compare with the maximum closeness ratio of the unas

signed component. The closeness ratio evaluates the relationship of the unassigned 

component with an existing group using the sum of the similarity values to those 

group members divided by the group size. The group with the maximum closeness 

ratio becomes the entering group. However, the threshold parameter determines 

the acceptable minimum closeness ratio value. A high threshold value requires a 

component to have a very strong relationship with a group in order to join it, oth

erwise, a new group is preferred. The component that has been assigned is dupli

cated if a new group is created. 

Case 4 is more complicated because both components are already assigned, 

yet to different groups. Since the current selected pair of components has lower or 

equal relationship (or similarity value) than the previous pairs, the reassignment is 

not considered. The possible decisions that can be made are: ignore, create a new 

group, or assign one or both component(s) to the group(s) where the other one is 

assigned. Again, the threshold parameter plays a determining role in the decision. 

Closeness ratios for both components with the groups where the other one exists 

are calculated. Condition 2 in Figure 5.2 shows that a low threshold value is likely 

to assign the component with higher maximum closeness ratio to the group where 
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the other component is assigned. A high threshold value, on the other hand, will 

either ignore or duplicate both components by new assignments or creating a new 

group. 

In order to use this method effectively and correctly, it is necessary to review 

the background and objective of this development. This method was first devel

oped for grouping machines in cellular manufacturing [71]. There is a major con

cern of cost and space for duplicating machines in different groups. The number of 

groups is a big issue if transportation among cells has a high penalty, thus the use 

of a threshold value for controlling machine duplication and number of groups. It 

is understood that in PCB assembly problems, cost and space considerations are not 

necessary at the grouping stage since the results of interest are the component and 

PCB groups which are not related to cost or facility space. It is also known that a 

commonly used component tends to appear in many component groups. Therefore, 

duplication of components in different groups is permitted. However, the number 

of groups is still an uncertain factor to the PCB sequence problem. Different 

threshold levels are used to form different PCB groups to evaluate their perform

ance on the PCB sequencing problem. 

5.2.1 Example Illustration 

Throughout this chapter, an example from [72] is used to verify and illustrate 

the methodology. This example has 45 PCB types using a total 20 component 

types. Each PCB uses no more than seven component types; thus it is suitable in a 

case of SMT machine with seven single feeder slots. The PCB and component 

incidence matrix is listed in Appendix B.2, and the associated component-to-com

ponent similarity matrix is in Appendix B.3. The optimal component to double-

feeder assignment obtained by using the Hungarian algorithm is shown in Appen

dix B.4. 
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The threshold value U is set to 0.8 and the maximum group size is limited to 

seven components. The first 10 iterations are listed in Table 5.1 to illustrate the 

method, followed by the description of some important iterations and calculations 

in Table 5.2. 

Table 5.1 Tabular method for the first 10 iterations 

current group status 
Iteration LSV Case Decision G, G2 G3 G4 G5
 

1 1,5=7 2 create a new group 1,5
 

2 2,5=7 3 assign 2 to G/ 1,5,2
 ,
3 7,8=7	 2 create a new group 7,8 

,, it4 6,12=6	 2 create a new group 6,12 
If	 If

5 8,9=6	 3 assign 9 to G2 7,8,9 
/I .fl II

6 8,10=6 3 create a new group 10,8
 
It ,, ,
7 8,11=6	 3 assign 11 to G2 7,8,9,11 
If I. A.

8 8,14=6 3 assign 14 to G4 10,8,14
 
9 11,14=6 4 assign 11 to G4, y 7,8,9,11, ,, 10,8,14,
 

assign 14 to G2 14 11
 
/I II /1 If10 14,16=6 3 create a new group 14,16
 

LSV = largest similarity value
 

Iteration 1.	 The largest similarity value in the similarity matrix (from top-right 

to bottom-left; see Appendix B.3) is p15 = 7. Thus maxSV, as well as 

current LSV, is set to 7. The first group, denoted GI, is created. 

Iteration 2.	 The next LSV is p25 = 7 and case 3 is applied because component 5 

is already in GI and component 2 has not been assigned. The 

maximum closeness ratio of component 2 is 6, larger than the mini

mum threshold value of 5.6. Therefore component 2 is assigned to 

Gt. 

Iteration 3. p78 = 7 is the next selected pair and case 2 is applied since both 

components are not assigned to any group. A new a-roup G2 is cre

ated for component 7 and 8. 
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Iteration 4.	 P6,12 = 6 is selected and case 2 is applied. A new group G3 is created 

because both components are not assigned to any group yet. 

Iteration 5.	 p89 = 6 is the selected pair and case 3 is applied. The entering com

ponent 9 has maximal closeness ratio with G2. The relationship is 

significant and larger than the minimum threshold value so that it is 

assigned to group 2. 

Iteration 6.	 P8,10 = 6, and case 3 is applied. The entering component 10 has 

maximal closeness ratio with G2, however the relationship is too 

weak to join group 2. A new group is created. 

Iteration 7.	 p8,11 = 6, and case 3 is applied. The entering component 11 has 

maximum closeness ratio 5.33 with G2 and is greater than MTV. 

Component 11 is assigned to G. 

Iteration 8.	 P8,14 = 6, and case 3 is applied. The entering component 14 has 

maximum closeness ratio 5.5 with G4 and is larger than MTV. 

Component 14 is assigned to G4. 

Iteration 9.	 P11,14 = 6, and case 4 is applied because both components are already 

assigned to different groups. First, the closeness ratio for duplicat

ing one component and including it in the others' group is checked. 

It turns out that the MCR is not strong enough to duplicate and 

assign one component to the other. However, their closeness ratios 

are quite close to the threshold and to each other; thus both compo

nents are duplicated and assigned to each other's group. 

Iteration 10.	 The maximal closeness ratio for entering component 16 is not 

greater than MTV so a new group is created. 
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Table 5.2 Calculation illustrating for component grouping 

(Iteration 2) entering component: 2
 
MTV= 7 x 0.8 = 5.6
 

G1 member Similarity value P21
 
1 P12 5
 
5 P25 = 7
 

total 
closeness 
ratio (CR) 

2 

12/2 = 6 

12 

G1 

(Iteration 5) entering component: 9 
MTV= 6 x 0.8 = 4.8 

P9, G2 P91 G3 P91 

1 3 7 4 6 5 
5 4 8 6 12 4 
2 5 

total 3 12 2 10 2 9 
closeness 
ratio (CR) 

12/3 =4 <MTV 10/2 = 5 > MTV 9/2 = 4.5 < MTh' 

action MCR=5, assign 9 to G2 

(Iteration 6) entering component: 10 
MTV= 6 x 0.8 = 4.8 

P101 G2 P101 G3 P101 

1 3 7 3 6 4 
5 3 8 6 12 3 
2 2 9 5 

total 3 8 3 14 2 7 

closeness 
ratio (CR) 

8/3 = 2.67 < MTV 14/3 = 4.67 < MTV 7/2 = 3.5 <MTV 

action MCR=4.67, create new group G4 for 10, 8 

(Iteration 7) entering component: II 
M7V= 6 x 0.8 = 4.8 

G1 plii G2 pill G3 plii G4 plii 
1 3 7 4 6 4 8 6 

5 5 8 6 12 4 10 I 
2 3 9 5 

total 3 11 3 16 2 8 2 7 

closeness 
ratio (CR) 

11/3 = 3.67 16/3 = 5.33>MTV 8/2 = 4 7/2 = 3.5 

action MCR=5.33, assign 11 to G2 
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Table 5.2 Calculation illustrating for component grouping (continued) 

(Iteration 8) entering component: 14 
MTV= 6 x 0.8= 4.8 

G1 P141 G2 P141 G3 pl4j G4 P14) 

1 0 7 3 6 4 8 6 
5 4 8 6 12 4 10 5 
2 0 9 1 

11 6 
total 3 4 4 16 2 8 2 11 

closeness 
ratio (CR) 

4/3 = 1.33 16/4 = 4 8/2 = 4 11/2 = 5.5 >MTV 

action MCR=5.5, assign 14 to G4 

(Iteration 9) entering component: 11,14 
MTV = 6 x 0.8 = 4.8, maxSVXU/2=7x0.8/2=2.8 

G1 G2 p14j G3 G4 plii 
1 7 3 6 8 6 
5 8 6 12 10 1 

2 9 1 14 6 
11 6 

total 3 4 16 2 3 13 

closeness 
ratio (CR) 

16/4 = 4 1313 = 4.33< MTV 

action MCR[4] = 4.33 < MTV 
MCRA=4 > maxSVxU/2 
MCRB=4.3 > tnurSVxU/2 
I MCRA - MCRB I = 0.3 < MTVI2 
Assign 11 to G4 and 12 to G2 

(Iteration 10) entering component: 16 
MTV= 6 x 0.8 = 4.8 

GI P161 T G2 P161 G3 P161 G4 ploi 
1 0 7 1 6 0 8 2 

5 3 8 2 12 3 10 3 

2 1 9 4 14 6 
11 4 11 4 
14 6 

total 3 4 5 17 2 3 4 15 

closeness 
ratio (CR) 

413 = 1.33 17/5 = 3.4 3/2 =1.5 1514 = 3.75< MTV 

action MCRr.ti = 3.75 < MTV 
create a new orb Gs for 14, 16 
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The PCB grouping procedure is also straightforward. Each board is assigned 

to the most similar group by comparing the required components and each compo

nent group. For example, comparing PCB 1 requirements of components {1,2,3,5} 

to all component groups, it turns out that group 1 has them all, and therefore PCB 1 

is assigned to group 1. The final component and PCB groups are listed in Table 

5.3. 

Table 5.3 Component and PCB groups 

Com onent ou PCB ou 

1 ) 1 5 2 8 9 3 4 1) 1 2 12 31 45 
2) 7 8 9 11 14 5 6 2) 3 20 27 40 
3) 6 12 4 7 5 8 1 3) 4 16 17 22 38 
4) 10 8 14 11 9 6 12 4) 19 32 
5) 16 14 11 5 10 12 17 5) 6 15 30 
6) 18 9 17 15 16 5 11 6) 8 10 13 21 23 29 35 42 
7) 13 11 12 4 5 9 7) 9 11 25 28 33 34 37 39 
8) 15 10 1445 67 8) 5 7 14 24 26 36 43 44 
9) 20 17 19 9) 18 41 

5.2.2 Discussion 

Notice that in the above example, PCB 38 requires identical components as 

PCB 4, and both boards are assigned to group 3. This is not surprising since identi

cal boards will be grouped in the same manner. Another case is where the compo

nent requirements for a board are a subset for another board. For example, the 

components required by PCB 19, 6,7,8,9,10}, are a subset of requirement of PCB 

5, {4,6,7,8,9,14 Ideally, these two PCBs should be grouped together. However, 

they are not assigned to the same group in this example. This can happen since the 

method groups PCBs according to component similarity matrix rather than board 

similarity matrix. Although this method can not guarantee that PCBs with subset 

relationships can be assigned to the same group, it is more useful to integrate with 
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multi-track feeder assignment because both methods are constructed based on the 

same similarity matrix. 

Now, the question is the effect of threshold value on grouping results. 

Appendix B.5 lists five sets of components and PCB groups obtained by setting dif

ferent threshold values ranging between 0 to 1. The results show that a higher 

threshold value tends to create more groups but with fewer components. Notice 

that PCB 5 and 19 are grouped together in group sets 4 and 5. However, no set 

with U less than 0.5 can group them together. This is because components must 

have very strong relationships to pass high threshold for being grouped together. 

Whether or not two PCBs with subset relationship can be assigned to the same 

group depends on the relationships of the non-common components. In this proce

dure, a high threshold value will discourage the non-common components of the 

two PCBs to be duplicated in other groups. 

Appendix B.5 also shows that the number of groups in set 5 is almost three 

times larger than sets with threshold value less than 0.5. Two extreme cases that 

one can imagine are: either one group containing all PCBs or each group containing 

only one PCB. Both these cases are not desired in PCB sequencing. Therefore the 

component group size is limited based on machine capacity while connections or 

similarities between groups are anticipated. The PCB groups in Appendix B.5 will 

be tested later for determining an appropriate threshold level. 

5.3 Intra and Inter-Group Sequencing Method (JIGS) 

The PCB sequencing problem becomes straightforward after the grouping 

stage is accomplished. The boards within a group are likely to use similar compo

nents. Sequencing boards within a group by board similarity should result in a 

minimal setup. Also, choosing the group closest to the current machine setup as 

the next production group will minimize the inter-group setups. 
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5.3.1 Sequencing Procedure 

In this sequencing method, it is suggested that the largest component group 

with fewer boards be used to initiate the sequence. The associated component 

group becomes the initial components to be installed on the machine. The board 

with the most common components to the current setup on the machine is first 

selected. Ties are broken by choosing the one with least non-common components. 

The components that have the least usage by the remaining boards within that 

group are replaced for the next PCB assembly. The subsequent boards follow the 

same selection criteria until all boards within that group are assembled. The next 

PCB group is selected in a similar way as if the remaining groups are individual 

board types. The intra- and inter-group sequencing procedures are repeated until 

all PCBs are scheduled. Figure 5.4 displays the flowchart for the IIGS sequencing 

procedure. 

5.3.2 Example Illustration 

The group Set 1 in Appendix B.5 is used in this example and duplicated in 

Table 5.4. Note that the threshold value, U, is zero and the maximum component 

group size is seven. The complete PCB sequence by IIGS and the single feeder 

setup plan is listed in Appendix B.6. 

Table 5.4 Component and PCB groups (duplicated from Appendix B.6, Set 1) 

Component Group PCB Group 

1 ) 1 5 2 8 9 7 11 1) 1 4 9 11 12 14 20 25 28 34 38 45 
2) 7 8 9 10 11 14 16 2) 3 6 15 19 27 30 36 40 
3) 6 12 4 7 9 18 13 3) 5 16 21 32 33 37 39 43 
4) 17 18 3 4 5 8 6 4) 2 17 22 24 31 
5) 5 9 10 14 18 16 20 5) 7 8 10 13 18 23 26 29 35 41 42 
6) 19 14 6) 44 
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(
 Initial Setup:
 
Start Select a board group with largest number of 

sequencing components, break ties with smallest number 
of boards 

current setup = selected component group 

Intra-group sequencing: 
Select the board in the group that has the 
most common components with the current 
setup, break ties with the least non-common 
components 

Update the current setup: 
1. Load the required component no 
2. Unload the unnecessary components with 
the least usage in the remaining boards 

Are all PCBs in this 
group sequenced ? 

yes 

Complete
 
sequencing 

yes
 

no 

Inter-group sequencing: 
Select the next PCB (component) group that 
has the most common components with the 
current setup, break ties with the least non-
common components. 

Figure 5.4 IIGS PCB sequencing procedures 
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Component group 4 is selected as the first group due to maximum number of 

components and least number of PCBs in this group. The components in group 4, 

{17,18,3,4,5,8,6), are installed as the initial machine setup. Two boards in group 4 

are closest to this setup, PCB 2 and 24. Due to the order of programming, PCB 24 

is selected as the first board. Notice that PCB 24 requires component 14 which is 

not installed in current setup. This requires a machine stop for a feeder setup. The 

stop downtime depends on the degree of machine automation. Some machines 

need manual update of feeder information after setup, while advanced machines 

update database automatically at the time of the setup. If no feeder setup is 

required, the machine can virtually operate without interruption, or require just 

minimum adjustments such as changing conveyor width if board sizes are different. 

For component 14 is to be installed on the machine, one component must be 

unloaded from the machine. Su le [72] suggested unloading the components that 

are not required by the current board and have least usage by the remaining boards 

within the group. Components 3, 4, and 8 are not used by PCB 24. Among them, 

component 8 is used by two other boards while components 3 and 4 are needed by 

three and four boards, respectively. Thus, component 8 is taken off of the line and 

replaced by component 14. 

The next board to be assembled is PCB 2 since it is the most common board 

to the current setup. Component 17 is unloaded from the machine since it is no 

longer needed by the remaining boards, and is then replaced by component 2. The 

remaining boards in group 4 are sequenced in the same manner. 

After PCB 17, the last board in group 4, PCB group 1 is selected for next 

production due to its highest similarity to the current setup. The intra-group 

sequencing is repeated. The total number of feeder setups is 66, and 41 machine 

stops are required if no other machine preparation is needed. 
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5.3.3 Discussion 

The JIGS method sequences PCBs for minimal setups within and between 

groups. The procedures are simple, straightforward, and efficient. The component/ 

feeder setup is also planned. However, an optimal switch policy, referred to as 

Keep Tool Needed Soonest policy, will now be used to further improve the 

sequence plan. 

5.4 Optimal Component Switch Plan - KTNS 

In 1988, Tang and Denardo [75,761 developed a tool change policy called 

Keep Tool Needed Soonest (KTNS) to minimize the number of tool switches for a 

flexible manufacturing machine. Models and proof of optimality are not duplicated 

in this research. This policy is described in terms of this research objective as fol

lows: 

1.	 At any instant, components can be installed on to a machine only if 

they are required by the next PCB. 

2.	 If one or more components have to be installed and no extra space is 

available, the currently on-line components will be kept in the order of 

soonest need. 

5.4.1 KTNS Procedure 

The KTNS policy is not used to find the optimal PCB sequence but to plan 

for the optimal component switches for a specific sequence. The flowchart of 

KTNS procedure and pseudo-code are displayed in Figure 5.5 and Appendix B.7, 

and described as follows: 
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Step 0. Initialization: Denote i as the sequence index, i = 1, and E1(k) the 

current status of component k, 1 is on-line, 0 is off-line, and -1 is on

line but not used by the remaining sequenced boards. Similarly, 

E7(k) represents the component status for the next sequenced PCB. 

Before starting the assembly, assume that all components are 

installed on the machine initially without concerning with the slot 

space. Therefore E1(.) for all k are initially set to 1. 

Step 1. Keep the components required by the next PCB: If there is no 

PCB left then the procedure is completed. The components that are 

required by the first sequenced board (B1) are kept at this stage, thus 

E7() is set as the same board incidence vector a from the inci

dence matrix. The number of components to be kept, KN, besides 

the next board required components, RB,, is the number of available 

slot spaces, sn, minus RB1. If B, is the last PCB, the situation is dif

ferent and there is a plan for last PCB (go to Step 5). If B, is not the 

last PCB and the next PCB needs all slot spaces (KN = 0), then go to 

Step 6 for feeder setup plan. If the next PCB does not use all slot 

spaces (KN > 0), then go to Step 2 and search the components 

needed soonest. 

Step 2. Keep the components needed soonest: If B, is not the last PCB, 

then starting from B,+1 those components are kept which are cur

rently on-line but not on the list of next setup based on the urgency 

of need. Every time a component is kept, KN is decreased by one. 

The search is repeated until either KN = 0 (go to Step 6) or the last 

PCB is encountered (go to Step 3). 
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(Start Step 0 Initialization: Set PCB sequence number, i = I. Set
 
KTNS) the current component status, E1(.) =1.
 

)Complete)
yes 

KTNS 
In: number of PCBs 

no 

Step I Keep the components required by the next PCB: Set the compnent 
status for the next PCB, E2(.), as the next PCB incidence vector. The 
number of components to be ketp, KN = sn - RB1. 

sn: number of slots 
RB,: requirement of PCB B, 

Step 2 Keep the components needed soonest: Search in the remaining 
PCBs for the needed soonest components k that are currently on-line but not 
required by the next PCB. Set E2(k) = 1, KN = KN -1 when one is found. 
The search continues until the last PCB or KN =O. 

k =1 to n, n: number of components 

no 

yes	 Step 3 Early installation of the components needed soonest: Search in the 
remaining PCBs for the needed soonest components k that are not currently 
on-line and not required by the next PCB. Set E2(k) = 1, KN = KN -1 when 
one is found. The seach continues until the last PCB or KN=O. 

Step 4 Plan for excessive on-line components: Keep or unload all 
yes 

excessive on-line components depends on production policies. No action is 
required. KN = 0 

Step S Plan for the last PCB: Keep all on-line components. No action is 
required. 

Step 6 Plan for feeder setup and reset the current component status: For 
all components k, if E1(k) = 0 and E,(k)=1 then a feeder setup for component 
k is required, If E1(k)=1 and E,(k)=0 then the feeder with component k is 
removed from the machine. Set El() = E2 (.). 

Figure 5.5 KTNS procedures for single feeder configuration 
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Step 3. Early installation of the components needed soonest: Occasion

ally, especially near the end of production, some components that 

are currently on-line are no longer used by the remaining boards; 

thus there is no reason to keep them. On the other hand, some other 

components that are not currently on-line may be required by subse

quent boards but not the next board. If KN is not zero after Step 2, it 

means that there are empty slots where the components can be 

installed for future use. This early installation of components will 

not increase the number of setups because the components will be 

needed eventually. The selection of components for early installa

tion is also based on the rule of needed soonest. The search is again 

repeated until either KN = 0 (go to Step 6) or the last PCB is encoun

tered (go to Step 4). 

Step 4. Plan for excessive components: A more extreme case for KN being 

not zero is that the current setup can be used to process the remain

ing boards. Depending on production policies, these components can 

be either left on the machine or unloaded from the machine. In this 

research, those components that are not required by the remaining 

boards are marked as 1 and not counted as setups. This step 

ensures that KN is zero. Go to Step 6. 

Step 5. Plan for the last PCB: No extra action is needed to setup for the 

last PCB as long as the required components are on-line. For com

putation purposes, these on-line components are kept whether they 

are used or not. 

Step 6. Plan for feeder setup and reset the current component status: 

The component status E1() and E-)() is compared. A feeder setup is 

required if Ei(k) = 0 and E2(k) = 1, and component k is removed 
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from the machine if Ei(k) = 1 and E2(k) = 0. E2(.) is assigned to 

E1(.). Set i = i + I for next sequenced PCB and repeat Step I. 

5.4.2 Modified KTNS for Multi-track feeder Configuration 

The KTNS policy is modified to plan for multi-track feeder systems. The 

flowchart and pseudo-code of modified KTNS for double feeder case is displayed 

in Figure 5.6 and Appendix B.8, respectively. 

The procedures for modified. KTNS are similar to the original policy except 

the components that are assigned to the same feeder are loaded or unloaded at the 

same time. Notice that sn* = sn x r, and the requirement of RBI* is calculated as 

RBis = 13k or agx(k)) 
k=1 

The rules of keeping components follow the order below: 

1.	 The components required by the next PCB and the components that are 

assigned to the same feeders. 

2.	 The components that are needed soonest and the components that are 

assigned to the same feeders. 

3.	 If there are empty slots, the components that are needed soonest and 

the components that are assigned to the same feeders can be installed 

prior to production. 

4.	 If there are empty slots and the current setup can be used for the 

remaining assemblies, the components can be either kept on machine 

or removed from machine depending on the production policies. 
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Start Step 0 Initialization: Set PCB sequence number, i = I. Set
 
KTNS,) 

-10 
the current component status, E1(.) =1.
 

(Complete'\
i = i + 1 yes 

KTNS 

Step 1 Keep the components required by the next PCB and the 
components that are assigned to the same feeders: Set the compnent 
status for the next PCB, E2(.)= aBi.k 

The number of componentsor aBi,C(k)
 
to be ketp, KN = sr!. - R13 i*
 

Step 2 Keep the components needed soonest and the components that 
are assigned to the same feeders: Search in the remaining PCBs for the 
needed soonest components k that are currently on-line but not required by 
the next PCB. Set E2(k) and E2(C(k)) to 1, KN = KN -2 when one is found. 
The search continues until the last PCB or KN =O. 

yes Step 3 Early installation of the components needed soonest and the 
components that are assigned to the same feeders: Search in the 
remaining PCBs for the needed soonest components k that are not currently 
on-line and not required by the next PCB. Set E2(k) and E2(C(k)) to 1, KN = 
KN -2 when one is found. The seach continues until the last PCB or KN=O. 

yes 

Step 4 Plan for excessive on-line components: Keep or unload all 
excessive on-line components depends on production policies. No action is 
required. KN = 0 

Step 5 Plan for the last PCB: Keep all on-line components. No action is 
required. 

Step 6 Plan for feeder setup and reset the current component status: For 
all components k, k < C(k), if Et(k) = 0 and E.,(k)=1 then the feeder with 
component k and C(k) is loaded, If E1(k) =l and E,(k)=0 then the feeder with 
component k and C(k) is removed from the machine. Set E1(.) = E, (.) 

Figure 5.6 Modified KTNS procedures for double-feeder systems. 
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5.5 Application illustration 

The PCB sequence obtained from previous section is used to demonstrate the 

implementation of KTNS and the modified KTNS policies. The complete compo

nent switch plans for single and double feeder cases are listed in Appendix B.9 and 

B.10. 

5.5.1 Single Feeder Setup Plan 

Initialization: 

Let E1(.) be initially set to 1 for all k. The components that are required by 

PCB 24 are first kept. E-,(.) is set as the same value as the vector a24. from the inci

dence matrix. 

Keep the components needed soonest: 

Iteration 1. KN = sn RBI = 7 5 = 2, only two components can be kept from 

El. As shown in Table 5.5, component 2 and 3 used by PCB 2 are 

needed soonest components because E1(2) = E1(3) = 1 and not used 

in PCB 24. Therefore the starting setup is {2,3,5,6,14,17,181. 

Iteration 2. In this iteration, two components are to be kept and the needed 

soonest components are 14 and 18 used by PCB 17 and 35, respec

tively. 

Iteration 3. PCB 22 requires components 1,3,4,5, and 7. This leaves two com

ponents to be kept. Component 14 and 2 used by PCB 17 and 34 are 

kept for being needed soonest. 

Iteration 45. For the last iteration, the on-line components are kept. 
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Table 5.5 Illustration of KTNS procedure 

(iteration 1) components 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

El 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

E2 1 1 1 1 1 1 1 

24 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(iteration 2) components 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

E1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 
E, 1 1 1 1 1 1 1 

2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

34 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

25 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

28 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

28 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

4 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
45 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 

ti 

(iteration 3) components 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

E1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

E, 1 1 1 1 1 1 1 

22 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 

34 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 

(iteration 45) components 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

El 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 

E, 1 1 1 1 1 

44 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 
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5.5.2 Double-Feeder Setup Plan 

The optimal component to double-feeder assignment is: 1(1,5) (2,9) (3,4) 

(6,12) (7,8) (10,15) (11,13) (14,16) (17,18) (19,20)} 

Initialization: 

EI() are set to 1 just like in the previous example. The components required 

by PCB 24 are first kept. The value in E7() for a,,t. and the associated components 

assigned to the same feeders are set to 1. 

Keep the components needed soonest: 

The number of components that can be kept is calculated as: 

sn = sn x 2 = 14, and, 
20 

RBI = y, (a,4k or C174c(4)) 8= 
k=1 

Thus, KN = sn* RBI* = 14 8 = 6 

Iteration 1. Six components can be kept from El. As shown in Table 5.6, com

ponent 2, 3 and 4 used by PCB 2 are selected because they are 

needed soonest. Component 9 is kept because it is assigned with 

component 2. Component 7 and component 8 used by PCB 22 and 

PCB 31 respectively are also needed soonest. Notice that they are 

also assigned to the same feeder. 

Iteration 2.	 Components 2, 3, 4, 5, and 6 enter the setup list for being used by 

PCB 2. Their associated assigned components 1, 9, and 12 also 

enter the setup list. Six more components can be kept from El 

Components 7 and 8, which are both needed soonest and assigned to 

the same feeder, enter the setup first, followed by components 14 

and 16, which are also in the same feeder. Component 18 is kept for 

needed soonest along with 17, its assigned component. 
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Table 5.6 Illustration of modified KTNS procedure on double feeder case 

(iteration 0 ) components 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

E2 I* 1 1 1* 1 1* 1 1 

24 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 

*: the components that are assigned to the same double feeder 

(iteration 1) components 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

E1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

E, 
24 

/ 
0 

1 

0 
1 

0 
1 

0 
1 

1 

1 

1 

1 

0 

1 

0 

I* 
0 0 0 

1 

0 0 

1 1 

0 

1 1 

0 

2 0 1 1 1 1 1 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 

22 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

11 

(iteration 2) components 
8 9 10 11 12 13 14 15 16 17 18 19 20 

El 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 

E, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 

34 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 

25 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 

28 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 

28 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 

4 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

45 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 

11 
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5.6 Evaluation of the Methodology 

The methods developed are evaluated using the research data and the industry 

data presented in chapter 4. The first set of evaluation experiments uses the previ

ous example to illustrate the effect of the threshold value on the results. The 

threshold value is known to form different PCB groups and is suspected to affect 

the final results. The five sets formed by different threshold values in Appendix 

B.5 are evaluated by the integration method developed so far. The evaluation is 

based on a seven -slot machine with double feeder option. The second evaluation is 

performed on the industry data set. Both evaluations are tested on a Dell 300MHz 

PC with 64 MB RAM with Microsoft NT 4.0 operation system. The method com

binations used for effect estimations are: 

MI. IIGS sequence without KTNS policy (IIGS),
 

M2. Random Board Sequence with KTNS policy (RBS/KTNS),
 

M3. JIGS sequence with KTNS policy ( IIGS/KTNS),
 

M4. IIGS sequence with modified KTNS and Optimal Feeder Assignment
 

(LEGS/OFA DBLKTNS), 

M5. Random board sequence with modified KTNS and optimal assignment 

(RBS/OFA DBLKTNS), 

M6. IIGS sequence with modified KTNS but Random Feeder Assignment 

(IIGS /RFA DBLKTNS), and 

M7. Random sequence and assignment with modified KTNS (RBS/RFA 

DBLKTNS) 

The main and interaction effects and interactions of the evaluated method 

combinations are summarized in Table 5.7. Ten random PCB sequences and 

double feeder assignments are generated to be used in random cases. 
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Table 5.7 Main and interaction effects of evaluated methods 

Method IIGS KTNS MKTNS OFA Main effect 
2-way 

interactions 
3-way 

interactions 

MI IIGS 
M2 KTNS 

M3 
IIGS, 
KTNS 

IIGS*KTNS 

M4 
JIGS, 
MKTNS, 
OFA 

IIGS*MKTNS, 
IIGS*OFA, 
MKTNS*OFA 

IIGS*MKTNS* 
OFA 

M5 
MKTNS, 
OFA 

MKTNS *OFA 

M6 
IIGS, 
MKTNS 

IIGS *MKTNS 

M7 MKTNS 

MKTNS: Modified KTNS 

It is impossible to estimate the main effects for KTNS and IIGS methods 

because there is no baseline or worst case to be compared with. Furthermore, the 

integration effect of both methods involves two-way interactions. Therefore, 

comparing the main effects alone is meaningless. Table 5.8 lists the comparisons 

that can be interpreted from Table 5.7. 

Table 5.8 Interpretation of comparisons from evaluation 

Effect Comparison Interpretation 
E 1 M3 M 1 Improvement made by KTNS based on IIGS 
E2 M3 M2 Improvement made by IIGS based on KTNS 
E3 M7 M6 Improvement made by IIGS based on MKTNS 
E4 M7 M5 Improvement made by OFA based on MKTNS 
E5 M2 M7 Effects of Double vs. Single feeder based on KTNS 
E6 M2 M5 Effects of Double vs. Single feeder based on OFA/KTNS 
E7 M3 M4 Effects of Double vs. Single feeder based on OFA/KTNS /IIGS 
ES M7 M4 Effects of integration of OFA and IIGS based on MKTNS 
E9 M2 M4 Best vs. Worst production capability 



104 

5.6.1 Evaluation on Example Data 

Since M2, M5, and M7 use random PCB sequences, they will not be affected 

by threshold values and their results are separated from the other four methods. 

The complete results are given in Appendix B.11. 

With this example, there is no conclusive evidence that the threshold level 

has a correlation with the final results, except that the computation time using IIGS 

method decreases as the threshold value increases. Figure 5.7 shows the results of 

feeder setups and required machine stops in relation to method and threshold val

ues. It can be observed that the effect of variation for each method is insignificant 

for different threshold levels and that the method effects are similar for all 

threshold values. Thus, the confounding effect of threshold level can be 

eliminated. The numerical results are summarized in Table 5.9. 

150 

0
 

method 
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Figure 5.7 Evaluation results 
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Table 5.9 Results from example data 

Summarized results 
method feeder machine 

combination setups stops 
M1 69.4 40.8 
M2 114.6 42.1 

M3 64.4 39.0 
.M4 17.4 15.8 

M5 30.1 24.8 
M6 22.5 19.4 

M7 38.2 29.9 

% reduction in 
Effect Comparison setups stops 

E 1 M1 -M3 7.2 4.4 
E2 M2-M3 43.8 7.4 
E3 M7-M6 41.0 35.3 
E4 M7-M5 21.2 17.1 

E5 M2-M7 66.7 29.0 
E6 M2-M5 73.7 41.1 
E7 M3-M4 73.0 59.5 
E8 M7-M4 54.5 47.2 
E9 M2-M4 84.8 62.5 

By comparing M1 and M3 (El), the effect of the KTNS is estimated to 

improve the component switch plan developed by Sule, approximately 7% for 

feeder setup and 4% for reduction in machine stops. On the other hand, the effect 

of JIGS method for single feeder system, based on KTNS policy and estimated by 

comparing M2 and M3 (E2), results in reductions of 44% and 7% in setup and 

machine stops, respectively. This indicates that the improvement made by HGS 

method is more substantial than the KTNS policy. 

The use of JIGS with modified KTNS policy (E3) results in a reduction of 

about 41% in feeder setups and 35% in required machine stops. This result shows 

that IIGS significantly reduces machine stops in the double-feeder system; 

however, the setup reduction rate is the same as in the single feeder system. 
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Comparison of M5 and M7 (E4) shows that the optimal feeder assignment 

with modified KTNS policy explains 21.2 %© of feeder setups and 17.1% of machine 

stops reduction. 

The effect of double-feeder with KTNS (ES) significantly reduces setups 

(67%) and stops (29%). By applying optimal assignment (E6), an additional 

reduction of 7% in setups and 12% in stops is achieved. Although the magnitude 

of setup reduction is not affected by applying HGS method (E7), the overall stops 

are dramatically decreased, an additional reduction of 18%. 

Impressively, the integration of optimal component-to-feeder assignment and 

IIGS sequencing method (E8) results in over half of feeder setup reductions and 

machine stops. Effect E9 shows that a company utilizing this plan can be expected 

to outperform its opponents who do not have the multi-track feeder capability with 

85% reduction on feeder setups and 63% on machine stops. 

5.6.2 Evaluation Using Industry Data 

The seven data sets from industry in chapter 4 are used to evaluate the per

formance of the methodology described here. The number of slots is 150. Ten sets 

of random board sequences and random component-to-feeder assignments are gen

erated for each random case. Since threshold value has no significant effect on 

feeder setups and machine stops, the threshold is set to 0.5 for component and PCB 

grouping. Table 5.10 summarizes the results; details are given in Appendix B.12. 

The results show that the use of sequencing methods E2 and E3 is more 

effective with industry data. Comparing double-feeder and single-feeder setups 

(E9), the results are consistent for both data sets with about 85% feeder setup and 

62% machine stop reduction. The major differences with the industry data sets 

include: 
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Table 5.10 Results from example data (section 5.6.1) and industry data sets 

% reduction in % reduction in 
feeder setup machine stop 

Effect example industry example industry 
El Improvement by KTNS based on IIGS 7.2 47.1 4.4 22.0 
E2 Improvement by IIGS based on KTNS 43.8 60.1 7.4 46.7 
E3 Improvement by JIGS based on MKTNS 41.0 58.7 35.3 48.5 
E4 Improvement by OFA w/ MKTNS 21.2 59.4 17.1 23.4 

E5 Double w/ MKTNS vs. Single w/ KTNS 66.7 37.0 29.0 8.1 

E6 Double w/ OFAJMKTNS vs. Single w/ KTNS 73.7 74.4 41.1 29.6 
E7 Double w/OFA/MKTNS/IIGS vs. Single w/KTNS 73.0 66.0 59.5 28.9 

E8 Integration of OFA and IIGS w/ MKTNS 54.5 78.5 47.2 58.8 
E9 Best vs. Worst production capability 84.8 86.5 62.5 62.1 

1.	 The KTNS policy works more effectively with industrial cases (El). The 

effects are augmented because a large amount of components and PCB 

types are involved. 

2.	 The IIGS method significantly reduces the machine stops in the single-

feeder case (E2). As expected, IIGS groups PCB by component simi

larities, and sequences PCBs according to the board similarity within and 

between groups. The results are also augmented by the problem size and 

component and PCB characteristics. 

3.	 Although the use of double feeders with KTNS policy contributes 37% 

to feeder setup reduction (ES), the effect is only half of the outcome with 

the example case. Notice that the double feeder assignment (E4) helps to 

recover the loss. The effect of the double-feeder integrated with assign

ment method are close for both cases, within 10%. 
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5.7 Chapter Summary and Conclusions 

This chapter presented a methodology that integrates the grouping proce

dures, intra- and inter-group sequencing procedures, and KTNS policy to approach 

a PCB sequence and a feeder setup plan so that the feeder setups can be signifi

cantly reduced. It also describes the changes made to this procedure for solving the 

multi-track feeder assignment and the sequencing problem. 

A published data set was used to verify the methodology and investigate dif

ferent solution alternatives. Several industry data sets were also used to test the 

performance of the methodology. The following conclusions are drawn from this 

chapter: 

1.	 The evaluation results show that the integrated methodology reduces not 

only the feeder setup but also the required machine stops significantly. 

2	 The threshold value that determines the component and PCB groups has 

no significant effect on final results in terms of feeder setups or machine 

stops. The final results are dependent on the methods applied and also on 

the interaction of each component. 

3. The effect of each method is dependent on the problem size, representing 

the number of components and PCB types, and interaction with other 

factors. 

4.	 The efficiency of the integrated methodology also depends on the prob

lem size. The industry data sets are all solved within acceptable CPU 

times ranging from 116 seconds to 888 seconds for PCB types ranging 

from 281 to 843 and component types ranging from 548 to 826. 
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6.1 

CHAPTER 6 EXPERIMENTATION AND ANALYSIS 

As shown in the previous chapters, the performance of heuristic algorithms is 

affected by the data distribution and the interaction of the component to feeder 

assignment and board sequencing problems. This chapter details an experiment 

designed to investigate the effects of these confounding factors on machine setup. 

The experiment starts with an analysis of industry data. After understanding 

data characteristics, a random number generator is developed to generate experi

mental data sets. A simulation experiment is conducted to evaluate the data and 

statistical analyses are performed to identify significant effects. 

Industry Data Analysis 

In order to fully understand the performance of the methodology in different 

production environments, the industry data set is thoroughly analyzed. First, the 

PCB and component incidence matrix is separated into two sections: the PCB 

requirement, and component usage frequency. The PCB requirement (REQ) is the 

total number of component types required for a PCB assembly and equals the sum 

in the incidence matrix rows. The component usage frequency (USG) is the total 

number of PCBs that need a particular component type and is the sum of the matrix 

columns. The description of the industry data set is given in Table 6.1. Notice that 

each component type is used by at least one PCB, and each PCB needs at least one 

component type. Table 6.1 shows that, on average, each component type is needed 

by 25 PCBs, and each PCB requires about 32 components. Another measure is the 

matrix density, which is the sum of the incidence matrix (or total number of 1 's) 

divided by the product of number of rows and columns. The USG and REQ histo

grams for industry data C are shown in Figure 6.1. It can be seen that the distribu

tions of both histograms are skewed to the left. 
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Table 6.1 Industry data set descriptions 

Data Set 

A B C D E F G average 
PCBs ( nt ) 437 458 281 744 620 608 843 570 
Components ( n ) 695 625 547 796 769 712 826 710 
density % ( d ) 4.6 4.8 6.2 3.9 4.3 4.4 3.8 4.6 
minimum USG 1 1 1 1 1 1 1 1 

mean USG 20.2 21.9 17.5 28.7 26.8 26.5 31.7 24.8 
maximum USG 218 229 148 350 315 289 396 277.9 
std. dev. USG 35.2 37.8 27.3 54.0 49.7 47.6 60.8 44.6 
minimum REQ 1 1 1 1 1 1 1 1 

mean REQ 32.1 29.9 34.1 30.7 33.3 31.0 31.0 31.7 
maximum REQ 144 106 106 145 . 144 111 146 128.9 

std. dev. REQ 24.2 25.2 25.1 24.9 24.8 25.3 25.1 24.9 

density: (total number of l's in incidence matrix) / (mxn) 
USG: component usage frequency 
REQ: PCB requirement 
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Figure 6.1 The component usage and board requirement histograms for Data C 

Because of the direct connection to the component-to-component similarity 

matrix used in multi-track feeder assignment and component grouping, variations 

in USG and REQ may contribute to the differences between the example data and 

industry data in Chapter 5. Further analysis requires more data with different 
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distributions. To provide for additional variability and variety, simulated data are 

created by a random number generator for use in the experiment. 

6.2 Description of the Simulation Data 

The simulation data used in this experimentation are generated by a random 

number generator. With control over the distribution parameters, the data sets 

cover extreme cases so that the methodology can be evaluated. The four extreme 

cases evaluated are: 

EHH: High USG and REQ variations 

EHL: High USG variation and Low REQ variation 

ELH: Low USG variation and High REQ variation 

ELL: Low USG and REQ variations 

6.2.1 Random Number Generator for Incidence Matrix 

The random number generator is constructed so that both the USG and REQ 

frequency distribution parameters can be controlled. The inputs include: 

1. problem size, 

2. matrix density, 

3. minimum USG and REQ, 

4. mean USG and REQ. 

5. maximum USG and REQ, 

6. standard deviation of USG and REQ, and 

7. random number seed. 
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An exponential random number generator is used to generate random numbers for 

both USG and REQ frequency distributions because of the similar distribution 

shapes (Figure 6.1). The equation used is: 

.1)* = ax log(0) +,u (6.1) 

where 0 E (0, 1] is uniformly distributed random number generated by the system, 

and ,u and ci are input mean and standard deviation. 415* is the generated random 

number; this is further filtered for minimum and maximum restrictions. One row 

and one column vector of random numbers are generated for USG and REQ 

frequency distributions separately. These two frequency vectors are adjusted to 

meet input density value and then used to construct the incidence matrix. Notice 

that in equation (6.1) if the input is zero, all generated random numbers will be 

constant and equal to ,u. This means an equal probability of component types to be 

used by PCBs and vice versa. 

6.2.2 Experiment Data Configurations 

The experiment data are generated based on the same data size so that the 

size effect can be ruled out. Data density is set to the typical industry level and 

fixed. Industry data C (see Table 6.1) is chosen as the control set to compare with 

the simulation data sets. The first data set, EMM, simulates the industry data C to 

verify that the random number generator works as expected. Then two sets of four 

extreme cases are generated with different random seeds. The configurations of the 

experimentation data sets are listed in Table 6.2. The maximum of REQ frequency 

is controlled under 150. which is the number of slots. Both USG and REQ means 

are set to the same value as in data C. 
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Table 6.2 Experimentation data set descriptions 

USG REQ 

Exp# m / density min max mean stdev. min max mean stdev. 

Data C 281 548 0.0622 1 148 17.48 27.1 1 106 34.09 24.1 

EMM I 281 548 0.0622 1 147 17.48 27.5 1 107 34.09 22.5 

EHH I 281 548 0.0622 1 131 17.48 30.7 1 141 34.09 43.5 
EHL1 281 548 0.0622 1 115 17.48 30.3 34 36 34.09 0.29 

ELH1 281 548 0.0622 17 20 I 7.48 0.66 1 136 34.09 41.9 

ELL I 281 548 0.0622 17 21 17.48 0.66 34 36 34.09 0.29 

EMM2 281 548 0.0622 1 167 17.48 27.4 2 107 34.09 22.1 

EHH2 281 548 0.0622 I 118 17.48 30.1 1 139 34.09 41.2 

EHL2 281 548 0.0622 1 188 17.48 32.4 34 35 34.09 0.28 

ELH2 281 548 0.0622 17 21 17.48 0.69 1 144 34.09 41.5 

ELL2 281 548 0.0622 17 21 17.48 0.68 34 36 34.09 0.28 

The key parameters are the USG and REQ standard deviations. The high 

level is set to a large number and the low level to zero. The actual standard devia

tions are determined by the random numbers and the input means. The actual USG 

and REQ minimum and maximum values are dependent on the actual standard 

deviations and the input minimum and maximum values. The USG and REQ 

histograms for EMM are shown in Figure 6.2 whose distributions are close to the 

industry data. Figure 6.3 displays an illustration of histograms for the extreme case 

EHL. The data scatter plots are shown in Figure 6.4 for visual comparison. 

In Figure 6.4, each dark spot represents the use of a component by a PCB. 

Figure 6.4a shows vertical patterns in data C, which means that some components 

are commonly used by many PCBs. It also shows horizontal patterns meaning that 

some PCBs use lots of components. Figure 6.4c shows strong patterns both ways, 

which means that the design and requirements of these PCBs are similar. Because 

the data density is fixed, if there exists some frequently used components, then 

there must be some rarely used ones to balance the average. Figure 6.4d and 6.4e 

verify that the high variation of USG and REQ contributes to the vertical and hori

zontal patterns, respectively. Figure 6.4f shows no pattern at all with a random 

distribution of components among PCBs. 
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Figure 6.2 The USG and REQ histograms for industry simulated data EMM. 
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Figure 6.3 Example of high deviation USG and low deviation REQ (EHL). 
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6.3 

Component 

a) Industry data C b) EMM 

c) EHH d) ELH 

e) EHL f) ELL 

Figure 6.4 Visual comparisons of industry data and simulation data 

Experiment Design and Results 

The four factors that are considered in this experimentation are: 

(A)Component usage variation, 

(B) PCB requirement variation, 

(C) PCB sequence, and 

(D) Component to multi-track feeder assignment. 
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A 24 full factorial experiment is designed to investigate the main effects of 

these four factors and their interactions on the number of feeder setup and the solu

tion time (CPU times) for feeder setup planning. Since the number of machine 

stops is dependent on feeder setup, it is excluded from the analysis. The two 

simulated data sets provide replication with more degrees of freedom. The experi

ment design is summarized in Table 6.3. The results are given in Appendix C.1. 

Table 6.3 Summary of 24 factorial design 

Number of experimental factors 4 Factors Low Value High Value 
Number of blocks 2 (A) USG stdev. low (-1) high (+1) 
Number of responses 2 (B) REQ stdev. low (-1) high (+1) 
Number of runs 32 (C) Sequence RBS (-1) IIGS (+1) 
Error degrees of freedom ?() (D) Assignment RFA (-1) OFA (+1) 
Randomized No RBS: random board sequence 

IIGS: intra- and inter-group sequence 
RFA: random feeder assignment 
OFA: optimal or best feeder assignment 

6.3.1 Experiment Results 

Based on the plots of residuals versus predicted values, data for CPU time 

satisfies the assumptions of normality and equality of variance. The residual plot 

of feeder setup shows a normality problem, thus requiring data transformation. A 

log transformation is used; Figure 6.5 shows the residual plots of feeder setup 

before and after the data transformation. 
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Figure 6.5 Data transformation for Feeder setup 

6.3.2 Analysis of Effects on Feeder Setup 

The analysis starts with full model since the interaction effects are expected. 

The analysis of variance on four-way interaction shows that the interaction ABCD 

is insignificant for both responses. The three way interaction ANOVA for trans

formed data log(Feeder setup) is shown in Appendix C.2. 

The ANOVA shows the effect ABD is significant at 99% confidence level 

along with AB, AC, and CD interactions. The main effect B, the PCB requirement 

variation, shows no significant effect on the response. The adjusted R-squared 

statistic indicates that the 3-way full model explains 99.2% of data variability in 

log(Feeder setup). In the reduced model, all the insignificant effects are dropped. 

The three way interaction ABD turns out to be insignificant (P-value = 0.023). 

Another reduced model which drops the ABD effect shows the effect AB to be 

borderline (P-value = 0.01). The backward selection stepwise regression method is 

then used to remove insignificant effects at 99% confidence level. The selection 

steps are shown in Appendix C.3. The final model, displayed in Table 6.4, shows 

the PCB requirement variation removed from the model along with its interactions. 

The interaction terms that are significant among the three main effects are AC and 
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CD. The adjusted R-squared value indicates that the fitted model explains 98.06% 

of the data variability. 

Table 6.4 Final fitted model for log(Feeder setup). 

Parameter Estimate Standard Error T Statistic P-Value 
CONSTANT 5.63435 0.0276124 204.051 0.0000 
A:USG stdev. -0.59261 0.0276124 -21.4616 0.0000 
C:Sequence -0.70812 0.0276124 -25.6448 0.0000 
D:Assignment -0.24797 0.0276124 -8.98041 0.0000 
AC 0.51488 0.0276124 18.6468 0.0000 
CD 0.14302 0.0276124 5.17959 0.0000 

Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 38.389 5 7.67781 314.69 0.0000 

Residual 0.63436 26 0.02440 
Total(Corr.) 39.0234 31 

R-squared = 98.37% R-squared (adjusted for d.f.) = 98.06% 

The cube plot in Figure 6.6a shows the estimated log(Feeder setup) at 

selected combinations of USG stdev., Sequence, and Assignment with the other 

factors being held constant. It shows that the lowest log(Feeder setup) value, 4.74, 

occurs at the combination of high USG stdev., IIGS, and optimal feeder assign

ment. The main effect plot in Figure 6.6b shows that the IIGS and KTNS policy 

has the most significant effect which reduces (e6.34 e4 93)/e6.34, i.e. 75.6%, of feeder 

setups from random sequence case. The component to feeder assignment solution 

alone contributes about 40% of feeder setup reduction. Notice that the difference 

of feeder setups between productions with low and high variation USG is 70%. The 

interaction AC in Figure 6.6c shows that the sequencing methodology would 

reduce significant feeder setups (91%) in a production of uniform component usage 

compared to 32% of reduction in a highly distributed usage production. 

http:93)/e6.34
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Figure 6.6 a) Cube plot, b) main effect plot, and c) interaction plot of Assignment, 
USG stdev., and Sequence for log(Feeder setup). 
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6.3.3 Analysis of Effects on Solution Times 

The solution time is analyzed using the same procedure as feeder setups. 

Appendix C.4 lists the ANOVA for CPU times, and shows several significant two 

and three way interactions. The ANOVA of reduced model in Appendix C.5 drops 

all the insignificant effects in the full model and shows the interactions that are still 

significant. 

The model explains 95.8% of data variability and can not be further reduced. 

The backward selection stepwise regression displayed in Appendix C.6 identifies 

the significant effects again at 99% confidence level with the final fitted regression 

model shown in Table 6.5. The main effect and interaction plots are displayed in 

Figure 6.7. 

Table 6.5 Backward selection stepwise regression for CPU times. 

Parameter Estimate Standard Error T Statistic P-Value 
CONSTANT 143.906 2.04345 70.4231 0.0000 
A:USG stdev. 16.2188 2.04345 7.93694 0.0000 
B:REQ stdev. 9.78125 2.04345 4.78663 0.0001 
C:Sequence 30.2813 2.04345 14.8187 0.0000 
D;Assignment -14.7188 2.04345 -7.20289 0.0000 
AC -28.0313 2.04345 -13.7176 0.0000 
AD 6.59375 2.04345 3.22677 0.0039 
BD 6.40625 2.04345 3.13502 0.0048 
ABC -8.28125 2.04345 -4.05258 0.0005 
ACD -11.6563 2.04345 -5.70420 0.0000 

Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 82145.0 9 9127.23 68.31 0.0000 
Residual 2939.69 22 133.622 
Total(Corr.) 85084.7 31 

R-squared = 96.545 percent R-squared (adjusted for d.f.) = 95.1316 percent 
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Figure 6.7 a) main effect plot, h) interaction plot of all factors for CPU times. 

It can be concluded from the results that the algorithm efficiency is affected 

by the main effects and their interactions. Figure 6.7a shows that the developed 

algorithms are more efficient in productions with low usage and requirement varia

tions. Application of IIGS and KTNS policies requires more search loops and, 

consequently, more computer time. Notice that the assignment effect plays an 

important role in facilitating an algorithm's efficiency. An optimal or best compo

nent to multi-track feeder assignment can speed up setup planning about 20%. 

Figure 6.7b shows AC to be an important interaction effect on solution times. The 

random PCB sequence in a uniform component usage production (A-, C-) can be 

easily solved; however, the resulting solution is the worst (see Figure 6.6c). The 

other two interactions, AD and BD, basically follow the main effect D that planned 
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assignment will make the setup planning more efficient. The three way interactions 

ABC and ACD are display in cube plots in Figure 6.8 with the fourth factor held at 

its center value. 

(a) D=0 204.0z 
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C D 
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A 
-154.3 
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Figure 6.8 Cube plot of interaction a) ABC, and b) ACD for CPU times 

Figure 6.8a shows that the CPU times are the lowest at (A-, C-, B-) and the 

highest at (A-, C+, B+). Figure 6.8b indicates that the lowest CPU time occurs at 

(A-, C-, D+) and the highest at (A-, C+, D-). Notice that these results are 

consistent with the two-way interaction AC. In the KTNS policy, the components 

to be kept on the machine are chosen in the order of requirements, needed soonest, 

and early installation to fill in the empty slots. It requires more time if there are 

many search loops that need to be explored for all three stages. The reason why the 

CPU times of random sequence (C-) and assignments with high similarity values 

(D+) for ELH and ELL (A-) are lower than EHH and EHL cases is that the compo

nent to be kept can be more easily found if the component is commonly used in dif

ferent PCBs. Therefore most of search loops may finish before stage 2. In 

contrast, a large portion of search loops with IIGS sequence (C+) cases go through 

all stages and require more search times. 
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6.4 Evaluation of Algorithm Combinations 

The simulation data sets are also used to investigate the performance of dif

ferent combinations of algorithms. The PCB sequence obtained by IIGS is com

pared to random sequence. The component-to-feeder assignment methods include: 

1. Assignment with minimum similarity value (MIN) 

2. Random assignment (RFA) 

3. Usage-based assignment (USG) 

4. Min Max (MMX) 

5. SWAP with random feeder assignment (SWRFA) 

6. SWAP with usage-based assignment (SWUSG) 

7. SWAP with Min Max assignment (SWMMX) 

8. Integrated assignment (INTEG) 

The assignment results for the simulation data are summarized in Table 6.6. 

The SWAP and INTEG heuristics find most of the best solutions. The similarity 

value by usage-based assignment decreases along with the variations of component 

usage and board requirement. The results for both sets of data are similar and the 

results of the second set of data are illustrated in Figures 6.9 and 6.10. 

Table 6.6 Similarity values of each assignment 

Data set MIN RFA USG MMX SWRFA SWUSG SWMMX INTEG 
C 0 876 3522 6402 6394 6342 6448 6516* 
EMM I 0 1054 8622 9218 9308* 9304 9274 9258 
EHH I 0 1714 8994 9230 9252 9274* 9254 9258 
EHL I 0 896 8890 9366 9414* 9404 9414* 9410 
ELH I 0 1552 3492 9274 9316* 9300 9302 9308 
ELL I 0 528 1486 9472* 9472* 9472* 9472* 9472* 
EMM2 0 906 8708 9178 9212 9298* 9278 9234 
EHH2 0 1502 8972 9278 9260 9298 9298 9302* 
EHL2 0 650 8856 9282 9296 9296 9294 9298* 
ELH2 0 1328 3502 9240 9292 9286 9302* 9284 
ELL2 0 592 1558 9414 9416* 9416* 9416* 9416* 

*: best solution 
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The analyses of results are summarized as follows: 

1.	 Assignments with high similarity values (MMX, SWRFA, SWUSG, 

SWMMX, and INTEG) all have the same, or very close, number of 

feeder setups. The best assignment solutions usually have the minimal 

feeder setups but not for every case. 

2. The usage-based assignment is the worst choice in ELH and ELL cases if 

PCB boards are randomly sequenced. Since all components are used in 

similar frequency, assigning components with the same or close usage 

frequency is not better (in fact, may be worse) than a random assignment. 

3. As shown by the experiment results, the effect of the 11GS and KTNS 

policy significantly reduces the feeder setups in ELH and ELL cases 

(Figure 6.9c and 6.9d), and is robust for different production environ

ments. The differences of feeder setups between IIGS and random 

sequence are close in EHH and EHL cases with assignments of high 

similarity values. 

4. The usage-based (USG) and SWAP with USG initial solution (SWUSG) 

assignment methods yield close results for both planned and random PCB 

sequences in EHH and EHL cases (Figure 6.9a and 6.9b). However, the 

differences are immense in ELH and ELL cases (Figure 6.9c and 6.9d). 

Both methods are currently used in industry. 

5. The results of the industry data C are shown in Figure 6.11. Compared 

with Figure 6.9 and 6.10, the pattern of the results is similar between 

EHH and EHL cases. A review of Table 6.2 shows that the USG stdev. 

of Data C is close to EHH and EHL, and the REQ stdev. is between EHH 

and EHL. This proves that the simulation data works well. 
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2. The usage-based, or SWAP/USG, assignment works well in a high varia

tion USG production even without proper PCB sequence. However, if 

the components are used uniformly by different PCBs, the usage-based 

assignment becomes the worst choice. 

3. The effect of the developed sequencing method and feeder setup planning 

policy is more significant than the assignment method. This indicates 

that the PCB sequence is more important than the component to multi

track feeder assignment. 

4. The efficiency of the application is affected by the variations of USG and 

REQ. However, the problem size effect is more significant than USG and 

REQ variations. 
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7.1 

CHAPTER 7 SUMMARY AND CONCLUSIONS
 

This final chapter summarizes the research work and its contributions. The 

limitations of the developed methodology are also discussed. Finally, some poten

tial topics for extension of this research are suggested. 

Summary of the Dissertation 

The multi-track feeder setup management becomes a challenging issue in a 

low-volume, high-mix production environment. The benefit of increasing the 

capacity of SMT machines is diminished if components are not properly assigned 

to multi-track feeders. The feeder setup problem is analyzed and decomposed into 

two sub-problems: the component to multi-track feeder assignment problem and 

the PCB sequencing problem. However, the interrelationship of these two sub

problems shows that no optimal solutions exist separately. 

A detailed review of published literature helped identify characteristics of the 

two sub-problems. Each sub-problem belongs to the NP-complete class, which 

suggests the difficulty for solving such problems increase as problem size grows. 

An optimization model for assignment problem is formulated with applica

tions on a commercial mixed integer-programming solver. Several heuristic algo

rithms are also developed to overcome the limitations and difficulties of applying 

the integer-programming model. Data sets from literature and industry combined 

with the randomly generated data are used to verify, analyze, and evaluate the 

performance and solution quality of the heuristics. 

The PCB sequencing sub-problem is solved in three stages: component and 

PCB grouping, intra-group and inter-group sequencing, and feeder setup planning. 

Methods from published literatures are adapted to solve this problem. The devel
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oped methodologies for each sub-problem are then integrated for the final solution. 

Again, data sets from literature and industry are used to verify and evaluate the 

developed methods. 

Finally, the industrial data are carefully analyzed for factors that may cause 

performance variation in use of the developed methods in different production 

environments. A random number generator is developed to simulate characteristics 

of industrial data and to generate experimental data sets with more variability and 

variety. Experimentation is designed and carried out to investigate the effects of 

pertinent factors on simulation results. 

7.2 Conclusions 

Multi-track feeder setup reduction for a low volume, high mix production 

environment involves consideration of component-to-feeder assignment and PCB 

sequencing problems. Interrelationship between these two problems is investigated 

and described in this research along with the following conclusions: 

1.	 The component to multi-track feeder assignment is identified as a multi-

dimension symmetric assignment, and can be formulated as an integer 

programming model with the objective of maximizing the total sum of 

similarity values of the assignment. The application of the optimization 

model may be limited with large-sized problems due to computational 

resources. 

2.	 The construction of similarity matrix is an obstacle to solve large-sized 

problems. It is more difficult to obtain and handle the similarity matrix 

for multi-dimension symmetric assignment. Most of the CPU time and 

memory are consumed at this stage. 



131 

3. The greedy search algorithm can be used for solving the multi-dimension 

symmetric assignment problem. The solution quality is the lowest com

pared to the other heuristics and the efficiency is affected by size of 

similarity matrix. 

4. The neighborhood search with an initial solution set is also designed to 

solve multi-dimension symmetric assignment problems. The solution 

quality depends on the initial solution, and the efficiency is dependent of 

the number of feeder tracks. 

5.	 The Hungarian algorithm, originally used to solve asymmetric assignment 

problem, can be utilized to reduce the initial problem size for double-

feeder assignment (two-dimension symmetric assignment). The perform

ance of the Hungarian algorithm is significantly affected by the distribu

tion of the similarity matrix. 

6.	 For distributed component usage frequency cases, the number of multi

track feeder setups decreases as the similarity value of assignment 

increases. For uniform component usage cases, the usage-based assign

ment method is worst if PCBs are randomly sequenced. 

7. PCB sequence has a more significant effect on multi-track feeder setup 

reduction than the component to feeder assignment, especially when the 

component usage frequency is uniform. 

8.	 It can reduce 85% of feeder setups for a production that updates from 

single feeder to double feeder system with the implementation of the 

developed methodology. 

9. The efficiency of the developed methodology is affected by the variations 

of component usage and PCB requirement. 
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The methodologies developed in this research can be applied in different 

areas. Symmetric assignment is a commonly encountered problem. There is still a 

need for efficient algorithm to solve large-sized problems. The largest problem 

size tested in this research is 2000x2000, which requires 1,999,000 non-zero deci

sion variables and 2000 constraints for the IP model. The solution times are within 

70 seconds and the solution quality is within 0.01% to the upper bound value. 

Although the proposed methods are prone to be affected by the distribution of 

similarity matrix, it is still efficient for problems within the size range evaluated. 

The limitations for this research application can be summarized as follows: 

1.	 The problem size reduction procedure implemented in the integrated 

assignment heuristic is limited to the double-feeder case because the 

Hungarian algorithm can only solve two dimensional assignment prob

lems. 

2.	 This research is developed based on single machine case with unlimited 

feeder and component resource. Thus, it can not be directly applied on 

a multiple assembly lines problem or limited resource case. 

7.3 Suggestions for Future Research 

This research is the first study focused on the relationship between multi

track feeder assignment and PCB sequencing. Some assumptions made in this 

research can be relaxed for other situations. The objective of this research is to 

minimize the feeder setup in a low volume and high mixed production; this can be 

altered for other considerations. The following suggestions provide some possi

bilities and directions for future research: 
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7.3.1 Integration with Component Placement Sequence Problem 

The sequence of component placement is known to be a major contributor to 

processing time. In a production that requires consideration of process times, in 

addition to setup times, the component to multi-track feeder assignment used here 

may create a potential conflict to both objectives because the adjacent placement 

components could be assigned to two feeders far apart. 

Feeder or board latency is not considered in this research since process time 

is not as critical as setup time in a low volume, high mix production environment. 

Components are assigned only according to their similarity values. If the compo

nent placement sequences can be determined in advance of batch production, then 

the components can be assigned by their similarity values and the frequency of 

adjacent sequencing. However, the biggest challenge encountered in this new 

situation may be the identification of placement sequences. 

Another suggestion to solve the component placement sequence problem is to 

develop placement sequences before applying grouping procedures. Components 

that can be sequenced adjacently are grouped in families and assigned to feeders 

according to their similarity values within families. The placement sequences are 

then planned based on this assignment and the sequence families. 

7.3.2 Integration with Feeder Allocation Problem 

As mentioned in chapter 3, the process time can be reduced if components (in 

single-feeder system) are allocated as close as possible to minimize the total dis

tance of feeder movement. This requires reallocation of feeders between two 

assemblies, which may be in conflict with the objective of minimizing setups by 

keeping the feeders in their current locations. 
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The allocation of multi-track feeders to carriage slots is more complicated 

than in single feeder systems because components are already assigned to feeders 

and fixed. If this problem can be integrated with the extension suggested in the 

previous section and the two problems can be solved simultaneously, the resulting 

solution may be more effective. 

7.3.3 Application in Limited Resource Case 

In the limited resource case, some rarely used components or special feeders 

are shared among different machines or assembly lines. Once these components 

are not needed in the next assembly, they are unloaded and installed on different 

machines. The frequently used and high inventory components can be kept on the 

machines until they are no longer used. Therefore, the slot spaces may at times be 

not fully utilized due to limited feeders or components. 

The PCB sequencing methodology developed in this research assumes that 

the carriage slots are always occupied and the components or feeders can be left on 

the machine even they are not needed. The KTNS policy and the modified version 

for multi-track feeder system are also based on the same assumption. 

A suggestion for the limited resource case is to group the components or 

feeders by their usage or inventory levels, and then determine whether they should 

be shared among machines or not. In this way, some frequently used feeders and 

components are fixed on the machines and some are configurable and shared 

among machines. It will require more effort to adapt the methodologies developed 

in this research to the limited resource case because both assignment and feeder 

setup planning methods need to be modified. 
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7.3.4 Integration with Workload Balancing Problem 

For a production with multiple assembly lines, workload balancing is impor

tant and necessary to eliminate production bottlenecks and maximize throughput. 

Assessment of process times and setup times for each PCB batch are needed before 

the balancing process, which is also a NP-complete problem. 

The methodologies developed in this research are all based on the single 

machine case. This research can not be directly applied to the line balancing case 

since different combination of PCBs results in different sequences, process times, 

and setup times. By involving multi-track feeders, the dynamic characteristic of 

the line balancing problem becomes more complicated. 
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A.1 AMPL Model for Double Feeder Assignment Problem 

param N > 0; # number of parts
 
param Pt i in 1. .N-1 ,j in i+1. .N} ;
 

var X{i in 1..N- I, j in i + 1..N} binary; # the assignment apart i and j 
minimize T:
 
sum {i in 1..N-1, j in i+1..N) P[i,j1 * X[i,j];
 

subject to row {i in 1..N):
 
sum {j in 1..N:j<>i} (if j>i then X[i,j] else X[j,i1) = 1;
 

A.2 AMPL Data for Double Feeder Assignment Problem 

param N:=10;
 
param P: 1 2 3 4 5 6 7 8 9 10 := 

1 . -2 0 -2 -2 -2 -1 -2 -2 1 

2 . . -1 -4 -3 -2 -3 -3 -3 1 

3 . . . -1 0 0 -1 0 0 1 

4 . -2 -2 -4 -2 -2 1 

5 -1 -1 -2 -2 1 

6 -2 -2 -2 1 

7 -1 -1 1 

8 -3 1 

9 

10 
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A.3 Triple Symmetric Similarity Matrix for Sample Data 

1 2 3 0 2 5 9 2 

1 2 4 1 2 6 7 1 

1 2 5 2 2 6 8 2 

1 2 6 1 2 6 9 2 

1 2 7 0 2 7 8 1 

1 2 8 2 2 7 9 1 

1 2 9 2 2 8 9 3 

1 3 4 0 3 4 5 0 

1 3 5 0 3 4 6 0 

1 3 6 0 3 4 7 1 

1 3 7 0 3 4 8 0 

1 3 8 0 3 4 9 0 

1 3 9 0 3 5 6 0 

1 4 5 1 3 5 7 0 

1 4 6 1 3 5 8 0 

1 4 7 1 3 5 9 0 

1 4 8 1 3 6 7 0 

1 4 9 1 3 6 8 0 

1 5 6 1 3 6 9 0 

1 5 7 0 3 7 8 0 

1 5 8 2 3 7 9 0 

1 5 9 2 3 8 9 0 

1 6 7 1 4 5 6 0 

1 6 8 1 4 5 7 1 

1 6 9 1 4 5 8 1 

1 7 8 0 4 5 9 1 

1 7 9 0 4 6 7 2 

1 8 9 2 4 6 8 1 

2 3 4 1 4 6 9 1 

2 3 5 0 4 7 8 1 

2 3 6 0 4 7 9 1 

2 3 7 1 4 8 9 2 

2 3 8 0 5 6 7 0 

2 3 9 0 5 6 8 1 

2 4 5 2 5 6 9 1 

2 4 6 1 5 7 8 0 

2 4 7 3 5 7 9 0 

2 4 8 2 5 8 9 2 

2 4 9 2 6 7 8 1 

2 5 6 1 6 7 9 1 

2 5 7 1 6 8 9 2 

5 8 2 7 8 9 
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A.4 AMPL Model for Triple Feeder Assignment Problem 

param N > 0; # number of parts <=12 (N mod 3=0)
 
param P {i in 1..N-2 ,j in i+1..N-1, k in j+1..N);
 
var X(i in 1..N-2 ,j in i+1..N-1, k in j+1..N) binary; # of the
 

assignment of part i and j and k
 

maximize T:
 
sum (i in 1..N-2,j in 1+1..N-1,k in j+1..N) P[i,j,k)*X[i,j,k];
 

subject to row(i in 1..N}:
 
sum (j in 1..N,k in j+1..N: j<>i and k< >i}
 

(if (i<j and j<k) then X[i,j,k] else
 
(if (k<j and j<i) then X[k,j,i) else
 
(if (j<i and i<k) then X[j,i,k) else
 
(if (j<k and k<i) then X[j,k,i1 else
 
(if (k<i and i<j) then X[k,i,j) else X[i,k,j) ))))) = 1;
 

A.5 AMPL Data for Triple Feeder Assignment Problem 

param N:=9; 
param P:= 
[1,*,*] 2 3 0 2 4 1 2 5 2 2 6 1 2 7 0 2 8 2 2 9 2 3 4 0 3 5 0 

3 6 0 3 7 0 3 8 0 3 9 0 4 5 1 4 6 1 4 7 1 4 8 1 4 9 1 

5 6 1 5 7 0 5 8 2 5 9 2 6 7 1 6 8 1 6 9 1 7 8 0 7 9 0 

8 9 2 

[2,*,*] 3 4 1 3 5 0 3 6 0 3 7 1 3 8 0 3 9 0 4 5 2 4 6 1 4 7 3 

4 8 2 4 9 2 5 6 1 5 7 1 5 8 2 5 9 2 6 7 1 6 8 2 6 9 2 

7 8 1 7 9 1 8 9 3 

[3,*,*] 4 5 0 4 6 0 4 7 1 4 8 0 4 9 0 5 6 0 5 7 0 5 8 0 5 9 0 

6 7 0 6 8 0 6 9 0 7 8 0 7 9 0 8 9 0 

(4,*,*] 5 6 0 5 7 1 5 8 1 5 9 1 6 7 2 6 8 1 6 9 1 7 8 1 7 9 1 

8 9 2 

[5,*,*] 6 7 0 6 8 1 6 9 1 7 8 0 7 9 0 8 9 2 

[6,*,*] 7 8 1 7 9 1 8 9 2 

[7,*,*] 8 9 1 ; 
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A.6 Pseudo-codes for Min-Max heuristic 

S = tx - x (n/2)1' the symmetric solution set(1)' x (2)' '
 

where x() x i < j, and all xo are mutually exclusive.
 

Let the descending sorted similarity matrixP P (1) ' P(2)' ' P (n I2)} '
 

where PO = i < j, pO >0
 

k = number of loops 

1: initialize S; 
2: initialize P; 
3: initialize k; 
4: for a = 1 to k 
5: initialize sum0fP(a) 
6: for b = 1 to mr2 
7: if P = (1) then exit for 
8: if b = 1 then 
9: p = ath element in P, subscript (i, j) 

10: else 
11: p = the first element in P, subscript (i, j) 
12: end if 
13: sum0fP(o= surtz0iPm+ NJ) 
14: update P, eliminate all elements in P that have associated subscripts i, orj 
15: next b 
16: if sum0fPm> sum0fP(,,) then 
17: bestLoop= a 
18: end if 
19: initialize sumOJP(a) 
20: initialize P 
21: next a 
22: for b = I to n/2 
23: if b = 1 then 
24: So) = bestLoopth element in P, whose subscript is (i, j) 
25: else 
26: S(b) = the first element in P, whose subscript is (i,j) 
27: end if 
28: update P, eliminate all elements in P that have associated subscripts i, or j 
29: next b 
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A.7 Pseudo-codes for SWAP heuristic 

S = fx(1), x(2) , , x(v)1, the initial symmetric solution set 

{PM' P(2) ' ' P(v) } 

Let {P(ipii) 
for components ul, vl, u2, v2 : 

PA Pulvl P u2v2' PB = P ulv2 u2v1' PC = Pulu2 Pv1v2 

1: = 0; 
2: = i + 1; 
3: if i = n 1 2 then Goto Step 23; 
4: j=i+ 1; 
5: ul, vl are components in mo; 
6: u2, v2 are components in pw; 
7: if PA < PB OR PA < Pc then 
8: if PA < PB and PA > Pc then 
9: Reassignment: D pw= Pu2v1; 

10: elseif PA> Pg and PA < Pc then 
11: Reassignment: pw = Puiuz, IAD= pviv2; 
12: else 
13: if PB< Pc then 
14: Reassignment: pw = piau2, Pw =Pviv2; 
15: else 
16: Reassignment: p(0 Pulv2> Pu2v]; 
17: end if 
18: end if 
19: end if 
20: j = j + 1; 
21: if j = n / 2 then Goto Step 2 
22: Goto Step 5 
23: STOP 
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A.8 Hungarian Algorithm Example 

from (4.34) 

1. Matrix reduction 

Row Reduced matrix after subtracting row 
Transformed original similarity matrix minimum minimum from rows 

1 -2 0 -2 -2 -2 -1 -2 -2 -2 3 0 2 0 0 0 1 0 0 

-2 1 -1 -4 -3 -2 -3 -3 -3 -4 2 5 3 0 1 2 1 1 1 

0 -1 1 -1 0 0 -1 0 0 1 1 0 2 0 1 1 0 1 1 

2 -4 -1 1 -2 -2 -4 -2 -2 -4 2 0 3 5 2 2 0 2 2 

2 -3 0 -2 1 -I -1 -2 -2 -3 1 0 3 1 4 2 2 1 1 

2 -2 0 -2 -1 1 -2 -2 2 0 0 2 0 1 3 0 0 0 

1 -3 -1 -4 -1 -2 1 -1 -1 4 3 1 3 0 3 2 5 3 3 

-2 -3 0 -2 -2 -2 -1 1 -3 3 1 0 3 1 1 1 2 4 0 

2 -3 0 -2 -2 -2 -1 -3 1 3 1 0 3 1 1 1 2 0 4 

Column 
minimum 

0 0 2 0 0 0 0 0 0 

2. Find the initial solution and cross out lines to cover all zeros, an 

Column j 1 2 3 4 5 b 7 8 9 Row label 

Row i= 1 
10 0 0 00 0 0 0 7,0 

2 i i 1,011 E 1 i 

ii3 
1 I 4,2,0wimmigni1 

4 
5 2 2 001 2 2 2,1,00 1 

5 IM 1 1 1 4 2 2 1 1 1 1,0 

1111
6 3 Ell1111MMISIMNIIIIMPAIIIIMIIIMIN 7, 

1 0 2 5 3 1,013 13
 
M NI 

8 1 0 1 11111 2 II 4 00 2,1,0 

IIIII 
1 1

II9 immamm 2,1,
1 I 1 11 21 1 

Column 
1,0 7,0 3,1 5,0 1,0 1,0 3,2,0 3,1,0 3,1,0

label 
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A.8 Hungarian Algorithm Example (continued) 

3. Redistribute the zeros and find an optimal solution 

Column] 

Row i= 1 

2 

1 

3 

1 

2 

1 

5 

3 

0 

4 

1 

0 

5 

0 

00 

6 

00 

1 

7 

2 

1 

8 

0 

0 

9 

0 

0 

Row label 

5,0 

5,2 

1,0 
1 1 1 

3 001 1 1 

4 
0 0 5 00 3,0 

1 11 11 

5 
0 00 0 3 1 2 0 0 

5,2 

6 00 1 1 3 1 0 0 
4,1 

7 
2 1 0 00 2 1 5 2 2 

2,1 

8 
1 1 2 1 1 3 4 00 1,0 

9 
1 1 1 2 1 1 3 00 4 

1,0 

Column 
label 

2 2,1 7,0 2 2,1 1,0 1,0 5,0 5,0 



A.9 Computation results for Data set 2 -R1 

Opt. 
Val. HA** MMX SWAP/RFA SWAP/MMX INTEG 5-Runs*** 

Size (HA)* Best value time value time value time value time value time value time 

18 1616 1616 1616 0.05 1540 0.03 1508 0.001 1616 0.01 1616 0.02 1616 0.01 

50 4808 4808 3888 0.05 4700 0.05 4626 0.01 4748 0.06 4808 0.10 4808 0.054 

100 9858 9850 8676 0.15 9594 0.37 9462 0.05 9704 0.39 9850 0.15 9850 0.212 

200 19878 19878 17292 0.57 19598 2.77 19186 0.20 19748 2.81 19878 0.56 19878 0.596 

400 39955 39954 30766 1.63 39604 23.91 39038 0.85 39718 24.14 39948 1.72 39954 2.754 

600 59982 59982 29190 2.78 59460 80.05 58916 2.04 59778 80.95 59962 3.81 59982 5.224 

800 79998 79998 26200 4.9 79374 189.47 78710 3.91 79794 190.96 79998 8.81 79998 12.726 

1000 100000 100000 26600 7.61 99554 374.03 98526 6.27 99724 376.28 99996 14.5 100000 15.568 

12(X) 120000 120000 30400 11.01 119386 641.92 118534 9.44 119830 645.2 120000 23.56 120000 30.83 

1400 140000 140000 350(X) 14.55 139440 1026.4 138494 13.35 139762 1032.7 140000 33.27 140000 37.59 

1600 160000 160000 44400 19.36 159452 1647.4 158476 17.59 159818 1621.7 159974 34.27 160000 53.644 

1800 180000 180000 32600 24.55 179456 2201.7 178374 22.45 179802 2206.8 180000 57.4 180000 57.236 

2000 200000 200000 123200 29.72 199404 3029.4 198336 28.09 199800 3032.5 199960 35.7 200000 65.178 

* HA's optimal solution value 
** HA's symmetric subset value, 

*** with randomly rearranged matrix 
CPLEX is not used in the Integrate heuristic, 
Reduction procedure will be terminated if two consecutive loops are not improving 



A.10 Computation results for Data set 2 -R2
 

Opt. 
Val. HA** MMX SWAP/RFA SWAP/MMX INTEG 5-Runs*** 

Size (HA)* Best value time value time value time value time value time value time 

18 3262 3262 3262 0.001 3194 0.02 3216 0.001 3250 0.01 3262 0.01 3262 0.01 

50 9618 9560 6166 0.09 9388 0.05 9198 0.01 9394 0.06 9560 0.16 9560 0.176 

100 19678 19678 19678 0.28 19072 0.37 18870 0.05 19550 0,4 19678 0.29 19678 0.294 

200 39702 39702 39702 1.09 39262 2.76 38438 0.21 39424 2.84 39702 1.1 39702 1.12 

400 79785 79780 69824 2.26 78786 23.9 77988 0.93 79374 24.18 79780 2.57 79780 3.296 

600 119870 119870 97908 3.83 119192 79.95 117540 2.11 119398 81.02 119848 5.13 119870 5.748 

800 159914 159914 116348 6.02 158828 189.36 157072 3.91 159344 190.84 159814 8.65 159914 11.744 

1000 199946 199946 113568 8.53 198778 373.85 196974 6,58 199294 376.01 199940 11.64 199946 14.04 

1200 239978 239978 101990 11 238848 641.86 236684 9.82 239386 644.91 239978 16.57 239978 23,954 

1400 279984 279984 114798 14.82 278860 1025.55 276334 13.32 279276 1030.75 279976 25.38 279984 32.964 

1600 319996 319996 95998 19.56 319106 1562.65 315948 18.09 319512 1626.32 319950 42.92 319996 50.524 

1800 359992 359992 109598 24.25 358768 2188.28 355812 23.16 359404 2206.64 359992 44.88 359992 67.274 

2000 400000 400000 147200 29.96 398864 3011.64 395484 28.65 399446 3031.73 399988 63.39 400000 67.148 

* HA's optimal solution value 
HA's symmetric subset value, 

*** with randomly rearranged matrix 
CPLEX is not used in the Integrate heuristic, 
Reduction procedure will be terminated if two consecutive loops are not improving 



A.11 Computation results for Data set 2 -R3 

Opt. 
Val. HA** MMX SWAP/RFA SWAP/MMX INTEG 5-Runs*** 

Size (HA)* Best value time value time value time value time value time value time 

18 4932 4932 4932 0.001 4548 0.001 4568 0.001 4932 0.01 4932 0.01 4932 0.01 

50 14480 14480 14480 0.07 13900 0.05 13630 0.01 14026 0.06 14480 0.06 14480 0.07 

100 29512 29512 29512 0.3 28856 0.38 28236 0.05 29220 0.39 29512 0.29 29512 0.298 

200 59512 59512 58330 1.33 58616 2.75 57752 0.21 59130 2.83 59512 1.33 59512 1.334 

400 119641 119638 109480 2.86 118456 23.93 116894 0.92 118880 24.25 119638 3.15 119638 4.688 

600 179639 179634 165868 6.06 178028 79.93 176030 2.07 178856 80.75 179566 7.77 179634 10.088 

800 239744 239744 208584 9.58 238180 189.43 235794 4.21 238798 190.84 239744 9.73 239744 11.958 

1000 299786 299786 221250 10.75 298324 373.91 295236 6.65 298884 375.92 299674 14.98 299786 14.24 

1200 359844 359844 264490 14.21 358170 641.73 354762 9.56 358856 644.57 359810 19.55 359844 22.588 

1400 419898 419898 266346 17.64 418108 1025.88 414532 13.64 418836 1030.48 419884 26.95 419898 29.348 

1600 479936 479936 259170 22.02 478400 1564.34 473910 17.86 479102 1584.5 479840 38.74 479936 40.25 

1800 539962 539962 230980 25.76 538156 2185.99 533448 21.7 538984 2194.55 539962 38.32 539960 57.78 

2000 599964 599956 242390 31.91 597862 3006.6 593008 30.42 599016 3019.66 599956 55.04 599948 92.434 

* HA's optimal solution value 
** HA's symmetric subset value, 

*** with randomly rearranged matrix 
CPLEX is not used in the Integrate heuristic, 
Reduction procedure will he terminated if two consecutive loops are not improving 



A.12 Computation results for Data set 2 -R4 

Opt. 
Val. llA ** MMX SWAP/RFA SWAP/MMX INTEG 5-Runs*** 

Size (HA)* Best value time value time value time value time value time value time 

18 6514 6514 6514 0.01 6514 0.01 6414 0.001 6514 0.01 6514 0.01 6514 0.01 

50 19161 19158 13076 0.13 18774 0.05 18406 0.01 18938 0.06 19158 0.2 19158 0.188 

100 39277 39208 32282 0.41 38416 0.37 37814 0.04 38826 0.39 39058 0.52 39208 0.568 

200 79375 79358 73836 1.03 77976 2.75 77072 0.22 78562 2.82 79318 1.16 79358 1.268 

400 159411 159334 153050 2.89 157922 23.9 155910 0.95 158684 24.18 159334 3.13 159334 3.706 

600 239507 239504 213980 6.75 237654 80.09 234900 2.18 238558 80.98 239470 8.27 239504 9.132 

800 319597 319560 292428 9.93 317432 189.43 314098 3.96 318512 191.62 319540 11.84 319560 17.028 

1000 399606 399606 367638 15.09 398064 373.77 393062 6.57 398606 375.94 399606 15.16 399606 18.676 

1200 479678 479678 391768 19.24 477650 641.34 472552 10.08 478492 644.69 479678 20.18 479678 26.562 

1400 559709 559668 461374 24.73 557190 1025.52 552346 13.53 558578 1030.47 559636 31.39 559668 46.464 

16(X) 639808 639808 506258 25.47 636948 1599.34 631726 18.57 638328 1566.36 639808 26.63 639808 36.104 

1800 719856 719856 474306 29.54 717020 2185.61 711356 23.59 718428 2196.31 719856 33.74 719856 56.366 

2000 799882 799882 439134 34.37 797340 3006.55 790596 29.4 798506 3012.79 799784 54.54 799882 78.506 

* HA's optimal solution value 
** HA's symmetric subset value, 

*** with randomly rearranged matrix 
CPLEX is not used in the Integrate heuristic, 
Reduction procedure will be terminated if two consecutive loops are not improving 



A.13 Computation results for Data set 2 -R5 

Opt. 
Val. HA** MMX SWAP/RFA SWAP/MMX INTEG 5-Runs*** 

Size (HA)* Best value time value time value time value time value time value time 

18 8142 8142 8142 0.01 8142 0.01 8020 0.01 8142 0.01 8142 0.01 8142 0.1 

50 23956 23956 23956 0.14 23470 0.06 22710 0.01 23678 0.06 23956 0.14 23952 0.206 

100 49046 49034 44222 0.54 47736 0.37 47444 0.05 48430 0.39 49034 0.59 49034 0.602 

200 99137 99120 92222 1.73 97496 2.75 95884 0.19 97946 2.81 99120 1.82 99120 1,942 

400 199220 1992(X) 173330 4.41 197084 23.92 195172 0.9 198192 24.2 199194 4.71 199200 5,492 

600 299364 299364 277446 7.24 297832 79.98 293606 2.2 298298 80.79 299364 7.26 299364 7.746 

800 399352 399352 355432 12.37 396802 189.38 391796 4.1 397944 191.09 399226 14.77 399352 18.356 

1000 499380 499362 452460 17.3 496114 373.82 491924 6.81 497874 376,07 499256 20.47 499362 26.762 

1200 599492 599478 557530 21.69 596630 644 590604 9.77 598064 645.42 599290 26.07 599478 37.668 

1400 699542 699484 605630 28.86 696932 1025.68 689894 13.46 698004 1030.82 699296 36.08 699484 49.786 

1600 799600 799600 628724 29.23 795782 1586.83 789552 18.16 798070 1573.72 799600 31.12 799600 55.318 

18(X) 899728 899696 681834 34.71 896304 2188.13 888834 23.34 898028 2194.88 899658 47.72 899696 72.016 

20(X) 999728 999728 708810 38.84 996524 3018.64 988234 29.55 998138 3017.97 999622 55.38 999728 60.832 

* HA's optimal solution value 
** HA's symmetric subset value, 

*** with randomly rearranged matrix 
CPLEX is not used in the Integrate heuristic, 
Reduction procedure will be terminated if two consecutive loops are not improving 



A.14 Computation Results for Data set 3 

Prob. 
O 
Vpt.al. Best 

HA** MMX SWAP/RFA SWAP/USG SWAP /MMX INTEG 10-Runs*** 

No. Val. value time value time value time value time value time value time value time 

A 9070 8990 7146 90.95 8964 125.42 8760 4.19 8738 4.54 8916 127.82 8982 176.79 8990 138.97 

B 8514 8446 6368 60.42 8220 90.46 8254 3.32 8320 3.45 8336 92.45 8446 103.66 8446 108.17 

C 6585 6516 5586 36.36 6402 59.89 6390 2.52 6342 2.66 6448 61.42 6516 49.1 6516 51.96 

D 13688 13544 9954 144.21 13214 187.68 13254 5.56 13132 6.18 13406 190.88 13522 236.6 13544 252.24 

E 12978 12848 10914 143.69 12466 169.77 12486 5.29 12530 5.54 12604 172.8 12838 192.56 12848 199.75 

F 11582 11434 9338 93.51 11090 134.2 11236 4.48 11294 5.01 11268 136.81 11420 150.26 11434 158.28 

0 15590 15438 11910 146.77 14944 210.54 15104 5.8 15164 7.39 15226 213.23 15434 221.26 15438 238.98 

* HA's optimal solution value 
** HA's symmetric subset value, 

*** with randomly rearranged matrix 
CPLEX is used in the Integrate heuristic if the problem size can be reduced to under 18x18 
Reduction procedure will be terminated if two consecutive loops are not improving 
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APPENDIX B 
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B.1 Component Grouping Procedures from [72} 

Step 1.	 Develop a component-to-component similarity matrix P 

Step 2.	 Pick the largest element pu form P, and designate it as the present value 
of relationship counter RC. 

Step 3.	 Define a parameter U, where 0 < U <1, which is a measure of effective
ness of joining a component to a group consisting of other components. 
This parameter states the closeness an entering component must have 
with all the existing components within a group in order for the entering 
tool to join that group. The number of groups may differ based on the 
different values chosen for U. 

Step 4.	 Starting with the first row, examine each row for an elemental value that 
equals RC. 

Step 5.	 If none of the associated components in the row and column are already 
in a group, then form a group consisting of these two components and go 
to Step 7. If both components are already assigned to the same group, 
ignore and go to Step 7. If one of the components in the pair is in a group 
and the other one has not been assigned yet, go to Step 6(a). If both com
ponents are assigned to different groups, go to Step 6(b). 

Step 6.	 (a) Calculate the closeness ratio CR of the entering component with each 
group that has already been formed. CR is defined as the ratio of the total 
of all relationships the entering component has with the components that 
are currently in the group to the total number of components that are 
presently assigned to that group. The entering component is placed in a 
group that has the maximum closeness ratio MCR, as long as this maxi
mum is greater that or equal to minimum threshold value MTV, calculated 
as U multiplied by the present value of RC. If the value of MCR is less 
than MTV, then a new group is formed consisting of two components 
having the relationship value that equals to the present value of RC. Go 
to Step 7. 

Step 6.	 (b) Duplication of one or more components is suggested. There are two 
possible alternatives that are checked in order of importance. The first 
alternative is to duplicate one additional component of either type (for 
illustrative purposes, designate the components in the pair as component 
A and B) and place it in the appropriate cell. The second alternative is to 
duplicate both components, one of each type, and either form a new 
group or place each in the appropriate existing groups. Four rules are 
suggest 
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1)	 Calculate the effect of duplicating one component. Check compo
nent A as the entering component for the groups where component B 
exists and B as the entering component for the groups where A 
exists. Determine the maximum closeness ratio, MCR, from all the 
groups that are checked and note the associated and note the associ
ated group and entering component. 

2)	 If MCR > RCxU, the noted component is duplicated and assigned to 
the associated group. Go to Step 7. 

3)	 If the maximum closeness ratio in the previous calculation was less 
than RCxU, a check must be made to see if both components should 
be duplicated. From the previous calculations determine the MCR 
for the groups where A is the entering component (MCRA) and the 
MCR for the groups where B is the entering component (MCRB). 
Calculate the index value as maximum RC x U/2. If both MCRA and 
MCRB are greater than the index value and IMCRA MCRBI < RC x 
U/2, duplicate both components and place each in an appropriate 
group. If either MCRA or MCRB is greater than the index value, 
regardless of the value of IMCRA MCRBI, form a new group con
sisting of components A and B. Go to Step 7. 

4)	 If none of the above conditions exists, ignore this observation and go 
to Step 7 since the contribution of any duplicating component in 
improving the efficiency of grouping is very limited. 

Step 7.	 Check to see if all components are assigned to groups. If they are, go to 
Step 9, otherwise continue. Check the number of components in all 
groups. If the number of components in any group is equal to the number 
of slots then fathom the associated group. Fathoming a group means not 
allowing the group to be part of any further consideration that would add 
a new component to the group. Continue the check of the similarity 
matrix with the present value of RC proceeding sequentially in rows. If 
an element is found that is equal to the present value of RC, go to Step 5. 
If no such element is found, go to Step 8. 

Step 8.	 Reduce the value RC to the next value in descending order of magnitude 
and return to Step 5. 

Step 9.	 Assign each PCB to an appropriate group. This is accomplished by 
examining each PCB and assigning it to a group that has the most com
ponents it needs. 
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B.2 PCB and component incidence matrix from [72] 

Components 
PCB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 1 1 1 0 I 0 0 0 0 0 0 0 0 0 

4 I 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 1 0 I I I I 1 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 

7 0 0 0 0 I I 0 I 0 I 0 I 0 1 1 0 0 0 0 0 

8 0 0 I 0 I 0 0 0 1 I 0 0 0 0 I 0 0 1 0 0 
9 1 0 0 1 I 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 

11 1 0 0 0 1 0 0 0 0 0 1 I 1 0 0 0 1 0 1 0 
12 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 

14 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
15 0 0 0 0 0 0 0 I 0 1 0 1 0 1 0 1 0 0 0 0 

16 0 0 0 1 0 1 1 1 0 0 0 I 0 0 0 0 0 0 0 0 

17 0 0 0 1 1 0 0 I 0 0 0 1 0 I 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 I 1 1 

19 
20 

0 
0 

0 
1 

0 
0 

0 
0 

01 I 

1 

1 

0 
1 

0 
1 

1 

1 

0 
0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

21 0 0 0 0 0 0 I 0 I 0 0 1 0 0 0 0 1 1 0 0 
22 1 0 1 1 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 1 0 I 0 0 1 1 I 0 0 0 0 

24 0 0 0 0 1 I 0 0 0 0 0 0 0 1 0 0 I 1 0 0 

25 0 I 0 0 0 0 0 I 1 0 1 0 1 0 0 0 0 0 0 0 

26 I 0 0 I 0 0 0 0 0 1 0 0 0 0 I 0 1 0 0 0 

27 0 0 0 0 0 1 I 0 0 0 1 0 0 1 0 0 0 0 0 0 

28 1 0 0 0 I 0 0 1 0 0 I 0 I 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 I 0 1 

30 0 0 0 0 0 0 0 I 0 0 1 0 0 1 0 0 I 0 0 I 

31 1 0 I 1 0 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 I 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 I 0 0 1 1 0 0 I 1 0 0 0 

34 0 I 0 0 1 0 0 0 I 0 I I 0 0 0 I 0 0 0 0 

35 0 0 0 0 0 I 0 0 1 0 0 0 0 0 1 0 0 I 0 0 

36 0 0 0 0 I 0 1 0 0 I 0 0 0 1 0 1 0 0 0 0 

37 0 0 0 I 0 1 0 0 0 0 1 I 1 0 0 0 0 0 0 0 

38 I I 0 0 1 0 I 1 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 1 0 0 1 0 0 I I 0 I 0 0 0 0 0 

40 0 0 1 0 0 0 I 1 0 0 I 0 0 I 0 0 0 0 0 0 

41 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 

42 
43 

0 
0 

0 
0 

0 
0 

0 
1 

10 0 
1 

0 
0 

0 
0 

I 

0 
0 
I 

0 
0 

0 
1 

0 
0 

0 
1 

0 
0 

I 

0 
I 

0 
1 

0 
0 
1 

0 
0 

44 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 

45 1 0 0 0 0 0 1 1 I 0 0 0 0 0 0 0 I 0 0 



162 

B.3 Component-to-component similarity matrix from Appendix B.2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 5 4 4 7 0 3 5 3 3 3 I 3 0 2 0 3 1 2 1 

2 3 2 7 2 3 4 5 2 3 1 1 0 1 1 0 1 0 0 

3 4 4 2 3 2 3 2 2 1 1 2 1 0 0 1 1 0 

4 5 5 4 4 2 3 2 4 3 3 2 0 I 0 2 0 

5 4 5 5 4 3 5 4 3 4 3 3 3 3 1 0 

6 5 4 5 4 4 6 2 4 3 0 1 2 1 0 

7 7 4 3 4 3 0 3 I 1 I 1 0 0 

8 6 6 6 4 2 6 2 2 1 1 0 1 

9 5 5 4 3 1 4 4 3 5 0 0 

10 1 3 0 5 4 3 1 2 1 0 

11 4 5 6 3 4 3 2 1 2 

12 4 4 2 3 3 1 2 0 

13 1 1 1 2 0 2 0 

14 4 6 2 3 3 1 

15 3 3 4 2 2 

16 3 4 2 1 

17 - 5 3 4 

18 2 2 

19 - 2 

20 

B.4 Optimal Double feeder assignment for Appendix B.3 

1 2 3 6 7 10 11 14 17 19 

5 9 4 12 8 15 13 16 18 20 total 

p'1 7 5 4 6 7 4 5 6 5 2 51 
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B.5 Component and PCB grouping 

Set # U Component Group	 PCB Group 

0.00	 7) 1 5 2 8 9 7 11 7) 1 4 9 11 12 14 20 25 28 34 38 45 
8) 7 8 9 10 11 14 16 8) 3 6 15 19 27 30 36 40 
9) 6 12 4 7 9 18 13 9) 5 16 21 32 33 37 39 43 
10) 17 18 3 4 5 8 6 10) 2 17 22 24 31 
11) 5 9 10 14 18 16 20 11) 7 8 10 13 18 23 26 29 35 41 42 
12) 19 14 12) 44 

1 

2	 0.25 1) 1 5 2 8 9 7 11 1) 4 12 14 20 25 28 34 38 45 
2) 7 8 9 10 11 14 16 2) 3 6 15 19 23 27 36 40 
3) 6 12 4 7 9 18 13 3) 5 21 33 35 37 39 
4) 17 18 15 10 14 16 20 4) 8 10 13 18 24 26 29 30 41 42 
5) 3 1 4 5 8 6 12 5) 1 2 7 9 11 16 17 22 31 32 43 
6) 19 14 6) 44 

3	 0.50 1 ) 1 5 2 8 9 7 11 1) 1 4 14 20 25 28 34 38 45
 
2) 7 8 9 10 11 14 16 2) 3 6 15 19 36 40
 
3) 6 12 4 7 9 3 1 3) 5 12 16 22 31 32
 
4) 18 9 17 15 10 14 16 4) 8 10 13 23 26 33 35 42
 
5) 13 11 6 14 12 4 5 5) 2 7 9 17 27 37 39 43 44
 
6) 20 17 1 5 18 11 12 6) 11 18 21 24 29 30 41
 

4	 0.75 1 ) 1 5 2 8 9 7 11 1) 3 4 20 25 38 45
 
2) 7 8 9 10 6 12 14 2) 5 15 19
 
3) 6 12 4 7 8 5 11 3) 16 32
 

4) 11 8 14 5 6 12 4 4) 17 30 40 43
 
5) 16 14 10 15 11 5 6 5) 6 7 13 23 27 36
 
6) 18 9 17 16 15 5 12	 6) 8 10 21 24 29 33 34 35 39 42 
7) 13 11 12 1 17 4 5 7) 9 11 28 37 
8) 3 1 4 5 10 2 7 8) 1 2 12 14 22 26 31 44 
9) 20 17 19 9) 18 41 

5	 1.00 1) I 5 2 8 9 10 1) 45
 

2) 7 8 1 5 II 9 2) 28
 
3) 6 12 4 5 8 14 10 3) 7 15 17 43
 
4) 9 8 2 6 11 7 4) 3 20 75
 
5) 10 8 9 14 6 7 5) 5 19
 
6) 11 8 14 5 6) 30 40
 
7) 16 14 10 15 5 I 1 7) 6 23 36
 
8) 4 5 6 7 8 8) 16
 

9) 7 6 9 12 11 9) 27 32
 
10) 18 9 15 10 6 10) 8 35 
1 1 ) 13 11 12 4 5 9 11) 9 37 39 
12) 17 18 5 9 11 12 12) 11 21 24 29 42 
1 3 ) 3 1 4 5 2 7 9 13) 1 2 4 12 14 22 26 31 38 
14) 16 9 11 12 14) 33 34 
15) 18 16 14 15) 10 13 

16) 20 17 16) 18 41 

17) 19 14 17) 44 

Maximal Group Size (M.G.S.) allowed in component group: 7 
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B.6 Single feeder setup plan - IIGS 

PCB slot number / component cumulative cumulative 
seq. 1 2 3 4 5 6 7 setups stops 

24 17 18 3 4 5 6 14 1 1 

2 2 18 3 4 5 6 14 2 2 

22 1 18 3 4 5 7 14 4 3 

31 1 8 3 4 5 9 14 6 4 

17 12 8 3 4 5 9 14 7 5 

34 12 8 11 16 5 9 2 10 6 

25 12 8 11 13 5 9 2 11 7 

28 1 8 11 13 5 9 2 12 8 

38 1 8 11 7 5 9 2 13 9 

4 1 8 11 7 5 9 2 13 9 

20 1 8 11 6 5 9 2 14 10 

45 I 8 10 18 5 9 2 16 11 

12 1 2 3 18 5 9 10 17 12 

1 1 2 3 18 5 9 10 17 12 

14 1 2 7 18 5 15 4 20 13 

9 1 13 11 18 5 15 4 22 14 

11 1 13 11 19 5 17 12 25 15 

37 4 13 11 19 6 17 12 27 16 

43 4 10 14 19 6 17 12 29 17 

16 4 10 7 8 6 17 12 31 18 

5 4 10 7 8 6 9 12 32 19 

39 15 10 7 13 6 9 12 34 20 
33 17 16 7 13 6 9 12 36 21 

21 17 18 7 16 6 9 12 37 22 

32 17 18 7 11 6 3 12 39 23 
27 17 14 7 11 6 3 12 40 24 
40 17 14 7 11 8 3 12 41 25 

30 17 14 7 11 8 20 12 42 26 
3 9 14 7 11 8 20 12 43 27 

19 9 14 7 10 8 6 12 45 28 

15 9 14 7 10 8 16 12 46 29 

36 5 14 7 10 8 16 12 47 30 

6 16 14 15 10 8 11 12 49 31 

7 5 14 15 10 8 6 12 51 32 

8 5 14 15 10 3 9 18 54 33 

35 5 14 15 10 6 9 18 55 34 

42 5 14 15 16 17 9 18 57 35 

23 11 14 15 16 17 9 18 58 36 

13 11 14 15 16 17 9 18 58 36 

29 11 14 15 16 17 20 18 59 37 

18 19 14 15 16 17 20 18 60 38 

10 19 14 15 16 17 20 18 60 38 

41 19 1 15 16 17 20 IS 61 39 

26 4 1 15 19 17 20 10 63 40 
44 4 13 3 19 17 20 14 66 41 
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B.7 KTNS pseudo-code flowchart 

E,(-) =1 

(Complete 
KTNS 

no 

no 

yes 

yes 

yes 
yes 

no (1) 

yes 

(5) 
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B.7 KTNS pseudo-code flowchart (Continued) 

k 

k k + 

110 

yes 

Select 
case 

E1(k) < E2(k) 
and E,(k) = 1 

Add 
component k 

yes 

Ei(k)> E2(k) 

Remove 
component k 

Ei(k) = E,(k) 



167 

B.8 Modified KTNS pseudo-code flowchart for double-feeder 

Start
 
BLKTNS E, (.)=
 

Complete 
BLKTNS 

yes 

no 

E, (k)= akor010Ck for all k 
KN= sn' -RB' 

yes 



168 

B.8 Modified KTNS pseudo-code flowchart for double-feeder (Continued) 

= 

kk+1 

no 

yes 

Select 
case 

yes 

E,(k) = E1(k)
 
E,(C(k)) = E i(C(k))
 

KN = KN -2
 

yes 

E1(k) < E2(k) 
and E,(k) = I 

Add 
component k 

and C(k) 

E i(k)> E,(k) 

Remove 
component k 

and C(k) 

E,(k) = E2(k) 
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B.9 Single feeder setup plan IIGS/KTNS 

PCB slot number / component cumulative cumulative 
seq. 1 2 3 4 5 6 7 setups stops 

24 2 3 5 6 14 17 18 0 0 
2 2 3 5 6 14 4 18 1 1 

22 2 3 5 1 14 4 7 3 2 

31 8 3 5 1 14 4 9 5 3 

17 8 12 5 1 14 4 9 6 4 

34 8 12 5 2 11 16 9 9 5 

25 8 12 5 2 11 13 9 10 6 

28 8 1 5 2 11 13 9 11 7 

38 8 1 5 2 11 7 9 12 8 

4 8 I 5 2 11 7 9 12 8 

20 8 1 5 2 11 6 9 13 9 

45 8 1 5 2 10 18 9 15 10 

12 8 1 5 2 3 9 10 16 11 

1 8 1 5 2 3 9 10 16 11 

14 4 1 5 2 7 10 15 19 12 

9 4 1 5 13 7 10 11 21 13 

11 17 1 5 13 19 12 11 24 14 

37 17 6 4 13 19 12 11 26 15 

43 14 6 4 13 19 12 10 28 16 

16 7 6 4 8 13 12 10 30 17 

5 7 6 4 8 9 12 10 31 18 

39 7 6 13 8 9 12 15 33 19 

33 7 6 13 17 9 12 16 35 20 
21 7 6 18 17 9 12 16 36 21 

32 7 6 11 17 9 12 3 38 22 
27 7 6 11 17 9 14 3 39 23 

40 7 8 11 17 9 14 3 40 24 

30 7 8 11 17 9 14 20 41 25 
3 7 8 11 17 9 14 20 41 25 

19 7 8 11 6 9 14 10 43 26 
15 7 8 11 16 12 14 10 45 27 

36 7 8 11 10 5 14 16 46 28 
6 15 8 11 10 5 14 16 47 29 
7 5 8 6 10 12 14 15 49 30 
8 5 18 6 9 10 3 15 52 31 

35 5 18 6 9 10 3 15 52 31 

42 5 18 16 9 10 17 15 54 32 

23 11 18 16 9 14 17 15 56 33 
1 3 I I 18 16 20 14 17 15 57 34 
29 11 18 16 20 14 17 15 57 34 
18 19 18 16 20 14 17 15 58 35 

10 19 18 16 20 14 17 15 58 35 

41 19 1 4 20 14 17 15 60 36 
26 19 1 4 10 14 17 15 61 37 

44 19 1 4 10 14 3 13 63 38 
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B.10 Double feeder setup plan - IIGS/Modified KTNS and optimal assignment 

PCB slot number / components cumulative cumulative 

seq. 1 2 3 4 5 6 7 setups stops 

24 1 5 2 9 3 4 6 12 7 8 14 16 17 18 0 0 

2 1 5 2 9 3 4 6 12 7 8 14 16 17 18 0 0 

22 1 5 2 9 3 4 6 12 7 8 14 16 17 18 0 0 

31 1 5 2 9 3 4 6 12 7 8 14 16 17 18 0 0 

17 1 5 2 9 3 4 612 7 8 14 16 17 18 0 0 

34 1 5 2 9 11 13 6 12 7 8 14 16 17 18 1 1 

25 1 5 2 9 11 13 6 12 7 8 14 16 17 18 1 1 

28 1 5 2 9 11 13 6 12 7 8 14 16 17 18 1 1 

38 1 5 2 9 II 13 6 12 7 8 14 16 17 18 1 1 

4 1 5 2 9 11 13 6 12 7 8 14 16 17 18 1 1 

20 1 5 2 9 11 13 6 12 7 8 1416 17 18 1 1 

45 1 5 2 9 11 13 6 12 7 8 10 15 17 18 2 2 

12 1 5 2 9 11 13 6 12 7 8 10 15 3 4 3 3 

1 1 5 2 9 11 13 612 7 8 10 15 3 4 3 3 

14 1 5 2 9 11 13 6 12 7 8 10 15 3 4 3 3 

9 1 5 2 9 11 13 612 7 8 10 15 3 4 3 3 

11 1 5 17 18 11 13 6 12 19 20 10 15 3 4 5 4 

37 1 5 17 18 11 13 6 12 19 20 10 15 3 4 5 4 

43 14 16 17 18 11 13 6 12 19 20 10 15 3 4 6 5 

16 14 16 17 18 11 13 6 12 7 8 10 15 3 4 7 6 

5 14 16 2 9 11 13 6 12 7 8 10 15 3 4 8 7 

39 14 16 2 9 11 13 6 12 7 8 10 15 3 4 8 7 

33 14 16 2 9 11 13 6 12 7 8 17 18 3 4 9 8 

21 14 16 2 9 11 13 6 12 7 8 17 18 3 4 9 8 

32 14 16 2 9 II 13 6 12 7 8 17 18 3 4 9 8 

27 14 16 2 9 11 13 6 12 7 8 17 18 3 4 9 8 

40 14 16 2 9 11 13 6 12 7 8 17 18 3 4 9 8 

30 14 16 2 9 11 13 6 12 7 8 17 18 19 20 10 9 

3 14 16 2 9 11 13 6 12 7 8 17 18 19 20 10 9 

19 14 16 2 9 II 13 6 12 7 8 17 18 10 15 11 10 

15 14 16 2 9 11 13 6 12 7 8 17 18 10 15 Ii 10 

36 14 16 2 9 11 13 6 12 7 8 1 5 10 15 12 11 

6 14 16 2 9 11 13 6 12 7 8 1 5 10 15 12 11 

7 14 16 2 9 II 13 6 12 7 8 1 5 10 15 12 11 

8 14 16 2 9 3 4 6 I? 17 18 1 5 10 15 14 12 

35 14 16 2 9 3 4 6 12 17 18 1 5 10 15 14 12 

42 14 16 2 9 3 4 11 13 17 18 1 5 10 15 15 13 

23 14 16 2 9 3 4 11 13 17 18 1 5 10 15 15 13 

13 14 16 19 20 3 4 11 13 17 18 1 5 10 15 16 14 

29 14 16 19 20 3 4 11 13 17 18 1 5 10 15 16 14 

18 14 16 19 20 3 4 11 13 17 18 1 5 10 15 16 14 

10 14 16 19 20 3 4 11 13 17 18 1 5 10 15 16 14 

41 14 16 19 20 3 4 II 13 17 18 A 5 10 15 16 14 

26 14 16 19 20 3 4 II 13 17 18 1 5 10 15 16 14 

44 14 16 19 20 3 4 11 13 17 18 I 5 10 15 16 14 
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B.11 Evaluation results by different grouping threshold values and methods 
on example data 

setup stop CPU time 

method max min mean stdev max min mean stdev max min mean stdev 

M2 126 108 114.6 5.6 44 40 42.1 1.4 0.02 0..02 0.02 0.00 

M5 34 26 30.1 2.6 29 21 24.8 2.4 0.03 0.02 0.02 0.00 
M7 44 34 38.2 3.2 36 26 29.9 2.9 0.06 0.02 0.02 0.01 

The average similarity value of random double assignment: 54 with standard deviation 5.4 

setups 
U 

method 0.00 0.25 0.50 0.75 1.00 

MI 66 70 67 67 77 

M3 63 65 64 62 68 

M4 16 18 18 18 17 

M6 (avg) 21.4 23.0 22.7 21.9 23.7 

M6 (dev) 2.1 1.5 2.5 2.1 2.1 

stops
 
MI 41 41 40 41 41
 

M3 38 39 40 39 39
 

M4 14 17 18 16 14
 

M6 (avg) 18.4 19.1 19.7 19.0 20.6
 

M6 (dev) 1.3 2.1 2.1 2.2 1.8
 

CPU time (sec) 
M I 1.40 1.38 1.32 1.24 1.20 

M3 0.03 0.02 0.02 0.03 0.02 

M4 0.03 0.03 0.03 0.03 0.03 

M6 (avg) 0.03 0.03 0.03 0.03 0.02 

M6 (dev) 0.00 0.00 0.01 0.01 0.01 

method: 

M 1. IIGS sequence without KTNS policy (IIGS) 
M2. Random Board Sequence with KTNS policy (RBS/KTNS) 
M3. IIGS sequence with KTNS policy ( IIGS/KTNS) 
M4. IIGS sequence with modified KTNS and Optimal Feeder AssignMent (IIGS /OFA 

DBLKTNS) 
M5. Random PCB sequence with modified KTNS and optimal assignment (RBSIOFA 

DBLKTNS) 
M6. IIGS sequence with modified KTNS but Random Feeder Assignment (IIGS/RFA 

DBLKTNS) 
M7. Random sequence and assignment with modified KTNS (RBS/RFA DBLKTNS) 
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B.12 Summary results and effects evaluation of industry data sets 

Data set
 

A B C D E F G
 

method setup stop setup stop setup stop setup stop setup stop setup stop setup stop 

MI 2034 225 1916 247 1276 152 3213 398 2898 333 2667 326 3725 460 
M2 2841 342 2292 342 1524 211 4625 598 4081 501 3364 477 5266 682 
M3 1178 172 952 196 680 106 1679 344 1569 246 1308 258 2014 373 
M4 405 120 272 123 177 70 676 256 548 185 456 190 789 282 
M5 693 230 522 232 293 128 1357 461 1121 362 891 347 1559 512 
M6 769 162 538 162 332 82 1243 309 1075 242 855 223 1587 351 

M7 1760 323 1271 300 729 175 3246 573 2788 478 2139 435 3889 654 
RFAJOFA 11.9% 12.0% 12.3% 9.4% 10.2% 10.0% 9.5% 

size 437x696 458x626 281x548 744x796 620x770 608x712 843x826 
M4 CPUtime 262 282 116 701 498 493 888 

* results are presented in percentage 
Effect 

data E1 E2 E3 E4 E5 E6 E7 E8 E9 

set M I -M3 M2-M3 M7-M6 M7-M5 M2-M7 M2-M5 M3-M4 M7-M4 M2-M4 

A setup 42.1 58.5 56.3 60.6 38.1 75.6 65.6 77.0 85.7 

stop 23.6 49.6 49.8 28.8 5.6 32.8 30.2 62.8 64.9 

B setup 50.3 58.5 57.7 58.9 44.5 77.2 71.4 78.6 88.1 

stop 20.6 42.7 45.9 22.5 12.3 32.1 37.2 59.0 64.0 

C setup 46.7 55.4 54.5 59.9 52.1 80.8 74.0 75.7 88.4 

stop 30.3 49.8 53.0 26.8 17.3 39.5 34.0 59.9 66.8 

D setup 47.7 63.7 61.7 58.2 29.8 70.7 59.7 79.2 85.4 

stop 13.6 42.5 46.1 19.5 4.3 22.9 25.6 55.3 57.2 

E setup 45.9 61.5 61.5 59.8 31.7 72.5 65.1 80.3 86.6 

stop 26.1 50.9 49.5 24.3 4.6 27.8 24.8 61.3 63.1 

F setup 51.0 61.1 60.0 58.4 36.4 73.5 65.1 78.7 86.4 

stop 20.9 45.9 48.9 20.4 8.7 27.3 26.4 56.4 60.2 

G setup 45.9 61.8 59.2 59.9 26.2 70.4 60.8 79.7 85.0 

stop 18.9 45.3 46.3 21.8 4.1 25.0 24.4 56.9 58.7 

avg setup 47.1 60.1 58.7 59.4 37.0 74.4 66.0 78,5 86.5 

stop 22.0 46.7 48.5 23.4 8.1 29.6 28.9 58.8 62.1 

dev setup 3.0 2.8 2.7 0.9 9.0 3.8 5.2 1.6 1.3 

stop 5.3 3.5 2.6 3.4 5.0 5.6 5.0 2.8 3.5 
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APPENDIX C 
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C.1 24 Factorial Experiment Design with one replicate and Results 

USG REQ Feeder CPU 
run block stdev stdev. Sequence Assignment setup time 

1 1 low low RBS RFA 2164 106 

2 1 high low RBS RFA 385 140 

3 1 low high RBS RFA 3131 107 

4 1 high high RBS RFA 254 164 

5 1 low low IIGS RFA 166 179 

6 1 high low IIGS RFA 146 180 

7 1 low high IIGS RFA 245 206 

8 1 high high IIGS RFA 132 173 

9 1 low low RBS OFA 1048 32 

10 1 high low RBS OFA 124 105 

11 1 low high RBS OFA 1237 34 

12 1 high high RBS OFA 131 190 

13 1 low low JIGS OFA 124 153 

14 1 high low JIGS OFA 124 129 

15 1 low high IIGS OFA 125 199 

16 1 high high IIGS OFA 124 150 

17 2 low low RBS RFA 2097 107 

18 2 high low RBS RFA 254 160 

19 2 low high RBS RFA 3194 106 

20 2 high high RBS RFA 220 170 

21 2 low low IIGS RFA 151 180 

22 2 high low IIGS RFA 124 190 

23 2 low high IIGS RFA 166 201 

24 2 high high JIGS RFA 124 169 

25 2 low low RBS OFA 1025 32 

26 2 high low RBS OFA 125 154 

27 2 low high RBS OFA 1269 31 

28 2 high high RBS OFA 139 180 

29 2 low low IIGS OFA 124 160 

30 2 high low IIGS OFA 124 139 

31 2 low high IIGS OFA 124 210 
32 2 high high IIGS OFA 124 169 
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C.2 Analysis of Variance for log(Feeder setup), Full model 

Source Sum of Squares Df Mean Square F-Ratio P-Value
 

A:USG stdev. 11.2378 11.2378 1133.16 0.0000*
1 

B:REQ stdev. 0.0422074 1 0.0422074 4.26 0.0557 
1C:Sequence 16.0456 16.0456 1617.95 0.0000* 

D:Assignment 1.96767 1 1.96767 198.41 0.0000* 
AB 0.145916 1 0.145916 14.71 0.0015* 
AC 8.48334 8.48334 855.41 0.0000*1 

AD 0.0757417 1 0.0757417 7.64 0.0138 
BC 0.00450673 0.00450673 0.45 0.50991 

BD 0.000133122 0.000133122 0.01 0.90921 

1CD 0.65456 0.65456 66.00 0.0000* 
1ABC 0.0297209 0.0297209 3.00 0.1027 

ABD 0.0911924 1 0.0911924 9.20 0.0079* 
ACD 0.0252105 0.0252105 2.54 0.13041 

BCD 0.0146639 1 0.0146639 1.48 0.2416 
blocks 0.0463862 0.0463862 4.68 0.04611 

Total error 0.158676 16 0.00991727 
Total (con) 39.0234 31 

*:significant at 99% confidence level 
R-squared = 99.6% R-squared (adjusted for d.f.) = 99.2% 

C.3 Backward selection stepwise regression for log(Feeder setup). 

number of variables 
Step Removed variable F-value in the model df R2 adj. R2 MSE 

0 15 16 99.50% 99.03% 0.01222 

1 BD 0.01090 14 17 99.50% 99.09% 0.01151 

2 DC 0.39173 13 18 99.49% 99.12% 0.01112 

3 ABCD 0.86520 12 19 99.46% 99.12% 0.01104 

4 BCD 1.32862 11 20 99.43% 99.11% 0.01122 

5 ACD 2.24726 10 21 99.36% 99.06% 0.01189 

6 ABC 2.50079 9 22 99.28% 98.99% 0.01270 

7 B 3.32463 8 23 99.18% 98.89% 0.01398 

8 AD 5.41845 7 24 98.98% 99.69% 0.01655 

9 ABD 5.50946 6 25 98.75% 99.45% 0.01954 

10 AB 7.46847 5 26 98.37% 98.06% 0.02440 
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C.4 Analysis of Variance for CPU times, Full model 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

A:USG stdev. 8417.53 1 8417.53 87.53 0.0000* 
B:REQ stdev. 3061.53 1 3061.53 31.83 0.0000* 
C:Sequence 29342.5 1 29342.5 305.11 0.0000* 
D:Assignment 6932.53 1 6932.53 72.08 0.0000* 
AB 16.5313 1 16.5313 0.17 0.6839 
AC 25144.0 1 25144.0 261.45 0.0000* 
AD 1391.28 1 1391.28 14.47 0.0016* 
BC 13.7813 1 13.7813 0.14 0.7100 
BD 1313.28 1 1313.28 13.66 0.0020* 
CD 552.781 1 552.781 5.75 0.0291 

ABC 2194.53 1 2194.53 22.82 0.0002* 
ABD 357.781 1 357.781 3.72 0.0717 
ACD 4347.78 1 4347.78 45.21 0.0000* 
BCD 75.0313 1 75.0313 0.78 0.3902 
blocks 385.031 1 385.031 4.00 0.0627 
Total error 1538.75 16 96.1719 
Total (corr.) 85084.7 31 

R-squared = 98.2% R-squared (adjusted for d.f.) = 96.7% 

C.5 Analysis of Variance for CPU times, Reduced model 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

A:USG stdev. 8417.53 1 8417.53 69.19 0.0000* 
B:REQ stdev. 3061.53 1 3061.53 25.17 0.0001* 
C:Sequence 29342.5 1 29342.5 241.20 0.0000* 
D:Assignment 6932.53 1 6932.53 56.99 0.0000* 
AC 25144.0 1 25144.0 206.69 0.0000* 
AD 1391.28 1 1391.28 11.44 0.0028* 
BD 1313.28 1 1313.28 10.80 0.0035* 
ABC 2194.53 1 2194.53 18.04 0.0004* 
ACD 4347.78 1 4347.78 35.74 0.0000* 
blocks 385.031 1 385.031 3.17 0.0897 

Total error 2554.66 21 121.65 
Total (corr.) 85084.7 31 

*:significant at 99% confidence level 
R-squared = 97.0% R-squared (adjusted for d.f.) = 95.8% 
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C.6 Backward selection stepwise regression for CPU times. 

number of variables 
Step Removed variable F-value in the model df R2 adj. R2 MSE 

0 15 16 97.81% 95.76% 116.281 

1 BC 0.11852 14 17 97.80% 95.98% 110.252 

2 AB 0.14994 13 18 97.78% 96.17% 105.045 

3 ABCD 0.60242 12 19 97.70% 96.25% 102.844 

4 BCD 0.72954 11 20 97.62% 96.30% 101.456 

5 ABD 3.52645 10 21 97.19% 95.86% 113.662 

6 CD 4.86337 9 22 96.54% 95.13% 133.622 




