
AN ABSTRACT OF THE DISSERTATION OF

Alexey Grigorievich Malishevsky for the degree of Doctor of Philosophy in

Computer Science presented on June 19, 2003.

Title: Test Case Prioritization.

Abstract approved:

Gregg E. Rothermel

Regression testing is an expensive software engineering activity intended to pro-

vide confidence that modifications to a software system have not introduced faults.

Test case prioritization techniques help to reduce regression testing cost by ordering

test cases in a way that better achieves testing objectives. In this thesis, we are inter-

ested in prioritizing to maximize a test suite's rate of fault detection, measured by a

metric, APED, trying to detect regression faults as early as possible during testing.

In previous work, several prioritization techniques using low-level code cover-

age information had been developed. These techniques try to maximize APED over

a sequence of software releases, not targeting a particular release. These techniques'

effectiveness was empirically evaluated.

We present a larger set of priontization techniques that use information at ar-

bitrary granularity levels and incorporate modification information, targeting pri-

ontization at a particular software release. Our empirical studies show significant

improvements in the rate of fault detection over randomly ordered test suites.

Redacted for privacy

Previous work on priontization assumed uniform test costs and fault seven-

ties, which might not be realistic in many practical cases. We present a new cost-

cognizant metric, APFDC, and priontization techniques, together with approaches

for measuring and estimating these costs. Our empirical studies evaluate prioritiza-

tion in a cost-cognizant environment.

Prioritization techniques have been developed independently with little consid-

eration of their similarities. We present a general pniontization framework that al-

lows us to express existing prionitization techniques by a framework algorithm using

parameters and specific functions.

Previous research assumed that prionitization was always beneficial if it im-

proves the APFD metric. We introduce a pniontization cost-benefit model that more

accurately captures relevant cost and benefit factors, and allows practitioners to as-

sess whether it is economical to employ pnionitization.

Pnontization effectiveness varies across programs, versions, and test suites. We

empirically investigate several of these factors on substantial software systems and

present a classification-tree-based predictor that can help select the most appropriate

pnonitization technique in advance.

Together, these results improve our understanding of test case prioritization and

of the processes by which it is penfonmed.

©Copyright By Alexey Grigorievich Malishevsky

June 19, 2003

All Rights Reserved

Test Case Prioritization

by

Alexey Grigorievich Mali shevsky

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 19, 2003
Commencement June 2004

Doctor of Philosophy dissertation of Alexey Grigorievich Malishevsky presented

on June 19, 2003

APPROVED:

Major Professor, representing Computer Science

Director of the School oLi!ectrical Engineering and Computer Science

Dean of the ,Gtach1ate School

I understand that my dissertation will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

Alexey Grigorievich Malishevsky, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGMENTS

I give my biggest thanks to my adviser and mentor, Gregg Rothermel, who sup-

ported and guided me from the first conception of the topic to the very end. Because

of him, I was able to participate in a variety of exciting experimental studies and

had the privilege of being a part of a team that conducted a large number of research

activities in an exciting area of regression testing. He guided the research activities

and was the major contributor in interpretation of results and writing several articles

we published on which a major portion of my work is based.

I give my special thanks to Sebastian Elbaum for his extensive help in exper-

imental studies, especially in the area of data analysis. He devised and computed

the code-based fault index metric that we used extensively. He contributed many

significant ideas, analyzed data and interpreted the results for many experiments,

organized and guided several empirical studies, made large contributions to many

articles we published, and, together with my adviser, guided my research overall.

In addition, he guided the development of Bash and Gzip experimental subjects. He

supported several students who made significant contributions to this research.

I am very thankful to Margaret Burnett, Thomas Dietterich, Prasad Tadepalli,

and David Sullivan for serving on my committee. They gave me valuable feedback

on my work. I am especially thankful to Thomas Dietterich practical suggestions

for improving this work and suggestions for future empirical studies.

My thanks go to Xuemei Qiu who contributed many ideas related to test suite

composition experiments and collected portions of data for this study. She finalized

preparation of the Empire subject and collected data related to this subject used by

several empirical studies.

My thanks go to Amit Goel who has created infrastructure for several medium-

size subjects and collected subjects-related data used in several studies. He and

Joseph Ruthruff contributed many ideas toward our studies of cost cognizance and

conducted several experiments related to this concept.

I appreciate very much Praveen Kallakuri and Satya Kanduri who were major

contributors for the empirical studies on factors affecting prioritization effective-

ness. Praveen Kallakuri also made significant contributions to the test suite compo-

sition studies, and Satya Kanduri helped develop the classification tree-based pre-

dictor for prioritization effectiveness.

Much appreciation goes to Brian Davia for initially preparing the Empire ex-

perimental subject, and to Praveen Kallakuri for preparing the Bash experimental

subject, which were extensively used in experiments. David Gable revised the tech-

niques based on fault-proneness and provided the tools computing DIFF-based in-

formation. Thanks to Adam Ashenfelter, Sean Callan, Dan Chirica, Hyunsook Do,

Desiree Dunn, David Gable, and Dalai Jin, who prepared a set of medium-sized

experimental subjects.

Thanks to Siemens Corporate Research who provided us with a set of ini-

tial small-sized experimental subjects, and to Phyllis Frankl, Filip Vokolos, and

Chengyun Chu, who provided the space subject.

I thank the National Science Foundation for supporting my research with grants.

I am greatly thankful to Oregon State University and the Computer Science De-

partment for being my home for the last ten years and for giving me the opportunity

to achieve my dreams.

I give the greatest thanks to my parents, Elena and Grigory, for emotional sup-

port through school years especially during difficult times. They made it all possible

for me to achieve my objectives by guiding me and keeping my spirits high espe-

cially at rough times.

TABLE OF CONTENTS
Page

Chapter 1: Introduction and Background 1

1.1 Introduction 1

1.2 Background and Previous Work 5

1.2.1 Testing 5

1.2.2 Regression Testing 6

1.2.3 Regression Test Selection and Test Suite Reduction . 9

1.2.4 The Test Case Prioritization Problem 10

1.2.5 Measurement of Prioritization Effectiveness 12

1.2.6 Previous Test Case Prioritization Techniques 14

1.2.7 Early Empirical Studies 17

1.3 Open Problems 21

1.4 Dissertation Overview 24

Chapter 2: Incorporating Granularity and Modification Information
into Prioritization 26

2.1 Introduction 26

2.2 Change Metrics 28

2.2.1 Textual Code Differencing 28

2.2.2 Fault Index Differencing 30

2.3 Prioritization Techniques 32

2.4 Controlled Experiments 34

2.4.1 Research Questions 36

2.4.2 Programs 36

2.4.3 Prioritization Techniques 40

2.4.4 Experiment Design, Results and Analysis 41

2.4.5 Threats to Validity 56

2.5 Case Studies 59

2.5.1 Experimental Subjects 59

TABLE OF CONTENTS (Continued)
Page

2.5.2 Prioritization Techniques 64

2.5.3 CaseStudyDesign 64

2.5.4 Results and Analysis 66

2.6 Conclusions 74

Chapter 3: Cost Cognizance 76

3.1 Introduction 76

3.2 Cost Cognizant Measure 77

3.2.1 Limitations of the APFD Metric 77

3.2.2 A New Cost-cognizant Metric 80

3.3 Estimating Test Cost 85

3.4 Estimating Fault Severity 86

3.5 Prioritization Techniques 88

3.6 Case Study 98

3.6.1 Introduction 98

3.6.2 Results and Discussion 103

3.6.3 Discussion 110

3.7 Conclusions 113

Chapter 4: General Framework for Prioritization 115

4.1 Introduction and Motivation 115

4.2 Illustration 115

4.3 CombinationlCondensation Structure 118

4.4 Framework 121

TABLE OF CONTENTS (Continued)
Page

4.5 Time Complexity . 123

4.6 Fitting Existing Prioritization Techniques into the Framework. 126

4.6.1 Fault-exposing-potential Pnoritization Techniques . . 127

4.6.2 Change and Fault-exposing-potential Combination Pri-
oritization Techniques 129

4.6.3 Coverage and Change-based Techniques 132

4.6.4 Jones and Hanold's Technique 135

4.6.5 Wong'sTechnique 139

4.6.6 Srivastava and Thiagaraj an's Technique 141

4.7 Examples of the Framework Usage 142

Chapter 5: Cost-benefit Tradeoffs in Prioritization 146

5.1 Introduction 146

5.2 Priontization Cost Model 147

5.3 Case Study 152

5.3.1 Prioritization Techniques 152

5.3.2 Experiment Subjects 152

5.3.3 Case Study Design 154

5.3.4 Results and Analysis 155

5.4 Discussion and Conclusions 156

Chapter 6: Understanding Factors that Influence Prioritization Ef-
fectiveness 159

6.1 Introduction 159

6.2 Test Suite Composition Effects 160

6.2.1 Introduction 160

6.2.2 Test Suite Granularity and Test Input Grouping . 163

6.2.3 Program Subjects 165

6.2.4 Experiments 170

TABLE OF CONTENTS (Continued)
Page

6.2.5 Experiment Design and Analysis Strategy 174

6.2.6 Threats to Validity 175

6.2.7 Data and Analysis 178

6.2.8 Discussion 183

6.2.9 Conclusion 186

6.3 Effects of Changes 187

6.3.1 Introduction 187

6.3.2 Experiment Subjects 187

6.3.3 Empirical Study Design 189

6.3.4 Results and Observations 192

6.3.5 Discussion 197

6.4 Conclusions 198

Chapter 7: Classification 199

7.1 Introduction 199

7.2 Empirical Study 201

7.2.1 Prioritization Techniques 201

7.2.2 Subject Programs 202

7.2.3 Study of Average APED Values 204

7.2.4 Study of Prioritization Instances and Cost-Benefit Thresh-olds 206

7.2.5 Improving Technique Selection using Testing Scenario
Characteristics 210

7.3 Discussion and Conclusions 224

Chapter 8: Conclusions, Contributions, and Future Work 227

8.1 Conclusions and Contributions 227

8.1.1 Prioritization Techniques 227

8.1.2 Extensive Studies of Technique Effectiveness 228

8.1.3 Version-specific and Arbitrary Granularity Level Prior-
itization Techniques 228

8.1.4 Cost-cognizance 228

8.1.5 Prioritization Framework 229

TABLE OF CONTENTS (Continued)
Page

8.1.6 Cost Model 229

8.1.7 Factors 230

8.1.8 Prediction 230

8.2 Future Work 231

8.2.1 Experiment Materials 231

8.2.2 Cost-cognizance 232

8.2.3 Cost Model 234

8.2.4 Factors 234

8.2.5 Prediction 234

8.2.6 Metrics on Test Case Orderings 235

8.2.7 Combining Pnoritization with Other Regression Test-
ing Techniques 235

Bibliography 236

Appendices 255

Appendix A: Glossary of Pnontization Techniques 256

Appendix B: Detailed Data for Studies of Techniques Incorporating
Arbitrary Granularity and Change Information (Chapter
1.4) 259

Appendix C: Tukey Tables for Studies of Techniques Incorporating
Test Cost and Fault Severity Estimations 269

LIST OF FIGURES
Figure

1.1 Examples illustrating the APFD metric 13

2.1 Specific award value term computation functions, used as pa-
rameters in Algorithm 1 35

2.2 APFD boxplots for an "all programs" total. The horizontal
axis lists techniques, and the vertical axes list APFD scores. . . 42

2.3 APFD boxplots for individual programs. The horizontal axes
list techniques, and the vertical axes list APFD scores 43

2.4 Radar chart (the line connects points whose distances from the
center specify APFDcvalues) 50

2.5 Overview of case study data. Vertical axes depict APFD val-
ues. At left, box plots present the overall distribution of APED
data per technique, summarized across all program versions.
At right, graphs show the APED values obtained by each tech-
nique on each version 67

3.1 APFDforExample3 79

3.2 Examples illustrating the APFDC metric............ 82

3.3 Graphs for use in illustrating derivation of the APFDC formula. 84

3.4 Specific award value term computing functions, used as pa-
rameters in Algorithm 2 93

3.5 Specific award value term computing functions, used as pa-
rameters in Algorithm 2 94

3.6 Specific award value term computing functions, used as pa-
rameters in Algorithm 2 95

3.7 Specific award value term computing functions, used as pa-
rameters in Algorithm 2 96

3.8 Specific need to reset functions, used as parameters in Algo-rithm2 97

3.9 Mean APFDC per distribution, per technique 104

LIST OF FIGURES (Continued)
Figure Page

3.10 Absolute differences in APFDCvalues across all observations,
for three non-unit distributions vs. the unit distribution 106

3.11 APFDC values, per distribution, per technique 107

3.12 APFDC values for combined distributions 109

3.13 APFDC curves for Practical Question 2 112

4.1 An example of a combinationlcondensation structure with two
groups and two vectors per group 116

4.2 The combinationlcondensation structure for pnoritization tech-
nique fn-bfi-fep-nofb 117

5.1 Differences between fn-cov-fb and random across various costratios 156

5.2 Differences between fn-cov-nofb and random across various
cost ratios 157

5.3 Differences between optimal and random across various costratios 158

6.1 APFD values for test case priontization 179

6.2 Priontization interactions 181

6.3 Test execution time for random and functional groupings
across test suite granularities (x-axis), averaged across ver-sions 183

6.4 Distribution of APFD variable across versions, per program. . 193

7.1 Average APFDs per technique, and optimal APFD, per pro-
gram and overall 205

7.2 Classification tree for fn-cov-nofb versus random 214

7.3 Classification tree for fn-cov-fb versus random 217

7.4 Classification tree for fn-cov-fb versus fn-cov-nofb 218

LIST OF FIGURES (Continued)
Figure Page

7.5 Classification tree for fn-cov-nofb versus fn-bdiff-cov-nofb.. . 220

7.6 Classification tree for fn-bdiff-cov-fb versus fn-cov-nofb. . . . 221

7.7 Classification tree for fn-bdiff-cov-fb versus fn-bdiff-cov-nofb. 223

LIST OF TABLES

Table Page

2.1 Prioritization Techniques and Parameters for use with Algo-rithml 32

2.2 Experiment Objects 37

2.3 ANOVA Analysis, Statement Level Techniques, All Programs 44

2.4 Bonferroni Means Separation Tests, Statement Level Tech-
niques, All Programs 46

2.5 ANOVA Analysis, Basic Function Level Techniques, All Pro-grams 47

2.6 Bonferroni Means Separation Tests, Basic Function Level
Techniques, All Programs 48

2.7 ANOVA Analysis, Function versus Statement Level Tech-
niques, All Programs 51

2.8 Bonferroni Analysis, Function versus Statement Level Tech-
niques, All Programs 51

2.9 ANOVA Analysis, All Function Level Techniques, All Programs 52

2.10 Bonferroni Analysis, All Function Level Techniques, All Pro-grams 53

2.11 ANOVA Analysis, All Techniques, All Programs 55

2.12 Bonferonni Analysis, All Techniques, All Programs 56

2.13 The Grep Object 60

2.14 The Flex Object 60

2.15 The QTB Object 63

2.16 Fault Exposure and Test Case Activity Data 69

3.1 Prioritization Techniques and Parameters for use with Algo-rithm2 92

3.2 Mozilla Test Case Cost Distribution 100

3.3 QTB Test Case Cost Distribution 100

LIST OF TABLES (Continued)

Table Page

3.4 Mozilla Fault Severity Distributions 101

3.5 Fault Severity Distributions (Left) versus Test Case Cost Dis-
tributions (Above). Entries Marked with "X" Indicate Combi-
nations that were Utilized in the Study 102

5.1 Bash Subject 153

6.1 Experiment Subjects 166

6.2 Test Cases per Granularity Level 168

6.3 Percentage of Functional Test Cases with Non-Uniform Group-ings 169

6.4 Prioritization Anova 180

6.5 Execution Time Anova 184

6.6 Gzip Experiment Subject 188

6.7 Basic Statistics for Change Variables 192

7.1 Experiment Subjects (Make, Sed, and Xearth) 202

7.2 Tests per Subject (Make, Sed, and Xearth) 203

7.3 Percentage of Pnontization Instances in which the First Tech-
nique Compared is Better than the Second Technique Com-
pared under a Given Cost-benefit Threshold 208

7.4 Metrics Collected over the 56 Applications of Priontization
Techniques to our Subject Programs 213

7.5 Classification Accuracy on Test Sample Fn-cov-nofb versusRandom 215

7.6 Classification Accuracy on Test Sample - Fn-cov-fb versus
Random 217

7.7 Classification Accuracy on Test Sample Fn-cov-fb versus Fn-cov-nofb 219

LIST OF TABLES (Continued)

Table Page

7.8 Classification Accuracy on Test Sample Fn-cov-nofb versus
Fn-bdiff-cov-nofb 220

7.9 Classification Accuracy on Test Sample - Fn-bdiff-cov-fb ver-
sus Fn-cov-nofb 222

7.10 Classification Accuracy on Test Sample - Fn-bdiff-cov-fb ver-
sus Fn-bdiff-cov-nofb 223

7.11 Strategies for Prioritization Technique Selection 225

LIST OF APPENDIX TABLES

Table Page

A. 1 Composition of Prioritization Technique Names 257

B.1 ANOVA Analyses, Statement Level Techniques, Individual
Programs 260

B.2 Bonferroni Analyses, Statement Level Techniques, IndividualPrograms 261

B.3 ANOVA Analyses, Basic Function Level Techniques, Individ-
ual Programs 262

B.4 Bonferroni Analyses, Basic Function Level Techniques, Indi-
vidual Programs 263

B.5 ANOVA Analyses, Function Versus Statement Level Tech-
niques, Individual Programs 264

B.6 Bonferroni Analyses, Function Versus Statement Level Tech-
niques, Individual Programs 265

B.7 ANOVA Analyses, All Function Level Techniques, IndividualPrograms 266

B.8 Bonferroni Analyses, All Function Level Techniques, Individ-
ual Programs, First Six Programs 267

B.9 Bonferroni Analyses, All Function Level Techniques, Individ-
ual Programs, Last Two Programs 268

C. 1 Results of Tukey Tests Table 1 270

C.2 Results of Tukey Tests Table 2 271

C.3 Results of Tukey Tests Table 3 272

Test Case Prioritization

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Each time a software system is modified and is to be released, it is regression tested.

Regression testing is similar to testing in general: it involves executing test cases

and checking the results for correctness. Regression testing, however, is done to

ensure that modifications to code have not created new faults (software has not

regressed) or that modifications fulfilled their intended purpose by correctly altering

software functionality.

During initial, development testing, software is validated for the first time as it

is being written. Development testing is usually done only once during the software

life-cycle. Thus, its cost is amortized over the software's lifetime. On the other

hand, regression testing is done before each new software release as part of soft-

ware maintenance. Being performed multiple times, regression testing can have a

profound effect on the software budget. Because regression testing itself accounts

for a large percentage of software cost [11, 63, 114, 117, 170], this means that even

small reductions in regression testing cost can have a profound effect on the soft-

ware cost. In addition, reducing regression testing time can reduce the time needed

to create a new software version and allow engineers to release this version earlier

than would be possible otherwise.

2

Frequently, a test suite is developed for regression testing, and reused across

different regression testing sessions. To test new features, engineers add new test

cases to this test suite; as a result, the suite grows and the cost of regression testing

increases.

To reduce the cost of regression testing, several approaches have been devel-

oped. In regression test selection, only a subset of a test suite is selected and used

to validate the software following changes [26, 116, 1701. In test suite reduction,

at some point of time, the test suite is reduced, permanently discarding some test

cases from the test suite [25, 73, 147].

In some cases, for example, when the software is safety critical, such as in flight

control or medical equipment software; we cannot (or are not allowed to) omit test

cases during regression testing. In this case, a different approach exists to reduce

costs: test engineers may prioritize their regression test cases so that those which are

more important, by some measure, are run earlier in the regression testing process.

Test case prioritization techniques schedule test cases in an order that increases

their effectiveness at meeting some performance goal. For example, test cases might

be scheduled in an order that achieves code coverage as quickly as possible, exer-

cises features in order of frequency of use, or reflects their historically observed

abilities to detect faults. In this thesis, we are concerned primarily with improving

test suites' rate of fault detection. An improved rate of fault detection can provide

earlier feedback on the system under test, enable earlier debugging, and increase

the likelihood that, if testing is prematurely halted, those test cases that offer the

greatest fault detection ability in the available testing time will have been executed.

Before we began this research, several prioritization techniques had been devel-

oped [174, 175, 178, 213]. These techniques had been explored and their effective-

3

ness evaluated in achieving certain goals. However, only limited studies of these

techniques had been performed, using a few small programs. A larger pooiof more

realistic subjects has to be developed and more experiments performed in order to

generalize results. This research addresses this need, by utilizing a larger number

of more realistic program subjects for prioritization experiments.

Prior to this research, existing prioritization techniques did not take into account

modifications made to the code, missing important information about the software.

This research thus develops a variety of prioritization techniques utilizing informa-

tion about code modifications in order to better predict the fault-revealing capability

of test cases.

Previous prioritization techniques were also limited in their handling of test

costs and fault seventies, for the most part failing to account for differences in

them.1 While this could be acceptable in some situations, sometimes we cannot

ignore these differences. Thus, this research develops prioritization techniques that

utilize test cost and fault severity information, develops a metric to assess cost-

cognizant prioritization effectiveness, and conducts a case study to explore cost

cognizance.

Previously, researchers developed several pnioritization techniques indepen-

dently, providing separate algorithms for each. However, if we look closer, we can

see that all of these previous techniques, as well as the new techniques we have cre-

ated, have similarities. They evaluate each test case using some objective function

1 Wong et al. [213] suggest the use of a coverage-based prioritization technique that uses test costs;
however, they do not formally present such a technique or evaluate its effectiveness.

ru

and order them using these functions. This research explores these comrnonalities

and creates a unifying framework for prioritization techniques.

Previous studies of prioritization effectiveness used an objective metric to evalu-

ate the quality of test orderings. However, even when this metric suggests a numeric

advantage for one technique in comparison to another, this numeric advantage may

not be correlated with meaningful cost savings in practice. Thus, this research de-

velops a cost model with which engineers can assess whether a given prioritization

technique is economical.

Previous research, and our own research, has also shown that prioritization can

be affected by a wide variety of factors. However, no previous work has explored

these factors. Thus, this research's empirical studies explore how several character-

istics of a software system and its test cases affect prioritization. Knowledge about

factors can facilitate the creation of a prediction mechanism for prioritization tech-

nique performance and create a set of guidelines for software developers who can

target the software design and modifications so that prioritization can be successful.

Finally, given the variance we have observed in prioritization technique perfor-

mance as factors vary, an important issue for the practical application of prioritiza-

tion is the ability to predict which prioritization technique will be most beneficial

under a given set of circumstances. This research shows how to use program and

test case properties to better determine which prioritization technique will be the

most beneficial given specific metrics.

Recently, researchers at Microsoft [1851 have applied prioritization to test suites

for several multi-million line software systems and found it highly efficient even on

such large systems. This suggests that this problem is not merely academic: there

is interest in prioritization for large-scale industrial applications.

5

1.2 Background and Previous Work

1.2.1 Testing

The purpose of software verification is to ensure that the software satisfies its spec-

ifications. Verification includes testing and analysis (informal analysis, code walk-

troughs, code inspections, correctness proofs, and symbolic execution).

Testing involves, in general, executing the software and verifying that it behaves

according to specification. Usually, in testing, we employ a test suite including

sets of inputs (test cases) which are applied to the software to verify its behavior.

The main difficulty in such testing is that software, in general, does not have the

continuity property, meaning that small differences in inputs can cause dramatic

differences in software behavior [63]. In most cases, testing itself can only show

the presence of bugs, not their absence.

More formally, let P be a program, D be the input domain (set of allowable

inputs) of P, and R be the range (set of program outputs given inputs from D) of

P. P is correct for an input d e D (we call it a test case) if its output P(d) satisfies

requirements. Program P is correct 1ff it is correct for every d E D. If P(d) is

incorrect for some d D, we call this a failure. During its execution, an incorrect

state that program P enters is called a fault. In order for a failure to occur, a fault

must occur. We call a finite set of test cases T a test suite. If every test case t E T

runs without exposing a failure, T is successful [63].

In principle, one way to test is to employ exhaustive testing by including a pro-

gram's whole input domain in its test suite. While in some cases this is feasible

(e.g., embedded systems with a small set of allowable finite inputs), it becomes im-

practical in most other cases. If inputs are of simple data types with limited size,

exhaustive test suites can be finite, but often unrealistically large. Thus, test suites

must be created according to some rules.

A set of rules governing test suite composition is called a test adequacy criterion.

A test adequacy criterion expresses conditions that a test suite must satisfy. Test

adequacy criterion C is consistent if for every two test suites T1 and T2 that satisfy

C, they are both successful or both unsuccessful. Test adequacy criterion C is called

complete if, when P is incorrect, there exists a test suite that is unsuccessful and

belongs to C [63].

In practice, test selection criteria are employed to generate, augment, or reduce

test suites. For example, in the research described later in this thesis, test cases for

certain programs were generated based on the branch coverage adequacy criterion,

meaning that our goal was to create test suites that exercised all reachable branches.

In another case, for several large programs, a function-based test adequacy crite-

rion was used, meaning that our goal was to create test suites that exercised all

specification-based functions.

1.2.2 Regression Testing

Regression testing is testing performed after modifications have been made to a

program, it involves re-testing a program in order to re-establish some level of con-

fidence in that program's correctness. Regression testing can be used in both the

development and maintenance phases of the software life-cycle. In the develop-

ment phase, regression testing can be employed to validate the software each time

modifications are applied to the code. In the maintenance phase, after the soft-

ware has been corrected, adapted to a new environment, or enhanced to improve its

7

performance, regression testing is performed to ensure that all modifications have

altered software to conform to new specifications, and that no new faults have been

introduced by changes [63, 114].

There are many different regression-testing-related processes. One is the batch

process where regression testing is the last part of the creation of a new release.

In this process, after a new release of software is produced, regression testing is

employed to remove faults and achieve necessary confidence in the software. A

second process is the incremental process where regression testing is performed

continuously, in cycles (e.g., nightly), in parallel with coding.

Leung and White [114] distinguish two types of regression testing: progressive

regression testing and corrective regression testing. In progressive regression test-

ing, specifications change to accommodate the need for new functionality, altered

data formats, etc. Usually, new modules are created and added to the software. Pro-

gressive regression testing tests a modified program using modified specifications.

Here, some test cases can become obsolete (no longer applicable) and some test

cases must be added to test new functionality. In corrective regression testing, spec-

ifications do not change. Because specifications do not change, no tests become

obsolete. However, because of code changes, an existing test suite may become

insufficient according to the old adequacy criterion, so new tests are likely to be

needed.

Leung and White [114] outline several important differences between develop-

ment testing and regression testing.

[J

. Previous test suites may be available for regression testing (of course, these

may need to be augmented with additional test cases), while development

testing requires developing the test suite.

. While development testing validates the whole program, regression testing

needs to validate only parts of the program that are affected by modifications.

Whereas development testing is typically allocated resources and time as part

of software development budget, regression testing often has no budget or

allocated time. Thus, engineers try to cut regression testing time as much as

possible.

In development testing, knowledge about software is readily available from

the developers. In regression testing, this information is often noteasily avail-

able, making the regression testing process more difficult and less efficient.

The completion time for regression testing is usually less than that for devel-

opment testing, because only a fraction of the program is verified.

While development testing is only performed during the software develop-

ment phase, regression testing is performed many times during the mainte-

nance phase after the software is released.

Despite these differences between development testing and regression testing,

there are also similarities between them. They both have the same overall purposes:

to increase confidence in the software and find errors in the code.

1.2.3 Regression Test Selection and Test Suite Reduction

Engineers frequently reuse the test suite for different regression testing sessions.

New features are tested by generating new test cases and adding them to the regres-

sion testing test suite. As the test suite grows, a simple retest-all approach (using

the whole test suite in the regression testing) can become too expensive. As a result,

to deal with the increasing cost of the regression testing, several methods have been

proposed.

One such method is regression test selection (RTS) [115, 1681. In general, re-

gression test selection uses program and test suite properties (such as trace infor-

mation and change information) and selects a subset of the test suite for use in

validation of the newly created software version. More formally, consider program

P, modified version P', and the test suite T for P. Regression test selection selects

test suite T' c T which is used in regression testing of P' against P.A variety of

RTS techniques have been developed so far and substantial research has been done

in this area [9, 14, 18, 30, 55, 66, 67, 76, 113, 157, 158, 162, 163, 164, 165, 168,

169, 170, 171, 195, 219]. In [168], Rothermel and Harrold, give an overview of

various RTS techniques.

Another method for reducing regression testing cost is test suite reduction [25,

56, 73, 147, 173, 212, 215, 216, 217, 218]. Like RTS, test suite reduction selects

a part of the test suite to be used in future regression testing. Formally, reduction

splits the original test suite T into two subsets: T01d and Tnew where T01d U Tnew T

and T01d fl Tnew = 0. In reduction, however, subset T01d is permanently discarded

and never used again, while subset Tnew is kept and used in future regression testing

sessions. One of the advantages of reduction relative to selection is that it decreases

10

the amount of managed data (such as saved outputs and traces). In some instances,

reduction and selection can be used together.

1.2.4 The Test Case Prioritization Problem

Regression test selection and test suite reduction reduce the cost of regression test-

ing. Earlier studies, however, showed that reduced test suites could miss some

faults which would otherwise be detected by the original test suite [173, 176, 21 2].

In other cases, regulations require engineers to execute all test cases (e.g., in safety

critical systems). In these cases, omitting test cases may be risky, or not allowed.

If engineers must execute all test cases, which order of test cases should be used?

One test order can be better than another under some metric. For example, a test

suite under one order may reveal a given fault after executing ten test cases, while

this test suite under a different order reveals the same fault after executing two test

cases. Because a test suite under the second order reveals the fault earlier, it might

give engineers more time to correct this fault. In some cases, if regression testing is

terminated prematurely due to some unexpected event, a better test ordering would

allow more valuable test cases to be executed before testing ends.

Test case prioritization orders a test suite to maximize some objective function

defined on test orderings. We define the test case prioritization problem as follows:

The Test Case Prioritization Problem:

Given: T, a test suite; PT, the set of permutations of T; and f, a

function from PT to the real numbers.

Problem: Find T' E PT such that (VT") (T" e PT) (T" T')

[f(T') >

11

In this definition, PT is the set of possible prioritizations (orders) of T, and f is an

objective function that, applied to any such order, yields an ordering quality value

for that order.

There are many possible goals for prioritization. For example, testers may wish

to increase the coverage of code in the system under test at a faster rate, increase

their confidence in the reliability of the system at a faster rate, or increase the rate

at which test suites detect faults in that system during regression testing. In the

definition of the test case prioritization problem, f represents a quantification of

such a goal.

Rothermel et aT. distinguish two varieties of test case prioritization: general and

version-specific [1781. With general prioritization, given program P and test suite

T, the test cases are prioritized in T with the aim of finding an order of test cases

that will be useful over a succession of subsequent modified versions of P. With

version-specific test case prioritization, given P and T, the test cases are prioritized

in T with the aim of finding an order that will be useful on a specific version P' of

P. In the former case, our hope is that the prioritized suite will be more successful

than the original suite at meeting the goal of the prioritization on average over

subsequent releases; in the latter case, our hope is that the prioritized suite will be

more effective than the original suite at meeting the goal of the prioritizationfor P'

in particular.

Given any prioritization goal, various test case prioritization techniques may

be used to meet that goal. For example, to increase the rate of fault detection of

test suites, test cases might be prioritized in terms of the extent to which they ex-

ecute modules that have tended to fail in the past. Alternatively, test cases might

be prioritized in terms of their increasing cost-per-coverage of code components, or

12

in terms of their increasing cost-per-coverage of features listed in a requirements

specification. In any case, the intent behind the choice of a prioritization technique

is to increase the likelihood that the prioritized test suite can better meet the goal

than would an ad hoc or random order of test cases.

Finally, although we focus in this thesis on prioritization for regression testing,

prioritization can also be employed in the initial testing of software [4]. An impor-

tant difference between these applications is that, in regression testing, prioritization

techniques can use information gathered in previous runs of existing test cases to

prioritize test cases for subsequent runs; such information is not available during

initial testing.

1.2.5 Measurement ofPrioritization Effectiveness

To measure how rapidly a prioritized test suite detects faults (the rate of fault de-

tection of the test suite) we require an appropriate objective function f. For this

purpose, Rothermel et al. defined a metric, APFD, which represents the weighted

average of the percentage of faults detected during the execution of the test suite

[34, 175]. APFD values range from 0 to 100; higher values imply faster (better)

fault detection rates.

For purpose of illustration, consider an example program with 10 faults and

a test suite of 5 test cases, A through E, with fault detecting abilities as shown

in Figure 1.1 .A. Suppose we place the test cases in order ABCDE to form a

prioritized test suite Ti. Figure 1.1 .B shows the percentage of detected faults versus

the fraction of the test suite Ti used. After running test case A, 2 of the 10 faults

are detected; thus 20% of the faults have been detected after 0.2 of test suite Ti has

test fuult

1 2 3 4 5 6 7 8 9 10
AX x

B xx
C xxxxxxx
D x

E xxx

13

Test Cute Ordrt A-B-C-D-E Test Case Oeder E-D-C-B-A Test Case Order C-S-B-A-V

too too tos

90 I /1 90 I t

soI / so

r8 7o1 _J /
70(

6OI oo
.560

50I 5 55Ø / t 50

e401 4O

3O 3O
3O

APPDO% AisFput4%

0 I I 0

t I

0 0.2 04 0.6 0.8 0.0 0 2 0.4 0.6 0.8 t.o 0 0.2 0.4 0.6 0.8 0.0

Test Suite Fractiou Test Suite Feactiost Test Sutte Fractiou

A. Test suite and faujts exposed B. APFD for prioritized suite Ti C. APFD for prioritized suite T2 1). 41°F!) for prioritized suite T3

FIGURE 1.1: Examples illustrating the APFD metric.

been used. After running test case B, 2 more faults are detected and thus 40% of the

faults have been detected after 0.4 of the test suite has been used. The area under

the curve represents the weighted average of the percentage of faults detected over

the life of the test suite. This area is the prioritized test suite's average percentage

faults detected metric (APFD); the APFD is 50% in this example.

Figure 1.1 .0 reflects what happens when the order of test cases is changed to

EDCBA, yielding a "faster detecting" suite than Ti with APFD 64%. Figure

1.1 .D shows the effects of using a prioritized test suite T3 whose test case order is

CEBAD. By inspection, it is clear that this order results in the earliest detection

of the most faults and illustrates an optimal order, with APFD 84%.

The formula for APFD for the test suite T under the given order is the following:

1 TF1+TF2+...+TFm
nm

i

2n
(1.1)

where n is the number of tests, m is the number of faults, and TF is the test number

(starting from one) which first reveals the fault i in the test suite T under the given

order.

14

1.2.6 Previous Test Case Prioritization Techniques

Rothermel et al. [175, 178] describe several test case prioritization techniques. We

next describe these techniques in detail; they include total statement coverage pri-

oritization, additional statement coverage prioritization, total branch coverage pri-

oritization, additional branch coverage prioritization, total fault-exposing-potential

prioritization, and additional fault-exposing-potential prioritization.

The prioritization techniques that are described in this section, as well as these

described later in this thesis, have been given different names in the literature. For

consistency in this thesis, we impose a general naming scheme on all of these tech-

niques. Details on this scheme and the names used are given in Appendix A. Be-

cause complete technique names are long, we also assign a mnemonic to each name.

1.2.6.1 Total Statement Coverage Prioritization

Total statement coverage prioritization (st-cov-nofb) orders test cases by decreasing

number of covered statements. Test cases that cover the same number of statements

are ordered randomly.

1.2.6.2 Additional Statement Coverage Prioritization

Additional statement coverage prioritization (st-cov-fb) keeps a vector of informa-

tion telling whether a given statement has been covered. This technique marks all

statements in the vector as uncovered and performs the following sequence of steps

until no more unselected test cases remain: (1) if no test case can add any more

statement coverage, mark all statements in the vector "uncovered"; (2) select an Un-

15

selected test case that covers the largest number of statements uncovered so far (if

several test cases cover the same number of uncovered statements, pick the next test

case randomly); (3) update the vector, marking statements covered by the selected

test case "covered"; (4) append the selected test case to the ordering.

1.2.6.3 Total Branch Coverage Prioritization

Total branch coverage prioritization (br-cov-nofb) operates like total statement coy-

erage prioritization, but orders test cases by decreasing number of covered branches.

1.2.6.4 Additional Branch Coverage Prioritization

Additional branch coverage prioritization (br-cov-fb) is similar to additional state-

ment coverage prioritization, except that it operates on branches instead of state-

ments.

1.2.6.5 Total Fault-exposing-potential Prioritization

During testing, faults in certain locations are easier to detect than in others. Cov-

erage alone is not always a sufficient metric by which to infer whether a fault in

a given location is detected by a given test case. Execution of a faulty statement

by a given test case is a necessary but not sufficient condition for detection of a

fault hiding in this statement. PIE analysis, suggested by Voas [193], lists three

necessary and sufficient conditions for a fault to be revealed in a given location. A

faulty location must be executed, a data state just after the executed faulty location

must be erroneous, and this erroneous data state must propagate to output. Three

probabilities, execution, infection, and propagation, correspond to these three con-

ditions. Voas suggests a method for estimating these three probabilities, and defines

a combined probability, called the sensitivity of a location, defining the probability

for a location to reveal a fault if one exists, when executing a test case from a given

profile.

More generally, the probability that a given test case reveals a fault in a given

location, if one exists, is called its fault-exposing-potential (FEP).

One way to compute an approximation of FEP is to employ Voas's method.

However, Voas's method for computing sensitivity is too conservative, and it is

very difficult in practice to compute infection and propagation probability.

Alternatively, an approximation of each statement's FEP can be obtained by

applying mutation analysis [30, 72]. In mutation analysis, for every location 1 and

every test case t, the fault-exposing-potential approximation, FEP1,, is computed.

FEP1, is computed by the following set of steps: (1) produce set M1 of semantically

different mutants in location 1, (2) for every m E M1, compute a mutated program

prn and test Ptm with test case t against the original program P, (3) compute FEP1,

as ratio of mutants killed (detected) by test case t over the total number of mutants

M1 (if t did not execute 1, FEPj, = 0).

Total fault-exposing-potential prioritization (st-fep-nofb) works as follows. For

every test case t, it computes at = >I1EL FEP1,, where L is the set of all statements.

Then, it sorts test cases in order of decreasing at.

Due to the high cost of mutation analysis used to compute fault-exposing-

potential for every location and every test, fault-exposing-potential-based tech-

niques are expensive. However, if the technique proves useful, less expensive

approximations might be sought.

17

1.2.6.6 Additional Fault-exposing-potential Prioritization

Additional fault-exposing-potential prioritization (st-fep-fb) employs an iterative

approach, similar to additional statement coverage prioritization. At each itera-

tion, a test case tselected is selected and the award values for other test cases are

lowered due to increased confidence in the correctness of the locations covered

by the selected test case. This is because, once a test case t is executed and suc-

ceeds, the probability that an executed statement does not contain a fault increases.

A "confidence" vector is used to hold information for every statement, reflecting

current confidence in its correctness. More precisely, the technique sets the con-

fidence vector to zeroes and performs the following sequence of steps until no

more unselected tests are left: (1) compute an award value for every test case

using the formula award = ((1 confidencej) x FEP1,t); (2) select the

test case with the highest award value and add it to the ordered sequence; (3)

for every statement 1 covered by selected test case tselecteli, update confidence1

1 (1 confidencej) x (1 FEPi,tsei)

1.2.7 Early Empirical Studies

In [175], Rothennel et al. describe experiments with several C programs ranging

in size from 138 to 6218 lines of code.2 Six prioritization techniques were stud-

ied including total statement coverage prioritization, additional statement coverage

prioritization, total branch coverage prioritization, additional branch coverage prior-

2 were the Siemens and Space programs, described in detail in Section 2.4.2.

itization, total fault-exposing-potential prioritization, and additional fault-exposing-

potential prioritization. All these techniques showed some ability to improve APFD

relative to random orderings. Anova and Bonferroni analyses were performed to

see whether statistical significance could be observed among different techniques.

As overall results, for all subjects and versions combined, fault-exposing-potential

techniques provided the best improvement in the rate of fault detection measured by

the APFD metric, followed by the total branch and total statement coverage tech-

niques.

In [178], Rothermel et al. extend these early results. The same programs used in

[175] were used to perform several additional controlled studies. Because the faults

studied in [175] provided a limited subset of the possible faults which could occur

in practice, these additional studies also considered a substantial number of mutants

(altered statements) as faults. In this study, prioritization techniques also showed

improvement in the rate of fault detection relative to random test case orderings.

Similar to the earlier experiment, in this case, additional fault-exposing-potential

prioritization achieved statistically significantly better results than other techniques.

1.2.7.1 Work by Other Researchers

Several other researchers have considered the test case prioritization problem; in

most cases this work postdates much of the research reported in this thesis, but we

summarize it here.

Wong et al. Wong et al. [213] suggest prioritizing test cases according to the

criterion of "increasing cost per additional coverage". In other words, given test

19

suite T and cost Ct for every test case t e T, their technique performs the following

steps: (1) for every t e T, compute award value3 at as the number of additionally

covered statements divided by test cost Ct, (2) select test case t3 with the highest

award value, (3) remove test case t8 from T, (4) add t to the ordered sequence, (5)

keep track of statements uncovered so far, (6) go to step 1 if T 0. The authors

restrict their attention to prioritization of the subset of test cases selected from a

test suite by a safe regression test selection technique, and the selected test cases

are only those test cases that reach modified code, but other test cases could be

placed after these for later execution. No empirical results were reported on this

prioritization technique.

Jones and Harrold. Jones and Harrold [96] describe a technique for prioritiz-

ing test cases for use with the modified condition/decision coverage (MCDC) test

adequacy criterion. This technique uses an iterative approach, updating test infor-

mation as test cases are added to the ordered sequence. Their algorithm generates

a list of ordered sequences of test cases. Given test suite T and set of entities E,

the algorithm works as follows: (1) mark all e e E uncovered; (2) Vt E T compute

corttributiortt (the sum of the MC/DC pairs completed and the number of entries,

exits, and cases covered by test case t); (3) if Vt E T Corttributiont = 0, mark

all e e E uncovered and select test case tselected with the highest entity coverage;

otherwise, select test case tselected with the highest (5) add test

3We use this term to define the test case worth metric, facilitating test case comparison where the
test case with the highest award value is chosen as the next test case to be added to the ordered
test suite.

case tselected to the prioritized sequence; (6) mark all entities in E covered that are

covered by tselected (7) remove t from T; (8) go to step 2 if T 0.

Srivastava and Thiagarajan. Srivastava and Thiagarajan [185] present a tech-

nique for prioritizing test cases based on basic block coverage. In their algorithm,

during each iteration, a test case that covers the maximum number of uncovered

yet changed basic blocks of code is selected. When no new changed blocks can be

covered, the set of covered blocks is reset, and a new sequence is started. The tech-

nique differs from previous techniques in that it computes flow graphs and coverage

from binary code, and attempts to predict possible affects on control flow following

from code modifications. The authors describe the application of this technique to

several large systems at Microsoft, and provide data showing that the approach can

be applied efficiently to those systems. The authors also provide data suggesting

that their prioritized test case orders achieve coverage quickly, and can detect faults

early; however, their studies do not compare their prioritized test suites to other pri-

oritization techniques and random ordering, so it is not possible to say whether the

results represent an improvement in rate of fault detection over those that would be

obtained under other orderings.

Kim and Porter. Kim and Porter [103] present a technique, which they refer to

as a "history-based prioritization" technique, in which information from previous

regression testing cycles is used to better inform the selection of a subset of an

existing test suite for use on a modified version of a system. This technique is not,

however, a "prioritization technique" in the sense defined in Section 1.2.4, because

it imposes no ordering on test cases the characteristic essential to the definition

21

of prioritization. Rather, the approach selects a subset of a test suite, using history

information to determine which test cases should be selected, and is more accurately

described as a "regression test selection technique" [168]. The information used can

be test case execution, fault detection, or entity coverage (statement, branch, etc.).

Given a set Pr of selection probabilities, a regression test selection technique X,

and the original test suite T, their overall regression testing technique works as

follows: (1) compute test suite Tselected c T using X, (2) draw test case tselected E

Tselected that has the highest value Prtsei, (3) execute tselected, (4) go to step 2 if

testing time is not over.

Avritzer and Weyuker. Avritzer and Weyuker [4] present techniques for generat-

ing test cases that apply to software that can be modeled by Markov chains, provided

that operational profile data are available. Although the authors do not use the term

"prioritization", their techniques generate test cases in an order that can cover a

larger proportion of the software states most likely to be reached in the field earlier

in testing, essentially, prioritizing the test cases in an order that increases the likeli-

hood that faults more likely to be encountered in the field will be uncovered earlier

in testing. Though not concerned with the prioritization of existing test cases for use

in testing modified software, the approach provides an example of the application

of prioritization in the case in which test suites are not available.

1.3 Open Problems

As Section 1.2.7.1 shows, in recent years more and more researchers have become

interested in test case prioritization, developed new techniques, and explored their

22

effectiveness under various scenarios. However, prior to the start of this research,

several open problems existed for prioritization. (These problems were described

briefly at the end of Section 1.1. Here, we describe them in greater detail.)

First, only a limited set of techniques had been proposed. These include tech-

niques based on statement and branch coverage and fault-exposing-potential. With

the exception of Wong et al.'s technique, these techniques did not use information

about program modifications, essentially prioritizing test suites without regard to a

particular release. The problem with this approach is that while one ordering can be

the best for one version, a different ordering may be better for a different version. If

modifications are considered, this could allow techniques to target a particular soft-

ware release, potentially producing orderings of better quality relative to a given

software version.

Further, previous techniques have all used statement or branch-level coverage

information. While this could be acceptable for small and medium sized programs,

such a low granularity may not be practical for large software systems. Thus, tech-

niques operating at higher granularity levels (e.g., performing analysis at the func-

tion level) may be used. Finally, for all such techniques, more extended studies need

to be performed if results are to be generalized.

Previous research has also relied on an assumption that all test cases are equally

expensive and all faults are equally severe. While this assumption can be appro-

priate under some circumstances, in many cases, variations in costs and seventies

cannot be ignored. Only Wong et al. in [213] informally mention a prioritization

technique that uses test costs, but no studies were made to assess its effectiveness.

Techniques that utilize estimations of test cost and fault severity need to be devel-

oped and studied.

23

Previously, prioritization techniques have been devised, described, and experi-

mented with independently from each other, ignoring the fact that they have much

in common. No work has been done to explore their commonalities and to devise a

model or framework which could express those techniques. If a unifying framework

for prioritization were developed, it could potentially help us implement a general

algorithm whose instantiations produce a variety of prioritization techniques.

All previous research on prioritization has implicitly assumed that prioritization

will be beneficial, if it increases the rate of fault detection. But this assumption

is incorrect. Prioritization requires additional program preparation, data gathering,

and application of prioritization tools. Also, a prioritized test suite, in some cases,

may not be better than the original test case order. Thus, it is necessary to provide

cost and benefit measures for prioritization techniques, to be able to decide whether

it would be beneficial to apply prioritization at all, and if so, which technique would

be the most economical.

Prioritization technique effectiveness varies greatly under different circum-

stances, such as across different programs, versions, faults, and types of modifi-

cations. There are a variety of factors underlying these circumstances that affect

prioritization effectiveness. No work has been done to explore which factors affect

prioritization effectiveness and how.

There are many different prioritization techniques to choose from. One tech-

nique can be the best in one case, while another technique can be better in other

cases. The relative performance of prioritization techniques depends on a number

of factors. No work has been done to facilitate selection of a technique that would

achieve the best results.

In this work, our goal is to consider these open problems and resolve them.

24

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows.

In Chapter 1.4, we present prioritization techniques that incorporate change in-

formation and work at different granularity levels (levels of analysis of code). We

also present experiments performed to assess these techniques' effectiveness.

In Chapter 3, we present prioritization techniques and a new metric to assess or-

derings that take into account arbitrary test costs and fault seventies. A case study

is presented to assess the effectiveness of such techniques, explore different ways to

estimate fault seventies, consider several distributions of test costs and fault seven-

ties, and answer several practical questions about cost-cognizant prioritization.

In Chapter 4, we present a general prioritization technique framework and show

how it describes all prioritization techniques published to date.

In Chapter 5, we present a pnioritization cost model that can express the cost-

benefit tradeoffs of prioritization. We show how to determine whether a given pni-

oritization technique will be cost-effective or detrimental if applied under given

circumstances. Finally, we present a case study of this cost model.

In Chapter 5.4, we consider two sets of factors that affect prioritization: testsuite

composition and code modifications. We describe experiments that study the impact

of these factors on the effectiveness of several pnionitization techniques. This lays

the groundwork for developing practical guidelines to improve regression testability

in terms of prioritization effectiveness.

In Chapter 7, we show how to apply decision trees to find a set of metrics defined

on the program and its test suite that affect the relative performance of pnionitization

techniques. This can provide an approach by which metrics can be used to predict

in advance which technique will be the best to employ.

Finally, in Chapter 8, we conclude and describe opportunities for future work.

26

CHAPTER 2

INCORPORATING GRANULARITY AND MODIFICATION
INFORMATION INTO PRIORITIZATION

2.1 Introduction

While statement coverage, branch coverage, and fep-based techniques produced fa-

vorable results, their application is rather limited. One issue is that these techniques

do not take modifications into account when trying to produce a test ordering.1

They do not use modification information, which may mean they are not as good at

version specific prioritization as we might like.

A second issue is that all previously developed techniques operate at very low

granularity where code analysis is concerned, such as statement and branch levels.

While such low level information provides prioritization techniques with plentiful

information about test case execution behavior, it may prove to be impractical, es-

pecially for large programs, due to several problems.

The first problem is that in order to obtain a statement or branch level trace (a

list of statements or branches executed by a given test case), a program has to be

significantly altered (instrumented) which could change its behavior, invalidating

computed trace information; in other words, this method can be too invasive. This

could happen for two reasons. The first reason is that low level instrumentation

1 Portions of this chapter have appeared previously in [34, 481.

27

can affect timing and memory usage because extra statements are inserted into the

source code and the resulting executables, at runtime, require additional memory.

Different timing and memory usage can potentially affect program behavior due to

synchronization problems and violations of programmers' assumptions about time

and memory usage.

The second problem is that low granularity coverage information requires a lot

of storage capability making it expensive for large programs.

The third problem is that the more coverage information we have, the more time

is needed to perform prioritization. Prioritization time depends on the amount of

coverage data, and large amounts of data can make prioritization unacceptable due

to the large amount of time it demands.

Higher level instrumentation is not immune to these problems, but we expect it

to be less affected.

As a result, to make fine granularity based techniques usable for large programs,

coverage information may have to be collected and used at ahigher level than state-

ments or branches, such as the level of functions. For larger real-world software

systems consisting of millions of lines of the code, even higher granularity coverage

information might be collected, such as at the level of classes (objects), modules,

files, or even individual programs composing the system.

In this section, we present test case prioritization algorithms that utilize change

information and can work at arbitrary coverage granularity levels.

2.2 Change Metrics

Change metrics measure the locations and amount of change made to produce a

given software version. Change information can be used in the prioritization process

to give preference to test cases that exercise changes. Our goal is to give preference

to tests which are more capable of revealing regression faults - faults occurring as

the result of changes. Because regression faults occur solely in changed code, our

hypothesis is that there is a positive correlation between the amount of modified

code that a given test executes and the fault revealing capability of a test case. Our

heuristic in change-based prioritization techniques is to order tests in accordance

with the amount of modified code they may contact.

Because of the difficulty of defining and measuring change in individual state-

ments or branches, we computed and used change information at the level offunc-

tions. (We could also use the level of modules, files, objects, or programs that

comprise a large software system.)

To measure the amount of change in a given function, we employed four meth-

ods: binary textual code differencing (binary diff-based metric), duff-based textual

code differencing (duff-based metric), fault index differencing (fl-based metric), and

binary fault index differencing (binary fl-based metric).

2.2.1 Textual Code Differencing

The simplest type of change information we compute is binary data reflecting

whether a change has occurred or not. In binary textual code differencing, we

compare corresponding program components (functions, files, modules). If a given

component has been modified in the new version, its binary change information is

assigned one, otherwise it is assigned zero. To make this measure more effective,

we could also assess whether a given difference has any effect on the resulting

compiled code. For example, changes can include beautification formatting such as

adding or removing white space, modifying comments, merging or splitting lines,

etc. On the other hand, we have to make sure that any change that can affect code

generation is reflected by this metric, to be conservative.

The advantage of binary textual code differencing is its simplicity: it requires

minimal implementation and is easy to collect. Because in many cases, program-

mers and configuration management systems keep change logs, indicating which

components have been modified, it can be easy to obtain binary change informa-

tion.

Such simplicity, however, comes at a cost. When programs are changed, the

number of faults may differ from one changed location to another. Accepting the

assumption that regression fault density is uniform across changed code, we can

expect that the more changes a location has, the higher the expected number of

faults it may contain. Binary differencing does not reflect this reality.

One way to address this problem is to collect non-binary textual difference in-

formation on every location, using a simple dff tool applied to the two versions of

each location. The number of added, deleted, and modified lines of code could be

one reasonable metric for the amount of difference.

This duff-based metric is also relatively inexpensive, requiring applying a duff

tool to each pair of corresponding locations. However, it is more expensive than

simple binary differencing because of the additional work required to collect the

information and automate the process.

30

2.2.2 Fault Index Differencing

Textual differencing has three drawbacks. First, it measures the number of line-

level modifications. While it is easy to comprehend this metric, the metric assumes

that the probability of a fault's existence is linearly related to the amount of change.

While we may reasonably expect to see a correlation between fault proneness and

amount of change, this correlation may not be linear. Second, some types of changes

are more fault prone than others: replacing identifier names to improve code read-

ability is far less fault prone than optimizing an algorithm, despite the fact that in

the first case, there can be a greater amount of change than in the second. Thus,

we should take into account how modification type affects regression fault density.

Third, faults are not equally likely to exist in each location; rather, certain locations

are more likely to contain faults than others. In other words, the same changes may

have different fault proneness at different locations. For example, changing one

parameter's type in a function can be more error prone if this function has many

similar parameters than if the function has just one parameter.

One way to address these drawbacks is to use fault proneness metrics associated

with measurable software attributes [2, 7, 21, 101, 126]. In the context of regression

testing, we are interested in the potential influence, on fault proneness, of our mod-

ifications; that is, with the potential of modifications to lead to regression faults.

This requires that our fault proneness measure accounts for attributes of software

change [39]. Given such a measure, we can account for the association of change

with fault-proneness by prioritizing test cases based on this measure.

For this technique, as a metric of fault proneness, we use a fault index which,

in previous studies [39, 145], has proven effective at providing fault proneness es-

31

timates. We compute this metric per function. The fault index generation process

involves the following steps. First, a set of measurable attributes [38] is obtained

from each function in the program. Second, the metrics are standardized using the

corresponding metrics of a baseline version (which later facilitates the comparison

across versions). Third, principal components analysis [95] reduces the set of stan-

dardized metrics to a smaller set of domain values, simplifying the dimensionality

of the problem and removing the metrics collinearity. Finally, the domain values

weighted by their variance are combined into a linear function to generate one fault

index per function in the program.

Given program P and subsequent version P', generating regression fault indices

for P' requires generation of a fault index for each function in P, generation of

a fault index for each function in P', and a function-by-function comparison of

the indexes for F' against those calculated for P. As a result of this process, the

regression fault proneness of each function in P' is represented by a regression

fault index based on the complexity of the changes that were introduced into that

function. Further details on the mechanisms of the method are given in [39, 61].

From this point onward and to simplify the nomenclature, we refer to "regression

fault indexes" simply as "fault indexes".

Fault index computation requires more complicated program analysis and re-

quires additional tool development beyond textual difference. If it can be shown to

be effective, however, tools for efficiently computing fault indexes could be devel-

oped.

Similar to binary textual differencing, a binary fault index can be developed,

distinguishing only between zero and nonzero fault indices. We call this a "binary

fault-index-based metric".

32

technique locations change feedback update-

conf

award term-

Junc

st-cov-nofb statement unit false false FUNC1

st-coy-lb statement unit true false FUNC1

fn-cov-nofb function unit false false FUNC1

fn-cov-fb function unit true false FUNC1

st-fep-nolb statement unit false false FUNC2

st-fep-fb statement unit true true FUNC2

fn-fep-nofb function unit false false FUNC2

fn-fep-fb function unit true true FTJNC2

fn-mod-cov-noth function change false false FUNC1

fn-mod-cov-lb function change true false FUNC1

fn-mod-fepm-nofb function change false false FUNC3

fn-mod-fepm-fb function change true false FUNC3

fn-mod-fep-nofb function change false false FUNC4

fn-mod-fep-fb function change true false FUNC4

TABLE 2.1: Prioritization Techniques and Parameters for use with Algorithm 1.

2.3 Prioritization Techniques

We wished to incorporate granularity and modification information into prioriti-

zation. Rather than create many different algorithms, we created a single algorithm,

Algorithm 1, that expresses the full range of techniques that we wish to support.

This is achieved by invoking the algorithm with the proper parameters.

Table 2.1 lists the various techniques expressed by Algorithm 1, and the

parameter values required to invoke each technique. The final parameter,

award_termcompute, supplies a function used in award value computation

for computing a single term. This function can be any of the functions: FUNC1,

33

Algorithm 1 Test case prioritization.
Procedure Prioritize
In: coverage (location-wise binary coverage),

locations (set of program locations),
tests (set of test cases),
fep (fault-exposing-potential),
09 change (change information),
feedback (parameter specifying whether feedback is to be used),
update_conf (parameter specifying whether to update confidence vector),
awardiermfunc (parameter function which computes a single term for award value)

Out: list (prioritized list of test cases)

list e
for all I E locations do

change1 = 0rigchange1
con fidence1 = 0

end for
while tests 0 do

awards = ComputeAwar&Values(change, fep, confidence, coverage,
tests, locations, awardtermfunc)

if all award values are zeroes then
change Reset(05 change, locations)
awards = ComputeAwar&Values(change, fep, confidence, coverage,

tests, locations, award_term_f unc)
end if
find the test tselected E tests with the largest award value awardst,
add tei to list
remove t1eCt1 from tests
if feedback true then

for all I locations do
if coverage1 = 1 then

change1 = 0
if updateconf = true then

confidence1 1 (1 confidence1) x (1 fepi,teit)
end if

end if
end for

end if
end while
return list

Procedure ComputeAwar&Values
In: fep, change, confidence, coverage, tests, locations, award.termjunc
Out: awards

for all t E tests do
awardst = 0
for all 1 E locations do

awardst = awardsl + award-termfunc(coverage1,1, changei, f epi,, confidence1);
end for

end for
return awards

Procedure Reset
In: origchange, locations
Out: change

for all 1 E locations do
change1 = 05changej

end for
return change

34

FUNC2, FUNC3, and FUNC4, given in Figure 2.1. Function FUNC4 returns

a tuple. For summation inside compute.award value, we define addition of n

tuples < Xi, Yi >, < x2, Y2 >, ..., < x, yr-, > to be < I2i .x, yg >. To find

the largest award value, if k-tuples are used, we select the tuple with the largest first

element; if there is a tie, we select the tuple with the largest second element; and so

on, until reaching the k-th element. If there is still a tie, we resolve it by selecting

the tuple with the smallest test number.

In Table 2.1, the second column specifies whether the modification information

is utilized by a given prioritization technique. If no such information is utilized (in

cases of simple fep- or coverage-based techniques), unit values (each value is "1")

are substituted instead (specified by "unit"). "Change" specifies the cases in which

duff, binary duff, fault index, or binary fault index information is used.

For brevity, we list each change-based technique only once in the table. Thus,

each change-based technique in the table corresponds to four different change-based

techniques: Fl, binary Fl, diff, and binary diff. Thus, "mod" can be "fi", "bfi",

"duff", or "bdiff."

2.4 Controlled Experiments

To illustrate and experimentally evaluate the effectiveness of prioritization tech-

niques, we conducted a set of controlled experiments and a case study. Our con-

trolled experiments use several small programs and one medium size program, and

our case study uses two medium size programs and one large size program.

We present our controlled experiments first.

Function FUNC1
In: coverage_term (coverage data for a given location and test),

change_term (current change data for a given location)
fep_terrn (fep data for a given location and test)
confidence_term (current confidence data for a given location)

Out: term

term = coverage_term x change_term
return term;

Function FUNC2
In: coverage_term (coverage data for a given location and test),

changeterm (current change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)

Out: term

term = (1 confidence_term) x fep_term
return term;

Function FUNC3
In: coverage_term (coverage data for a given location and test),

change_term (current change data for a given location)
fep_term (fep data for a given location and test)
con f idencejerm (current confidence data for a given location)

Out: term

term = coverage_term x change_term x (1 con fidenceierm) x fep_term
return term;

Function FUNC4
In coverage_term (coverage data for a given location and test),

change_term (current change data for a given location)
fepterm (fep data for a given location and test)
confidence_term (current confidence data for a given location)

Out: term

terml = coverage_term x changeterm
term2 = (1 confidence_term) x fep_term
return < terml,term2 >;

FIGURE 2.1: Specific award value term computation functions, used as parameters
in Algorithm 1.

36

2.4.1 Research Questions

Our experiments address the following specific research questions.

RQ1: Can version-specific test case prioritization techniques improve the rate of

fault detection of test suites?

RQ2: How do fine granularity (statement level) prioritization techniques compare

to coarse granularity (function level) techniques in terms of the rate of fault

detection?

RQ3: Can the use of predictors of fault proneness improve the rate of fault detec-

tion of prioritization techniques?

2.4.2 Programs

We used eight C programs, with faulty versions and a variety of test cases, as objects

of study. Seven of these programs were assembled by researchers at Siemens Corpo-

rate Research for experiments with control-flow and data-flow test adequacy criteria

[93]; we refer to these as the Siemens programs. The eighth program, space, was

developed for the European Space Agency; we refer to this program as the space

program.

Table 2.2 provides metrics on the programs; we explain the meaning of these

metrics in the following paragraphs.

37

Program

Lines

of Code

1st-order

Versions

Test Pool

Size

Test Suite

Avg. Size

tcas 138 41 1608 6

schedule2 297 10 2710 8

schedule 299 9 2650 8

toLinfo 346 23 1052 7

prinLtokens 402 7 4130 16

printiokens2 483 10 4115 12

replace 516 32 5542 19

space 6218 35 13585 155

TABLE 2.2: Experiment Objects

2.4.2.1 Siemens Programs

The Siemens programs perform various tasks: tcas models an aircraft colli-

sion avoidance algorithm, schedule2 and schedule are priority schedulers,

tot J.nfa computes statistics, print tokens and print tokens2 are lexi-

cal analyzers, and replace performs pattern matching and substitution. For each

program, the Siemens researchers created a test pooi of black-box test cases using

the category partition method [8, 149]. They then augmented this test pool with

manually created white-box test cases to ensure that each exercisable statement,

edge, and definition-use pair in the base program or its control flow graph was

exercised by at least 30 test cases. The researchers also created faulty versions of

each program by modifying code in the base version; in most cases they modified a

single line of code, and in a few cases they modified between two and five lines of

code. Their goal was to introduce faults that were as realistic as possible, based on

their experience with real programs. To obtain meaningful results, the researchers

retained only faults that were detectable by at least three and at most 350 test cases

in the test pool.

2.4.2.2 Space Program

The space program is an interpreter for an array definition language (ADL). The

program reads a file of ADL statements, and checks the contents of the file for

adherence to the ADL grammar and specific consistency rules. If the ADL file is

correct, space outputs an array data file containing a list of array elements, posi-

tions, and excitations; otherwise the program outputs error messages. The space

program has 35 versions, each containing a single fault: 30 of these were discovered

during the program's development, five more were discovered subsequently [178].

The test pool for space was constructed in two phases. The pooi was initialized to

10,000 test cases randomly generated by Vokolos and Franki [196]. Then new test

cases were added until each executable edge in the program's control flow graph

was exercised by at least 30 test cases. This process produced a test pool of 13,585

test cases.

2.4.2.3 Test Suites

Sample test suites for these programs were constructed using the test poois for the

base programs and test-coverage information about the test cases in those pools.

More precisely, to generate a test suite T for base program P from test pooi T,,, the

C pseudo-random-number generator rand, seeded initially with the output of the C

times system call, was used to obtain integers that were treated as indexes into T

(modulo I). These indexes were used to select test cases from 77,; each test case t

39

was added to T only if t added to the cumulative branch coverage of P achieved by

the test cases added to T thus far. Test cases were added to T until T contained at

least one test case that would exercise each executable branch in the base program.

Table 2.2 lists the average sizes of the 1000 branch-coverage-adequate test suites

generated by this procedure for each of the object programs.

For our experimentation, we randomly selected 50 of these test suites for each

program.

2.4.2.4 Versions

For these experiments we required program versions with varying numbers of faults;

we generated these versions in the following way. Each program was initially pro-

vided with a correct base version and a fault base of versions containing exactly

one fault. We call these 1st-order versions. We identified, among these 1st-order

versions, all versions that do not interfere that is, all faults that can be merged into

the base program and exist simultaneously. For example, if fault fi is caused by

changing a single line and fault f2 is caused by deleting the same line, then these

modifications interfere with each other.

We then created higher-order versions by combining non-interfering 1st-order

versions. To limit the threats to our experiment's validity, we generated the same

number of versions for each of the programs. For each program, we created 29

versions; each version's order varied randomly between 1 and the total number of

non-interfering 1st-order versions available for that program.2 At the end of this

2 The number of versions, 29, constitutes the minimum among the maximum number of versions

process, each program was associated with 29 multi-fault versions, each containing

a random number of faults.

2.4.3 Prioritization Techniques

In this study, we used the following prioritization techniques:

Full Technique's Name Mnemonic

statement coverage no feedback st-cov-nofb

statement coverage feedback st-coy-lb

function coverage no feedback fn-cov-nofb

function coverage feedback fn-cov-fb

function fault index coverage no feedback fn-fi-cov-nofb

function fault index coverage feedback fn-fi-cov-fb

function duff coverage no feedback fn-diff-cov-nofb

function diff coverage feedback fn-diff-cov-fb

statement fault-exposing-potential no feedback st-fep-nofb

statement fault-exposing-potential feedback st-fep-fb

function fault-exposing-potential no feedback fn-fep-nofb

function fault-exposing-potential feedback fn-fep-fb

function fault index fault-exposing-potential no feedback fn-fi-fep-nofb

function fault index fault-exposing-potential feedback fn-fi-fep-fb

function duff fault-exposing-potential no feedback fn-diff-fep-nofb

function duff fault-exposing-potential feedback fn-diff-fep-fb

random random

optimal optimal

The random technique orders test cases in a random order; it is used as a control

technique. The optimal technique heuristically orders test cases to maximize the

that could be generated for each program given the interference constraints.

41

rate of fault detection using fault information; it is also used as a controltechnique.3

Other techniques are described in Section 2.3.

2.4.4 Experiment Design, Results and Analysis

We performed several experiments, each addressing one of our research questions.

Each experiment included five stages: (1) stating a research question in terms of a

hypothesis, (2) formalizing the experiment through a robust design, (3) collecting

data, and (4) analyzing data to test the hypothesis. In general, each experiment

examined the results of applying certain test case prioritization techniques to each

program and its set of versions and test suites.

To provide an overview of all the collected data4 we include Figures 2.2 and 2.3

with box plots.5 Figure 2.2 displays a plot for an "all programs" total, and Figure

2.3 displays an individual plot for each of the programs. Each plot contains a box

showing the distribution of APFD scores for each of the 18 techniques.

The following sections describe, for each of our research questions in turn, the

experiment(s) relevant to that question, presenting their design and the analysis of

their results.

3An optimal ordering can only be computed after testing is completed and faults are known. Thus,
it cannot be used as a prioritization technique, it is merely used as an upper bound on prioritization
effectiveness. Because the problem of finding an optimal order is NP-hard, we used a heuristic.
Thus, our estimate of the upper bound was conservative.

For simplicity, data belonging to separate experiments are presented together.

Box plots provide a concise display of a data distribution. The small rectangle embedded in each
box marks the mean value. The edges of the box are bounded by the standard error. The whiskers
extend to one standard deviation.

100

90

80

70

60

50

40

30

20

10

0

42

_I
0 0

0 0 0 0
0

I I
I

I C.) C.)

I I I I0 E 0 0
Q

C.)
CO 0

I I
I t I I I I

C 0

FIGURE 2.2: APFD boxplots for an "all programs" total. The horizontal axis lists
techniques, and the vertical axes list APFD scores.

2.4.4.1 Experiment 1 (RQJ): Version-specific Prioritization

Our first research question considers whether version-specific test case prioritiza-

tion can improve the fault-detection abilities of test suites. Since we conjectured

that differences in the granularity at which prioritization is performed would cause

significant differences in APFD values, we performed two experiments: Exper-

iment 1 a involving statement level techniques st-cov-nofb, st-cov-fb, st-fep-nofb

and st-fep-fb, and Experiment lb involving function level techniques fn-cov-nofb,

fn-cov-fb, fn-fep-nofb and fn-fep-fb. This separation into two experiments gave us

more power to determine differences among the techniques within each group.

teas

schedule

VHjI1Tf

print_tokens

replace

43

schedule2

i

iir

El

tot_info_______

print_tokens2

1 1I1 L

I

:'i T

FIGURE 2.3: APFD boxplots for individual programs. The horizontal axes list
techniques, and the vertical axes list APFD scores.

SS Degrees of freedom MS F p

PROGRAM 3473054 7 496150.60 1358.512 0.00

TECHN 97408 3 32469.20 88.904 0.00

PROGRAM*TECHN 182322 21 8682.00 23.772 0.00

Error 9490507 25986 365.22

TABLE 2.3: ANOVA Analysis, Statement Level Techniques, All Programs

Both experiments followed the same factorial design: all combinations of all

levels of all factors were investigated. The main factors were program and prior-

itization technique. Within programs, there were 8 levels (one per program) with

29 versions and 50 test suites per program. We employed 4 prioritization tech-

niques per experiment. Each treatment (prioritization technique) was applied to

every viable combination of test suite and version within each program generating a

maximum of 46400 observations (each including an APFD value) per experiment.

We then performed an analysis of variance (ANOVA) on those observations to

test the differences between the techniques' mean APFD values. We considered

the main effects program and technique, and the interaction among those effects.

When the ANOVA F-test showed that the techniques were significantly different,

we proceeded to determine which techniques contributed the most to that difference

and how the techniques differed from each other through a Bonferroni multiple

comparison method. This procedure works within the ANOVA setting to compare

the techniques' means while controlling the family-wise type of error.

Experiment la: Statement Level. Table 2.3 presents ANOVA results for Exper-

iment 1 a, considering all programs. The treatments are in the first column, and the

sum of squares, degrees of freedom, and mean squares for each treatment are in

the following columns. The F values constitute the ratio between the treatment and

the error effect (last row). The larger the F statistic, the greater the probability of

rejecting the hypothesis that the techniques' mean APFD values are equal. The last

column presents the p-values, which represent "the probability of obtaining a value

of the test statistic that is equal to or more extreme than the one observed" [105].

Since we selected our level of significance to be 0.05%, we reject the hypotheses

when the p-value is less than or equal to that level of significance. Otherwise, we

do not reject the hypothesis.

The results indicate that there is enough statistical evidence to reject the null hy-

pothesis Hi; that is, the means for the APFD values generated by different statement

level techniques were different. However, the analysis also indicates that there is

significant interaction between techniques and programs: the difference in response

between techniques is not the same for all programs. Thus, individual interpretation

is necessary. As a first step in this interpretation we performed an ANOVA on each

of the programs. Each of the ANOVAs was significant, indicating that, within each

program, the statement level prioritization techniques were significantly different.

Table B.l in Appendix A presents the results of these ANOVAs.

The ANOVA analysis evaluated whether the techniques differed, the APFD

means ranked the techniques, a multiple comparison procedure using Bonferroni

analysis quantifies how the techniques differed from each other. Table 2.4 presents

the results of this analysis for all of the programs, ranking the techniques by mean.

Grouping letters indicate differences: techniques with the same grouping letter were

not significantly different. For example, st-fep-nofb has a larger mean than st-coy-

nofb but they are grouped together because they were not significantly different. On

Grouping Means Techniques

A 80.733 st-fep-fb

B 78.867 st-fep-nofb

B 78.178 st-cov-nofb

C 76.077 st-coy-lb

TABLE 2.4: Bonferroni Means Separation Tests, Statement Level Techniques, All
Programs

the other hand, the st-fep-fb technique, which uses FEP information and coverage

with feedback, was significantly better than the other techniques. The last technique

ranked is st-cov-fb, which was significantly weaker than the others.

To consider results on a per-program basis, we performed a Bonferroni analysis

on each of the programs. Table B .2 in Appendix A presents the results of these

analyses. On replace, st-fep-nofb, st-fep-fb, and st-cov-nofb ranked at the top

but were not significantly different from each other. The same scenario held for

schedule2 and tcas. On schedule, the techniques that use feedback (st-

fep-fb and st-cov-fb) ranked at the top but were not significantly different, while the

techniques that do not use feedback (st-cov-nofb and st-fep-nofb) were significantly

inferior. On space, st-fep-fb was significantly better than other techniques, while

the rest of the techniques did not differ from each other. Print.tokens presented

a unique case because the Bonferroni process could not find differences among

any pair of techniques, even when the ANOVA specified that there was significant

difference when the four of them were considered. On prnttokens2, st-fep-

fb ranked at the top, followed by the other techniques among which there was no

significant difference. Finally, tot_info's ranking matched the overall ranking for

47

SS Degrees of freedom MS F p

PROGRAM 4139625 7 591375.00 1501.327 0.00

TECHN 60953 3 20317.80 51.581 0.00

PROGRAM*TECHN 158227 21 7534.60 19. 128 0.00

Error 10071668 25569 393.90

TABLE 2.5: ANOVA Analysis, Basic Function Level Techniques, All Programs

all applications, although no significant difference was found between techniques

using and not using feedback.

To summarize, although the rankings of techniques did vary somewhat among

programs, similarities did occur across all or across a large percentage of the pro-

grams. Specifically, st-fep-fb ranked in the highest Bonferroni group of techniques

independent of the program; st-fep-noth and st-cov-nofb were in the same group

(not significantly different) on seven of the eight programs; and finally, st-cov-fb

ranked significantly worse than all other techniques on four programs.

Experiment ib: Function Level. Table 2.5 presents the analysis of variance

results for Experiment lb (function level techniques) considering all programs.

The interaction effects between techniques and programs were also significant for

function-level techniques, and the results revealed significant differences among the

techniques. Moreover, the techniques ranked in the same order as their statement-

level equivalents, with fn-fep-fb first, fn-fep-nofb second, fn-cov-nofb third, and

fn-cov-fb last. However, as shown by the results of Bonferroni analysis (Table 2.6),

the top three techniques were not significantly different from each other.

Grouping Means Techthques

A 77.453 fn-fep-fb

A 76.957 fn-fep-nofb

A 76.928 fn-eov-nofb

B 73 .465 fn-cov-fb

TABLE 2.6: Bonferroni Means Separation Tests, Basic Function Level Techniques,
All Programs

Following the same steps as in Experiment la, we next performed ANOVA and

Bonferroni analyses on a per program basis. Tables B.3 and B.4, in Appendix

A, present the results of these analyses. The results on replace, schedule,

printtokens, and totinfo present trends similar to those seen in the Bon-

ferroni results for all programs. On print _tokens2, the ranking was identi-

cal but all the techniques produced significantly different averages. Schedule 2,

tcas and space present a different perspective. On schedule2 and tcas, fn-

cov-nofb was significantly better than the other techniques. On space, fn-cov-fb

was the best, fn-cov-nofb came second, and the FEP-based techniques followed.

In summary, for the function-level techniques, we observed great variation in the

techniques' performance across subjects. The most surprising result was the lack of

significant gains observed, for function-level techniques, when using FEP estimates.

At a minimum, this suggests that our method for estimating FEP values at the func-

tion level may not be as powerful as our method for estimating those values at the

statement level. Furthermore, at the function level, except forprint_tokens 2,

the two FEP techniques were not significantly different from one another. This im-

plies that feedback had no effect when employing function level FEP techniques.

We also observed that using feedback could have a negative impact on APFD val-

ues. There is a possible explanation for this. Techniques at the function level em-

ploying feedback give higher priority to test cases that execute uncovered functions,

discarding functions already executed independently of the section or percentage of

code in those functions that has actually been covered. If those partially covered

functions are faulty but their faulty sections have not yet been covered, and the test

cases executing those functions are given low priority by techniques with feedback,

then APFD values for techniques employing feedback could be lower.

2.4.4.2 Experiment 2 (RQ2): Granularity Effects

Our second research question concerns the relationship between fine and coarse

granularity prioritization techniques. Initial observations on the data led us to hy-

pothesize that granularity has an effect on APFD values. This is suggested by com-

paring Table 2.4 to Table 2.6: for all cases the mean APFD values for function

level techniques were smaller than the mean APFD values for corresponding state-

ment level techniques (for example, the mean APFD for fn-fep-fb was 77.45, but

for st-fep-fb it was 80.73). The radar chart in Figure 2.4 further illustrates this ob-

servation. In the radar chart, each technique has its own APFD value axis radiating

from the center point. There are two polygons, representing the granularities at the

statement and function levels, respectively. The radar chart shows that each func-

tion level technique had a smaller APFD than its counterpart at the statement level,

and that statement level techniques as a whole were better (cover a larger surface)

than function level techniques. The chart also shows that techniques employing

feedback were more sensitive to the shift in granularity.

random

stlfn-cov-nofb

stifn-fep-fb 80

stlfn-cov-fb

stlfn-fep-nofb

Statement Function

50

FIGURE 2.4: Radar chart (the line connects points whose distances from the center
specify APFDC values).

To formally address this research question we performed a pairwise analysis

among the following pairs of techniques: (st-cov-nofb, fn-cov-nofb), (st-cov-fb, fn-

cov-fb), (st-fep-nofb, fn-fep-nofb), and (st-fep-fb, fn-fep-fb). The four orthogonal

contrasts were significantly different as shown in Tables 2.7 and 2.8. That is, for

these four pairs of techniques, different levels of granularity had a major effect

on the value of the fault detection rate. Thus, in spite of the different rankings

obtained in Experiments 1 a and lb. there is enough statistical evidence to confirm

that statement level techniques were more effective than function level techniques.

Analyses on a per-program basis, shown in Tables B.5 and B.6, in Appendix A,

present a similar picture. Although in several cases, statement-level techniques are

51

SS Degrees of freedom MS F p

PROGRAM 7516093 7 1073728. 2829.748 0.00

TECHN 198981 7 28426.00 74.915 0.00

PROGRAM*TECHN 434621 49 8870.00 23.376 0.00

Error 19562175 51555 379.44

TABLE 2.7: ANOVA Analysis, Function versus Statement Level Techniques, All
Programs

Grouping Means Techniques

A 80.733 st-fep-fb

B 78.867 st-fep-nofb

B C 78.178 st-cov-nofb

C D 77.45 3 fn-fep-fb

D E 76.957 fn-fep-nofb

D E 76.928 fn-cov-nofb

E 76.077 st-cov-fb

F 73.465 fn-cov-fb

TABLE 2.8: Bonferroni Analysis, Function versus Statement Level Techniques, All
Programs

not significantly better than their corresponding techniques (e.g., on schedule, st-

cov-nofb and fn-cov-nofb do not differ significantly) only two cases occur in which

a function-level technique significantly outperforms its corresponding statement-

level technique. (These cases all involve st-cov-fb versus fn-cov-fb, and occur on

tcas and space.)

52

SS Degrees of freedom MS F p

PROGRAM 11860200 7 1694314.00 4580.131 0.00

TECHN 800070 11 72734.00 196.616 0.00

PROGRAM*TECHN 1220361 77 15849.00 42.843 0.00

Error 28551710 77182 369.93

TABLE 2.9: ANOVA Analysis, All Function Level Techniques, All Programs

2.4.4.3 Experiment 3 (RQ3): Adding Prediction of Fault Proneness

Our third research question considered whether predictors of fault proneness can

be used to improve the rate of fault-detection of prioritization techniques. We hy-

pothesized that incorporation of such predictors would increase technique effec-

tiveness. We designed an experiment (Experiment 3) to investigate this hypothesis

at the function level. The experiment design was analogous to the design used in

Experiment lb except for the addition of eight new techniques: fn-fi-cov-nofb, fn-

fi-cov-fb, fn-fi-fep-nofb, fn-fi-fep-fb, fn-diff-cov-nofb, fn-diff-cov-fb, fn-diff-fep-

nofb, and fn-diff-fep-fb.

The ANOVA analysis of the data collected in this experiment (see Table 2.9)

indicated that these techniques were significantly different. We then followed the

same procedure used earlier, employing a Bonferroni analysis to gain insight into

the differences. The results are presented in Table 2.10. Three techniques com-

bining FEP and fault proneness (n-diff-fep-fb, fn-diff-fep-nofb, and fn-fi-fep-nofb)

were significantly better than the rest. This suggests that some of the combinations

of fault-proneness and FEP estimators we employed did significantly improve the

power of our prioritization techniques. Fn-fi-fep-fb and other techniques using ei-

53

Grouping Means Techniques

A 79.479 fn-diff-fep-fb

A 79.450 fn-diff-fep-nolb

A B 78.712 fn-fi-fep-nofb

B C 78.167 fn-fi-fep-th

C D 77.453 fn.-fep-fb

C D 77.321 fn-fi-cov-nofb

C D 77.057 fn-diff-cov-nofb

D 76.957 fn-fep-nofb

D 76.928 fn-cov-nofb

E 74.596 fn-fi-cov-fb

E 73.465 fn-cov-fb

F 67.666 fn-diff-cov-fb

TABLE 2.10: Bonferroni Analysis, All Function Level Techniques, All Programs

ther FEP estimates or fault indexes followed. We could not distinguish significant

and consistent gains by any particular method (DIFF, Fl or FEP) when used in-

dividually. Also, the use of feedback seems to have had a negative effect on the

techniques using fault proneness as evidenced by the significant superiority of fn-

diff-cov-nofb and fn-fi-cov-nofb over fn-diff-cov-fb and fn-fi-cov-fb, respectively.

Table 2.9 shows that the interaction between program and technique was again,

in this experiment, significant. So, to better understand the APFD variations, we

analyzed the impact of techniques on each program separately. First, we per-

formed univariate ANOVA analysis on each program. The results of those mdi-

vidual ANOVAs were consistent in indicating that all techniques were significantly

different. (See Table B.7, in Appendix A.)

We next performed individual Bonferroni analyses per program. These are

shown in Tables B.8 and B.9, in Appendix A. As the results show, several programs

(printtokens, printtokens2, tot info, and replace) exhibited rank-

ings similar to those seen in the overall analysis, though in some cases with fewer

significant differences among the techniques. Results on the other programs differed

more substantially. On tcas, the techniques' APFD values descended gradually,

which created a lot of overlap in the top ranked techniques. Still, there was a group

of significantly best techniques that included fn-cov-nofb, fn-fi-cov-nofb, fn-cov-

fb, and fn-fi-fep-nofb. The techniques using DIFF, however, ranked significantly

worse than the others. On schedule, in contrast, fn-diff-cov-nofb performed sig-

nificantly better than the other techniques, and the remaining techniques fell into

a series of overlapping groups. A similar picture occurred for schedule2, ex-

cept that here, fn-diff-cov-fb was significantly worse than other techniques. Finally,

results on space were unique. On this program, techniques using just fault prone-

ness were significantly better than the others. The highest APFD values were gener-

ated through fn-fi-cov-fb, which was significantly superior to the other techniques.

Combinations of FEP and fault indexes did not work as well as for other programs.

Furthermore, the two techniques using just FEP estimates were ranked last.

In summary, on most programs, techniques combining FEP and Fl ranked

among the top techniques. However, certain programs presented unique character-

istics that impacted the effectiveness of those techniques. Still, on all programs,

a subset of the techniques using fault proneness measures was considered signifi-

cantly better than (or not different from) techniques not using that predictor. It is

also interesting to note that the use of feedback seemed to have a greater impact

on simpler techniques, while on techniques combining FEP and fault proneness

55

SS Degrees of freedom MS F p

PROGRAM 15205111 7 2172159.00 6062.476 0.00

TECHN 4654397 17 273788.00 764.140 0.00

PROGRAIVI*TECHN 2507689 119 21073.00 58.815 0.00

Error 41709550 116400 358.30

TABLE 2.11: ANOVA Analysis, All Techniques, All Programs

measures the impact of using feedback did not translate into significant gains (e.g.,

fn-diff-fep-fb was not significantly different from fn-diff-fep-nofb).

2.4.4.4 Overall Analysis

Finally, to gain an overall perspective on all techniques, we performed ANOVA and

Bonferroni analyses on all the techniques including optimal and random (see Tables

2.11 and 2.12). As expected, the ANOVA analysis revealed significant differences

among the techniques and the Bonferroni analysis generated groups that confirmed

our previous observations. The most obvious observation is that the optimal tech-

nique was still significantly better than all other techniques; this suggests that there

is still room for improvement in prioritization techniques. However, all techniques

significantly outperformed random ordering. St-fep-fb remained the best perform-

ing technique after optimal. Yet, the group of techniques ranked next included func-

tion level techniques combining fault proneness measures and FEP. These function

level techniques were significantly better than st-cov-fb.

56

Grouping Means Techniques

A 94.728 optimal

B 80.733 st-fep-fb

C 79.479 fn-diff-fep-fb

C 79.450 fn-diff-fep-nofb

C D 78.867 st-fep-rtofb

C D 78.712 fn-fi-fep-nofb

D E 78.178 st-cov-nofb

D E 78.167 fn-fi-fep-fb

E F 77.453 fn-fep-fb

E F 77.321 fn-fi-cov-nofb

E F G 77.057 fn-diff-cov-nofb

F G 76.957 fn-fep-nofb

F G 76.928 fn-cov-nofb

G 76.077 st-cov-fb

H 74.596 fn-fi-cov-fb

H 73.465 fn-cov-fb

I 67.666 fn-diff-cov-fb

J 62.100 random

TABLE 2.12: Bonferonni Analysis, All Techniques, All Programs

2.4.5 Threats to Validity

In this section we discuss the potential threats to validity of our study, including:

(1) threats to internal validity (could other effects on our dependent variables be

responsible for our results), (2) threats to construct validity (are our independent

variables appropriate), and (3) threats to external validity (to what extent do our

results generalize). We also explain how we tried to reduce the chances that those

threats affect the validity of our conclusions.

57

2.4.5.1 Threats to Internal Validity

The inferences we made about the effectiveness of the prioritization techniques

could have been affected by the following factors. (1) Faults in the prioritization

and APFD measurement tools. To control this threat, we performed code reviews

on all tools, and validated tool outputs on a small but non-trivial program. (2)

Differences in the code to be tested, the locality of program changes, and the com-

position of the test suite. To reduce this threat, a factorial design was used to apply

each prioritization technique to each test suite and each object program. (3) PEP, Fl,

and DIFF calculations. FEP values are intended to capture the probability, for each

test case and each statement, that if the statement contains a fault, the test case will

expose that fault. Mutation analysis was used to provide an estimate of these PEP

values; however, other estimates might be more precise, and might increase the ef-

fectiveness of FEP-based techniques. Similar reasoning applies to our calculations

of Fl and DIFF.

2.4.5.2 Threats to Construct Validity

The goal of prioritization is to maximize some pre-defined criterion by scheduling

test cases in a certain order. In this article, we focused on maximizing the rate of

fault detection and we defined APFD to represent it. However, APFD is not the only

possible measure of rate of fault detection and it has some limitations. (1) APFD

assigns no value to subsequent test cases that detect a fault already detected; such

inputs may, however, help debuggers isolate the fault, and for that reason might be

worth measuring. (2) APFD does not account for the possibility that faults and test

cases may have different costs. (3) APFD only partially captures the aspects of the

effectiveness of prioritization; we could also consider other measures for purposes

of assessing effectiveness. One might not even want to measure rate of detection;

one might instead measure the percentage of the test cases in a prioritized test suite

that must be run before all faults have been detected. (4) We employed a greedy

algorithm for obtaining "optimal" orderings. This algorithm may not always find

the true optimal ordering, and this might allow some heuristic to actually outperform

the optimal and generate outliers. However, a true optimal ordering can only be

better than the greedy optimal ordering that we utilized; therefore our approach is

conservative, and cannot cause us to claim significant differences between optimal

and any heuristic where such significance would not exist.

2.4.5.3 Threats to External Validity

The generalization of our conclusions is constrained by several threats. (1) Object

representativeness. The object programs are of small and medium size, and have

simple fault patterns that we have manipulated to produce versions with multiple

faults. Complex industrial programs with different characteristics may be subject

to different cost-benefit tradeoffs. (2) Testing process representativeness. If the

testing process we used is not representative of industrial ones, the results might

not generalize. Furthermore, test suite constitution is also likely to differ under

different processes. Control for these two threats can be achieved only through

additional studies using a greater range and number of software artifacts.

59

2.5 Case Studies

In this section we present three case studies which included three medium to large

size programs. These case studies offer us the opportunity to scale up our inves-

tigation of prioritization techniques by focusing on larger objects drawn from the

field.

2.5.1 Experimental Subjects

We considered three programs: grep, flex, and QTh.

2.5.1.1 Grep and Flex

Grep and flex are common Unix utility programs; grep searches input files

for a pattern, and flex is a lexical analyzer generator. The source code for both

programs is publicly available. For this study, we obtained five versions of grep,

and five of flex. The earliest version of grep that we used contained 7451 lines

of C code and 133 functions; the earliest version of flex contained 9153 lines of

C code and 140 functions. Tables 2.13 and 2.14 provide data about the numbers of

functions and lines changed (modified, added, or deleted) in each of the versions of

the two programs, respectively.

The grep and flex programs possessed the advantage of being publicly avail-

able in multiple versions; however, neither program was equipped with test suites

or fault data. Therefore, we manufactured these. To do this in as fair and unbiased

a manner as possible, we adapted processes used by Hutchins et al. to create the

Siemens program materials [93], as follows.

Version Number of

functions changed

Number of

lines changed

Number of regression faults

(baseline)

1 81 2488 4

2 40 716 3

3 26 513 3

4 110 1891 1

TABLE 2.13: The Grep Object

Version Number of

functions changed

Number of

lines changed

Number of regression faults

(baseline)

1 28 333 5

2 72 1649 4

3 12 40 8

4 6 91 1

TABLE 2.14: The Flex Object

For each program, we used the category partition method and an implementation

of the TSL tool [8, 149] to create a suite of black-box tests, based on the program's

documentation. These test suites were created by graduate students experienced in

testing, but who were not involved in, and were unaware of, the details of this study.

The resulting test suites consisted of 613 test cases for grep, exercising 79% of that

program's functions, and 525 test cases for flex, exercising 89% of that program's

functions.

61

To evaluate the performance of prioritization techniques with respect to rate of

detection of regression faults, we require such faults faults created in a program

version as a result of the modifications that produced that version. To obtain such

faults for grep and f 1 ax, we asked several graduate and undergraduate computer

science students, each with at least two years experience programming in C and

each unacquainted with the details of this study, to become familiar with the code

of the programs and to insert regression faults into the versions of those programs.

These fault seeders were instructed to insert faults that were as realistic as possible

based on their experience with real programs, and that involved code deleted from,

inserted into, or modified in the versions.

To further direct their efforts, the fault seeders were given the following list of

types of faults to consider:

. Faults associated with variables, such as with definitions of variables, redef-

initions of variables, deletions of variables, or changes in values of variables

in assignment statements.

Faults associated with control flow, such as addition of new blocks of code,

deletions of paths, redefinitions of execution conditions, removal of blocks,

changes in order of execution, new calls to external functions, removal of

calls to external functions, addition of functions, or deletions of functions.

Faults associated with memory allocation, such as not freeing allocated mem-

ory, failing to initialize memory, or creating erroneous pointers.

62

After at least twenty potential faults had been seeded in each version of each

program,6 we activated these faults individually, one by one, and executed the test

suites for the programs to determine which faults could be revealed by test cases in

those suites. We selected, for use in this study, all faults that were exposed by at least

one, and at most 20%, of the test cases in the associated test suite. (Exclusion of

faults not exposed does not affect APFD results; we chose to exclude faults exposed

by more than 20% of the test suites on the grounds that easily-exposed faults are

more likely to be detected and removed during testing by developers, and prior to

formal regression testing, than faults exposed less easily.) The numbers of faults

remaining, and utilized in the studies, are reported in Tables 2.13 and 2.14.

2.5.1.2 QTB

QTB7 is an embedded real-time subsystem that performs initialization tasks on a

level-5 RAID storage system. In addition, it provides fault tolerance and recovery

capabilities. QTB contains over 300K lines of C code combined with hundreds

of in-line assembly-code statements across 2875 functions. QTB had been under

maintenance for several years.

In this study we considered six QTB versions, the first of which we considered

to be the baseline. Table 2.15 reports details about these versions. The versions con-

6 On version four of flex, due to the small number of modifications in that version, fewer than
twenty potential faults were initially seeded.

the company that created QTB wishes to remain anonymous, we have changed the
original names of the subsystem and versions that comprise this object.

Version

Number of

functions changed

Total number of

regression faults

Number of regression

faults exposed by test cases

(baseline)

1 15 10 8

2 3 1 1

3 98 2 2

4 7 2 2

5 169 7 4

TABLE 2.15: The QTB Object

stituted major system releases produced over a six month period. For each version,

test engineers employed a regression test suite to exercise system functionalities.

The execution of the test suite required, on average, 27 days. The test suite included

135 test cases that exercised 69% of the functions in the baseline version. The coy-

erage information available for QTB is exclusively at the function level. (Software

instrumentation tools designed to produce finer granularity coverage data caused

the system to fail due to timing problems.)

Maintenance activities applied to QTB resulted in the unintentional incorpora-

tion into the system of 22 (discovered) regression faults. Table 2.15 summarizes

the fault data. Observe that only 17 of the 22 faults were exposed by the regression

test suite across the versions; only these faults factor into the calculation of APFD

values. Also, note that the execution of a faulty function did not guarantee exposure

of faults in that function.

2.5.2 Prioritization Techniques

In this study, we used the following prioritization techniques: function coverage no

feedback (fn-cov-nofb), function coverage feedback (fn-cov-fb), function fault in-

dex coverage no feedback (fn-fi-cov-nofb), function fault index coverage feedback

(fn-fi-cov-fb), function duff coverage no feedback (fn-diff-cov-nofb), function duff

coverage feedback (fn-diff-cov-fb), random prioritization, and optimal prioritiza-

tion. These techniques were described in Section 2.3.

2.5.3 Case Study Design

In each case study, we investigate whether some of our previous conclusions on

prioritization hold. More precisely, we focus on prioritization techniques at the

function level and their ability to improve rate of fault detection. In addition, we

explore instances (extreme in some cases) of the techniques' behavior that were not

previously visible, which provide us with additional information on their strengths

and weaknesses.

Our case studies evaluate prioritization techniques by adapting the "baseline"

comparison method described in [53, 107]. This method is meant to compare a

newly proposed technique against current practice, which is used as a baseline.

In our case studies, assuming that no particular form of prioritization constitutes

typical practice, we consider the random technique the baseline against which other

techniques are compared.

There is, however, one aspect in which our studies differ from a "typical" base-

line study. In our study, although we do not control the evolution of the programs

studied, we can execute multiple techniques on the same version of the same pro-

65

gram. In other words, we are studying programs that evolve naturally, but we can

control (and replicate) the execution of prioritization techniques and evaluate their

impact based on the data we collected from the evolution of those programs. Still,

there are several uncontrolled factors that constrain these studies and the aspects of

the problem that we can address. We now proceed to explain the variables involved

and the level of control we had over them.

To minimize the misinterpretation of the results that might occur due to specific

types or amounts of change in any particular version, we perform our analysis on

several versions in each case study. Confounding factors associated with the testing

process are not fully controlled. First, we do not control (and do not know) the test

generation process employed for QTB. In addition, we have only one test suite in

each case study, which may limit our ability to determine whether differences in

APFD are due to the techniques or to test suite composition. A similar situation is

presented by the faults in the software. Faults were seeded in grep and flex by stu-

dents not extensively familiar with the application domains, but QTB was used with

its original faults. Finally, all the case studies assume that the software development

and testing processes remained constant throughout the program evolution.

We investigated eight techniques over each of the units of study. The techniques

employed were: random, optimal, fn-cov-nofb, fn-cov-fb, fn-fi-cov-nofb, fn-fi-cov-

fb, fn-diff-cov-nofb, fn-diff-cov-fb. (In other words, we used all techniques not

involving statement level instrumentation or FEP estimation. We excluded the for-

mer because we did not have statement-level coverage information for QTB, and

excluded the latter because performing the mutation analysis necessary to estimate

FEP for these programs was not feasible.) However, there were two differences

involving these techniques due to characteristics of the program data.

First, we obtained the APFD for random by averaging the APFD of 20 random

orderings. This differs from the controlled study in which only one ordering per cell

was generated. However, in a case study with a much smaller set of observations,

we required an "average" random case to avoid extreme instances that could bias

our evaluation. Second, the prioritization techniques based on fault proneness that

we applied to QTB differed slightly from those used in our controlled experiments

and our studies on flex and grep. The DIFF-based technique utilized produced

just a binary value indicating whether a function changed or not between versions.

The Fl technique utilized on QTB used a subset of the metrics incorporated into the

Fl metric used in previous experiments. These differences might cause the result-

ing techniques to be less sensitive to modifications in the versions. Nevertheless,

for simplicity and despite these differences, in this study we continue to use the

nomenclature used to denote these techniques in earlier studies.

2.5.4 Results and Analysis

Figure 2.5 provides an overview of the data for the three case studies. We include

two graphs for each of the programs studied; these graphs provide complementary

information. The box plots on the left present the overall distribution of APFD data

per technique, summarized across all versions. This depiction illustrates each tech-

niques' mean and variation, allowing comparisons of overall performance across

all versions. The graphs on the right present the APFD values achieved by each of

100

90

80

70

60

50
0

40

30

20

10

90

80

70

60

50

40

30

20

10

90

80

70

60

50

40

30

20

10

67

&

0,
4

FLEX

46 la5

QTB

'S...

0
0 8 0
2 0 8 8

I I

FIGURE 2.5: Overview of case study data. Vertical axes depict APFD values. At
left, box plots present the overall distribution of APFD data per technique, summa-
rized across all program versions. At right, graphs show the APFD values obtained
by each technique on each version.

the techniques across each of the versions, allowing comparisons on a per version

basis.

We consider overall results (box plots) first. On both grep and flex, in terms

of mean APFD, optimal ranks first, fn-cov-fb ranks second, and fn-fi-cov-fb ranks

third. On both programs, techniques using feedback (fb) produce APFDs closer to

optimal than do techniques not using feedback (noth). On QTB, in contrast, the

average APFD for techniques not using feedback exceeds the average APFD for

techniques using feedback. Further, on grep and flex, techniques using feed-

back exhibited less variance in APFD than those not using feedback, whereas on

QTB this relationship was reversed. Another surprise was the high mean APFD val-

ues exhibited by the random technique on grep and flex. On QTB, the random

technique outperforms the other techniques in some cases (evident in the extents of

the tails of the distributions), but in terms of mean APFD it is the worst performing

technique overall.

The data presented in the graphs of per version results, Figure 2.5, also contains

several surprises. It seems that the primary constant across different programs is

the high degree of change in APFD values across versions. Furthermore, from

the figures, it is difficult to understand the "contradictions" that are present in the

data. However, when each specific scenario is analyzed in detail, a clearer picture

emerges.

We conjecture that the variability in the results observed in these case studies

can be attributed, at least in part, to the location of faults in the program and the

8 Each technique has one value for each version within each program. These values have been
connected with lines to facilitate the visualization of patterns.

Pct. of functions Pct. of functions Pct. of test cases Pct. of test cases

executed by executed by fault executing exposing

Faulty Exposed test cases exposing test cases faulty functions faults

Program Version functions faults Mean Stdev Mean Stdev Mean Stdev Mean Stdev

grep 1 4 4 44.22 5.25 41.89 4.25 64.19 46.75 0.25 0.1

2 2 3 45.64 5.27 42.68 3.77 93.31 8.30 3.37 2.21

3 3 3 46.82 5.39 45.07 5.65 85.80 23.60 2.29 0.93

4 1 1 46.80 5.39 39.38 0.48 99.02 0.00 0.33 0

flex 1 4 5 52.52 6.20 59.39 4.46 73.33 38.73 13.29 5.46

2 4 4 58.37 6.50 63.18 12.38 49.81 57.08 1.29 1.46

3 6 7 58.37 6.50 66.61 4.85 52.77 51.66 7.48 8.55

4 1 1 58.37 6.50 72.04 3.60 9848 0.00 17.52 0

QTB 1 10 8 22.91 10.24 22.99 10.77 74.35 32.42 1.02 0.38

2 1 1 22.91 10.24 37.57 0.00 97.78 0.00 0.74 0

3 2 2 22.91 10.24 27.97 6.94 36.67 48.71 1.11 0.52

4 2 1 22.91 10.24 36.45 10.37 33.33 0.00 1.11 0.52

5 7 4 22.91 10.24 3419 7.49 48.64 31.98 1.11 0.43

TABLE 2.16: Fault Exposure and Test Case Activity Data

likelihood that those faults are executed by the test cases in the test suite. (This

conjecture is based, in part, on results presented in [193].) We observe that fault

location and test coverage patterns varied widely across our programs and versions,

and this may have contributed to the variability in our results. To investigate this

conjecture, we need to understand those factors within each unit of study. Table

2.16 summarizes relations between faults, fault exposure, and test coverage for each

of the programs and versions studied, listing data on the percentage of functions

executed by test cases, the percentage of functions executed by fault exposing test

cases, the percentage of test cases executing faulty functions, and the percentage of

test cases exposing faults.

First, we consider why techniques using feedback did not perform (overall) as

well on QTB as on the other two programs. Observe on the per version graph for

70

QTB that techniques using feedback performed better than those not using feedback

on versions 1, 3, and 4, slightly worse on version 5, and considerably worse on

version 2. With only five versions, the influence of one poor performance (version

2) is sufficient to affect the overall rankings of means exhibited across all versions

of the program.

To suggest why version 2 exhibited such results, we turn to the data in Table

2.16. As the table shows, on version 2 ofQTB, 98% of the test cases for the system

execute the faulty function, but only one of those test cases exposes the fault. Con-

sider also version 4 of grep. Here, as on version 2 of QTB, most of the program's

test cases (99.02%) execute the faulty function, and few of these test cases (only

two, or 0.33% of the test suite) expose the fault. Despite this similarity, however,

these two cases result in different relationships between techniques using and not

using feedback.

This difference may be attributed to differences in test case execution patterns.

On version 2 of QTB, the test cases exposing the fault execute a larger percentage of

functions (37.57%) than the average test case (22.9 1%). On version 4 of grep, in

contrast, the test cases exposing the fault execute a smaller percentage of functions

(39.38%) than the average test case (46.8%).

When test cases that expose faults execute a relatively small percentage of func-

tions, they are likely to be scheduled near the end of test execution by techniques

not using feedback (e.g., fn-cov-nofb). For faults exposed by a small percentage of

the test cases that reach them, the postponing of such test cases further postpones

the exposure of those faults, exacerbating the differences in APFD values achieved

by the prioritization techniques.

71

Summarizing, characteristics involving the coverage achieved by the test suite

and the location of the faults affect the results of prioritization techniques using and

not using feedback. In our case studies, where each version has significantly dif-

ferent types and locations of faults, and test execution patterns with relationship to

those faults differ widely, the tests exposing faults change and so does the effective-

ness of the techniques across versions.

Next, we consider the situations in which random performs better than some of

our prioritization heuristics, by considering differences in the relationship between

random and fn-cov-nofb on versions 1 and 4 of flex. (On version 1, random

outperforms fn-cov-nofb; on version 4 the two are nearly equivalent).

Intuitively, random could be expected to perform well when the chances of ex-

posing a fault with an arbitrary test case are high. Versions 1 and 4 of flex reflect

this expectation. On both of these versions (for which over 13.29% and 17.52%

of the test cases, respectively, expose faults), random prioritization produces APFD

values relatively close to the optimal values. On version 4 this means that it is likely

that one of the first six test cases randomly selected will expose the fault in that

version. On version 4, however, a relatively large percentage of functions (72.83%)

are executed by fault exposing test cases, and most test cases (98.48%) execute

faulty functions, rendering it probable that fn-cov-nofb will also perform well. On

version 1, in contrast, a smaller percentage of functions (59.76%) are executed by

fault exposing test cases, and fewer test cases (73.33%) execute faulty functions. In

this case, the probability that fn-cov-nofb will postpone execution of fault exposing

functions is increased; a random rule thus performs better.

Similar cases can be seen on versions 2 and 3 of grep. On the other hand, when

faulty functions are not likely to be executed and faults are not likely to be exposed

72

by arbitrary test cases, the random technique performs poorly. For example, on

version 1 of grep, the likelihood of exposing a fault is very small (0.25%) so

random performed poorly. A similar situation can be found on version 3 of flex,

where some faults have a very small probability of being exposed (as suggested by

the high standard deviation).

Finally, we were surprised that techniques using fault proneness estimates did

not provide more substantial improvements. Although in many specific instances,

incorporation of fault proneness estimates added significant improvements to tech-

niques, the mean APFDs of these techniques across versions is not favorable. A

previous study [42] of the FT fault index supported our expectations for techniques

using fault proneness estimates; however, that previous study evaluated the pre-

dictive abilities of fault proneness indexes, whereas the study reported here evalu-

ates techniques that employ those indexes to schedule test cases. In addition, there

are other factors, such as test exposure capability, program domain, particular pro-

cesses, and technique scalability, that may have not been relevant in the earlier

studies, but could have had a significant impact on the fault prediction procedure

[110] and in the Fl-based prioritization techniques' effectiveness. These limitations

might be contributing to some of the differences that we observe across the case

studies.9

This said, FT-based techniques were observed to result in improved APFD val-

ues in our controlled experiments; thus, the difference in results exhibited in these

problems such as this, where different studies yield different results, are not unique
to testing. For example, Lanubile et al. [1101 report that even successful fault proneness prediction
models might not work on every data set, and that there is a need to take into consideration the
context in which they are used.

73

case studies is of interest. We can suggest at least three things that may explain these

differences. First, in our controlled experiments, the ratio between the amount of

code changed and the number of faults in the program versions utilized was much

smaller than in these case studies. The number of lines of code changed in the con-

trolled experiments numbered in the tens, while the average number of changes in

the case studies numbered in the hundreds. Since "regression" fault proneness met-

rics associate evolutionary changes with fault likelihood, they are likely to be more

effective when fewer changes are made. Second, the test suites used in the case

studies had different characteristics than those used in the controlled experiments.

We have suggested ways in which test suite characteristics can impact techniques

using and not using feedback differently, and the same suggestions apply to tech-

niques employing measures of fault proneness. Third, the fault seeding process used

on some objects (small Siemens programs, grep, and flex) could have played a

role in the variance we observed among the techniques' performance, especially

on the techniques based on fault proneness. Although we attempted to perform

this process as consistently as possible, we recognize that it constitutes an artificial

procedure that might not provide an accurate reflection of reality.

It is important to note that the previous interpretations are not always as transpar-

ent as presented. For example, in the presence of multiple faults, some of which are

exposed by a large number of test cases and some of which are infrequently exposed,

interpretation becomes more difficult and the results less predictable. Nevertheless,

these general patterns can be observed repeatedly. It can also be observed that ver-

sion specific prioritization can (and most often does) yield considerable gains over

random test case orderings and, if we select the proper prioritization technique,

those gains can be maximized.

74

2.6 Conclusions

As we saw from our experiments, change-based prioritization was effective in im-

proving the rate of fault detection in our small Siemens program subjects. It would

be interesting to compare statement-level change-based techniques to function-level

ones. While statement-level techniques were effective, their application can be lim-

ited for reasons discussed in Section 2.1. Statement-level fep-based techniques

were especially effective; however, because fep estimation is so expensive, these

techniques may not be practical for the large software systems. As for function-

level techniques, change-based and, especially, change/fep combination-based tech-

niques were most effective. These may be more affordable than statement-level

fep-based techniques. Function-level techniques did lose effectiveness relative to

statement-level ones; however, these losses were marginal relative to the variations

between the best function-level and statement-level techniques.

The situation was different for the medium subjects. Here, change-based tech-

niques did not show significant improvement over coverage-based ones. This dif-

ference can be explained in terms of the way in which faults were distributed. In

the Siemens subjects, faults are changes, meaning that every changed location has

an equal number of faults in it. Under these circumstances, there is a strong cone-

lation between the amount of change in a given function and the number of faults it

contains. In our medium subjects, faults were artificially seeded in modified code.

The number of faults was relatively small and only a subset of changed functions

contained faults. In this case, the correlation between the amount of change in a

given function and the number of faults that it contains is not very strong, resulting

in limited effectiveness of change-based techniques.

75

We might hypothesize that for real-world programs, change-based techniques

can be sufficiently effective. The reason for this is that large software systems typ-

ically have larger numbers of faults in them. In each release, many changes may

be applied. Because faults occur naturally in this case, their density would be sim-

ilar in all changes. If this is not the case, fault index will capture the amount of

changes and the complexity of the code, estimating the fault existence probability

in a given function. As a result, the effectiveness of change-based techniques could

be expected to be substantial relative to other techniques.

The most important conclusion is that change-based prioritization techniques

can be effective and, simultaneously, very inexpensive to employ in regression test-

ing.

Applying prioritization can add costs due to the analysis needed to obtain needed

data. An important question arises as to whether a difference in APFD values makes

any practical impact on the cost of regression testing, and whether this impact would

be large enough to overcome prioritization cost making prioritization cost-effective.

We study this question in detail in Chapter 5.

CHAPTER 3

COST COGNIZANCE

3.1 Introduction

76

The prioritization techniques presented in the previous chapter, like most earlier

published ones, assume that all test cases are equally expensive and all faults are

equally severe.1 While this is appropriate in some cases, in other cases it is an over-

simplification.2 Some test cases can simply detect an error in input and terminate

almost immediately, while other test cases can involve computations that require

hours to complete. Similarly, in some cases, a test case requires usage of resources

such as equipment, expendable materials, or human labor, while a different test case

may use little or no equipment or human labor. Under these scenarios, when evalu-

ating the relative worth of test cases, we need to take into account these differences

in costs.

Similarly, in many cases, faults can differ in cost. One fault can be a simple

spelling error in an interface which many users would tolerate. On the other hand,

another fault can result in incorrect parameters supplied to a device, which can

result in program failure, or even in catastrophes such as loss of aircraft control

1 Wong [213] outlines a prioritization algorithm that incorporates data on test costs.

2 Portions of this chapter have appeared previously in [471.

77

or radiation overdose. Fault severity, too, may be an important component of test

worth.

To address these issues, in this chapter, we present several cost-cognizant pri-

oritization techniques that take into account varying test costs and fault seventies.

We extend the APFD metric to incorporate variable test costs and fault seventies.

Finally, we perform an empirical study, exploring costs, seventies, ways to estimate

them, and cost-cognizant prioritization techniques.

3.2 Cost Cognizant Measure

3.2.1 Limitations of the APFD Metric

As just stated, the APFD metric presented in Section 1.2.5 relies on two assump-

tions: (1) all faults have equal severity, and (2) all test cases have equal costs. These

assumptions are manifested in the fact that the metric simply plots the percentage of

faults detected against the fraction of the test suite run. To consider possible effects

of these assumptions, we present several simple examples.

Example 1. Consider the testing scenario illustrated in Figure 1.1 in Chapter

1. Under the APFD metric, when all ten faults are equally severe and all five test

cases are equally costly, orders ABCDE and BACDE are equivalent in

terms of rate of fault detection; swapping A and B alters the rate at which particu-

lar faults are detected, but not the overall rates of fault detection. This equivalence

is reflected in equivalent APFDs (50%). Suppose, however, that B is twice as costly

78

as A, requiring two hours to execute where A requires one. In terms of faults-

detected-per-hour, test case order ABCDE is preferable to order BACD

E, resulting in faster detection of faults. The APFD metric, however, does not

distinguish between the two orders.

Example 2. Again working with the scenario given in Figure 1.1, suppose that

all five test cases have equivalent costs, and suppose that faults 2-10 have severity k,

while fault 1 has severity 2k. In this case, test case A detects this more severe fault

along with one less severe fault, whereas test case B detects only two less severe

faults. In terms of fault-severity-detected, test case order ABCDE is preferable

to order BACDE. Again, the APFD metric does not distinguish between these

two orders.

Example 3. Examples 1 and 2 provide cases in which the APFD metric pro-

claims two orders equivalent where our intuitions say they are not. It is also possi-

ble, when test costs or fault seventies differ, for the APED metric to assign a higher

value to a test case order that we would consider less valuable. Working again with

Figure 1.1, suppose that all ten faults are equally severe, and that test cases A, B,

D, and E each require one hour to execute, but test case C requires ten hours. Con-

sider test case order CEBAD. Under the APFD metric this order is assigned

an APFD value of 84% (see Figure 1.1 .D). Consider alternative test case order E

CBAD. This order is illustrated with respect to the APFD metric in Figure 3.1;

because that metric does not differentiate test cases in terms of relative costs, all ver-

tical bars in the graph (representing individual test cases) have the same width. The

APFD for this order is 76% lower than the score for test case order CE--BAD.

However, in terms of faults-detected-per-hour, the second order (ECBAD) is

preferable: it detects 3 faults in the first hour, and remains better in terms of faults-

79

Test Case Order: E-C-B-A-D

100 _____________
90 p i

I I I

801 ij 1 I

I
Ii

70i I. I

I
I I I

I I I

50I I

I

60I

/ I 1 I

I I

30 1 I I

20 I

I I

I APFfl=76
10 I I I I

0I I

0 0.2 0.4 0.6 0.8 1.0

Test Suite Fraction

FIGURE 3.1: APFD for Example 3.

detected-per-hour than the first order up through the end of execution of the second

test case.

An analogous example can be created by using varying fault seventies while

holding test case costs uniform.

Example 4. Finally, consider an example in which both fault seventies and

test case costs vary. Suppose that test case B is twice as costly as test case A,

requiring two hours to execute where A requires one. In this case, in Example 1,

assuming that all ten faults were equally severe, we found test case order AB

CDE preferable. However, if the faults detected by B are more costly than the

faults detected by A, order BACDE may be preferable. For example, suppose

test case A has cost "1", and test case B has cost "2". If faults 1 and 5 (the faults

detected by A) are assigned severity "1", and faults 6 and 7 (the faults detected by B)

are assigned seventies greater than "2", then order BACDE achieves greater

"units-of-fault-severity-detected-per-unit-test-cost" than does order ABCDE.3

Again, the APFD metric would not make this distinction.

3.2.2 A New Cost-cognizant Metric

3.2.2.1 Examples and Motivation

The foregoing examples suggest that, when considering the relative merits of test

cases, a measure for rate-of-fault-detection that assumes that test case costs and

fault seventies are uniform can produce unsatisfactory results.

The notion that a tradeoff exists between the costs of testing and the costs of

leaving undetected faults in software is fundamental in practice, and testers face

and make decisions about this tradeoff frequently. It is thus appropriate that this

tradeoff be considered when prioritizing test cases. A metric for evaluating test

case orders must accommodate the factors underlying this tradeoff. It is our thesis

that such a metric should reward test case orders proportionally to their rate of

"units-of-fault-severity-detected-per-unit-test-cost".

We have created such a metric by adapting our APFD metric; we call our new

"cost-cognizant" metric APFDC. In terms of the graphs used in Figures 1.1 and

3.1, creation of this new metric entails two modifications. First, instead of letting

the horizontal axis in such a graph denote "Test Suite Fraction", we let it denote

In this example we have assumed, for simplicity, that a "unit" of fault severity is equivalent to
a "unit" of test case cost. Clearly, in practice, the relationship between fault severity and test
case cost will vary among applications, and quantifying this relationship may be non-trivial. We
discuss this further in the following sections.

F;"

"Percentage Total Test Case Cost Incurred". Now, each test case in the test suite is

represented by an interval along the horizontal axis, whose length is proportional to

the percentage of total test suite cost accounted for by that test case. Second, instead

of letting the vertical axis in such a graph denote "Percent Detected Faults", we let

it denote "Percentage Total Fault Severity Detected". Now, each fault detected by

the test suite is represented by an interval along the vertical axis, whose height is

proportional to the percentage of total fault severity that fault accounts for.

In this context, the "cost" of a test case and the "severity" of a fault can be

interpreted and measured in various ways. If time (for test execution, setup, and

validation) is the primary component of test case cost then execution time can suf-

fice to measure that cost. However, practitioners could also assign test case costs

based on factors such as hardware costs or engineers' salaries.

Similarly, fault severity could be measured strictly in terms of the time required

to locate and correct a fault, or practitioners could factor in the costs of lost business,

litigation, damage to persons or property, and so forth. In any case, the APFDC

metric supports these interpretations. (Note that in the context of the APFDC metric

we are concerned not with predicting these costs, which may be difficult, but with

measuring the costs after they have occurred, in order to evaluate various test case

orders.)

Under this new interpretation, in graphs such as those just discussed, a test

case's contribution is "weighted" along the horizontal dimension in terms of test

case cost, and along the vertical dimension in terms of the cumulative severity of

faults it reveals. In such graphs, the curve delimits a greater area for a test case

order that exhibits greater "units-of-fault-severity-detected-per-unit-test-cost"; the

area delimited constitutes our new APFDC metric.

Teat Cast Order A-B-C-C-B

t0

to

40

I
0. 0 100030403060705090tst

Pereootogr Total TratCaor Coat Incaaaeed

Trat Case Order B-A-C-C-B

500

90

6o

0o

to

0 l020304o3060708090a60
Percoxtogr Total That Case Coat locuood

That Caao Otdao A-B-C-D-E

160

to
so

6o

3°

40

3o

I
0 tO 20 00 40 30 60 70 tO 90 260

Peooroaage Total That Caao Cost Ineorrod

That Care Order B-A-C-C-B

Oo
C

7°

60

0.30
Oo +

12

4 tO 'roosx1t6O%

0. 0 10 20 ItO 40 30 60 70 50 90 I®

Potoentogo Total That Caao Cost Incurred

Test Coos Oedrr C-B-B-A-C

4100.000.000

I t0207040506070t090a60
Prt000toge Total Teat Caor Cost Incurred

ToalCaoo OoderB-C-B-A-D

Ia®
9e

B-So

Iit

0.-I
I 00 003000516070 8090 100

Percontoge Total Trot Cast Cosa loeurord

Trat Coos Order A-B-C-C-B

tlO

aO

6o

0.

H

on

Perneaatago Total Teaa Caxo Coat Incurred

TotS Cast Order B-A-C-Il-B

uo

6O

4l

2O

12 to)oreOn546616

0. 0
0+ 0 t1203040506070a0900®

Procrotoge Total Toat Coos Coat Incaaared

A. APPDa corresponding to Example I B. APFDS coereapondmg to Example 2 C.APFDa coarrapooding to Exuosple 3 0. Al'FDa coaorapoarding to Exonople 4

FIGURE 3.2: Examples illustrating the APFDC metric.

To illustrate the APFDC metric from this graphical point of view, Figure 3.2

presents graphs for each of the four examples presented in Section 3.2.1. The left-

most pair of graphs (Figure 3 .2.A) correspond to Example 1: the upper of the pair

represents the APFDC for test case order ABCDE, and the lower represents

the APFDC for order BA-CDE. Note that whereas the (original) APFD met-

ric did not distinguish the two orders, the APFDc metric gives preference to the

faster-detecting order, ABCDE.

The other pairs of graphs illustrate the application of the APFDC metric in Ex-

amples 2, 3, and 4. The pair of graphs inFigure 3.2.B, corresponding to Example

2, show how the new metric gives a higher award to the test case order that reveals

the more severe fault earlier (ABCDE), under the assumption that the sever-

ity value assigned to faults 2-10 is 1 and the severity value assigned to fault 1 is

2. The pair of graphs in Figure 3.2.C, corresponding to Example 3, show how the

new metric distinguishes test case orders involving a high-cost test case C: instead

of under-valuating order EC--BAD, the metric now assigns it greater value than

order CEBA--D. Finally, the pair of graphs in Figure 3.2.D, corresponding to

Example 4, show how the new metric distinguishes between test case orders when

both test case costs and fault seventies are non-uniform, under the assumptions that

test case B has cost 2 while all other test cases have cost 1, and that faults 6 and 7

have severity 3 while all other faults have severity 1. In this case, the new metric

assigns a greater value to order BACDE than to order ABCDE.

3.2.2.2 Derivation of the Formula for the APFDC Metric

Let T be a test suite containing n test cases with costs ti, t2, . . . , t. Let F be a set

of m faults revealed by T, and let fi, f2,.. . , fm be the severities of those faults. Let

TF be the first test case in an ordering T' of T that reveals fault i.

We first derive the formula for the area under the graph in Figure 3.3, and then

normalize it to obtain a value between 0 and 1.

Consider two graphs, Figures 3.3(a) (upper graph) and 3.3(b) (lower graph). It

is easy to see that the area we wish to compute is the average of the areas under

these graphs. Each graph can be represented as set of slices (shown as shaded bars

on the graphs), corresponding to each fault. The slice for fault i starts from the test

case that reveals i first under the given order. In the graph from Figure 3.3(b), this

slice begins at the TF-th test case and extends to the end (n-th test case). In the

graph from Figure 3.3(a), this slice begins at the (TF 1)-th test case and extends

to the end (n-th test case).

The area of the slice for the upper graph is f x LTF. tJ.

Total Tosl Cost Incurrod

(a) upper graph

at 12 13

Total Taut Coat loccsaoed

(b) lower graph

Total Toot Coal locoarod

(c) target average graph

FIGURE 3.3: Graphs for use in illustrating derivation of the APFDG formula.

The area of the slice for the lower graph is f, x >ljTF+1 t3 (for the fault de-

tected by the last test case, it is zero).

The area of the upper graph is (f X ti).

The area of the lower graph is (f x >=TFj+1 t3).

The average of the areas of the upper and lower graphs is

m fl Tfl fl

i=1 j=TF i=1 j=TF2+1

(.
ti+ Eii j_TF. jTF5+1

(E(fx (
t+

ii jTF5 j_TF3

(E(fx (2 titTF))
i=1 j=TFd

E(fx (E titTF))
i=1 j=TF,

(3.1)

The normalized graph area (APFD value) is

x (>TFtj tTF))
(3.2)

f x t3

The (cost-cognizant) weighted average percentage of faults detected during the

execution of test suite T' is thus given by the equation:

L (Ii x (=TF tj tTF))
(3.3)APFDC

i1 i j1

If all test case costs are identical and all fault costs are identical (Vi t = t and

Vi f. = f), this formula simplifies as follows:

(1 x t t2))

ri x m x t x f

1(nTF+1)
rim

nm 2n

Thus, Equation 3.3 remains applicable when either test case costs or fault seventies

are identical, and when both test case costs and fault seventies are identical the

formula reduces to the formula for APFD.

3.3 Estimating Test Cost

There are two issues connected with test cost: measuring or estimating if for use in

assessing an order in terms of APFDG, and estimating if for use in prioritizing test

cases.

The cost of a test case indicates the resources involved in executing and validat-

ing that test case. Various objective measures are possible, for example: when the

primary cost resource is machine or human time, test cost can measure the actual

time needed to test the software with a given test case. Another measure considers

the monetary costs of test case execution and validation; this may reflect amortized

hardware cost, wages, cost of materials required for testing, earnings lost due to

delays in failing to meet the target release date, and so on.

Test cost is relatively easy to obtain postfactum, for use in APFDC computa-

tion. Here we need to observe what resources each test case required. Cost esti-

mation is more difficult to do before testing starts, however, which is necessary if

we wish to use the data in prioritization. In this case, we need to predict test costs.

One approach for doing this is to analyze a test case and the code it invokes in order

to estimate test cost. Another approach, and the one that we use, is to rely on test

cost assessments made during the previous testing session. Under this approach, we

assume that test costs do not change significantly from one version to another.

3.4 Estimating Fault Severity

As with test cost, with fault severity there are two issues: measuring or estimating

it for use in assessing an order in terms of APFDC, and estimating it for use in

prioritizing test cases.

The severity of a fault is related to the costs or resources required if a fault

persists in, and influences, the software after it is released. Various measures of

these seventies are possible; for example:

One approach measures the severity of a fault as the amount of money lost

due to the fault. This approach could apply to software where faults can

bring disastrous outcomes resulting in losses that include litigation, human

life, equipment, and so forth.

A second approach measures a fault's effects on software reliability. This ap-

proach applies to software where faults result in inconvenience to users, and

a single failure is not likely to have safety-critical effects (e.g., office produc-

tivity software). In this case, the main effect involves decreased reliability

which could result in loss of customers.

As with test costs, we are concerned with both before- and after-the-fact fault

severity estimation. When testing completes, we have information about faults and

can estimate their seventies to use in APFDC computation (though this is not as

easy as with test cost). On the other hand, before testing begins, we need to estimate

the severity of potential faults as related to our system or tests, so this information

can be used by prioritization, and this is far more difficult than with test cost. To

be precise, we require a metric on test cases that correlates satisfactorily with the

severity of the faults given test cases reveal.

If we knew the faults revealed by a given test case, and knew their seventies,

correlating test cases with seventies would be trivial. In practice, however, this

information is not available before testing is completed. Two possible estimation

approaches, however, involve assessing module criticality and test criticality. In

assessing module criticality, we attempt to relate fault severity to the criticality of

a module (or some other code component such as a block, function, file, or object)

in which a fault may occur. In assessing test criticality, we attempt to relate test

cases directly to the severity of faults they may detect. By estimating module or test

criticality, we hope to incorporate fault severity into test case pnioritization before

testing begins. The empirical study reported later in this chapter examines the first

approach further.

riI]

3.5 Prioritization Techniques

In this section, we present prioritization techniques adapted to accommodate esti-

mations of non-uniform test costs and estimations of fault seventies.

We extend Algorithm 1, presented in Section 2.3, to provide techniques that

include cost cognizance. The cost-cognizant entities include test costs, test critical-

ities, and location/module criticalities.

In the change-based techniques described in Chapter 1.4, test award values are

computed by summing products of coverage information and other data. To in-

corporate module criticality, we multiply module criticality into the corresponding

products and sum them as before. Test costs and test criticalities are incorporated

as ratios of test criticality over cost. These ratios can then be used in various ways:

(1) multiply these ratios by the award values of corresponding tests (multiplication),

(2) sort tests by award values first and then resolve ties using criticality-over-cost

ratio (award first), and (3) sort by ratios first and resolve ties by award values (ratio

first).

The foregoing techniques, especially change-based ones, can result in large

numbers of ties in award values. Thus, additional tie resolution may be needed. For

example, if the multiplication combination function is used, ties can be resolved

in terms of simple change-based award values. Alternatively, total coverage (no

feedback) can be used to resolve ties.

Our cost-cognizant techniques are represented by the generalized algorithm

presented as Algorithm 2. In order to instantiate this generalized algorithm as a

particular technique, proper parameters must be provided to the algorithm. These

Algorithm 2 Cost-cognizant test case prioritization.
Procedure Prioritize
In: 01j5coverage (original location-wise binary coverage),

locations (set of program locations),
tests (set of test cases),
fep (fault-exposing-potential),
change (change information),
feedback (parameter specifying whether feedback is to be used),
rncrit (module criticality),
tcost (test cost),
tcrit (test criticality)
update_conf (parameter specifying whether to update confidence vector),
award..fermjunc (parameter function which computes a single term for award value)
need_to_reset (parameter function that computes whether a reset is needed)

Out: list

list
for all I E locations do

for all t E tests do
coverage,t = orjgcoverage,t

end for
confidence1 = 0

end for
while tests 0 do

awards = Compute_Award_Values(ojigcoverage, coverage,
change, fep, confidence,
merit, tcost, tent,
tests, locations,
awardterrnfunc)

if nee&to.ieset(awards, tests) = 1 then
coverage = Reset(orjgcoverage, locations, tests)
awards = ComputeAwar&ValuesGjgcoverage, coverage,

change, fep, confidence,
merit, tcost, tent,
tests, locations,
awardtermfunc)

end if
find the test tselected E tests with the largest award value awardst1
add tse1t to list
remove from tests
if feedback = true then

coverage = UpdateCoverage(0115 coverage, coverage, locations, tests, tselected)
if updateconf = true then

confidence = Update_Confidence(origcoverage, fepi,j1, confidence,
locations, tests, tselected)

end if
end if

end while
return list

Algorithm 2 Cost-cognizant test case prioritization (Continued).
Procedure UpdateCoverage
In: origcoverage, coverage, tests, locations, t1,d
Out: newcoverage

for all 1 locations do
for alit E tests do

if origcoveraget,t,,i, = 1 then
newcoveragej,t = 0

else
newcoveragej,, = coveragej,t

end if
end for

end for
return coverage

Procedure UpdateConfidence
In: origcoverage, fep, confidence, tests, locations, tij
Out: newconfidence

for all I E locations do
foigcoVerage1,t = 1 then

newconfidence1 = 1 (1 confidencej) x (1 fepi,t,1,)
else

newconfidencet = confidencej
end if

end for
return newconfidence

Procedure ComputeAwar& Values
In: 01jgcoverage (original binary coverage information),

coverage (current original binary coverage information),
change (change information),
fep (fault-exposing-potential),
confidence (confidence vector),
mcrit (module criticality),
tcost (test cost),
tcrit (test criticality),
tests (set of tests),
locations (set of locations),
awardtermfvnc (function to compute terms in award value)

Out: awards (test award values)

for all t tests do
awardst=<0,...,0>
for all 1 E locations do

awardst = awardst + award term_f uncs(oi-igcoveragel,t, coveragejt,
change1, fepi,t,
mcrit1, tcritt , tcostt)

end for
end for
return awards

Procedure Reset
In: oi.igcoverage, locations, tests
Out: coverage

for all t E tests do
for all I E locations do

coverage,t = origcoveragel,t
end for

end for
return coverage

91

necessary parameters are described in Table 3.1, which lists the various techniques

expressed by Algorithm 2.

The main difference between Algorithm 2 and the one presented in Chapter 1.4

(Algorithm 1) is incorporation of costs and criticalities. Module criticalities, test

criticalities, and test costs are incorporated into the award value computation in the

three previously described ways.

The parameter, award_term_f unc, supplies a function used in award value

computation for computing a single term. This function can be any of the func-

tions FUNGi to FUNC12, given in Figures 3.4 to 3.7.

The parameter, need_to_reset, supplies a function that indicates whether data

structures need to be reset. This function can be any of the functions: NTR1 to

NTR4, given in Figure 3.8.

In Table 3.1, we include techniques that use change information. However, as

for Algorithm 1 in Chapter 1.4, there are four types of change information, resulting

in four different classes of change-based techniques: fl-based, binary fl-based, duff-

based, and binary diff-based. Thus, each technique in the table that uses change

information represents a set of four techniques, one per change information type.

So, for all techniques whose mnemonic contains, in its second field, "mod", this

field can be any of the following: "fi", "bfl", "duff", or "bdiff".

If certain criticality or cost data are missing, unit values should be substituted in

place of the missing data.

92

technique locations change feed-
back

update-
conf

award-
.iermlunc

need lo-
Leset

st-cov-ccmult-nofb statement unit false false FUNC1 NTR1
st-cov-ccmult-th statement unit true false FUNC1 NTR1
st-cov-ccalst-nofb statement unit false false FTJNC2 NTR1
st-cov-ccalst-fb statement unit true false FIJNC2 NTR1
st-cov-ccrlst-nofb statement unit false false FUNC3 NTR2
st-cov-ccrlst-fb statement unit true false FUNC3 NTR2
fn-cov-ccmult-nofb function unit false false FUNC1 NTR1
fn-cov-ccmult-fb function unit true false FUNC1 NTR1
fn-cov-ccalst-nofb function unit false false FUNC2 NTR1
fn-cov-ccalst-fb function unit true false FUNC2 NTR1
fn-cov-ccrlst-nofb function unit false false FUNC3 NTR2
fn-cov-ccrlst-fb function unit true false FUNC3 NTR2
st-fep-ccmult-nofb statement unit false false FUNC4 NTR1
st-fep-ccmult-fb statement unit true true FUNC4 NTR1
st-fep-ccalst-nofb statement unit false false FUNC5 NTR1
st-fep-ccalst-fb statement unit true true FUNC5 NTR1
st-fep-ccrlst-nofb statement unit false false FUNC6 NTR2
st-fep-ccrlst-fb statement unit true true FUNC6 NTR2
fn-fep-ccmult-nofb function unit false false FUNC4 NTR1
fn-fep-ccmult-fb function unit true true FUNC4 NTR1
fn-fep-ccalst-nofb function unit false false FUNC5 NTR1
fn-fep-ccalst-fb function unit true true FUNC5 NTR1
fn-fep-ccrlst-nofb function unit false false FUNC6 NTR2
fn-fep-ccrlst-fb function unit true true FUNC6 NTR2
fn-mod-cov-ccmult-nofb function change false false FUNC1 NTR1
fn-mod-cov-ccmult-fb function change true false FUNC1 NTR1
fn-mod-cov-ccalst-riofb function change false false FUNC2 NTR1
fn-mod-cov-ccalst-fb function change true false FUNC2 NTR1
fn-mod-cov-ccrlst-nofb function change false false FUNC3 NTR2
fn-mod-cov-ccrlst-th function change true false FUNC3 NTR2
fn-mod-fepm-ccmult-nofb function change false false FUNC7 NTR1
fn-mod-fepm-ccmult-fb function change true false FUNC7 NTR1
fn-mod-fepm-ccalst-nofb function change false false FUNC8 NTR1
fn-mod-fepm-ccalst-fb function change true false FTJNC8 NTR1
fn-mod-fepm-ccrl st-nofb function change false false FUNC9 NTR2
fn-mod-fepm-ccrlst-fb function change true false FUNC9 NTR2
fn-mod-fep-ccmult-nofb function change false false FUNC1O NTR2
fn-mod-fep-ccmult-fb function change true false FUNC1O NTR2
fn-mod-fep-ccalst-nofb function change false false FUNC1 1 NTR2
fn-mod-fep-ccalst-fb function change true false FUNC11 NTR2
fn-mod-fep-ccrlst-nofb function change false false FUNC12 NTR3
fn-mod-fep-ccrlst-fb function change true false FUNC12 NTR3

TABLE 3.1: Prioritization Techniques and Parameters for use with Algorithm 2

93

Function FUNC1
In: origcovera ge-term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
con fidenceterm (current confidence data for a given location)
rncrit_term (module criticality data for a given location)
tent_term (test criticality data)
tcost_term (test cost data)

Out: term

term 1 = merit_term x coverageterm>< changeierm
term2 = 0coverageterm
ratio = tcrzt_term X tcost_term
term =< terrnl x ratio,terml,term2 >
return term

Function FUNC2
In: ongcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
merit_term (module criticality data for a given location)
tcnit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml = mcrit_term x coverage_term x changeterm
term2 = 0-jcoverage_term
ratio tent_term)< tcost_term
term =< terml , ratio, term2 >
return term

Function FUNC3
In: origcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
mcrit_term (module criticality data for a given location)
tent_term (test criticality data)
tcost_term (test cost data)

Out: term

terml = mcnit_term x coverage_term x change_term
term2 = 0coverage_term
ratio = tcrst_term X tcost_term
term =< ratio, tenml , term2 >
return term

FIGURE 3.4: Specific award value term computing functions, used as parameters
in Algorithm 2.

Function FUNC4
In: ongcovera ge_term (original coverage data for a given location and test),

coverageterm (current coverage data for a given location and test),
changeterm (change data for a given location)
fep_term (fep data for a given location and test)
con f idenceterm (current confidence data for a given location)
merit_term (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml merit_term x orlecoverage_term x (1 confidence_term) x fep_term
term2 = 0jcoverageterm
ratio = tent_term X tcost_term
term =< terml x ratio, term2 >
return term

Function FUNC5
In: origcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
changeterm (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
merit_term (module criticality data for a given location)
tent_term (test criticality data)
tcost_tenm (test cost data)

Out: term

terml merit_term x x (1 confidence_term) >< fep_term
term2 = 01.jcoverageterm
ratio = tent_term >(tcost_term
term =< terml,ratio,term2 >
return term

Function FUNC6
In: oiigcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence term (current confidence data for a given location)
merit_term (module criticality data for a given location)
tent_term (test criticality data)
tcost_term (test cost data)

Out: term

terml = merit_term x °"5coverage_tenm x (1 confidence_term) x fep_term
term2 = 0çjcoverage_term
ratio = tent_term >< tcost_tenm
term =< ratio, terml , term2 >
return term

FIGURE 3.5: Specific award value term computing functions, used as parameters
in Algorithm 2.

95

Function FUNC7
In: origcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
mcrit_terrn (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml = mcrit_term x coverage_term x change_term x (1 con fidenceierm) x fepterm
term2 = 0j1coverage_term
ratio = tcrzt_term X tcost_term
term =< terml x ratio, term2 >
return term

Function FUNC8
In: 01.jcovera ge_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
mcrit_term (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml mcrit_term x coverageterm x change_term x (1 confidence-term) >< fep_term
term2 = 0coverageterm
ratio = tcrzt_term X tcost_term
term =< terml,ratio,term2 >
return term

Function FUNC9
In: origcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
changeterm (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
rncrit_term (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

term 1 = mcritterm x coverageterm x change_term x (1 - confidence_term) x fep_term
terrn2 = ori1coverage_term
ratio = tcrzt_term >< tcost_term
term =< ratio,terml,term2 >
return term

FIGURE 3.6: Specific award value term computing functions, used as parameters
in Algorithm 2.

Function FUNC1O
In: orjgcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence term (current confidence data for a given location)
rncrit_term (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml = mcrit_term x coverage_term x changeierm
term2 mcrit_term x °5coverage_term x (1 confidenceterm) x fepierm
term3 = 0coverage_term
ratio = tcrzt_term >< tcost_term
term =< terml x ratio, terrn2 x ratio, term3 >
return term

Function FUNC11
In: ongcovera ge_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fepierrn (fep data for a given location and test)
confidence_term (current confidence data for a given location)
mcrit_term (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml = mcritterm x coverage_term x change_term
term2 = mcrit_terrn x °'15coverageterm x (1 con fidenceierm) x fep_term
term3 = 0,jcoverage_term
ratio = tcrzt_term X tcost_term
term =< terml,term2,ratio,term3 >
return term

Function FUNC12
In: orjgcoverage_term (original coverage data for a given location and test),

coverage_term (current coverage data for a given location and test),
change_term (change data for a given location)
fep_term (fep data for a given location and test)
confidence_term (current confidence data for a given location)
mcrit_term (module criticality data for a given location)
tcrit_term (test criticality data)
tcost_term (test cost data)

Out: term

terml mcrit_term x coverage_term x change_term
term2 = mcrit_term >< °'gcoverage_terrn x (1 confidence_term) x fep_term
term3 = 0coverage_term
ratio = tcrzt_term >< icost_term
term =< ratio, terml , term2 , terrn3 >
return term

FIGURE 3.7: Specific award value term computing functions, used as parameters
in Algorithm 2.

97

Procedure NTR1
In: awards, tests
Out: decision

decision = 0
if first elements of awards are all zeroes then

decision = 1
end if
return decision

Procedure NTR2
In: awards, tests
Out: decision

decision = 0
if second elements of awards are all zeroes then

decision = 1
end if
return decision

Procedure NTR3
In: awards, tests
Out: decision

decision = 0
if first and second elements of awards are all zeroes then

decision = 1
end if
return decision

Procedure NTR4
In: awards, tests
Out: decision

decision = 0
if second and third elements of awards are all zeroes then

decision = 1
end if
return decision

FIGURE 3.8: Specific need to reset functions, used as parameters in Algorithm 2.

3.6 Case Study

3.6.1 Introduction

To investigate the practical application of our metric and some of the ramifications

of using it, we conducted a case study. The goal of the case study was to investigate

how different test case cost and fault severity distributions can affect the rate of fault

detection as measured by APFDc.

The notion of module criticality was used to estimate fault costs for usage in

prioritization. The study examined the effects of various test cost, fault severity,

and combined test cost and fault severity distributions on the relative effectiveness

of prioritization techniques.

3.6.1.1 Subject

We used the space program described in Section 2.4.2.

3.6.1.2 Prioritization Techniques

We selected five prioritization techniques: function coverage cost-cognizant mul-

tiply feedback (fn-cov-ccmult-fb), statement coverage cost-cognizant multiply

feedback (st-cov-ccmult-fb), function fault index coverage cost-cognizant multi-

ply feedback (fn-fi-cov-ccmult-fb), and random prioritization.

3.6.1.3 Test Case Cost Distributions

We randomly assigned costs to tests based on five distributions:

Unit: all test case costs are ones. This corresponds to the case in which test

case costs are not considered.

Random: test case costs are uniformly distributed over the range [1 . . . 101.

Normal: test costs are normally distributed over the range [1. . . 10], with

mean 5.0, standard deviation 2.0.

Mozilla: test costs are distributed as in the Mozilla application (see Table 3.2)

into four levels. Mozilla was the original name for Netscape Communicator

and is now an open-source web browser involving hundreds of developers and

thousands of testers.4

QTB: test costs are distributed as in the QTB application (see Table 3.3). QTB

is a real time embedded software system of more than 300KLOC (see Section

2.5.1 and Reference [42] for details).

To apply each test case cost distribution (other than unit, whose application was

trivial) we generated a set of cost numbers having the required distribution, and then

randomly mapped those numbers to test cases.

more information on Mozilla see www.mozilla.org. For more information on Mozilla testing
and fault recording see bugzilla.mozilla.org.

Name level description percentage

HTML 1 least expensive 87

Printing 2 more expensive 1

Smoke tests 3 expensive 2

Buster 4 most expensive 10

TABLE 3.2: Mozilla Test Case Cost Distribution

eve1 description percentage

1

10

not expensive

expensive

88

12

TABLE 3.3: QTB Test Case Cost Distribution

3.6.1.4 Fault Severity Distributions

We used three fault severity distributions, as follows:

. Unit: all fault seventies are ones. This corresponds to the case in which fault

seventies are not considered.

Mozilla linear: fault seventies are distributed as in the Mozilla application

(see Table 3.4), into six levels; these costs are assigned on a linear scale from

1 through 6.

distribution was obtained by querying the bugzilla database for "Resolved" bugs on the
Netscape Browser for PC-windows2000.

101

linear level exponential level severity percentage

1 1 trivial 2

2 2 minor 11

3 4 normal 6

4 8 major 76

5 16 critical 4

6 32 blocking 2

TABLE 3.4: Mozilla Fault Severity Distributions

Mozilla exponential: similar to Mozilla linear, but with fault severity values

assigned on an exponential scale from 20 through 2.

Applying the unit fault severity distribution was trivial. Applying the two

Mozilla fault severity distributions, however, was more difficult. The difficulty is

that our prioritization techniques use information on module criticality in an at-

tempt to prioritize in a manner that accounts for severity, but we did not have any

historical data to support the estimation of module criticality. Thus, we required the

generation of both module criticality and fault severity assignments.

Creating these two assignments independently cannot reflect any correlation be-

tween module criticalities and fault severities, and the existence of such a correlation

is a prerequisite for prioritization techniques that use module criticality to predict

fault severity. Instead, our approach was to assume that a correlation between mod-

ule criticalities and fault seventies exists, and rely on this assumption in generating

module criticality and fault severity assignments. To apply each fault severity dis-

tribution (other than unit) we generated a set of severity numbers with the required

distribution, and randomly mapped those numbers to modules. We then considered

102

unit random normal Mozilla QTB

unit X X X X X

Moz. linear X X

Moz. exponential X X

TABLE 3.5: Fault Severity Distributions (Left) versus Test Case Cost Distributions
(Above). Entries Marked with "X" Indicate Combinations that were Utilized in the
Study.

each fault f, and assigned to f a severity number equal to the criticality number of

the module containing f.

This approach does not allow us to investigate and compare prioritization tech-

niques fairly, unless our investigations are restricted to conditional hypotheses be-

ginning with the clause: "Suppose the assumption that a close correlation between

module criticality and fault severity exists is valid". However, our focus in this

study was not on the performance of prioritization techniques, but rather, on the

effects that fault distributions and choices of severity values can have on APFDG.

In presenting our data, we condition our conclusions to reflect this methodology.

3.6.1.5 Combinations of Test Cost and Fault Severity Distributions

Given these five test case cost distributions and three fault severity distributions,

there were fifteen combinations of test case cost and fault distributions to consider.

We restricted our attention to nine of these, as shown in Table 3.5.

103

3.6.2 Results and Discussion

We present the results of our study in three steps. First, we analyze the impact of

varying test case cost distributions across different prioritization techniques while

maintaining a unit fault severity distribution. Second, we describe the effects of

varying fault severity distributions across different prioritization techniques while

maintaining a unit test case cost distribution. Third, we combine and analyze the

effects of non-unitary distributions for both test case cost and fault severity.

3.6.2.1 Varying Test Case Cost Distributions

Figure 3.9 provides an initial view of the APFDC values measured under different

test case cost distributions in our study. The figure displays five sets of bars one

set presenting APFDC values averaged across all runs with all techniques (left), and

one set per technique presenting APFDC values averaged across all runs with that

technique. Each set of bars contains five individual bars one for each test cost

distribution studied. The height of each bar denotes the average APFDc measured

for test suites prioritized under the technique and distribution associated with that

bar.6

As the figure shows, in our study, test case cost distribution did have an impact

on the overall average rate of fault detection of prioritized test suites as measured by

APFDC, across all runs with all techniques (as shown by the leftmost set of bars).

These differences were statistically significant; however, they were not as large as

6 The complete statistical analysis of our data can be found in Appendix B. The complete analysis
includes the results of applying ANOVA analysis and Tukey tests to all combinations of techniques
and cost distributions.

9
4

9
2

9
0

8
8

8
6

8
0

7
8

7
6

r
i
1

1
1
T
h i
i
I
I

I
E

i
1
l

I
1
1
I E I1iE

1I

:

V
N

1IIE 1IIIt
i
i/ t
i

1
I

I
l
l

_
_

-

0
0

0
C
-
) I C

C
)

o I

C
-
)

-

-

I

-
a

1
0
4

A
LL

R
A

N
D

O
M

IfflJJ

U
N

IT
N

O
R

M
A

L
M

O
Z

ILLA
Q

T
B

FIG
U

R
E

3.9:

M
ean

A
P
F
D
C

per

distribution,

per

technique.

w
e

expected:

the average

overall

A
P
F
D
C

values

for

the

different

distributions

differ-

ing

by no

m
ore

than

one

percentage

point.

M
oreover,

discrim
inating

by technique

(w
ithin

each

of the

four

rightm
ost

sets

of bars)

w
e

discovered

that

the

extent

of the

im
pact

varied

w
ith

technique.

For

exam
ple,

under

st-cov-ccm
ult-fb,

the

variance

in

105

average APFDC across different distributions was statistically significant, whereas

under fn-fi-cov-ccmult-fb it was not.

The preceding analysis, however, was performed on average APFDC values,

and an investigation of individual differences in APFDC yields a different picture.

The graphs in Figure 3.10 illustrate the absolute differences in APFDG values of

prioritized test suites under the unit test case cost distribution compared to the four

other distributions (subfigures A through D, respectively). In each graph, the hori-

zontal axis plots 2000 APFDC observations: one for each of the 50 prioritized suites

under each of the ten versions, for each of the four prioritization techniques. The

observations are sorted by technique in order fn-cov-ccmult-fb, st-cov-ccmult-fb,

fn-fi-cov-ccmult-fb, random, and within technique by test suite and version. (The

solid vertical lines in the figures delimit the boundaries between the data points for

the four techniques.)

Figure 3.10 illustrates the extent to which, for individual prioritized suites,

APFDC values under each distribution differ from APFDC values obtained with

unit test case costs. In a few cases, the differences in APFDC exceed 50%, and in

many cases they exceed 20%. This provides further evidence of the need to include

test case cost distribution as an integral part ofAPFDO (failing to do so may provide

poor prioritization). Further, because the unit test case cost distribution produces

APFDC values equivalent to those produced by the (original) APFD metric, these

differences show the extent to which the APFD and APFDC metrics differ.

Figure 3.10 also shows that under fn-cov-ccmult-fb and st-cov-ccmult-fb, test

cost distributions exhibited higher variability in APFDc than under the other pri-

oritization techniques (with st-cov-ccmult-fb exhibiting the greatest variability).

80

7°

60

5o

40

30

20

to

60

70

60

70

4°

3°

20

to

0bv8or

80

70

60

50

4°

3°

20

to

106

Ob,rv8Ofl

A. Absolute differences: Unit vs Random B. Absolute differences: Unit vs Normal

ObservaUons

C. Absolute differences: Unit vs Mozilla

80

70

80

80

20

20

to

D. Absolute differences: Unit vs QTB

FIGURE 3.10: Absolute differences in APFDc values across all observations, for
three non-unit distributions vs. the unit distribution.

This suggests that for certain techniques the behavior of the distributions is more

predictable than for others.

Finally, returning to Figure 3.9, all prioritization techniques provided significant

improvements in APFDC over the random technique on average, under all test case

cost distributions. Thus, even for a technique that is not the "best", and independent

of test case cost distribution, prioritization improved rate of fault detection.

UI

0

E 0
0

i)

I

0
I

107

O UNIT

I MOZILLA

G MOZEXP

FIGURE 3.11: APFDC values, per distribution, per technique.

3.6.2.2 Varying Fault Severity Distributions

Our analysis of fault severity distributions shows that fault severity distribution bad

a significant effect on the APFDC values for each prioritization technique. Figure

3.11 illustrates. The figure displays three sets of box plots (one set for each tech-

nique); each set of box plots contains one box plot for each of the three fault severity

distributions. Each individual box plot shows the distribution ofAPFDc values over

the test suites prioritized by its associated technique and its fault severity distribu-

tion.

IEi

As the figure shows, fn-fi-cov-ccmult-fb exhibited the most consistent behav-

ior across distributions; it also exhibited better performance than other techniques.

Random, in contrast, was the most susceptible to variation across distributions, and

exhibited the poorest performance among the techniques.

3.6.2.3 Varying Test Cost and Fault Severity Distributions

Having analyzed the effects of varying test case cost and fault severity distributions

individually, we now consider the results obtained by varying both distributions

concurrently. To simplify the presentation, we focus on the behavior of APFDG

under just 50 randomly sampled cases of st-cov-ccmult-f'b.

Figure 3.12 presents a scatter plot to represent three combined distributions:

(1) unit test case cost with unit fault severity, (2) Mozilla test case cost with lin-

ear Mozilla fault severity, (3) Mozilla test case cost with exponential Mozilla fault

severity. The x-axis represents the APFDC value under the unit-unit distribution,

and each point plotted represents the value of APFDC under one of the other two

distributions.

The plot shows that the APFDC values for the unit-unit distribution were signifi-

cantly different from the APFDC values under the other distributions; this is evident

from the large variance in the plots for both Mozilla distributions. The choice of dif-

ferent combinations of test case cost and fault severity distributions did thus have

an impact on APFDG.

To further illustrate the differences among the distributions we fitted the individ-

ual cases with linear equations using regression analysis, and drew 95% confidences

intervals around the regression lines. In the figure, the central line for each distri-

100

90

Ba

U.

70

80

0
0

0 >

. Mozilla-Mozita

Moza-MozJ

0

50 80 70 80 90 100

APFD_C for Unit - Unit

FIGURE 3.12: APFDC values for combined distributions.

bution is the regression line for that distribution; the other two lines (bands) for

each distribution represent the probability that the "true" fitted line (within the pop-

ulation of points considered) falls between the bands. The lines suggest that the

MozillalMozilla-exponential distribution combination provides the highest APFD c

values, but as APFDC becomes closer to 100, both of the distribution combinations

involving Mozilla converge.

110

3.6.3 Discussion

To begin to explore ramifications of these results we consider several practical ques-

tions test engineers might have, related to the results, and show how we can go about

answering them.

Practical Question 1. I am about to develop a new test suite for one of our

products. What can I do to make the test suite more suitableforprioritization?

We conjecture that the use of many smaller test cases, rather than fewer larger

ones, provides opportunities for test case scheduling, increasing the potential for

prioritization gains. The Unit distribution with all small test case costs (and the

Mozilla and QTB distributions to a lesser extent), for which averageAPFDC was

higher than those of other distributions, provides initial evidence to support this

conjecture. By partitioning larger test cases, the scope of the average test case de-

creases, allowing prioritization techniques to discriminate more precisely between

test cases. Expensive test cases, even in small numbers, can limit the opportunities

for prioritization (this is more likely when expensive test cases cover sections of the

program that are likely to contain faults).

Practical Question 2. I have access to two fault severity distributions A and B

corresponding to previous releases of our product. Ipeiformed a small study using

the two distributions, and found that distribution B provided a higher APFD c than

distribution A on our previous release, but the difference in APFDcs was not large.

There is no dfference in the costs of using the different distributions. How can I

determine which distribution to use?

Even a small difference in APFDC can indicate that a particular distribution

can find faults that may cause the most damage earlier in a testing cycle. Whether

111

this difference will amount to a practical difference, however, depends on other

factors. For example, if the test suite executes quickly it may make no sense to

use prioritization in the first place. To answer the question, an illustration of the

practical impact of the differences between APFDC values is needed.

One approach is to construct the graphs representing the APFDG scores for the

two distributions on the previous release. Then, alter the horizontal axis label to

reflect actual test case execution costs (e.g., substituting time). From such a graph

it will be more clear how the two orders compare.

To illustrate, we performed such an analysis on one version of space under

the fn-fi-cov-ccmult-fb technique. In this case, the APFDC for unit test case cost

with unit fault severity was 80%, the APFDC for unit test case cost with Mozilla

linear fault severity was 84%, and the APFD for unit test case cost with Mozilla

exponential fault severity was 93%.

The graph in Figure 3.13 depicts the tops of the APFDC curves for these 3

distributions, with the x-axis representing the percentage of total test case costs in-

curred and the y-axis representing the percentage of total fault severity detected.

After having incurred only 2% of the test case costs, the differences between dis-

tributions has become evident. The Mozilla-exponential fault severity distribution

has captured 80% of the accumulated fault severity, the Mozilla-linear fault severity

distribution has captured approximately 50%, and the unit fault severity distribution

has captured less than 35%. The disparity among distributions grows smaller as ad-

ditional test cost is incurred, and by the time 40% of the test cost has been accounted

for, 100% of the fault severity has been captured by all three distributions.

What is the practical impact of these differences? Suppose first that the scale

below the x-axis represents the time in days that are required for the test suite to be

-D

C-)

CD

a)

a)

Co

Ca
U-

Ca

0
I-

0
a)
0)
Ca

a,
a-

100

80

60

40

'I

0u
0

112

unitfunit
unitlMozilla-linear

unit/Mozilla-exponential

20 40 60 80 100
Percentage of Total Test Case Cost Incurred

0 10 20 30 40 50

Days/Hours

FIGURE 3.13: APFDC curves for Practical Question 2.

executed. In this case, under the Mozilla-exponential distribution, 80% of the total

fault severity has been accounted for within 4 days, whereas under the Mozilla-

linear distribution the same severity is not accounted for until after approximately

19 days. These savings may be significant if the product must be shipped before the

testing process is completed, because the most severe faults are more likely to have

been detected.

Suppose, however, that the execution of the test suite is accomplished over the

weekend and its cost can be measured in hours instead of days. In this case, the

differences between the distributions may not be practically significant. Thus, as

113

the overall testing costs diminish, the impact of choosing a particular distribution is

lessened.

Practical Question 3. What considerations should I attend to when specifying

test cost and fault severity distributions?

Applying linear transformations to a scale of test costs or fault seventies does

not affect APFDGvalues. For example, given a three-level fault severity ranking

scheme, choosing severity values 1, 2, and 3 is equivalent to choosing 10, 20 and

30 where evaluation of test case orders is concerned, because it does not affect the

units-of-fault-severity-detected-per-unit-test-cost-values of test cases relative to one

another. In contrast, applying non-linear transformations to a scale of test case costs

or fault seventies can affectAPFDC values because it can alter the relative worth of

test case orders as shown by the Mozilla-exp distribution presented above.

3.7 Conclusions

This chapter introduced our cost-cognizant metric APFDC and cost cognizant pr-

oritization techniques. It reported on a case study to explore effects of varying

factors such as scale combinations used to represent cost cognizant information,

ways of incorporating this information into prionitization techniques, and ways of

estimating cost cognizant information. The intention of the case study was to show

how different techniques and scales affect theAPFDC metric and how these tech-

niques compare to each other depending on different scales.

Our study is not intended to decide which scale to employ, it rather shows

how scales and other factors affect prionitization outcomes. Scale choice should

114

be decided upon analysis that involves estimation of fault seventies and test costs

under real industrial settings (that we do not have currently access to).

115

CHAPTER 4

GENERAL FRAMEWORK FOR PRIORITIZATION

4.1 Introduction and Motivation

The previous chapters have presented several prioritization techniques, and pro-

vided algorithms for expressing those techniques. Those algorithms, however, are

not fully general with respect to prioritization, because there are other techniques

that cannot be expressed by them. For example, Kim and Porter [103] designed a

prioritization technique that cannot be represented by any of our algorithms.

In this chapter, we present a general framework for prioritization, that allows us

to represent all existing techniques by specifying a set of parameters. This frame-

work allows us to clearly see the relationship between various techniques, easily

develop similar techniques, analyze existing techniques, and develop a single gen-

eral algorithm that expresses the whole set of techniques, facilitating their study and

usage.

4.2 Illustration

Before proceeding with technical details we provide a simple informal presentation.

Our prioritization framework consists of a combination/condensation structure,

a set of functions that define operations on this structure, and a set of steps applied to

this structure. Informally, we define the three structural levels as elements, vectors,

116

Group 1 Group2

Vi V2 Vi V2

el el el el

e2 e2 e2 e2

e3 e3 e3 e3

e4 e4

e5 e5

FIGURE 4.1: An example of a combination/condensation structure with two groups
and two vectors per group.

and groups. (In the next section, we define these formally.) Figure 4.1 provides an

example.

Informally, each element represents a single item of information utilized by the

prioritization technique. It may include function coverage, test costs, module criti-

calities, change information, or fault-exposing-potential information. Vectors usu-

ally represent sets of elements that are treated in the same way, such as coverage,

change information, fault-exposing-potential, etc. Groups usually represent sets of

vectors used to compute a single component of the final value (produced by the

combination/condensation structure). They are usually used when the final value is

a tuple; thus, each group corresponds to a computation of a single tuple element.

For the st-cov-nofb technique, there is only one group, and one vector that con-

tains binary coverage data. This technique sums elements in the vector to compute

award values. For the fn-fi-cov-nofb technique, a second vector is added, contain-

ing fault index information. This technique multiplies corresponding elements in

117

Group 1 Group2

Vi V2 Vi V2

covFl bfiFl covFl fepFl
covF2 bfiF2 covF2 fepF2

covF3 bfiF3 covF3 fepF3

covF4 bfiF4 covF4 fepF4

covF5 bfiF5 covF5 fepF5

FIGURE 4.2: The combination/condensation structure for prioritization technique
fn-bfi-fep-noth.

the two vectors and sums the results to compute award values; these award values

are used to order test cases. Each element in a vector contains a single piece of

information (e.g., one statement's coverage) for a whole test suite. In other words,

an element is a list of values (we call them sub-elements), one per test case. When

computing an award value for a given test case, proper sub-elements are used.

For the fn-bfi-fep-nofb technique, which employs a binary fault index and fault-

exposing-potential information, there are two vectors in each of the two groups:

coverage and binary fault index vectors in the first group, and coverage and fault-

exposing-potential vectors in the second group. In each group, corresponding ele-

ments of that group's two vectors are multiplied and summed. Then, for each test

case, an award value is created as a tuple consisting of two values, one from each

group; this is used to order test cases. Award values, being tuples, are compared

element-wise: first elements are used for sorting, and, in a case of a tie, second el-

ements are compared. The combination/condensation structure for the award value

computation for this technique is presented in Figure 4.2 where the element combi-

nation function is multiplication, the condensation function is summation, and the

118

group combination function is tuple creation. CovFi is the binary function cov-

erage information for function Fi, bfiFi is the binary fault index for function Fi,

and fepFi is the fault exposing potential for function Fi. Each of covFi, bfiFi,

and fepFi is a vector of size T whose components correspond to test cases from

test suite T.

As we can see, the foregoing techniques fit easily into the framework. Later, we

will show how the framework accommodates other techniques.

4.3 Combination/Condensation Structure

We now formally define the combination/condensation (CC) structure on which our

framework is based.

We first define an element e. An element represents a single piece of data used

by a prioritization technique. For example, an element e E E can represent cover-

age information for a given statement s, modification information (number of lines

changed) for function f, or the fault-exposing-potential for location 1. A single ele-

ment, however, represents this information for the whole test suite; thus, it contains

such data for every test from the test suite. We also define the set IE as the set of all

elements used in the combination/condensation structure.

We define sub-element et to be a constituent part of element e corresponding to a

given test t. We represent an element e E as a tuple < e1, e2, e'11 > of size T ,

where T is a test suite. For example, if element e represents coverage information

for statement s, each sub-element et represents coverage information for statement

s with respect to test case t.

119

A vector v in our structure is a one dimensional array of elements. More for-

mally,v =< c1,c2,...,c >,whereVc1 1 <1< lv e E JE c1 e. Wedefinea

set of elements that comprise a vector v to be E.

WedefineagroupGtobeatupleofvectors, G =< vl,v2,...,vIGI >

We define V to be a set of all vectors across all groups. UVEV E c E, but this

subset may be proper: some elements may not belong to any vector. We define such

elements as free (e is free if Vv E V e Er).

All vectors that belong to the same group must be compatible, defined as having

the same number of elements. Vectors across different groups need not be compat-

ible.

For each group C, we define MG (m,) to be the matrix whose columns are

the vectors in G, so represents the i-th component of the j-th vector in G.

Finally, at the uppermost level, we define a super-group SG as a set of groups.

Next, we define several functions that operate on this CC structure.

First, for each group C containing C vectors, we define an element combination

function

JelemenLcombine@V1, X2, ..., a) (4.1)

This function takes a slice (an array < x1, x2, ..., xGI > where x1 is the i-th

component of the l-th vector in C). This function also has argument a which will

Gbe explained later. Each group has its own function felementcombine

Next, for each group C, we define a condensation function

fGcondensation(Y1 Y2, , Yk, a), (4.2)

where k is the number of elements in each vector in group G. This function

takes the array < Yi, Y2, ..., Yk >, where each y, is the result of applying an el-

120

ement combine function to the i-th slice of matrix MG (defined earlier) (y2 =

G
felementcombine(mi,1, m,2,..., a) Vi, 1 < j < k), and an argument a (ex-

plained later). Each group has its own condensation function.

Finally, we define a super-group combination function

fgroupcombine(Z1, Z2 ... ZISG, a) (4.3)

This function takes an array < z, z2, ..., zsG > (z corresponds to group G E

SG) and an argument a (explained later). Each Zj is produced by a condensation

:Gjfunction: z Jcondensation(Y1, Y2, ', Yk, a).

We call the element combination function, condensation function, and super-

group combination function; structure functions (SF).

We call this sub-element/elemenllvector/group/supergroup structure, together

with the structure functions, a combination/condensation structure.

Let CCF be a particular combination/condensation structure. We define a func-

tion (CCF, E, a) which takes CCF, set E of elements, and an argument a

(explained later), and produces the result of applying the structure functions to the

elements of E.

On first glance, a combination/condensation structure might seem to have rather

limited power to express functions. However, in the most general case, combined

with an appropriate condensation function, a combination/condensation structure

has sufficient power to express any function on a given set of elements JE. For

example, to express function F(xi, ..., x), we can create the structure consisting

of a single group and a single vector with the vector containing x1, ..., xv,. We

set element combination and group combination functions to g(y) = y, and use

function F(...) in the place of the condensation function. Thus, our structure with

121

its structure functions will represent the given function F (...). Our prioritization

framework, described in the next section, uses this structure to express prioriti-

zation techniques. It will be shown later that the structure functions used in the

combination/condensation structure employed by the prioritization framework are

trivial (involve only simple algebraic expressions) for all considered prioritization

techniques.

4.4 Framework

The prioritization algorithms described in this thesis and the literature come in two

flavors: without feedback and with feedback. Given a test suite T, algorithms

without feedback consist of two steps: (1) compute test award values and (2) sort

tests based on those award values. On the other hand, algorithms with feedback

use an iterative approach, recalculating award values after each test is prioritized.

Algorithms without feedback, then, can be seen as a special case of algorithms

with feedback, where data structures are not updated during each iteration.

In the framework that we now present, we use an iterative approach in which we

apply combination/condensation structures to compute award values and to alter

elements each time a new test is selected. The main idea is to modify elements

e e F, given a newly selected test'.

Because techniques without feedback are a special case of techniques with feedback, this frame-
work will describe them too.

122

This framework uses two CC structures: OflC, CCFaward, for award value com-

putation and another, CCFupda, for updating elements from JE, where IE is the set

of all elements used in the framework.

To compute award values, for each test t e T, we obtain aj =

FCC(CCFaward, E, t).

To select the test with the best award value, we compute ts = fbest (). Function

fbest takes a vector of award values a' and finds the test (Id) with the best award value.

After a new test is selected, the framework algorithm updates all elements e E JE.

To compute a new value for an element e, several steps are taken. First, for each

test t, e T and for each element e e 1E we compute u = Fcc(CCFupdate, E, <

t, t, e >), using CC structure CCFupciate, where t3 is the test selected in the previ-

ous step. Second, we update every element e e IE for every test t E T val(etu) =

fupiate(etu, u). We define val(x) to be the value of x.

The framework is applied as follows: determine the set of elements E in all

structures, determine the CC structure CCFaward for award computation containing

a subset of E, determine CC structure CCFupdate for update computation containing

a subset of E, determine initial values for all elements in IE, determine a function

for element updating fupdate, decide on a sorting function fbest, and finally, apply

the framework algorithm that initializes all elements and computes award values,

selects a test, and updates elements until the halting condition is satisfied.

The framework algorithm that is used to implement prioritization techniques

is presented as Algorithm 3. Lines 3-7 compute initial values for every element.

Lines 8-12 set element values to the values computed in lines 3-7. Lines 13-32

implement the main ioop which computes the prioritized test case sequence. Lines

14-16 compute test award values. Line 17 finds the test with the highest award

123

Algorithm 3 The prioritization framework algorithm.
1: Initialize elements in E
2: List=
3: forallt ETdo
4: foralleEIdo
5: x 4 fupdate(Ct,FCc(CCFupdate,E,< nil,t,e >))

6: endfor
7: end for
8: forallt ETdo
9: foralleEEdo

10: val(et)
11: endfor
12: end for
13: loop

14: foralltETdo
15: a 4- FCC(CCFaward,E,t)
16: end for
17: t8 f()
18: if at =nilthen
19: HALT
20: end if
21: Add t3 into List
22: foralltETdo
23: foralle1Edo
24: +- fuIx1ate(et',Fcc(CCFupdate,E,< >))

25: end for
26: end for
27: for all t E T do
28: foralicEEdo
29: val(et)4_x
30: end for
31: endfor
32: end loop

value. Lines 18-20 test the halting condition. Line 19 adds the selected test to

the ordered sequence. Lines 22-26 compute the new values of elements. Finally,

lines 27-31 update the value of every element using values computed in lines 18-20.

We define the nil value to be the lowest award value a test case can have. During

comparisons, a test case with award value nil can be chosen only if there are no

tests in T with award values not equal to nil.

4.5 Time Complexity

The time complexity of a given prioritization technique can vary with implementa-

tion. Usage of the general framework to implement a given technique can actually

124

increase its time complexity (e.g., not all elements need to be updated at every

iteration). However, in this section, we will present the time complexity of the

framework algorithm.

The computation time of the function defined on the CCF structure is

time(CCF) = tirne(SG) time(G) + timefgroupombine(ISGD

GESG

(time0
() + V X timefelemefltombjne (G)) + timefgrouPombine GSG

I)

GESG

(4.4)

In Formula 4.4 we use the following notations:

. tirne(CCF) is the time required to apply structure functions in combina-

tion/condensation structure CCF,

. time (SG) is the time required to apply structure functions in super-group

5G.

. time(G) is the time required to apply structure functions in group G,

time ombine
(SC) is the time required to compute the super-group corn-

J group..c

bination function,

timef600dCflSC (VG) is the time required to compute the condensation function

in a group C,

time1 nLcombine
(C) is the time required to compute the element combina-

eleme

tion function,

SG J is the number of groups in the super-group,

Gj is the group size (number of vectors),

VG is the vector size in group G.

The computation time for the framework algorithm is

time(framework) (IT 1) X (Tse1ected + 1) x timefcompson+

X (Tse1ected + 1) X tic'Yie(CCFaward)+

x x (Tse1ted + 1) x time(CCFupdate)+

X X (Tse1ected + 1) x timefupdate,

125

(4.5)

where T is the initial test suite, Tselected is the test suite that is generated by the

framework, E is the set of all elements (defined previously), timefcompson is the time

required for one comparison, time(CCFaward) is the time required to apply structure

functions to compute an award value for a given test, time(CCFupja) is the time

required to apply structure functions to update a given sub-element, and timef

is the time required to apply the fupiate function.

As we can see, the time complexity for Algorithm 3 is polynomial relative to the

input and output size if all structure functions are computable in polynomial time.

One of the requirements for being able to trivially fit techniques into our framework

is that all functions be polynomially computable relative to the input and output

size. Intractable techniques cannot be trivially fit into our framework.

126

4.6 Fitting Existing Prioritization Techniques into the Framework

We now show how existing prioritization techniques can be fitted to this framework.

We do this, for each technique, by defining the elements and functions that express

it. We present this, for each technique, in tabular form.

In these tables, let tupdate be the number of a test case under update, let tselected be

the number of a test case that has been just selected, and let tcurrent be the number of

a test case for which an award value is being computed. Award values are sorted in

nonincreasing order with the nil value being the lowest. Sorting uses the first tuple

element as the primary key, the second tuple element as the secondary key, and so

[Sill

Elements e e E represent element entities and not just their values. However,

to make expressions shorter, we will omit writing val(...) for every element. Thus,

in every formula, whenever needed, an element's value is implicitly referenced.

The framework performs an update to initialize elements. In the following ta-

bles, we will ignore this fact. To consider fitting the techniques more formally, we

would need to slightly modify functions so that, if tselected = nil, the original value

of an element is not altered.

127

4.6.1 Fault-exposing-potential Prioritization Techniques

In the following two tables, we show how to fit techniques that utilize fault-exposing

potential (called fep). These techniques are described in Section 1.2.6.

CCFaward afld CCFupdate

Group 1

Elements of vector 1 coy (coverage information)

Elements of vector 2 fep (fault-exposing potential)

Elements of vector 3 confidence (confidence vector, initialized to zeroes)

Group 2

Elements of vector 1 unused (1 indicates if a test case has not been selected

yet, 0 otherwise)

Group 3

Elements of vector 1 coy (coverage information)

[
CCFaward

Group 1

feiement combine(".) = covt x (1 - con fidencet) x fepmt

fcondensation (...) = summation

Group 2

fe1ementcombine(") = unused

fcondensation(X, a) = x

Group 3

feiement combine (...) = 0

fcondensation(...) = 0

fgroup combine (...) =
ifg2 = 1

nil otherwise

128

CCFupdate]

Group 1

(1 (1 corifiderce) x fep', if corifidence is

confidence under update
feiement combine(..') =

(0, 0) otherwise

fcondensation((X1, Yi), ..., (x, Yrz), CE) = (>_I: x, > yj)

Group 2

unusedU jf tselected

feiement combine (...) =
0 otherwise

fcondensation(X,CE) = x

Group 3

COV' if con fidence is under update
feiement combine (".) =

0 otherwise

fcondensation (...) = summation

gi [1] if element under update is confidence and g 0

fgroup combine (".) 91 [2] if element under update is confidence and g = 0

0 otherwise

Techniques without feedback

Inew if the element under update is unused
fupdate(Old, new) =

old otherwise

Techniques with feedback

new if the element under update is confidence or unused
fupdate(Old, new) =

old otherwise

129

4.6.2 Change and Fault-exposing-potential Combination Prioritization Tech-
niques

In the following three tables, we show how to fit techniques that utilize fault-

exposing potential (called fep) in combination with change information (called fi).

These techniques are presented in Section 2.3.

CCFaward and CCFupciate

Group_1

Elements of vector 1 coy (coverage information)

Elements of vector 2 fi (current change information [updated])

Elements of vector 3 fep (fault-exposing potential)

Elements of vector 4 unused (1 indicates if a test has not been selected yet,

o otherwise)

Group_2

Elements of vector 1 coy (coverage information)

Elements of vector 2 fi (current change information [updated])

Elements of vector 3 unused (1 indicates if a test has not been selected yet,

o - otherwise)

Group 3

Elements of vector 1 coy (coverage information)

Elements of vector 2 fep (fault-exposing potential)

Elements of vector 3 unused (1 indicates if a test has not been selected yet,

o - otherwise)

Group 4

Elements of vector fep (fault-exposing potential)

Group 5

Elements of vector ogfi (original change information [not updated]

Group 6

Elements of vector unused (1 indicates if a test has not been selected yet,

o - otherwise)

Group 7

Elements of vector coy (coverage information)

130

CCFaward

All groups

felementcombine(Si, ..., 5n, c) = 1J= St
fcondensation(Yi, ..., Yrn, = zi Yz

fgroupcombine(gi,g2,93,g4,95,96,97,c) =

gj if g = 1 and technique is FT * FEP

(92,93) ifg6 = 1 and technique is FT and FEP double sort

nil ifg6=0

CCFupdate

Group 1

felementcombine(..') = coV X fj X fep x unused X f(t, tselected),

{1 ifxywhere f(x,
0 otherwise

fcondensation (Si, .., xn, c) =
Group 2

felementcombine(...) = cov x fi x unused X f(t,tselected),Z), where

f(x,y) = Ji if X and
10 otherwise

{if f i is the element under update

0 otherwise

fcondensation((Xi, yi), ..., (Xn, Yn), a) = x, > y)

Group 3

felementcombine(...) = COV X fep x unused X f(t, tselected), where

f(x,y) = Ji if
and

10 otherwise

fcondensation (...) = summation

131

Group 4

felement combine (. = 0

fcondensation(".) 0

Group 5

f (-.i element comb1ee) J
0gfjPdat if fi is the element under update

0 otherwise

fcondensation(...) = summation

Group 6

-
j element combine t..)

1 0 if tupdate = tselected

unusedtupt otherwise

fcondensation (x, a) = x

Group 7

f (-
element combine i i

5 (eov°, COVk) if fi is element under update

(0,0) otherwise

fcondensation((X1,Y1), ...,(Xm,ym),a) =

fgroup combine (...) =

g5 if element under update is fi and awardsum = 0

.92 [2] x (1 g [2]) if element under update if fi and awardsum where
96 if element under update is unused

0 otherwise

if FT and FEP multiplication technique
awardsum = 92 [1] +93 [1] if Fl and FEP double sort technique

0 otherwise

Techniques without feedback

fupthte(Old, new)
new if the element under update is unused

old otherwise

Techniques with feedback

fupdate(Old, new)
mew if the element under update is fi or unused

old otherwise

132

4.6.3 Coverage and Change-based Techniques

In the following three tables, we show how to fit coverage and modification-based

(change-based) prioritization techniques that are described in Section 2.3.

The final tie resolution for these techniques is coverage without feedback (the

number of covered locations); however, if we need to represent techniques which

do not use this, we can set 3 = 0. Otherwise, set 3 = 1.

CCFawar5 and CCFupdate

Group_1

Elements of vector 1 coy (current coverage [updated])

Elements of vector 2 fi (change/modification information)

Elements of vector 3 mcrit (module criticality)

Elements of vector 4 unused (1 indicates if a test has not been

selected yet, 0 - otherwise)

Group 2

Elements of vector 1 tcrit (test criticality)

Elements of vector 2 teost (test cost)

Group_3

Elements of vector 1 origCOV (coverage [not updated])

Group 4

Elements of vector 1 unused (1 indicates if a test has not been

selected yet, 0 otherwise)

Group_5

Elements of vector 1 coy (coverage [updated])

Elements of vector 2 fi (change/modification information)

Elements of vector 3 mcrit (module criticality)

Elements of vector 4 tent (test criticality)

Elements of vector 5 tcost (test cost)

Elements of vector 6 unused (1 indicates if a test has not been

selected yet, 0 - otherwise)

Group 6

Elements of vector 1 coy (current coverage [updated])

133

CCFawarci

All groups

Jelementcombine(X1,X2,...,Xm,a) = ç
ifgroupis2

x2

I1'i
otherwise

fcondensation (yi, Y2, ..., Ym,) =
x y for group 3

Iotherwise

fgroup combine =

(91 x 92, gi, g3) if multiplication combination technique and g = 1

(gl,g2,g3) ifawardvaluetechniqueandg4 = 1

(92, 91, 93) if ratio first technique and g = 1

nil g4=0

GCFupthte

Group 1

felementcombine(...) = x fi x merit x unused X f(tselected, t))

where f(x,y) = 11 if x

0 otherwise

fcondensation (x1, x2, ..., a) =
Group 2

felementcombine(...) = nil

fcondensation(X1, X2, ..., Xn, a) = nil

Group 3

-
.j element combine

5 (origc0vj°, ogC0v') if cov is the element under update

1(0,0) otherwise

fcondensation((X1,Y1), ...,(xn,yn),a) =

Group 4

-
j element combine ./

50 if tupdate = tselected

unused otherwise

fcondensation(X,a) = x

134

Group 5

felementcombine(".) = (cov x fi x mcrit x tcrit/tcost x iinused x f (t1ected, t))

wheref(x,y)=
10

otherwise

fcondensation(Y1, Y2, ., 1/rn, c) =

Group 6

/
J element combine ..) =

cov' if cov is the element under update

0 otherwise

fcondensation (yi, 1/2, ..., 1/rn, (4 =

f - Jg6j group combinei x (1 93{2]) if 0

193[h] otherwise

where =
g5 if technique is multiplication

gi otherwise

Techniques without feedback

fupdate(01d, new)
new if the element under update is unused

old otherwise

Techniques with feedback

fupdate(01d, new) = new if element under update is coy or unused

old otherwise

135

4.6.4 Jones and Harrold's Technique

In the following three tables, we show how to fit Jones and Harrold's technique,

described in Section 1.2.7.1. In this technique, entities are divided into two sets

(these may overlap): variable entities (updatable) and constant entities (not updat-

able). Also, all these entities are independently divided into two sets: contribution

(to compute test contribution) and coverage (to compute test entity coverage). The

coverage information is binary.

CCFaward and CCFupdaie

Group 1

Elements of vector 1 coverage (test entity coverage information)

Elements of vector 2 unused (1 indicates if a test case has not been selected yet, 0 -

otherwise)

Group 2

Elements of vector 1 contribution (contribution coverage information)

Elements of vector 2 unused (1 indicates if a test case has not been selected yet, 0

otherwise)

Group 3

Elements of vector 1 flag (it is zero initially and just after reset, meaning that test en-

tity coverage is used; afterward it is one, meaning that test con-

tribution is used)

Group 4

Elements of vector 1 unused (1 indicates if a test case has not been selected yet, 0

otherwise)

Group 5

Elements of vector 1 oi-jgelements (all entities including coverage and contribution

ones; they are original and not updated)

136

CCFaward

Group 1

felementcombine(...) = coveraget
fcondensation (...) = summation

Group 2

felement combine (...) = contri butiomt

fcondensation(...) = summation

Group 3

felement combine = flagtmt

fcondensation(...) summation

Group 4

felement combine(...) =

fcondensation(...) = summation

Group 5

felement combine (. = 0

fcondensation(".) = 0

fgroupcombine(...) =
Yl ifg3=Oandg4=1
92 ifg3 0 andg4 = 1

nil ifg4=0

137

CCFupdate

Group 1

j element combine'....)
coverageat0 if it is the element under update

o otherwise

fcondensation (...) = summation

Group 2

felementcombine(...) coritributior4 x unused x f(t1ted, t), a), where

contributiori" if it is the element (11 ifxy
a = under update and f(x, i) s

i 0 otherwise
0 otherwise

fcondensation((X1,Y1), ...,(xn,ym),ci)

Group 3

f (f/ tUpdat
j element combine'. . ., , ag

fcondensation(...) = summation

Group 4

-j element combine (...) funuseoP if tupdate tseIted

o otherwise

fcondensation (...) = summation

Group 5

(orgelements", ogelements) if this element

corresponds to

an element from

felement combine (...) =
coverage or

contribution, which is

under update

(0, 0) otherwise

fcondensation((X1, yi), ..., (x, yn), ct) = xj, > y)

138

fgroup combine (...) =

0 if the element under update is flag and g [1] = 0

1 if the element under update is flag and g [1] 0

g5 [1] if the element under update is entity and this element

is not updatable or this element is updatable and 92 [1] = 0

91 X (1 g5[2]) if the element under update is entity,

this element is updatable and in coverage, and 92 [1] 0

92 [2] x (1 g5 [2]) if the element under update is entity,

this element is updatable

in contribution, and g2[1] 0

94 if the element under update is unused

0 otherwise

) new if the element under update is unused, flag or entity
fupate(0ld, new) =

1 old otherwise

139

4.6.5 Wong's Technique

In the following two tables, we show how to fit Wong's technique, described in

Section 1.2.7.1.

CCFaward d CCFupdate

Group 1

Elements of vector 1 coverage (test location coverage information [updatablej)

Group 2

Elements of vector 1 oi.igcoverage (original test location coverage information [not up-

datable])

Group 3

Elements of vector 1 cost (test cost)

Group 4

Elements of vector 1 unused (1 indicates if a test has not been selected yet, 0 - other-

wise)

CCFawar5

Group 1

felement combine (x,)

fcondensation(...) = summation

Group 2

felement combine (x,) = 0

fcondensation(...) = 0

Group 3

felement combine (x, ct) =

fcondensation(".) = X

Group 4

felement combine (x, a)

fcondensation(".) = X

J oup combine (...) =
if g4 - 1

nil otherwise

140

CCFupdate

Group 1

Jif
felementcombine(X,

this element is under update

otherwise

fcondensation(...) = summation

Group 2

felement combine (x, a) = J
10

if this element is under update

otherwise

fcondensation(...) = summation

Group 3

felement combine (x, a) =

fcondensation (...) =

Group 4

felement combine (x, a) =

fcondensation(".) =

gi x (1 92) if the element under update is coverage

fgroup combine(".)
g4 if the element under update is unused

and tupdate tselected

0 otherwise

fupdate(01d, new)
Inew if the element under update is coverage or unused

old otherwise

141

4.6.6 Sri vastava and Thiagarajan c Technique

The fit for Srivastava and Thiagarajan's technique is the same as for change-based

techniques, where binary change information, block coverage, uniform costs, and

uniform criticalities are used.

142

4.7 Examples of the Framework Usage

Our framework not only allows us to express existing prioritization techniques, it

also provides support for creating new ones.

Consider a prioritization technique that uses fault index information. It can be

represented with one group using two vectors: the first containing fault index infor-

mation and the second containing binary coverage information. The corresponding

values in those vectors can be multiplied and results summed. We could add a sec-

ond group with a single vector containing binary coverage information. One choice

for the group combination function would be to make a tuple from the two groups'

values. This tuple's first part could be used to find a test with the highest award value

and its second part could be used to resolve ties. However, we could also use an

arbitrary combination function such as weighted average, addition, multiplication,

and so on.

Consider a technique which uses coverage, fault index, and fault-exposing-

potential information. One way to structure this technique is to put all these pieces

of information into three vectors, simply multiplying them and adding the results.

On the other hand, we could put coverage and fault index vectors in one group and

coverage and fault-exposing-potential vectors into another group. Then, the whole

set of combination functions is available to choose from. Another approach is to

add a third group with a single coverage vector. Just considering these examples,

we can see that the framework gives us a large number of ideas for developing a

great variety of prioritization techniques, given a set of program and test properties.

Several cost-cognizant techniques which utilize test criticalities and costs have

been developed exclusively due to this framework. After fitting one variation of

143

such technique, we were able to see its other variations, inspired by choices which

need to be made in order to fit the technique into the framework.

As a final example, consider Kim and Porter's technique [103], described in de-

tail in Section 1.2.7.1. Kim and Porter describe an overall regression testing strategy

in which, following a release, a regression test selection (RTS) technique is applied,

and then, based on previously computed probabilities, test cases are selected one

by one and executed until allotted testing time runs out. This strategy can be eas-

ily fit into the framework as shown later in this section. However, we can use the

framework to actually improve the strategy. In the strategy presented by Kim and

Porter, the test suite is split into three parts: test cases not selected by RTS, test

cases prioritized, and test cases left out due to lack of time. Our improved tech-

nique also splits the original suite into three parts. However, it also prioritizes the

three types of test cases. It prioritizes selected test cases by RTS using probabilities,

until time runs out. After that, test cases omitted by RTS are prioritized. If we were

to disable resource constraints (making the allotted testing time equal to the time

required to run all tests), we will essentially create a prioritized list of all test cases

with selected test cases first and unselected test cases second in the sequence. This

ordering improves over Kim and Porter's by providing finer-grained control over

test ordering.

In the following two tables, we show how to fit the technique just described.

144

CCFaward afld CCFupdate

Group_1

Elements of vector 1 h k I < k < ii (observations for times 1

through n)

Group 2

Elements of vector 1 unused (1 indicates if a test has not been selected

yet, 0 - otherwise)

Group_3

Elements of vector 1

Elements of vector m

data vector 1 needed for selection

data vector m needed for selection

Group 4

Elements of vector 1 ttime (test execution time)

Elements of vector 2 timeleft (time left for test execution)

CCFaward

Group 1

/ \ -Je1ementcombineX,a) - X

fcondensation(hl, h2, h, a) = P(h1, h2, ..., ha), where

= if k = 0 and is the smoothing constant.
X hk + (1 'y) x Pk_1 otherwise

Group 2

feiement combine (x, a) =

fcondensation(Y, a) = y

Group 3

Functions which compute award value to be used in selection: one (selected) and zero

(not selected)

Group 4

feiement combine (x1, x2, a) (xtcuu Xt)

fcondensation(Y, a) = y

145

Original technique

- 191 ifg2 = 1 and g3 = 1 and g [2] > 0
j group combine i. j

nil otherwise

Improved technique

nil ifg2 = 0
fgroupcombine(...) nil ifg3 = 1 and g4[2] < 0 andg2 = 1

(g,gi) otherwise

CCFupdate

Group 1

felement combine (...) = 0

fcondensation(".) 0

Group 2

feiement combine ()
0

unused pdat

if tupdate = tselected

otherwise

fcondensation(X, CE) = x

Group 3

felement combine (= 0

fcondensation (...) = 0

Group 4

feiement combine (x1, x2, a)
tpdat

fcondensation(Y,CE) = y

g if the element under update is unused

fgroup combine g if the element under update is timeleft

0 otherwise

fupthte(Old, new)
new if the element under update if unused or timeleft

old otherwise

146

CHAPTER 5

COST-BENEFIT TRADEOFFS IN PRIORITIZATION

5.1 Introduction

In many cases, prioritization techniques produce test case orderings that achieve

certain objectives better than randomly ordered test cases.1 In this dissertation, we

consider improved rate of fault detection as the objective for test case orderings.

Chapters 1.4 and 3 illustrated that rate of fault detection can be significantly im-

proved by applying prioritization techniques to a test suite. A prioritized test suite

that detects faults early allows engineers to address faults earlier, and this can pro-

duce savings relative to the common practice of rerunning all test cases without

regard to test order.

Despite the evidence of improved rate of fault detection, the savings demon-

strated in our studies do not guarantee the cost-effectiveness of prioritization tech-

niques, because these techniques also have costs associated with them. These costs

include the cost of analyzing and instrumenting the code, collecting coverage infor-

mation, analyzing modifications, and executing priontization tools.

Practitioners wishing to use prioritization techniques, and researchers wish-

ing to study those techniques, need methods with which to assess the practical

cost-effectiveness of prioritization techniques. To support such assessments, cost-

1 Portions of this chapter have appeared previously in [121].

147

benefits models are required which take into account the factors affecting the costs

and benefits of prioritization. Neither the APFD metric discussed in Chapter 1, nor

the APFDC metric presented in Chapter 3, provide any means for assessing prior-

itization effectiveness in terms of such factors. In other words, these metrics do

not support assessments, in terms of resources such as time or money, of the rela-

tive cost-benefits of techniques, or of whether a given technique is cost-effective in

practice.

In this chapter, we present a model for assessing the relative cost-benefits of

prioritization techniques. This model allows us to compare different techniques,

determine when techniques would be beneficial to employ, and determine which

techniques are better in given situations than others. We present the results of a case

study that shows the applicability of the model in assessments.

5.2 Prioritization Cost Model

To construct our model, we consider costs associated with prioritization when a

given technique is used and under common practice; we then compare those costs,

and perform some simplifications of formulas.

Note that the model we present is intended to be evaluative, not predictive. As

such it could be used by practitioners on historical data to investigate which tech-

niques might have been most cost-effective for their systems and testing processes,

and used to guide future efforts. It can also be used by researchers when experi-

menting with techniques, in order to evaluate them.

Let P be a given program, let P' be a modified version of P, let T be the test

suite for P, and consider the application of prioritization relative to P and Pt'. Also,

let F(T) be a set of regression faults in P detected by test suite T. Because we

consider P to be constant, all factors depending on P will be constant relative to T.

In other words, the program is treated as a constant, not as a variable.

As soon as a fault is revealed, engineers can begin working on it. If a given fault

is revealed at time t1 instead of time t2 under a better test order, debugging is able

to begin (t2 t1) time units earlier. The saved time could result in earlier release.

Prioritization does not reduce (usually) test execution time, number of faults, or fault

correction time; rather, it reduces the waiting time for faults to reveal themselves.

Ideally, engineers begin fixing a fault as soon as it is revealed. Under this idealistic

situation, the measure of time lost in waiting for faults to be revealed is a measure

of prioritization effectiveness. We can measure prioritization benefit as the amount

of reduction in wasted time.2

We define the following variables:

Ca(T) is the cost of analysis;

Cp(T) is the cost of applying the prioritization algorithm.

In discussing these variables, we distinguish two phases of regression testing

the preliminary and critical phases these being the times before and after the re-

lease is available for testing. Preliminary phase activities may be assigned different

costs than critical phase activities, since the latter may have greater ramifications

for things like release time.

2 can be, of course, other metrics. One such metric measures the amount of time spent
waiting until the last fault is revealed. However, this metric is too sensitive to a single fault and a
single test case. Also, if each of two test orders reveals the last fault with its last test case, their
values would be the same despite the fact that one test order can reveal all other faults earlier than
another.

149

Ca(T) includes the cost of source code analysis, analysis of changes between

old and new versions, and collection of execution traces. Cp(T) is the actual cost

of running a prioritization tool, and, depending on the prioritization algorithm used,

can be performed during either the preliminary or critical phase.

Given an order 0 of test suite T, suppose a fault i is revealed by the kth test case

occurring after d° = time units, where is the execution and validation

time of test case j in the test suite under order 0. Suppose that we have two orders

0' and 0" of the same test suite T. Suppose fault i is revealed at time d°' if T is

under order 0' and the same fault is revealed at time d?" if T is under order 0".

Suppose that ci?' < d?" (fault i is revealed earlier under order Os'). If we have just

this one fault, ordering 0' is potentially beneficial relative to ordering 0", in that it

saves d°" d' units of time.

Consider a more complicated case in which test suite T of size n detects ni

faults. Let TF° be the test case number under order 0 which first detects fault i.

Let T contain n test cases.

Define:

1 if test case k in T under order 0 reveals fault ir= (5.1)

0 otherwise

shows whether test case k under order 0 reveals fault i.

Let x? be the set of indices of test cases, under order 0, that reveal fault i.

Formally:

x?={kJVl<k<n r=1} (5.2)

Given these definitions, TF° = min(x?) (the minimum of all elements in set x?)

150

We define delays° to be the cumulative cost of waiting for each fault to be

exposed while executing T under order 0:

m TF0

delays°
((

e°) x f) (5.3)

In Equation (5.3), m is the number of faults, ek° is the run-time and validation time

of test case k in T under order 0, and f, is the cost of waiting a time unit for a fault

ito be exposed (e.g., paying a programmer to wait for a given fault to be exposed in

order to attempt to correct it, where different faults require different programmers

with different salaries). Essentially, when Vi f2 = 1, delays° sums, for each fault,

the time between the start of test suite execution and the time when this fault is first

revealed.

Given that the cost savings due to the application of a prioritization technique

that creates order 0" relative to using a random order3 0' are

delays°' delays°" Ca(T) Cp(T), (5.4)

we can define the cost of random ordering 0' as

C°' = delays°' (5.5)

and the cost of prioritized order 0" as

C°" = delays°" + Ca(T) + Cp(T) (5.6)

there are many random orderings, this cost can be defined as the average cost over all
possible random orderings of test suite T. However, because it is not practical to calculate this
cost in this manner, in practice, we estimate this cost by computing an average for a fixed number
of randomly chosen orderings.

151

Technically, the formulas for C°' and C°" do not describe specific physical

costs, because the costs associated with delays° may not materialize in practice -

they depend on factors such as availability of personnel. However, the difference

between C°" and C°' gives us an upper bound on possible cost savings that could

be achieved given favorable conditions. In other words, earlier detection of faults

can lead to more efficient usage of resources (human and other) and earlier release

dates.

It follows that prioritization is cost-effective if:

delays°" + Ca(T) + Cp(T) <delays0' (5.7)

We can also make several assumptions to simplify this inequality. Assume that

Ca(T) = A + where A is the non-test dependent cost and a is the additional

cost per test case. Prioritization cost is usually linear or quadratic in some measure

of the size of the test suite, depending on the algorithm. However, in our experience,

the cost of performing prioritization is small compared to other costs, and because

it involves only machine time, it can be neglected.

With these assumptions, inequality (5.7) becomes:

delays°" + A + aT <delays°' (5.8)

Also A << aT [14, 1711, so we can rewrite inequality (5.8) as follows:

delays°" + aT <delays°' (5.9)

This model lets us compare prioritization techniques and answer the question

whether a given prioritization technique will be cost-beneficial compared to ran-

dom ordering. If we need to compare two prioritization techniques 1 and 2 which

152

produce orders 01 and 02, respectively, we compute C1 = Ca1 (T) + Cp1 (T) +

delaysOl and C2 Ca2(T) + Cp2(T) + delaysO2 for techniques 1 and 2, respec-

tively (analysis and prioritization costs can differ across techniques). The technique

with the lowest Ck is the most cost-beneficial.

5.3 Case Study

The foregoing model is meant to help us better evaluate cost-benefits tradeoffs in-

volving prioritization. A fundamental research question is whether the model suc-

ceeds in this: is it more accurate, comprehensive, or realistic than previous models?

We wish to know how the new model will assess cost-benefits of prioritization tech-

niques, and how it will rank the techniques.

To gain insight into these issues, we designed and performed an exploratory case

study. In the following sections, we describe our techniques, case study materials,

and case study design.

5.3.1 Prioritization Techniques

As prioritization techniques we chose random prioritization, function coverage no

feedback (fn-cov-nofb), function coverage feedback (fn-cov-fb), and optimal prior-

itization. These techniques have been described in detail in Sections 2.3 and 3.5.

5.3.2 Experiment Subjects

For these experiments we utilized a new subject program, bash. Bash is a popular

shell that provides a command line interface to multiple Unix services [156]. As

153

Version Funcs. Mod'd Funcs. LOCs Regr. Faults

2.0 1,494 48,292 0

2.01 1,537 296 49,555 9

2.01.1 1,538 44 49,666 7

2.02 1,678 296 58,090 7

2.02.1 1,678 12 58,103 3

2.03 1,703 188 59,010 9

2.04 1,890 339 63,802 5

2.05-betal 1,942 447 65,477 6

2.05-beta2 1,949 40 65,591 7

2.05 1,950 27 65,632 5

TABLE 5.1: Bash Subject

Table 5.1 shows, the latest versions of bash consist of over 50,000 lines of code

and almost 2000 functions.

Given the complexity and cost of preparing such a large subject for experimen-

tation, we invested significant effort in providing a supporting infrastructure so that

we can reuse the bash subject to answer different research questions. Part of that

infrastructure includes a test suite of 1168 test cases. We created this test suite using

two complementary methods. First, we evaluated and refined the test suite that ac-

companied bash release 2.0. (We used the test cases from release 2.0 because they

are the only ones that work across all releases.) Second, to exercise functionality

not covered by the original test suite, we created additional test cases by considering

the reference documentation for bash [156] as an informal specification. The re-

suiting test cases exercise an average of 64% of the functions across all the versions

of the system.

154

A second part of the infrastructure consists of a set of seeded faults created by

a fault seeding process. Since we wished to evaluate the performance of regression

testing techniques with respect to detection of regression faults, we asked several

graduate and undergraduate computer science students, each with at least two years

experience programming in C and unacquainted with the details of this study, to be-

come familiar with bash and to insert regression faults into the program versions.

We then determined which faults were exposed by each test case. The numbers of

faults utilized in the our experiments are reported in column five of Table 5.1.

Finally, we used various tools we developed to perform program instrumentation

and prioritization as described in Chapter 3.

5.3.3 Case Study Design

Our case study examines the effectiveness of our cost model for assessing cost-

benefits tradeoffs of the four prioritization techniques considered. For the new

model, to compare savings or costs of techniques, we use the formula delays°'

delays°" where O'is random order and 0,'is prioritized order.

The previous APFDC measure allows us to compare techniques, but not to as-

sess relative cost-effectiveness. This case study, therefore, considers the relative

costs of prioritization techniques under the new model, varying the ratio (program-

mer's cost per time unit to analysis cost per test case). We assume that all test cases

have uniform costs.

Our case study manipulated two independent variables: the prioritization tech-

nique and the ratio of the cost of a programmer waiting one time unit to analysis

cost per test case. The dependent variables are the outputs of our model, and in-

155

dude costs of, or savings achieved by, the application of a particular prioritization

technique.

5.3.4 Results and Analysis

Our case studies manipulate cost ratio and regression testing technique to evaluate

the cost model.

Figures 5.1, 5.2, and 5.3 show the cost-benefits tradeoffs among prioritization

techniques by varying the relationship between programmer's cost and analysis

cost. The X axes show the bash version and the Y axes show the cost delays°'

delays°" an, where 0" is the order of the test suite produced by a given prioriti-

zation technique, 0' is the order produced by the random method, a is the analysis

cost per test case, and n is the size of the test suite. Higher values mean higher

savings due to prioritization. Different lines correspond to different values for the

ratio of programmer's costs to analysis costs. We can see that when this ratio is

small (1:1, 10:1), there are hardly any savings over random ordering. However, as

the ratio increases to 100:1 and 1000:1, the savings become more obvious.

Where comparison between our three prioritization techniques are concerned,

differences were relatively small. Optimal naturally gave the best results in terms of

savings. However, optimal cannot actually be implemented if faults are not known.

Fn-cov-fb was the next technique to show substantial savings in costs; for example,

when the ratio was 10:1, for version 7, fn-cov-fb saved 2,714,220 cost units. Fn-

cov-nofb showed slightly more modest cost savings, and on some versions, was not

even beneficial relative to random ordering.

4e08

3.5e+08

3e+08

2.5e+08
(I)

2e+08

1.5e+08

1e+08

5e+07

0

-5e+07 123456789
Version

FIGURE 5.1: Differences between fn-cov-fb and random across various cost ratios.

5.4 Discussion and Conclusions

The relative ranking of the prioritization techniques we considered was not affected

by varying ratios. Also, the relative prioritization technique ranking produced by

the delays measure was similar to the ranking produced by the APFDC metric.

This means that the cost model can be used, similar to the APFD metric, to assess

the relative effectiveness of prioritization techniques, find the best technique, and

4e08

3.5e08

3ei-08

2.5e08
C')

2e+08

(I)

1.5e+08
0

lei-08

5e-i-07

0

-5e+07 123456789
Version

157

FIGURE 5.2: Differences between fn-cov-nofb and random across various cost
ratios.

find the worst technique. However, the new model clearly provides a more accurate

assessment of how much practical benefit can be obtained through a prioritization

technique the main consideration when incorporating a technique into a testing

process. The model can thus allow us to decide when a given prioritization tech-

nique is cost-beneficial and which technique would be the most beneficial to apply,

saving the greatest amount of resources.

4e+08

3.5e08

3e08

2.5e+08
Ci)

2e08

1.5e+08
0

le+08

5e07

0

-5e07 123456789
Version

IM;1

FIGURE 5.3: Differences between optimal and random across various cost ratios.

We have primarily considered assessment after the fact of regression testing;

this can be used by practitioners to make decisions analyzing historical data, or by

researchers to evaluate experimental results. A second subject of interest concerns

the ability to predict the cost-effectiveness of priontization techniques in advance,

before testing starts. We consider this issue in Chapter 7.

159

CHAPTER 6

UNDERSTANDING FACTORS THAT INFLUENCE PRIORITIZATION
EFFECTIVENESS

6.1 Introduction

The empirical studies reported in Chapters 1.4 and 3 have shown that prioritization

techniques can be cost-effective. These studies have also shown, however, that the

cost-effectiveness of prioritization techniques varies with several factors, including

the characteristics of the software under the test, the attributes of the test cases used

in testing, and the modifications made to create new versions of the software.

To improve prioritization effectiveness, we need to isolate these factors, deter-

mine their effect on prioritization effectiveness, and, finally, lay groundwork for

improving effectiveness by suggesting guidelines for choosing prioritization strate-

gies.

Elbaum et al. [46] identified several metrics on program structure, test suite

composition, and changes that explain some of the variation in prioritization effec-

tiveness. However, this paper did not individually investigate the factors underlying

these metrics.

Engineers unaware of the relationship between change patterns and testing tech-

nique cost-effectiveness can make poor choices in defining prioritization processes.

These choices may include: (1) designing regression test suites that cannot be ef-

fectively prioritized, (2) integrating changes into a build that adversely affect prior-

160

itization, and (3) selecting inappropriate prioritization techniques. Engineers aware

of causal factors could make better choices, and perform prioritization more cost-

effectively.

In this chapter, we explore two sets of factors: one involving test suites and an-

other involving the program and modifications. First, in Section 6.2, we describe

an experiment on the effects of test suite composition on the effectiveness of pri-

oritization. Second, in Section 6.3, we describe an experiment on the effect of

modifications on the effectiveness of prioritization.

6.2 Test Suite Composition Effects

6.2.1 introduction

The effectiveness of prioritization techniques varies with characteristics of test

suites (Chapter 1.4 and [172, 173]).' One prominent factor in this variance involves

the way in which test inputs are composed into test cases within a test suite. For

example:

A test suite for a word processor might contain just a few test cases that start

up the system, open a document, issue hundreds of editing commands, and

close the document, or it might contain hundreds of test cases that each issue

only a few commands.

1 Portions of this section have appeared previously in [1771.

161

A test suite for a compiler might contain several test cases that each compile

a source file containing hundreds of language constructs, or hundreds of test

cases that each compile a source file containing just a few constructs.

A test suite for a class library might contain a few test drivers that each invoke

dozens of methods, or dozens of drivers that each invoke a few methods.

These examples expose important choices in test suite design, and faced with

such choices, test engineers may wonder how to proceed. Textbooks and articles

on testing provide various (and sometimes contradictory) forms of advice. Beizer

[12, p. 51], for example, writes: "It's better to use several simple, obvious tests

than to do the job with fewer, but grander, tests." Kaner et al. [97, p. 125], suggest

that large test cases can save time, provided they are not overly complicated, in

which case simpler test cases may be more efficient. Kit [106, p. 107] suggests that

when testing valid inputs for which failures should be infrequent, large test cases

are preferable. Hildebrandt [86] argues that small test cases facilitate debugging.

Bach [5] states that small test cases cause fewer difficulties with cascading errors,

but large test cases are better at exposing system level failures involving interactions

between software components.

Most of the foregoing statements refer primarily to test case size, but this is

an oversimplification: the underlying factors involved are more complex. For this

work, we consider two specific factors related to test suite composition: test suite

granularity and test input grouping. These characteristics both pertain to the way

in which test engineers group individual test inputs into test cases within test suites.

Test suite granularity pertains to the size of the test cases so grouped (the number

of inputs, or amount of input applied, per test case), whereas test input grouping

162

pertains to the content of test cases (the degree of hetero- or homogeneity displayed

by the inputs composing a test case). We define these characteristics more precisely

in Section 6.2.2, and provide precise measures for these characteristics in Section

6.2.4.1.

Despite the apparent importance of test suite composition, and the contradic-

tions among the foregoing suggestions, in our search of the research literature we

find little formal examination of the cost-benefits tradeoffs associated with test suite

granularity and test input grouping. A thorough investigation of these tradeoffs, and

the implications they hold for prioritization, could help test engineers design test

suites that better support cost-effective prioritization.

We have therefore designed and performed a controlled experiment examining

the effects of test suite granularity and test input grouping on the effectiveness of

test case prioritization. Our experiment considers the application of several prior-

itization techniques across ten releases each of two substantial software systems,

using seven different levels of test suite granularity, and two different approaches

for grouping test cases into suites of varying granularity. We measure and analyze

the effects of granularity, technique, program, and grouping on the rate of fault

detection achieved by prioritization.

Our results show that test suite granularity significantly effects the effectiveness

of prioritization techniques, while test input grouping itself has limited effects.

163

6.2.2 Test Suite Granularity and Test Input Grouping

Following Binder [15], we define a test case to consist of a pretest state of the system

under test (including its environment), a sequence of test inputs, and the expected

test results. We define a test suite to be a set of test cases.

Definitions of test suite granularity and test input grouping are harder to come

by, but the testing problem we are addressing is a practical one, so we begin by

drawing on examples.

Test engineers designing test cases for a system identify various testing require-

ments for that system, such as specification items, code elements, or method se-

quences. Next, they must construct test cases that exercise these requirements. An

engineer testing a word processor might specify sequences of editing commands,

an engineer testing a compiler might create sample target-language programs, and

an engineer testing a class library might develop drivers that invoke methods. The

practical questions these engineers face include how many and which editing com-

mands to include per sequence, how many and which constructs to include in each

target-language program, and how many and which methods to invoke per driver,

respectively.

It is questions such as these that we wish to answer, and the questions involve

many cost-benefits tradeoffs. For example, if the cost of performing setup activities

for individual test cases dominates the cost of executing those test cases, a test

suite containing a few large test cases can be less expensive than a suite containing

many small test cases. Large test cases might also be better than small ones at

exposing failures caused by interactions among system functions. Small test cases,

on the other hand, can be easier to use in debugging than large test cases, because

164

they reduce occurrences of cascading errors [5] and simplify fault localization [86].

Further, in test cases composed of large numbers of test inputs, inputs occuring early

in the test cases may prevent test inputs that appear later in those test cases from

exercising the requirements they are intended to exercise, by causing subsequent

test inputs to be applied from system states that differ from those intended.

In part, the foregoing examples involve test case size, a term used informally

in [5, 12, 97, 106] to denote notions such as the number of commands applied to,

or the amount of input processed by, the program under test, for a given test case.

However, there is more than just test case size involved: when engineers increase

or decrease the number of requirements covered by each test case, this directly

determines the number of individual test cases that must be created to cover all the

requirements. Thus, as expressed by Beizer [12], the choice is not just between

"large" and "small" tests, but between "several simple, obvious tests" and "fewer,

but grander, tests".

The interaction of test case size and number of test cases is at least partly respon-

sible for creating the cost-benefits tradeoffs described above. One phenomenon we

wish to study, then, involves the effects that occur relative to prioritization when, in

the course of designing a test suite to cover requirements, engineers compose test

inputs into specific size test cases in a test suite. We use the term test suite granu-

larity to describe a partition on a set of test inputs into a test suite containing test

cases of a given size. (Section 6.2.4.1 presents a precise metric for this construct.)

An additional factor that may influence the effects of choices in test suite de-

sign involves the relationship between the particular test inputs that are assembled

into individual test cases. For example, a typical approach in test development and

automation is for test engineers to group together, into individual test cases, test

165

inputs that address similar functionality; this can be distinguished from approaches

that group test inputs in other ways (e.g., into test cases developed per engineer,

or per team). We use the term test input grouping to describe this factor. (Section

6.2.4.1 provides a precise metric for this construct.)

As thus described, test suite granularity concerns the sizes of individual test

cases, but not their content, and test input grouping concerns the content of individ-

ual test cases, but not their size. Together these two terms can be said to represent

test suite composition, but as we shall show, the two factors are largely orthogonal,

and by treating them separately, we are able to examine both their individual and

combined roles in affecting the effectiveness of test case prioritization techniques.

6.2.3 Program Subjects

We use two program subjects, bash and emp-server. The bash program sub-

ject was described in Section 5.3.2.

Emp server is essentially a transaction manager: its main routine consists of

initialization code followed by an event ioop in which execution waits for receipt

of a user command. Emp- server is invoked and left running on a host system; a

user communicates with the server by executing a ci 1 ent that transmits the user's

inputs as commands to emp- server. When emp- server receives a command,

its event loop invokes routines that process the command, then waits to receive the

next command. As emp server processes commands, it may return data to the

client program for display on the user's terminal, or write data to a local database

(a directory of ASCII and binary files) that keeps track of game state. The event

loop and program terminate when a user issues a "quit" command. Table 6.1 shows

166

Program Version Functions

Changed

Functions

Lines

of Code

emp-server 4.2.0 1,188 63,014

emp-server 4.2.1 1,188 51 63,014

emp-server 4.2.2 1,197 245 63,658

emp-server 4.2.3 1,196 157 63,937

emp-server 4.2.4 1,197 9 63,988

emp-server 4.2.5 1,197 101 64,063

emp-server 4.2.6 1,197 32 64,108

emp-server 4.2.7 1,197 156 64,439

emp-server 4.2.8 1,189 52 64,381

emp-server 4.2,9 1,189 12 64,396

TABLE 6.1: Experiment Subjects

the numbers of functions and lines of executable code in each of the ten versions of

emp server that we considered, and for each version after the first, the number

of functions changed for that version (modified or added to the version, or deleted

from the preceding version).

To examine our research questions whether test suite granularity or test input

grouping has an effect on the effectiveness of prioritization techniques we re-

quired test cases for our subject programs. These test cases had to be structured in a

realistic manner, but also in a manner that facilitates the controlled investigation of

the effects of test suite granularity and test input grouping, following the methodol-

ogy outlined in Section 6.2.4.1. The approaches used to create and automate these

test cases, which differed between our subject programs, were as follows.

167

6.2.3.1 Emp -server Test Cases and Test Automation

No test cases were available for emp- server. To construct test cases we used the

Empire information files, which describe the 196 commands recognized by emp-

server, and the parameters and environmental effects associated with each. We

treated these files as informal specifications for system functions and used them, to-

gether with the category partition method [149], to construct a suite of test cases for

emp server that exercise each parameter, environmental effect, and erroneous

condition described in the files.

We deliberately created the smallest test cases possible, each using the mini-

mum number of commands necessary to cover its target requirement. Each test

case consists of a sequence of between one and six lines of characters (average 1.2

lines per test case), and constitutes a sequence of inputs to the client, which the

client passes to emp-server. Because the complexity of commands, parame-

ters, and effects varies widely across the various Empire commands, this process

yielded between one and 38 test cases for each command, and ultimately produced

1985 test cases. These test cases constituted our test grains, as well as our test cases

at granularity level Gi. We then used the two sampling procedures described in

Section 6.2.4.1 to create random and functional grouping test suites at granularity

levels G2, G4, G8, G16, G32, and G64, the sizes of which are shown in Table 6.2.

To execute and validate test cases automatically, we created test scripts. Given

test suite T, for each test case tin T these scripts: (1) initialize the Empire database

to a start state; (2) invoke emp- server; (3) invoke a client and issue the se-

quence of inputs that constitutes the test case to the client, saving all output re-

turned to the client for use in validation; (4) terminate the client; (5) shut down

ILSI]

emp-server bash

Gi 1985 1168

G2 993 584

G4 497 292

G8 249 146

G16 125 73

G32 63 37

G64 32 19

TABLE 6.2: Test Cases per Granularity Level

emp- server; (6) save the contents of the database for use in validation; and (7)

compare saved client output and database contents with those archived for the pre-

vious version. By design, this process lets us apply (in step 3) all of the test inputs

contained in a test case, at all granularity levels.

As described in Section 6.2.4.1, our sampling procedure, applied to emp-

server, does create non-uniform test cases, due to the particular sizes of buckets

corresponding to test cases of different functionalities. Table 6.3 illustrates, for each

test suite granularity, the percentage of non-uniform grouping test cases occurring

at that granularity. When analyzing our results we take care to account for the

effects of non-uniform groupings.

6.2.3.2 Bash Test Cases and Test Automation

The bash test suite was described in Section 5.3.2. As described there, the test

suite contains 1168 test cases, exercising an average of 64% of the functions across

all the versions. Each test case in the new test suite contains between one and 54

169

Program G2 G4 G8 G16 G32 G64

emp-server

bash

0.5

0.5

11.0

2.0

28.0

4.5

65.0

9.6

88.0

21.6

100.0

36.8

TABLE 6.3: Percentage of Functional Test Cases with Non-Uniform Groupings.

lines. Each line constitutes an instruction consisting of bash or Expect [11911

commands depending on the type of test case,2 that can be executed on an instance

of bash. The 1168 test cases constituted our test grains, and test cases at granularity

level Gi. As with emp- server, we then followed the procedure described in

Section 6.2.4.1 to create random and functional grouping test suites at granularity

levels G2, G4, G8, G16, G32, and G64, as reported in Table 6.2.

As with emp server, our sampling procedure, applied to bash, created non-

uniform test cases. Table 6.3 displays, for each test suite granularity, the percentage

of such test cases per granularity. (Due to the distribution of test cases per item of

functionality tested, these percentages are lower for bash than for emp server.)

6.2.3.3 Faults

Our experiment requires that our subjects contain regression faults. For bash,

we used the faults seeded in it, described in Section 5.3.2. For emp- server we

applied a similar process. This gave us, in total across all program versions, 159

faults.

2 Expect scripts were used for test cases exercising features of bash that required interaction.

170

6.2.4 Experiments

Informally, our goal is to address the research question: "how do test suite granu-

larity and test input grouping affect the costs and benefits of prioritization?"

More formally, we seek to evaluate the following hypotheses (expressed as null

hypotheses) for test case prioritization at a 0.05 level of significance:

Hi (test suite granularity): Test suite granularity does not have a significant

impact on the effectiveness of prioritization techniques.

H2 (test input grouping): Test input grouping does not have a significant impact

on the effectiveness of prioritization techniques.

H3 (technique): Prioritization techniques do not perform significantly differ-

ently in terms of the selected effectiveness measure.

H4 (program): The program under test does not have a significant effect on the

effectiveness of prioritization techniques.

H5 (interactions): Test suite granularity and test input grouping effects across

prioritization techniques and programs do not significantly differ.

To test these hypotheses we designed a controlled experiment.

6.2.4.1 Variables and Measures

Our experiment manipulated four independent variables: prioritization technique,

test suite granularity, test input grouping, and program.

171

Prioritization Technique. We selected four test case prioritization techniques:

random, fn-cov-th, fn-bdiff-cov-fb, and optimal priontization. Random and optimal

prioritization are described in Section 2.4.3. The other two techniques are described

in Section 2.3.

Test Suite Granularity. To investigate the impact of test suite granularity on the

effectiveness of prioritization techniques, we needed to obtain test suites of vary-

ing granularities, in a manner that controls for other factors that might affect our

dependent measures.

We considered two approaches for doing this. The first approach is to obtain

or construct test suites for a program, partition them into subsets according to size,

and compare the results of executing these different subsets. A drawback of this

approach, however, is that it will not let us determine whether a causal relationship

exists between test suite granularity and prioritization effectiveness, because it does

not control for other factors that might influence those measures. To see this, sup-

pose that T can be partitioned into two subsets, T1 and T2, where T1 contains test

cases of size less than s, and T2 contains test cases of size greater than or equal to s.

Suppose that we compare the effect of utilizing T1 and T2 and find that they differ.

In this case, we cannot determine whether this difference was caused by test suite

granularity, or by differences in the number or type of inputs applied in T1 and T2.

For example, it might be the case that the types of functionality exercised by the

inputs in T2 happen to include all functionality modified to create P'. In this case,

differences in performance between the two subsets could occur for reasons other

than test case granularity.

172

The second approach that we considered is to construct test suites of varying

granularities by sampling a single pooi or "universe" of test grains. A test grain

is a smallest input that could be used as a test case (applied from a start state and

producing a checkable output) for a target program. A sampling procedure can se-

lect test grains to create test cases of different sizes: a test case of size s consists of

s test grains. Applying this sampling procedure repeatedly to a universe of n test

grains, without replacement, until none remain (partitioning the universe into n/s

test cases of size s, and possibly one smaller test case), yields a test suite of granu-

larity level s. Repeating this procedure many times for each of several values of S

gives us test suites of different granularity levels that can be compared controlling

for differences in types and numbers of inputs.

We chose this second approach, and employed seven granularity levels: 1, 2,

4, 8, 16, 32 and 64, which we refer to as Gi, G2, G4, G8, Gl6, G32 and G64,

respectively.

Test Input Grouping. We considered two different approaches for grouping test

inputs into test cases at varying levels of granularity: functional grouping and ran-

dom grouping.

Functional grouping test cases are composed (to the extent possible) of inputs

that exercise the same functionality. To create functional grouping test cases, we

began by separating the test cases in the test universe U for each subject program

P into "buckets", where each bucket Bk contains the test cases in U targeting func-

tionality k in P. Given these buckets, we considered two approaches for creating

functional grouping test cases of granularity s.

173

From within each bucket, randomly select groups of s test grains without

replacement until fewer than s test grains remain in the bucket. Then, if any

test grains remain in that bucket, let them constitute one final group (of size

less than s).

From within each bucket, randomly select groups of s test grains without

replacement until fewer than s test grains remain in the bucket. Do this for

each bucket. For any test grains remaining in buckets, group them into a

single pool, and from them, randomly select groups of size s test cases.

The difference between these two approaches lies in their handling of test cases

that remain in each bucket after the maximum number of groups of size s have been

selected from that bucket. The first approach, however, has a significant drawback,

in that it might yield a large number of test cases of size less than s at each gran-

ularity level (potentially as many as one per bucket). The presence of such test

cases might cause a confounding effect for investigating the effects of granularity:

we need to control for the number and size of test cases created at each granularity

level. Thus, we chose the second approach for creating functional groupings.

One consequence of this choice relates to the fact that for most buckets in the test

suites for the subjects we studied, bucket size is less than 64 (our highest granularity

studied); many other buckets have size less than 32, and several have size less than

16. (Section 6.2.3 presents data on our experiment subjects and test suites.) Test

suites constructed from the universes for these subjects using functional groupings

thus contain progressively larger percentages of non-uniformly grouped test cases

as granularity level increases. We take this into account in our data analyses.

174

Our second approach for grouping test inputs, random grouping, involves, for

each level of test case granularity sought, applying our sampling procedure repeat-

edly to a universe of n test grains and sampling randomly across the whole universe

each time (without replacement). Such a grouping provides a set of test cases, at

each granularity level, equivalent in size to the set of test cases obtained with the

functional grouping approach, and allows us to draw conclusions on the potential

influence of functional grouping on granularity effects.

Programs. For these experiments we utilized ten successive releases of each of

two substantial C programs: emp- server and bash, described in Section 6.2.3.

Dependent Variables and Measures. To investigate our hypotheses we need to

measure the effectiveness of the various prioritization techniques considered. To do

this we used our APFD model.

6.2.5 Experiment Design andAnalysis Strategy

Our experiment has four factors (one for each independent variable) with multiple

levels to ensure unbiased treatment assignment. We employ a Randomized Facto-

rial (RF) design that has 2 levels for program, 2 levels for grouping, 7 levels for

granularity, and 4 levels for technique. Each design cell has nine observations, cor-

responding to each of the versions (after the base version) from each program under

each treatment combination. These versions constitute random effects that we do

not control, and we consider them samples from a population of program versions.

The choice of a factorial design was based on the power of analysis offered

by its treatment combinations, which let us interpret not only the main factors but

175

also their interactions. The incorporation of four factors was aimed at decreasing

the variability of the results by controlling more independent variables, while at

the same time increasing the generalizability of the results by observing various

scenarios that might be present in the real world. However, these gains came at

the cost of generating high order interactions (e.g., between 4 factors) which are

extremely difficult to interpret, which led us to restrict our analyses to main effects

and second order interactions.

It is interesting to note that such a factorial design is often avoided in other

disciplines due to the costs of obtaining subjects for all possible combination of

independent variables. Since our subjects were programs, and we had automated a

large part of the experiment, we were able to gather the data necessary to comply

with such a design. Still, given the effort involved in preparing subject versions

(ranging, approximately, from 80 to 300 hours per version) we wanted to detect

meaningful effects with a minimal number of invested resources. We decided to

conservatively determine sample size by duplicating the number of versions used

in an earlier version of this study [176] where significance was detected for at least

one of the factors.

6.2.6 Threats to Validity

In this section we describe the internal, external, construct, and conclusion threats

to the validity of our experiment, and the approaches we used to limit their impact.

176

6.2.6.1 Internal Validity

To test our hypotheses we had to conduct an experiment requiring a large number

of processes and tools. Some of these processes involved programmers (e.g., fault

seeding) and some of the tools were specifically developed for the experiment, all of

which could have added variability to our results increasing threats to internal valid-

ity. We used several procedures to control and minimize these sources of variation.

For example, the fault seeding process was performed following a specification so

that each programmer operated in a similar way, and it was performed in two lo-

cations using different groups of programmers. Also, we validated new tools by

testing them on small sample programs and test suites, refining them as we targeted

the larger subjects, and cross validating them across labs.

Having only one test suite for each test input grouping type at each granularity

level in each subject might be another threat to internal validity. Although multiple

test suites would have been ideal, our procedure for generating coarser granularity

test suites involved randomly selecting and joining test grains, which reduces the

chances of bias caused by test suite composition.

Our handling of masking effects (described in Section 6.2.4.1) might constitute

a further threat to internal validity; however, as noted there, evidence suggests that

such effects occur infrequently among the test cases we utilized.

6.2.6.2 External Validity

Three issues affect the generalization of our results. The first issue is the quan-

tity and quality of subjects. Although using only two subjects might lessen the

external validity of the study, the relatively consistent results for bash and emp

177

server suggest that the results may generalize. Regarding subject quality, there

is a large population of C programs of similar size. For example, the linux RedHat

7.1 distribution includes source code for 394 applications; the average size of these

applications is 22,104 non-comment lines of code, and 19% have sizes between 25

and 75 KLOC. Still, replication of these studies on other subjects could increase the

confidence in our results.

The second issue involves fault representativeness. Our fault seeding process

helped us control for threats to internal validity; however, faults and fault patterns

may differ in practice.

The third limiting factor is test process representativeness. Although the ran-

dom and functional grouping procedures we employed to obtain coarser granularity

test suites are powerful in terms of control, they constitute simulations of the testing

procedures used in industry, which might also impact the generalization of the re-

sults. Compiementing these controlled experiments with case studies on industrial

test suites and actual faults, though sacrificing internal validity, could help.

6.2.6.3 Construct Validity

The dependent measure that we have considered is not the only possible measure of

the costs and benefits of prioritization techniques. Our measures ignore the human

costs that can be involved in executing and managing test suites. Our measures

do not consider debugging costs such as the difficulty of fault localization, which

could favor small granularity test suites [86]. Our measures also ignore the analysis

time required to prioritize test cases. Our previous work has shown, however, that

for the techniques considered, analysis time is much smaller than test execution

178

time, or analysis can be accomplished automatically in off-hours prior to the critical

regression testing period.

6.2.6.4 Conclusion Validity

The number of programs and versions we considered was large enough to show sig-

nificance for most of the techniques we studied, though not for all cases. Although

the use of more versions would have increased the power of the experiment, the

average cost of preparing each version ranged from 80 to 340 hours, limiting the

cost-effectiveness of taking additional observations.

6.2.7 Data and Analysis

In this section we investigate the effects of test suite granularity and grouping on

prioritization, employing descriptive and inferential statistics.

As stated above, we analyze four prioritization techniques: random prioritiza-

tion as a control (random), optimal prioritization to provide an upper bound on per-

formance (optimal), function coverage feedback (fn-cov-fb), and function binary

duff coverage feedback (fn-bdiff-cov-fb).

Figure 6.1 displays four pairs of graphs, two per technique (one per test group-

ing), with our measure of rate of fault detection, APFD, on the y axes. Results

for both programs appear similar under the optimal technique: there was a slow

but consistent decrease in APFD as granularity increased, independent of group-

ing technique. This was expected, because having more test cases provides more

opportunities for prioritization; still, the differences were small.

179

1:

1

t:t: tt
60 60

50 50

40 40

30 .. 3
Fn-cov-fb Fn-bdiff-cov-fb

II
1 248 163264 1 24 8 163264 1 248 163264 1 24 8163264

Random Functional Random Functional
emp-server

bash

FIGURE 6.1: APFD values for test case prioritization.

Under random prioritization results varied more widely. Per definition, this van-

ation was expected and is not directly attributable to increases in granularity or

changes in functional grouping. Fn-cov-fb exhibited a decrease in APFD as gran-

ularity increased. The rate of decrease is greater for this technique than for the

optimal technique, and more obvious for bash than for emp- server. Similar

tendencies can be observed for fn-bdiff-cov-th, confirming that lower granularities

offer better opportunities for prioritization in general.

The Anova presented in Table 6.4 determines whether the differences observed

in the graphs are significant. As the table shows, program, granularity and technique

180

All Techniques

Variable: APFD.

Source SS D.F MS F p

Program 32369 1 32369 343.40 0.00

Granularity 8458 6 1410 14.95 0.00

Grouping 242 1 242 2.57 0.11

Technique 41101 3 13700 145.35 0.00

Program*Granularity 3512 6 585 6.21 0.00

Program*Grouping 477 1 477 5.06 0.03

Granularity*Grouping 3223 6 537 5.70 0.00

Program* Technique 16637 3 5546 58.83 0.00

Granularity* Technique 8664 18 481 5.11 0.00

Grouping*Technique 645 3 215 2.28 0.078

Error 90395 959 94

TABLE 6.4: Prioritization Anova

all had a significant effect on the value of APFD. This means that the two pro-

grams generated significantly different APFD averages, that increasing granularity

resulted in significantly inferior APFD values, and that the chosen APFD value can

change significantly based on the prioritization technique that is in place. We could

not reject, however, the null hypothesis for the grouping factor for prioritization:

grouping seems not to significantly affect results.

Several of the interactions were also significant, which helps us better under-

stand how differences in one factor depend on other factors. To clarify the mean-

ings of these interactions we constructed three plots (Figure 6.2). The topmost plot

shows that both programs are affected differently by changes in granularity. The

middle plot illustrates how the performance of prioritization techniques is also af-

100

90

80

70

60
0
U-
ô 50

40

30

20

10

0

100

90

80

70

60
0
U-
a-

40

30

20

10

0

100

90

80

70

60
0
U-
a- 50

40

30

20

10

0

--U
U

emp-server

bash

1 2 4 8 16 32 64

Granularity

Random Fn-cov-fb Fn-bdiff--cov-tb Optimal
Technique

.r --:------- .4 --------------------------

-ri- Random
Fn-cov-fb
Fn-bdiff-cov-fbE
Optimal

1 2 4 8 16 32 64

Granularity

FIGURE 6.2: Prioritization interactions.

181

182

fected by attributes of the program's characteristics. Both of these graphs illustrate

similar APFD tendencies for both programs, confirming the significance of the main

effect. The lower graph shows how the techniques are affected differently by the

variation in granularity. Except for the random technique, the rest of the techniques

exhibit similar trends, with optimal exhibiting small decreases in APFD, while fn-

cov-fb and fn-bdiff-cov-fb exhibit an average decrement in APFD of approximately

12% as granularity increases from level Gi to level G64. The variation in random

was expected and does not affect the validity of the previous Anova interpretation.3

Overall, these interactions do not seem to contradict or obscure the significance

found in the main effects.

We would not want to conclude, simply on the basis of APFD values, that low

granularity suites are necessarily better than high granularity suites, because such

suites may also differ in terms of execution time. Thus, we also considered the

effect of granularity on execution time. Figure 6.3 shows that test execution time

decreased as granularity increased, independent of grouping strategy or program.

For example, under the random grouping, test execution time for bash was reduced

from 782 minutes at granularity level Gi to 222 minutes at granularity level G64,

and for emp- server was reduced from 505 minutes at level Gi to 26 minutes at

level G64. We formally investigated these tendencies relative to our hypotheses by

performing an analysis of variance (ANOVA), that included the sources of variation

considered, the sum of squares, degrees of freedom, mean squares, F value, and p-

value for each source. Because we set alpha to 0.05, and the p-value represents the

Since the grouping factor was not significant, we do not present interactions related to grouping.

183

FIGURE 6.3: Test execution time for random and functional groupings across test
suite granularities (x-axis), averaged across versions.

smallest level of significance that would lead to the rejection of a null hypothesis, we

reject an hypothesis when p is less than alpha. The results (Table 6.5) indicate that

program and granularity, but not grouping strategy, significantly affected execution

time.

6.2.8 Discussion

Our results strongly support our hypothesis that granularity significantly affects the

rate of fault detection that can be achieved by prioritization techniques. However,

we could not distinguish any significant effect caused by test case grouping.

More important from a practitioner's perspective, however, are implications of

these results for tradeoffs and factors involved when designing test suites and choos-

ing granularities. We now discuss those implications that we can draw from our

Variable: Testing time.

Source SS D.F. MS F p

Program 3130000 1 3130000 157.50 0.00

Granularity 7840000 6 1310000 65.70 0.00

Grouping 70900 1 70900 3.60 0.06

Program*Granularity 66800 6 11100 0.60 0.76

Program*Grouping 60700 1 60700 3.10 0.08

Granularity*Grouping 34400 6 5730 0.30 0.94

Error 4569911 230 19869

TABLE 6.5: Execution Time Anova

empirical data, to help clarify the practical impact of the results (taking into consid-

eration the threats to validity discussed in Section 6.2.6).

6.2.8.1 Reducing the Test Suite versus Reducing Overhead

Coarser granularity can greatly increase the efficiency of a test suite. For exam-

pie, increasing granularity from GI to G4 on the emp server test suite saved an

average of 360 minutes (70% time reduction) in test execution time. The same gran-

ularity increase on bash saved 390 minutes (50% time reduction) in test execution

time.

These differences can be attributed primarily to the amount of overhead in test

suite execution required for each program. In our experiments, the savings gener-

ated by increases in granularity resulted primarily from reduction in the overhead

associated with test setup and cleanup. (In other cases, another factor in overhead

might be the cost of human intervention.) Test suites with larger granularity had

185

fewer test cases, which reduced the overall overhead of the suites; this effect was

more profound for bash, whose test cases carried more overhead than the emp-

server test cases. Note, however, the other side of the tradeoff: test suites with

low overhead are not likely to yield time savings through increases in granularity.

6.2.8.2 Creating More Prioritizable Test Suites

We have found that in addition to technique and program, granularity has a signif-

icant impact on a test suite's rate of fault detection. Finer test suite granularity is

likely to result in greater opportunities for prioritization and translate into higher

APFD values. When larger test cases are partitioned into smaller ones, the scope of

the average test case decreases, allowing prioritization techniques to more precisely

discriminate between test cases. Large test cases, even in small numbers, can limit

the opportunities for prioritization.

Tradeoffs with execution time, however, may play a part in decisions about gran-

ularity, so it is important to note that these results differ with the difficulty of de-

tecting the faults occurring in programs. Programs for which the number of fault

exposing test cases is small are more likely to suffer APFD losses from increases

in granularity than programs for which the number of fault exposing test cases is

large. Most faults in bash were relatively difficult to expose: 99% were revealed

by fewer than 1% of the Gi test cases. For emp-server, in contrast, only 33%

of the faults were exposed by fewer than 1% of the G 1 test cases; the other 67% of

the faults being exposed more often. This result is most evident when considering

the APFD results for fn-cov-fb, and for the functional test input grouping. Here, the

APFD for bash was reduced by 37 points when going from Gi to G64, whereas

the APFD for emp- server (which had fewer hard faults) was reduced by only 6

points.

One implication of these results pertains to testing processes, which are typ-

ically driven by tradeoffs between the expense of testing and the need to detect

faults. When running test cases during development (especially as in test-driven

development processes, or test-every-night processes), where initial, easier-to-find

faults might be expected to be common, coarse-grained test cases that run faster

due to lower setup time requirements may be most cost-effective. When running

system tests at the end of development cycles, where the probabilities of individ-

ual test cases failing are smaller and the testing interval may be somewhat longer,

fine-grained test cases may be most cost-effective.

6.2.9 Conclusion

Writers of testing textbooks have long shown awareness that the composition of

test suites can affect the cost-effectiveness of testing. These effects can begin when

testing the initial release of a system, where success in finding faults in that release,

as well as the amount of testing that can be accomplished, can vary based on test

suite granularity and test input grouping. Software that succeeds, however, subse-

quently evolves: the costs of testing that software are compounded over its lifecycle,

and the opportunity to miss faults through inadequate regression testing occurs with

each new release. It is thus imperative that researchers study the effects of test suite

design across the entire software lifecycle.

187

6.3 Effects of Changes

6.3.1 Introduction

To create a new software release, engineers apply modifications to the software.4

These modifications can range in size from tiny bug fixes involving specific state-

ments to complete code redesign involving many modifications. They can also be

localized in a few functions or distributed across hundreds of functions. (For ex-

ample, the empire and bash program subjects, described earlier in this thesis, have

versions with as few as 9 modified functions and versions with as many as 249 mod-

ified functions). Finally, modified code can be executed by just a few test cases, or

executed by most of the test cases, in a test suite.

In Section 6.2, we studied the effects of test case granularity on prioritization

techniques' effectiveness. That study, however, did not specifically examine how

the type and magnitude of changes and their relation to test coverage patterns affect

the effectiveness of prioritization techniques.

In this section, we present the results of an embedded multiple case study de-

signed to investigate these issues, by observing the application of prioritization tech-

niques to several releases of four software systems.

6.3.2 Experiment Subjects

Several releases of four non-trivial C programs, bash, grep, flex, and gz ip,

were studied. Bash is a complete and complex Unix shell, grep searches input

4Portions of this section have appeared previously in [33].

Version Functions

Changed

Functions

Lines

of Code

Regression

Faults

1.0.7 86 4,744

1.1.2 86 37 5,228 5

1.2.2 103 26 5,811 3

1.2.3 102 14 5,727 2

1.2.4 102 32 5,810 2

1.3 108 52 6,582 3

TABLE 6.6: Gz ip Experiment Subject

files for a pattern, flex is a lexical analyzer generator, and gz ip is a compression

and decompression utility. The bash subject was described in Section 5.3.2, and

the flex and grep subjects were described in Section 2.5.1.

The gz ip subject has not previuosly been used. Table 6.6 lists, for each version

of g zip, the numbers of functions, changed functions (functions modified or added

to the version since the preceding version, or deleted from the preceding version),

non-comment, non-blank lines of code (referred to in the rest of this chapter as

"executable lines of code"), and seeded regression faults.

Gz ip subject preparation, test suite creation, fault seeding, and instrumenta-

tion were performed by the same processes used in preparing flex and grep,

described in Section 2.5.1.

6.3.3 Empirical Study Design

The overall goal of this study was to determine how the size, distribution, and loca-

tion of the modifications made to a software system during maintenance affect the

effectiveness of prioritization techniques.

To perform the study, several empirical approaches were considered. A case

study rather than a formal experiment was selected, because (1) it is not possible to

control for the evolution of (or modifications made to) the subject programs studied,

or reproduce that evolution at will, and (3) the nature of the questions addressed,

which concern how changes impact regression testing methodologies and why tech-

nique performance varies under different types of change, are appropriate for a case

study [223]. The resulting study employed a multiple-case study design [223], in

which each program was studied and analyzed independently (Section 6.3.4). Then,

to render the overall results more robust, repeating trends across the four cases (Sec-

tion 6.3.4.5) were examined.

6.3.3.1 Methodologies and Techniques

Four prioritization techniques were studied, including a control technique, two prac-

tical heuristics, and an optimal technique. This choice of heuristics was motivated

by the desire to capture a representative sample of the techniques previously pre-

sented in this dissertation, currently available to practitioners, and applicable to the

subject programs studied. The techniques selected were: random prioritization,

function coverage no feedback (fn-cov-nofb), function coverage feedback (fn-cov-

fb), and optimal prioritization. These techniques are described in detail in Section

2.3.

190

6.3.3.2 Independent Variables

For each program considered there were two independent variables: the chosen

prioritization technique and the program version with its particular changes. The

techniques employed for prioritization were just described; the second independent

variable, change, was quantified by six metrics that measure change along three

dimensions: size, distribution, and coverage, as follows:

P-CH-L: percentage of changed lines of code. P-CH-L measures the fraction

of the total executable lines of code that were added, changed, or removed

across all functions between a version and its predecessor, and indicates the

size of the change made to that version.

P-CH-F: percentage of changed functions. P-CH-F measures the fraction of

the total number of functions that contained at least one line changed between

a version and its predecessor. To reduce a possible confounding influence

caused by test suite coverage, only the changed functions that are present in

both versions and that are covered by the test suite were counted. A higher

value for P-CH-F indicates higher change distribution, and possibly higher

change size.

A-CH-LOC-F: average number of lines of code changed perfunction. A-CR-

LOC-F measures the average amount of change per function in a given ver-

sion, obtained by dividing the number of changed lines of code by the number

of changed functions. High values of this metric indicate larger changes per

function.

191

P-CH-Files: percentage of changedfiles. P-CH-Files measures the fraction of

the total number of files that changed in a given version. A file is considered

to have been changed if at least one constituent function changed from the

previous version. This value is a measure of change distribution. If a majority

of files are changed in a version, it is likely that change propagated across

functionalities. The assumption underlying this metric is that functions are

grouped together in files based on the functionality they provide.

A-Tests-CCHF: average percentage of test cases executing changed func-

tions. A-Tests-CCHF measures the average fraction of test cases covering

the changed functions. Once again, only changed functions that are covered

by the test suite were considered. A high value for this metric is likely to

reflect changes lying on common test case execution paths. In other words,

it implies that functionality that is quite popular with the test suite has been

changed. A low value for this metric means that the change is in rarely tested

functionality.

P-CH-Index: probability of execution of changed functions. P-CH-Index

measures change "popularity"; its value is computed by summing the exe-

cution probabilities of changed functions. The execution probability of each

function is computed by counting the execution frequency of each function

when the test suite is executed. The value of this variable increases as more

functions with high execution likelihood are changed.

192

Bash

mean stdev

Grep

mean stdev

Flex

mean stdev

Gzip

mean stdev

P-CH-L 2.5 2.2 9.0 9.5 11.6 11.9 16.1 9.7

P-CH-F 12.9 10.6 45.4 33.0 26.2 22.5 33.9 14.0

A-CH-LOC-F 8.1 5.1 19.9 14.6 23.2 11.7 24.0 10.3

P-CH-Files 34.4 19.5 4.8 2.0 3.9 1.6 7.4 4.0

A-Tests-CCHF 69.3 8.6 39.7 3.8 32.6 3.1 6.2 1.1

P-CR-Index 13.8 14.4 49.3 32.6 28.1 22.6 25.2 8.6

TABLE 6.7: Basic Statistics for Change Variables

6.3.3.3 Dependent Variable

One dependent variable was measured: savings due to increases in the rate of fault

detection, as tracked by APFD (Section 1.2.5).

6.3.4 Results and Observations

In this section, the results and observations for each of the units of analysis in the

study are presented first individually, and then (Section 6.3.4.5) across those units.

Later, Section 6.3.5 explores the practical implications of these observations, and

relates them to the questions addressed.

Each of the analyses that follow references the data shown in Table 6.7 and Fig-

ure 6.4. Table 6.7 presents the six independent change metrics collected, with their

means and standard deviations, for each of the objects of study. Figure 6.4 displays

the prioritization results for each of the four observed programs. The results are pre-

sented through a series of four box plot diagrams (one per program). The diagrams

4C

20

fn-cov-fb fn-cov-noth optimal random

(a) Bash

fn-cov-fb fn-cov-nofb optimal random

(c) Flex

193

bc - .

fn-cov-lb fn-cov-nofb optimal random

(b) Grep

100 -

fn-cov-fb fn-cov-notb optimal random

(d) Gzip

FIGURE 6.4: Distribution of APFD variable across versions, per program.

show the distribution of the dependent variable, APFD, plotted separately for each

priontization technique. The mean is used as the measure of central tendency, the

194

standard deviation is used to represent the variation that encloses each box, and the

whiskers are used to represent the range of observed values.

6.3.4.1 Bash

(Figure 6.4(a)). As expected, the optimal technique performed extremely well

(APFD over 99% for all versions), with almost no variation in spite of the different

size, distribution, and coverage of changes. Fn-cov-fb was second, achieving APFD

above 96% on all but version 1. That particular version displayed a unique combi-

nation of change characteristics: a high percentage of changed functions (P-CH-F

= 22%) covered by a high number of tests (A-Tests-CCHF =74%). Since fn-cov-fb

assigns lower priority to test cases executing functions already covered, having a

large number of tests traversing the changed (and possible faulty) functions was not

beneficial. Fn-cov-nofb performed consistently worse then fn-cov-fb, with APFD

over 90% on only half of the versions. Furthermore, no obvious relationship could

be observed between the change patterns and the performance of fn-cov-nofb.

6.3.4.2 Grep

(Figure 6.4(b)). Optimal prioritization performed as expected, that is, a high APFD

and low variation. For this program, fn-cov-fb achieved APFD over 86%. Fn-cov-

nofb, on the other hand, presented varied results, for an APFD averaging only 40%.

Change distribution clearly limited this technique's performance; for example, for

version 4, 90% of the functions were changed, fewer than 3% of the lines of code

were changed, and APFD was less than 14%.

195

6.3.4.3 Flex

(Figure 6.4(c)). Flex displayed behavior similar to grep, with optimal and fn-

cov-th always performing above 95%. Fn-cov-nofb again displayed a lot of vari-

ation. Version 4 of flex had an APFD of 98%, whereas the other 3 versions

averaged an APFD of 53%. Interestingly, those three versions contained changes

highly distributed across functions, and many lines of code changed within each

changed function. For example, in version 2, 57% of the functions were changed

and an average of 33 lines of code were changed per function, and here APFD was

42%. This confirms the previous observations that type of change can greatly limit

the effectiveness of fn-cov-nofb because prioritizing test cases based on the cover-

age they provide, without feedback, might ignore the fact that changes (and faults

in those changes) are in functions that are rarely covered.

6.3.4.4 Gzip

(Figure 6.4(d)). Gz ip displayed the highest variation for fn-cov-fb and fn-cov-nofb

among all subjects. Fn-cov-fb had APFD over 90% on four versions, and 51% on

version 3. Version 3 contained the most concentrated changes (P-CH-F 13%) of

all versions and the largest number of tests going through those changes (A-Tests-

CCHF 8%), which works against the "greedy" nature of fn-cov-fb. Fn-cov-nofb

achieved APFD under 60% for four versions. Three of those versions contained

large and highly distributed changes, with an average of 30 lines of code changed

per function, 41% of functions changed, and over 10% of the files affected by the

changes.

196

6.3.4.5 Implications Across Case Studies

The individual patterns described in the previous sections gain significance when

observed repeatedly across multiple units of analysis. In this section, a more general

data analysis is performed to offer a broader explanation about the sources of sim-

ilarities and variation across programs, and the impact of change attributes on the

cost-effectiveness of prioritization techniques. Two overall implications emerged.

Implication 1: fn-cov-fb always performed well, but fn-cov-nofb was often Un-

predictable. Fn-cov-fb, on average, always outperformed fn-cov-nofb and random

ordering regardless of change characteristics, and also had low variation. For flex

and grep, fn-cov-fb performed close to optimal prioritization on all versions. Fn-

cov-nofb displayed large variation, with (for example) APFD ranging from nine to

100 on gz ip, and performing worse than random prioritization on three of the four

programs.

Implication 2: highly distributed changes benefit fh-cov-Jb, but can hurt flu-

cov-nojb. The difference in performance between the two techniques increased as

changes were more distributed. Grep, gzip, flex, and bash have decreasing

change distribution averages (see Table 6.7), which matches the differences in per-

formance between the two techniques. The two techniques also exhibited similar

behavior if a large number of test cases executed the changed functions independent

of change distribution. This is evident in all versions of bash, where almost 70%

of the tests execute the changed functions.

197

6.3.5 Discussion

This section has presented the results of an embedded multiple case study of the

impact of change patterns on the effectiveness of several prioritization techniques.

Overall, the results of this study confinn that change attributes play a significant

role in the performance of prioritization techniques; this holds for all the heuris-

tics that were investigated. More important from a practical perspective, however,

are the ways in which engineers unaware of this role can make poor choices in de-

signing regression test suites, building modifications into new releases of software,

and selecting integration or regression testing strategies and techniques. Even more

valuable are the ways in which knowledge of this role can enable better choices.

For example, change size does not seem to be the predominant factor in deter-

mining the effectiveness of techniques. Instead, the distribution of changes across

functions and files, and whether the test cases reached those changes, seem to be the

main contributors to the variation observed across all programs. A simple lines-of-

code mentality used to evaluate prospective modifications will not produce effective

results.

If a practitioner distributes multiple modifications across many functions and

features, employing fn-cov-fb is highly recommended since it seems highly likely to

perform close to optimal prioritization, discovering a large percentage of the faults

early in the test cycle. On the other hand, fn-cov-nofb performs best if changes

occur within the same feature, but even then its results are often discouraging.

6.4 Conclusions

The empirical studies described in this chapter lay the groundwork for developing

practical guidelines to improve prioritization effectiveness, by exploring factors that

affect prioritization effectiveness. Clearly, additional studies are needed, both to

explore other factors, and to extend the external validity of our results. We next

turn, however, to an illustration of how the number of influencing factors can be

used to help practitioners choose appropriate techniques.

CHAPTER 7

CLASSIFICATION

7.1 Introduction

199

The studies reported in Chapters 1.4, 3, and 5.4 of this thesis have shown that the

rates of fault detection produced by prioritization techniques can vary significantly

with several factors related to program attributes, change attributes, and test suite

characteristics.' In several instances, techniques have not performed as expected.

For example, one might expect that techniques that take into account the location

of code changes would outperform techniques that simply consider test coverage

without taking changes into account, and this expectation is implicit in the tech-

nique implemented at Microsoft [185]. Our empirical studies described in Chapter

1.4, however, sometimes revealed results contrary to this expectation. It is possi-

ble that engineers choosing to prioritize for both coverage and change attributes

may actually achieve poorer rates of fault detection than if they prioritized just for

coverage or did not prioritize at all.

More generally, to use prioritization cost-effectively, practitioners must be able

to assess which prioritization techniques are likely to be most effective in their par-

ticular testing scenarios, i.e., given their particular programs, test cases, and modi-

fications. Toward this end, we might seek an algorithm which, given various met-

1 Portions of this chapter have appeared previously in [49, 50].

200

rics about programs, modifications, and test suites, calculates and recommends the

technique most likely to succeed. The factors affecting prioritization success are,

however, complex, and interact in complex ways, as shown in the previous chapter,

and [46]. We do not possess sufficient empirical data to allow creation of such a

general prediction algorithm, and the complexities of gathering such data are such

that it may be years before it can be available. Moreover, even if we possessed a

general prediction algorithm capable of distinguishing between existing prioritiza-

tion techniques, such an algorithm might not extend to additional techniques that

may be created.

In this chapter, therefore, we report on an alternative approach. Using data ob-

tamed from the application of several prioritization techniques to several substantial

systems, we compare the performance of several prioritization techniques in terms

of effectiveness and show how the results of this comparison can be used, together

with cost-benefit threshold information, to select a technique that is most likely to

be cost-effective. We then show how an analysis strategy based on classification

trees can be incorporated into this approach and used to improve the likelihood of

selecting the most cost-effective technique.

Our results provide insight into the tradeoffs between techniques, and the condi-

tions underlying those tradeoffs, relative to the programs, test suites, and modified

programs that we examine. If these results generalize to other workloads, they could

guide the informed selection of techniques by practitioners. More generally, how-

ever, the analysis strategy we use demonstrably improves the prioritization tech-

nique selection process, and can be used by researchers or practitioners to evaluate

techniques in a manner appropriate to their own testing scenarios.

201

7.2 Empirical Study

To assess whether, and under which conditions, specific code-based prioritization

techniques are preferable to other techniques, and to examine approaches for mak-

ing such assessments, we performed an empirical study. Results of applying vari-

ous prioritization techniques to a certain number of versions of several non-trivial

medium to large size program subjects were studied by examining the rates of fault

detection of the resulting test suites using APFD data. (Earlier studies had already

collected a portion of the required data, which we simply reuse. The remaining

required data were collected specifically for this study.)

7.2.1 Prioritization Techniques

As target prioritization techniques, we chose four heuristics and two control tech-

niques that could easily be (or have already been) implemented by practitioners,

and that allow us to examine two of the key dimensions of differences among tech-

niques: the uses of feedback and information on modifications. (For simplicity

and to facilitate comparison, we restricted our attention to function-coverage-based

techniques). The four techniques were: function coverage no feedback (fn-cov-

nofb), function coverage feedback (fn-cov-fb), function binary duff coverage no

feedback (fn-bdiff-cov-nofb), function binary duff coverage feedback (fn-bdiff-cov-

fb), random prioritization (random), and optimal prioritization (optimal). These

techniques are described in detail in Section 2.3.

202

Program Version Lines of C Code Regression Faults

make 0 18,665 0

make 1 19,902 5

make 2 20,678 5

make 3 21,872 3

make 4 25,465 4

sed 1 8,063 0

sed 2 11,911 5

sed 3 9,978 4

xearth 1 24,179 0

xearth 2 13,165 4

xearth 3 14,068 3

TABLE 7.1: Experiment Subjects (Make, Sed, and Xearth)

7.2.2 Subject Programs

To reduce the likelihood that our results would be dependent on a specific set of

programs, we used eight C programs with different characteristics as subjects: em-

pire, bash, grep, flex, make, sed, xearth, and gzip. The grep and

flex subjects are described in Section 2.5.1. The bash subject was described in

Section 5.3.2. The empire subject was described in Section 6.2.3. The gzip

subject was described in Section 6.3.2. Here, we describe only make, sed, and

xearth (see Tables 7.1 and 7.2).

7.2.2.1 Make

Make is a utility that reads a given command file that contains a set of targets, each

associated with a set of commands. Make checks targets against their dependencies.

203

Program Test Suite Size

make 1044

sed 1294

xearth 540

TABLE 7.2: Tests per Subject (Make, Sed, and Xearth)

Given a target, this utility processes its dependencies (other targets or files) recur-

sively, and executes commands associated with a given target if necessary. Make is

usually used to control building of software consisting of multiple files.

7.2.2.2 Sed

Sed is a stream editor that performs specified editing commands to given files.

7.2.2.3 Xearth

Xearth is a program that displays an image of Earth, including currently light and

dark zones, on the X Windows background or saves this image into the specified

file. It was developed by Kirk Lauritz Johnson and can be freely obtained.

7.2.2.4 Test Suites

For each medium subject program, a test suite was created. First, specification-

based tests were created using the category-partition method presented in [14911.

Second, the test suites were augmented with additional tests to make them branch

adequate.

204

7.2.2.5 Faults

To obtain regression faults, several graduate and undergraduate computer science

students, each with at least two years experience programming in C and unac-

quainted with the details of the study, were asked to study programs and inject faults

into modified code, doing it as realistically as possible. Ten regression faults have

been seeded. Then, they were activated one-by-one and information about which

tests revealed which faults has been collected. Faults, not detected by any test, and

faults, detected by more then 20% of tests, have been excluded. Undetected faults

do not affect prioritization experiments, and faults detected by too many tests are

not particularly interesting, because they would have been detected and eliminated

early in the development process by unit testing.

7.2.3 Study of Average APFD Values

For each of our subjects, we retrieved or computed relevant APFD values. Specif-

ically, these included APFD values for our five prioritization techniques applied to

each pair of sequential versions of each program subject. This yielded 56 APFD

values, which are represented in the box-plots shown in Figure 7.1. The figure

contains separate plots for each program and one plot summarizing "all programs"

(bottom-right). Each plot contains a box showing the distribution of APFD scores

for each of the five techniques, and the optimal APFD scores possible.

Overall, the APFD results shown in Figure 7.1 are similar to those observed in

earlier studies. Techniques using feedback (fn-cov-fb and fn-bdiff-cov-fb) usually

produced better prioritization results than random, and in some cases (e.g., flex)

approximated optimal ordering. In contrast, the simplest prioritization technique,

o
r
1 C
D -t C
D C
D -I 0 C -
4

C
D C

op
tim

al

ra
nd

om

fn
-c

ov
--

nO
fb

fn
-c

ov
--

-l
b

fn
.-

bd
if

f-
co

V
-f

lO
fb

fn
_b

di
ff

-c
ov

-t
h

op
tim

al

ra
nd

om

In
-e

ov
-n

o(
b

fn
-c

ov
-l

b

fn
-b

di
ff

-C
O

V
-f

lO
th

fn
-b

di
ff

-C
O

V
-t

b

op
tim

al

ra
nd

om

fn
-c

ov
-f

lO
T

h

in
-c

oy
-l

b

fn
_b

di
ff

-C
O

V
-f

lO
th

fn
-b

di
ff

-c
ov

-f
b

A
P
F
D

0

I
n
'

fn-cov-nofb, produced an average APFD lower than or equal to that produced by

random. Considering the data for all subjects, we note that techniques without feed-

back tended to have lower APFD values and exhibit greater variance in APFD than

techniques with feedback. We also found that the use of modification information

(indicated by bdiff in the technique's name) sometimes improved the fn-cov-nofb

technique (e.g, on flex, gzip, sed, and xearth), but often caused the fn-cov-fb

technique to behave poorly.

Figure 7.1 also shows the degree to which APFD values varied across subjects

and versions. For example, on some subjects (e.g., gz ip) there was large variance

in APFD values for all techniques, while on others (e.g., make) APFD values were

relatively consistent for all techniques. On still other subjects (e.g., flex), some

techniques exhibited wide variance while others did not. The relative performances

of techniques also differed across subjects; for example, on grep, the mean APFD

value for fn-cov-fb was 20 points greater than the mean APFD value for fn-bdiff-

cov-fb, while on gz ip, the mean APFD value for fn-bdiff-cov-fb was better than

the mean APFD value for fn-cov-fb.

7.2.4 Study ofPrioritization Instances and Cost-Benefit Thresholds

A practitioner turning to Figure 7.1 for help in selecting a prioritization technique

could easily be misled. For example, although fn-bdiff-cov-noth's mean APFD

was worse than random's mean APFD on most programs, on 56% of all individual

applications fn-bdiff-cov-nofb was superior to random. In general, measures of

central tendency such as the mean are appropriate to characterize an aspect of a

207

distribution, but they do not provide a way to characterize how likely we are, in

selecting a technique, to be correct in our selection.

A different strategy for assessing the tradeoffs between prioritization techniques,

that does provide a way to characterize the likelihood of selecting a technique cor-

rectly, can be obtained by comparing the numbers of applications in which the per-

formances of prioritization techniques differ. Toward this end, we define a prioriti-

zation instance as a single application of a given prioritization technique to a given

version and test suite. To compare two prioritization techniques, as an initial strat-

egy, we calculate the number of instances in which the first technique generates a

higher APFD than the second.

When making this comparison, however, we also consider an additional factor.

A difference in APFD of k% may or may not be practically important to a practi-

tioner, depending on various cost factors associated with the practitioner's testing

process. To assume that a "higher" APFD implies a better technique, independent

of cost factors, is an oversimplification that may lead to inaccurate choices among

techniques. Cost models for prioritization (Chapter 5) can be used to determine, for

a given testing scenario, the amount of difference in APFD that may yield desirable

practical benefits by associating APFD differences with measurable attributes such

as dollar costs. Without constraining our analysis to specific costs, however, we can

analyze cost-benefits more generally by using an abstract notion of the amount of

difference in APFD that we refer to as a cost-benefit threshold: a percentage differ-

ence in APFD that must be exceeded in order for that APFD gain to be beneficial.

Table 7.3 compares the performances of the techniques we investigated in our

study in terms of prioritization instances, conditioned on several different cost-

benefit thresholds. The table displays, for each pairwise technique comparison (one

Row

#

Techniques

Compared

Cost-Benefit Threshold

0% 1% 5% 10% 25%

1 fn-cov-nofb vs. random 41 39 21 5 2

2 fn-cov-fb vs. random 79 70 37 32 20

3 fn-cov-fb vs. fn-cov-nofb 61 61 52 39 30

4 fn-bdiff-cov-nofb vs. random 57 41 16 9 2

5 fn-bdiff-cov-nofbvs. fn-cov-nofb 55 50 34 16 5

6 fn-bdiff-cov-nofbvs. fn-cov-fb 23 16 7 4 2

7 fn-bdiff-cov-fb vs. random 68 59 30 25 14

8 fn-bdiff-cov-fb vs. fn-cov-nofb 63 63 46 37 14

9 fn-bdiff-cov-fb vs. fn-cov-fb 41 25 7 2 2

10 fn-bdiff-cov-fbvs. fn-bdiff-cov-nofb 50 41 30 25 14

TABLE 7.3: Percentage of Prioritization Instances in which the First Technique
Compared is Better than the Second Technique Compared under a Given Cost-
benefit Threshold

per row), the percentage of prioritization instances in which each technique was

worth applying, across five cost-benefit threshold values (0%, 1%, 5%, 10%, and

25%). Within each comparison, for each cost-benefit threshold k, we list the per-

centages of prioritization instances in which the first technique of the two compared

(the leftmost technique listed in column 2) produced an APFD value exceeding that

of the second technique by k% or more, and thus, should be the preferred technique

under threshold k. Put differently, the numbers contained in the table's cells under

a given threshold k indicate the probability that the first technique would achieve

an APFD k% better than the second technique, across the instances in which the

techniques were applied.

The data in the table serves as the basis for a prioritization technique selection

strategy (henceforth referred to as the basic instance-and-threshold strategy). For

example, considering row 2, a practitioner can claim some confidence that benefits

will be obtained, at low cost-benefit thresholds, by employing fn-cov-fb rather than

random, because such benefits were observed in 79% of the instances considered

for threshold 0%, and 70% of the instances considered for threshold 1%. On the

other hand, considering row 9, a practitioner expecting to obtain benefits by incor-

porating modification information into fn-cov-fb stands a greater chance of being

incorrect than correct, for all cost-benefit thresholds, and a practitioner choosing

between fn-cov-nofb and random would select appropriately on more occasions by

just choosing random.

The table also shows that, when the practitioner becomes more demanding with

respect to cost-benefit threshold, the recommended technique shifts. For example

(row 2), although fn-cov-fb is preferable to random when thresholds are low (0%

or 1%), as cost-benefit threshold reaches 5% there is a larger probability that the

use of feedback is not worthwhile. Also, at cost benefit thresholds of 5% or higher,

comparing random to any heuristic (rows 1, 2, 4, and 7), there are always more

instances in which random is preferable.

It is also interesting to observe how the rates at which percentages change varies

across comparisons. For example, the probability that fn-cov-fb is preferable to fn-

cov-nofb decreases more slowly, as threshold increases, than does the probability

that fn-cov-fb is preferable to random; this indicates a smoother transition between

threshold levels.

Finally, although we cannot claim that the particular results presented in the ta-

ble generalize to other programs, versions, and test suites, with further experimenta-

210

tion we hope to improve the generality of the information presented. Meanwhile, a

practitioner could collect similar data on their own systems and employ the method

just described to determine which techniques to employ on those systems in future

regression testing efforts.

7.2.5 Improving Technique Selection using Testing Scenario Characteristics

The basic instance-and-threshold strategy for comparing and selecting prioritization

techniques is based exclusively on comparisons of the APFD values achieved by

two techniques, relative to a given cost-benefit threshold; it is simple and, our data

shows, can be effective in some cases. In other cases, however, this strategy may

not be helpful. For example, the table reveals that the chance of achieving higher

APFDs by adding feedback to the fn-bdiff-cov-nofb technique (i.e, by using fn-

bdiff-cov-fb) is 50/50. That is, the practitioner can obtain the same level of certainty

that they are choosing the best technique through a coin-toss.

Whether or not this strategy is effective, it seems possible that a second strategy

considering the characteristics of the testing scenario (the particular program, mod-

ifications, and test suite involved), could increase the probability of choosing a tech-

nique correctly. We call this second strategy the enhanced instance-and-threshold

strategy, and to investigate it we followed a two step process. First, we characterized

the collected prioritization instances by computing a set of metrics related to test-

ing scenarios. Second, we used these metrics to refine the guidelines for selecting

techniques by building classification trees.

211

7.2.5.1 Classification Trees and their Application

Classification trees have been used frequently in previous software engineering re-

search. For example, classification trees have been used to classify modules as fault

prone or not fault prone [98] and to predict components for which development

effort is likely to be high [154, 181]. In our context, we use classification trees

to predict whether a certain testing scenario facilitates the use of a prioritization

technique by measuring program, test suite, and change characteristics that hold for

that particular scenario. Classification trees can help with this for several reasons.

First, unlike more traditional statistical techniques, classification trees are not con-

strained by the underlying population distribution. Second, their hierarchical nature

makes them easy to interpret, which could facilitate their adoption by practitioners.

Third, the trees can be decomposed into a set of rules that make the decision process

straightforward.

The generation of a classification tree starts from a set of observations that con-

stitute a training or learning set for which a property that must be forecasted is

known. For example, for the question of whether feedback is effective, the learning

set must include, for each prioritization instance, whether feedback was beneficial

or not. In addition, each prioritization instance has a set of associated values cone-

sponding to a number of independent variables. The tree generation process begins

by splitting the learning set (starting node) into two subgroups (child nodes). The

method we used for splitting, CART (Classification and Regression Trees), uses an

"exhaustive search for univariate splits" method for categorical predictor variables

[187], in which all possible splits for each predictor variable at each node are ex-

amined to find the split producing the largest improvement in goodness of fit. We

212

employed the Gini goodness of fit measure, which reaches a value of zero when

only one class is present at a node and reaches its maximum value when class sizes

at the node are equal. The process is repeated recursively for each node until a

stopping rule is reached.

Tree evaluation is commonly performed through misclassification rates. A por-

tion of the cases are designated as belonging to the learning sample and the re-

maining cases are designated as belonging to the test sample. The predictive model

defined by the tree can then be developed using the cases in the learning sample,

and its predictive accuracy can be assessed using the cases in the test sample.

7.2.5.2 Using Classification Trees

In our application of the approach, we used 25% of our observations as the test

sample, which left 42 observations in the learning set. Also, to check the stability of

the trees, we used v-random cross validation within the learning sample. This cross

validation involved selecting five random sub samples of equal size from the learning

sample and computing the classification tree of the specified size five times, each

time omitting one of the subsamples from the computation and using that subsample

as a test sample for cross-validation. Thus, each subsample was used four times in

the learning sample and just once as the test sample.

In addition, we made the following assumptions while generating trees. First,

since the prioritization techniques we examined are relatively simple, we assumed

that their cost is equivalent. We also assumed the same misclassification cost, in-

dependent of the predicted outcome. Second, we assumed that the prior probability

of a technique being successful is proportional to the percentage of observations

213

Metric Description Mean Median Std

Dev.

A.FSIZE mean func. size 54 46 19

AI'LCHOC mean number of changed lines per changed func. 9 7 6

PFCHC percentage of func. changed and covered 12 7 15

PCH.L percentage of changed LOC 11 3 17

PTRCHF percentage of test cases reaching a changed func. 94 100 23

ARFET mean percentage of func. executed by a test case 33 36 9

ATESTSCHF mean number of test cases going through changed func. 40 45 20

PCHINDEX probability of executing changed func. 16 9 18

TABLE 7.4: Metrics Collected over the 56 Applications of Prioritization Tech-
niques to our Subject Programs

in the learning set where that technique generated an APFD value greater than its

counterpart (e.g., fn-cov-fb is assumed to be successful in 70% of the scenarios for

a 1% cost-benefit). Third, splitting on the predictor variables of the learning set

continued until each terminal node in the classification tree had no more than 25%

of misplaced scenarios (Fact/frac option in Statistica).

The independent variables we considered were obtained from studies by Elbaum

et aI. in [46} and Section 6.3, which identified and classified the sources of varia-

tion observed in the prioritization techniques's effectiveness. Those sources involve

program, test suite and change characteristics. The resulting metric set (Table 7.4)

is the result of a refinement process in which several of the originally proposed met-

rics were discarded based on their marginal contribution to the observed variation

in APFD.

214

FIGURE 7.2: Classification tree for fn-cov-nofb versus random.

7.2.5.3 Results

We generated classification trees for each pair of techniques compared (each row)

in Table 7.3, beginning with the pairs for which the application was successful in

producing refinements (rows 1, 2, 3, 5, 8, and 10), followed by the other pairs. (We

generated trees only for the cost-benefit threshold of 1%. This choice was arbitrary

and does not imply any loss of generality for the approach.)

1. fn-cov-nofb versus random

We begin by comparing fn-cov-nofb and random. Figure 7.2 presents the tree

that results from applying the classification tree approach considering these two

techniques. The tree starts with the top decision node (node "1"). Each node con-

tains a histogram representing the frequency distribution of the techniques being

Predicted

Best

Techniques fn-cov-nofb random

fn-cov-nofb

random

4

0

2

8

Misclassification Rates 0/4 = 0% 2/10 = 20%

215

TABLE 7.5: Classification Accuracy on Test Sample - Fn-cov-nofb versus Random

compared (heights of the columns are proportional to the frequencies); the legend

at upper left identifies the techniques to which the bars in the histograms cone-

spond. Each node also contains a label indicating the dominant technique in that

node. The root node, node 1, is split forming two new nodes; the text beneath the

root node describes the rule determining the split. In Figure 7.2 this rule indicates

that instances with APFET < 35% are sent to node 2 and classified as cases in

which random should be used, and instances with AP.FET values greater than 35%

are assigned to node 3 and classified as cases in which fn-cov-nofb should be used.

The values of 18 and 24 printed above nodes 2 and 3, respectively, indicate the

number of cases sent to each of these two child nodes.

The tree indicates that fn-cov-noth worked best on testing scenarios in which

test cases executed relatively larger percentages of the functions in the system

tested, leading to a higher probability of covering a changed function. On the other

hand, fn-cov-nofb did not perform as well in scenarios in which test cases had

smaller "footprints", where the probability of not executing a faulty function is

accentuated.

We next employed the test set to assess tree accuracy. The results are presented

in Table 7.5. The rows in this table correspond to the technique predictions for the

4r

instances, and the columns indicate actual observed results. For example, in four

test instances fn-cov-nofb was the best performer and this was correctly predicted,

whereas in two instances our predictions were incorrect because random did better.

Overall, we observe that with just one metric, the tree could discern with 100% ac-

curacy the instances in which fn-cov-nofb would be preferable to random, and with

86% accuracy the instances in which fn-cov-nofb would not outperform random.

Recall that a practitioner following the guidelines given in Table 7.3, at cost-

benefit threshold 1%, would discard fn-cov-nofb and employ no prioritization tech-

nique, missing an opportunity for improvement in 39% of the instances. Following

the guidelines presented in the classification tree would increase the likelihood of

selecting the appropriate prioritization technique. As seen in Table 7.3, a prac-

titioner employing the tree would select the appropriate technique in 86% of the

instances: (number of correctly cla:sified instances) * 100% = 100% * = 86%

2. fn-cov-fb versus random

Figure 7.3 presents the classification tree that results from comparing fn-cov-fb

and random. This tree contains two splits. The first split is based on AJFSIZE, indi-

cating that programs with average function size over 90 LOC are less likely to pro-

vide instances in which fn-cov-fb is preferable to random. The second split employs

the ANCHOC metric with a value of 20, suggesting that functions in which aver-

age change size is greater than 20 reduce the potential of fn-cov-fb in comparison

to random. Overall, programs with large functions or functions with many changes

tend to constrain the power of fn-cov-fb. This could be caused by the greedy na-

ture of fn-cov-fb and the fact that we employed it at the function coverage level.

FIGURE 7.3: Classification tree for fn-cov-fb versus random.

Predicted

Best

Techniques fn-cov-fb random

fn-cov-fb

random

10

0

3

1

Misclassification Rates 0/10 = 0% 3/4 = 75%

217

TABLE 7.6: Classification Accuracy on Test Sample Fn-cov-fb versus Random

As such, even if a function has a lot of change or is large, fn-cov-fb seeks to cover

it once, which may delay exposure of faults.

Table 7.6 assesses the accuracy of this tree. The misclassification rates mdi-

cate that, using the tree, we may over-predict the cases in which fn-cov-fb will be

preferable. Still, the guidelines from Table 7.3 (at cost-benefit level 1%) would lead

FIGURE 7.4: Classification tree for fn-cov-fb versus fn-cov-nofb.

a practitioner to choose fn-cov-fb in all cases, missing an opportunity to do better in

30% of the instances in which random is at least as good as fn-cov-fb. The refined

strategy increases the likelihood of selecting the appropriate prioritization strategy

to 79% of the cases (79% = 100% * * 100%).

3. fn-cov-fb versus fn-cov-nofb

Figure 7.4 presents the classification tree that results from comparing fn-cov-

fb to fn-cov-nofb. This tree also contains two splits. APYET is again the first

discriminator and, as in the preceding tree, smaller APFET values do not benefit

fn-cov-nofb. We believe that the availability of test cases focusing on specific func-

tionality (instead of exercising most of the system) are one determinant for whether

feedback techniques prosper. Node 3 is split again into two nodes based on the

Predicted

Best

Techniques fn-cov-fb fn-cov-nofb

fn-cov-fl,

fn-cov-nofb

8

1

1

3

Misclassification Rates 1/9 = 11% 1/4 = 25%

219

TABLE 7.7: Classification Accuracy on Test Sample Fn-cov-fb versus Fn-cov-
nofb

P_CHI. metric. The tree indicates that more changes are likely to help feedback

(assuming those changes are distributed).

A practitioner has much to gain by using just two metrics and the classification

tree. Without using this information, fn-cov-fb would be selected because it per-

forms better than fn-cov-nofb 61% of the time. Table 7.7 indicates that in this case,

a practitioner employing the tree would select the appropriate technique in 86% of

the instances (86% = 100% *

5. fn-bdiff-cov-nofb versus fn-cov-nofb

Figure 7.5 presents the classification tree that results from comparing fn-bdiff-

cov-nofb and fn-cov-nofb. This tree contains three splits. The first split is based

on APFET, again indicating that higher percentages of functions executed per test

case do promote the effectiveness of fn-cov-nofb. Node three is split based on

P_CWL, indicating that fn-cov-nofb is more likely to be beneficial if the percentage

of changed lines of code is less than 1%. The last split occurs on node five based

on ATESTS_CCHF. If the percentage of test cases covering changed functions is

less than or equal to 46%, then incorporation of duff information seems to be help-

ful. Intuitively, if the test cases have a greater overlap covering changed functions,

FIGURE 7.5: Classification tree for fn-cov-nof b versus fn-bdiff-cov-nofb.

Predicted

Best

Techniques fn-cov-nofb fn-bdiff-cov-nofb

fn-cov-nofb

fn-bdiff-cov-nofb

5

2

0

7

Misclassification Rates 2/7 = 29% 0/7 = 0%

220

TABLE 7.8: Classification Accuracy on Test Sample Fn-cov-nofb versus Fn-bdiff-
cov-nofb

then fn-cov-nofb can potentially do as well as fn-bdiff-cov-nofb since the use of

modification information does not add much value.

Table 7.8 indicates that the tree mispredicted 29% of the instances in which fn-

bdiff-cov-nofb was not beneficial, but was very accurate in identifying instances

221

FIGURE 7.6: Classification tree for fn-bdiff-cov-fb versus fn-cov-nofb.

in fn-bdiff-cov-nofb outperforms fn-cov-nofb. A practitioner employing this tree

would need to compute three metrics. Such effort would be compensated for,

however, with an 86% probability of selecting the appropriate technique (86% =

100% * Note that the probability of selecting the appropriate technique without

using the tree was 50%.

8. fn-bdiff-cov-fb versus fn-cov-nofb

A practitioner trying to determine whether to incorporate both change informa-

tion and feedback into fn-cov-nofb would employ the tree in Figure 7.6. The result-

ing tree has the same nodes and splitting metrics as the one introduced in Figure 7.5.

Predicted

Best

Techniques fn-bdiff-cov-fb fn-cov-nofb

fn-bdiff-cov-fb

fn-cov-nofb

3

1

0

10

Misclassification Rates 1/4 = 25% 0/10 = 0%

222

TABLE 7.9: Classification Accuracy on Test Sample Fn-bdiff-cov-th versus Fn-
cov-nofb

Table 7.9 indicates that a practitioner following this tree would have an 93% proba-

bility of selecting the appropriate technique for a given scenario (93% = 100% *

as opposed to 63% without using the tree.

10. fn-bdiff-cov-fb versus fn-bdiff-cov-nofb

The tree in Figure 7.7 concerns the situation in which a practitioner using modi-

fication information must decide whether or not to incorporate feedback. The figure

indicates that with just one split based on the P_CHINDEX metric the leaf nodes

are reached. Table 7.10 shows that this tree predicts fn-bdiff-cov-fb to be preferable

to fn-bdiff-cov-nofb inaccurately in several instances. Yet, a practitioner follow-

ing this tree would have a 64% probability of choosing the appropriate technique

(64% = 100% *), which is greater than the 59% chance of choosing correctly

without the tree.

Remaining cases.

For four pairs of technique comparisons, classification trees did not provide ad-

ditional selection power: fn-bdiff-cov-nofb versus random, fn-bdiff-cov-nofb ver-

sus fn-cov-th, fn-bdiff-cov-fb versus random, and fn-bdiff-cov-fb versus fn-cov-fb.

223

FIGURE 7.7: Classification tree for fn-bdiff-cov-fb versus fn-bdiff-cov-nofb.

Predicted

Best

Techniques fn-bdiff-cov-fb fn-bdiff-cov-nofb

fn-bdiff-cov-fb

fn-bdiff-cov-nofb

6

0

5

3

Misclassification Rates 0/6 = 0% 5/8 = 63%

TABLE 7.10: Classification Accuracy on Test Sample - Fn-bdiff-cov-fb versus Fn-
bdiff-cov-nofb

In these cases, no tree produced gains surpassing those that a practitioner could ob-

tain by following Table 7.3, and thus, trees were of no value. One possible reason

for lack of effectiveness in classification trees in these four cases could be that the

attributes we captured are not able to explain the differences in technique perfor-

224

mance. Another possible reason is the limited number of observations available;

more observations could improve our understanding and enable the creation of use-

ful classification trees.

It is interesting to note, however, that all comparisons in which a tree could not

be constructed involved a comparison with a technique using modification informa-

tion. Modification information seems, in some cases, to add variability in a manner

that we cannot predict. Such variability could be caused, for example, by the accu-

racy of the tools that determine modifications, or in the way in which modification

information is combined with coverage information. Still, it seems that the use of

modification information is not always advisable, and its success may be difficult to

predict.

7.3 Discussion and Conclusions

We have presented data on the application of five prioritization techniques across

eight systems. The performance of these test case prioritization techniques was

observed to vary significantly with program attributes, change attributes, test suite

characteristics, and their interaction.

These results underscore the need for strategies by which practitioners could

choose appropriate prioritization techniques for their particular testing scenarios,

and we have proposed two such strategies. The basic instance-and-threshold strat-

egy, introduced in Section 7.2.4, recommends the technique that has been successful

in the largest proportion of instances in the past, accounting for cost-benefit thresh-

olds. The enhanced instance-and-threshold strategy, introduced in Section 7.2.5,

adds into consideration the attributes of a particular testing scenario, using metrics

225

Row # Techniques Compared

Likelihood of

Correct Recommendation

Basic Enhanced

Strategy Strategy

Strategy

Refinement

Gain

1 fn-cov-nofbvs. random 61% 86% 25%

2 fn-cov-fb vs. random 70% 79% 9%

3 fn-cov-fb vs. fn-cov-nofb 61% 86% 25%

4 fn-bdiff-cov-nofb vs. random 59%

5 fn-bdiff-cov-nofb vs. fn-cov-nofb 50% 86% 36%

6 fn-bdiff-cov-nofbvs. fn-cov-fb 84%

7 fn-bdiff-cov-fbvs. random 59%

8 fn-bdiff-cov-fb vs. fn-cov-nofb 63% 93% 30%

9 fn-bdiff-cov-fbvs. fn-cov-fb 75%

10 fn-bdiff-cov-fb vs. fn-bdiff-cov-nofb 59% 64% 5%

TABLE 7.11: Strategies for Prioritization Technique Selection

to characterize scenarios, and employing classification trees to improve the likeli-

hood of recommending the proper technique for each particular case.

The relative effectiveness of these two strategies for a cost-benefit threshold

of 1% is summarized in Table 7.11. Each row introduces the techniques being

compared, the probability for recommending the appropriate technique for a given

scenario under each strategy, and the gain generated by the enhanced strategy with

respect to the basic strategy. For example, in the first row, we see that a practitioner

employing the basic instance-and-threshold strategy would have a 61% likelihood

of selecting the most effective technique. A practitioner using the enhanced strategy,

however, would have an 86% likelihood of selecting the most effective strategy (at

the cost of computing AP.FET and following the classification tree introduced in

226

the previous section). The effectiveness of these strategies on the workloads we

considered demonstrates their viability for evaluating techniques in other scenarios

introduced by researchers or practitioners.

In this work we have assumed that the prioritization techniques examined have

equivalent costs. For the relatively simple techniques we have considered, all oper-

ating at the level of function coverage and using binary "duff" decisions that could

be retrieved from configuration management, this assumption seems reasonable. To

extend these comparisons to other classes of techniques, however, this assumption

is less reasonable. Techniques that incorporate test cost or module criticality infor-

ination, or those that operate at finer grained levels of coverage, present different

cost-benefits tradeoffs. These tradeoffs can be modeled as described in Chapter 5,

and related to cost-benefit thresholds, allowing comparisons of differing-cost tech-

niques, but this approach needs to be investigated empirically.

227

CHAPTER 8

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

8.1 Conclusions and Contributions

Before this research began, only three papers {175, 178, 213] had explored test

case prioritization. However, recently, additional papers by other researchers and

practitioners have been published presenting prioritization techniques. This fact

reflects a growing interest in this topic. The research presented in this thesis is the

first comprehensive study of test case prioritization, providing valuable information

on test case prioritization and its problems. This work can be used as a benchmark

for future research in this area, for comparing new techniques and their effectiveness

to those presented here. In addition, there are many issues that concern the potential

for making prioritization practical. This work resolves several of these issues.

In the following sections, we summarize the contributions and merits of this

research.

8.1.1 Prioritization Techniques

We developed a wide variety of prioritization techniques. Researchers can use this

set of techniques as a starting point for developing new techniques. Software engi-

neers can choose techniques from these to apply to industrial projects.

8.1.2 Extensive Studies ofTechnique Effectiveness

We have performed extensive studies to assess the effectiveness of prioritization

techniques. These studies provide data on techniques to facilitate selection of the

most practical ones. These studies also provide a baseline for further empirical

work.

8.1.3 Version-specific and Arbitrary Granularity Level Prioritization Tech-
niques

We have developed version-specific prioritization techniques that target a given soft-

ware release, improving, in many cases, prioritization effectiveness. To do this, we

incorporated modification information into prioritization techniques. To address

the potential cost of low level analyses, we also developed prioritization techniques

that utilize arbitrary levels of coverage granularity. Our techniques can be easily

scaled up to handle large software systems that may not be practically handled us-

ing statement- and branch-level prioritization techniques.

8.1.4 Cost-cognizance

With the exception of Wong et al. [213], who briefly mentioned the usage of non-

uniform test costs, all prior research on prioritization has assumed uniform test

costs and uniform fault seventies. We lifted these assumptions by developing

the new cost-cognizant APFDC metric and prioritization techniques. We also

suggested several approaches for measuring cost-cognizant data after testing has

completed and for estimating the same data before testing starts. This work brings

229

prioritization one step closer to practical application for cases in which we cannot

ignore differences in test costs or fault seventies.

8.1.5 Prioritization Framework

We exploited similarities among prioritization techniques to develop a unifying pri-

oritization framework. This framework can express every prioritization technique

developed so far. Its main values are its ability to facilitate creation of new prioriti-

zation techniques and their analysis and its provision of a standard way of looking

at techniques. This framework allows us to implement a general prioritization algo-

rithm whose parameters can instantiate various prioritization techniques. It allows

rapid prototyping of and research on a variety of new prioritization techniques with

minimal coding, shortening study time, encouraging experimentation with devel-

opment of new techniques, and reducing the number of errors that might occur if

every technique was implemented from scratch.

8.1.6 Cost Model

Previous research assumed that if a prioritization technique achieved a better test

case ordering, it would be beneficial. Because there are costs associated with the ap-

plication of prioritization, this might not always be the case. Thus, we developed a

cost model for prioritization. Our model allows us to assess whether toapply priori-

tization at all, and if so, which technique would be the best. This model is important

if prioritization is to be used in practice: the decision to incorporate prioritization

into a software maintenance process must be made only if it is economical.

230

8.1.7 Factors

Studies have shown significant variation among prioritization techniques, applied

to different subjects, versions, and test suites. This illustrates that prioritization

is sensitive to many factors. Previous studies did not explore such factors, con-

sidering techniques' average behavior and ignoring prioritization techniques' per-

formance variations. In our studies, we have isolated some relevant factors and

investigated their effects on prioritization. Knowing these factors can be beneficial

in several ways. First, they provide an important basis for the theoretical examina-

tion of prioritization. If a mathematical model for prioritization is to be constructed,

it needs to incorporate factors that affect prioritization. Information on factors and

their effects can also be used to develop guidelines for software implementation and

maintenance. Adherence to such guidelines may improve prioritization techniques'

behavior, making them more effective and predictable, and reducing variation.

8.1.8 Prediction

In previous work, researchers presented techniques and, in some cases, showed

which techniques had the best average behavior. However, most prioritization tech-

niques have variations in their performance. As a result, there is no technique that

is best all of the time. Being able to predict which technique will be the most

beneficial under given circumstances could help practitioners achieve better overall

prioritization effectiveness. We have developed an approach for such prediction

using classification trees. Studies show that this method can substantially increase

the accuracy of prediction of the best technique relative to selecting one based on

231

its average behavior. Practitioners can use this prediction process to better select

prioritization techniques under particular scenarios.

8.2 Future Work

While this research explores test case pnoritization and resolves some of its prob-

lems and issues to make it more practical and understandable, it also opens up many

possibilities for future work.

8.2.1 Experiment Materials

In some of our experiments and case studies, quantitative analyses could not reach

statistical significance to reject our null hypotheses due to lack of observations,

thus, in these cases, results were inconclusive (for significance level a = 0.05).

Because there are substantial variations in prioritization effectiveness, the number

of observations needs to be large enough for results to stabilize. Larger numbers of

subjects and versions can solve this problem.

Several of the studies in this thesis are case studies. The main problem with case

studies is that they usually do not produce results that generalize. If studies with

representative parameters are used, we can obtain results that could be expected

to reoccur under similar circumstances. However, regression testing can have very

different characteristics for different scenarios. Practitioners need results that can

be generalized over a wide variety of environments. To obtain such results, we need

to conduct additional controlled experiments. Such experiments need to control in-

dependent variables whose values should be randomly sampled from the pool of

232

possible values. For "subject" and "version" variables, we need to obtain a large

number of subjects and their versions. Another issue is that some independent vari-

ables could not be effectively controlled because only one, possibly biased, value

for each variable was used. For many subjects, a single test suite per subject was

created using a TSL-based testing method and augmented to be branch adequate.

While this works for case studies, in order to conduct controlled experiments, we

need a random sample of such test suites. This problem could be addressed by

creating a large enough test case pooi and randomly generating a number of branch

adequate test suites to be used in experiments. Seeding a large number of regression

faults and randomly sampling several of their subsets would provide an effective

control of the "fault set" variable.

Finally, an effective way to study prioritization factors would be to control mod-

ifications, test suites, and fault sets by identifying sets of metrics over them, and

randomly generating choices according to these metrics.

8.2.2 Cost-cognizance

Our incorporation of cost-cognizance into the APFD metric and prioritization tech-

niques leaves several unresolved issues. The first issue is that there can be many dif-

ferent approaches to fault severity measurement and estimation. We explored only

one: using module criticality. This approach is applicable if we want to estimate

seventies of individual faults related to their consequences. Another approach con-

siders software reliability as the main indicator of fault severity. In this approach,

we can consider an operational profile and estimate effects of faults on reliability.

For example, if a given fault causes the software to fail 10% of the time, its severity

233

should be higher than the severity of a different fault which makes the software fail

5% of the time. Thus, this approach uses a fault's effect on software reliability as its

severity. This is useful for cases where software failures are not critical and result,

for example, in decreased market share. Here, as an estimation of a fault's severity,

its connection with test cases can be exploited. Test criticality can be computed

and used in prioritization as the effect of the software operations (externally defined

functions that the software performs, e.g., "open document", "change font", or "in-

sert table") on software reliability which are exercised by this test case. In other

words, a test case has higher criticality if it exercises operations that are more fre-

quently used. Thus, this approach to measurement and estimation of fault severity

needs to be studied in detail.

The second issue involves which distributions and scales should be used for

cost-cognizance information. Different equivalence classes may be considered for

cost-cognizant data. Also, there are many different ways in which to combine cost-

cognizant information with other data when prioritizing. In addition to multiplica-

tion and tie resolution, we can use other functions including summation, weighted

average, geometric mean, exponentiation, and so on. This can potentially gener-

ate a large set of prioritization techniques. Alternatively, we can parameterize this

function and apply search algorithms to maximize a technique's effectiveness.

A third issue is the need to generalize our results by performing studies on a

larger scale.

A fourth issue is that our cost-cognizant APFDC metric is not the only pos-

sibility. We can explore other objective functions on test case orderings in a cost-

cognizant environment.

234

8.2.3 Cost Model

Our cost-benefit tradeoffs model considers one metric evaluating costs saved by

applying a priontization technique: delays. While we believe this is appropriate in

many practical cases, it may not always be the best model. The model provides an

upper bound on cost savings due to better test case orderings. With further study of

prioritization, we could hope to devise alternative metrics that are applicable under

other scenarios.

8.2.4 Factors

In Chapter 5.4, we isolated several factors that affect prioritization effectiveness.

Because not all variations can be explained by these factors, there must be other

factors. Future work could isolate and study the most influential of these factors.

This may lay the groundwork for theoretical models of prioritization effectiveness

and help us to develop better guidelines for practitioners to use in designing and

maintaining software and test suites.

8.2.5 Prediction

If prioritization is to be practically used in the software development environment,

prediction of effectiveness for prioritization techniques is essential. Because of

substantial variations in performance, accurate prediction can make prioritization

more effective. Our study showed that while our predictor achieved significant

improvements in accuracy over the method that used the technique that was the

best on average, in some cases, it failed to accurately predict the best techniques.

235

Devising a larger set of metrics on code, changes, and test suites is necessary to

make the predictor more accurate.

Classification trees are not the only way to implement a predictor. They rely on

an assumption that a single metric's effect can be described as a simple comparison

to a threshold value. It is likely that much more complicated relations are taking

place. Regression analysis and neural networks could be explored to achieve better

prediction accuracy.

8.2.6 Metrics on Test Case Orderings

We used APFD and APFDc as metrics to assess prioritization effectiveness.

There can be many other goals for prioritization such as faster coverage, faster

modification coverage, faster reliability estimation, and so on. These metrics can be

explored in ways similar to those that we used to explore APFD and APFDC.

8.2.7 Combining Prioritization with Other Regression Testing Techniques

Some industrial software development projects employ regression test selection and

test suite reduction. It can be beneficial to keep these techniques and introduce

prioritization as part of the regression testing process. Future research could include

combining prioritization with regression test selection and test suite reduction to

combine the benefits of all these techniques. An approach suggested by Wong et al.

in [213] used prioritization as part of regression test suite selection where the first n

test cases in the prioritized test suite were used in testing.

236

BIBLIOGRAPHY

[1] H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental regression
testing. In Proceedings of the Conference on Software Maintenance, pages
348-357, September 1993.

[2] IEEE Standards Association. Software Engineering Standards, volume 3 of
Std. 1061: Standardfor Software Quality Methodology. Institute of Electrical
and Electronics Engineers, 1999 edition, 1992.

[3] IEEE Standards Association. Software Engineering Standards, volume 4 of
Std. 1044: Classifications for Software Anomalies. Institute of Electrical and
Electronics Engineers, 1999 edition, 1993.

[4] A. Avritzer and E. J. Weyuker. The automatic generation of load test suites
and the assessment of the resulting software. IEEE Transaction on Software
Engineering, 21(9) :705-716, September 1995.

[5] J. Bach. Useful features of a test automation system (part iii). Testing Tech-
niques Newsletter, October 1996.

[6] R. Bache. The effect of fault size on testing. Software Testing, Verification
and Reliability, 7:139-152, 1997.

[7] A. L. Baker, J. M. Bieman, N. Fenton, D. A. Gustafson, A. Melton, and
R. Whitty. Philosophy for software measurement. Journal of Systems and
Software, l2(3):277-281, 1990.

[8] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts
from formal test specifications. In Proceedings of the 3rd Symposium on Soft-
ware Testing, Analysis, and Verification, pages 210-218, December 1989.

[9] T. Ball. On the limit of control flow analysis for regression test selection.
In ACM International Symposium on Software Testing and Analysis, pages
134-142, March 1998.

[10] S. Bates and S. Horwitz. Incremental program testing using program depen-
dence graphs. In Proceedings of the 20th ACM Symposium on Principles of
Programming Languages, January 1993.

[11] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,
NY, 1990.

[12] B. Beizer. Black-Box Testing. John Wiley and Sons, New York, NY, 1995.

237

[13] P. Benedusi, A. Cimitile, and U. De Carlini. Post-maintenance testing based
on path change analysis. In Proceedings of the Conference on Software Main-
tenance, pages 352-361, October 1988.

[14] J. Bible, G. Rothermel, and D. S. Rosenbium. A comparative study of coarse-
and fine-grained safe regression test selection techniques. ACM Transactions
on Software Engineering and Methodology, 10(2):149-183, April 2001.

[15] R. Binder. Testing Object-Oriented Systems. Addison Wesley, Reading, MA,
2000.

[16] R. V. Binder. Testability. Communications of the ACM, 37(9):87-101,
September 1994.

[17] D. Binkley. Using semantic differencing to reduce the cost of regression
testing. In Proceedings of the Conference on Software Maintenance, pages
41-50, November 1992.

[18] D. Binkley. Reducing the cost of regression testing by semantics guided test
case selection. In Proceedings of the Conference on Software Maintenance,
October 1995.

[19] D. Binkley. Semantics guided regression test cost reduction. IEEE Transac-
tions on Software Engineering, 23(8), August 1997.

[20] D. Binkley. Validation of the coupling dependency metric as a predictor of
run-time failures and maintenance measures. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 352-355, April 1998.

[21] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis. Investigating qual-

ity factors in object oriented designs: an industrial case study. In Proceedings
of the International Conference on Software Engineering, pages 345-354,
May 1999.

[22] P. A. Brown and D. Hoffman. The application of module regression testing
at TRIUMF. Nuclear Instruments and Methods in Physics Research, Section
A, .A293(l-2):377-381, August 1990.

[23] T. A. Budd and D. Angluin. Two notions of correctness and their relation to
testing. Actalnformatica, 18:31-45, 1982.

[24] John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey.
Graphical Methods for Data Analysis. Wadsworth International Group, Bel-
mont, CA, 1983.

[25] T. Y. Chen and M. F. Lau. Dividing strategies for the optimization of a test
suite. Information Processing Letters, 60(3):135-141, March 1996.

238

[26] Y. F. Chen, D. S. Rosenbium, and K. P. Vo. TestTube: A system for selective
regression testing. In Proceedings of the 16th International Conference on
Software Engineering, pages 211-220, May 1994.

[27] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and
Wong M. Y. Orthogonal defect classification a concept for in-process mea-
surement. IEEE Transactions on Software Engineering, 18(1 1):943-956,
November 1992.

[28] M. Davis, R. Sigal, and B. Weyuker. Computability, Complexity, and Lan-
guages. Academic Press, Inc., Boston, MA, second edition, 1994.

[29] Márcio E. Delamaro and José C. Maldonado. ProteumA Tool for the As-
sessment of Test Adequacy for C Programs. In Proceedings of the Confer-
ence on Peiformabilily in Computing Systems (PCS 96), pages 79-95, July
1996.

[30] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints
on Test Data Selection: Help for the Practicing Programmer. Computer,
11(4):34-41, April 1978.

[31] T. Dogs a and I. Rozman. CAMOTE - computer aided module testing and
design environment. In Proceedings of the Conference on Software Mainte-
nance, pages 404-408, October 1988.

[32] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S. Kanduri. Un-
derstanding the effects of changes on the cost-effectiveness of regression test-
ing techniques. Technical Report 020701, University of Nebraska - Lincoln,
July 2002.

[33] S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel, and S. Kanduri.
Understanding the effects of changes on the cost-effectiveness of regression
testing techniques. Journal of Software Testing, Verification, and Reliability,
13(2), June 2003.

[34] 5. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases for
regression testing. In Proceedings of the International Symposium Software
Testing and Analysis, pages 102-112, August 2000.

[35] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Incorporating varying
test costs and fault seventies into test case prioritization. Technical Report
00-60-05, Oregon State University, August 2000.

[36] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases
for regression testing. Technical Report 00-60-03, Oregon State University,
February 2000.

239

[37] S. G. Elbaum. Conceptual framework for a software black box. Ph.D. dis-
sertation, University of Idaho, July 1999.

[381 S. G. Elbaum and J. C. Munson. A standard for the measurement of C
complexity attributes. Technical Report TR-CS-98-02, University of Idaho,
February 1998.

[39] S. G. Elbaum and J. C. Munson. Code churn: A measure for estimating
the impact of code change. In Proceedings qf the International Conference
Software Maintenance, pages 24-3 1, November 1998.

[40] S. G. Elbaum and J. C. Munson. Getting a handle on the fault injection pro-
cess: Validation of measurement tools. In Proceedings of the International
Symposium on Software Metrics, pages 133-141, November 1998.

[41] 5. G. Elbaum and J. C. Munson. Intrusion detection through dynamic soft-
ware measurement. In Workshop on Intrusion Detection and Network Moni-
toring, pages 41-50, April 1999.

[42] 5. G. Elbaum and J. C. Munson. Software evolution and the code fault in-
troduction process. Empirical Software Engineering Journal, 4(3):241-262,
September 1999.

[43] S. G. Elibaum and J. C. Munson. Evaluating regression test suites based on
their fault exposure capability. Journal ofSoftware Maintenance, 12(3):171-
184, 2000.

[44] S. G. Elbaum and J. C. Munson. Investigating software failures with a soft-

ware black box. In Proceedings of the IEEE Aerospace Conference, March
2000 (to appear).

[45] S. G Elbaum, J. C. Munson, and M. Harrison. CLIC: a tool for the measure-
ment of software system dynamics. Technical Report TR-CS-98-04, Univer-
sity of Idaho, April 1998.

[46] Sebastian Elbaum, David Gable, and Gregg Rothermel. Understanding and
measuring the sources of variation in the prioritization of regression test
suites. In Proceedings of the Seventh International Software Metrics Sym-
posium. Institute of Electrical and Electronics Engineers, Inc., April 2001.

[47] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Incorporat-
ing varying test costs and fault seventies into test case pnioritization. In Pro-
ceedings of the International Conference on Software Engineering, pages
329-338, May 2001.

[48] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Test case
prioritization: A family of empirical studies. IEEE Transactions of Software
Engineering, 28(2): 159-182, February 2002.

240

[49] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Mali-
shevsky. Selecting a cost-effective test case prioritization technique. Techni-
cal Report 03-01-01, University of Nebraska Lincoln, Department of Com-
puter Science and Engineering, January 2003.

[50] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Mali-
shevsky. Selecting a cost-effective test case prioritization technique. (under
review).

[51] Brian S. Everitt and Graham Dunn. Applied Multivariate Data Analysis.
Edward Arnold, 1991.

[52] N. Fenton. Software measurement: A necessary scientific basis. IEEE Trans-
actions on Software Engineering, 20(3): 199-206, March 1994.

[53] N. Fenton and L. Pfleeger. Software Metrics A Rigorous and Practical
Approach. PWS-Publishing Company, Boston, MA, second edition, 1997.

[54] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):3 19-349, July 1987.

[55] K. F. Fischer. A test case selection method for the validation of software
maintenance modifications. In Proceedings of COMPSAC '77, pages 421-
426, November 1977.

[56] K. F. Fischer, F. Raji, and A. Chruscicki. A methodology for retesting mod-
ified software. In Proceedings of the National Telecommunications Confer-
ence B-6-3, pages 1-6, November 1981.

[57] P. G. Franki, R. G. Hamlet, B. Littlewood, and L. Strigini. Evaluating testing
methods by delivered reliability. IEEE Transactions on Software Engineer-
ing, 24(8), August 1998.

[58] P. G. Franki and S. N. Weiss. An experimental comparison of the effective-
ness of the all-uses and all-edges adequacy criteria. In Proceedings of the
Symposium on Testing, Analysis, and Verification, pages 154-164, Victoria,
British Columbia, October 1991.

[59] P. G. Franki and S. N. Weiss. An experimental comparison of the effective-
ness of branch testing and data flow testing. IEEE Transaction on Software
Engineering, 19(8):774-787, August 1993.

[60] Rudolf J. Freund and Ramon C. Littell. SASfor Linear Models: a guide to
the ANOVA and GLM procedures. SAS Institute Inc., Cary, NC, 1981.

241

[61] D. Gable and S. Elbaum. Extension of fault proneness techniques. Technical
Report TRW-S W-200 1-2, University of Nebraska Lincoln, February 2001.

[62] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Free-
man, New York, 1979.

[63] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engi-
neerijng. Prentice Hall, Upper Saddle River, NJ 07458, 1st edition, 1991.

[64] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection.
IEEE Transactions on Software Engineering, SE-1(2):156-173, June 1975.

[65] T. Goradia. Dynamic impact analysis: A cost-effective technique to enforce
error-propagation. In ACM International Symposium on Software Testing and
Analysis, pages 171-181, June 1993.

[66] T. L. Graves, M. J. Harrold, J-M Kim, A. Porter, and G. Rothermel. An em-
pirical study of regression test selection techniques. In The 20th International
Conference on Software Engineering, April 1998.

[67] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques. AM Transactions
on Software Engineering and Methodology, 10(2): 184-208, April 2001.

[68] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression testing
using slicing. In Proceedings of the Conference on Software Maintenance,
pages 299-308, November 1992.

[69] G. Hall. Usage patterns: Extracting svsteinfunctionalityfrom observed pro-
files. Computer science, University of Idaho, April 1997.

[70] D. Hamlet and J. Voas. Faults on its sleeve: Amplifying software reliability
testing. In Proceedings of the International Symposium on Software Testing
and Analysis, pages 89-98, June 1993.

[71] R. G. Hamlet. Probable correctness theory. Information Processing Letters,
25:17-25, April 1987.

[72] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE
Transactions on Software Engineering, SE-3(4):279-290, July 1977.

[73] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the
size of a test suite. ACM Transaction on Software Engineering and Method-
ology, 2(3):270-285, July 1993.

[74] M. J. Harrold, J. A. Jones, and Lloyd J. Design and implementation of an
interprocedural data-flow tester. Technical report, The Ohio State University,
Aug 1997.

242

[75] M. J. Harrold, L. Larsen, J. Lloyd, D. Nedved, M. Page, G. Rotbermel,
M. Singh, and M. Smith. Aristotle: a system for the development of program-
analysis-based tools. In Proceedings of the 33rd Annual Southeast Confer-
ence, pages 110-119, March 1995.

[76] M. J. Harrold, D. Rosemblurn, G. Rothemel, and E. Weyuker. Empirical
studies of a prediction model for regression test selection. IEEE Transactions
on Software Engineering, 27(3):248-263, March 2001.

[77] M. J. Harrold and G. Rothermel. Separate computation of alias information
for reuse. In ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA) 96, January 1996.

[78] M. J. Harrold and G. Rothermel. Aristotle: A system for research on and de-
velopment of program analysis based tools. Technical Report OSU-CISRC-
3/97-TR17, Ohio State University, Mar 1997.

[79] M. J. Harrold and M. L. Soffa. An incremental approach to unit testing during
maintenance. In Proceedings of the Conference on Software Maintenance,
pages 362-367, October 1988.

[80] M. J. Harrold and M. L. Soffa. An incremental data flow testing tool. In
Proceedings of the Sixth International Conference on Testing Computer Soft-
ware, May 1989.

[81] M. J. Harrold and M. L. Soffa. Interprocedural data flow testing. In Proceed-
ings of the 3rd Testing, Analysis, and Verjfication Symposium, pages 158-
167, December 1989.

[82] M. J. Harrold and M. L. Soffa. Efficient computation of interprocedural
definition-use chains. ACM Transactions on Programming Languages and
Systems, 16(2):175-204, March 1994.

[83] J. Hartmann and D. J. Robson. Revalidation during the software maintenance
phase. In Proceedings of the Conference on Software Maintenance, pages
70-79, October 1989.

[84] J. Hartmann and D. J. Robson. RETEST - development of a selective reval-
idation prototype environment for use in software maintenance. In Proceed-
ings of the 23rd Hawaii International Conference on System Sciences, pages
92-101, January 1990.

[85] J. Hartmann and D. J. Robson. Techniques for selective revalidation. IEEE
Software, l6(1):3l-38, January 1990.

[86] R. Hildebrandt and A. Zeller. Minimizing failure-inducing input. In Proceed-
ings of the International Symposium Software Testing and Analysis, pages
135-145, August 2000.

243

[87] D. Hoffman. A CASE study in module testing. In Proceedings of the Con-
ference on Software Maintenance, pages 100-105, October 1989.

[88] D. Hoffman and C. Brealey. Module test case generation. In Proceedings
of the 3rd Workshop on Software Testing, Analysis, and Verification, pages
97-102, December 1989.

[89] J. R. Horgan and S. A. London. ATAC: A data flow coverage testing tool
for C. In Proceedings of the Symposium on Assessment ofQuality Software
Development Tools, pages 2-10, May 1992.

[90] R. Horgan, A. P. Mathur, A. Pasquini, and V. J. Rego. Perils ofsoftware reli-
ability modeling. Technical Report SERC-TR-160-P, Software Engineering
Research Council, Purdue University, February 1995.

[911 W. E. Howden. Reliability of the path analysis testing strategy. IEEE Trans-
actions on Software Engineering, SE-2(3):208-215, September 1978.

[92] W. E. Howden. The theory and practice of functional testing. IEEESoftware,
2(5):6-17, September 1985.

[93] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the
effectiveness of datafiow- and controlfiow-based test adequacy criteria. In
Proceedings of the International Conference on Software Engineering, pages
191-200, May 1994.

[94] R. Johnson. Elementary Statistics. Duxbury Press, Belmont, CA, sixth edi-
tion, 1992.

[95] R. A. Johnson and D. W. Wichorn. Applied Multivariate Analysis. Prentice
Hall, Englewood Cliffs, N.J., 3rd edition, 1992.

[96] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization for
modified condition/decision coverage. In Proceedings of the International
Conference on Software Maintenance, November 2001.

[97] C. Kaner, J. Falk, and H. Q. Nguyeen. Testing Computer Software. Wiley
and Sons, New York, 1999.

[98] T. Khoshgoftaar, E. Allen, and J. Deng. Using regression trees to classify
fault-prone software modules. IEEE Transactions on Reliability, 51(4):455-
462, 2002.

[99] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early
quality prediction: A case study in telecommunications. IEEE Software,
13(1):65-71, January 1996.

244

[100] T. M. Khoshgoftaar and J. C. Munson. A measure of software system com-
plexity and its relationship to faults. In Proceedings of the international
Simulation Technology Conference, pages 267-272, 1990.

[101] T. M. Khoshgoftaar and J. C. Munson. Predicting software development
errors using complexity metrics. Journal on Selected Areas in Communica-
tions, 8(2):253-261, February 1990.

[102] T. M. Khoshgoftaar, R. M. Szabo, and J. M. Voas. Identifying program mod-
ules with low testability using static software product measurements. Tech-
nical Report TR-CSE-94-34, Florida Atlantic University, 1994.

[103] J.-M. Kim and A. Porter. A history-based test prioritization technique for
regression testing in resource constrained environments. In Proceedings of
the International Conference on Software Engineering, May 2002.

[104] J-M. Kim, A. Porter, and G. Rothermel. An empirical study ofregression test
application frequency. In Proceedings of the 22nd international Conference
on Software Engineering, pages 126-135, June 2000.

[105] R. E. Kirk. Experimental Design: Procedures for the Behavioral Sciences.
Brooks/Cole, Pacific Grove, CA, 3rd edition, 1995.

[106] E. Kit. Software Testing in the Real World. Addison-Wesley, Reading, MA,
1995.

[107] B. Kitchenham, L. Pickard, and S. Pfieeger. Case studies for method and tool
evaluation. IEEE Software, 1 l(7):52-62, July 1995.

[108] B. Korel and A. Al-Yami. Automated regression test generation. In Proceed-
ings of the International Symposium on Software Testing and Analysis, pages
143-151, 1998.

[109] S. Krishnamurthy and A. P. Mathur. On the estimation of reliability of a
software system using reliabilities of its components. In Proceedings of the
international Symposium on Software Reliability Engineering, pages 146-
155, Albuquerque; NM, November 1997. IEEE Computer Society.

[110] F. Lanubile, A. Lonigro, and G. Visaggio. Comparing models for identifying
fault-prone software components. In Proceedings of the 7th international
Conference on Software Engineering and Knowledge Engineering, pages 12-
19, June 1995.

[111] J. Lash and W. Szermer. Identification of program modifications and its
applications in software maintenance. In Proceedings of the Conference on
Software Maintenance, pages 282-290, November 1992.

245

[112] J. W. Laski and B. Korel. A data flow oriented program testing strategy. IEEE
Transactions on Software Engineering, SE-9(3):347-54, May 1983.

[113] J. A. N. Lee and X. He. A Methodology for Test Selection. The Journal of
Systems and Software, 13(1):177-185, September 1990.

[114] H. K. N. Leung and L. White. Insights into regression testing. In Proceedings
of the Conference on Software Maintenance, pages 60-69, October 1989.

[115] H. K. N. Leung and L. White. Insights into testing and regression testing
global variables. Journal ofSoftware Maintenance, 2:209-222, December
1990.

[116] H. K. N. Leung and L. J. White. A study of integration testing and soft-
ware regression at the integration level. In Proceedings ofthe Conference on
Software Maintenance, pages 290-300, November 1990.

[117] H. K. N. Leung and L. J. White. A cost model to compare regression test
strategies. In Proceedings ofthe Conference on Software Maintenance, pages
201-208, October 1991.

[118] R. Lewis, D. W. Beck, and J. Hartmann. Assay - a tool to support regres-
sion testing. In ESEC '89. 2nd European Software Engineering Conference
Proceedings, pages 487-496, September 1989.

[119] D. Libes. Exploring Expect: A Tcl-Based TholkitforAutomating Interactive
Programs. O'Reilly & Associates, Inc., Sebastopol, CA, November 1996.

[120] M. Lyu. Handbook of Software Reliability Engineering. IEEE Computer
Society Press, 1995 edition, 1995.

[121] A. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-benefits
tradeoffs for regression testing techniques. In Proceedings of the Interna-
tional Conference on Software Maintenance, October 2002.

[122] A. von Mayrhauser, R. T. Mraz, and J. Walls. Domain based regression
testing. In Proceedings of the Conference on Software Maintenance 1994,
pages 26-35, September 1994.

[123] R. A. D. Millo, R. J. Lipton, and A. J. Perlis. Social processes and proofs of
theorems and programs. Communications ofthe ACM, 22(5):271-280, May
1979.

[124] D. C. Montgomery. Design and Analysis of Experiments. John Wiley and
Sons, New York, fourth edition, 1997.

246

[125] L. J. Morell. A theory of fault-based testing. IEEE Transactions on Software
Engineering, 16(8): 844-857, August 1990.

[126] J. C. Munson. Software measurement: Problems and practice. Annals of
Software Engineering, 1(1):255-285, 1995.

[127] J. C. Munson. A software black box recorder. In Proceedings of the IEEE
Aerospace Conference, pages 309-320, February 1996.

[128] J. C. Munson. The chaining approach for software test data generation. ACM
Transactions on Software Engineering and Methodology, 5(1):63-86, Jan-
uary 1996.

[129] J. C. Munson. A functional approach to software reliability modeling. In
Proceedings of the Conference on Mathematical and Scientific Computing:
Quality of Numerical Software, pages 61-76, November 1996.

[130] J. C. Munson and S. G Elbaum. Software reliability as a measurement prob-
lem. Technical Report TR-CS-97-03, University of Idaho, March 1997.

[131] J. C. Munson and S. G. Elbaum. Software reliability as a function of user
execution patterns. In Proceedings of the Hawaii international Conference
on System Sciencethe Hawaii International Conference on System Sciencess,
page 181, January 1999.

[132] J. C. Munson, S. G. Elbaum, R. M. Karcich, and J. P. Wilcox. Software risk
assessment through software measurement and modeling. In Proceedings of
the IEEE Aerospace Conference, pages 137-147, March 1998.

[133] J. C. Munson and T. Khoshgoftaar. Regression modeling of software quality:
An empirical investigation. Journal of Information and Software Technology,
32(2):105-114, March 1990.

[134] J. C. Munson and T. M. Khoshgoftaar. The relative software complexity met-
ric: A validation study. In Proceedings of the Software Engineering Confer-
ence, pages 89-102, 1990.

[135] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs.
IEEE Transaction on Software Engineering, pages 423-433, May 1992.

[136] J. Musa. Software faults, software failures, and software reliability modeling.
IEEE Software, 6(2):85-91, February 1996.

[137] J. Musa. Software Reliability Engineering. McGraw-Hill, New York, NY,
1999.

247

[1381 J. D. Musa. The operational profile in software reliability engineering: an
overview. In Proceedings of the International Symposium on Software Reli-
ability Engineering, pages 140-154, April 1992.

[1391 J. D. Musa. Operational profiles in software reliability engineering. IEEE
Software, 10(2):14-32, March 1993.

[140] J. D. Musa. Software reliability engineering testing. Computer, 29(1 1):61-
68, 1996.

[141] J. D. Musa, A. lannino, and K. Okumoto. Software Reliability, Measurement,
Prediction, Application. McGraw-Hill, New York, 1987.

[142] P. G. Neumann. Computer Related Risks. Addison-Wesley Publishing Com-
pany, New York, NY, 1995.

[143] A. P. Nikora. Software system defect content prediction from development
process and product characteristics. Department of computer science, Uni-
versity of Southern California, Los Angeles, CA, 1998.

[144] A. P. Nikora and J. C. Munson. Determining fault insertion rates for evolving
software systems. In Proceedings of the International Symposium Software
Reliability Engineering, November 1998.

[145] A. P. Nikora and J. C. Munson. Software evolution and the fault process.
In Proceedings of the Twenty Third Annual Software Engineering Workshop,
NASA/Goddard Space Flight Center, 1998.

[146] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experi-
mental determination of sufficient mutant operators. ACM Transactions on
Software Ebgineering Methodology, 5(2):991 18, April 1996.

[147] J. Offutt, J. Pan, and J. M. Voas. Procedures for reducing the size of coverage-
based test sets. In Proceedings of the Twelfth International Conference Test-
ing Computer Software, pages 111-123, June 1995.

[148] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma. Regression test-
ing in an industrial environment. Communications ACM, 41(5):81-86, May
1988.

[149] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating functional tests. Communications ACM, 31(6): 676-686, June
1988.

[150] T. J. Ostrand and E. J. Weyuker. Using dataflow analysis for regression test-
ing. In Sixth Annual Pacific Northwest Software Quality Conference, pages
233-247, September 1988.

[151] Lyman Ott. An Introduction to Statistical Methods and Data Analysis. PWS-
Kent Publishing Company, Boston, MA, third edition, 1988.

[152] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications ofthe ACM, 15(12): 1053-1058, December 1972.

[153] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement experience
during function test. In Proceedings ofthe 15th International Conference on
Software Engineering, May 1993.

[154] A. Porter and R. Selby. Evaluating techniques for generating metric-based
classification trees. The Journal of Systems and Software, 12(3):209-218,
1990.

[155] R. Pressman. Software Engineering: A Practitioner's Approach. McGraw-
Hill, New York, NY, 1987.

[156] C. Ramey and B. Fox. Bash Reference Manual. O'Reilly & Associates, Inc.,
Sebastopol, CA, 2.2 edition, 1998.

[157] D. Rosenbium and G. Rothermel. A comparative study of regression test
selection techniques. In Proceedings of the 2nd International Workshop on
Empirical Studies ofSoftware Maintenance, October 1997.

[158] D. Rosenbium and G. Rothermel. An empirical comparison of regression
test selection techniques. In Proceedings of the International Workshop for
Empirical Studies of Software Maintenance, pages 89-94, October 1997.

[159] D. Rosenblum and E. J. Weyuker. Predicting the cost-effectiveness of re-
gression testing strategies. In ACM SIGSOFT '96 Fourth Symposium on the
Foundations ofSoftware Engineering, October 1996.

[160] D. Rosenblum and E. J. Weyuker. Using coverage information to predict
the cost-effectiveness of regression testing strategies. IEEE Transaction on
Software Engineering, 23(3): 146-156, March 1997.

[161] D.S Rosenbium and E. J. Weyuker. Lessons Learned from Regression Testing
Case Study. Empirical Software Engineering Journal, 2(2):188-191, 1997.

[162] G. Rothermel. Efficient, effective regression testing using safe test selection
techniques. Technical Report 96-10 1, Clemson University, January 1996.

[163] G. Rothermel. Efficient, Effective Regression Testing Using Safe Test Selec-
tion Techniques. Ph.D. dissertation, Clemson University, May 1996.

[164] G. Rothermel and M. J. Harrold. A safe, efficient algorithm for regression
test selection. In Proceedings of the Conference on Software Maintenance,
pages 358-367, September 1993.

249

[165] G. Rothermel and M. J. Harrold. A framework for evaluating regression test
selection techniques. In Proceedings of the 16th International Conference on
Software Engineering, pages 201-210, May 1994.

[166] G. Rothermel and M. J. Harrold. Selecting regression tests for object-oriented
software. In Proceedings of the Conference on Software Maintenance, pages
14-25, September 1994.

[167] G. Rothermel and M. J. Harrold. Selecting tests and identifying test coverage
requirements for modified software. In Proceedings of the 1994 International
Symposium on Software Testing and Analysis (ISSTA 94), August 1994.

[168] G. Rothermel and M. J. Harrold. Analyzing regression test selection tech-
niques. IEEE Transaction on Software Engineering, 22(8):529-551, August
1996.

[1691 G. Rothermel and M. J. Harrold. Experience with regression test selection. In
Workshop on Empirical Studies of Software Maintenance, November 1996.

[170] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection
technique. ACM Transaction on Software Engineering and Methodology,
6(2):173-210, April 1997.

[171] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test
selection technique. IEEE Transactions Software Engineering, 24(6):401-
419, June 1998.

[172] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for
C++ programs. Journal of Software Testing, Verification, and Reliability,
10(2), June 2000.

[173] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An empirical study of
the effects of minimization on the fault detection capabilities of test suites.
In Proceedings of the International Conference Software Maintenance, pages
34-43, November 1998.

[174] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritiza-
tion. Technical Report 99-60-12, Oregon State University, December 1999.

[175] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioriti-
zation: an empirical study. In Proceedings of the International Conference
Software Maintenance, pages 179-188, August 1999.

[176] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky, Praveen
Kallakuri, and Brian Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. In Proceedings of the 24th International
Conference on Software Engineering, pages 230-240, May 2002.

250

[177] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky, Praveen
Kallakuri, and Xuemei Qiu. On test suite composition and the design of cost-
effective regression test suites. ACM Transactions on Software Engineering
and Methodology, (under review).

[178] Gregg Rothermel, Ronald H. Untch, Chengyun Chu, and Mary Jean Har-
rold. Test case prioritization. IEEE Transactions on Software Engineering,
27(10):929-948, October 2001.

[179] 5. Schach. Software Engineering. Aksen Associates, Boston, MA, 1992.

[180] G. Schulmeyer and J. MeManus. Handbook ofSoftware Quality Assurance.
Prentice Hall, New York, NY, 3rd edition, 1999.

[181] R. Selby and A. Porter. Learning from examples: Generation and evalua-
tion of decision trees for software resource analysis. IEEE Transactions on
Software Engineering, 14(12): 1743-1757, 1988.

[182] B. Sherlund and B. Korel. Modification oriented software testing. In Confer-
ence Proceedings: Quality Week 1991, pages 1-17, 1991.

[183] B. Sherlund and B. Korel. Logical modification oriented software testing.
In Proceedings of the Twelfth International Conference on Testing Computer
Software, June 1995.

[184] Sidney Siegel and Jr. N. John Castellan. Nonparametric Statistics For the Be-
havioral Sciences. McGraw-Hill Inc., New York, NY, second edition, 1988.

[185] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development
environment. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 97-106, July 2002.

[186] R. Stailman. Using and porting GNU CC. Free Software Foundation, Inc.,
Cambridge, MA, 1990.

[187] Statsoft. Statistica. http:llwww.statsoftwarecomlexploratory.html.

[188] A. B. Taha, S. M. Thebaut, and S. S. Liu. An approach to software fault local-
ization and revalidation based on incremental data flow analysis. InProceed-
ings of the 13th Annual International Computer Software and Applications
Conference, pages 527-534, September 1989.

[189] K. Tewary and M. J. Harrold. Fault modeling using the program dependence
graph. In IEEE International Symposium on Software Reliability '94, pages
126-135, November 1994.

251

[190] M. C. Thompson, D. J. Richardson, and L. A. Clarke. An information flow
model of fault detection. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 182-192, June 1993.

[191] J. P. Tsai and S. H. Yang. Monitoring and Debugging ofDistributed Real-
Time Systems. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[192] J. Verner and B. Todd. Experiences with the organization and assessment
of group software development projects. In B. Z. Barta, S. L. Hung, and
K. R. Cox, editors, Software Engineering Education (A-40), IFIP Transac-
tions, pages 309-3 15. Elsevier Science B. V., North Holland, 1993.

[193] J. Voas. PIE: A dynamic failure-based technique. IEEE Transaction on Soft-
ware Engineering, 18(8):717-727, August 1992.

[194] J. M. Voas, L. J. Morell, and K. Miller. Predicting where faults can hide from
testing. IEEE Software, 8(2):41-48, March 1991.

[195] F. I. Vokolos and P. G. Frankl. Pythia: a regression test selection tool based
on textual differencing. In Proceedings of the 3rd international Conference
on Reliability, Quality & Safety of Software-Intensive Systems (ENCRESS
'97), May 1997.

[196] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textualdifferencing
regression testing technique. In Proceedings of the International Conference
Software Maintenance, pages 44-53, November 1998.

[197] M. Weiser. Programmers use slices when debugging. Communications of the
ACM, 25(7):446-452, July 1982.

[198] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984.

[199] D. Werries and J. C. Munson. Measuring software evolution. In Proceedings
of the International Symposium on Software Metrics, pages 4 1-51, March
1996.

[200] E. J. Weyuker. The applicability of program schema results to programs. In-

ternational Journal of Computer and Information Science, 8:387-403, 1979.

[201] B. 3. Weyuker. On testing non-testable programs. The Computer Journal,
15(4):465-470, 1982.

[202] E. J. Weyuker. Axiomatizing software test data adequacy. iEEE Transactions
on Software Engineering, SE-12:1128-1138, December 1986.

252

[203] E. J. Weyuker. Empirical techniques for assessing testing strategies. (Panel
discussion at the International Symposium on Software Testing and Analy-

sis), August 1994.

[204] E. J. Weyuker. Using failure cost information for testing and reliability as-
sessment. ACM Transactions on Software Engineering and Methodology,
5(2):87-98, April 1996.

[205] E. J. Weyuker and T. J. Ostrand. Theories of program testing and the applica-
tion of revealing subdomains. IEEE Transactions on Software Engineering,
SE-6(3):236-246, May 1980.

[206] Elaine. J Weyuker. The evaluation of program-based software test data ade-
quacy criteria. Communications of the ACM, 31(6):668-675, June 1988.

[207] L. J. White. Software testing and verification. Advances in Computers,
26:335-391, 1987.

[208] L. J. White and H. K. N. Leung. A firewall concept for both control-flow and
data-flow in regression integration testing. In Proceedings ofthe Conference
on Software Maintenance, pages 262-270, November 1992.

[209] L. J. White, V. Narayanswamy, T. Friedman, M. Kirschenbaum, P. Pi-
wowarski, and M. Oha. Test Manager: a regression testing tool. In Proceed-
ings of the Conference on Software Maintenance, pages 338-347, September
1993.

[210] N. Wirth. Program development by stepwise refinement. Communications
oftheACM, 14(4):221-227, April 1971.

[211] S. Wolfram. Mathematica: A System for Doing Mathematics on a Computer.
Addison-Wesley, Reading, MA, second edition, 1991.

[212] E. W. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test
minimization on fault detection effectiveness. In Proceedings of the Interna-
tional Conference Software Engineering, pages 4 1-50, Seattle, Washington,
U.S.A., 1995.

[213] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of effective
regression testing in practice. In Proceedings of the Eighth International
Symposium on Software Reliability Engineering, pages 230-23 8, November
1997.

[214] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set
size and block coverage on the fault detection effectiveness. In Proceedings
of the Fifth International Symposium on Software Reliability Engineering,
pages 230-238, November 1994.

253

[215] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test
set minimization on fault detection effectiveness. In Proceedings of the 17th
International Conference on Software Engineering, pages 4 1-50, April 1995.

[216] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set
minimization on fault detection effectiveness. Software Practice and Expe-
rience, 28(4):347-369, April 1998.

[217] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test set size min-
imization and fault detection effectiveness: A case study in a space applica-
tion. In Proceedings of the 21st Annual International Computer Software &
Applications Conference, pages 522-528, August 1997.

[218] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test Set Size
Minimization and Fault Detection Effectiveness: A Case Study in a Space
Application. Technical Report SERC-TR-173-P, Software Engineering Re-
search Council, April 1997.

[219] W. Wu. Safe and precise test case selection in regression testing. (Unpub-
lished paper), January 1995.

[220] W. Yang. identifying syntactic differences between two programs.
SoftwarePractice and Experience, 21(7):739-755, July 1991.

[221] W. Yang, S. Horwitz, and 1. Reps. A program integration algorithm that
accomodates semantics-preserving transformations. ACM Transactions on
Software Engineering and Methodology, 1(3):31 1-54, July 1992.

[222] 5. 5. Yau and Z. Kishimoto. A method for revalidating modified programs
in the maintenance phase. In COMPSAC '87: The Eleventh Annual inter-
national Computer Software and Applications Conference, pages 272-277,
October 1987.

[223] R. K. Yin. Case Study Research . Design and Methods (Applied Social
Research Methods, Vol. 5). Sage Publications, London, UK, 1994.

[224] M. Zelkowitz and D. Wallace. Experimental models for validating technol-
ogy. IEEE Computer, 31(5):23-31, May 1998.

[225] J. Ziegler, J. M. Grasso, and L. G. Burgermeister. An Ada based real-time
closed-loop integration and regression test tool. In Proceedings of the Con-

ference on Software Maintenance, pages 8 1-90, October 1989.

[226] H. Zuse. Software Complexity: Measures and Methods. Walter de Gruyter,
New York, NY, 1990.

254

[227J H. Zuse. A Framework of Software Measurement. Walter de Gruyter, New
York, NY, 1998.

[228] S. H. Zweben, W. D. Heym, and J. Kimmich. Systematic testing of data
abstractions based on software specifications. Journal of Software Testing,

Verification and Reliability, 1(4):39-55, 1992.

255

APPENDICES

256

CHAPTER A

GLOSSARY OF PRIORITIZATION TECHNIQUES

This thesis describes a large number of prioritization techniques. To help iden-

tify them, we describe our naming convention for them. Each technique name con-

sists of the following parts: <level> [<modification information>]< coverage

information> [<cost cognizance information>]<feedback>.. For each value of

each field name we provide a mnemonic, as shown in Table A. 1.

Level specifies the granularity level on which data are collected and a given

technique operates. For example, information can be collected for each statement

and a technique can use this information; such a technique is said to operate at

statement level.

Modification information specifies the modification data that are used by a

given prioritization technique. These data can be fault index, binary fault index, diff,

binary duff, or none (empty field). Types of modification information are described

in Section 2.2. When discussing techniques without regard to modification type, we

use the term modification (mnemonic mod) for this field.

Coverage information specifies the way in which coverage data are used

in a given prioritization technique. These data can be coverage, fault-exposing-

potential, fault-exposing-potential multiply, or fault-exposing-potential double sort.

Fault-exposing-potential is described in Section 1.2.6.5. Fault-exposing-potential

multiply and fault-exposing-potential double sort are specified when modifica-

257

level modification in-

formation

coverage infor-

mation

cost cognizance in-

formation

feedback

statement (st) fault index (fi) coverage (coy) none feedback

(fb)

function (fn) binary fault in- fault-exposing- multiply (ccmult) no feed-

dex (bfi) potential (fep) back (nofb)

duff (diff) fault-exposing- award first (ccalst)

potential

multiply

(fepm)

binary duff (bd- ratio first (ccrlst)

if)

none U

TABLE A. 1: Composition of Prioritization Technique Names

tion information is used. Fault-exposing-potential multiply describes techniques

that combine modification and fault-exposing-potential information by multiply-

ing them. Fault-exposing-potential double sort describes techniques that combine

modification and fault-exposing-potential information by using modification infor-

mation to sort award values and fault-exposing-potential information to resolve ties.

We shortened the "fault-exposing-potential double sort" name to "fault-exposing-

potential". Coverage data are binary values specifying whether a given test case

executes a given location.

Cost cognizance information is data relevant to the use of varying test costs and

fault seventies, as described in Chapter 3. These can involve module criticalities,

test costs, and test criticalities. In general, all cost cognizant information can be

present, and, as defined in Section 3.5, all techniques are able to use it. If a tech-

nique is not cost-cognizant, it can be described as a special case of a cost-cognizant

technique in which we supply unit values instead of costs and criticalities. The

cost cognizant information field can be <empty> (non-cost cognizant), multi-

ply, award first, or ratio first. These names describe the criticality/cost/award value

combination function, presented in Section 3.5.

Feedback specifies whether a technique uses an iterative approach. With no

feedback, all award values (measuring individual test case quality), are com-

puted once and test cases are sorted using these award values. With feedback,

every time a test case is chosen to be appended to a prioritized test suite, award

values are recomputed and data structures are updated.

Not all combinations of fields are meaningful. The coverage information field

cannot be "fault-exposing-potential multiply" when the modification information

field is "none".

259

CHAPTER B

DETAILED DATA FOR STUDIES OF TECHNIQUES INCORPORATING

ARBITRARY GRANULARITY AND CHANGE INFORMATION

(CHAPTER 1.4)

The following tables present results of Anova analysis and Bonferroni group-

ing for prioritization technique performance in terms ofAPFD values. These tables

contain information presented and discussed in Section 2.4 in Chapter 1.4. Essen-

tially, these tables augment tables from Section 2.4 presenting data on a per-program

basis. (Tables in Section 2.4 present the data averaged for all programs.)

260

SS Degrees of freedom MS F p

TECHN 21867583 4 5466896.00 11014.200 0.00

Error 1661779 3348 496.35

(a) print..tokens

SS Degrees of freedom MS F p

TECHN 26092846 4 6523212.00 18943.38 0.00

Error 1396351 L 4055 L
(b) prinLtokens2

SS
]

Degrees of freedom [
MS F p

TECHN 7715385 1 4 11928846.00 2228.324 0.00

Error 2414i7} 2789 L865.60

(c) schedule

SS]egrees of freedom MS
[

F p

TECHN 12773988 4 3l93497.00]j569.990 0.00

Error 672998 2649 254.06

(d) schedule2

SS Degrees of freedom MS F p

TECHN 10211810 4 2552953.00 7735.107 0.00

Error 521145 1579 330.05

(e) tcas

SS Degrees of freedom MS F P

TECHN 22010962 4 5502741.00 12992.020 0.00

Error 1512913 3572 423.55

(f) toLinfo

SS Degrees of freedom MS F p

TECHN 14603466 4 3650866.00 8159.339 0.00

Error 7 2484 447.45 I

(g) replace

I
SS Degrees of freedom MS F P

TECHN j 48633443 4 112158361.00 335474 0.00

[rror D695 1 5510 - 36.24

(h) space

TABLE B.1: ANOVA Analyses, Statement Level Techniques, Individual Programs

Grouping Means Techniques7
A 81.246 st-coy-u,
A 80.923 st-cov-nofb
A 80.882 st-fep-fb
A 80.032 st-fep-nofb

ouping Means Techniques

A 82.147 st-fep-fb
B 79.701 st-cov-nofb
B 79.615 st-fep-notb
B 79.201 st-coy-tb

(a) pnnt..tokens (b) print_tokens2

[uping Means TechniqueJ

r A 57.553 st-fep-fb
A 55.798 st-coy-tb
B 48.187 st-cov-nofb
B 48.150 st-fep-nofb

Grouping Means Techniquj
A 7 1.775 st-fep-fb
A 70.005 st-cov-nofb

A 69.498 st-fep-nofb
B 66.410 st-cov-fbJ

(c) schedule (d) schedule2

rGrouping Means Techniques
A 84.740 st-fep-nofb
A 83.667 st-cov-nofb
A 82.191 st-fep-fb
B 70.692 st-coy-tb

(e) tcas

Grouping Means Techniques

A 80.822 st-fep-notb
A 80.627 st-fep-fb
A 78.63 1 st-cov-nofb
B 64.910 st-cov-fb

(g) replace

ouping Means Techniques

A 80.962 st-fep-nofb
A 80.584 st-fep-Ib
B 77.382 st-cov-nofb
B 74.606 st-cov-fb

(1) toLinfo

ping Means TechniquJ
A 95.343 st-fep-th
B 93.646 st-fep-nofb
B 93.583 st-cov-notb
B 93.072 st-cov-fb

(h) space

261

TABLE B.2: Bonferroni Analyses, Statement Level Techniques, Individual Pro-

grams

262

SS Degrees of freedom MS F p

TECHN 19796189 4 4949047.00 8378.731 0.00

Error 1971059 3337 J 590.67

(a) prinLtokens

LSS Degrees of freedom MS F pJ
TECHN 22457946 4 5614487.00 16252.620 0iQ]
Error 1379732 3994 345.45

(b) print_tokens2

SS Degrees of freedom MS F pJ
TECHN 6272983 4 1568246.00 1499.704 0.00]
Error 2960386 2831 1045.70 J

(c) schedule

I
SS Degrees of freedom

}
MS F p

TECHN 11780218 4 2945055.00 12326.930 0.00

]r0r 620933 2599 238.91

(d) schedule2

SS Degrees of freedomf MS F p

TECHN 8493174 4 2123294.00 7107.707 0.00

EError 388649 1301 298.73

(e) tcas

SS Degrees of freedom] MS F p

TECHN 21283035 4 5320759.00 13091.780 0.00

TError 11429785 3518 J 406.42

(f) toLinfo

SS Degrees of freedom MS F

TECHN 115958536 4 3989634.00 10152.800 0.00]

Error [975717 2484 392.96

(g) replace

SS Degrees of freedom MS F p

TECITIN 46987341 4 11746835.00 187251.800 0.00

Error 345407 5506 62.73

(ii) space

TABLE B.3: ANOVA Analyses, Basic Function Level Techniques, Individual Pro-

grams

Grouping Techniques

A 78.615 fn-fep-nofb
A 77.803 fn-fep-fb
A B 77.142 fn-cov-nofb

B 74.160 fn-cov-Ib

Grouping MeansJ Techniques

A 80,447 fn-fep-Ib
B 77.538 fn-fep-nofb
C 75.243 fn-cov-nofb
D 65.627 fn-cov-fb

(a) prinLtokens (b) printtokens2

Grouping Means Techniques
A 48.707 fn-fep-fb
A 47.988 fn-fep-notb
A 46.893 fn-cov-noth
A 44.471 fn-cov-fb

Grouping Means Techniques

A 72.077 fn-cov-nofb
B 68.664 fn-fep-nofb
B 67.402 fn-fep-fb
C 60.546 fn-cov-fb

(c) schedule (d) schedule2

Grouping Means Techniques
A 84.029 fn-cov-nofb
B 80.400 fn-cov-fb
B 79.763 fn-fep-fb
B 77.404 fn-fep-nofb

(e) tcas

Grouping Means Techniques
A 8 1.859 fn-fep-fb
A 80.800 fn-cov-nolb
A 80.793 fn-fep-nofb
B 76.890 fn-cov-fb

(g) replace

Grouping Means Techniques

A 79.297 fn-fep-fb
A 79.254 fn-fep-nofb
A B 77.24 1 fn-cov-fb

B 74.989 fn-cov-noth

(1) toLinfo

Grouping Means Techniques

A 94.119 fri-coy-lb

B 93.175 fn-cov-notb
C 91.030 fn-fep-nofb

C 91.010 fn-fep-fb

(h) space

263

TABLE B.4: Bonferroni Analyses, Basic Function Level Techniques, Individual

Programs

264

I

SS Degrees of freedom MS F p

TECHN 41663772 8 5207971.00 9583.498 0.00

LError 3632837 6685 543.43

(a) pnnt.iokens

SS Degrees of freedom MS F p

TECHN 48550792 8 6068849.00 17596.070 0.00

Error 2776083 8049 344.90

(b) print_tokens2

SS Degrees of freedom MS F p

TECHN 13988368 8 1748546.00 1828.398 0.00

Error 5374556 5620 956.33

(c) schedule

SS Degrees of freedom MS F p

TECHN 24554206 8 3069276.00 12448.550 0.00

Error 1293930 5248 246.56

(d) schedule2

SS Degrees of freedom MS F p

TECHN 18704984 8 2338123.00 7401.448 0.00

Error 909794 2880 315.90

(e) teas

SS Degrees of freedom MS F p

TECHN 43293998 8 5411750.00 13038.820 0.00

Error 2942697 7090 415.05

(f) toL info

SS Degrees of freedom MS F p

TECHN 30562002 8 3820250.00 909 1.328 0.00

Error 2087174 4967.00 420.21

(g) replace

SS Degrees of freedom MS F p

TECHN 95620784 8 11952598.00 241550.700 0.00]

Error 545102 11016 49.49

(h) space

TABLE B.5: ANOVA Analyses, Function Versus Statement Level Techniques, In-

dividual Programs

Grouping Means Techniques
A 81.246 st-coy-lb
A 80.923 st-cov-nofb
A 80.882 st-fep-fb
A B 80.032 st-fep-nofb
A B 78.615 fn-fep-nofb
A B 77.803 fn-fep-fb

B C 77.142 fn-cov-nofb
C 74.160 fn-cov-th

Grouping Means Techniques
A 82.147 st-fep-th
A B 80.447 fn-fep-fb
A B C 79.701 st-cov-nofb
A B C 79.615 st-fep-nofb

B C 79.201 st-cov-fb
C D 77.538 fn-fep-nofb

D 75.243 fn-cov-nofl,
E 65.627 In-coy-lb

(a) print_tokens (b) print_tokens2

Grouping Means Techniques
A 57.553 st-fep-lb
A 55.798 st-coy-lb
B 48.707 fn-fep-fb
B 48.187 st-cov-nofb
B 48.150 st-fep-notb
B 47.988 fn-fep-nolb
B 46.893 fn-cov-nofb
B 44.47 1 fn-cov-fb

Grouping Means Techniques

A 72.077 fn-cov-nofb
A 7 1.775 st-fep-fb

A B 70.005 st-cov-nofb
B 69.498 st-fep-nofb

C 68.664 fn-fep-nofb
C 67.402 fn-fep-th

C 66.410 st-coy-lb
D 60.546 fn-cov.-th

(c) schedule (d) schedule2

Grouping Means Techniques
A 84.740 st-fep-nofb
A B 84.029 fn-cov-nofb
A B 83.667 st-cov-nofb
A B C 82.191 st-fep-fb

B C 80.400 fn-cov-fb
B C 79.763 fn-fep-lb

C 77.404 fn-fep-nolb
D 70.692 st-cov-fb

(e) tcas

Grouping Means Techniques
A 81.859 fn-fep-fb
A B 80.822 st-fep-nofb
A B 80.800 fn-cov-nofb
A B 80.793 fn-fep-nofb
A B 80.627 st-fep-tb
A B 78.631 st-cov-nofb

B 76.890 fn-cov-th
C 64.910 st-coy-lb

(g) replace

Grouping Means Techniques

A 80.962 st-fep-nofb
A 80.584 st-fep-fb
A B 79.297 fn-fep-fb
A B 79.254 fn-fep-noth

B C 77.382 st-cov-nofb
B C 77.24 1 fn-cov-th

C 74.989 fn-cov-nofb
C 74.606 st-coy-lb

(f) tot_info

Grouping Means Techniques

A 95.343 st-fep-fb
B 94.119 In-coy-lb
B C 93.646 st-fep-nofb
B C 93.583 st-cov-nofb

C 93.175 fn-cov-nofb
C 93 .072 st-coy-lb

D 9 1.030 fn-fep-nolb
D 91.010 fn-fep-fb

(h) space

265

TABLE B.6: Bonferroni Analyses, Function Versus Statement Level Techniques,

Individual Programs

266

SS J Degrees of freedom MS F p

TECHN 57233358 12 4769447.00 8727.343 0.00

Error 5437076 9949 546.49

(a) print_tokens

SS Degrees of freedom MS F p

TECHN 69334256 12 5777855.00 17780.040 0.00

Error 3935628 12111 324.96

(b) print_tokens2

SS Degrees of freedom MS F p

TECHN 20962038 12 1746837.00 1800.094 0.00

Error 8256282 8508 970.41

(c) schedule

SS Degrees of freedom MS F p

TECHN 35476722 12 2956394.00 11978.550 0.00

Error 1926577 7806 246.81

(d) schedule2

SS Degrees of freedom MS F p

TECHN 24831657 12 2069305.00 7265.014 0.00

Error 1162682 4082 284.83

(e) tcas

F SS Degrees of freedom MS F p

TECHN 64353218 12 5362768.00 13095.840 0.00

Error 4365287 10660 409.50

(f) tot_info

SS Degrees of freedom MS F p

[TECHN 1 48586487 12 4048874.00 11644.180 0.00

Lr L2608221L_7501 L 347.72

(g) replace

SS jjgrees of freedom MS F p

TECHN 144917720 12 1207647700. 232624.200 0.OQj

Error 859957 16565 51.914

(h) space

TABLE B.7: ANOVA Analyses, All Function Level Techniques, Individual Pro-

grams

Grouping Means Techniques

A 78.894 fn-ti-fep-notb
A 78.615 fn-fep-nofb
A B 77.997 fn-diff-fep-nofb
A B 77.886 fn-fi-fep-fb
A B 77.872 fn-difffep-fb
A B 77.803 fn-fep-fb
A B 77.704 fn-fi-cov-nofb
A B 77.142 fn-cov-nofb

B 75.346 fn-fl-cov-fb
B 74.422 fn-diff-cov-nofb
B 74.160 fn-cov-fl,

C 5&945 fn-diff-cov-fb

Grouping Means Techniques

A 85.015 fn-diff-fep-fb

A 85.008 fn-diff-fep-noth

B 8 1.083 fn-fi-fep-nofb

B 80.447 fn-fep-fb
B C 79.538 fn-fi-fep-fb

C D 77.538 fn-fep-noTh

D E 75.704 fn-diff-cov-nofb
D F 75.243 fn-cov-nofb

E 73.735 fn-fi-cov-nofb
F 68.119 fn-fi-cov-fb

F 65.627 fn-cov-fb

G 52108 fn-diff-cov-fb

(a) prinLtokens (b) prinLtokens2

Grouping Means Techniques

A 61.249 fn-diff-cov-nofb
B 51.147 fn-diff-cov-fb
B 50.610 fn-diff-fep-noth
B 50.558 fn-diff-fep-fb
B 49.504 fn-fi-fep-nolb
B C 48.727 fn-fi-fep-fb
B C 48.707 fn-fep-fb
B C 48.463 fn-fi-cov-nofb
B C 47.988 fn-fep-noth
B C 46.893 fn-cov-nofb

C 44.950 fn-fi-cov-th
C 44.47 1 fn-cov-fb

Grouping Means Techniques

A 72.319 fn-diff-cov-nofb
A B 72.077 fn-cov-nofb
A B 71.687 fn-fi-cov-noth
A B C 70.199 fn-diff-fep-nofb
A B C 70.078 fn-diff-fep-fb

B C 69.288 fn-fltep-nofb
B C 69.239 fn-fi-fep-fb

C 68.664 fn-fep-nofb
C 67.402 fn-fep-fb

D 60.546 fn-cov-fb
D 60.522 fn-fi-cov-fb
E 54.325 fn-diff-covfb

(c) schedule (d) schedule2

Grouping Means Techniques
A 84.029 fn-cov-nofb
A 84.029 fn-fi-cov-nofb
A B 82.016 fn-fi-fep-nofb
A B 80.400 fn-cov-ib
A B 80.400 fn-fi-cov-fb
A B 79.763 fn-fep-th

B 78.926 fn-fi-fep-fb
B 77.785 fn-diff4ep-nofb
B 77.726 fn-diff-fep-fb
B 77.404 fn-fep-nof'b

C 70.063 fn-diffcov-nofb
D 56.299 fn-diff-cov-fb

(e) tcas

Grouping Means Techniques

A 81.288 fn-diff-fep-fb
A 81.263 fn-diff-fep-nofb

A B 79.5 17 fn-fi-fep-fb
A B 79.426 fn-fl-fep-nofb

A B 79.297 fn-fep-fb
A B 79.254 fn-fep-nofb

B C 77.326 fn-fi-cov-fb

B C 77.241 fn-cov-fb
C D 75.078 fn-fi-cov-nofb
C D 74.989 fn-cov-nofb

D 73.461 fn-diff-cov-nofb
D 72.370 fn-diff-cov-fb

(f) toLinfo

267

TABLE B.8: Bonferroni Analyses, All Function Level Techniques, Individual Pro-

grams, First Six Programs

Grouping Means Techniques

A 83.734 fn-fi-fep-nofb
A 83.559 fn-diff-fep-nolb
A 82.986 fn-fi-fep-fb
A 82.791 fn-diff-fep-fb
A B 81.859 fn-fep-fb
A B 80.800 fn-cov-nofb
A B 80.793 fn-fep-nofb
A B 80.700 fn-fi-cov-nofl,

B C 78.488 fn-fi-cov-fb
C 76.890 fn-cov-fb
C 76.421 fn-diff-cov-nofb
C 74.928 fn-diff-cov-fb

(a) replace

Grouping Means Techniques

A 96.142 fn-fi-cov-fb

B 94.959 fn-fi-cov-noth

B C 94.829 fn-diff-cov-fb
B C D 94.119 fn-cov-tb

C D E 93.991 fn-cliff-cov-noth

D E F 93.600 fn-fi-fep-fb
D E F 93.462 fn-diff-fep-fb

E F 93.175 fn-cov-nolb
F 92.795 fn-diff-fep-nofb
F 92.7 13 fn-fi-fep-nofb

G 91.030 In-fep-noth

G 9L010 fn-fep-fb

(b) space

TABLE B.9: Bonferroni Analyses, All Function Level Techniques, Individual Pro-

grams, Last Two Programs

269

CHAPTER C

TUKEY TABLES FOR STUDIES OF TECHNIQUES INCORPORATING

TEST COST AND FAULT SEVERITY ESTIMATIONS

Tables C. 1, C.2, and C.3 present the results of applying Tukey tests to each (test-

cost distribution, prioritization technique) pair compared with each other (test-cost

distribution, prioritization technique) pair. (Given sufficient space, the three tables

would be concatenated left-to-right, yielding a single table; for readability we have

partitioned that single table into three.) Entries shown in italics are statistically

significant (a .05).

270

unit ac-f unit ac-s unit fl-ac-f unit rand random ac-f random ac-s

unit ac-f 0.997735 0.003449 0.000043 0.393361 0.764031

unit ac-s 0.997735 0.000045 0.000043 0.00524 0.032925

unit fl-ac-f 0.003449 0.000045 0.000043 0.994839 0.904847

unit rand 0.000043 0.000043 0.000043 0.000043 0.000043

random ac-f 0393361 0.00514 0.994839 0.000043 1.000000

random ac-s 0.764031 0.032925 0.904847 0.000043 1.000000

random fl-ac-f 0.014002 0.060059 1.000000 0.000043 0.999854 0.985423

random rand 0.000043 0.000043 0.000043 1.000000 0.000043 0.000043

normal ac-f 0.999996 0.712642 0.096081 0.000043 0.957261 0.998885

normal ac-s 1.000000 0.999785 0.061313 0.000043 0.248442 0.599819

normal fl-ac-f 0.000383 0.000043 1.000000 0.000043 0.901452 0.588792

normal rand 0.000043 0.000043 0.000043 1.000000 0.000043 0.000043

Mozilta ac-f 0.829598 0.047049 0.856514 0.000043 1.000000 1.000000

Mozilla ac-s 0.999978 0.63592 0.128444 0.000043 0.976088 0.999629

Mazilla fl-ac-f 0.016979 0.000065 1.000000 0.000043 0.999926 0.989813

Mozillarand 0.000043 0.000043 0.000043 1.000000 0.000043 0.000043

QTB ac-f 0.432404 0.00639 0.992209 0.000043 1.000000 1.000000

QTB ac-s 0.999164 0.413233 0.262674 0.000043 0.997111 0.999993

QTB fl-ac-f 0.012322 0.000056 1.000000 0.000043 0.999779 0.981813

QTB rand 0.000043 0.000043 0.000043 1.000000 0.000043 0.000043

TABLE C. 1: Results of Tukey Tests Table I

271

random fl-ac-f random rand normal ac-f normal ac-s normal fl-ac-f normal rand Mozilla ac-f

unit ac-f 0.014002 0.000043 0.9999% 1.000000 0.000383 0,000043 0.829198

unitac-s 0.000059 0.000043 0.712642 0.999785 0.000043 0.000043 0.047049

unit fl-ac-f 1.000000 0.000043 0.096081 0.001313 1.000000 0.000043 0.856514

tanhtrand 0.000043 1.000000 0.000043 0.000043 0.000043 1.000000 0.000043

random ac-f 0.999854 0.000043 0.957261 0.248442 0.901452 0.000043 1.000000

random ac-S 0.985423 0.000043 0.998885 0.599819 0.588792 0.000043 1.000000

random fl-ac-f 0.000043 0.240072 0,005854 0.999999 0.000043 0.978641

random rand 0.000043 0.000043 0.000043 0,000043 1.000000 0.000043

normal ac-f 0.240072 0.000043 0.99988 0.018429 0.000043 0.999644

normal ac-S 0.005854 0.000043 0.99988 0.000152 0,000043 0.681292

normal fl-ac-f 0.999999 0.000043 0.018429 0.000)52 0.000043 0.505272

normal rand 0.000043 1.000000 0.000043 0.000043 0,000043 0.000043

Mozilla ac-f 0.971641 0.000043 0.999644 0.681292 0.505272 0,000043

Mozilla ac-S 0.300982 0.000043 1.000000 0.999584 0.026659 0.000043 0.999899

Mozilla fl-ac-f 1.000000 0.000043 0.269666 0.0072 0.999997 0,000043 0.979232

Mozillarand 0.000043 1.000000 0.000043 0.000043 0,000043 1.000000 0.000043

QTB ac-f 0.999721 0.000043 0.968 0.279434 0.878459 0,000043 1.000000

QTB ac-s 0.508514 0.000943 1.000000 0.993719 0.069097 0.000943 0.999999

QTh fl-ac-f 1.000000 0.000043 0.221922 0.005086 1.000000 0.000043 0.965632

QTB rand 0.000043 1.000000 0.000043 0.000043 0,000043 1,000000 0.000043

TABLE C.2: Results of Tukey Tests Table 2

272

Maclila ac-s Macills fl-ac-f Maclila rand QTB ac-f QTB ac-s QTB fl-ac-f QTB rand

unit ac-f 0.999978 0.016979 0.000043 0.432404 0.999164 0.012322 0.000043

unit ac-s 0.63592 0.000065 0.000043 0.00639 0.413233 0.000056 0.000043

unit fl-ac-f 0.128444 1.000000 0.000043 0.992209 0.262674 1.000000 0.000043

unit rand 0.000043 0.000043 1.000000 0.000043 0.000043 0.000043 1.000000

randomac-f 0.976088 0.999926 0.000043 1.000000 0.997111 0.999779 0.000043

randomac-s 0.999629 0.989813 0.000043 1.000000 0.999993 0.981813 0.000043

random fl-ac-f 0.300982 1.000000 0.000043 0.999721 0.308514 1.000000 0.000043

random rand 0.000043 0000043 1.000000 0.000043 0.000043 0.000043 1.000000

normal ac-f 1.000000 0.269666 0.000043 0.968 1.000000 0.221922 0.000043

normal ac-s 0.999584 0.0072 0.000043 0.279434 0.993719 0.005086 0.000043

normal fl-ac-f 0.026659 0.999997 0.000043 0.878459 0.069097 1.000000 0.000043

normal rand 0.000043 0.000043 1.000000 0.000043 0.000043 0.000043 1.000000

Mocilla ac-f 0.999899 0.979232 0.000043 1.000000 0.999999 0.965632 0.000043

Mocilla ac-s 0.334697 0.000043 0.982841 1.000000 0.280043 0.000043

Mozitta fl-ac-f 0.334697 0.000043 0.999852 0.549053 1.000000 0.000043

Macills rand 0.000043 0.000043 0.000043 0.000043 0.000043 1.000000

QTB ac-f 0.982841 0.999852 0.0(10043 0.998215 0.999588 0.000043

QTB ac-o 1.000000 0.549053 0.000043 0.998215 0.482269 0.000043

QTB fl-ac-f 0.280043 1.000000 0.000043 0.999588 0.482269 0.000043

QTB rand 0.000043 0.000043 1.000000 0.000043 0.000043 0.000043

TABLE C.3: Results of Tukey Tests Table 3

