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A spatially explicit population model written in C++ programming language is used in

this study examining the population dynamics of the Desert Tortoise (Gopherus

agassizii) in the California Mojave Desert. The model is constructed with hexagonal

divisions of space, and with one-year increments of time. Four thematic maps: vegetation,

soil type, roads, and elevation, are used to generate hexagon grids classif'ing the status of

resources and roads in the modeled site. The grids are used as the input habitat data for

runs of the model. Simulations used a projection matrix for seven size classes. The matrix

contains the averages of demographic rates of tortoise population in different study sites

in the Western Mojave (Doak Ct al. 1994). Four landscapes with a total area of 2736.21

are sampled from the study site. Main events taking place in one time step include

movement, survival, and reproduction. The movement is modeled for eight size classes

based on the mobility characteristics of the species and the size-specific mobilities. The



number of animals moving out of a hexagon in every time step is based on the

instantaneous resource gradient between that hexagon and its six neighbors. Reproduction

and survival are responses to the site-specific status of roads and rainfall. Because of the

serious lack of field data to support relationships hypothesized in the model, sensitivity

analysis of model parameters was conducted. This study also examined the elasticity of

elements of the projection matrix to see if the rankings of elasticities are different in a

spatial context.

The results show that the road effect is the most sensitive parameter in the model.

Differences in site-specific population dynamics can be well explained by local road

status. Effects from spatial and temporal variation of rainfall do not show any obvious

differences in population dynamics between sites. Simulations conducted at the finer

scale show the dynamics of population better than at the coarser scale. Elasticities of vital

rates in the projection matrix in the spatial model have the same ranking pattern as in a

non-spatial model.
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A Spatial Model for Studying Population Dynamics of the California Mojave Desert
Tortoise

1. INTRODUCTION

Spatially explicit population models (SEPMs) are becoming increasingly useful

tools for population ecologists, conservation biologists, and land managers. SEPMs are

used to predict the responses of a population to land-cover change, climate change, and

landscape fragmentation because these subjects are difficult to study with traditional

ecological techniques (Levin, 1992). SEPMs allow one to change environmental

variables in the model while holding life history characteristics of the modeled population

constant, or vice versa (Dunning et al. 1995). Sensitivity analysis, which allows a

variable of the model to vary while holding all the others variables constant, can be used

to determine the relative importance of different variable values on the model's results.

SEPMs also are used as the guidance for field data collection needed to increase the

accuracy of the model (Dunning at al. 1995), and to save time and funding spent on field

work to provide unneccesary data while critical data are left uncollected. SEPMs can be a

useful tool to examine the consequences of different proposed land-use scenarios, and

suggest the best scenario satisfying desired purposes (Schumaker 1995).

In this research, a spatially explicit demographic simulator is constructed to study

the dynamics of the California Mojave desert tortoise (Gopherus agassizii) population.

Doak et al. (1994) developed a non-spatial demographic model for the species in the

western Mojave Desert. It is stated in their paper that "In the absence of frequent

dispersal between subpopulations and without independent increase and decrease in local

densities, extinction/colonization processes or rescue effects can, at best, be of only

secondary importance in determining population dynamics. In this situation there is little

point in pursuing spatial modeling". This conclusion is the very motivator for my

research to study a spatial model for the tortoises. Most of the demographic data used in

their model were collected over a time interval of less than ten years, and some data were
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not collected annually in that period. This short time interval cannot represent the effect

of the spatial and temporal variation of climate factors in the desert, and a non-spatial

model can not include the movement behavior of the animals. All these elements may

affect population dynamics in the long-term. Additionally, tortoises are long-lived

species. Adult tortoises may be more than 40 years old. Individuals require about a

decade or longer to reach sexual maturity (Bury 1982). Therefore, to sustain the tortoise

populations, long-term management plans are urgently needed.

The desert tortoise is a herbivorous reptile inhabiting the California Mojave

Desert. The animals stay in their under-ground burrows to avoid the hardship of the

winter and summer weather on the Desert. Therefore, vegetation that provides food and

soil types that provide burrow-digging environments are important limiting factors for the

species. Tortoise populations reportedly have undergone large declines during the past

century (Bury and Corn 1995, Luckenbach 1982). Threats to the species led the U.S. Fish

and Wildlife Service (USFWS) to give an emergency endangered-species listing in 1989,

and list the species as threatened in 1990 (Doak et al. 1994, Bury and Corn 1995).

Berry (1984) and U.S. Fish and Wildlife Service (1994) concluded that the most

convincing factors explaining the declines in the western Mojave Desert are human

activities including: collection for pets and food, vandalism, mortality on roads, military

training activities, off-road vehicles, urbanization, and conversion of desert to crop lands.

Humans can also have less blatant detrimental impacts that operate by modifring the

tortoises' relationship with other species. Three such indirect threats to tortoises are

thought to be especially important: livestock grazing, raven predation, and upper

respiratory tract disease (URTD) (Doak et al. 1994). Even though those factors may have

serious impacts on tortoise populations, the lack of quantitative studies on these matters

prevents me from addressing those threats in this project. A lot of research and effort

have been expended to save the species. In this study, a model is developed to examine

the potential long-term population dynamics and to identify the most critical

demographic and environmental factors relevant to the species' survival.
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Sahr (1998) has constructed a C++ library of Discrete Grid Systems. This library

is used to build the spatially explicit population simulator in this project. The model is

hexagon-based and size-based, which means it keeps track of the information about

habitat and number of individuals in each size class in each hexagon through time. The

population statistics are calculated after each one-year time step.

As mentioned above, the main factors causing the decline in the population are

human activities that mostly target individual animals. Therefore, the natural dynamics of

habitat are less important for the fate of the species, and the spatial model assumes a

static habitat over time.

Initially, the elements used to construct the model and test the sensitivity of each

element with respect to the total population are examined. Second, the elasticity of each

entry in the projection matrix in both spatial and non-spatial models is analyzed (Caswell

1989). Because of the serious lack of field data used to construct the model, sensitivity

analysis is a useful method to provide guidance for future data collection for studying the

population as well as for improving the uncertainty of the model itself.

Elasticity of a static projection matrix, which is non-spatial, is commonly used as

guidance for managerial work (Doak et al. 1994, Mills et al. 1998). Therefore, studying

elasticity of the matrix in a spatial model is worth considering to see if it acts differently

when spatial variations are included. For all these reasons, the main purpose of this model

is not to quantitatively predict the dynamic of the tortoise population in reality, but to

focus on a relative ranking of the potential effects of the most critically natural and

human-related factors and demographic factors on the dynamics of the tortoise

populations. This allows for approaching a more realistic model for the tortoise by

constructing and improving a spatial simulator for the species.



2. METHODS

2.1. Habitat Data

Luckenbach (1982) and Schamberger and Turner (1986) have concluded that

most critical habitat factors for tortoises in the California Mojave Desert are vegetation,

soil type, elevation, and annual rainfall. In this study, vegetation, soil, and elevation data

themes are combined to produce the input resource hexagon map for the modeL The

effects of annual rainfall and road status on the tortoise population are included and

discussed in the "Survival and Reproduction Modeling" section of this thesis.

30000 0 30000 80000 Meters

Figure 1. The study area, California Mojave Desert, in the entire
Mojave Desert Ecoregion.
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Vegetation provides food and water for animals. Soil properties affect the easiness

of their burrow digging process. Luckenbach (1982) found that in the California Mojave

Desert, the desert tortoise mostly frequents four plant communities: creosote scrub,

cactus scrub, shadscale scrub, and Joshua tree woodland; occasionally tortoises occur in

alkali scrub. In terms of soil type preference, the study notes that probably no type is

preferred, but the type must be friable enough for the digging of burrows and firm enough

so that burrows will not collapse. And it is also found in this study that the tortoises rarely

occur above 1,000 m throughout the western Mojave Desert. All these pieces of

information about tortoise habitat preferences are translated quantitatively in the form of

a Habitat Suitability Index in the study by Schamberger and Turner (1986). (Figures 2

and 3)

Arkai1 Shad - Ceo- Cactus Joshua
scruo scale soe scrub tree

V e get at ion

Figure 2. Vegetation and Habitat Suitability Index for the Desert Tortoise

(from Schamberger and Turner (1986))
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Figure 3. Soil Type and Habitat Suitability Index for the Desert Tortoise

(from Schamberger and Turner (1986))

In this study, I used three vector coverages (vegetation, soil type, and road), and

one raster layer (digital elevation model (DEM) of entire Mojave ecoregion) compiled by

the Mojave Desert Ecosystem Program (Appendix A). For the road coverage, roads were

divided into 4 main categories: highway, pave road, dirt road, and off-road. Each road

type was assigned a weight that reflected the potential effect of roads on the tortoise

population. This road coverage was rasterized to get a road grid. The value of each pixel

in the grid corresponded to an assigned weight in the vector layer. The higher the weight,

the more dangerous the road type with regards to tortoise population effects.

Information from the two graphs above is used to translate the vegetation layer

and the soil type layer into the new grids, which have the value of the corresponding

Habitat Suitability Index (HSI). These two new grids are called HSI Vegetation grid, and

HSI Soil Type grid. The resolution of the road grid, vegetation grid, and soil type grid is

6
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3-arc-seconds. Therefore, the DEM is resampled to a grid of resolution 3-arc-seconds to

get consistency in resolution among the three raster layers used for further manipulation.

The DEM is translated into a bit map, with the value of 0 representing the elevation

above 1000 m, where no tortoises occur, and value of 1 representing the elevation equal

or less than 1000 m, where the presence of the animal is possible. To create the GIS

layer as the input habitat for my spatial model, I use Arc/Info to generate a new grid,

whose value represents the geometric mean of the HSI Vegetation grid and HSI Soil

Type grids. The formula of geometric means is

geometric mean = sqrt (HSI Vegetation * HSI Soil Type) (Equa. 1)

The geometric mean is a typical way to combine effects caused by two different factors.

This new grid is further multiplied by the bitmap elevation grid to mask out the region of

elevation above l000m, which means that no tortoises are found in this area. This final

grid is called the Combined HSI grid. Four landscape subsets, each with an area of

2736.21 square kilometers, are generated from this grid, and will be used as the inputs for

the model simulations later on. These four subsets are chosen to satisf' the wide range of

site-specific habitat quality and the status of resource availability and roads (see Figures

4-7).
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Figure 5. Locations of four sample landscapes in the road-value grid
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Landscape 1 Landscape 2

Landscape 3 Landscape 4

Figure 6. Resource grids in four sample landscapes

The brighter the color, the higher the resouce values. The range of
the resource values is from 0 to 100. The resource value of each pixel
is calculated based on its Habitat Suitability Index (HSI) combined
from HSIs of vegetation, soil, and elevation.
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Figure 7. Grids of road values in four sample landscapes
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A C++ program, called the pixel-binning program, is used in this process to

intersect the Combined HSI grid and the road grid with a regular array of hexagons

covering the study area. The output of this program assigns the hexagon number to each

pixel in the input grid. The Combined HSI grids and road grids for the four sample

landscapes are binned to hexagon grids of resolution 14 and 16 on the Snyder projection

(Kimerling et al. 1994). The area of each hexagon is 10.68832 sq.km and 1.18759 sq.km

at resolution 14 and 16, respectively (Figure 8). The output files of the Combined HSI

grids are then used to calculate the habitat score for each hexagon, which is the weighted

average of the HSI values of all pixels falling in that hexagon multiplied by 100. Since

the range of the original HSI values is from 0 to 1, the HSI of each hexagon varies from 0

to 100.

The output files from the road grids are used to calculate the road value for each

hexagon, i.e. the sum of road values of all pixels contained in the hexagon divided by the

total number of pixels in the hexagon. The road values of all hexagons then are rescaled

to have a range from 0 to 100.

2.2. Model Structure

I wrote the spatial model in C++ programming language by using common C++

standard libraries and a library of Discrete Grid Systems (DGGSs). I used layers of

habitat data thought to be critical to the tortoises to generate a new GIS layer that

specifies the location and quality of each hexagon in the area of interest. This layer is

used as the habitat or resource input for the model. Before a simulation is run, each

hexagon has the information of habitat quality and a certain initial number of animals.
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Figure 8. Overlay of grid resolution 14 and grid resolution 16 in a sample landscape
A hexagon has an area of 1.18759 sq.km at resolution 16 and 10.68832 sq.km
at resolution 14. The total area of each sample landscape is 2736.21 sq.km.
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Time steps for the model are one year, during which both movement and reproduction of

the tortoise population occur once. These activities are modeled on a hexagon basis. The

movement algorithm controls the density of animals in each hexagon with respect to the

amount of available resource in that hexagon and its six neighboring hexagons. Survival

and reproduction are modeled in each hexagon based on a fixed projection matrix, the

spatial and temporal variation in rainfall, and the status of roads in the area. After each

time step, the total number of animals in the population and the growth rate of the

population are calculated and saved.

2.2.1. Movement modeling

The movement function used in the model is based on the movement pattern

presented by Kiester and Slatkin (1974) and Kiester (1985). The idea is that animals

respond to the difference between the amount of resource available in the site and

neighborhood they are occupying. I borrowed the idea of these two original papers, in

which the models are simulated in a one dimensional array of patches, and applied it to

two dimensional landscapes, i.e. hexagon grids, and to females only. It is assumed that

the tortoises in the host hexagon (Hhex) only move to one of six neighboring hexagons,

which is called the best neighboring hexagon (BNhex), and that the tortoises cannot move

further than a distance of one hexagon in a time step, i.e. a year. In the case that no

neighboring hexagon is better than the situation in the host hexagon, the tortoises will

stay in their site and no movement occurs. If movement happens, the total number of

moving animals from the host hexagon to the best neighboring hexagon is calculated by

equation (2):



Movement
(Tortoises move from the host hexagon to the neighboring

hexagon with the best resource availability.
Total number of moving individuals is a function of resource
gradient between these two hexagons and the tortoise density

in the host hexagon. Number of moving animals
in each size class is a function of mobility characteristics,

and density of that size class in the host hexagon.)

Select the mean annual rainfall for the
whole area being modeled

(randomly sampled from a vector of annual rainfalls
in 42-year period)

Assign annual rainfall for each hexagon
(randomly sampled from a specified distribution

of annual rainfalls with the mean that is the same as
the mean annual rainfall selected

in the previous step.)

V

Census

Figure 9. The flow of modeled events for a single year
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'4,

Survival and Reproduction
(The projection matrix for each hexagon is a function

of a static projection matrix, the road density, and the annual rainfall
of that hexagon. The vector of the number of individuals

in eight size classes is then multiplied by the site-specific projection
matrix to get the new vector of individuals after

death and reproduction.)



NMoving = a * n(Hhex) * (n(Hhex)/res(Hhex) - n(BNHex) / res(BNHex))

(Equa. 2)

where:

a: a constant

n(Hhex): number of individuals in the host hexagon

res(Hhex): number of resource units in the host hexagon

n(BNHex): number of individuals in the best neighboring hexagon

res(BNHex): number of resource units in the best neighboring hexagon

This equation is called the Moving Equation. In the equation, the total number of moving

animals is a function of the tortoise density in the host hexagon and the gradient between

resource availability in the host hexagon and in its best neighboring hexagon. The best

neighboring hexagon is the neighbor that has the highest gradient of resource pressure,

i.e. lowest number of individuals per unit resource, compared to the host hexagon.

From now until the end of this section, it is assumed that there is occurrence of

movement. The total number of moving animals out of the host hexagon is calculated

from the above equation. The next issue is the size-specific number of moving

individuals. In this model, the population is divided into eight size classes, named size 0

to size 7. The reason for this division is that in my model, I use the projection matrix that

is constructed for eight size classes of female tortoises from Doak et al.( 1994) (Tables 1-

2).The matrix is averaged from different sampling sites in their study in the western

Mojave Desert. Size-structured demographic models are used instead of age-structured

models because the task of aging tortoise individuals is very difficult, and the largest and

16



17

most comprehensive data base for tortoise growth and mortality is indexed by size rather

than age (Doak et al.1994, Berry 1984).

Coming back to the issue of movement, the question is: How many animals in

each size class contribute to the total number of moving animals? Each size class is

associated with a moving weight, and the sum of all moving weights of eight size classes

is one. Hence the number of moving animals in each size class is the product of its

moving weight and the total number of moving animals calculated in the Moving

Equation. The moving weight of each size class is calculated by the following equation:

mw(size x) = mobility(size x)* n(size x)/sum(mobility(size i) * n(size I))

(Equa. 3)

where

mw(size x) - moving weight of size x

n(size x) and n(size i)- number of individuals of size x and size i in the host

hexagon, and i is integers from 0 to 7.

so that the number of moving individuals in each size class depends on the mobility

characteristics of that size class, and the number of individuals of that size class in the

host hexagon. The more mobile the size class and/or the more crowded the size class in

the host hexagon, the higher the number of individuals in that size class that will move.

The mobility characteristics of all size classes are specified in a vector, and in the form of

relative mobility between the eight size classes. Since there are no field data about the

mobility characteristics of different size classes to support the model, the content of this

vector will vary in a few different ways, and the effects of that variation on the tortoise

population dynamics will be studied.



2.2.2. Reproduction and survival modeling

The next step in the model is to simulate the reproduction and survival of the

population. The model uses matrix population modeling (Caswell, 1989), but it is

modeled in a spatially explicit context. Population dynamics are represented by a

projection matrix, which contains information about size-specific fecundity, survival,

probability of staying in the same size class, and probability of moving to the next size

class after a time step. The basic idea of the matrix population modeling is that the vector

of size-specific population for the next time step is projected by multiplying that vector in

the current time step with the projection matrix. In the model, I use a projection matrix

from Doak et al. (1994). In their study, four different projection matrices were

constructed by averaging demographic parameters of tortoises in different study sites in

the Western Moj ave Desert. The four matrices have the same probabilities of surviving

and growing from one size class into the next largest one. The only difference among

them is the estimates of yearling reproduction. In this model, the most optimistic estimate

of reproduction is used, which corresponds to a projection matrix with the total

population growth rate every year equal to 0.982 (see Table 1).

With respect to the method for modeling the effects of rainfall, the question of

whether or not annual rainfall can represent the rain effect on the tortoise population

arises. What happens if two years have the same annual rainfall, but in one year rain

occurs evenly throughout the year, while in the other rain is concentrated in a few big

storms and drought conditions prevail throughout the remainder of year.

18
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Table 1. Average population projection matrix for the Desert Tortoise in
Western Mojave.

This matrix contains three kinds of elements: production rates of size 5, 6, and 7 (the
non-zero elements in the first row); the probabilities of surviving and growing from one
size class to the next largest one (the non-zero off-diagonal elements); and the
probabilities of surviving but remaining the same size (the non-zero diagonal elements).
(from Doak et al., 1994)

0 Yearling
1 Juvenile 1 <60
2 Juvenile 2 60 - 99
3 Immature 1 100 - 139
4 Immature 2 140 - 179
5 Subadult 180-207
6 Adult 1 208-239
7 Adult 2 >240

Table 2. Desert tortoise size classes used in the model (From Doak et al. 1994)

19

Size class 0 1 2 3 4 5 6 7

0 0 0 0 0 0 2.22 3.38 4.38

1 0.716 0.567 0 0 0 0 0 0

2 0 0.149 0.567 0 0 0 0 0

3 0 0 0.149 0.604 0 0 0 0

4 0 0 0 0.235 0.56 0 0 0

5 0 0 0 0 0.225 0.678 0 0

6 0 0 0 0 0 0.249 0.851 0

7 0 0 0 0 0 0 0.016 0.86

Class Name Maximum carapace length (mm)



To answer this question, I conducted the analysis of correlation between the

actual annual rainfall and the number of events per year, i.e. the number of days in the

year rain occurred, from the data recorded in Barstow weather station in the period from

1939 to 1980. The results (Figure 10) show a relatively high correlation between those

two factors (r2 = 0.65, F140 = 74.8, P <0.001)

20

10 20 30 40

Number of rain events per year
Figure 10. Correlation between annual rainfall and number of rain events per year
in California Mojave Desert. Data are recorded from Barstow weather station in
42 year period (1939-1980). The line is the regression fit.

The temporal variation of rainfall within a year and between years is presented in

the contour plot of monthly rainfall in that 42 year period (Figure 11). The figure shows

that within a year, most of rain occurs in two main seasons, which are winter rain (from

November to April), and scattered summer rain (from July to September). From the

contour plot and the correlation results, I find that annual rainfall can be used to model

the rain effect on tortoise population dynamics with relatively high reliability.
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Figure 11. Contour plot of monthly rainfall in 42-year period (19394980) in the California Mojave
Desert. Data are recorded from Barstow station. Web site: Southern California Climate summaries

(http://www.wrcc.dri.edu/cgi-bin/c1iMAINp1?cabars+sca)
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To make it easier to follow, I call the projection matrix the static projection

matrix. I assume that the matrix is the projection matrix corresponding to the means of all

human-related and environmental factors included in my model, i.e. the mean of road

density and the mean of annual rainfall.

It is further assumed that the variations in those factors have linear relationships

with, and equal effects on, all elements of the static projection matrix. The effect by

roads, effect by rain, and the combined effect of the two are represented in the model by

variables named roadFactor, rainFactor, and combinedFactor, respectively. In each time

step, the roadFactor and rainFactor variables are calculated, and then multiplied together

to get the value for the combinedFactor. The combinedFactor will be further multiplied

with the static projection matrix to get the site-specific projection matrix for that time

step. The model checks the condition so that

if (combinedFactor> 1.07) combinedFactor = 1.07 (Equa. 4)

This equation guarantees that all elements in the projection matrix vary in a reasonable

range, which means the survival rates of all size classes are less than 1. The number 1.07

is chosen because when the combinedFactor is higher than 1.07, the reasonable variations

of the matrix's elements are no longer satisfied. This checking routine, when applicable,

increases the uncertainty of the model. However, by running simulations many times with

different parameters, I found that the occurrences of the routine were rare.

The equations to calculate the roadFactor and rainFactor for each hexagon in a

time step are as follows:

roadFactor = I - (a * (road value - MEAN_ROAD) / MEAN_ROAD) (Equa. 5)

rainFactor = I + (b * (rainfall - MEAN RAIN) / MEAN_RAIN) (Equa. 6)
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where

- a, b are constants

- road value is the mean of road value per pixel in the hexagon. Road values are re-

sealed to range from 0 to 100. The road value for each hexagon is stable through time.

Road values of all hexagons in the landscape represent the spatial variation of human

impact on tortoise population by building roads.

- MEAN_ROAD is the mean of road values for all hexagons in the four landscapes.

- rainfall for each hexagon is randomly sampled from a vector of 30 elements that are

calculated based on the mean annual rainfall for the whole landscape in the modeled

time step. The content of this vector will be discussed in detail in Appendix B. This

vector represents the spatial variation of rainfalls in the landscape. The mean annual

rainfall is randomly sampled from the vector of 42 annual rainfalls recorded at the

Barstow Weather Station from 1939 to 1980 (see Figure 16). This vector of annual

rainfall represents the temporal variation of rain in the landscape.

- MEAN RAIN is the mean of annual rainfall in the 42-year period

As mentioned above, MEAN RAIN and MEAN_ROAD are assumed to be the road

value and the rainfall corresponding to the projection matrix that is the same as the static

projection matrix.

From equation (5), we can see that if the road value of a hexagon is equal to

MEAN_ROAD, the roadFactor will equal one. The higher the road value, the smaller the

roadFactor, which indicates a more negative effect on tortoise population. For example, if

a site has a lot of roads built, it will be a bad sign for tortoise population growth, and the

tortoise density in the site must be low.



From the equation (6), we can see that if rainfall of a hexagon is equal to

MEAN_RAIN, the rainFactor will equal one. The higher the rainfall, the higher the

rainFactor or the larger the values of elements in the projection matrix, which indicates a

more positive effect on tortoise population. For example, if a site has a lot of rain in a

time step, it will be a good sign for tortoise population growth in that year.

To control the infinity of population growth in hexagons in good conditions in

terms of resource, road, and rain, the model checks the condition that:

If (resourcePressure > 6) combinedFactor 1/0.982 (Equa. 7)

where 0.982 is the dominant eigenvalue or the population growth rate lambda of the static

projection matrix. I use number 6 here to control the limitation of resource pressure, since

I have never seen resource pressure higher than this number in any published papers.

The meaning of equation (7) is that if the site-specific population reaches the level that

resource pressure is larger than 6, the population in that hexagon will not grow in the

instant time step, which means the population growth rate lambda (?) equals one. The

population in that hexagon can grow again if the individuals move or die.

2.2.3. Census

After each time step, the total population, annual rainfall, and population growth

rate lambda will be calculated and saved to an output file. In this study, the term

population growth rate lambda is simply the result from dividing the population of the

hexagon in the current time step by the population in the previous time step.

Additionally, the cell-specific information also can be saved if desired. The cell-specific

information includes the hexagon ID, the rainfall, the road value, and the population of

the site every year.

24
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2.3. Sensitivity Analysis

Because of the serious lack of necessary data to support many quantitative

relationships set up in the model, I arbitrarily generated some different ways to draw the

relationships based on nature of each type of relationship and available published papers,

and then conducted the sensitivity testing to roughly estimate the importance of the

specific value of each parameter to the model results. Sensitivity analysis is able to aid

the researcher in understanding which components should be measured most carefully. In

this study, sensitivity analysis is conducted by making a series of runs while varying

model parameters over expected or possible ranges, and recording the results for further

analysis.

2.4. Elasticity of Projection Matrix Elements

Firstly, some related definitions in matrix population modeling need to be

clarified. A vector x, with the property that matrix multiplication is equivalent to scalar

multiplication:

Ax = Xx (Equa. 8)

for some scalar X, is called an eigenvector of matrix A; the scalar X is called the

eigenvalue (Caswell 1989). The eigenvectors defined above are the right eigenvectors of

A. A vector y is called left eigenvector of A if

y'A = Xy' (Equa. 9)

where y' is the transpose of y, and x, y, and X can be real or complex.

Leslie (1945) transforms this idea of matrix algebra into matrix population modeling,

where A is the population projection matrix. The topic is further developed by
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Lefkovitch (1965), and Caswell (1989). It is proved that if A is primitive, the long-term

dynamics of the population are described by the population growth rate ?i and the stable

population structure w1 (Caswell 1989). In the Tortoise case, Wi is the stable size

distribution of eight size classes, which corresponds to the dominant eigenvalue ?i of the

projection matrix.

In the matrix model, the sensitivity of 1. to changes in element a1 of the projection

matrix is expressed in the equation:

= o1v/<w,v> (Equa. 10)

That is, the sensitivity of ?. to changes in is proportional to the product of the ith

element of the left dominant eigenvector (v) and the jth element of the right dominant

eigenvector or stable stage distribution (w). <w,v> is the scalar product of w and v. The

elasticity, e1, of to element ajj is simply the sensitivity resealed to account for the

magnitude of both ?. and

= (a/A)(ôXfôa) (Equa. 11)

Thus, gives the proportional change in 7 resulting from a proportional change in a,

while other elements remain constant. The growth rate ? is the dominant eigenvalue of

the projection matrix (A1) (Caswell 1989). In this study, elasticities of demographic rates

of both the static projection matrix and the spatial simulator are calculated and examined.

The purpose of elasticity analysis is to answer the question whether or not the ranking of

elasticities is unaffected by spatial factors. The elasticities of the static projection matrix

are calculated by using a C++ template matrix library. Elasticities of the spatial model are

calculated by varying each matrix element with a certain proportion and running model

simulations. The results from elasticity analysis in a non-spatial and a spatial model are

compared.



3. RESULTS

3.1. Results of Hexagon-Based Habitat Maps

Resource and road data are binned to hexagon grids of resolution 14 and 16 for four

sample landscapes (Figures 12- 15). Landscape 1 has the highest road values relative to

the other landscapes. Landscape 2 is the most fragmented, since a lot of its areas falls into

the region marked out by elevation higher than 1000 m. Landscapes 3 and 4 are in rather

good condition, with homogeneous characteristics and rich resources. However, the

patterns of resources and roads in these two landscapes show a difference. Therefore,

landscape 3 and 4 are chosen to test the sensitivity of model to the spatial distribution of

resources and roads, which may affect the movement pattern.

3.2. Population Dynamics in Four Sample Landscapes

The study by Luckenbach (1982) concluded that the density of Desert tortoises in

the Western Mojave vary within the range from 0 to 400 per sq.km. Since the range of

resource values within a site is from 0 to 100, the initial number of animals in each

hexagon was set equal to the resource pressure of 4. I have noticed that this initial

number of animals should be divided by 2, since this spatial model is for females only.

But then by examining the model structure carefully, I concluded that the scale of the

initial number of animals was not important for the model's results. Within a site, the

distribution of size classes were set to follow the stable size distribution of the static

projection matrix, i.e. its right dominant eigenvector.

Population and population growth rate in the four sample landscapes are projected

for a 100-year period using the habitat maps described above. Simulations are run with

different parameter combinations to study the possible tortoise population trends in

27
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Figure 12. Hexagon map of resource in four sample landscapes (resolution 14)

The resource value of each hexagon is the average of resource values of all

pixels belonging to it.The resource value of each pixel is calculated from

Habitat Suitability Indices (HSI) of vegetation, soil, and elevation.
The higher the resource values, the more suitable the habitat for tortoises.
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Figure 13. Hexagon map of resource in four sample landscapes (resolution 16)

The resource value of each hexagon is the average of resource values of all

pixels belonging to it.The resource value of each pixel is calculated from

Habitat Suitability Indices (HSI) of vegetation, soil, and elevation.
The higher the resource values, the more suitable the habitat for tortoises.
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Figure 14. Hexagon map of roads in four sample landscapes (resolutIon 14)

Road value of each hexagon is the average of road values of all pixels belonging to it.
Road value of each pixel is caculated from the weight of its road type, and
rescaled to the range from 0 to 100. The higher the road values, the worse the habitat
for tortoises.
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Figure 15. Hexagon map of roads in four sample landscapes (resolutIon 16)
Road value of each hexagon is the average of road values of all pixels belonging to it.
Road value of each pixel is caculated from the weight of its road type, and
rescaled to the range from 0 to 100. The higher the road values, the worse the habitat
for tortoises.



Parameter combination : A1-A2-A3-A4-A5

Table 3. Description for parameter combination used in the model's simulations
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Parameter
(name)

Possible
values

Brief Description

Al 1

(rainPattern)
2

See Appendix B
A2

(mobilityPattern)
2

1 Constant a in Equa. (2) = 0.01
A3 2 Constant a in Equa. (2) = 0.03

(movingEqua)
3 Constant a in Equa. (2) = 0.06

4 Constant a in Equa. (2) = 0.10

0 Constant a in Equa. (5) =0
A4

(RepSurEquaRoad)
1 Constant a in Equa. (5) = 0.01

2 Constant a in Equa. (5) = 0.02

3 Constant a in Equa. (5) = 0.03

4 Constant a in Equa. (5) = 0.04

0 Constant b in Equa. (6) =0
A5

(RepSurEquaRain)
1 Constant b in Equa. (6) = 0.01

2 Constant b in Equa. (6) = 0.02

3 Constant b in Equa. (6) = 0.03

4 Constant b in Equa. (6) = 0.04
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different landscapes of different characteristics, and to test the sensitivity of model

parameters. Since the purpose of the model is not to predict the tortoise population in

reality, all the simulations are run with the same random seed, which means all

simulations with the same grid resolution have the same temporal pattern of rainfall

(Figure 16). All parameter combinations are run for both grid resolution 14 and 16 for

each landscape. With the temporal pattern of rainfall held constant, all other comparisons

represent the difference in model parameters, and the results truly reflect the change of

model parameters or the difference of habitat patterns. The total population and

population growth rate lambda in four sample landscapes are recorded for every time

step, and results from different parameter combinations are drawn from Figures 17 to 25

(see Table 3 for description about parameter combination in detail). First (Figures 17 -

20), two parameter combinations, 1-1-3-3-3 and 2-2-2-2-2, are used to run simulations.

The five parameters represent from left to right spatial rain pattern, the mobility pattern

of the eight size classes, moving equation, equation of road effect on survival and

reproduction, and equation of rain effect on survival and reproduction (see Model

Structure and Table 3). The results from these two parameter combinations in both grid

resolutions show the same trend of population dynamics in the four landscapes.

Population declines very fast in landscape 1 with high road value, and population growth

rate lambda is smallest in this landscape. Lambda values in three other landscapes are

very close to one another. Population in landscape 2 is always lower, since this landscape

has limited resources. Lambda values for these three landscapes are lower with

combination 2-2-2-2-2 than with combination 1-1-3-3-3, one shows a decline in

population, and the other shows a stable population.



1939

Rainfall In 42-year perIod (1939-1980)

1959

Time (year)

(a)

Sampled rainfall in 100-year simulation

1200

1000

800

600

400

200

0

(b)

Figure 16. (a) Annual rainfall in 42 year period (1939-1980) and (b) rainfall
sampled in simulations with grid resolutions 14 and 16. Simulations used the same
random seed.
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Figure 17. Population growth rate lambda (a) and total population (b) in four
sample landscapes - parameters: 1-1-3-3-3, grid resolution 14
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Figure 18. Population growth rate Lambda (a) and total population (b) in four
sample landscapes - parameters: 1-1-3-3-3, grid resolution 16
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Figure 19. Population growth rate lambda (a) and total population (b) in four
sample landscapes - parameters: 2-2-2-2-2, grid resolution 14
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Figure 20. Population growth rate lambda (a) and total population (b) in four
sample landscapes - parameters: 2-2-2-2-2, grid resolution 16
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Next (Figures 2 1-23), I studied the effect of roads alone by setting the rain effect

to zero (combinations 1-1-3-3-0, and 2-2-2-2-0). The results show the high correlation

between road value and population trends. Populations in landscape 1 with a high road

value decrease over time. Three other landscapes have the same pattern of population

dynamics with a relatively stable population. The results in two grid resolutions for

combination 2-2-2-2-0 do not show any obvious difference, so that for this combination

only results for resolution 14 are presented. For combination 1-1-3-3-0, lambda values of

landscape 3 and 4 are close to one at resolution 14, but slightly higher than one at

resolution 16, so that one shows a stable population and the other shows an increase in

population.

Figures 24 - 25 are the results from simulations with the rain effect alone (combinations

1-1-3-0-3 and 2-2-2-0-2). Since there is no obvious difference between the two grid

resolutions, only results at resolution 14 are presented. Since the variation of lambda in

all four landscapes is the response to variation of rainfall alone and all the runs have the

same random seed, lambda values in all four landscapes are the same every year. Lambda

values vary around lambda of the static projection matrix (0.982), and all four landscapes

show a decline in population.
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Figure 21. Population growth rate lambda (a) and total population (b) in four
sample landscapes - parameters: 1-1-3-3-0, grid resolution 14
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Figure 22. Population growth rate lambda (a) and total population (b) in four
sample landscapes - parameters: 1-1-3-3-0, grid resolution 16
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Figure 23. Population growth rate Lambda (a) and total population (b) in four
sample landscapes - parameters: 2-2-2-2-0, grid resolution 14
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Figure 24. Population growth rate Lambda (a) and total population (b) in four
sample landscapes - parameters: 1-1-3-0-3, grid resolution 14
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Figure 25. Population growth rate lambda (a) and total population (b) in four
sample landscapes - parameters: 2-2-2-0-2, grid resolution 14
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3.3. Results from Sensitivity Analysis

In this section, the results from sensitivity testing of model parameters are

discussed. In the model, the parameters controlling model results are grid resolution,

spatial distribution of rain every year, mobility pattern of individuals in different size

classes, mobility of species (moving equation), and effect of road on survival and

reproduction (survival and reproduction equation for road effect), effect of temporal

variation of rain on survival and reproduction (survival and reproduction equation for rain

effect). The sensitivity of each parameter on model results is tested by varying it within

the proper range or setting it to possible values while holding all other parameters

constant.

Results from the sensitivity of grid resolutions 14 and 16 are shown in Figure 26.

Since the same series of temporal variation in rainfall at two grid resolutions cannot be

generated by running simulations with one random seed, the lines are the average from

twenty replicate runs with twenty different random seeds for both resolutions.

Simulations are run with parameter combination 1-1-3-3-3 for landscape 1, and 2-2-2-2-2

for landscape 3. The results show a higher population at resolution 16 than at resolution

14 in both cases.

I used two control parameter combinations 1-1-3-3-3 and 2-2-2-2-2 to test the

sensitivity of all other parameters, which means that those numbers are held constant

while varying each parameter separately. Results are presented in Figure 27-34. The

population with the control parameter combination has the red color. The variations by

different road effects, by different rain effects, and by different characteristics of species

mobility (moving equation) are drawn in a blue, magenta, and teal (aquamarine) color,

respectively. Effect of size-specific mobility is the yellow line, and the effect of
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Figure 26. Projected population for (a) landscape 1, parameters: 1-1-3-3-3 and (b)
landscape 3 with parameters: 2-2-2-2-2. Results are from twenty replicate runs.



700000

600000

500000
C

400000

300000
0

200000

100000

0

0

Time (year)

80 10020 40 60

p11333

p21333

p12333

p11133

p11233

p11433

p11303

p11313

p11323

p11343

p11330

p11331

p11332

p11334

Landscape I
Grid ResolutIon 14

(a)

Landscape 1
Grid Resolution 16

(b)

Figure 27. Projected population for landscape 1 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 1-1-3-3.3.
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Figure 28. Projected population for landscape 2 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 1-1-3-3-3.
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Figure 29. Projected population for landscape 3 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 1-1-3-3-3.
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Figure 30. Projected population for landscape 4 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 1-1-3-3-3.
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Figure 31. Projected population for landscape 1 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 2-2-2-2-2.
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Figure 32. Projected population for landscape 2 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 2-2-2-2-2.
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Figure 33. Projected population for landscape 3 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 2-2-2-2-2.
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Figure 34. Projected population for Landscape 4 in (a) grid resolution 14 and (b) grid
resolution 16. Results are the responses to changes in model parameters with control
parameter combination 2-2-2-2-2.
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spatial rain distribution is the black line. Road effect (blue lines) is the most sensitive

parameter in all landscapes and grid resolutions. With higher road effect, the population

in landscape 1 increases while populations in three other landscapes decrease (the dotted

blue line of no road effect is the highest line in landscape 1 and lowest lines in three other

landscapes). This is an anticipated result, since only landscape 1 has a road value lower

than the mean road value, while road values for the three other landscapes are higher than

the mean road value.

The mobility of species and the effect of rain on survival and reproduction are the

next most sensitive parameters. The highest effect of rain (bold magenta line) in most

cases shows the lowest population relative to populations from different variations of

that parameter. And higher mobility of the species shows lower population (bold

aquamarine line is always lower than other lines of the same color). All other parameters,

i.e. size-specific mobility (yellow line) and spatial distribution of rain (black color line),

do not show any obvious sensitivity to model results.

3.4. Results from Elasticity Analysis

For the elasticity analysis, each matrix element is given a proportional change of

positive 3 percent while all other elements remain constant. In the spatial model,

elasticity analysis was conducted for landscape 1 and landscape 3 with parameter

combinations 1-1-1-1-1 and 2-2-3-3-3 in grid resolution 14. Population growth rate

lambda is calculated after 100-year simulation using formula: (population in year 100/

initial population)11100. The projection matrix has 17 non-zero elements. Elasticities,

represented by lambda values in year 100, of those elements from simulations along with

of the static projection matrix are summarized in Figure 35. The lambda values are the
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average from 20 replicate runs with twenty random seeds. The results show the same

ranking of elasticities in all cases, both spatial or non-spatiaL However, the values of

lambda on the vertical axis are different between landscapes and parameter combinations.

Landscape 1 with high road values always has the lower value of lambda relative to

Landscape 3.



4. DISCUSSION

The results show that landscape 1 has a relative large amount of available

resource, but suffers a great decline in population in comparisons with other landscapes.

The obvious underlying cause of this decline is that the landscape has a high road density.

High road density is a great threat to the tortoises, since the animals cannot recognize and

avoid the danger of roads in the same pattern as they have ability to recognize the food

gradient and move to the better habitat. The ability to move to the more favorable habitat

is a natural behavior of the tortoise after thousands of years of evolution, while the

impacts caused by roads have been present over the last few decades. The model

indicated that sites with high road density suffer local population declines due to the

killing effect of roads. Each year many tortoises in neighboring sites move to dangerous

sites because of lower resource pressure, and continuously get killed by vehicles. By

modeling road effects only, the results truly reflect the site-specific population dynamics

caused by roads.

With rain effect only, the population dynamics in all landscapes show a decline in

population, and a rather stable population growth rate lambda, which is almost the same

as the lambda of the static projection matrix. This suggests that the fluctuations of natural

factors, specifically rainfall in this study, are not a danger to tortoise populations, while

human-related factors, or the road status in this study, may lead the population to

extinction in a short time. Temporal patterns of rain cause the same effect to tortoise

populations in all landscapes and fluctuate through time, while road effects are site-

specific and remain constant through time. Therefore, local road status may be used as a

guide to estimate site-specific population dynamics.
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Figure 35. Results from elasticity analysis. Lambda values are calculated from 20
replicate simulations with an increase of 3 % of each matrix element at a time. Matrix
elements are indexed from 1 to 17 with increment by row, from top to bottom, and left to
right in the projection matrix (Table 1).
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Rain effect, however, may become site-specific when rain patterns are looked at

from both temporal and spatial contexts. Rain pattern in a site can be explained by the

combined effects by temporal fluctuation of rain at region-scale, and topographic

characteristics at local-scale. Analysis shows that 68-83 % of the variation in

precipitation within a region can be explained by elevational differences in the Mojave

Desert. In the Desert regions of California, the increase in precipitation is about

10 mmIlOO m elevation. The residual variation is due to factors such as slope and aspect

(Rowlands 1995). In this model, both temporal and spatial patterns of rain are modeled in

a random process, so that it can more or less include the effects on tortoise population

caused by the patchiness of rain within a landscape but fail to reflect the site-specific rain

pattern. This should be taken into account in future studies.

Results from sensitivity analysis in all four sample landscapes indicate the same

conclusion that roads are the most sensitive factor on the dynamics of the Desert

tortoise's population. By using an unreliable model for road effects, the population in a

site may be predicted to increase, while it decreases in reality. It is suggested that the

effects of roads on the tortoise populations need to be considered for future research on

the species. Rain effects also need to be taken into account, since the higher the effects of

rain used in the model, the worse the status of population dynamics (the bold magenta

line representing the highest effect of rain on survival and reproduction of the species is

always under the other lines with the same color in Figures 27-34). These responses can

be explained as follows: with high rain effect, both roads and rain can cause a drastic

decline in local population in drought years, and the population can hardly recover even

with the intervening years of high precipitation. Therefore, when spatial and temporal

patterns of rain are well understood, the model can be used as a predictor for the

population dynamics caused by variation of rainfall.

With regards to the sensitivity of mobility characteristics, mobility of species

(aquamarine-teal lines) is more important than relative size-specific mobilities (yellow

line). The more mobile the individuals of the species, the worse the situation in

population dynamics (the bold teal line representing the highest effect of species mobility

on movement is always equal to or under the other lines of the same color in Figures 27-
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34). The possible reason is that the more mobile the individuals or the higher the number

of animals moving out of a hexagon, the higher number of animals killed by vehicles.

Once again, the dangerous effects of roads on the tortoise population are obvious.

Sensitivity of grid resolution shows interesting results. Population in the same

landscape with the same parameter combination is higher at resolution 16 than at

resolution 14 in both simulations conducted (Figure 26). The same results can be

visualized also in Figures 27-3 4, the general trend of the population at resolution 16 is

always better than at resolution 14. A possible explanation for this difference is that with

finer resolution, animals can take the better advantages of resource availability in their

occupying site, as well as in their neighborhood, by self-adjusting their movement. In the

finer scale, landscapes become more homogeneous with respect to movement activities of

the species. Research should be conducted to answer the questions 1) What is the most

proper scale to model tortoise populations? and 2) Can a scale-independent model be

constructed? 3) If not, how should the pattern-process relationships be modeled across

scales? The biological and ecological characteristics of the species need to be studied

carefully and scientifically in order to answer those questions.

Elasticities of demographic rates in the projection matrix in the spatial simulator

have the same pattern as the static projection matrix. The only size-specific difference

between the non-spatial and the spatial models is that the size-specific movement is

included in the spatial simulator while this information is not included in the non-spatial

matrix model. The same ranking of the importance of different vital rates in the two cases

can by explained by the model structure that relative numbers of moving animals in

different size classes are controlled more by the relative abundance of different size

classes in the host hexagon than by the relative mobilities of those size classes. Therefore,

the distribution of size classes in each hexagon almost always follows the stable size

distribution, which is the right dominant eigenvector of the projection matrix used. As

long as this situation is maintained, the elasticities will have the same pattern with

elasticities of the static projection matrix. To increase the accuracy of the model, size-

specific moving characteristics need to be taken into account in future research.
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Study of elasticities of the mean population matrix needs to be analyzed carefully

before applying to conservation. Change in one demographic rate can change the

qualitative ranking of the elasticity values calculated from the projection matrix. Mills et

al. (1999) found that for the desert tortoise case, changes across a realistic range of

variation in the transition from class 6 to class 7 almost changed the ranking of the two

highest elasticities. Additionally, when vital rates change to their high or low values

observed in nature, prediction of future growth rate based on elasticities of the mean

matrix can be misleading (Mills et al 1999). When its reliability is obtained, the spatial

model constructed in this research can be an useful tool to study the actual changes of the

population growth rate in responding to the changes in vital rate in nature and solve the

above problems.

The upper respiratory tract disease (URTD) caused by the pathogen Mycoplasma

agassizii is a causal factor in declines of desert tortoise populations in the California

Mojave (Abbema, 1997). When the spatial distribution and the spreading pattern of the

pathogen, and the effects of the disease on vital rates of the species are well understood,

this spatial model can simulate the potential impact of the disease on tortoise's population

dynamics.

The model has reached the initial step of constructing a reliable spatially explicit

population model for the Desert tortoise. The results given by the model more or less

have drawn the picture for the potential effects of different demographic and

environmental factors on the tortoise's population dynamics. It is clear that the variations

of spatial factors are important to explain the site-specific abundance of the tortoises.

When spatial variations are taken into account, such as variation of roads in this study,

the increases or decreases in local densities are independent, not as mentioned by Doak et

al. (1994). A spatial model can be an useful tool to predict local population dynamics,

especially when more GIS data become available and when future land-use scenarios for

the area are spatially developed. In the future, field data need to be collected to construct

more realistic relationships used in the model. The model then can be extended to include

two-sex characteristics, demographic stochasticity, and the effects of other demographic

and environmental factors.
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Apendix A. Arc/Info coverages used in the model
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Appendix B. Explanation about model parameters
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Grid resolution
In this study, I use two grid resolutions 14 and 16 in Snyder projection, aperture 3. The area of each
hexagon is 1.18759 sq.km. and 10.68832 Sq.km for resolution 14, and for resolution 16, respectively.

marX and maxY
maxX and marY are the coordinates (i, j) of the upper-right corner of the hexagon grid. The values of
maxX and maxY are 15 for grid resolution 14, and 47 for grid resolution 16. Therefore, each landscape
consists of 16 rows and 16 colunms in resolution 14, and of 48 rows and 48 columns in resolution 16.

stopTime
This parameters is to specify the time step when the simulation will fmish. This value is always set to 101,
which means the simulation will be running in the time interval of 100 years.

resourceFile
This is the name of the Ascii file containing the information about resource availability in each hexagon,
which is used to initialize resource in each hexagon.

roadFile
This is the name of the Ascii file containing the information about road value in each hexagon, which is
used to initialize road value in each hexagon.

hexldFile
This is the name of the Ascii file containing the IDs of all hexagons in Snyder projection, which is used to
specify the ID for each hexagon in the grid. The purpose of using this file is to write the outputs of each
hexagon with its ID to further join the output information with the attribute table of the hexagon grid in
ARC/Info for visualization.

rainPattern This parameters has value of one or two. This is the first number in
parameter combination used in the model. rainPattern is used to specify the distribution of rainfall values
of all hexagons in the modeled landscape in each time step based on the mean rainfall (meanRain)of the
whole area at that time step. The value of the variable meanRain at each time step is randomly sampled
from a vector of 42-year annual rainfalls (1939-1980) recorded in Barstow Weather Station. After the
ineanRain is sampled, the next steps are:
- calculating the possible values of rainfall for each hexagon at the time step

rainO = 0.2 * meanRain;
rain! = 0.4 * meanRain;
rain2 = 0.6 * meanRain;
rain3 = 0.8 * meanRain;
rain4 = 1.0 * meanRain;
rain5 = 1.0 * meanRain;
rain6 = 1.2 * meanRain;
rain7 = 1.4 * meanRain;
rain8 = 1.6 * meanRain;
rain9 = 1.8 * meanRain;

- Specifying the distribution or the frequency histogram for each possible rainfall value.
This distribution reflects the level of patchiness of the rain in the modeled landscape in each single year

71

if (rainPattern = 1), the form of the distribution is

rainO rain I rain2 rain3 rain4 rainS rain6 rain7 rain8 rain9



if (rainPautern = 2), the form of the distribution is

rainO rain! rain2 rain3 rain4 rain5 rain6 rain7 rain8 rain9

- Assigning a value of rainfall to each hexagon
At each time step, after the meanRain is sampled, the distribution above is constructed. Each distribution
includes 30 values. The rainfall for each hexagon is then randomly sampled from that vector of 30 rainfall
values. Therefore, the rainPattern 2 represents the higher deviation of the rainfalls in hexagons from the
meanRain, or the higher spatial variation of the rainfall in the area.
The purpose of specifying the distributions is to more or less include in the model the spatial variation of

rainfall on the Desert Tortoise population dynamics.
8. mobihtyPattern has values 1 or 2. This is the second number in parameter combinations

used in the model.
Since the model tracks the number of moving animals in each size class in each time step, a vector of
relative mobilities of all eight size classes needs to be specified. Specific values in the vector tell us that
how mobile individuals in a size class are relative to individuals in other size classes. The idea, which is
based on to set the values in the mobility vectors, is that the mobility of individuals increases from birth,
and reaches the maximum when individuals are being juveniles, and then decreases when individuals are
getting older and older until death. Two different vectors of mobilities are used in the model (see the code
below):

if (mobilityPattern == 1) {
mobilitySize0 = 1;
mobilitySize! = 2;
mobilitySize2 = 3;
mobilitySize3 4;
mobilitySize4 4;
mobilitySize5 = 3;
mobilitySize6 2;
mobilitySize7 =1;

}

if(mobilityPattern 2) {
mobilitySizeo 1;

mobilitySize 1 = 3;
mobilitySize2 =5;
mobilitySize3 = 5;
mobilitySize4 = 5;
mobilitySize5 =2;
mobilitySize6 =2;
mobilitySize7 =1;

}

9. MovingEqua has values 1, 2, 3, or 4. This is the third value in parameter combinations used
in the model.
Following is the code to describe the role of this parameter:

if(MovingEqua = = 1) {
nMoving = .0! * varStateO.nlndividualsO *diff;}

else if (MovingEqua = =2) {
nMoving = .03 * varStateO.nlndividuals() * diff;}

else if(MovingEqua = = 3) {
nMoving = .06 * varStateO.nlndividuals() * diff;}
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else if (MovingEqua = =4) {
nMoving = .10 * varStateO.nlndividualsO * duff;)

else
{exit(1 );)

where

nMoving - the number of moving individuals out of the modeled hexagon at a time step
diff - the gradient of resource pressure (number of individuals per unit of resource) of the host
hexagon and its best neighbor. This variable is discussed in detail in the Model Structure section above.
varStateO.nlndividualsø - This method returns the current number of individuals in the modeled hexagon

The reason for choosing this range is because it makes sure that the total number of moving animals out of
a hexagon varies within a reasonable range with respect to the total number of individuals in that hexagon.
If the constant is less than 0 01, the number of moving animals is too small, and if the constant is bigger
than 0.10, the number of moving animals is too large, such as almost 100% of individuals in some
hexagons. These four specific values are selected to test the sensitivity of the Moving Equation.

RepSurEquaRoad has values 0, 1, 2, 3, or 4. This is the forth number in parameter
combinations used in the model.

This parameter is used to model the relationship between the road value in each site and the population
dynamics on that site. The code below describes the specific values of this parameter:
if (RepSurEquaRoad == 1) {
roadFactor = 1.0 - 0.01 * (varStateO.nRoadO-MEAN_ROAD)/MEAN_ROAD;

}

else if (RepSurEquaRoad =2) {
roadFactor = 1.0 - 0.02 * (varStateO.nRoad() - MEAN_ROAD) / MEAN_ROAD;

}

else if(RepSurEquaRoad == 3) {
roadFactor = 1.0 - 0.03 * (varStateO.nRoad() - MEAN_ROAD) / MEAN_ROAD;
}

else if(RepSurEquaRoad =4) {
roadFactor = 1.0 - 0.04 * (varStateO.nRoad() - MEAN_ROAD) / MEAN_ROAD;

}

else {roadFactor = 1 .0;}//So that 0 indicates no road effect taken into account.

varStateO.nRoads() - the method returns the road value in the modeled hexagon
The general form of theses equations is discussed in detail in the Model Structure section above.
The constants 0.01, 0.02, 0.03, and 0.04 are chosen to make sure that the roadFactor varies in a reasonable
range with respects to the variations of all elements in the corresponding projection matrix.

RepSurEquaRain has values 0, 1,2, 3, or 4. This is the fifth number in parameter
combinations used in the model.

This parameter is used to model the relationship between the rainfall in each site and the population
dynamics on that site. The code below describes the specific values of this parameter:

if(RepSurEquaRain = = 1) {
rainFactor = 1.0 + (0.01 * (rainCeliValue - MEAN_RAIN) / MEAN_RAIN);

}

else if(RepSurEquaRain = = 2) {
rainFactor = 1.0 + (0.02 * (rainCellValue - MEAN_RAIN) / MEAN_RAIN);

}

else if(RepSurEquaRain = = 3) {
rainFactor = 1.0 + (0.03 * (rainCellValue - MEAN_RAIN) / MEAN_RAIN);

}
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else if (RepSurEquaRain = =4)
rainFactor = 1.0 + (0.04 * (rainCell Value - MEAN_RAiN) / MEAN_RAiN);

}

else {rainFactor = 1 .0;}//So that 0 indicates no rain effect taken into account.

Where rainCelivalue is randomly sampled for each hexagon from the vector of 30 rainfall values in the
instant time step, as discussed in the section above about the parameter rainPallern.
The general form of theses equations is discussed in detail in the Model Structure section above.
The constants 0.01, 0.02, 0.03, and 0.04 are chosen to make sure that the variable rainFactor varies in a
reasonable range with respects to the variations of all elements in the corresponding projection matrix.

RandSeed
This parameter allows to set the random seed to start the random number generator in the simulation.

gridResolution has values 14 or 16
uceGraphics has values 0 or 1.

0 means no graphic visualization is desired, and 1 means vice versa.
useOulput --> 0 or 1 (set 1 for writing to files)

0 means writing model's results to files is desired, and 1 means vice versa.
outFileName

This is the name of the output file. This output file contains the information about population, such as total
population, population growth rate, of the whole modeled landscape in each time step.

outputCellFreq
This parameter is used to specify the frequency (number of time-steps) for writing cell-specific
information to files.

pm#hasvaluesl,2.....,17
This parameter is the index of the element in the static projection matrix that will be changed in order to
calculate elasticity.

percentChange
This parameter is used to specify the percent change of the matrix element specified in the previous step.
Values of percentChange can be negative or positive, but vary within the range from minus 5 to plus 5 is
desired to make sure that all elements of the matrix vary in reasonable ranges, i.e. the survival rates of all
size classes are always less than one.
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Apendix C. C++ codes for construction and analysis of the model
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,/////////,///////,////////////,///////,////,///////////,///,////,//,///,,///////
II DgResourceCell . h

I/This is the header file for building cell's structures and methods
//

# i fndef DGRESOURCECELLH
#define DGRESOURCECELLH
#include <iostreaxu>
using namespace std;
#include "DgSimCe112DS.h"
#include 'TcColor.h'
#include "fstream.h";
class DgResourceSim;

/////,/////////////////////////////////,////////////////////////////////////////
class DgCountRes

public:

DgCountRes (double nindividualsln =0.0, double nResourceln = 0.0,
double nRoadln = 0.0, mt hexidin = 0, double rainCei.lIn = 0.0,
double nsizeoln = 0.0, double nSizelln =0.0, double nSize2ln= 0.0,
double nSize3ln =0.0, double nSize4ln 0.0, double nSize5ln 0.0, double
nSize6ln = 0.0, double nSize7ln = 0.0)

nlndividuals (nlndividualsln), nResource (nResourceln),
nRoad(nRoadln), hexld_(hexldln), rainCell_(rainCellln),
nSize0_(nSize0ln), nSizel (nSizelln), nSize2_(nSize2ln), nSize3_(nSize3ln),
nSize4(nSize4ln), nSize5_(nSize5ln), nSize6_(nSize6ln), n5ize7_(nSize7ln)

DgCountRes (const DgCountRes& countRes)
nlndividuals (countRes.nlndividuals 0),
nResource (countRes.nResource0),
nRoad(countRes .nRoad),
hexld (countRes . hexld 0),
rainCell_ (countRes . raincell 0),
nSize0_(countRes.nSizeo 0),
nSizel (countRes . nSizel ),
nSize2(countRes.nSize2 0),
nSize3_(countRes.nSize3W,
nSize4(countRes .nSize4 0),
nSize5(couritRes.nSize5(fl,
nSize6_(countRes.nSize60),
nSize7_(countRes.nSize70)

DgCountRes& operator= (const DgCountRes& cRes)
if (&cRes this)
nlndividuals = cRes.nlndividuals 0;
nResource = cRes.nResource0;

nRoad_ = cRes.nRoad0;
hexld = cRes.hexldU;
rainCell = cRes.rainCellO;

nSize0 =cRes .nSize0 0;
nSizel_ = cResnSizelQ;
nSize2_ = cRes.nSize2O;
nSize3_ = cRes.nSize3();
nSize4 = cRes.nSize4Q;
nSize5 = cRes.nSize5U;
nSize6 = cRes.nSize60;

nSize7 = cRes.nSize70;
return *this;

bool operator== (coost DgCountRes& cRes)
return (cRes.nlndividuals() == nlndividuals() &&
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cRes.nResource() == nResource() &&
cRes.nRoad() == nRoad() &&

cRes.hexld() == hexld() &&

cRes.rainCell() == rainCell() &&
cRes.nSize0() == nSizeo() &&
cRes.nSizel() == nSizel() &&
cRes.nSize2() == nSize2() &&
cRes.nSize3() == nSize3() &&
cRes.nSize4() == nsize4() &&
cRes.nSize5() == nSize5() &&
cRes.nSize6() == nSize6() &&



cRes.nSize7() nSize7() );}

bool operator!= (const DgCountes& caes) ( return (operator==(cRes);

string asString (void) const ( return string(dbl2str(nlndividualsO) + p10+
dbl2str(nResourceW);

void setNlndividuals (double nlndividualsln) { nlndividuals = nlndividualsln;}
void setNResource (double nResourceln) ( nResource = nResourceln;
void setNRoad (double nRoadln) (nRoad = nRoadln;
void setRainCell (double rainCellln) (rainCell_ = rainCellln;}
void setHexld (mt hexldln) (hexld = hexldln;)
void setNSizeO (double nSizeOln) {nSizeO = nSizeOln;}
void setNsizel (double nSizelln) {nSizel_ nSizelln;)
void setNSize2 (double nSize2ln) (nSize2_ = nSize2ln;}
void setNSize3 (double n$ize3ln) {nSize3 = nsize3ln;}
void setNSize4 (double nSize4ln) {nSize4_ nSize4ln;}
void setNSize5 (double nSize5ln) (nSize5_ = nsize5ln;J
void setNSize6 (double nSize6ln) {nsize6_ = nsize6ln;}
void setNsize7 (double nSize7ln) {nSize7_ = nSize7ln;}

double nlndividuals (void) const { return nlndividuals;
double nResource (void) const I return nResource_;
double nRoad (void) const (return nRoad_;
double rainCell (void) const (return rainCell;}
mt hexld (void) const (return hexld_;
double nSizeO (void) const (return nSizeO;
double nSizel (void) const (return nSizel;}
double nSize2 (void) const (return nSize2;}
double nSize3 (void) const {return nSize3_;}
double nSize4 (void) const (return nSize4_;}
double nSize5 (void) const (return nsize5;}
double nSize6 (void) const (return nSize6;}
double nSize7 (void) const (return nSize7;}

protected:

double nlndividuals;
double nResource;
double nRoad;
double rainCell;
mt hexld;
double nSizeO_;
double nSizel_;
double nSize2;
double nSize3;
double nSize4_;
double nSize5;
double nSize6_;
double nSize7_;

};

inline ostream& operator<< (ostream& stream, const DgCountRes& cRes)

return stream << cRes.asStringO;

II ostream& operator<<

/,,///////////////////////,//,/////,,//,////////////////////////////////////////
class DgResourceCell : public DgSimCell2DS<void*, DgCountRes, DgResourceCell> I

public:

DgResourceCell (void) : resourceSm (0) (

DgResourceCell (DgResourceSim& dbln);

DgResourceSim* resourceSim (void) I return resourceSim_;
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DgResourceCell& operator (const DgResourceCell& cell)
DgSimCell2DS<void*, DgCountRes, DgResourceCell>: :operator=(cell);
return *this;

virtual string asString (void) const { return varState().asStringQ;
virtual mt initialize (const DgLocation& bc); // called once before sim runs
virtual mt reset (void); II called before each sim run
virtual mt process (void); /1 called each iteration
virtual mt setGraphicState (void); II called before cells are drawn
virtual mt setOutputstate (void); II called before cells are output
virtual mt postProcess (void) { return 0; } If called after sim runs

protected:

DgResourceSim* resourceSiin_;

inline ostream& operator<< (ostrealu& stream, const DgResourceCell& cell)

return stream << cell.bocatiori() << a:" << cell.varStateO;

// ostream& operator<<

//
I/End of DgResourceCell.hII/////////////////////////,///,////////,/,///////////,/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////I-II DgResourceSim.hII This is the header file containing structures and methods for the simulator
// and other classes used in prograumzing the model./////////////////////////////////////////////////////////////////////////////////////////////
#i fnde f DGRESOURCESIMH
#define DGRESOURCESIMH
#define ROW 8
#define COL 8
#define MAX RECORD 4000
#define MEAN RAIN 402.0238 I/This value is the mean of annual rainfalls in 42-year period
#define MEAN ROAD 5.652 I/This value is the mean of road values in four sample landscapes

#include <iostrean>

using namespace std;
#include <stdlib.h>
#include 'DgSimDB2DS .h"
#include "DgResourceCell .h'

lI/I/I//I//I//Il Declare the non-zero values for the static projection matrix

double pmO5 2.22;
double pmO6 = 3.38;
double pmO7 = 4.38;
double pmbo = 0.716;
double pmll = 0.567;
double pm2l 0.149;
double pm22 0.567;
double pm32 = 0.149;
double pm33 0.604;
double pm43 = 0.235;
double pm44 = 0.560;
double pmS4 0.225;
double pm55 = 0.678;
double pm65 = 0.249;
double pm66 = 0.851;
double pm76 = 0.016;
double pm77 = 0,860;
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///////////////////The structure of the class matrix:
class matrix
protected:

mt m;
jot n;

double a[ROW] (COL];
public;

matrix (void)
m = ROW;
n = COL;
for (jot j =0; i<m; i++)

for (mt j = 0; j<n;
a(i](j] = 0.0;

matrix (mt ml, jot nl){
in = ml;

n = nl;
for (mt i=0; i<m; i++)

for (mt j0; j<n; j++)
a [i][j] = 0.0;

"I//I/I,

matrix & operator = (const matrix & matr)
if (&matr != this)
m = matr.m;
o = matr.n;
for (jot =0; i<m; i++)

for (jot j =0; j<n; j++)
a(i)(j) = matr.a[i][j];

return *thjs;

I//I//I,
matrix operator * (const matrix matr)

if (n != matr.m)
cout <<"This 2 matrices can't be multiplied.';
return *this;

else

matrix product Cm, matr.n);
for (mt i0; i<m; i++)

for (mt j=0; j<matr.n; j++){
double sum 0;

for (mt k '0; k<n;k++){
sum =sum + a(i)[k]*(inatr.a[k][j]);

product.ati] (j] = sum;

return product;

void prmnt()

matrix operator * (double doub)
for (mt i =0; i<8;i++)

for C mt j = 0; j < 8; j++ )
a[iUj] = a[j](j]*doub;

return *thjs;

79



double get value (mt p, mt q)
return a[p][q];

void projection matrix O{
a[0][5] = pmO5;
a[0] [6] = pino6;
a(0] [7] = pmO7;

a[l) [0] pmlO;
a[l] [1] = pmll;
a[2] [1] = pm2l;

[2] = pm22;
[2] = pm32;

a[3] [3] = pm33;
a[4] [3] = pm43;

a[4] [4] pm44;
a[5] [4] = pm54;
a[5] [5] = pmSS;

a[6][5] pm65;
a[6] [61 pm66;
a[7] [6] = pm76;

a[7] [7] = pm77;

I//I//I//I//The structure of the class Vector:
class Vector

protected:
mt size;
double a[MAX_RECORD];

public:
Vector (void)

size = MAX_RECORD;
for (mt = 0; i < MAX_RECORD; i++

a[i] = 0.0;

Vector (mt sizel){
size = sizel;
for (mt i =0; i<sizel; i++)

a[i] = 0.0;

cout<< "Matrix ["<<m<<"] ["<<n<<"] \n";
for (mt i0; i<m; i++){

for (mt j=0; j<n;j++)
cout.width(l0);
cout <<a[i][j];

cout <<"\n";

void replace (double aO, double al, double a2, double a3, double a4, double a5, double
a6, double a7)

In = 8;

n = 1;
a[0] ro] = aO;
a[l] [01 = al;
a[2][0] = a2;

[0] = a3;
[0] = a4;

[0] a5;

a[6][0] = a6;
a[7] [0] = a7;
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Vector & operator = (const Vector & vec)
size = vec.size;
for (mt i =0; i< vec.size; i++)

a[i] = vec.a[i];

return *this;

void print ()

cout << "\n VECTOR \n";

for (mt i =0; 1< size; i++)

cout <<"["<<i<<"] " <<a[i] <<"\n';

double get_value (mt i)

return a(i];

void put value (mt i, double doub)

a(i] = doub;

friend void readfile_to_vec (Vector &, char *);
friend double randinVector (Vector);

};

void readfile_to_vec (Vector & vec, char* filename)

ifstream fin;
char str[lO];
double stratof;
mt i = 0;

char ch;
mt j = 0;
fin.open (filename, ios::in);
if (!fin.isopenO)
cout <<"Can't open file input to read.\n";
exit(l);

while ((fin.eof() 1= 1) H (j == vec.size-l))
fin. get (ch)

if (ch==' ' I ch=='\t' II ch ==
if (i==0) continue;
str[i]
str_atof = atof (str);
vec.put value (j, str_atof);
1=0;

continue;

str[i] = ch;

if (i=0) {

str[i] = 0;
str_atof = atof (str);
vec.put_value (j, str_atof);

fin. close C)

double randinVector (Vector vec)
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double x;
mt j;

mt i = RAND MAX / vec.size;
x = randO;
j = x / i;

return vec.get_value (j);

I/I//I/I//I/The structure of class DgResourceSim:

class DgResourceSim : public DgSiniDB2DS<DgResourceCell>

public:

DgResourceSim (DgPhysicalRFS2D<DgResourcecell>& rf In,
double mdiv = 10.0, double size0 = 10.0, double
double size2 = 10.0, double size3 = 10.0, double
double size5 10.0, double size6 = 10.0, double

bool useGraphicsln = true, bool useOutputln = false,
coost string& outFileNameln = "output" );

virtual mt initialize (void);
virtual mt reset (void);
virtual void output (void);
virtual mt setOutputState (void);

double nlndiv (void) const ( return nlndiv;
double nSizeClndiv (void) const (return nSizeOlndiv_;
double nSizellndiv (void) const (return nSizellndiv_;)
double nSize2lndiv (void) const (return nsize2lndiv;}
double nSize3lndiv (void) const (return nSize3lndiv_;)
double nSize4lndiv (void) Const (return nSize4lndiv
double nSize5lndiv (void) const (return nSize5lndiv_;
double nSize6lndiv (void) const (return nSize6lndiv;)
double nSize7lndiv (void) const (return nSize7lndiv;}

void setNlndiv (double nlndivin) ( nlndiv
void setNSize0lndiv (double nSize0lndivin)
void setNSizellndiv (double nSizellndivin)
void setNSize2lndiv (double nSize2lndivin)
void setNSize3lndiv (double nSize3lndivin)
void setNSize4lndiv (double nSize4lndivin)
void setNsize5lndjv (double nSize5lndivin)
void setNSize6lndiv (double nSize6lndivin)
void setNSize7lndiv (double n$ize7lndivin)

const vector<TcColor*>& cols (void) const { return cols;

private:

double nlndiv;
double nSizeolndiv_;
double nSizellndiv;
double nSize2lndiv_;
double nSize3lndiv;
double nSize4lndiv_;
double nSize5lndiv;
double nsize6lndiv_;
double nSize7lndiv_;
vector<TcColor*> cols_;

friend class DgResourceCell;

mt n}lex = 3600;
mt hexNumber;

Vector rainVec (42); I/Rainfall data will be read into this vector (see reset() in
DgResourceSim. C)

Vector rainCellVector (30); I/The rainfall for each hexagon is randomly sampled from this
Vector.

= nlndivin;
{nSize0lndiv_
(nSizellndiv
(nSize2lndiv_
(nSize3lndiv_
{ nSize4lndiv_
{ nSize5lndiv_
I nSize6lndiv_
{ nSize7lndiv_

= nSizeolndivin;}
= nSizellndivin;}
= nSize2lndivin;}
= nSize3lndivin;}
= nSize4lndivin;}
= nSize5lndivin;}
= nSize6lndivin;}
= nSize7lndivin;}
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I/This Vector is changed evexy year (See DgResourcecell . C).

sizel = 10.0,
size4 = 10.0,
size7 = 10.0,



matrix Leslie (8,8); I/Projection matrix will be read into this matrix (see reset() in
DgResourceSim.C).

double maxRes = 100;

double mobilitySize0 = 1;
double mobilitySizel = 2;
double mobilitySize2 = 3;
double mobilitySize3 4;

double mobilitySize4 4;

double mobilitySize5 3;

double mobilitySize6 2;

double mobilitySize7 1;

char out_string[lOOJ;
char outCell_stringtloO];

mt StopTime 0;

double totalSizeO = 0;
double totalSizel 0;

double totalSize2 0;

double totalSize3 = 0;
double totalSize4 = 0;
double totalSize5 = 0;
double totalSize6 = 0;
double totalSize7 = 0;

double lambda;
double totalPopulation 0;

double totalPopLastYear;

char* resFileName;
char* roadFileName;
char* hexldFileName;
char* outCellFileName;
mt outCellFreq = 10;
ofstream fout;

mt rainPattern = 1;
mt mobilityPattern = 1;
mt MovingEqua = 1;
mt RepSurEquaRoad = 1;
mt RepSurEquaRain = 1;
mt randSeed = 0;
mt gridResolution = 14;

,////////////////////////////,////////,///////I////////,//,//////////////////,/I-
//End of DgResourceSi.m.h://

//
// DgResourceCell. CII This file is for building structure and methods for each simulation cell
////////////I//////////////////////////////////////////////////////////////////I//
#include <iostream>

using namespace std;

#include "DgResourceCell.h"
*include "DgResourceSim. h'
#include "DgSimOE2DS .h
#include <fatream. h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
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DgResourceCell: :DgResourceCell (DgResourceSizn& dbln)
DgSimCell2DS<void*, DgCountRes, DgResourceCell>(dbln), resourceSim_ (&dbln)

II DgResourceCell::tgResourceCel1

mt
DgResourceCell::initialize (coast DgLocation& bc)I,
1/ call once before simulation runsI,

if (DgSimCe112DS<void*, DgCountRes, DgResourceCell>: :initialize(loc))

return -1;

setGraphicState 0;
setDrawBoundary (true);
setDrawPoint (false);
setDrawLabel (false);

return 0;

II DgResourceCell::initialize

mt
DgResourceCell: :reset (void)

//
// call before each simulation run
//

setGraphicState 0;
return 0;

// DgResourceCell::reset

mt
DgResourceCell: :process (void)//
// called each iterationII
DgLocation tmpLoc(locationQ);
const DgBoundedRFS2D& brfs = simDB_->physicalRFS2DO.boundedRFS2D0;
coast TcIVec2D coord = (brfs.discRFS 0 .getAddress(tmpLoc) )->address 0;
const DgBoundedRF2D& brf = *(brfs.grids()[0]);

static mt timeStep =0;
static mt meanRain 0; // meanRain is randomly sampled from the vector of 42-year annual
rainfall

if (coord == TcIVec2D(0,0fl{
sprintf (out string,"%d %d %f %f\n",timeStep, meanRain, lambda, totalPopulation);
simiDE 0 ->outFile () <<" "<<out string;

totalPopLastyear = totalPopulation;
timeStep++;
if ((tixneStep % 10) 0)

cout <<timeStep<<" % done"<<endl;

if (((timeStep-l) % outCellFreq) == 0)
char foutName(30J;

sprintf (foutName, "%s %d", outCellFileName, timeStep);
fout.open (foutName, ios::out);

totalPopulation = 0;
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I//I/I//I//I START M,)VZNG

double minResPressure varStateO.nlndividuals() /
(varState() .nResourceO+0.0l);

double curResPressure = varState.nIndividuals() I
(varState() .nResourceQ+0.Ol);

DgResourceCell* maxCell = 0;

for (jOt i = 0; i < neighborsO.sizeO; i++)

const DgResourceCell* cell = dynamic_cast<const DgResourceCell*>(neighborsO[iJ);

if (!cell) continue;

double newResPressure cell->varState() .nlndividualsO/(cell-
>varState() .nResourceU+0.Ol);

if (newResPressure < minResPressure && cell->varState() .nResource() >l)

minResPressure = newResPressure;
maxCell = const_cast<DgResourceCell*>(cell);

if (maxCell 0)

double sumWeights = mobilitySizeo * varState() .nsizeo() +
mobilitySizel * varStateO.nSizel(.) +
mobilitySize2 * varState().nSize2() +
mobilitySize3 * varState() .nSize3() +
mobilitySize4 * varStateO.nSize4() +
mobilitySize5 * varStateO.nSize5() +
mobilitySize6 * varState() .nSize6() +
mobilitySize7 * varStateO.nSize7()

const DgResourceCell* cell = dynaxuiccast<const DgResourceCell*>(maxCell);

if (nNoving > 0.0)

if (nextVarState() .nSize0() > nHovingSizeo)
nextVarState() .setNSizeo(nextVarState() .nSizeo() - nMovingSizeO);

else
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double nMovingSizeo = (mobilitySizeo*varStateQ.nSizeo() / (sumWeights+l)) * oving;
double nMovingSizel = (mobilitySizel*varstateO.nSizel() / (sumWeights+l)) * nHoving;
double nr4ovingSize2 (mobilitySize2*varState().nSize2() / (suniWeights+l)) * nMoving;
double nMovingSize3 = (mobilitySize3*varState(i.nSize3() / (sumWeights+l)) * nMoving;
double nMovingSize4 = (mobilitySize4*varstate().nSize4() / (sumWeights+l)) * n4oving;
double nMovingSize5 (mobilitySize5*varStateCl.nSize5() / (sumWeights+1)) * nMoving;
double nMovingSize6 = (mobilitySize6*varStateO.nSize6() / (sumWeights+l)) * nMoving;
double nNovingSize7 = (mobilitySize7*varStateO.nSize7() / (sumWeights+l)) * ovjng;

totalSize0 0;
totalsizel = 0;
totalSize2 = 0;
totalSize3 = 0;
totalSize4 = 0;
totalSizo5 = 0;
totalSize6 = 0;
totalSize7 = 0;

double diff = curResPressure - minResPressure;
double nMoving = 0;

if (MovingEqua == 1)
nMoving = .01

else if (MovingEqua ==
* varstateU.nlndividuals()
2)

* diff;}

nMoving .03
else if (MovingEqua ==

* varstateO.nlndividuals()
3)

* diff;}

nMovthg = .06
else if (MovingEqua

* varStateO.nlndividuals()
4)

* diff;}

nNoving = .10
else

(exit(l);

* varStateO.nlndividuals() * diff;}



nMovingSizeO = netVarState () nSizeO U;
nextVarState() .setNSizeO{O);

if (nextvarStateO.nSizel() > nMovingSizel)
nextVarState() .setNSizel (nextVarState() .nSizel() - nMovingSizel);

else

nMovingSizel = nextVarState() .nSizelU;
nextVarState() .setNSizel(0);

if (nextVarStateO.nSize2() > nMovingSize2)
nextVarState() .setNSize2 (nextVarState() .nSize2 C) - nMovingSize2);

else

nMovingSize2 = nextVarState () nSize2 U;
nextVarState() .setNSize2 (0);

if (netVarStatec'.nSize3() > riMovingSize3)
nextVarState() .setNSize3(nextVarState() .nSize3() - nMovingSize3);

else

nMovingSize3 = nextVarState() .nSize3U;
nextVarState() .setNSize3(0);

if (netVarStateU.nSize4() > rtMovingsize4)
nextVarState() .setNSize4 (nextVarState() .nSize4 () - riMovingsize4);

else

nMovingSize4 = nextVarstate U nSize4 U;
nextVarState C) .setNSize4 (0);

if (nextVarStateO.nSize5() > nMovingSize5)
nextVarState() .setNSize5 (nextVarState() .nSize5() - nNovingSize5);

else

nMovingSize5 = nextVarStateU.nsize5U;
nextVarState() .setNSize5(0);

if (nextVarStateQ.nsize6() > nMovingSize6)
nextVarState() .setNSize6(nextVarState() .nSize6() - nMovingSize6);

else

n4ovingSize6 nextVarState C) nSize6 C);
nextVarState C) setNSize6 (0);

if (nextVarState() .nSize7() > nMovingSize7)
nextVarState() .setNSize7 (nextVarState() .nSize7 () - nMovingSize7);

else

n1ovingSize7 = nextVarState () nSizel U;
nextVarState() .setNSize7(0);

maxCell->nextVarState() setNSize0(maxCell->nextvarState() .nSizeoU+nMovingsizeO);
maxCell->netVarState() .setNsizel(maxCell->nextVarState() .nsizelU+nMovingSizel);
maxCell->nextVarState C) setNSize2 (maxCell->nextVarState() .riSize2 ()+nMovingSize2);
maxCell->nextVarState () setNSize3 (maxCell->nextVarState () .nSize3 ()+nMovingSize3);
maxCell->nextvarState() set1Size4 (maxCell->nextvarState U .nSize4 ()+nNovirigSize4);
maxCell->nextVarState () setNSize5 (maxCell->nextVarState C) .nSize5 ()+nNovingSize5);
maxceli->nextVar5tate () setNSize6 (maxCell->nextVarState () .nSize6U+nNovingSize6);
maxCell->nextVarState U setNSizel (maxCell->nextVarState () .nSize7 ()+nMovingSize7);
znaxcell->nextVarstate() .setNlridividuals (maxCell->nextVarState() .nlndividuals +

nMovingSizeO + nMovingSize 1+ nMovingSize2 + nMovingSize3 + riMovingSize4+
nMovingSize5 + nMovingSize6 + nNovingSize7)

nextvarState() .setNlndividuals (nextvarState() .nSizeO() + nextVarState() .nSizel () +
nextVarState() .riSize2 (C + nextVarStateU .nSize3() +
nextVarState() .nSize4 () + nextVarState() .nSize5() +
nextVarState() .nSize6() + nextVarState() .nSize() );

/////////////ZND OF ROVING
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I//I//I//I/I//START OF DEATH & REPRODUCTION

double rainO, rainl, rain2, rain3, rain4, rain5, rain6, rain7, rain8, rain9;

Il/I/Start sampling the rainfall for this year

if (coord == TcIVec2D(0,Ofl{
Vector rainYear (42);

*1

if (rainPattern == 1)

/*Vector rainCellVector (30);

rain0 rainl rain2 rain3 rain4 rain5 rain6 rainl rain8 rain9

*1

mt i;
rainCellVector.put_value (0, rainO);

for (i =1; i<3; i++)
rainCellVector.put_value (i, rainl);

for Ci 3; i<6; i++)
raincellVector.put value (i, rain2);

for (i =6; i<l0; i++)
rainCellVector.put value (i, rain3);

for (i 10; i<l5; i++)
rainCellVector.put value (i, rain4);

for (i =15; i<20; i++)
rainCellVector.put value Ci, rain5);

for (i =20; i<24; i++)
rainCellVector.put value (i, rain6);

for (i =24; i<27; i++)
raincellVector.put_value Ci, rain7);

for Ci =27; i<29; i++)
rainCellVector.put_value (i, rain8);
rainCellVector.put_valuo (29, rain9);

if (rainPattern == 2)

/*Vector rainCellVector (30);

rain0 rainl rain2 rain3 raln4 ra±n5 rain6 rain7 rain8 rain9
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rainYear =
meanRain =

rainVec;
randinVector (rainYear);

rainO = 0.2 * meanRain;
rainl = 0.4 * xneanRain;

rain2 = 0.6 * meanRain;
rain3 = 0.8 * meanRain;
rain4 1.0 * meanRain;
rain5 = 1.0 * meanRain;
rain6 = 1.2 * meanRain;
rain7 = 1.4 * meanRain;
rain8 = 1.6 * meanRain;
rain9 = 1.8 * meanRain;



mt i;

for (i =0; i<3; i++)
rainCellVector.put value (i, rainO);

for (i =3 i<6; i++)
rainCellVector.put value (i, raini);

for (i =6; i<9; i++)
rainCellVector.put value (i, rain2);

for (i =9 i<l2; i++)
rainCellVector.put_value (i, rain3);

for (i =12; i<15; i++)
rainCellVector.put value (i, rain4);

for U =15; i<18; i++)
raincellVector.put_value (i, rainS);

for (i =18; i<21; i++)
raincellvector.put value (i, rain6);

for (i =21; i<24; i++)
rainCellVector.put value (i, rain7);

for (i =24; i<27; i++)
rainCellVector.put_value Ci, rain8);

for (i =27; i<30; i++)
rainCellVector.put value (i, rain9);

) I/END of rainfall sampling

matrix b(8,l)
b. replace ( nextVarState () . nSize0 0,

nextVarState () . nSizel 0,
nextVarState () .nSize2 0,
nextVarState() .nSize3 Q,
nextVarState C) nSize4 0,
nextVarState C) . nSize5 0,
next VarState () . nSize6 0,

nextVarState() .nSize7 (>);

matrix pm (8,8>;
pm = Leslie;

double rainceilvalue = randinVector (raincellVector);

nextVarState() .setRainCell (rainCellValue);

double rainFactor = 1; I/Represent the site-specific effect of rainfall on reproduction and
survival
double roadFactor = 1; I/Represent the site-specific effect of roads on reproduction and
survival
double combiriedFactor = 1; I/Combined effect of those two factors.

I/MEAN_ROAD and MEAN RAIN are defined in DgResourceSi.m. h
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if (RepSurEquaRoad = 1) (

roadFactor = 1.0 - (0.01 * (varState() .nRoad() - MEAN ROAD) / MEAN_ROAD);

else if (RepSurEquaRoad == 2)

roadFactor = 1.0 - 0.02 * (varState() .nRoad() - MEAN ROAD) / MEAN_ROAD;

else if (RepSurEquaRoad == 3)
roadFactor = 1.0 - 0.03 * (varState0.nRoad() - MEAN_ROAD) / MEAN ROAD;

else if (RepSurEquaRoad == 4>

roadFactor = 1.0 -

else {roadFactor = 1.0;)

if (RepSurEquaRain == 1)

rainFactor = 1.0 +

0.04

(0.01

*

*

(varState0.nRoad() - MEAN_ROAD) / MEAN_ROAD;

(rainCeilValue - MEAN_RAIN) / MEAN_RAIN);

else if (RepSurEquaRain == 2)
rainFactor = 1.0 (0.02 * (rainCellValue - MEAN RAIN) / MEAN RAIN);



else if (RepSurEquaRain == 3)
rainFactor 1.0 + (0.03 * (rainCellVaiue - MEAN_RAIN) / MEAN_RAIN);

else if (RepSurEquaRain == 4)
rainFactor = 1.0 + (0.04 * (rainCeilValue - MEAN_RAIN) / MEAN_RAIN);

else {rainFactor = l.0;}

if (roadFactor < 0)
roadFactor = 0;

if (rainFactor < 0)
rainFactor = 0;

cornbinedFactor = rainFactor * roadFactor;

double resourcePressure = nextVarState() .nlndividuals () / (varState () .nResourceU+0.00l);

if (resourcePressure > 6)
combinedFactor 1.0 / 0.982; I/The population will not grow any more. Lambda of the

cell is 1.

//////////////f

if (combinedFactor > 1,07)
coinbinedFactor = 1.07; I/for reasonable variation of the projection matrix.

pm = pm * combinedFactor;

b = pm * b;

double sO,sl,s2,s3,s4,s5,s6,s7;
sO = b.get_value (0,0);
si = b.get_value (1,0);
s2 = b.get_value (2,0);
s3 = b.get_value (3,0);
s4 = b.get_value (4,0);
s5 = b.get_value (5,0);
s6 = b.get_value (6,0);
s7 = b.get_value (7,0);

//////////////Update size classes after death & reproduction

next VarState () .setNSize0 (sO);
nextVarState () .setNSizel (Si);
next VarState () .setNSize2 (s2);
nextVarState () .setNSize3 (s3);
next VarState U .setNSize4 (s4);
next VarState U .setNSize5 (s5);
next VarState U .setNSize6 (s6);
next VarState U.setNSize7 (s7);

nextVarState U .setNlndividuals (sO+sl+s2+s3+s4+s5+s6+s7);

I//I/I//I//I END OF DEATH & REPRODUCTION

I//I//I//I//START WRITING CELL-SPECIFIC OUTPUTS TO FILES

if (UtimeStep-l) % outCellFreq) 0)
sprintf(outCell_string, "%d %f %f %f\n",varState() .hexldU,
varState () . oRoad U , nextVarState U . rainCell U , nextVarState U . nlndividuals U);

fout<<outCeli_string;
if (coord == TCIVec2D (brf.upperRightU.iU, brf.upperRightU.jU))

fout ,close U;

I/I//I/I/I/END OF WRITING CELL-SPECIFIC OUTPUTS TO FILES

I//I//I//I//START CALCULATING POPULATION STATISTICS

totalPopulation = totaipopulation + varStateU.nlndividualsU;
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if (coord == TcIVec2D (brf.upperRight.i, brf.upperRightO.jU))
lambda = totalPopulation/ (totalPopLastYear+l);

I/I//I//I//END OF CALCULATING POPULATION STATISTICS

return 0;
II DgResourceCell: :process

mt
DgResourccCell: : setGraphicState (void)
//
1/ called before cells are drawn
//

static vector<TcColor*> cols;
static bool first = true;
if (first)

TcColor: :linearSpread(TcColor("#ffffff"), TcColor("#OOOOff"), cols, 50);
first = false;}

setDrawpoint (false);
setDrawBoundary (true);

mt nVal = (int) ((varState.nIndividua1s() / 1500.0) * 50);

if (nVal >= 50) nVal 49;

const TcColor& fillCol = *cols(nValJ;
boundary() .setFillColor(fillCol);

return 0;

// DgResourceCell::setGraphicState

//////,/////////////////////////////////////////////////,////////,///,/////////,
mt
DgResourceCell: :setOutputState (void)
//
I/called before cells are output
//

return 0;

II DgResourceCell: :setOutputState

/////////,//,///////////,,///////,//////////,//,////,/////,///,//////////////////
// End of DgResourceCell.C://////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
// DgResourceSim.C:
// This file is for building simulator based on structures and methods of simulation cell.
II
///////////////////////////////////////////////////,////////////////////////////

#include <iostream>
using namespace std;

#include "DgResourceCell .h"
include "DgResourceSim. h'
#include "TcColor.h"
#include ' DgBoundedRFS2D .

////////////////////////////////////////////////////////////////////////////////
DgResourceSim: :DgResourceSim (DgphysicalRE'S2D<DgResourceCell>& rf In,

double nlndiv, double nSizeolndiv,
double nSizellndiv, double nSize2lndiv, double nSize3lndiv,
double nSize4lndiv, double n5ize5lndiv, double nSize6lndiv,
double nSize7lndiv, bool useGraphicsln, bool useOutputln,
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const string& outFileNameln)
DgSimDB2DS<DgResourceCell> (rfln, useGraphicsln, useOutputln, outFileNameln),

nlndiv (nlndiv),
nSize0lndiv(nSize0lndiv), nSizellndiv_(nSizellndiv),
nSize2lndiv_(nSize2lndiv), nSize3lndiv(nSize3lndiv),
nSize4lndiv(nSize4lndiv) nSize5lndiv(nSize5lndiv),
nSize6lndiv(nSize6lndiv), nSize7lndiv(nSize7lndiv)

TcColor: :linearSpread(TcColor("#ffffff"), TcColor("#ff0000"), cols, 50);

1/ DgResourceSim: : DgResourcesim

mt
DgResourceSim: :initialize (void)

if (DgSimDB2DS<DgResourceCell>: :initia1ize) return -1;

return reset;

// DgResourceSim<S, V>::initialize

mt
DgResourceSim: :reset (void)

if (DgSimDB2DS<DgResourceCell>: :reset()) return -1;
srand (randSeed);

I/Read the input files of resource, road and hex-ID to Vectors for further retrieval:

Vector resourceVec (nHex);
readfiletovec (resourceVec, resFileName);

Vector roadVec (nHex);
readfile_to_vec (roadVec, roadFileName);

Vector hexldVec (nHex);
readfiletovec (hexldVec, hexldFileName);

I/i//I//I/Road rainfall data:

readfiletovec (rainVec, "raim.txt');

I/I//I/I//Specify mobility for seven size classes.

I//I//I//Read Leslie matrix:
Leslie.projection matrix ;

cout << "Projection matrix :\n";
Lesiie.printO;

I/I/I/I/I/Read information contained in Vectors of resource, road,and hex-ID to hexagons
DgSpatiaios<DgResourceCell>: :iterator it(*this);

hexNuxnber 0;

for (it = begin(); it endO; ++it)

DgLocation tmpLoc((*it)_>locationW;
const DgBoundedRFS2D& brfs = physicalRFs2D().boundedRFS2DO;

const TcIVec2D coord = (brfs.discRFS() .getAddress (tmpLoc) )->address 0;
coost DgsoundedRF2D& brf = *(brfs.grids()(0]);

(*it)_>varState(.) ,setNRoad(roadVec.get_value (hexNumber)) ;
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if (mobilityPattern == 2)

mobilitySizeo = 1;
mobilitySizel = 3;
mobilitySize2 = 5;
mobilitySize3 = 5;
mobilitySize4 5;

mobilitySize5 = 2;
mobilitySize6 = 2;
mobiiitySize7 = 1;



(*it)_>varstate() . setl-iexld (hexldVec.getvalue(hexNuinber));

if (gridResolution == 14)
(*it)_>varState () . setNResource ( (resourceVec.get_value (hexWunber)

*(1 - (*it)._>varStateUnRoad() / 100))*1O,68832) ;

if (gridResolution == 16)
(*it) ->varState () . setNResource ( (resourceVec.get_value (hexNuinber)

*(l - (*it)_>varstateU.nRoad() / lOO))*l.18759)

if ((*it)>varState(.).nResource() >= 1)
(*it)_>varState() setNlndividuals ( (*it)_>varState() .nResource() *4);

else
(*it)_>varState() .setNlndividuals(0);

(*it)_>varState() .setN5ize0((472.O/1907.0) * (*it)_>varState() .nlndividualsU);
(*it)_>varStateUsetNSizel((8150/l9070) * (*it)_>varState() .nlndividualsU);
(*it)_>varStatesetNSize2((292O/l907.0) * (*it) ->varState() . nlndividuals U);
(*it)_>varStatefl.,setNSize3((1l5.O/l907.0) * (*it) ->varState U . nlndividuals U);
(*it)_>varState()setNSize4((64O/19O7.0) * (*it)_>varState() .nlndividuals U);
(*it)_>varStateUsetNSize5((480/19070) * (*it)_>varstate() .nlndividualsU);
(*it)_>varStateU.setNSize6((90.O/1907.0) * (*it)_>varState() .nlndividualsU);
(*it)_>varstateU.setNsize7((ll.O/1907.0) * (*it) ->varState U . nlndividuals U);

totalpopulation = totalPopulation + (*jt).>varState() .nlndividualsU;
(*it)_>nextVarState() = (*it)>varStateU;

/////////////////////////
hexNuither = hexNumber + 1;

return 0;

II DgResourceSim::reset

,////I/I/II/I///I//I/////I,//////////I///II/I//////I//////////II///I//I///II/I//
mt
DgResourceSim: : setOutputState (void)

return DgS1mDB2DS: : setOutput$tate U;

//DgResourceSim: :setOutputStata

///II/////////I///I//////////,,//////////////////II//II/I////I//I//////////I//I
void
DgResourceSim: :output (void)

//DgResourceSim::output

/I/,//I//////I///,///////////////////////////II//II//I//I///II////////////////////////I//// End of DgResourceSim.C://I/////I/I/////,II//II///I///I////I///I///////,,//I/////II///I////I//II//,/////II////I/I
I////II/I///I//////////////////,/II//II/////I///,/I/,I//I//I/I////I////I/I///////I//////I//II oglresource.0 and elasticity.0
//
I/These two files are main program, in which the files DgResourceCell.h, //DgResourceCell.C,
//DeReourceSim.h, DgResourceSiin.0 are used. These files are also written for //parameterizing
i/the model and used for creating executable files to run model's simulations.
I/Note that the code below is of elasticity.C, which has 21 parameters (labeled from 1 to 1/21)
I/The code for ogiresource. C is the same as elasticity. C except it has only 19 parameters
//(from I to 19).
II/I,/I////I/I//I//II//,////////I//II//,,II///III//I///////I/////////I,///II////I,////,/II/

*include <iostreaio>

using namespace std;
#include <stdlib.h>

#include "DgContCartRF. h"
#include "DgSqrD8Grid2DS .h"
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#include "DgDmdD8Grid2DS.h"
#include "DgHexGrid2DS .h"
tinc1ude "TcMIFDisplay .h"
#include "DgResourceSim. h"
#include "DgBoundedRFS2D. h"
#include "DgPhysicalRFS2D.h"

mt main (mt argc, char* argv(])

II process command line arguments

TcBase: :testArgEqual(argc, argv, 21,
string("1.hexItriIsqr4sqr8 2 .maxX 3.maxY 4.saveFreq 5.stopTime \n"

"6. resourceFile 7 .roadFile 8.hexldFile 9.rainpattern 10.mobilitypatern\n"
"11 .MovingEqua# 12 .RepSurEquaRoad 13.RepSurEquaRain 14 .RandSeed\n"

"15. gridResolution
"16.useGraphics l7.useOutput (l8.outFileName] 19.outputCellFreq \n 20.pm#

21.percentChange'));
string geom(argv(1]);
TcIVec2D lowerLeft(0, 0);

TcIVec2D upperRight(atoi(argv[2fl, atoi(argv[3]));
nHex = (atoi(argv[2]) + 1) * (atoi(argv[3]) + 1);
mt saveFreq(atoi(argv[4])); 1/ 0 indicates never save
mt stopTime(atoi (argv(5)));
resFileName = argv[6];
roadFileNane = argv(7);
hexldFileName = argv[8);
rainPattern = atom (argv[9]);
mobilityPattern = atoi (argvflo]);
MovingEqua = atoi (argv[11]);
RepSurEquaRoad = atoi (argv(12J);
RepSurEquaRamn = atoi (argv[13]);
randSeed = atol (argv[14]);
gridResolution atoi (argv[15]);

bool useGraphics = (atoi(argv(16]) == 1);
bool useOutput = (atoi(argv(17]) == 1);

string outFileName;
if (argc > 10) outFileName = argv[18);
outCeilFileName = argv[l8];
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outCellFreq = atoi(argv(191);
jot pm_index = atom (argv[20]);
double percentChange = atof(argv[21]);

if (pm_index == 1)
pmO5 = pm05 * (1 + (percentChange/100.0));

else if (pm_index == 2)
pmO6 = pmO6 * (1 + (percentChange/100.0));

else if (pm_index == 3)
pmO7 = pmO7 * (1 + (percentChange/100.0));

else if (pm_index == 4)
pmlO pmlO * (1 + (percentChange/100.0));

else if (pm_index = 5)
pmll = pmll * (1 + (percentChange/100.0));

else if (pm index 6)

pm2l = pm2l * (1 + (percentChange/lOO,0));
else if (pm_index = 7)

pm22 = pm22 * (1 + (percentChange/lOO.0));
else if (pm_index 8)

pm32 = pm32 * (1 + (percentChange/l00.0));
else if (pm_index == 9)

pm33 = pm33 * (1 + (percentChange/lOO.0));
else if (pm_index == 10)

pm43 pm43 * (1 + (percentChange/100.0));
else if (pm_index == 11)

pm44 = pm44 * (1 + (percentChange/100.0));
else if (pm_index == 12)

pm54 = pm54 * (1 + (percentChange/l00.0));
else if (pm_index == 13)

pm55 = pm55 * (1 + (percentChange/100.0));
else if (pm_index == 14)

pm65 pm65 * (1 + (percentChange/lOO,0));
else if (pm_index == 15)

pm66 = pm66 * (1 + (percentChange/lOO.0));



else if (pm_index 16)

pm76 = pm76 * (1 + (percentChange/lO0.0));
else if (pm_index == 17)

pm77 = pm77 * (1 + (percentChange/l0O.0));
else

/1/1/1/1/11/ build the si.mulator

DgRFNetwork net;
DgContCartRF cc0 (net, "ContCartO");

DgDi5cRFS2D* dgo;
if (geom == "hex")

dgo new DgHexGrid2DS(net, cco, 1, 4, false, true, "HexC12DS");

else

report(string(argv(0]) + "() bad or unimplemented geometry type:
+ geom, TcBase::Fatal);

if (rainPattern 1 && rainPattern != 2)
cout <<"rainPattern# is not included.\n";
cout <<'Let choose 1 or 2.\n";
exit (1)

if (mobilityPattern 1 && mobilityPattern 2) {

cout <<"mobilityPattern# is not included.\n";
cout <<"Let choose 1 or 2\n";
exit (1)

if (MovingEqua 1= 1 && MovingEqua '2 &&
MovingEqua != 3 && MovingEqua !=4)

cout<<"Moving Equation # is not included.\n";
cout <<"Let choose 1, 2, 3 or 4.\n";
exit (1)

if (RepSurEquaRoad != 0 && RepSurEquaRoad != 1 && RepSurEquaRoad != 2 &&
RepSurEquaRoad 3 && RepSurEquaRoad != 4

cout <<"RepSurEquaRoad is not included.\n";
cout <<"Let choose 0, 1, 2, 3 or 4.\n";
exit (1)

if (RepSurEquaRain 0 && RepSurEquaRain != 1 && RepSurEquaRain 2 &&
RepSurEquaRain != 3 && RepSurEquaRain != 4

cout <<"RepSurEquaRain is not inc1uded\n";
cout <<"Let choose 0, 1, 2, 3 or 4.\n";
exit (1)

if (gridResolution != 14 && gridResolution 16)
cout <<"The specified grid resolution is not included.\n";
cout <<"Let choose 14 or 16.\n";
exit (1);

DgBoundedRFS2D bO(*dgo, lowerLeft, upperRight);
DgphysicalRFS2D<DgResourceCell> p0 (bO);

TcMIFDisplay display("MIF");

DgResourceSim resourcel(pO, 0,0,0,0,0,0,0,0, 0,useGraphics, useOutput,outFileNanle);
resourcel. setStopTime (stopTime);
resourcel. setSaveFreq(saveFreq);
StopTime = stopTime;

cout <<"\n Running simulation with: \n"
<<" nHex: "<<nflex<<"\n upperRight: "<<upperRight<<"\n lowerLeft: "<<lowerLeft<<"\n"
<<" resFileName: "<<resFileName<<" \n roadrileName: "<<roadFileName<<" \n hexldFileName:

<< hexldFileName<<" \n"
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<<" rainpattern = "<<rainpattern<<"\n mobilityPattern = "<<mobiiityPattern<<'\n"
<<" MovingEqua = "<<HovingEqua<<"\n RepsurEquaRoad = "<<RepSurEquaRoad
<< \n RepsurEquaRain "<<RepSurEquaRain<<"\n"
<<' gridResolution = '<<gridResolution<<'\n outCeliFileName: "<<outCeilFileName
<<" \n outCeilFreq = "<<outCeiiFreq<<"\n';

resourcel . initialize U;
resourcel . simulate U;
resourcel.postProcess ();

return 0;

/////////////////////////////////////////,//////,/////,////////////////////////////////////
I/End of oglresource.0 and elasticity.0
//
////////////////,///,////////////,/////////////,/,,//,///,//////,///////////////////////,

//
//rmm. C
I/This file i.s to calculate the eigenvalues, eigenvectors, and elasticities
I/of the projection matrix.
I/Header files are from a C++ template matrix library developed by
//
/////////////////////////////////////////////////////////,/////////////////,/////////////

*include <iostream>

#include <complex>

#include 'mtl/matrix .h"
*include "mti/mtl .h"
#include "mti/utiis . h"
#include "mti/matrixmarket_streaxn. h"
#include "mtljmtl2lapack.h"
#include "mtl/denselD.h"
#include "mtljmmio .

mt
main))

using namespace mtl;
using namespace mtl2iapack;

matrix market_stream <double> inns ("test .mm');

lapack_matrix<double>: :type A(mms);

mt N A.ncolsU;

iapack_matrix<double>: :type AA(N,N);
copy (A,AA);
lapack_matrix<double>: :type vr(N,N);
lapackmatrix<double>: :type vi(N,N);
mtl::denselD< std::compiex<double> > wr(N);
mt info;

II Compute the eigenvalues and eigenvectors of A.

info = geev(GEEV_CALC_BOTH, A, wr, vi, vr);

if (info > 0)
cout << "OR failed to converge, INFO = " << info << endi;
return 0;

// Print the eigenvalues and eigenvectors.

cout << "eigenvalues" << endi;
intl: :printvector(wr);

cout << "left eigenvectors' << endi;
mtl: :print_all_matrix(vi);

cout << 'right eigenvectors" << endi;

95



niti: :print_ail_matrix(vr);

I/Extract the dominant left and right eigenvectors to calculate elasticities.

mt imax = max_index(wr);
cout <<"max index of wE: imax "<<imax<<endi;
compiex<double> Max Lambda;
Max Lambda = wr(imax];
double real lambda = Max Lambda, real U;
cout <<"real_lambda = "<<real iambda<<endl;

typedef matrix<double, rectangle<>, dense<>, row_major>: :type mymatrix;
mymatrix mright (N, N);
copy (vr, mright); I/yr contains all right eigenvectors.

mymatrix mieft (N,N);
copy (vi, mleft); //vl contains all left eigenvectors.

mymatrix: :submatrix_type sub right;
mymatrix: :submatrix_type sub_left;

sub_right = mright.sub_matrix (0,N,imax,imax + 1); //sub_right is right dominant eigenvector
sub_left = mleft.sub_matrix (0,N,imax,imax + 1); I/sub_left is left dominant eigenvector

cout<<"right eigenvector Max_Lambda: \n";
mtl: :print_ali_matrix (sub_right);

cout<<'left eigenvector - Max_Lambda: \n";
mtl: :print all_matrix (sub_left);

////////////////////Calculate elasticities

double sum =0;

for (mt i 0; i<N; i++)
sum = sum + sub_right(i3O) * sub_left(i3O);

cout <<"\n sum = <w,v> = "<<sum<<zendl;

mymatrix Sensitivity(N,N);
for (mt i =0; i<N; i++)

for (mt j 0; j<N;j++)
Sensitivity(i,j) = sub_left(i3O) * sub_right(j,0) / sum;

mymatrix Elasticity (N,N);
for (mt i =0; i<N; i++)

for (mt j =0; j<N;j++)
Elasticity (i,j) = Sensitivity (i,j) * AA(i,j) / real_lambda;

cout <<"Sensitivity matrix: \n";
mtl: :print all matrix (Sensitivity);

cout <<"Elasticity matrix: \n";
mtl: :print all matrix (Elasticity);

//
i/End of rmm.0
II
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