DURABILITY OF LOW-DENSITY CORE MATERIALS AND SANDWICH PANELS OF THE AIRCRAFT TYPE AS DETERMINED BY LABORATORY TESTS AND EXPOSURE TO THE WEATHER

May 1947

This Report is One of a Series Issued In Cooperation with the ARMY-NAVY-CIVIL COMMITTEE

AIRCRAFT DESIGN CRITERIA
Under the Supervision of the
AERONAUTICAL BOARD

No.) 1573

UNITED STATES DEPARTMENT OF AGRICULTURE
FOREST SERVICE
FOREST PRODUCTS LABORATORY
Madison, Wisconsin
In Cooperation with the University of Wisconsin

DURABILITY OF LOW-DENSITY CORE MATERIALS AND

SANDWICH PANELS OF THE AIRCRAFT TYPE AS DETERMINED BY LABORATORY TESTS AND EXPOSURE TO THE WEATHER 1

Part I

By

BRUCE G. HEEBINK, Engineer WILLIAM J. KOMMERS, Engineer and JOHN J. KUNZWEILER, Technologist

Introduction

The purpose of these studies was to obtain information on the durability of low-density core materials and sandwich constructions of the aircraft type. A need for this information exists because of the probability of widespread application of sandwich-type construction in high-speed aircraft. The work was done at the Forest Products Laboratory under the joint direction of the Army Air Forces, the Bureau of Aeronautics, Navy Department, and the Civil Aeronautics Authority.

The results of various tests on three core materials; balsa, cellular cellulose acetate, and cellular hard rubber, and the nine combinations of these three cores with three face materials; aluminum, glass cloth-resin, and plywood, are presented in this report. Specimens of the same core and face materials, but invovling different adhesives, are at present undergoing test. Additional core materials, of the honeycomb type, are currently being prepared for test. Results of tests now in progress will be reported in future supplements to this report.

This report is divided into two sections: A - Tests on Core Materials, and B - Tests on Sandwich Panels. The three core materials were subjected to the following exposures:

This is one of a series of progress reports prepared by the Forest Products
Laboratory relating to the use of wood in aircraft. Results here reported
are preliminary and may be revised as additional data become available.

- 1. Water immersion
- 2. High humidity
- 3. High temperature
- 4. Alternate high-low temperature combined with alternate high-low humidity
- 5. Conditions favoring decay
- 6. Flame
- 7. Aircraft liquids

The nine sandwich combinations were subjected to the following exposures:

- 1. Water immersion
- 2. High humidity
- 3. High temperature
- 4. Alternate high-low temperature combined with alternate high-low humidity
- 5. Outdoor weathering

SECTION A - TESTS ON CORE MATERIALS

Summary

End-grain balsa wood, cellular hard rubber, and cellular cellulose acetate specimens were conditioned to equilibrium at a relative humidity of 65 percent and a temperature of 75° F. and then subjected to the following treatments: (1) immersion in running tap water for (a) 24 hours, (b) 40 days, (c) 40 days and reconditioned at 75° F. and 65 percent relative humidity; (2) (a) conditioned to equilibrium at a relative humidity of 97 percent and a temperature of 80° F., (b) treatment 2a followed by reconditioning at 75° F. and 65 percent relative humidity, (3) (a) heated for 240 hours at a temperature of 200° F., (b) treatment 3a followed by reconditioning at 75° F. and 65 percent relative humidity, (4) exposed to (a) one, (b) five, and (c) 10 cycles of high-low temperatures, each cycle consisting of 24 hours at a temperature of 175° F. and 75 percent relative humidity, 24 hours at a temperature of -20° F., 24 hours at 175° F. dry heat, and 24 hours at -20° F. At the end of the last cycle the specimens were reconditioned at 75° F. and 65 percent relative humidity.

One group of specimens of each core material was tested after the initial conditioning to provide a basis of comparison with test values obtained from the specimens exposed to the different conditions. Ten other groups of specimens were provided, one for each of the exposures in the preceding list, and tested after each particular exposure had been accomplished.

The data obtained from the tests included ultimate strength in compression, stress at the proportional limit, modulus of elasticity, yield at 0.7 percent strain as obtained from compression, ultimate strength in tension, modulus of rigidity and specific gravity. Measurements were taken for the determination of changes in specimen dimensions and weight.

The results of the tests showed that of the three materials, balsa had the poorest weight and dimensional stability when immersed in water, heated for long periods, or subjected to high humidities. It retained its compressive strength at high temperatures but lost considerable strength when immersed in water or subjected to high humidities. The elastic properties followed the strength properties, increasing slightly when dry and decreasing when wet. The results thus follow the general strength-moisture relations as found for native wood species 2

Of the three materials, the cellular hard rubber when immersed in water had good dimensional and weight stability and retained its compressive strength better than the other two materials, but it was permanently weakened. The balsa and cellular cellulose acetate had better recovery characteristics than the cellular hard rubber when reconditioned at 75° F. and 65 percent relative humidity after immersion. The cellular hard rubber had very poor strength properties when heated to 200° F. for 240 hours, retaining only one-third of the original values, and it did not recover well when reconditioned. It was likewise most affected by the cyclic exposures, decreasing in all properties except modulus of rigidity. The loss in strength might have been due to the high-temperature portion of the cyclic exposure.

In general, the cellular cellulose acetate had the best properties of the three materials. Although it was inferior to the other materials in a few individual exposures, it had the best weight and dimensional stability under a majority of them. It was the least affected by the cyclic exposures and maintained a better portion of its tensile strength under dry heat. While the material was reduced considerably in strength when immersed in water or subjected to high humidities, its strength recovery after it was reconditioned was very good.

Rated on a specific gravity basis, the balsa had much higher strength and elastic properties than either the rubber or acetate; the unsatisfactory characteristic of balsa was its very great change in weight when equilibrium moisture conditions were varied. Even with its increase in weight when wet, however, the balsa had greater strength and stiffness than the other two materials on a strength-weight ratio.

The cellular cellulose acetate had approximately the same strength-weight properties as the cellular hard rubber and appeared to be a good material under severe exposures. The rubber had good properties when wet, but lost considerable strength when subjected to the high temperatures that may be encountered in aircraft structures.

In bottle decay tests, untreated balsa was severely decayed (as measured by percentage loss in weight) when exposed to <u>Poria microspora</u> (No. 106), <u>Poria incrassata</u> (No. 563), and <u>Polyporus versicolor</u> (No. 72074) for periods

^{2&}quot;Moisture Content - Strength Adjustments for Wood." Forest Products Laboratory Report No. 1313, December 1941.

^{2&}quot;A Study of Temperatures Attained in a Dummy Aircraft Wing During the Summer at Madison, Wisconsin." Forest Products Laboratory Report No. 1343 - B, January 1943.

of 1, 2, and 3 months, and when exposed in soil. Under the same conditions, cellulose acetate and cellular hard rubber sustained no weight losses. Treatment of the balsa with 2.0 percent pentachlorophenol in acetone was required to prevent decay.

Flame tests made in accordance with Method No. 2021 of L-P-406a "Federal Specification for Plastics, Organic: General Specifications, Test Methods" gave an average rate of burning, in inches per minute, of 34 for cellular hard rubber, 30 for balsa and 10 for cellular cellulose acetate.

The same three core materials were immersed in the following aircraft liquids: iso-propyl alcohol, ethylene glycol, 3580 oleo fluid, 3586 oleo fluid, 100 octane gasoline, used crankcase oil, and distilled water. None of the core materials was greatly affected by the 7-day immersion, except balsa, which materially increased in weight and dimensions when immersed in water, ethylene glycol, 3586 oleo fluid, and alcohol. After reconditioning for 39 days most test specimens returned essentially to their original weight and dimensions; however, an appreciable weight increase was retained by specimens immersed in 3580 and 3586 oleo fluids and used crankcase oil, particularly by the balsa specimens. A slight amount of permanent shrinkage in dimensions was noted after reconditioning acetate and rubber cores, while balsa, notably the specimens exposed to ethylene glycol, retained a small amount of permanent swelling.

Description of Materials

Balsa

Balsa passing the following specifications was obtained from a commercial source: balsa lumber, surfaced two sides, weight 6 to 9 pounds per cubic foot, kiln-dried, random widths (3 inches minimum), random lengths (6 feet minimum). Thickness, 1-1/2 inches or 2-1/2 inches with not less than 50 percent of the material 2-1/2 inches in thickness, with \pm 1/8 inch allowable tolerance.

Cellular Hard Rubber

The cellular hard rubber was an expanded, hard, black, synthetic sponge rubber of the butadiene-acrylonitrile type, hereafter referred to in this report as cellular hard rubber, or merely as rubber. It was received in the form of slabs, approximately 1-1/2 by 20 by 36 inches, from a commercial source. The density, after removing the outer hard skin and adjacent high-density material, varied between 6.2 and 7.2 pounds per cubic foot. A cross section view of a slab is shown in figure 1.

Appendix I, note 1.

Cellular Cellulose Acetate 5

The cellular cellulose acetate was manufactured commercially in a pilot plant from cellulose acetate and approximately 3 percent of chopped-glass fibers by an extrusion process employing heat and pressure.

The material was received in the form of extruded bars, white in color, 5/8 by 2-5/8 inches in cross section and from 4 to 10 feet in length. The outer surface of the bar was composed of a dense firm skin, which was subsequently removed. After removal of the outer skin, the density ranged between 6.0 and 6.8 pounds per cubic foot.

A view of the material is shown in figure 2.

Preparation of Materials

Balsa

Balsa pieces as received were kiln dried to a moisture content (5 to 7 percent) corresponding approximately to the relative humidity of the atmosphere in the work rooms.

The pieces were accurately jointed and planed to rectangular shapes, which were sawed into end-grain slabs 1/2 inch in thickness, or flat-sawn boards 1/2 inch thick, by ordinary woodworking machinery. Despite the care used in sawing the balsa slabs, the end-grain surfaces were occasionally slightly wavy because the higher density summerwood produced ridges and the lower density springwood formed valleys. A view of the saw set-up for cutting end-grain slabs is shown in figure 3.

Cellular Hard Rubber

The slabs of cellular hard rubber were jointed to remove the tough outer skin and adjacent layer of high-density material and subsequently cut on a band saw and planed to form sheets approximately 1/2 inch thick. In general, ordinary woodworking machinery and procedures were employed.

Cellular Cellulose Acetate

The bars of cellular cellulose acetate were cut into lengths approximately 48 inches or less for ease in handling. The outer skin of one side and of both edges of each bar was removed by jointing, after which the bar was reduced to 1/2-inch thickness by the use of a wood-cutting band saw running at a rate of 4,000 feet per minute and having five teeth per inch. The surface produced by the band saw compared favorably with surfaces produced by the jointer. The band saw set-up is shown in figure 4.

⁵Appendix I, note 2.

Preparation of Test Specimens

In general, the specimens for strength tests conformed to the specifications given in the Forest Products Laboratory Report No. 1555.6

Compression Flatwise

Compression specimens 2 inches square by 1/2 inch thick were carefully cut from a number of prepared pieces of each of the three core materials. The 1/2-inch thickness was selected because it was the maximum that could be obtained from the cellular cellulose acetate. The 2-inch dimensions represented an arbitrary and convenient test size. It appeared advisable to have the specimen size common to all three materials in order that the effects of subsequent exposures would be more nearly comparable for each of the materials.

Plate Shear

Plate shear specimens, 16 inches square by 1/2 inch thick, were prepared by gluing together a sufficient number of smaller pieces, properly oriented, to obtain the modulus of rigidity associated with shear distortion in the length-thickness plane of the material when used as the core in a sandwich construction.

Balsa specimens were prepared by edge gluing three pieces of flat-sawn boards.

Strips of cellular hard rubber, 5/8 inch wide by 1 inch thick by 17 inches long were cut and glued together to form plates 5/8 inch thick by approximately 17 inches square. The length and thickness of the strips were parallel to the length and thickness dimensions of the slabs as received. The plates were jointed and planed to a uniform 1/2 inch thickness and trimmed to dimension in directions parallel and perpendicular to the glue lines.

The procedure used in preparing plate shear specimens from cellular cellulose acetate was identical to that described for rubber specimens except that the thickness of the strips was 1/2 inch.

Tension

Tensile specimens were prepared by bonding l-inch aluminum cubes to the faces of 1/2 inch thick strips of end-grain balsa, and plywood blocks to similar strips of cellular hard rubber and cellular cellulose acetate. The specimens were then cut to the desired contour and 1 inch square cross section by normal woodworking methods. A view of the bonded assemblies and finished specimens is shown in figure 5.

Tentative Methods of Test for Determining Strength Properties of Core Materials for Sandwich Construction." February 1946.

Decay Specimens

Balsa.—All balsa used in the decay tests was selected from material with a density of 6 to 9 pounds per cubic foot at 75° F. and 65 percent relative humidity. The test specimens were 2-1/2 by 1 by 1/2 inch with the shortest dimension, or thickness, parallel with the direction of the grain. In addition to the untreated or control specimens, flat-sawed, conditioned specimens approximately 2 by 1 by 3/8 inch in size were also treated with 0.1, 1.0, and 2.0 percent acetone solutions of commercial grade pentachlorophenol applied under a vacuum.

Cellular cellulose acetate. -- Cores 1/2 inch thick, from which the 2-1/2- by 1-2-inch specimens were cut, were prepared from the original thicker sections of cellular cellulose acetate.

Cellular hard rubber. -- The skin on the cellular hard rubber was removed, and 1/2-inch cores were prepared from which the 2-1/2- by 1- by 1/2-inch specimens were cut.

Fungi. -- The fungi used were: Poria microspora (No. 106) and Foria incrassata (No. 563), both brown-rot fungi; and Polyvorus versicolor (No. 72074), a white-rot fungus. The fungi grew on a substrate of 25 cc. malt agar (Trommer's malt extract, 25 grams; bacto-agar, 20 grams; and distilled water, 1000 cc.) slanted in 6-ounce French-square bottles. The test specimens were held away from direct contact with the substrate by means of two glass rods about 0.14 inch in diameter. Specimens were also placed in uninoculated moistened soil? in soil bins.

The distribution of the test specimens among the various exposure conditions of this test are given in table 6.

Flame Test Specimens

The specimens for flame tests were 1/2 by 1/2 by 5 inches cut from the respective core materials after removal of the outer skin.

Aircraft Liquid Exposure Specimens

Twenty-one pieces, 1/2 by 1 by 3 inches in size, were cut from each core material. The balsa selected was within the range of 6 to 9 pounds per cubic foot when in equilibrium with air at 65 percent relative humidity and 80° F. It was cut with the grain parallel to the 1/2-inch dimension.

The chemical test liquids used were iso-propyl alcohol; ethylene glycol; 3580 oleo fluid, hydraulic (light petroleum base) Specification No. 3586-c; 3586 oleo fluid, hydraulic (castor oil base) Specification No. 3586-c Grade A - heavy; 100 octane gasoline; used crankcase oil; and distilled water.

⁷The average soil moisture, oven-dry basis, was 21.6 percent; 1/16-inch birch heartwood veneer buried in it 24 hours attained an average moisture content of 42.5 percent. The pH of the soil varied from 5.73 to 6.1.

Treatment of Specimens

All specimens were conditioned to approximate weight equilibrium in a room maintained at 75° F. and 65 percent relative humidity. The control specimens were then tested and the remaining specimens subjected to treatments described in the following discussion.

Water Immersion

The specimens were placed on small wire racks to prevent floating and contact with each other, and immersed in a tank of running water. The tank was 18 inches wide by 34 inches long by 15 inches high and provided with an overflow opening. Continuously running water was supplied by a small hose connection to the drinking water supply of the Laboratory. Temperature data taken by a recording thermometer indicated that the water temperature was approximately 60° F. The immersion periods were 1 day and 40 days.

High Humidity

Specimens were placed in a room in which a temperature of 80° F. and a relative humidity of 97 percent were automatically maintained. The specimens remained in this atmosphere until weight observations indicated that they had reached approximate equilibrium.

When weight equilibrium was reached, one-half of the specimens were tested immediately. The remainder were placed in a room maintained at 75° F. and 65 percent relative humidity until weight equilibrium was attained, after which they were tested.

High Temperature

Specimens were exposed continuously for 240 hours to dry heat at 200° ± 10° F, in an insulated box equipped with steam pipe radiators and a circulating fan. At the conclusion of the heating period, one-half of the specimens were tested immediately at a temperature of 200° F., while the remainder were reconditioned to equilibrium with 75° F. and 65 percent relative humidity and then tested.

Cyclic Exposures to Alternate High and Low Temperatures Combined with High and Low Humidities

Specimens were exposed in a manner conforming essentially to Method No. 6011 described in Federal Specification LP-406a, Flastics, Organic; General Specifications, Test Methods, "Accelerated Service Tests (Temperature and Humidity Extremes)". An exposure cycle was composed of the following treatments:

- (a) 24 hours in a small kiln automatically operated at 175° F. and 75 percent relative humidity
- (b) 24 hours in a mechanically refrigerated room maintained at -20 + 5° F.
- (c) 24 hours in the small kiln, mentioned in (a) at 175° F. without humidity control
- (d) 24 hours as described in (b)

The cycle was continuously repeated, except that every sixth day the 24-hour period in the refrigerator was increased to 48 hours.

It may be noted that the 24-hour period between treatments (a) and (c) permitted the kiln to dry out.

Specimens were exposed for 1, 5, and 10 cycles respectively. At the end of the respective cycles one-third of the specimens were reconditioned to approximate weight equilibrium with 75° F. and 65 percent relative humidity and tested.

Description of Test Procedures

In general, the test methods conformed to, or were similar to, those described in Forest Products Laboratory Report No. 1555 "Tentative Methods of Test for Determining Strength Properties of Core Material for Sandwich Construction," February 1946.

Compression Flatwise

Compression tests were conducted by applying loads in the direction parallel to the thickness of the specimen by means of a universal testing machine equipped with a hydraulic capsule and load indicator. When end-grain balsa specimens were tested, the capsule and load indicator were omitted because the capacity of these instruments was exceeded and the applied loads were high enough to be easily and accurately read on the weighing scale of the testing machine. In general, the rate of head motion under no load was 0.0038 inch per minute.

Deformations to 0.00001 inch were observed by means of a 1/4-inch gage length compressometer attached to two opposite faces of the specimen and to 0.0001 inch by two dial indicators, which measured the total deformation of the specimen. Load deformation data were observed to maximum load. A typical test arrangement and the device for alining the small brads used in attaching the gages are shown in figure 6.

Plate Shear

Plate shear tests for the determination of the modulus of rigidity conformed to the testing procedure described in Forest Products Laboratory Report No. 1555. This testing procedure is also described in and is a part of American Society of Testing Materials Specification D805-45T, "Tentative Methods of Testing Plywood, Veneer, and Other Wood and Wood-Base Materials." A view of the test arrangement is shown in figure 7.

Tension Flatwise

Tension flatwise tests were conducted in the manner described in Forest Products Laboratory Report No. 1555, except that the rate of head travel of the testing machine was 0.05 inch per minute.

General

All tests, except those which required a temperature of 200° F., were conducted in a room in which the temperature and humidity were controlled at 75° F. and 65 percent, respectively. Dimensions and widths of all specimens were taken immediately before test. Normal testing techniques or practices were supplemented with the following variations:

Specimens that were immersed for 1 and 40 days were blotted to remove the surface or free water, weighed, measured, and tested wet immediately.

The specimens exposed to high humidity (97 percent) and not reconditioned were kept in a closed container (a few at a time) to prevent a change in their moisture level during the interval of time required for weighing, measuring, and awaiting test.

A large and a small insulated plywood box, each housing the specimen and necessary apparatus, were used to conduct tests at 200° F. The large box permitted plate shear and tension tests and the small box, compression tests. Each box was equipped with a doubled glazed door and windows (to permit observations), hand holes for apparatus adjustments, a thermometer, several heating coils, a thermostat, and a fan or means of circulating the air. Views of the boxes are shown in figures 8, 9, and 10.

Decay

- (1) All test specimens were conditioned at 80° F. and 65 percent relative humidity for about 3 weeks until approximate equilibrium weights were reached, and the weights recorded.
- (2) The balsa specimens designated for preservative treatment were removed and treated. They were then reconditioned as before for about 5 weeks and weighed, as were the untreated specimens.

- (3) The test specimens (except acetate and rubber, which received no treatment) were surface disinfected by autoclaving for 30 minutes at atmospheric pressure.
- (4) The test specimens were placed in test bottles or soil, as recorded in table 6, and incubated at room temperature (about 82° F.).
- (5) The specimens were removed from the test conditions at the end of 1, 2, and 3 months. They were cleaned of mycelium or soil and weighed.
- (6) The test specimens were returned to conditions of 80° F. and 65 percent relative humidity for a minimum period of about 6 months, until they were in approximate equilibrium, and weighed.
- (7) The percentage change in weight, based on the approximate equilibrium weights at 80° F. and 65 percent relative humidity before and after exposure, were computed as follows:

Weight at step 2 - weight at step 6 x 100
Weight at step 2

Flame

Flame tests were in accordance with Method No. 2021 of L-P-406a, "Federal Specifications, Test Methods."

Aircraft Liquids

The core specimens were first conditioned for 7 days in a room maintained at 75° F. and 50 percent relative humidity. They were then weighed to the nearest milligram on an analytical balance kept in the same room under the same conditions, and their length, width, and thickness dimensions were measured with a micrometer caliper to the nearest 0.001 inch. Two measurements were made of both width and thickness, one on each end of the specimen, and the average was recorded. Of the 21 specimens of each core material, three were selected at random for immersion in each of the seven liquids.

The specimens were placed in quart cans in layers, three layers per can, each layer composed of three specimens of a single core material laid edgewise upon wire screen of 1/4-inch mesh. The cans were filled with enough liquid to cover all specimens completely. A maple block I inch thick was placed upon the top layer in each can to insure that the specimens would remain submerged, and the can was closed with a lid.

The core materials were allowed to soak for 7 days in a room maintained at approximately 75° F. Each day the liquids were agitated by shaking each can gently. At the end of the 7-day soaking period, the specimens were removed from the containers, one specimen at a time, wiped with a dry cloth, weighed in a closed weighing bottle, and measured as before in each dimension to the nearest 0.001 inch.

Because of the possibility that soluble constituents might be removed from the core materials by the liquid, all specimens were dried for 7 days in the conditioning atmosphere (75° F. and 50 percent relative humidity), and then reweighed. As a final check, all specimens were conditioned for 32 days more and then weighed and measured again.

Results and Discussion

Physical Appearance of Specimens During Various Treatments

The physical appearance of the specimens during immersion in water conformed generally to expectations, except for one unusual phenomenon. At about the midpoint of the immersion period, a nearly colorless, slimy or gelatinous film, which could not be positively identified, appeared on the specimens. The cause or source of the film was not known, although it was thought that the extractives in the wooden strips around the wire trays might be contributing to a chemical reaction involving the zinc coating on the wire.

Very little distortion in the shape of the specimens appeared during the reconditioning period following immersion.

During the 40 days of immersion, the cellular rubber and acetate reached approximate weight equilibrium, while the end-grain balsa attained about 80 percent of its estimated weight equilibrium.

Specimens exposed to 80° F. and 97 percent relative humidity displayed no unusual behavior. Although extensive weight observations were not made during the exposure period, the data taken indicate that approximately 70 to 80 days were required for the specimens to reach approximate weight equilibrium.

Cellular hard rubber plate-shear specimens showed some distortion when exposed for 240 hours to dry heat at 200° F. Some embrittlement of the surface texture was also noted. Balsa and cellular cellulose acetate exhibited no apparent change.

Cyclic exposures to high and low temperatures and humidities affected the cellular hard rubber plate shear specimens much the same as did the exposure to dry heat at 200° F. Several additional specimens from which the outer dense layer was not completely removed had considerably more surface distortion. Small surface irregularities were observed in the balsa and cellular cellulose acetate.

Water Immersion

Table 1 is a compilation of the results of the tests on balsa, cellular hard rubber, and cellular cellulose acetate after immersion in water at 60° F. for (a) 24 hours and (b) 40 days, and (c) reconditioning after (b) to equilibrium with 75° F. and 65 percent relative humidity.

(a) Specimens immersed for 24 hours.—Of the three materials, the balsa specimens had the least dimensional stability and after 24 hours immersion had increased approximately 1-1/2 times their original weights. The acetate specimens increased approximately 45 percent and the rubber specimens approximately 30 percent of their original weights. The bond between the tension blocks and the balsa was not sufficient to withstand the high tensile stresses developed, and failure took place largely in the bond. The strength of bond developed in the rubber and acetate specimens was sufficient to cause these materials to fail in tension. The results of the tension tests showed that the immersion lowered the tensile strength of the acetate and rubber approximately 50 percent. The balsa tensile specimens maintained their strengths after immersion. The modulus of rigidity of the rubber specimens did not appear to be materially affected by immersion, but the values for balsa and acetate were reduced by about 25 percent.

The data obtained from the flatwise compression tests showed that the balsa had a greater ultimate strength and modulus of elasticity after treatment than the other materials. The rubber which lost approximately 25 percent of its original strength, showed less change after immersion than either the balsa or acetate, which lost approximately 50 percent. The yields at 0.7 percent strain for the three materials were reduced in general, approximately the same amounts as their respective ultimate strengths. In modulus of elasticity, the rubber lost about 18 percent compared with the control value; the balsa and acetate, about 35 percent.

- (b) Specimens immersed for 40 days.—The balsa wood specimens continued to gain in weight and increase in dimensions during the 40-day immersion period. The acetate and rubber changed to a lesser degree after the first 24 hours. The strength values for the three materials were not appreciably changed by the increase in immersion time. The modulus of elasticity of the materials appeared to change to a lesser degree than after immersion for 24 hours, the rubber showing no decrease and the balsa and acetate losing approximately 20 percent of their original values.
- (c) Specimens immersed for 40 days and reconditioned.—The specimens of balsa that were subjected to 40 days immersion in water and then reconditioned to equilibrium with 75° F. and 65 percent relative humidity before testing, showed an overall return to approximately 85 percent of the values obtained from the control specimens. The rubber specimens returned to approximately 90 percent of the control values. After reconditioning, balsa did not return completely to original dimensions, but for both the rubber and acetate the final dimensions were less than the originals. It also appeared that the acetate retained its compressive and tensile strengths after immersion and reconditioning better than the rubber and the balsa, since the specimens were able to withstand 99 and 91 percent of the control stress against 82 and 88 percent for balsa and 72 and 79 percent for rubber, respectively.

Exposure to High Humidity

Table 2 is a compilation of the results of tests on the same materials when conditioned to equilibrium with 80° F, and 97 percent relative humidity, and also after reconditioning at 75° F. and 65 percent relative humidity.

Again the balsa specimens increased considerably more in weight and in dimensions than the other two materials. The rubber retained a better proportion of its compressive strength and shear modulus. All three materials lost about one-third of their tensile strength after exposure. Except in tensile strength, the test values obtained after reconditioning were approximately equal to the control values.

Exposure to High Temperature

Table 3 is a compilation of the results of tests on the specimens that were heated to 200° F., dry heat, for 240 hours and also when reconditioned at 75° F. and 65 percent relative humidity. Except in thickness, the balsa showed the greatest decrease in weight and dimensions and the rubber the least when weighed and measured at 200° F. Although the tensile strength of the rubber was reduced approximately 65 percent, it was reduced only about 35 and 15 percent for balsa and acetate, respectively. After reconditioning, the tensile strengths of the rubber and acetate showed permanent weakening due to the heat, testing approximately 60 percent and 75 percent, respectively, of their control strengths. This was not due to a weakness in the glue bonds. In compression, the rubber lost approximately 65 percent of its original strength but, after reconditioning, the ultimate compressive strength was about 85 percent of the control value. The compressive strength values obtained from the balsa specimens tested after reconditioning were also about 85 percent of the control values. The shear modulus of the materials was not permanently changed by the high temperature exposure.

Exposure to Cycles of High and Low Temperatures Combined with High and Low Humidities

Table 4 gives the results of the tests on specimens subjected to 1, 5, and 10 cycles of high and low temperatures combined with high and low humidities. One cycle consisted of 24 hours at 175° F. and 75 percent relative humidity, 24 hours at -20° F., 24 hours at 175° F. dry heat, and 24 hours at -20° F. All specimens were conditioned to equilibrium at 75° F. and 65 percent relative humidity after cyclic exposure prior to testing. In general, the three materials stood up well under the heating and freezing cycle. The rubber specimens were the most affected, losing up to 20 percent in compressive and 25 percent in tensile strength after exposure. The acetate specimens were the least affected, for they retained their compressive strength for all cycles and lost approximately 20 percent in tensile strength. The balsa specimens dropped approximately 10 percent in compressive strength and 17 percent in tensile strength after 10 cycles of exposure. All three materials maintained their modulus of rigidity throughout the exposures.

Table 5 is a condensation of tables 1 through 4 listing the results as ratios for all tests of the final strength or property after exposure to the control value from tests of specimens conditioned to equilibrium with 75° F. and 65 percent relative humidity.

Decay Resistance

Results for the balsa specimens (excluding those treated with 2 percent preservative) are reported individually in table 7 in order that the density, preservative retention, and amount of decay of these specimens may be compared. A summary for these specimens, as well as the remaining ones in test, is given in table 6.

Growth of all the fungi over the balsa control specimens in bottles was good and a considerable amount of weight loss was sustained; there was also a considerable amount of weight loss for the specimens buried in soil. In general, the weight losses were greater as the length of exposure increased. Specimens attacked by <u>Poria incrassata</u> were brown, shrunken, and curved. The cross-section surface resisted somewhat indentation by the thumb nail. Specimens attacked by <u>Polyporus versicolor</u> were yellowed, only slightly shrunken or distorted, and very light in weight. The cross section offered but slight resistance to pressure of the thumb nail.

The response of the fungi to the balsa specimens containing preservative was varied. <u>Poria microspora</u> was very susceptible to the preservative during the first 2 months of exposure. The effect of the preservative in concentrations at and below 1.0 percent, however, seemed to diminish with time in the case of all the fungi.

The 2.0 percent concentration of the preservative was sufficient to suppress all the fungi in the test bottles. At the end of the test re-isolations were attempted from 18 bottles, and in two-thirds of the cases the results were negative. If this type of test is considered acceptable, a concentration of 2.0 percent pentachlorophenol is shown to be adequate to protect the balsa specimens against the fungi tried. It should also be noted, in support of this type of test, that the specimens treated with 2.0 percent pentachlorophenol exposed to soil sustained no losses.

Neither cellular cellulose acetate nor cellular hard rubber sustained any significant weight losses. The growth of the fungi over these specimens varied, although most of the cultures appeared normal. The rubber specimens were well covered by <u>Poria microspora</u> and the acetate specimens by <u>Poria incrassata</u>. <u>Polyporus versicolor</u> did not achieve good growth in either case. The acetate specimens were somewhat stained by contact with the fungi, while no change was apparent in the rubber. Slight contamination by <u>Penicillium</u> and <u>Aspergillus</u> spp. was observed in many of these tests.

It was planned to make a more careful analysis of the weight changes of the specimens based on the behavior of the reference specimens. However, when the density of the various balsa specimens, as well as the retention of the preservative, was found to vary so widely this was abandoned. Therefore, the change in weight of each specimen was based on a conditioned weight after the preservative had been added and again after exposure to test. The weight of preservative was thus included in all computations, and the results were subject to any changes in weight of the preservative. While these values were small as far as any consequential decay loss was concerned, they undoubtedly accounted for variations that did occur. The results

indicated that the effect of the preservative diminished with time of exposure; presumably some of the preservative was volatilized during this time. An idea of the behavior of the reference samples may be obtained from table 7, where changes in weight after exposure to sterile agar (simulating exposure to test) and to 65 percent relative humidity are shown. A technique that might be employed to advantage in future tests would be to expose all specimens to a high humidity under sterile conditions for a time before they are conditioned for the test at a lower humidity. This would allow the application of a desorbing gradient in obtaining equilibrium weights before the test, as well as afterward.

In computing the density of the specimens, the weight of each at 65 percent relative humidity and 80° F. before preservative was added was used. The volume used was the average of 35 reference specimens held under the same conditions.

There seemed to be no relationship between the density of the specimens, retention of preservative, and the weight loss. At retentions of 0.0950 pound per cubic foot or more, however, there were only two or three cases of consequential weight loss. It was observed that most control specimens were more or less uniformly decayed, while in many of the treated specimens the decay was likely to occur in pockets or at one end. This seemed to indicate failure of this method of treatment to disperse the preservative completely.

Flame Tests

Flame tests were made on end-grain balsa, cellular hard rubber, and cellular cellulose acetate core materials. A summary of the results is given in table 8.

Aircraft Liquids

Table 9 shows the average changes in weight of the specimens of balsa, rubber, and cellular cellulose acetate after 7 days of immersion in aircraft liquids, after immersion followed by 7 days of conditioning, and after immersion followed by 39 days of conditioning. Also shown in the table are the average changes in thickness, width, and length after 7 days of immersion and after immersion plus 39 days of conditioning. The changes are expressed as percentages based upon the weight and dimension of the specimens after the initial conditioning.

The percentage increase in weight of balsa, after 7 days of immersion in the liquids, was higher than that for the other core materials. Water was absorbed by balsa to a greater extent than were the other liquids. The core materials appeared to have lost no solid matter while in the solutions, except perhaps the rubber in the alcohol and gasoline.

The rubber showed only slight dimensional change in any of the seven liquids tested.

The balsa specimens showed but slight dimensional change in the petroleum oleo fluid, gasoline, or crankcase oil. They did show appreciable changes, however, in width and length in the alcohol, glycol, castor oil oleo fluid, and water, and in these cases the percentage change in width was greater than the percentage change in length. The greatest expansion was in water and amounted to about 4.0 percent in width. The longitudinal change of balsa (thickness of specimen) was usually slight.

The cellular cellulose acetate showed only slight dimensional change in the petroleum oleo fluid, gasoline, and crankcase oil. There was appreciable change in the alcohol, castor oil oleo fluid, glycol, and water.

The general appearance of the core materials used in this test did not seem to have been altered by the 7-day immersion in any way, except in color. The balsa and cellular cellulose acetate were colored by crankcase oil and the oleo fluids. Rubber was not perceptibly colored, Other physical characteristics of the materials appeared to remain unchanged.

SECTION B - TESTS ON SANDWICH PANELS

Summary

Nine sandwich constructions (made by combining three face materials; aluminum, glass cloth-resin, and plywood, with the three core materials described in Section A; balsa, cellular hard rubber, and cellular cellulose acetate) were conditioned to equilibrium at a relative humidity of 65 percent and a temperature of 75° F. and then subjected to the following exposures: water immersion, high humidity, high temperature, alternate high-low temperature and humidity, and weathering to determine, by tension tests, weight and dimensional measurements, and observation, the relative durability of each construction. The details of these exposure conditions were the same as those described in Section A.

All test panels were nominally 1/2 by 6 by 6 inches, and four panels were prepared for each exposure condition, two with unprotected edges and two with well-painted edges. Eight tension specimens, of the type described in Section A, were prepared for each exposure, except weathering.

The test results, in general, presented considerable variation. It is difficult therefore to present clearly and concisely the effect of the different exposure conditions on the nine sandwich combinations. Certain fairly well established effects, however, can be summarized.

In water immersion, the weight gain of each sandwich construction was controlled partly by the characteristics of the core and face material and partly by the quality of the edge seal. Unsealed balsa-glass cloth panels gained about 92 percent, whereas, edge-coated rubber-aluminum panels gained about 2.5 percent. The glass cloth faces were poorer vapor barriers than the 1/16-inch birch plywood faces but absorbed less moisture.

Tensile strengths were generally lower in the soaked conditions than at room conditions but regained most of this loss upon reconditioning.

Transverse dimensional changes under all exposures reflected the properties of the faces only and those for plywood were usually two to three times those for either glass cloth or aluminum. Changes in thickness followed the same trends exhibited by the respective core materials in the tests described in Section A.

The effects of exposure to high humidity resembled, on a reduced scale, those of immersion in water.

All sandwich combinations lost weight in the exposure to high temperature. The unprotected acetate-plywood specimens lost the most (about 9 percent); the rubber-glass cloth, the least (about 1.5 percent). A retained loss in weight in some combinations (glued with resorcinol glue) upon being reconditioned was attributed to a loss of retained solvent in the glue lines. Dimensionally the acetate-glass cloth panels were the most stable in this exposure.

Ten cycles of high and low temperatures and humidities had relatively little effect on the weight, dimensions, or tensile strengths of the nine sandwich combinations.

An exposure of 1 year to the weather with inspection after 4, 8, and 12 months' exposure produced little deterioration on edge-protected sandwich panels other than fading of the glass cloth faces, checking of the unprotected plywood, and slight corrosion of the aluminum. Fanels with unprotected edges exhibited some delamination between the faces and the cores. Unprotected cellular cellulose acetate edges shrank considerably and were in poorer condition than either the balsa or cellular hard rubber.

Description of Materials

The three core materials, balsa, cellular hard rubber, and cellular cellulose acetate previously described in Section A of this report, were each faced with three face materials to produce nine different constructions of sandwich panels for test specimens. Descriptions of the three face materials follow:

Plywood

Plywood faces conforming to Army-Navy Aeronautic Specification AN-NN-P-511b were 0.070 inch, three-ply, birch plywood glued with a phenolic-type sheet glue.

Aluminum

All aluminum faces were 24 ST Alclad 0.020 inch thick conforming to Army-Navy Aeronautic Specification AN-A-13. The material was inspected to eliminate all dented, wrinkled, and contaminated sheets that might produce weak or questionable panels.

Glass Cloth Resin 9

Heat-treated glass cloth 0.003 inch thick with a basket weave was impregnated with one of the exceptionally viscous, contact pressure, laminating resins to a resin content of approximately 43 percent, based on total treated weight, to form glass cloth-resin face material, hereafter referred to as glass cloth faces.

Preparation of Panels

Plywood-balsa. --Panels with end-grain balsa cores and plywood faces were glued with an intermediate-temperature-setting melamine resin glue. 10 The glue was spread on the plywood by brush. Twenty-four grams of wet glue were spread per square foot. After an open assembly period of 1 to 7 days the panels were assembled and bag molded on a flat plate glass or aluminum mold. The curing cycle was 15 minutes at a pressure of 50 pounds per square inch and a temperature of 300° F.

Aluminum-balsa.—The Air Forces requested that a specific two-step bonding process 11 be used on all aluminum combinations. The primed and cured aluminum faces, therefore, were bonded to the balsa cores with a room-temperature-setting resorcinol resin glue. 12

Glass cloth-balsa. -- Panels with glass cloth faces and balsa cores were assembled and cured in one operation with no additional adhesive between the faces and the core. This procedure was commonly known as "wet laminating."

The normal procedure was to cover the flat caul with a parting film of cellophane. The impregnated glass cloth for one face (8 sheets) was then laid, one sheet at a time, cross laminated, on the cellophane-covered caul. This procedure was repeated for the other face on the matching caul or a piece of cellophane taped to a flat surface. The balsa core was then laid on one of the cauls and covered with the lay-up for the opposite face. This procedure, rather than laying the glass cloth directly on the core, was found necessary to avoid blisters and wrinkles.

⁸Appendix I, note 3.

⁹Appendix I, note 4.

¹⁰Appendix I, note 5.

¹¹ Appendix I, note 6.

¹² Appendix I, note 7.

Due to the slight waviness of the balsa-core surfaces, fluid pressure or its equivalent was necessary to assure intimate contact between the glass cloth and the core.

The panels were cured at a temperature of 220° F. and a pressure of 13 pounds per square inch for 1-1/2 hours and were then removed from the press while hot.

Plywood-cellulose acetate.—These panels were made by brushing a room-temperature-setting resorcinol glue (35 grams per square foot) on the plywood faces only, and pressing the panels in a vacuum bag at room temperature for a minimum period of 4 hours.

Aluminum-cellulose acetate. -- The normal technique for producing these panels was the same as that used on the aluminum-balsa durability panels.

Glass cloth-cellulose acetate. -- This combination was fabricated by the same technique as that used on the glass cloth-balsa combination.

Plywood-cellular rubber. -- This combination was made by the same process that was used on the plywood-cellulose acetate combination.

Aluminum-cellular rubber. -- The same process was used on this combination as on aluminum-cellulose acetate.

Glass cloth-cellular rubber.—Cellular rubber inhibits the cure of the contact-pressure laminating resin when the two are in intimate contact during the curing cycle. Therefore, the normal wet-laminating process, as used on balsa and cellulose acetate cores, could not be used. If, however, a suspension (about 15 percent concentration) of the catalyst (benzoyl peroxide) in water was sprayed or brushed on the cellular rubber and allowed to dry, the normal laminating process could be used with fair results.

Preparation of Test Specimens

Two types of specimens were prepared for this part of the study: a square panel nominally 1/2 by 6 by 6 inches in dimensions used to determine weight and dimensional changes, and a tension specimen similar to that described in Section A of this report.

Four of the square panels were prepared for each exposure, two with unprotected edges, and two with well-painted edges. The edge coating consisted of one coat of lead primer (1,000 parts white lead paste, 97 parts raw oil, and 9.4 parts drier), which was allowed to dry for 24 hours at room temperature, followed by two separate coats of aluminized varnish (1-1/2 pounds of aluminum paste, fine aircraft-use grade, to 1 gallon of phenolic resin varnish conforming to specification AN-TT-V-116) with an 8-hour drying interval between coats.

Eight tension specimens were prepared for each exposure condition, except the weathering exposure.

Treatment of Specimens

All specimens were first conditioned to approximate weight equilibrium at 75° F. and 65 percent relative humidity and then divided into groups and exposed to water immersion, high humidity, high temperature, and alternate high-low temperature combined with alternate high-low humidity under the conditions described in Section A for tests on core materials. An additional group of 1/2- by 6- by 6-inch specimens was prepared and exposed to the weather for 1 year as described later.

The specimens were inspected for glue joint integrity, stability, completeness of end coating, and general appearance. They were then brought to approximate equilibrium with 75° F. and 65 percent relative humidity and carefully weighed and measured prior to exposure. The specimens were placed on racks after they had been fastened at three points with a brass spring beneath each point and a screw hook above as shown in figure 11. This arrangement allowed for free movement and easy removal of the panels.

On April 6, 1945, the exposure was started by facing the panels south at an angle of 45° to the horizon. The specimens were inspected, weighed, and measured at the end of three 4-month intervals.

Discussion

Water immersion tests.—The effects of water immersion on the weight, dimensions, and tensile strength of the nine sandwich constructions are summarized in table 10. Most panels with painted edges gained less weight than those with unpainted edges. The average gain in weight for each construction was largely controlled by the face and core material but was also apparently affected by the effectiveness of the seal provided by the edge coating. The unsealed balsa-glass cloth panels gained the most weight in immersion to approximate equilibrium (92.42 percent) and the edge-sealed rubber-aluminum panels, the least (2.44 percent).

The respective weight gains of panels with various cores fell in the same order as that for the core alone as shown in Section A, the order was rubber least, acetate intermediate, and balsa highest. The order of weight gain, according to face material, was not consistent and apparently depended largely on the absorbing properties of the core. Glass cloth faces appeared to be a poorer moisture barrier than 1/16-inch birch plywood as shown by weight gains of the panels having balsa cores. The plywood faces, however, absorbed more water than the glass cloth faces as shown by results on rubber cores.

Transverse dimensional changes as reported in table 10 reflect only the dimensional stability of the face material, as the measurements were made on the faces. For all three face materials the changes were small but net changes in the plywood were consistently greater than the changes for either glass cloth or aluminum faces.

The changes in thickness were greater than the changes in transverse dimensions and were effected by the face materials. The increase in thickness of panels with plywood faces amounted to 1 to 2 percent when thoroughly water soaked. Panels with aluminum or glass-cloth faces changed very little in thickness when soaked and dried. Some of them, notably the rubber-aluminum combination, actually shrank slightly (about 0.6 percent) when soaked.

Upon reconditioning most of the combinations returned very nearly to their original dimensions, except those with acetate cores. All of these shrank slightly in thickness; the retained shrinkage varied from 0.46 to 1.89 percent of the original thickness.

The tension values obtained before and after immersion to weight equilibrium and after reconditioning were somewhat erratic but revealed in general a reduced tensile strength when thoroughly soaked. The acetate-aluminum specimens were markedly weakened. The combinations of rubber-aluminum and rubber-plywood had higher tensile strengths when soaked than the matched specimens before soaking.

Some reconditioned specimens tested higher in tensile strength and some lower than the corresponding control specimens. Those combinations testing higher after exposure and reconditioning than the controls were the balsa-aluminum, rubber-plywood, rubber-glass cloth, acetate-plywood and acetate aluminum.

High-humidity tests.—The data from the high-humidity tests are summarized in table 11. The effect of high humidity on the weight, dimensional stability, and tensile strength of sandwich panels displayed the same general trend as that obtained from water immersion tests. The magnitude of the weight and dimensional changes produced by the high-humidity exposure, however, was considerably less than that produced by water immersion. The decrease in tensile strength in high humidity was generally less than the decrease upon immersion in water, except for the acetate-aluminum and acetate-glass cloth specimens, which were reduced in tensile strength about 75 percent by the exposure to high relative humidity. The tensile strength of the reconditioned tensile specimens was less than the controls in all cases, the reduction varying from about 5 percent for acetate-plywood to 40 percent for rubber-aluminum specimens.

High temperature tests.—Table 12 summarizes the effects of exposure for 240 hours to 200° F. on the weight, dimensions, and tensile strength of these sandwich constructions. All combinations lost weight during the exposure; the relation between face materials was consistent for all three cores. Plywood showed the greatest loss; aluminum, intermediate; and glass cloth, least. The greatest weight loss was recorded for the acetate-plywood specimens with unpainted edges (8.96 percent) and the least for rubber-glass cloth specimens with unpainted edges (1.44 percent).

An examination of the weights after reconditioning indicated permanent loss in weight for certain combinations, notably the aluminum-faced panels. A

room-temperature-setting resorcinol glue (which was liquid at the time of pressing) was used in the fabrication of these panels. The original conditioning period may have been insufficient to evaporate completely the entrapped liquid (partly alcohol and partly water). This liquid, therefore, may have been vaporized and lost during the exposure to 200° F., and the loss would then appear as a permanent reduction in weight.

Changes in length and width were again small but consistent in magnitude and direction. Thickness measurements, however, revealed considerable change following the 200° F. exposure and also after reconditioning. Panels with balsa cores shrank slightly in thickness during the exposure but returned approximately to their original dimensions after reconditioning. When exposed to high temperature most panels with rubber cores increased in thickness and the increase was retained after reconditioning, with the rubber-aluminum combination swelling the most (about 6 percent). The panels with acetate cores, all shrank in thickness when exposed, those with plywood and aluminum faces shrinking the most (about 2-1/2 percent). About half of this shrinkage was retained after reconditioning. The acetate-glass cloth panels were the most stable, shrinking less than 1 percent during exposure and returning upon reconditioning approximately to their original dimensions.

Tensile strengths again revealed considerable variation, with both increases and decreases resulting from the exposure to high temperature. In general, the rubber specimens were weakened considerably by the exposure, the acetate specimens were weakened slightly, and the balsa specimens revealed tensile strength values both lower and higher than the controls, possibly depending more on the type of balsa rather than on the effect of the exposure.

High— and low-temperature tests.—Table 13 summarizes the effect on sandwich specimens of exposure to alternate high and low temperatures for 1, 5, and 10 cycles of exposure, following the same procedures as in Section A.

In general, the specimens progressively lost weight when weighed after exposure to 1, 5, and 10 cycles. Weight losses, however, were confined to a narrow range, with a maximum recorded loss of 2.90 percent for the rubber-aluminum specimens with painted edges. The acetate-glass cloth specimens changed the least in weight after 10 cycles of exposure.

Dimensional changes were confined to a range of less than ± 3 percent except those for the thickness of the rubber-aluminum and rubber-glass cloth panels, which increased 1 to 9 percent after exposure to 10 cycles. The specimens with acetate cores rather consistently shrank, while those with balsa cores remained practically constant in thickness.

The tensile strength values revealed no consistent trend toward a decrease or increase in strength as a result of this cyclic exposure except for the balsa-plywood specimens in which a consistent decrease to a final value of about 55 percent of the control value was evidenced. It is doubtful, however, whether this decrease was significant because the tensile strength of the balsa (density range 6 to 9 pounds per cubic foot) varied greatly. All aluminum-faced specimens developed tensile strengths after 10 cycles that were greater than the controls, but in most cases the values obtained

after 1 and 5 cycles were slightly lower than the controls. It seemed probable that this apparent increase resulted from an insufficient number of specimens rather than from possible beneficial effects of exposure. It seemed unlikely, however, that the exposure had a weakening effect. All other combinations, involving plywood or glass cloth faces, produced tensile strength values after 1, 5, and 10 cycles lower than the control values.

Weathering Tests

The changes in weight and dimension were converted to percentages and are presented in table 14. In general the panels sustained a weight and dimensional loss at 4 months (August), a slight gain at 8 months (December) and a loss at 12 months (April); these changes were apparently related to the seasonal moisture changes. On a percentage basis, the specimens with unpainted edges lost or gained more in weight and dimensions than the specimens with painted edges.

The final inspection of these panels for glue joint integrity, completeness of end coating, and general appearance is summarized in table 15. The balsa core combinations withstood the weather very well, the rubber core combinations were slightly deteriorated, and the acetate core combinations had a considerable amount of deterioration.

The balsa core, plywood-faced panels with and without end coating were in good condition after a year's exposure, as shown in figure 12A. Both the untreated plywood faces and the unpainted balsa cores checked. The balsa core, aluminum-faced panels were in good condition; the aluminum discolored slightly, and the unpainted balsa cores checked as shown in figure 12B. The panels with glass-cloth faces and balsa cores shown in figure 12C were in good condition, but again the balsa core checked when unpainted, and the glass-cloth faces faded from a rich brown color to a whitish gray.

The cellular hard rubber core construction made with the three face materials as shown in figure 13 was in good condition after a year's exposure and the face materials were in the same condition as those on balsa cores. The panels with unpainted edges showed signs of weathering and a slight amount of plastic deformation, especially at the points of contact with the rack. There was also a slight amount of peeling on the edges of the core material. Due to its cellular nature, the rubber core did not take the edge coating well, and it might have been advisable to add an extra coat of primer to this material.

The constructions with cellular cellulose acetate cores were in poor condition after a year's exposure to weather, especially the panels with unpainted edges. The three face materials were in much the same condition as those used on the other two core materials. The acetate cores had a considerable amount of shrinkage, plastic deformation, checking, and honeycombing as may be noted in figure 14. The glue joints in the core were separated and the glue joints between the core and face were broken at several corners. The panels with painted edges were in fair condition with the exception of those with glass cloth faces where some plastic deformation was noted. The cellular nature of this core material made it difficult to obtain a complete edge coating.

Appendix

- Note 1 CELLULAR HARD RUBBER A synthetic rubber core material, black in color, 8 pounds per cubic foot density (including skin).
- Note 2 <u>CELLULAR CELLULOSE ACETATE</u> An extruded, unoriented, multicellular form of cellulose acetate containing a small percentage of glass fiber as a filler, 7-8 pounds per cubic foot density (including skin).
- Note 3 HEAT TREATED GLASS CLOTH A plain weave cloth, 0.003 inches thick, 2.09 ounces per square yard, having a straw color.
- Note 4 A high-temperature-setting, high-viscosity, contact-pressure, laminating resin of the polyester type.
- Note 5 A high-temperature-setting, melamine resin adhesive.
- Note 6 A high-temperature-setting, thermoplastic resin with thermosetting resin and pigment.
- Note 7 A room-temperature-setting resorcinol resin adhesive.

Table 1. - 200 properior of the demais core externals for semicidal tree constructions at 190 E. and 65 norcent relative hundring to the formal and at the semicidal constitution of the semicial constitution and by recent relative handly follows: Interior

			l Mari		Co	Compression	(Flatuise)	m			Sher		Tenaton (Flatetes) 5	Latert no 5		A	Dimensional stability	stability	vol
Material	Trestment of specimens before test				Proporti limit	onel	Modul	Modulus of t	Tield	Held at 0.7				CLAT.	Fallure	Ohange b	based on or	original observations - 65 percent B. F.	rvations t R. u
		values :	Specific :	Ultimate : strength :	1/4" strain 6age length	Diels between heads	1/4" : strain : gage	Diale	1/4" ntrain gage length	Diale between beads	eleidite.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- trugge	Dage	Bond	Leagth	man	Think-	raight.
(3)	(8)	63	(4)	(6)	(9)	(1)	(9)	(6)	(01)	3	(23)	(13)	(14)	(60)	(91)	0.70	(118)	(61)	(90)
				lib. par	10 gr	40 m		19 th	10. per 90. in.	2.6. per	16, per 19.		lb, par	Porcent	Percent	T020035	Parcelli	Parcent	Parcent
Salas (end : grain)	Conditioned to aquilibrium with 75" F 65 percent seletire humidity (Controls)	Minima : Average : Maximis :	-10t-0	252	1045 1045	555	578, 220 415, 115 571, 190	26,556 46,030 55,876	45.65	FRE	17,632	0.100	1.1.1.1.25 1.5.55	×	đ	0	0	c	0
	Institute the remarkage they water for 9th bourses the test among the test of the second	Kinima Artiete	25 in 1	1,000	548	882	65,266 270,500 427,500	22,506 30,527	22£	103	10,37 57,51 13,59	100	15 TE	la la	3	42.16 42.95	41.5 8.73	0.29 0.29 0.29	+120.2
	jumeraed in Funning tap water for 40 days and tested immediately	Material :	163	332	255	203	1,66,168 161,327 199,000	18,759 26,221 39,797	\$2°E	130	12,069	889	1,969	g	59	3.2.2. 3.2.2.	111 582	****	+3275.2
	Samereed in Founing tap useer for 40 days and conditioned to equilibrium with 75° ft 65 percent relative humility	Markes 1	260 2013 2013 2013 2013 2013 2013 2013 201	169	361	525	182,960 144,894 452,056	30,535	823.8	225	17,289	884	1,031	6	97	822	55.5	0 2 65	0717
Celluler bard rubber	denoitioned to equilibrium with 75° f 55 percent relative immidity (Controls)	Material Average Maximus	207 112 112	755g	65 122	8 5 3	11,049 28,185	1,527	144	200	0.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55	.115	1985 1985 1985	700	•	0	0	0	o
(act)	lamarised in running int water for 2% hours and feeted lamacing a	Rintens Average Naviena	100	126	288	8011	15,523	2.00 M	1111	23.8	3,390	,109	167	700	0	228	999	217	+88.4 +38.4 +33.2
V V	Immersed in running top water for 40 days and tested lamedistaly	Maleus Average Maximus	<u> </u>	1,722 1,48 1,77	253	835	13,830 25,441 50,226	6,403	843	325	188	901	24.1	8	0	171	512	1 1 1 6/8 80	4.50 4.50 4.50 4.50
	impered in runding tap maker for 40 days and conditioned to equilibrium with 75° 7 65 percent relative midding	Minister Arecas	1991	844	장목록	g # B	15,51	4,788 6,799 8,323	두혈류	E/78.86	8.85 8.65 8.65 8.65 8.65 8.65 8.65 8.65	.105	325	81	0	555 558	0.60	-1.3 -2.33	3.00
Calitater calitators acetate	Oraclitioned to equilibrium with 75° F 65 percent relative immidity (Controls)	Mindama Average Maximus	960. 960. 105	745 745	\$ £8	125	28.83 28.83 28.83	5,317 6,461 9,639	152	£3.83 €3.83	2.5.5	960. 101.	ARA ARA	883	0	0	0	٥	°
(artyuded type)	Immersed in running bey mater for 24 hours : and bested immediately	Average :	.096 .102 .108	233.	843	282	9,976 19,685 76,670	3,015	\$-1.8	#28₹	3,261	960. 980. 101.	184	8	0	41.1.1. 63.61.1.	34.5		44.5.6.2 26.1.6.2
	Immersed in running tay unter for 40 days and tested immediately	Minimus Average Nevices	105	558	258	1 12 E	15,58 36,69 6,60	3,385	284	20%	NA.	760.	145 165 165 165	đ	9	11.65	9:	11.36	4.4.4 4.77.1 4.9.2
	Immersed to running kep water for 40 days and conditioned to equilibrium with 75° F 65 parcent relative bundelby	Kinisus Average Kanisus	2001	33F	25. 101	128	22,472 38,362 71,506	5,022 6,857 8,146	13.42	#3£	3.367	760. 960.	216 287 348	180	0	1.64	1.00	1.56	N.H.# + 1 1

These on dimensions and velghts when in equilibrium with 75° F. - 65 percent relative humidity prior to immersion in vator.

2a1 temerand appoinment were conditioned to aquilibratum with 75° F. - 65 parcent relative immiddly prior to immersion treatment.

Arrange of the tasts, spectaen size 2 inches square by 1/2 inch long, lond applied parallel to 1/2-loch diseasting.

Modulus associated with shear distortion in planes paralled to the langth-initianess plane of the crightal neverted (lengthaire-radial or teagential plane for balas). See FFL Supert No. 1301 for plate shear test special lb by 1/2 lackers.

Leaverses of at tests, specials also 1 for hours by 1/2 lack thick. Alumina leading blocks ware bonded to cellular hard rubber and cellular c

m maration^k of low-density core presides for multiplaces, maration at 15° 2° – 85 merces tradition at 50° 2° – 92 percent relative beautity.

			STATE OF STATE		Compt	Compression (Flatwice)	[atvise]				Shear	Control Control	Tension (F	Tension (Flatvise)5		D	Dissentional stability	*tability	101
Material	Treatment of specimens before test	Bange			Proportional	fancing :	Modulus of sissificating	te of the control	Tield at 0.7 percent strai	Tield at 0.7 s				1 m	Paflure	Change based on and 15" f		original observations 69% relative bunidity	
			gravityl :	treezeth	1/44 : ntrain gage langth	Diale batween	1/4" strein : goge : length :	Diels bester	1/4" ; utrain ; gags ; longth ;	Diele 1 between 1 breds 1	rigidity.	gravity]	the state	į	2 2 2 8	3	499	Thick	
(3)	(2)	8	(3)	(2)	(9)	(2)	(8)	(6)	(01)	(10)	(22)	(13)	(40)	(32)	(376)	970	(3.5)	(61)	-
	And the second s			1b, par 19. la.	lb.par	10 m	Ib. per	D. par	Lb. per	10 Per	[b, per		10. per	Percent	Percent	Parcent	Percent	Pancent	
Balsa (end grain)	Conditioned to equilibrium with 75° F 1 65 percent relative humidity (Controls)	Minima :	0,104 111, 120	851 935 935	1507 1507 1507 1507 1507 1507 1507 1507	147 1485 521	328,2201 415,1151 531,1901	26, 556 46,080 55,876	468 969 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	387.73	17,340	0.100	1,040	и,	ā	۵	٥	٥	
10 de 5	Conditioned to equilibrium with 80° F 97 percent relative humidity	Minimum: Average: Maximum:	50 E 65	383 629 930	283	274 441 662	145,464 239,949 372,575	18,281 25,511 44,218	350 577 884	127 1	13,663	861	1,038	ø	64	42.78	+1.34 +1.57 +2.15	+1.14 +2.00	414.14 414.98
	Conditioned to equilibrium with 80° F 97 percent relative hundrity followed by conditioning to equilibrium with 15° F 65 percent relative hunddity	Minison Average Mexison	133	476 : 890 : 1,551 :	261 286 311	£55 £- ::- ::-	114, 459 367, 296 642, 1622	29, 285 47, 352 67, 318 +	1.033	326 126 163	15,972	090, 1900 311.	1,156	8	67	01,1	+ + + + + 55	1.1.1 86.11	444
Cellular	Deadificand to entillbrium with 75° F	Minison : Average : Maxison :	102	151 199 245	65 : 121 :	80 127 156	11,049; 22,145; 28,186;	1.22.7 7.52.7 7.53.7	134	\$ 50.00	2,862 1 3,029 1 3,321 1	.115	352	001	0	10	0	0	
(expanded type)	indestitioned to equilibrium with 80° F 97 percent relative humidity	: Kinimum : 1 Average : Maximum :	108	1555	33 : 82 : 146 :	123	10, 749; 17, 755; 26, 288;	7,984	76 106 125	25.45 25.45 26.45	2,757	TH.	E 8 K	801	0	10.25	29.5	53.	444
	Gonditioned to equilibrium with 80° T	Minimum : Average : Meximum :	40111	154 : 188 : 198 : -	K83	224	15,955: 39,482: 62,751:	6, 721 : 7, 914 : 9,001 :	111 1149 1188 1188	24°0	3,630	116	55 E	100	o	042	°₹2	578 PE	
Cellular cellulose acetate	Conditioned to equilibrium with 75" P : Minimum 65 pagement relative humidity (Controlm) Average F Maximum	Minimum : Average : Meximum :	0.099 1.059	151 164 105	\$28	105	21,075 30,605 38,502	5,317 : 6,461 : 9,639 :	126 : 152 : 187 :	% ‡ %	117 th 228 th 404 th	%60. 101.	228	1000	0	٥	o	Þ	
(ertruded type)	Conditioned to equilibrium with 80° T 97 percent relative impeditiv	F Minimum : E Average : I Meximum :	1099 107	1000	462	\$₽\$	16,2801 23,5191 40,2421	4,065 4,555 5,293	88 124 134	222	2,557 : 2,799 : 3,025 :		F3%	æ	60	5.4.4 5.4.4	3 17.00	2000	4.7.5
	to conditioned to equilibrium with \$0" F, -: Minimum of parents ratherly entallity follows: Average by conditioning to equilibrium with : Maximum 175" F 65 percent relative hamidity:	Hinimum : Average : Maximum :	102	148 : 167 : 180 :	1035	113	24,573 53,134 63,134	7,963	137 1137 1143	55	7,671 4,038 4,392	1000	£553	*	eu .	377	0.00	0 1 P	

Anne of distriction and weights when in equilibrium with 75' F. - 65 percent relative municity pater to exposure to 80" T. - 97 percent relative hundity.

2411 apendanas were initially conditioned to squilibrium with 75° F. - 65 percent relative manuality.

Average of five tasks, specimen at a lockes equare by 1/2 inch long; lond applied parallel to grain for bales.

Mendows assessment the above discretion in places parallel to the longth-thickness plans of the original natural (inngtherest of the sees, postern at a 16 inches ever by 1/2 inch thick.

Mendows of these sees, processment at a 16 inches and or thick.

Mendows of these tests, specimen at a 16 inches and collished and collished and collished and collished collished one make the collished and collished collished and colli

Oneta obtained from compression specimene prior to test,

Table 3 -- See congerties to top-danging cars materials. for such the constituctions of garage and showing temperatures

																				-
Material	Temperature	Treatment of apactment before test?	Benge			Con	Compression (Chatesters)	Clathed and 1.				Shear 1		Control (Flatting)	C(an tal)		ā	Discussions stability	TANKS 12	91
acv.	3		andara.	Spacific :	Militaria efrengib :	Proportional limit	al Mais :	Modelus of	To a	Theta at 0.7 -		Modulus of a	Specific :	Chilmie : chrength :	Patlare	TO A	Obenge be	March de original observations	rinal observative l	resilons meidity
	-					1/4-inch	Mala bateman bande	1/4-inch : mirain : mar length :	Diale beads	1/4-tags : stenda : gego leagth	1				ř.	7	Length	ef.dsb.	Palak	ret gar
6	(2)	(\$)	33	(6)	(2)	(1)	(8)	6	(30)	CLO	(3.2)	(13)	(14)	(61)	600	(11)	(11)	(19)	(80)	(2)
	si				10. 70. 10. 10.	10. per 10.	114	10 to	100	10. per 10. Ls.	10. per 1	10. per		14. par	Percent	Percent	Pament	Permant	The same	Percent
Main (mail grain)	E	Gonditions to equilibrium with [5" F 65 percent selative hunddiky (controls)	Ministers Average Harrings	0,104 1115 1,200	9366	<u>-</u>	25E	328, 220 s 415, 115 s 531, 190 s	83.8 885	122	£2\$	14,459	901.0 101.	955	ĸ	ě	o.	٥	٥	0
	8	Mestad continuously for 200 hours at 2000 F. dry has	Meriana Meriana	155	\$3.00 10.00	452 463 893	282	901,416	92,126		555 555 555 555 555 555 555 555 555 55	13,397	845 E	1,985	武	8	1.33	\$ 5 d	588	\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	B	Meaked countrictionaly for 200 more as 200 P. dry beak and conditioned to equilibrium with 195 F 65 percent relative headily.	Minimus 1	200 100 110 110	666 756 874	25%	186	320, 175 347, 118 525, 328	5754 1.255	32E	ដីស៊ីនិ	17,560	<u>1991</u>	11.00	ឆ	P	- 59	693	845	177
Dellajar hari rabbar	E	Candillogs to equilibries with 75 T 65 percent welative bundality (controls)	Minimus Average Rectana	944	166	294	Ray	11.25 22.45 11.55 11.55	12.52	E 基礎	2 R.S.	3,132	312	222	100	Q	0	a	0	0
(expended	8	Meaning opplishments for 240 acts at 200° f.	Madata Average Kardana	901. 901.	200 E	그성물	K.L.S	Z5Z Z5Z	2, 290	 R#30	### ###	1,187	700	823	8	0	27.13	-48 -48	0 15.5	8.8.5°
	Þ	Smaled destinatorally for 200 bours at 200 F.; day but and conditioned to equilibrium with 15° F 69 percent relative bundly	Made and American	9601. 801.	8118	E85	* 55 kg	25.13 26.13	5. 62.0 5.47 1.74	25 B	442	3,495	811	55 A	8	0	987	202	282	717
Cellular cellulose acetate	52	Conditioned to spalishriam with 75° 2 65 : Maximum percent (what's bandally (controls) : Average : Maximum : Maximum	Ministra Average Maxistra	960. 990. 201.	105	\$28 1	105	21,075	5.317 6.63	126	124 8	4,329 4,353 1,353	960.	316	99	0	0	0	0	0
(extraded type)	8	Sambod continuously for 540 bones at 200° F. : Minimus dry beat . : Maximus Maximus	Ministra Average Harisan	960.	173	& 152	89 110 139	14,649 : 28,613 : 61,757 :	5,830 6,623	102	#. #. #. #. #. #.	1,153 1,14 1,153 1,14 1,153 1,	969.	24 E	66		1.09	2,00	39	5.06 6.94
	E	Destad ogsitisatorsky for 240 bonrs at 200° F. dry has and confillored to equilibrium atth 79° F 65 percent metative mendeliy	Minima Average Maxima	102	143	4 90 111	1111 : 139 :	20,525 : 30,981 : 37,865 :	6,322 : 7,290 : 8,013 :	544. 1	#28# #28#	1,606 1,623 5,091	960:	232	86	1	17	07	4.16	-1,19 -1,19

Cased on simenators and weights when in equilibries with 15' F. . 65 percent relative handliky prior to handlang at 2000 F.

Speciants which were subsequently based for 200 bours were first confidence to equilibrium with 15° F. - 65 percent relative manufalty.

Appearant is 2 knowless expects by 10 took holds of 10 to 12.1cm diameters, werego of 4 to 9 tests.

Absolute special control of 10 took holds of 10 to 12.1cm diameters, were proved to 10 took holds of 10 took holds.

Appearant of 10 tooks expect by 1/2 hold thick. Arrange results from the proved to 10 took holds.

Arrange of 21 tests, agreed as 1 took thick. Arrange results from the provided to balse and phyrood tooking blocks were bonded to callular hard rubber and callular onliniose scatters.

And applied a serial to 1/6-took thereof.

100					Đ	ompressi	Compression (figtwise) 4	41(08)	THE STATE OF THE S		Shear	. Tenston		(rlaiwise)6	10 00	Dimens	Dimensional a	StabilityI	М
Raterial		9	Specif	1g: Ultimate:	Propo	tional :	Modulue of elasticity	o of	Tield at 0.7% sirela	1	Modulus	Specifig: Ultimate gravity =: etrength	Withat etrength	Failure		Change based on servations sade	sed on	original at 75°F.	1 ob-
	specimens before test	values			1/4" strain: gage : length:	1/4": Diala: Btrain:Letween: gage: heads: length:	1/4" strain gage length	Diale between heade	1/4" gage length	Diale	rigiaity			Core	Core: Bond: Langth	ngth	TIGNE	Thick-	Weight
1	Est.			P. 8.1.	P.8.1.	1	p.	, p.	p.	4	P.8.1.		P. 8. f.	Per-	Per-P	ar cent.	ercent	Percent	Parcent Percent Percent Percent
Salsa (end grain):		Mtn.	0.104	935 935 980	223 404 474	447 485 521	328,220 415,115 531,190	36,556 46,080 55,876	794 895 969	249 317 384	16,849 18,834 22,641	0.100	1,040	8	t		0	٥	38
	Exposed to 1 oyole followed by conditioning to equilibrium with 75° F65% R.R.	Min. B: Av.	0.100	724 876 1,089	504.00	5555 545 545 545 545 545 545 545 545 54	181,909 307,428 532,469	31,729 38,348 44,482	663 1,003	28855 28855	24,042	0.090	1,240	181	4	00.28	0.11	40.19 40.38	10.91
	Exposed to 5 cycles followed by conditioning to equilibrium with 75* F 65% R.H.	Min.	0.105	918 1,097 1,203	482	296 598 598	718,134 749,554	35,952 16,953 156,428	904 1,062 1,147	66353	18,349	0.091	1,013 2,000 2,000	5	27	000 000	-0.05 -0.13	0°.39	-1.97 -2.01 -2.05
	Exposed to 10 oyoles followed by conditioning to equilibrium with 75° F 65% R.H.	Min.	0.095	695 852 1,068	793 793 793	421 572 694	113,881 390,075 784,072	26,180 39,129 46,310	979 979	179 268 316	16,548	0.097	1,205	F	23	0.00	0100 0104 0104 0104	977	41.15 94.69
Jellular it hard rubber: (expanded it	idenditioned to equilibrium: with 75° F 65% R.H.	n: Min. Av. Max.	0.102	151	65 121	80 127 156	22,445 28,186	7,227	134	\$50 B	3,125 3,845 4,416	0.115	330 3335 3385 3385 3385 3385 3385 3385 3	100		0	0	o	0
(App.)	Exposed to 1 ayole followed by conditioning to equilibrium with 75° F 65% R.F.	Min. 6: Av.	0.106	1,581	552	151	111	5,233 6,487 7,380	156	10-4-12 10-12-12	3,405 3,801 4,197	0.118	248 273 296	97	0	5.55 7.39 7.39	37.00	995	-0.77
	Exposed to 5 cycles followed by conditioning: to squilibrium with: 75° F 65% R.R.	Min. S. Av. Kax.	0.108	147 176 205	4442	123	22,534 28,148 33,763	5,802 7,010 8,920	124 146 158	6.4% 8.8%	3,443 4,190 4,571	1.9	227 250 275	001		3.355	3.46	25.4	-1.67 -1.79 -1.97
	Exposed to 10 dyrles followed by conditioning: to equilibrium with 75° F 65% R.H.	Min. 6. Av.	0.10 1106 211.	136	118 119 119 119 119 119 119 119 119 119	105	20,788 34,490	6,215 6,889 7,509	142	\$4.0 \$8.0	3,296 4,027 4,617	0.119	352 337 34	90		2.52	5,88	0.04 0.03 0.03 0.03	-1-77 -2-07 -2-40
Jellular cellulose acetate	conditioned to equilibrium: with 75° F 65% R.H.	M: Min.	0.096	138	130	105	21,075 30,605 38,502	15.00 100.00	126	₩ \$	4,4 2225 368 8	100.0	316	100		0	0	0	0
(extraded type)	Exposed to 1 grole followed by conditioning to equilibrium with 75* F 65% R.R.	El AV.	0.094	141	4114	1138	15,983 24,021 30,818	6,289 7,301 8,993	115	244	4,68T	0.098	254 284 316	8	0	00.05	56.6	666 575	1.01
	Exposed to 5 grales followed by conditioning: to equilibrium with: 75° F 65% R.E.	Kin.	0.095	149	1188	1112	16,700 90,050	6,355 7,823 8,786	1141 1141 1141	\$4 4 4 4	4,470	103	208	8	0	000 600 600	0.05	96.9	-1.24 -0.47 -0.54
	inposed to 10 cycles followed by conditionings to equilibrium with	Min.	0.095	1150	195	138	12,821	6,389 7,068 8,142	1455 1755	\$\$R	4,652	00000	232 253 291	8	'n	0.00	40.00	11.16	997
	- Control of the Cont													١	١				

Aone or ole consists of the following consecutive treatments: 24 hours at 175° F., 24 hours at 175° F., and 24 hours at 20° F., 28 hours at 175° F., and 24 hours at 20° F. 20° F

Average of five tests, specimen size 2 inches square by 1/2 inch long, load applied paralls! to 1/2 inch dimension (paralls! to grain for bales).

Mechius associated with shear distortion in planes paralls! to length-thickness plane of the original material (lengthwise-radial or tangential plane for bales). See Forest Products

Labonitory mixecyman 1555 for paralls with paralls and thicks. Adminimal leading blocks were specimen size 1 inch accurate thicks. Adminimal leading blocks were bonded to callular hard rubber and callular callular equally in a scetate core materials. Lond was applied parallel to 1/2-inch dimension.

Ibata obtained from compression specimens prior to test.

Table 5 .- Bone properties! of low-density core materials for sandwich constructions after various exposures?

				Compr) uotsse.	Compression (flatwise)				Shear	Tension()	(laterias)	Yenelon(flatetes):Dimenstonal	
Treatment of appoinment	Material: Specific; 51	Specific Ul	Ultimate: strength:	Proportional	inal	Modulus of elasticity	ty.	Yield at 0.7 percent strain	Train	Pa	SpecificiUltimate gravity strength	ul timete	<	Weight
	** ** ** ** **			1/4" strain: Diala gago length : between:	Dinla between heads	1/4	strein:Dials length:Detwork	strain length	Dials between beads	5 ** ** as b			thickness	
		440	000	863	609	0.689	0.498	0.453	0.488	0.645	1.000	1.150	1,015	7.535
Temerand in Funning tap:	C.E.R.	946	788	. 669	.788	.825	: .915:	.851	. 920	1.002	846	-565	566.	1.284
	G.6.42	1.030	. 536	.557	. 533	.636	.4661	. 507	. 455	2 .558	000-1	. 382	100.T	1.430
Innersed in running tap:			585	794	625	. B69	570	4,50	2,568	975	991	1.078	1.020	1:3
water for 40 days	10 X X	1.040	909	45	505	.775	422	.525	.522	617.	1,000	. 472	1.010	1.771
Tampersed in Finantas tes:		1.6	. 823	. 893	1.077	.830	1199.	.810	999" :	1 694	166	. 880	1.003	1.014
	C. R. R. 7:		1 .723	1 1.057	. TT2 :	569.	: 925:	.776	1 .920	. 890	913	.792	466	1.006
reconditioned	1 C. C. A. 22	1.030	986.	1 766.	: 166.	1.252	1.0613	846	1.045	. 629	0000	606-	606.	66.
Conditioned to	Relan -	1.319	673	. 700	.910	.576	.617:	.645	621	770	. 962	417.	1.021	1.146
equilibrium with	O.H.R. 2		. 780	: .922 ;	. 788 :	.790	: 1,010!	.791	046.	. 962	. 965	.635	1,001	1.046
80* F 978 R.R.	: 0.C.A.22	1.000	\$69'	747	: 929	.767	705:	.645	: .705	299' :	1.081	990	1.000	1.000
Action to the second	Holas	1,177	050	.708	943	.885	1.026	1.155	1.029	986.	. 962	. 589	1.006	.985
entilibrium with	C.H.R. 2		945	1.012	1.022	1.760	: 1.079:	1.111	: 1.080	1.225	1.009	871	866.	1.009
80* F 97% R.H. and:	C.C.A.	300	1.018	1.076	1.075	1.115	1.027	.902	1.045	286.	1.061	. 865	966	166.
Heated for Sko hours	Balan :	1.097	1,230	1.195	1.235	1.320	1.135	1.239	: 1.130	. 882	. 903	675	5992	.905
at 200° F. dry beat	C. H. R. 2		. 342	. 270 924	3.047	935	508	. 359	3330	974	1.061	842	999	939
The second secon			830	860	owo (640	701	900	792	959	296.	1.180	1,001	986
at 200° F. dry beat	C. H. H. 2	226	. 860	1.023	996	1.243	1.964	.926	1 .880	1 1.058	: .992	.592	1.001	486.
and reconditioned?	0.0 A.P	-	1.012	1.345	1.056	1.010	1.130	1.013	1.136	1.107	1.061	.735	1.000	166.
Frances to one avolu	Balaa	973	936	1,000	1,138	.739	: .632:		. 820	1.279	296.	1.121	666.	686.
of temperatures	C.H.R. 21	-11	1 .900	556	1.031	204	1 .883	1.163	200	986.	1.026	825	1,012	991
and humidities.	0.0	070.1	T.Oct.	064.1	7.00.7	001.							**	
Exposed to five croles	Balsa z	-	1.130	1.410	1.021	1.730	1.6701		1 1.404	579°	942	951	866	986
of temperatures and humidities	H41	1.020	1.005	1.127	1.058	が 対 対 対 対 対 対 に に に に に に に に に に に に に	1.21	456	1.227	1.051	1.051	794	866	.995
	9-14-			1 000	2 2 80	Office	. RAR		8.4.F		615	828	.993	.987
Exposed to ten oycles of temperatures and	NA.	7.00 C	808	1.417	1.008	1.318	1.093	1.060	1,960	1.047	1.035	. 820	1.001	935
	-	20								40		1	-	

Abased on dimensions and weights when in equilibrium with 75° R. - 65 percent relative humidity prior to exposure. Sail figures are ratios of the average test values after exposure to the average control values prior to exposure. Aceliular hard rubber - (expanded butadlene-scrylanitalle type).

Deliniar cellulose acetate - (extruded type). Execonditioned to equilibriam with 75° F. - 65 percent relative bumidity. Sone cycle consisted of the following consecutive pressments: 24 hours at 175° F. - 75 percent relative humidity, 24 hours at -20° F., 24 hours at 175° F., and 24 hours at -20° F.

Note: See tables 1 to 4 for detailed results.

			Exposures	89		
Material	No. 106 Poria microspera	No. 563 Porta Incrassata	1000	Soil	Sterile agar2/	65% relative humidity3/
One month's exposure	Percent	Percent	Percent	Percent	Percent	Percent
Balsa - no preservative Balsa - 0.1% pentachlorophenol Balsa - 1.0% pentachlorophenol Balsa - 2.0% pentachlorophenol Cellular cellulose acetate Cellular hard rubber	1. 23. t 1. 23. t 1. 44. t 1. 34. t 1. 34. t	1 1 1 1 + + + + + + + + + + + + + + + +	12 1 1 + + + + + + + + + + + + + + + + +	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.7
Two months! exposure						
Balsa - no preservative Balsa - 0.1% pentachlorophenol Balsa - 1.0% pentachlorophenol Balsa - 2.0% pentachlorophenol Gallular cellulose acetate Cellular hard rubber	1111++ 04 04 05 00 00 00 00 00 00 00 00 00 00 00 00	1 1 1 1 + + のは、 できませる。 1 1 1 1 + + 1 1 1 1 1 1 1 1 1 1 1 1 1	120.9 1.1.1 1.0.1 1.0.0 1.0.0	11-1+++ 11-12-04 11-14-14-14-14-14-14-14-14-14-14-14-14-1	1111++	+ 1 11 + 40 40 40 40 40 40 40 40 40 40 40 40 40
Three months exposure			L G			
Balsa - no preservative Balsa - 0.1% pentachlorophenol Balsa - 1.0% pentachlorophenol Balsa - 2.0% pentachlorophenol Cellular cellulose acetate Cellular hard rubber	11 1 1 + + 04 4 7.50 - 04 11	# # # # # # # # # # # # # # # # # # #	4-1-1-1+ 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1111+++ 2012-++ 2014-001	+111++	+ + +

Weight of 1/Based on conditioned weights at 65% relative humidity and 80° F. before and after exposure. Vareservative included where present. Average of 5 specimens except where otherwise stated. sign indicates loss in weight, plus sign a gain in weight.

^{2/}Average of 3 specimens.

^{3/}Average of 2 specimens.

Table 8 .-- Flammability tests on core materials

Core : material :	Average rate of burning	Remarks
	Inches per minute	
Balsa	- 30	: Odor and flame characteristics of dry : wood.
Cellular hard rubber	34	Burned with smoky, sputtering flame. Shrank but did not melt. Odor of burnin rubber. Specimen remained intact after burning.
Cellular cellulose acetate	10	Burned with clean, sputtering flame. Shrank, melted, charred, and dripped. Very slight odor similar to burnt sugar. Specimen entirely consumed.

Table 7 .- Density, preservative retwictes, and change in weight of bales control specimens and those with 0.1 and 1.0 percent preservative

ONE HORTH'S EXPOSURE

		Belse o	ontrol :	pecimene		1		sa specis		ed with 0.1 pe	reent per	ntechlo	rophenol in see	tone		se sprot	manu trepte	4 with 1.0 p	erceat pe	stmohlo	rophece) is see	Tena
	Dengity	Speniers :	Fungue	growth	26 telione	: Change : t in :: sweights		Deam Lar	Preserva- tive retention	: Specimen : exposed	fungue (ATRIATA .	Change :	Ea.	: Dana Liv	Proserte-: t tive : relation:	Spectors especial lo:	LFungus		t statista	t Change i lq i walgiji
	Lb. per		Bansan	D		Percent			Lo. per	:	Persent	::		Percent	:		Lb. per		Percent			Parcent
1R-1 1R-2		Ster. ager :	==	1 = 1	- =	: +0.83 : + .32 : + .89	1R-6 1R-7 1R-6		0.0974	: Ster. agar	Ξ	3		40.3	18-11 18-12 18-15		C-0915	Ster, mgmr	Ē	1 =	1	-0.3
13-4	: 6.29 :	65% R.H.		: :: :	==	56	1R-9 1R-10	9.18	.1062	: 65% R.H.	1	===	::	-1:1	: 18-14 : 18-15	6.90			:	===	=	1 -1:3
4	: 12.34 :: : 12.50 :: : 12.19 ::	No. 106	100 100 100	: H : H : H : R : R	of weight	-15.4 -21.9 -26.0 -26.3	21 22 23	: 10.97 : 9.27 : 11.24 : 11.86 : 10.68	.0856 .0354	: No. 106	5	L		03 3 -1.0 4	: 45	: 12.45 : 13.43 : 9.30 : 12.21 : 12.20		Mo. 106 de de de	Trace		Hone 60	2
7 6	9.33 :	No. 563 :do	100 100	1	Decayed ds de de	1 -12.9 1 -15-5 1 -25-2	26 29 30	: 9.33 : 12.21 : 12.92 : 11.80 : 12.89	.0649 .0649	1 No. 563 1dc 1dc, 1dc,	50 80 95 60 70	H	Decay porkeria in all	-5.9 -9.4 -11.9 - 7.2	: 46 : 47 : 48 : 49 : 50	: 13,68 : 10.62 : 12.77 : 10.80 : 10.58		No. 563	25		Small pockets	-1.0
12 13 14 15	: 12.64 :. : 12.26 :. : 12.43 :.	No. 72074 do. . do. . do.	100 100	L-N H	Defayed do	: -22.1 :	31 32 33 34 35	: 13.60 : 13.04 : 12.95 : 9.24 : 9.03	.085	: No. 7207%	u	R	Decay pocketsdodo None Decay	-14.8 -13	55	: 12.30 : 12.21 : 14.68 : 13.07 : 13.12		#o. 72074 da do de	10-15	: L :	Tiny ponkats	+ .06
19	6.56 9.83 10.99 13.05	de	=======================================	; == ;	Becay Hoet decay Decay 42 40	: -2.4	36 37 38 39	9.03 : 9.09 : 12.29 : 13.17 : 12.95	.0620	8011 1dc	= 1		None None Soft spot None None	-1.1	56 57 58 59 60	: 12.32 : 10.62 : 12.65 : 10.74 : 13.42	. 0354	9011 dodododo.	1 1	:	Bone do	r +.02
				4= -00				3		TWO 3	KONTHA' IO	CPOSURE										12
2R-1 2R-2 2R-3	7.05 6.17 6.82	Ster. apper 1	Ξ		=	-0.33 09 13	2R-6 2R-7 2R-8	7.55 6.54 11.01	- 0915	Ster, agar		-	8	-0.9 9		10.62	. 1151 :	Ster, eger	:		Ξ	-0.6 5
2R-4	5.62	69\$ N.H. 1	-	1 2	201		28-9 2R-10	5.57	. 9679	: 65≸ M.R.	4	= 1		43	2R-14 c 2R-15		.1150 :		=	= :	=	-1.3
121 122 123 124 125	12.91 f 11.86 : 10.28 f 10.51 l	fo, \$56 .da,	300		Demay do On 1 normer Bucey Dring	26.7 -25.9 -3.5 -25.1	142 143 144 145	: 10.16 : 9.03 : 8.93 : 10.78 : 10.95	. 9620 . 2738 . 2620	: No. 106 :dc :dc :dc	Trace 10 2-3	H	More	- 4 - 7 - 7		13.37 12.96 10.87	0590 :	No. 106	: Trace	M I	Req1 1-90 1-90 	: -,5
126 127 128 129 130	12.99 : 9.33 : 9.30 : 12.68 : 12.32 :	16 . 963 .40 .05 .00	100 100 100 100 100		Decembed dododododododod	-25.1 -25.1	146 147 148 149 150	: 10.72 : 10.77 : 11.80 : 12.49 : 10.67	9561 9413 9797	: No. 563 :do :dc :dc	100	H	Persynddododo	-30.3 -21.5	166 167 169 169	: 11.24 : 14.66 : 12.30 : 10.70 : 12.56	.0565 .0561 .0570	No. 563 do do do			l tiny pocket: l corner soft: Decayed	-5.9 -5.3
131 132 133 134 135	12.57 + 12.96 + 10.71 + 12.24 + 12.92 +	#s. 72074 r . #s. . do	100 100 105 100 100	*	Proped do do	-15.2 -16.2	151 152 153 154 155	: 12.33 : 7.35 : 14.37 : 10.83 : 9.33	-2649 -2531 -2767	: No. 72074 :dc dc dc	100	H :	Decayed dodododododododo	-33.6 -35.1 -40.9	171 173 174 175	: 11.90 : 13.31 : 13.31 : 9.02 : 12.95	. 0856 :	Mo. 72074 do do do	100	E A 1	Decayed :	-11.2 -32.7 8 -25.0
		5011 .dn .do			Depayed .do .do .do		156 157 158 159	: 12.60 : 13.25 : 12.54 : 8.77 : 12.22	1620 1590 1590	: Soll :dc :dc :dc	3	7	Soft spets do do do Some deft spets	-5.6 -3.4 07	177	: 10.57 : 12.33 : 11.81 : 13.31 : 14.42	.0472 .0626 .1328 .151 .1534	Soil do	Ξ	12	Hone 1 corner soft: Hone .dc	5
										THREE	MONTHS! E	EXPOSUR	E.									
3R-1 3R-2 3R-3	7.53 12.57	Ster. egar J	**		5	+.31 : 26 :	3R-6 3R-7 3R-8	6.58 : 12.83 : 10.51	.0885	Ster. agar	=	=	:	9 6	3A-11 3R-12 3A-13	6.32	: .1529 ;	Ster. agar			Ē	-1.0
38-4 3R-5	6.53 :	65€ R.H. :	1	101	12	- 26 - 14	3R-9 3R-10	: 6.63	.0885	: 65≰ п.я.	= 1	33	, I	-1.2 -1.0	: 3R-14	7.44	. 1446 :	65≴ R.H.	=	t t	y a y	-1.5
241 243 244 245	13.95 : 11.55 : 13.16 : 13.01 : 12.35 :	do	100 100 100 100		Ducayed do do do	-35.4	265	9.00 14.60 12.69 11.84 12.60	.0797	No. 106	98 2-3 2-3	H :	None Decay None Hone Decay	- 1.6	261 262 263 264 265	11.89 8.98 12.03 10.27 12.95	1770 1062 1180 10885	Wo. 106 do do do	8	8	Hone :	-:7
248 249 250	12.25 :. 12.72 :.	No. 563	100	1 × 3	Drusyed . do . is . do . do	-31.1	266 267 268 269 270	: 10.65 : 13.99 : 11.89 : 9.56 : 10.15	.0620	Mo. 563	100 100 80	N-H : N-H : L-N :	Decayed do	553	286 287 288 288 289 290	11.09 11.12 6.92 10.23 10.36	-0915 -0944 -1528 -0649 -0797	#0. 563 40 40	50 60 Trace 30 30	H(A) H(A)	Hone Decay	-17.2 -18.3
251 252 253 254 255	11.10: 9.12: 13.27: 9.50:	No. 72074 : do	100 100 100 100		Seceyed do da da	-49.4 -19.5 -64.6 -44.1	271 272	: 13.63 : 10.80 : 10.80 : 12.24 : 13.66	.0325	: No. 72074 :40 :4c :4c	90 80	H :	Decayed do	-42.7 -35.1 -40.5	293 294 295	8.97 9.68 12.66 12.95	-1239 -1180 -1121 -0915 -0708	#o. 72074 do do do	2-7		do Decay :	42.9
		3011 : .do	Ē	1 = 1	Decayed do do do	-17.5	277	: 9.26 : 12.27 : 8.91 : 10.62 : 9.29	.0649 .0620	Soll	- 22	= :	Pecayed do do do	-17.3 -12.5 -20.4	296 297 296 296 299	12.34 10.61 12.92 11.99 12.32	_0502 _0502 _0944 _0767 _1003	3e11 do	===	=	Decay :	-1.4 -10.6 -20.5 -6.1

L = light H = medium

A supplied.

ZM 72596 F

Table 9 .- Maight and dimensional changes of core materials exposed to various aircraft liquidy

Hightid After After Conditioning 7 days and After Southing 7 days After After Conditioning 7 days After				The state of the s							
Parcent Parc	Core		soaking:	After soak	ing 7 days and loning for		fter soaking 7		After scaking 7	10 00	After soaking 7
Lar hard rubber Escoatt Percent Percen	materialė		T days :		1 39 days	for ; for ;	ing for 39 days		ing for 39 days		for ing for 39 days
Lar hard rubber Ethylane 199, 5 2 2 0 1 2 0 0 1 0 0 1 0 0 0 0		-	Percenti	Percent	Percent	Percenti	Percent	Percent	Percent	Percent	Percent
Lar callulose acetate Location 181,66 2.01 2.00 0.13 -0.20 1.62 0.08 1.20 -0.33 0.55 -0.18 1.20 -0.33 0.55 -0.18 1.20 -0.33 0.55 -0.18 1.70 1.20 -0.33 0.23 0.23 -0.18 1.70 -0.23 1.20 -0.33 0.23 1.70 -0.23 -0.23 1.70 -0.23 1.70 -0.23 1.70 -0.23 1.70 -0.23 1.70 -0.23 1.70 -0.23 1.70 -0.23 1.70 -0.23 -0.23 1.70 -0.23	and the same of th	I Iso-propyl	29°145°	0.22	1 0.15	: 0.14	-0.37	-0.17	-0.28	-0.03	-0.03
Lar hard rubber Lar hard r	Wales	alcohol	181.968	2.01	1 2.00	1 0.13 1	02.0	1 1.62:	0.08	: 62.0 :	0.01
Lar hard rubber Ethylene 10.655 0.27 0.22 -0.34 -0.47 -0.21 -0.33 3.34 1.79 Lar hard rubber Sympton 29,250 155,11 14,30 0.35 0.35 3.34 1.79 Lar callulose accetate Sympton Sympt	Cellular cellulose acetate		145,146s	2.52	1.86	1.20 1	-0.33	0.53 1	-0.18	1,03:	-0°24
Lar cellulose acetate 249,001 125,11 14,30 0.39 0.23 3.34 1.79 Lar cellulose acetate 24,344 5.22 3.31 0.86 -0.53 0.56 -0.48 Lar cellulose acetate 17,46 17,46 1.74 -0.17 -0.17 -0.03 Lar cellulose acetate 18,42 18,42 17,46 -0.20 -0.27 -0.17 -0.03 Lar cellulose acetate 18,42 18,42 17,46 -0.20 -0.27 -0.17 -0.09 Lar cellulose acetate 19,56 19,57 19,47 19,48 19,58 19,48 19,47 19,48 19,48 19,47 19,48 19,47 19,48 19,47 19,48 19,47 19,48 19,47 19,48 19,47 19,48 19,47 19,48 19,47 19,48	redding head solution	Ethylene	10,65	0.27	1 0.22	: -0-34	74.0-	1 -0-21	-0-33	90.0	-0.02
Lar callulose acetate 1750-01e0 77,01 17,01	Balsa	glycol	219.60:	125.11	14.30	0.39	0.03	3.34	1.79	2,15	10.1
Lar hard rubber 3580-01e0 37,68 10.91 7.57 0.14 -0.17 -0.17 -0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15	Cellular cellulose acetate			7.56	100		((200		3	0.10
Lar callulose acetate Find 11(#20) 17.11 02.08 0.40 0.15	Cellular hard rubber	3580-0160	37 .08:	10.91	1.57	# #T.ºO	-0.17	1 -0.17 :	-0.03	1 20"0-	60.0-
Lar bard rubber 1596-01eo 145.22 18.42 17.46 -0.20 -0.27 -0.17 -0.09 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.22 1.85 1.85 1.22 1.85 1.85 1.22 1.85	Bales	fluid	117 -FD:	14.52	95.08	0.46	0.16	0.33	0.13	0,30	90.0
Lar bard rubber 1586-0100 45.22: 18.42 17.46 -0.20: -0.27 -0.17: -0.09 Lar cellulose acetate (Castor- i 63.91: 26.75 24.34 0.34: 0.33 1.85: 1.22 Lar cellulose acetate (Castor- i 63.91: 26.75 24.34 0.19: -0.35 0.46: -0.48 Lar bard rubber (Castor- i 63.91: 26.75 -0.09 -0.05 -0.07: 0.00 -0.17 Lar bard rubber (Castor- i 63.91: 0.00 0.40 0.26: -0.27 0.00 -0.13 0.10 Lar cellulose acetate (Castor- i 199.88: 0.00 0.40 0.26: -0.13 0.00	Cellular cellulose acetate	base)		1				- 600	73.0	-	30.0
Lar bard rubber 1998-0160 1998-120 10-17 -0-18 -0-18 -0-18		-	• 6		77 24			- :		-	
Lar cellulose acetate (Castor- i 63.91; 26.75 24.34 0.19; 0.19; 0.046 -0.36 0.46; -0.48 Lar hard rubber 100-octane 25.68; -0.09 -0.05 -0.07 0.00 -0.21 -0.17 Lar cellulose acetate 159.68; 0.00 0.40 0.40 0.26; -0.29 -0.29 -0.15 Lar cellulose acetate 28.62; 22.93 19.47 -0.41 -0.68 -0.14 -0.25 Lar cellulose acetate 34.26 82.83 0.07 -0.06 -0.04 0.00 Lar cellulose acetate 0.1 0.07 -0.07 -0.06 -0.14 -0.28 Lar cellulose acetate 0.1 0.07 -0.07 -0.06 -0.04 0.01 Lar cellulose acetate 0.1 0.67 0.07 -0.06 0.01 -0.02 Lar hard rubber 55.56 0.84 0.77 -0.58 0.07 -0.09 -0.28 Lar hard rubber 65.70 0.84 0.77 -0.58 0.07 0.07 0.09 0.02	Cellular hard rubber	\$550-0160	145 CF	20.09	16.73	200	2.0	1 -0-1/	60.0	0.03	-0.02
lar hard rubber 100-octane 25.68: -0.09 -0.05 1-0.07 1 0.00 1-0.21 -0.17 1 0.01	Cellular cellulose acetate	(castor-	63,911	26.75	4.45	0.19	-0.36	1 0 46	84.0	0.55 :	-0.54 -0.54
lar hard rubber : 159.68: -0.09 -0.05 : -0.07 : 0.00 : -0.21 -0.17 : -0.18 : -0.29 : -0.29 : -0.29 : -0.13 : -0.15 : -0.15 : -0.15 : -0.29 : -0.29 : -0.13 : -0.15 : -0.15 : -0.29 : -0.29 : -0.13 : -0.15 : -		(asso Tio									
lar cellulose acetate 28.421 0.17 0.48 -0.29 -0.29 -0.13 -0.15 Lar hard rubber 28.421 0.17 0.40 0.26 -0.13 0.00 0.10 Lar hard rubber 28.421 0.47 -0.41 -0.26 -0.14 -0.23 Lar hard rubber 21.55 0.67 0.07 -0.40 0.07 -0.16 Lar hard rubber 556.55 0.84 0.71 0.07 -0.58 0.07 -0.28 Lar hard rubber 556.55 0.84 0.77 0.07 0.07 -0.58 0.07 -0.28 Lar hard rubber 65.40 0.84 0.77 0.07 0.07 0.07 -0.28 Lar hard rubber 65.40 0.84 0.77 0.07	Cellular hard rubber	: 100-octane	: 25.68:	60.0-	-0.05	: 70.0- :	00.0	1 -0-21	-0.17	1 0.02 1	40°0-
Lar Cellillose acetate Lar bard rubber Crankcase: 92.48; 84.26 82.83; 0.07; -0.41; -0.56 1-0.14; -0.23 Lar cellilose acetate O. T. O.	Belsa	gasoline i	159-981	0.0	27.0	92.0	0.0		0.15	90.09	9000
lar hard rubber : Used : 28.87: 22.93	Cellular cellulose acetate		**		**	00				-	
lar cellulose acetate 11 : 24.55 : 25.55 : -0.07 : -0.40 : 0.13 : -0.16 : 1.24.55 : -0.07 : -0.55 : 0.07 : -0.55 : 0.07 : -0.28 : 536.55 : 0.56 : 0.07 : -0.56 : 1.00 : 0.50 : 1.00 : 0.50 : 1.00 : 0.50 : 1.00 : 0.50 : 0.	Cellular hard rubber	Treed	28.62:	22.93	19.47	0,41	0.00	1000	0.23	-0.03	90.0
Mater: 21.55: 0.67: 0.67: 0.07: -0.58: 0.07: -0.28: 1: 556.55: 0.96: 0.78: 0.07: 0.00: 0.61: 0.61: 0.67: 0.69: 0.6	Balga Callular callulosa acatata	1 041	34.1.81	28.50	23.55	t L0.0- :	04.0-	0.13:	-0.16	100	66.0
556.55 0.96 0.77 0.00 1 1.00 0.01 1 0.00 1 1.00 0.01 1 1.00 0.00 1		Mater	21.55	19.0	19.0	1 0.07	0.58	1 0.01	AC 0-	- F	10 0
: 65. 10: 0.84 : 0.79 : 0.60 : -0.73 : 0.89 : -0.80 :	Cellular hard rubber		536-55	96.0	* 0.78	1 000	800	8	0.61	4 . Z	0,31
	Cellular cellulose agetate		: 65. 0:	†8°0	62.0	* 09°0 *	-0.73	1 69.0	-0.80	1.791	19.0-

Each value is the Based on dimension of specimens, conditioned to equilibrium at 75° F., 50 percent relative humidity before immersion. average for 3 specimens.

Cellular cellulose acetate.

Table 10, -- Affact of water immeration on the metable. diseasions, and tensils strength of alon explains dunitmentions

200	Sendatah	* * * * * * * * * * * * * * * * * * *	rive eit	Gonditioned to equilib- rium with TS*F. and 65 : percent relative humidity: (controls):	nulib- : and 65 : humidity:		Imeres	Immeresd in water for 24 hours and tosted immediately	r for 24 h	our.			Timers	imersed in water for 40 days and tested immediately	ar for 40	days.		Inner	Immersed in water for 40 days and conditioned to equilibrium with 75° F. and 65 percent relative humidity	librium w	days and ith 75° F	occaitto . had Ity	peq
-	1	condition	-	Tenston		Dismonto	fonsi obsnep	1 100		Tenaton		Diseas	Planning landenget	1000		Tension		Places	Placestonel change	1 105		Tenslon	
Contraction of the contraction o	Page		Btrength	Strength Material: Glue	dlue failure2	Material: Glue : Weight Ave	Average :I I length: nd width:	erago iThioknessistrenginimaterini: ingth: ridth:	Strength:	Material: Olum : Waight : failure : failure : failure:	Olde Alluras	lei ioi ioi	Average if	Thioing or Strength Haterial:	Strength	Material: Fallure 1.	Olto fallure2:	Haterial: Glue : weight : Archage failure :feilures: cof leagh	Average :? for leagh: tand stoke	Thioxnoss:Strongthimatorial; Gluo	Strongth:	Material: Glue fallore : fallure2	Glue fallure2
 			Pate 1.	Percent	Percent	P.s.1, Percent Percent Percent		Persont	P. H.1.	Percent: Persent		Percent	Parament	Darrant.	7.0.4	Percent	Percent Percent		Parcent	Percent	1	Pervent	PATOMIL
Balea :Plymod		Unpainted:	755.2	15	92	20.90	8.8	1.42	388.4		7	67.28	0.25	1.82	E.B.	0	001	3.5%	88	1.26	664.2	9.9	93.5
Dalon : Almelmon		Topsinteds Trainted :	425.6	2.	95.8	1.62	41.00.	8,0	366.5 1	.ā o	100	5.52	.02		457.2	0	001	\$ 5	\$8	37.	521.1	0	100
Balsa : Glas	a slother	Oless clothedroted:	626.6	3.6	4.96	20.30	01.0	10	278.4		001	92.42 76.60	28	37	132.5		100	36.	07	888	312.8	0	100
Rubber Plywood		Talnted: 256.5	256.5	100	0	16.05	.07	1.16	233.2	100	0	56.04	.22	1.54	261.6	001	0	1.55	<u> </u>	98	278.9	901	0
Rubber iAltantaum		iUnpelated: 166,6	166,6	100		80.5 124.	88	1.28	164.4	001	0	2.7	6.4	284	179.9	98.4	1.6	67	85	-118	162.2	61.3	18.7
Rubber : Glas	a clothill	Gless cloth)Unpainted:	174.2	8	A	1.68	<u> </u>	800	135.7	83.3	16.7	5.66	86	99	113.0	13	85	28	500	35.	220.7	97.5	12.5
Acetate: Plywood		Umpainted: 255.9	255.9	86	· · · · · · · · · · · · · · · · · · ·	19.14 :	25.	1.16	177.7	5.66	 ►	53.82	Ľ,	2.04	175.4	99.2	Ø.	1.52	20.	24.	281.1	90	0
Acetate: Aluminum		Turnstnted:	240.2	37.5	62.5	2.56	5.4 	-118	203.3	64.1	35.8	16.00	49	36.	95.3	26.3	73.7		86	11.39	259.0	69.2	30.8
Asstate Glass clethiuspuinted:	olokhi -	Wepsinted:	242.5	4.96	ν. 	5.82	.15	.28	180.8	13.8	86.2	17.92	4 :4	88	103.1	0	001	Ľ.	020-	-1.19	285.1	¥.	62.9
							18 TF 6						******			46 14	e ee H		• •• •				

An attent was made to olsselfy the type of glue line failure; that is, adhesive, cohesive, or failure between primary and secondary adhesive. Minediament types of failures between face and grip, were not recorded. Delamination in glass oloth faces was classified as give line failure.

Table 11 .-- Effect of high hunddity on the weight, dimensions, and tensile effects of nime sendered constructions

Sa	Sandwich	9 M	fondati rium mi percent humidit	fondthoned to equilib- rium with 75° F. and 65 percent relative humility (controls)	and the and 65	8		Conditioned to equilibrium with F. and 97 percent relative humidity	quilibrim relative	n with humidity		97 pere	ant relati to equ 65 pero	Conditioned to aguilarium with 60° F. and percent rolative hundlity followed by conditioning to equilibrium with 75° F. and 65 percent relative hundlity	rium with y followe ith 75° F	d by condi	tloning
Core	1 Tel38	condition:		Tenaton		Dias	Dimensional changel	angel		Tension		Dime	Dimensional ohanged	hangel		Teneton	
	mb oo oo ol		Strength	Strengthillaterial:	fallure2	Welght	Average !	Average iThiokness:Strength:Material: iof length: iand width:	Strength	Material	ifallure2: feight : Avarage	Weight :	t Average tof length	Thickness Strength; Laterial	Strength	Haterial failure	fat) ure
			7.8.1	F.s.1, Percent	Percent	Percent	Percent	Percent	P.8.1.	Percent	Percent : Percent :Percent:	Percent	Percent	Percent	P.4.1.	Percent	Percent
Balsa	Plywood	:Unpainted:	153.2	15	S S	11.50	0.15	1.67	633.4	٥	100	2.72	-0.02	74.0	589,6	18.5	8.5
Balsa	Alvelore	Unpainted:	425.6	4.2	95.8	2.99	91.	09 61:	355.2	8	8	.37	28	2.4	387.2	52	22
Bales	Glace cloth: Unpainted:	Tripsibled	626.6	9. K	4.96			Ш	210.6	0	100	99	03	₽₽.	446.8	Q	100
Rubber	Rubber :Plymond	Translated:	256.5	100	0	9.30	.20	1.54	284.8	100	0	3.88	10	1.35	216.0	0	100
Rubber	Almeinum	: Unpainted:	166.6	100	0	198	1005	28	154.6	98.3	1.7	2.4	10	18	97.2	100	0
Rubber	Rubber : Glass cloth: Unpernted:	: Paleted	174.2	8	91	1.2	000	8.2	101.7	23.4	76.6	88	10%	E.W.	152.2	£	53
Acetate	Acetate:Plywood	Falsted :	253.9	86	α	10.10	82.	1.16	226.9	8	QI.	1.35	100	66.1	245.1	100	0
Acetate	Acetate: Altuminum	Unneinted:	240.5	37.5	8.5	8.4 8.4 8.2	900	 28.	7.08	01	8	8 9	01	835	147.2	0	100
Acetate	Acetate Glass cloth: Upsinted: 242.5	Daninted	242.5	4.96	3.6	3.39	900	.92	67.3	10	95	5,4	05	-19	202.9	19.3	7.08

And attempt was made to classify the type of glue line fallure; that is, adhesive, cohesive, or fallure between primary and secondary adhesive.

100 percent - (Mercent core + percent glue line fallure) = miscellaneous types of fallures, such as fallures between face and grip or delamination of face.

Pable 12. -- Fifted of high temperature (200° F.) on the geight, dimensions, and tenails strength of nine sandefor an annaturations

Sas	Sendwich construction	Edge :		Conditioned to eqrium with 75° F. percent relative (controls)	quilib- and 65 humidity		Heated o	Heated continueusly for 240 hours at 200° F. dry heat	Ly for 24d dry heat) hours		Reated.	Rester continuously for 240 hours at 200° and conditioned to equilibrium with Fis F. percent relative humidity	inuously for 240 hours at oned to equilibrium with percent relative humidity	houre at lum with humidity	ૂર્તી [dry heat a 65
				Tenglon		Dinen	Dimensional change.	nge.		Tenston		Dire	Dirensional changel	Lagur		Teneton	
Corre	P P P P P P P P P P P P P P P P P P P	10 10 01 41	Strength	Material	Glue fallure2:Welght	1 1 1 1 1 1 1 1	Average : Distering of length: Thinks as Strength: Sallure and width:	Thickness	Strongth		failure Feight		Average for length	Thickness Strength: Tallure	Strength		fallure
			P.8.4.	Percent	Percent	Percent	Percent	Persent	P. s. 1.	Percent	Percent	Percent	Percent	Percent	P. 8,1,	Percent	Percent
Balsa	Plywood	Thun inted:	755.2	5	85	-5.98	1.0	-1.33	332.7	**	98	0.45 525	0.01	-0.32	4.624	10.8	89.2
Bales	Alvatora	Unpainted: 425.6	425.6	2.4	95.8	-5.11	600	76	1.966	0	100	-1.87	4,90	-10	1 791.2	رن د	97.5
Balsa	:Glass clothiumginted; 626.5	: Palnted:	9.909	3.6	4.96	-3.69	51	1.28	267.3	e e	98.8	88	02	815	514.2	0	700
Rubber	Plywood	Umpainted: 256.5	256.5	700	٥	-6.92	24	2.01	93.8	92.1	7.9	1 1 28	1,45 7,45	3.16	167.6	100	0
Rubber	Aluminum:	:Umpainted: 166.6	166.6	300	0	-3.32	88	4.86	127.2	96.6	3.4	5% 5%	\$%	27.72	257.4	9.96	4.6
Rubber	Glass cloth!Unpainted:	: :Tupainted: :Painted :	174.2	8	10	-1.4	50,00	2,16	95.0	58.3	41.7	9,08	24.	1.69	146.3	1.64	80.9
Acetate	Acetatrivitrood	Umpainted: Painted	253.9	80	(V)	-8.96	29	-2.80	218.2	100	0	-1.68	50.0	1.78	207.5	100	0
Asstate	Acetate: Aluminum	Unpelnted:	240.2	37.5	62.5	-3.16	20.	-2.64	\$ 260.4	67.5	32.5	-1.19	60.	-1.55	257.7	000	0
Anetata	Abstate Glass clothiumpainted: 242.5	Topainted:	242.5	₩.96	3.6	-2.68	08	1.86	142.0	15	10 10 10	22 13	20.	F#	132.1	47.4	58.6

And attempt was made to classify the type of giue line failure, that is, adhesive, cohesive, or failure between primary and secondary adhesive.

100 percent - (percent core failure + percent giue line failure) = miscellaneous types of failures such as failure between face and grip, or delamination of face.

Table 13. -- Effect of 1. 5. and 10 ovelest of armanors to high and Dra temperatures and hominities on the seasons, the feeting to the end one transfer of the seasons of t

		fallure2	Percent	94.5	6.99	72.8/	0	0	92.5	3.3	0	8	1000
Conditioning F. and	Tension	Average Thickness Strength Materials Glue of length: failure sfallare sfallare	Persent	6.5	33.1	27.2	000	1000	7.5	7.96	300	~	
by conditions		Strength	2.4.1.	413.5	871.2	#24.B	230.2	236.1	106.8	239.1	298.7	115.9	vb 84 5
followed in with 7 relative	Sigur	broknam	Percent I	0.16	267	95	2,56	40.0	9.19	1,01	22.2	90	
After 10 dysles followed by sonditi to equilibrius with 75° P, and 65 percent folkire humidity	Dimensional changes	Average (7 of length) and width)	Percent	-0.02	22	53	10	53	E.E.	080	33	10,0	
Arter to	Dimer	101 Hall 1 J	Peroent	2,3	87.5	1.18	1.15	88	90.1	1.36	-1.56	181 1	
8		Material: Glue (Weight	Percent	3.8	36	95.9	45.8	0	97.5	6.3	0	97.2	
nditionin . and dity	Tenston	Materiel: failure	Persons	8.2	in	f.4	45.5	100	2,5	97.1	100	8.	
med by co Ath 75° F tive humi		Strongth	Links of	Ago.2	563.4	456.8	121.2	209.4	46.2	225.3	226.9 :	82.7	
After 5 cycles followed by conditioning to equilibrium with 75° F. and 65 percent relative humidity	1862 1	Halght : Avorago : Thiokness : Strongthillatarial: :of length: :	Percent	0.00	1.10	5.6°	3.41	4.94	2.58	989	-2.47	88	
lfter 5 cy to equ 65 pe	Dimensional change2	Arerege :T	Periodat E.	3,00	100	02	88	5,4	87	07	10,1	10.	
	Dimens	Manght i J	Percent	0.13 64.	965.4	16.00	-1.26	26	1.51	35.3	£3.	7.8	
		Glue a		12.8	2	1.96	7.2	16.7	39.2	0	28.4	47.9	
nditionin F. and idity	Tension	Material: Glue	Perguare state at	17.8	8	E.	92.8	83.3	8.09	100	77.6	28.1	
ier 1 cycle followed by genditioning to equilibrium with 75° F. and 65 percent relative hulldity.		Strength	7	675.0	596.3	465.2	147.0	116.5	147.5	243.4	204.3	233.5	
ycle follouting at the control of th	ange2	Weight : Average :Thickness:Strength:Material: 1: 1of length: :and width:	Percent	88	188	28	3.38	3.19	8.4	80.	-1.46	000	
After 1 of to eq 65 p	Dimensional change2	Average :	1	0.0	8.0	500	23	825	\$ K	200	학 호	2.0°	
	Dimensio	Weight :	Percent Percent	1.52	-1.39	46	26	8,8	250	-1.08	1.33	44	
and 65 and 65 buridity		7		60 60	95.8	4.96	0	0	9	Ç4	8.5	3.6	
Conditioned to squilib- rion with 75° F. and 65 percent relative busidity (controls)	Tenaton	iltrangthillatorial; dluo : Fellura Fallud	Percent : Percent	52	01 -4	3.6	001	100	8	86	34.5	4.26	
		13trengt	L	U 153.8	425.6	11 625,6	256.5	11 166.6	174,2	11 253,9	240,2	242,5	• • • •
Edge condition	• • •			Painted:	Unpeinted	Unpainted Painted	Tannelntad:	Unpaint di	Umpaint	Born higher	Printed .	Dantald Painted	• •• ••
	- Land			Plywood	Aluminium I	Olses clothiUmpaint.d:			Rabber island clothiumgainteid			Acetate Class Cothi Unpainted Painted	
Sandwich construction	flower 1			Ballon 12	Balon :	Bales 10	Rubber Plywood	Rubber Muslus	Rabber 10	Acetate Plyecod	Acetate Alminim	Acetatein	

Above operated of the following consequence: 24 hours at 1759 F. and 75 percent relative handly, 24 hours at -200 F., 24 hours at 1759 F., and 24 hours at -200 F., 25 hours at 1759 F., and 24 hours at -200 F., 250 steepers and weights when he specially the type of give line failure; but is advostive, orbestive potent prices; and secondary advants.

The percent care failure to percent giue line failure; but is advostive, orbestive, and a failure between face and grip or delates or failure.

Table 14. -- Effect of weathering on the weight and dimensions of nine sandwich constructions

60	Sandwich			After 4 montas	9,	Af	After 8 months	9	4	After 12 months	the
000	construction	condition:		Dimensional cha	changel	Dime	Dimensional cha	change_	110	Dimensional [hande
Gore	9		Weight	Average of length and width	Average : of length: Thickness and width:	Weight	Average of length and width	Average : of length: Thickness: and width:	We 1ght	Average of length and width	rerage : length:Thickness width:
			Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent
Balea	Plywood	Unpainted: Fainted	-3.54	-0.31	1 -0 -56	3.82	48	0.56	-4.78	0.15	94.0
Balsa	Aluminum	Unpainted: Painted	-1.16	1.33	1.28	1.40	8.8	600	-1.50	60.1	.65
Balsa	: Glass cloth	Umpainted	-7.00	1.30	56	4.26	56.	-18	66	23	84
Rubber	Rubber: Plywood	Unpainted:	-4.04	-19	1.93	1.56	10.0	986	1.30		-10
Rubber	Rubber:Aluminum	Unpainted Painted	50	06	09	58	<u>46</u>	82.0	1 1 5 15 5 15	70.	.56
Rubber	Rubber: Glass cloth	:Unpainted: :Painted	28	13	- 28	09	6 .1	00	2.30	04	w.r.
Acetate	Acetate:Plywood	Unpainted Painted	-8.14	46	-1.16	2.56	02	00.	4.58	1.32	-1.16
Acetate	Acetate: Aluminum	Umpainted: Painted	-1.14	- 15	-1,22	3.28	1.02	25.	4.4. 04.	06	-1.88
Acetate	Acetate: Glass cloth	Unpainted Painted	1.63	32	49	1.02	04	18	.99	#. 20.	1.1
	n 64							. 44		-	

Based on dimensions and weights when in equilibrium with 75° F. and 65 percent relative humidity prior to exposure.

Z M 72548 F

Table 15. -- The condition of nine sandwich constructions after weathering

Sandwic	Sandwich construction			After 4 months	nthe	Ψ.	After 8 mo	8 months		After 12	12 months
Gore	FR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F	Edge condition:	Glue : Joint :	General appearance	End coat	Glue Joint Lategriff	General	End coat r	diue : joint : integrity:	General appearance
Balea	Plywood	Unpainted		Good	Good	1	Good	Plywood	1	Bood	Plywood checked
		Painted :	Good	фоод	Good	Good	Good	Plywood	Pood	Good	Plywood chacked
Balsa :	Aluminum	:Ungainted	1	Good	Good		Good	Good	1	Good	Good
•• •• •		Painted :	Good	Dood	Good	Good	Good	Good	. Good	Good	Good
Balsa :	Glass cloth	: Unpainted:		Good	Good	1	Good	Glass cloth	1	Falr	Glass cloth faded,
		. Painted	Good	Good	Good	Good	Good	faced cloth	Good	Fair	diage cloth faded
Rubber :	Plywood	Unpainted		Bood	Good	1	Good	Good	1	Good	Plywood checked,
44		Painted :	Fair	Good	Good	Fair	Bood	Good	Fair	Good	Plywood checked
Rubber :	Aluminum	Unpainted		Good	Good		Good	Good		Good	Good
***		: Painted :	Fair	Good	Good	Fair	Роор	Pood		Good	Good
Rubber	Glass cloth	Umpainted		Good	Plastic	1	Good	Glass cloth	1	Fair	Glass Cloth faded,
PO 90 00 4		Peinted	Fair	Good	Good	Fair	Good	Glass cloth	Fatr	Good	Glass cloth faded, plastic deformation
Acetate	Plywood	Unpainted		Good	Plastic	1	Good	Plywood		Good	Plywood obseked, plastic
** ** **		Painted :	Fair	Good	Good	Fair	Good	Plywood	Fair	Good	delongion, core antimage Plywood shecked
Acetate	Acetate: Aluminum	Unpainted		Good	Good	1	Fair	Good	1	Fair	Plastic deformation,
		Painted :	Fair	Good	Good	Fair	Good		Fair	Good	poop
Acetates	Acetate; Glass cloth	Umpainted		Good	Plastic	1	Good	: Plastic	· · · ·	Good	*Plastic deformation,
- 14 14		: Painted	Fair	Good	Good	Fair	Good	Plactic deformation	Patr	Good	

a kof extruded cellular

Figure 3.--Table saw set-up for cutting end-grain balsa core stock.

Z M 73492 F

Figure 4.--Band saw set-up for cutting cellular cellulose acetate to proper thickness after skin is removed.

Figure 5.--A - Tension test specimens used in tests on cellular hard rubber (black) and cellular B - Tension test specimen used in tests on end-grain balsa and jig for preparing cellulose acetate (white). specimens.

Z M 73494 F

Figure 6.--Typical test arrangement for compression flatwise tests and device for alining the brads for the gages. 2 M 73495 F

Figure 7. -- General view of plate shear test specimen assembled for test. Z M 73496 F

Figure 8.--Large insulated, heated box used in making tests at high temperature. Plate shear specimen assembled in place.

Z M 73497 F

Figure 9.--Large insulated, heated box used in making tests at high temperature. Balsa tension specimen shown in place. $2\ \rm M$ $73498\ \rm F$

Figure 10.--Small insulated, heated box used in compression tests at elevated temperature.

Z M 73499 F

Figure 11.--Racks used for mounting sandwich panels for exposure to weather showing the method of attaching specimens.

Figure 12. -- Effect of 1 year's exposure to the weather on sandwich panels having balsa cores. Panels on left show weathered faces and unpainted edges, and those on right show unexposed faces (bottom) and painted edges.

- A. Panels with birch plywood faces.B. Panels with aluminum faces.

C. Panels with glass cloth faces. 2 M 73501 F

Figure 13.--Effect of 1 year's exposure to the weather on sandwich panels having cellular hard rubber cores. Panels on left show weathered faces and unpainted edges, and those on right show unexposed faces (bottom) and painted edges.

- A. Panels with birch plywood faces.

Figure 14.--Effect of 1 year's exposure to the weather on sandwich panels with acetate cores. Panels on left show weathered faces and unpainted edges, and those on right showing unexposed faces (bottom) and painted edges.

- A. Panels with birch plywood faces.
- B. Panels with Alclad faces.

ZN 73503 F C. Panels with glass cloth faces.