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General Introduction 

 

 

 

1.1 Mountain pine beetle infestation 

The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins, Coleoptera: Curculionidae, 

Scolytinae) is a native bark beetle to pine forests of western North America (Cole and Amman 

1980). MPB attack trees by chewing into the inner bark and phloem where they feed, mate and 

construct larval galleries, which disrupts the movement of photosynthate from needles to roots 

(Gibson et al. 2009). The beetles also introduce blue-stain fungi (Ophiostoma montium) that girdle 

the phloem and block water and nutrient transport within a tree (Ballard et al. 1984). Immature 

adult beetles feed on fungal spores and associated tree tissues until maturation and then emerge 

out to seek and attack new trees to resume such a yearly cycle (Gibson et al. 2009). The infested 

tree produces resin to kill the beetles and fend off the attack but such an defensive mechanism can 

be exhausted when there are an overwhelming number of beetles (Bentz et al. 2009). The joint 

attack of larval feeding and fungal colonization can kill the host tree within a few weeks (Safranyik 

et al. 1975). Several months to a year after the attack, infested trees begin to fade gradually from 

green to red, rusty brown, and finally gray (Figure 1.1) (Amman et al. 1989). Depending on 

environmental factors such as the weather and soil conditions, dead trees remain at the gray stage 

for many years where they gradually lose foliage as fine branches fall and bark flakes off the stem. 

Over this course, steam wood also deteriorates and becomes rotted so that standing dead trees 

eventually fall to the ground due to breakage or wind throw (Mitchell and Preisler 1998).  

At the endemic phase, the MPB population stay at low levels and only kill older and weaker 

trees individually at a less than two percent annual mortality rate, resulting in patchy mortality 
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throughout the forest (Samman and Logan 2000). When there are locally high beetle population 

and other favorable conditions (e.g., temperature, tree resistance, proximity to other beetle 

populations), eruption to an outbreak may occur and become widespread over several years that 

leads to millions of dead trees (Gibson et al. 2009). Outbreaks often develop in even-aged dense 

stands (basal area > 27.5 m2/ha) of large (diameter at breast height > 20.3 cm), old (>80 years-old) 

lodgepole pines (Pinus contorta Douglas var. latifolia Engelmann) where more than 80 percent of 

trees can be killed in five to seven years (Samman and Logan 2000). Under extreme conditions or 

when the majority of larger-diameter lodgepole pines have been infested, beetles may also attack 

smaller trees or other pine species including ponderosa pine (P. ponderosa Laws.), western white 

pine (P. monticola Dougl.), whitebark pine (P. albicaulis Engelm.), limber pine (P. flexilis James), 

and Scots pine (P. sylvestris L.) (Gibson et al. 2009). 

 

 

Figure 1.1 Forest and tress (inset) in the green stage (left), red stage (middle), and gray stage 
(right) following a mountain pine beetle outbreak (Photos courtesy of the U.S. Forest Service: 
Ron Billings, Brian Howell, and Nate Anderson). 
 

Following its major host pine species, MPB spreads from the Pacific Coast eastward to the 

Black Hills of South Dakota, from northern British Columbia and western Alberta southward to 

northern Baja California, Mexico, and from near sea level in British Columbia, to 3,353 m in 

Colorado (Amman and Cole 1983). Historically, MPB outbreaks have been a regular force of 

natural change in western North American forests with an average return interval of 20 to 40 years 

(Bentz et al. 2009). Their occurrences in British Columbia, Colorado, Idaho, Montana, Wyoming 

and Utah have been highly synchronous, indicating the subcontinental nature of MPB outbreaks 

(Jarvis and Kulakowski 2015). 
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The recent MPB epidemic, lasting between 1990s and early 2010s, has affected a massive 

area of forests in North America (e.g., over 18.3 million hectares in British Columbia, Canada and 

8.9 million hectares in the western United States) (Fettig et al. 2014; Corbett et al. 2015). It has 

been documented as the most severe and widespread outbreak throughout history in terms of 

intensity (killing more trees at a faster pace over a longer time period), extent (occurring 

concurrently in numerous forests), and extended range (beyond previously recorded north and east 

ranges and impacting new tree species) (Bentz et al. 2009). 

 

1.2 MPB impacts 

MPB is an integral part of the ecology of forests in western North America and it helps shaping 

forest structure and composition as a natural ecosystem disturbance (Klutsch et al. 2009). All 

forests contain a number of dead trees that provide important wildlife habitat and other ecological 

functions (Colorado State Forest Service. 2018). However, as forests provide considerable 

amounts of goods and functions of ecological, monetary, and cultural values, referred as ecosystem 

services (Millennium Ecosystem Assessment 2005), MPB-induced tree mortality weakens forest 

ecosystem services due to their high potential impact on ecosystem structure, function and 

composition (Seidl et al. 2016). This raises complicated economic, environmental, and social 

impacts and poses severe forest management challenges to land managers and public and private 

landowners. 

 

1.2.1 Economic impacts 

MPB outbreaks have caused enormous economic losses to the society. Volume and value losses 

associated with dead timber are the two main causes to the direct negative economic impacts of 

MPB (Snellgrove and Fahey 1977). Volume loss is the decreased amount of wood product that 

can be manufactured from a log or tree (Lowell et al. 2010). Because of the low moisture and sap 

content in dead trees, saws and chippers do not perform well compared with green timber, leading 

to significant increase in breakage during harvesting and handling (Byrne et al 2006). Besides, 

wood deterioration causes rot, shake, checks and cracks which reduce the recoverable timber 

product volume (Carpenter et al. 1989). Volume loss directly translates to economic loss because 

the amount of output product is decreased. For instance, it is estimated that between 2009 and 

2054, British Columbia will witness a reduction of $57 billion in the province’s GDP and a $90 
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billion decline in economic welfare because of a loss of 731 million cubic meters (54% of total 

available) in merchantable pine volume due to MPB (Corbett et al. 2015). Value loss, on the other 

hand, refers to the reduced value of products manufactured due to product degraded type or quality 

(e.g., lumber grade) (Lowell et al. 2010). As MPB killed trees move from green to red to gray, the 

proportion of the volume of the stand decreases in higher value product categories (e.g., sawlog, 

post and pole) and increases in lower value product categories (e.g., pulpwood, firewood) (Loeffler 

and Anderson 2018). A sawlog-dominant harvest gradually transits to a pulpwood-dominant 

harvest, which reduces land values strikingly. Log staining of MPB timber is also considered as 

an apparent grade defect that reduces product values. Although blue stain does not necessarily 

impact mechanical properties of the wood (Byrne 2003), it has detrimental effects on the aesthetic 

value and market acceptability of the lumber and the volume of blue stain continues increasing 

along time since beetle attack (Chow and Obermajer 2006). 

Forest regeneration post attacks, despite rapid stand growth, is limited in mitigating 

economic loss caused by MPB outbreaks. As infested trees die and more light reaches to the forest 

floor, advanced regeneration and understory vegetation may display enhanced growth rates, return 

annual wood production to previous levels quickly, and offset killed tree volume (Romme et al. 

1986; Stone and Wolfe 1996; Dhar et al. 2016). However, these small-diameter young trees are 

not as valuable as large-diameter commercial pine forests depleted by MPB outbreaks. Moreover, 

extensive tree mortality can significantly influence successional pathways and forest community 

composition, and late successional tree species (e.g., subalpine fir) are often less commercially 

valuable than lodgepole pines (Gibson et al. 2009).  

 

1.2.2 Environmental impacts 

The occurrence of the MPB epidemic has undoubtedly altered stand and landscape structure (Dhar 

et al 2016). MPB mainly targets trees in mature, overly dense forests and allows more growing 

space and resources (e.g., light, water, nutrients, etc.) for understory vegetation (Stone and Wolfe 

1996; Dhar and Hawkins 2011). By killing older trees and facilitating younger, more vigorous 

trees to grow, MPB may help forest to regenerate and proceed succession, which results in more 

structurally and compositionally diverse forests (Hansen 2014). Such a stand and landscape 

heterogeneity created by forest complexity enhances forest ecological resilience, the capacity of 

an ecosystem to maintain its fundamental functions and processes after disturbances (Drever et al. 
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2006). However, during the MPB outbreak, massive tree mortality in such short time alters the 

balance between living and dead portions of trees and significantly affects forest structural 

sustainability (Cale et al. 2016). Long-term (30 years) forest recovery from previous MPB 

outbreaks also shows shift in species and size composition that may have substantial impacts on 

forest health and ecosystem processes (Pelz and Smith 2012). 

The MPB outbreak poses mixed impacts on wildlife by altering food and forage availability 

as well as habitat suitability (Dhar et al. 2016). Beetles are an important food supply for many 

avian vertebrates, and some woodpecker populations have been documented to increase in 

response to MPB outbreaks (Chan-McLeod 2006). However, the abundance of tree sap eaters and 

sapsuckers (e.g., northern flickers [Colaptes auratus L.], red-naped sapsuckers [Sphyrapicus 

nuchalis B.]) decreases in MPB infested stands (Walters et al. 2002). Increased tree mortality 

provides important nesting, roosting, and foraging habitat for wildlife that depend on snags and 

downed logs (Drever and Martin 2010). But coarse woody debris can adversely affect movement 

of big game and other wildlife (e.g., elk [Cervus canadensis] and deer [Odocoileus spp.]) (Light 

and Burbridge 1985). Due to defoliation of the tree canopy, cavity-nesting species and species 

nesting in the shrub layer respond favorably to beetle-killed forests (Saab et al. 2014), whereas 

species that are forest cover dependent (e.g., American marten [Martes americana] that prefers 

great canopy closure as habitat) show substantial declines in their population sizes (Steventon and 

Daust 2009). The variation in wildlife responses to MPB outbreaks depends on not only wildlife 

species and forest types (e.g., lodgepole-dominated vs. ponderosa-dominated forests), but also the 

severity and scale of the outbreak, time since infestation, the conditions before the outbreak, and 

the spatial context in which the outbreak occurs (Saab et al. 2014).  

With higher percentages of tree mortality, MPB infested forest alters fuel structure in terms 

quantity, quality, and distribution of biomass (Harvey et al. 2014) and becomes more likely to fuel 

large, intense wildfires that threaten public safety, water supplies, wildlife and recreation 

(Colorado State Forest Service 2018). Following MPB attack, foliar moisture content in dead trees 

decreases gradually as time progresses (Gibson and Negron 2009). As foliage fall, canopy bulk 

density declines and fine surface fuels increase. As forest regrows, crown fuels recover and fine 

surface fuels decrease due to biomass decomposition. Coarse surface fuels increase as branches 

and snags fall while ladder fuels increase as shrubs and seedlings establish and surviving residual 

trees grow (Astrup et al. 2008). Consequently, fire behavior is modified in response to these 
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changes in fuel characteristics. With increased surface fuel loads, surface fire behavior reaches 

higher rate of spread, fireline intensity, and flame length in outbreak stands than endemic stands 

(Jenkins et al. 2008). Torching potential also increases as a result of reduced foliar moisture in 

killed trees, increased surface and ladder fuel loads, and no change in canopy base height (Hicke 

et al. 2012b). The potential for active crown fire increases in the red stage as foliar moisture 

decreases, declines through the gray stage following reductions in canopy bulk density, and slowly 

increases again when forest regrows (Page and Jenkins 2007). Although there remains 

disagreement and knowledge gap in early post outbreak stages and crown fire behavior responses, 

higher risk and more intense wildfire potentials in MPB infested forests with a longer time lapse  

(>10 years) since outbreak are generally accepted (Hicke et al. 2012b). 

 Regarding carbon dynamics at MPB infested forests, controversial arguments have been 

raised. On the one hand, as dead trees decay over time, they become a net source of carbon (i.e., 

dead trees stop absorbing CO2 and emit CO2 during decomposition) and contribute to climate 

change (Kurz et al. 2008; Amiro et al. 2010). The carbon release legacy from bark beetle outbreaks 

across Western United States is estimated to continue decades into future (e.g., 2040 to 2060) as 

committed emissions (Ghimire et al. 2015). On the other hand, it is pointed out that residual trees 

show enhanced radial growth post-outbreak and rapid carbon uptake which compensates for losses 

due to tree mortality (Hawkins et al. 2013). Effects of increased respiration due to tree mortality 

and photosynthesis efficiency due to forest recovery may in fact cancel out and result in no change 

in net CO2 exchange (Reed et al. 2014). MPB infestations may result in reductions in forest carbon 

storage, but recalcitrance of snags and coarse woody debris together with forest regrowth may 

recover attacked forests to net carbon sinks as quickly as 5 to 20 years (Hansen 2014). Large 

variability in carbon cycle responses arises from factors including time since disturbance, number 

of trees affected, and capacity of survival vegetation to increase growth rates post-outbreak (Hicke 

et al. 2012a). Despite the lack of consensus on the carbon balance between respiration and 

photosynthesis, the posing risks of destructive wildfires related to global warming and historical 

fire suppression may still keep MPB infested forests as potential large-scale carbon sources.  

 The MPB outbreak affects the environment in many, if not all, aspects and the impacts may 

be far reaching (Dhar et al 2016). Forest stand and landscape responses vary by tree species, forest 

composition, terrain conditions, and time since infestation. Climatic and geographical variations 

pose a further challenge for evaluating MPB impacts and predicting forest responses. Inconsistent 
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conclusions from different regions suggest that it is difficult to generalize positive and negative 

environmental impacts of the MPB outbreak.  

 

1.2.3 Social impacts 

MPB outbreaks have negative effects on forest provisioning and regulating services, which 

influences local communities substantially on water supply and quality, production of timber and 

non-timber products, and air purification (Dhar et al. 2016). Hazardous trees also pose threats on 

public safety around public campsites, roads, and infrastructure (Gebert et al. 2014). In addition, 

live trees provide aesthetic, cultural and recreational forest values, whereas dead and dying trees 

decline people’s landscape preference through visible damages, reduced tree density and tree size 

(Rosenberger et al. 2012). At wildland-urban interface, residential property values depreciate in 

MPB outbreak areas due to declining utility (i.e., a decrease in the level of satisfaction derived 

from market and nonmarket goods and services) (Price et al. 2010). At forest recreation sites, the 

quality of the recreation experience reduces with decreased consumer surplus and number of total 

visits in MPB infestation areas (Rosenberger et al. 2013), leading to reduced tourism revenues and 

loss of other cultural ecosystem services (Arnberger et al. 2018). 

The complexity of issues and great uncertainties involved in MPB infestation area 

management turn the epidemic to be more of a social issue than an environmental issue (Kimmins 

et al. 2005). In particular, dispersed agency authorities and jurisdictional fragmentation lead to 

regional distinctions in how MPB infested forests are managed on public versus private lands 

(Scarlett and Boyd 2015). Even though the public tends to have negative views towards MPB and 

support measures to control it, they generally lack the knowledge of MPB and its impacts 

(McFarlane et al. 2006). Public education and outreach on MPB related issues can help build 

consensus and participation in developing land management strategies, plan and implementation 

in response to outbreaks (Morris et al. 2018).  

 

1.3 Salvage utilization of MPB-kill wood and biomass 

1.3.1 Salvage harvest 

The primary goal of a MPB-kill salvage harvest is to utilize forest resource that is otherwise wasted 

and mitigate economic losses caused by the MPB outbreak (Loeffler and Anderson 2018). It 
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provides an opportunity to contribute to local wood product and bioenergy industries (Colorado 

State Forest Service 2017). Affected trees can be harvested at any stage but they retain greater 

portion of their commercial values at the green, red, or early gray stages (Loeffler and Anderson 

2018). Depending on species and extent of damage, it is estimated that beetle-attacked logs can 

still yield 56.1% to 99.8% values of healthy logs (Orbay and Goudie 2006). It is estimated that  

0.56 billion m3 of dead timber is available for salvage across 8.22 million hectares in the 12 western 

states in the US. This represents a considerable amount of revenues to recover for affected 

landowners in the region (Prestemon et al. 2013).  

Salvage harvest removes forest overstory and eliminates the possibility of crown fire 

(Griffin et al. 2013), making forests more resistant to potential high-severity fires (Hood et al. 

2017). Utilization of salvage timber also produces carbon benefits in various ways. At forest sites, 

it reduces dead wood decay emissions (Campbell et al. 2016) and increases carbon absorption by 

opening up the canopy to accelerate forest regeneration (Collins et al. 2010). During manufacturing, 

wood products normally involve less energy-intensive processes and release less carbon than their 

non-wood alternatives (Werner et al. 2005; Gustavsson et al. 2006). While being used, wood 

products serve as carbon storage, and regrowth in a sustainably managed forests is usually equal 

to or greater than the stored amount to offset wood product production emissions (Bergman et al. 

2014). At the end of service life, wood products can be used to substitute fossil fuels as energy 

feedstock (Kayo et al. 2015) or continue to preserve carbon in landfill for a longer period (Ximenes 

et al. 2008). 

Various timber harvesting equipment and systems have been developed to implement 

silvicultural treatments (e.g., clearcut, commercial thinning, and selective harvesting) under a wide 

range of vegetation and terrain conditions (Uusitalo and Pearson 2010). For MPB infested stands 

(Figure 1.2), residual snags and fallen stems may increase safety hazards and thus limit access for 

treatments (Griesbauer and Green 2006). To ensure economic efficiency and operational safety, a 

clearcut or patch cut with mechanized harvesting systems has become a standard salvage harvest 

treatment in most regions (Burton 2010). 
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Figure 1.2 Typical conditions of MPB infested lodgepole pine stands (left: distant observation, 
right: close observation) with high mortality rates showing a mix of standing, leaning, and down 
trees (Photos courtesy of Hee Han). 

 

1.3.2 Forest biomass for bioenergy 

In addition to timber production, degraded wood and logging residues (e.g., tree tops, branches 

and non-merchantable parts) from salvage harvesting can serve as feedstock for bioenergy 

production (Lamers et al. 2014). Compared to healthy forest stands, MPB-attacked forests 

represent a better source of bioenergy feedstock in terms of both quantity and quality. Because of 

wood degradation over time, some dead trees fail to meet the quality requirement for lumber or 

pulp and paper production especially when salvage harvest is delayed significantly. This results in 

a large amount of logging residues (Chow and Obermajer 2006). From a quality standpoint, these 

residues contain high woody composition and low moisture content, making it a bioenergy 

feedstock with high energy density (Barrette et al. 2015).  

If biomass residues are loped and scattered (i.e., biomass retention slash prescription), a 

large amount of heavy (1,000-h) fuels are left on site (Figure 1.3) (Hood et al. 2017). To reduce 

fire risks and prepare harvest sites for regeneration, disposal of biomass residues by open pile 

burning is often used post-harvest (Stephens et al. 2012; Jones et al. 2013). However, not only 

does this practice produces local air pollution (Campbell et al. 2018), burn sites also create 

persistent openings with low tree densities even after 50 years in regenerating lodgepole pine 

forests (Rhoades and Fornwalt 2015). Removal of biomass residues for further utilization avoids 
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such negative outcomes while saving costs and emissions (e.g., greenhouse gas, particulate matter) 

associated with open pile burning (Springsteen et al. 2011, 2015). The use of bioenergy/biofuel 

also reduces society’s heavy dependence on fossil fuels and contributes to climate change 

mitigation (Panwar et al. 2011; Creutzig et al. 2015). 

 

 
Figure 1.3 Site scene post-harvest when biomass residues are loped and scattered (left) or piled 
(right) at the landing (Photos courtesy of Hee Han and Nate Anderson). 
 

 Typically, forest biomass can be either combusted directly (e.g. hog fuel, chips) or 

converted to other bioenergy products, such as pellets, biochar, bio-oil, biodiesel, syngas, etc. 

through mechanical, thermal, chemical and/or biological conversion technologies (Sharma et al. 

2013). The selection of the suitable bioenergy product is determined by targeting energy format, 

biomass properties, available technologies or facilities, and other economic and technical factors 

(McKendry 2002a, 2002b). Because biomass can be stored and used on demand for energy 

generation, given sound planning and management, its supply can be more consistent and 

predictable than other renewable energy sources, such as wind and solar (Hall and Scrase 1998).  

 

1.3.3 Forest salvage in Colorado 

Colorado’s nearly 9.91 million hectares of forestland are consisted of a diverse mix of coniferous 

and deciduous species, where the most extensive forest types are spruce-fir, ponderosa pine, 

lodgepole pine, aspen and piñon-juniper1. Due to the complex forest types, Colorado’s forests are 

                                                
1 Colorado State Forest Service https://csfs.colostate.edu/colorado-forests/ 
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influenced by a variety of insects and diseases such as Spruce Beetle (Dendroctonus rufipennis), 

Douglas-fir beetle (Dendroctonus pseudotsugae), and root disease fungi. Among them, MPB 

infests all pine species native to Colorado and impacted more than 1.38 million hectares of forests 

between 1996 and 2014 (Colorado State Forest Service 2017). Tree mortality is most concentrated 

in lodgepole pine forests in north-central Colorado. The MPB populations now remain at endemic 

levels statewide with less than 360 ha of new infestation in 2017, which has been steady since 

2015 (Colorado State Forest Service 2018).  

In response to the massive quantity of trees killed by MPB attack, dead timber becomes 

the major component in Colorado’s forest harvesting, which accounted for 55 and 56 percent of 

the total harvest volume in 2007 and 2012, respectively, more than doubling the 26 percent in 2002 

(Sorenson et al. 2016). Lodgepole pine has become the leading species harvested in Colorado and 

accounted for 50 percent of the volume in 2012 (Sorenson et al. 2016). Throughout years, Colorado 

has switched from a net timber exporter (net exporting 4 million board feet [MMBF] of timber in 

2002), to a net timber importer (net importing 7.3 MMBF in 2007 and 7.1 MMBF in 2012) 

(Morgan et al. 2006; Sorenson et al. 2016). Meanwhile, more than 90 percent of wood-based 

products used in Colorado are imported from out of state, representing an annual expense of $4 

billion of Coloradans (Colorado State Forest Service 2016). As the majority (89 percent in 2002, 

98 percent in 2007, and 99 percent in 2012) of Colorado’s timber is processed in-State (Morgan et 

al. 2006; Sorenson et al. 2016), increasing the harvest volume contributes to wood products 

manufacturing and local employment, increases the market competitiveness of Colorado wood 

products, and benefits recreation and tourism at the same time (Colorado State Forest Service 

2016).  

Forest biomass utilization has also become more attractive given the recent policy 

enactments in Colorado, where electricity generation, thermal applications, and liquid biofuel 

production are considered as the most potential pathways (Eckhoff and Mackes 2010). Given the 

current severe wildland fire risks and concerns in dense, overgrown stands (Colorado State Forest 

Service 2019), biomass harvesting and utilization has gained general social acceptability to help 

achieve forest fuel reduction and restoration goals (Western et al. 2017). 

Our study forest in this dissertation is the Colorado State Forest (16,243 ha) located in 

northern Colorado (40°35′59″ N, 106°00′27″ W, Figure 1.4). Elevations in the forest range from 

2,570 to 2,980 m above sea level, and mean annual temperature and precipitation are 1.5°C and 
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75 cm, respectively (PRISM Climate Group 2012). The forest is dominated by lodgepole pine and 

quaking aspen (Populus tremuloides Michx.) with Engelmann spruce (Picea engelmannii) and 

subalpine fir (Abies lasiocarpa) at higher elevations. The forest was burned in the early 20th 

century and extensively logged in the 1940s and 1950s (Chung et al. 2017). Lodgepole pine stands 

have been heavily affected by MPB since 2008, resulting in a mortality rate of 47.3% across 

approximately 3,994 ha by 2015 (Han et al. 2018). The infested forest is located on relatively flat 

terrain with a stand density of 865 trees ha-1 and a basal area of 34.6 m2 ha-1. The average diameter 

at breast height (dbh) of trees is 22.4 cm and the average height is 19.6 m. 

 

 
Figure 1.4 Lodgepole pine stands in the Colorado State Forest shown in diameter at breast height 
(dbh) classes. 

  

The forest is currently managed for multiple uses with salvage harvest for timber 

production remaining a priority (Chung et al. 2017). Due to safety issues and overwhelming costs 

associated with harvesting on steep slope, salvage harvest in Colorado State Forest is restrained to 

ground-based clearcut operations in terrain with gentle slope (normally less than 30 percent), 

leading to 3,387 ha applicable stands. Commonly used equipment in ground-based mechanical 
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systems are shown in Figure 1.5. Feller-bunchers are used to cut trees down. Grapple skidders 

transport trees or lots from stump to landing. Stroke delimbers delimb, top and buck trees. Loaders 

sort timber products, build log deck, and load logs onto trucks. Depending on the small-end 

diameter and defects, trees can be processed into three log products (i.e., saw logs, post and pole, 

and firewood) and sold based on dry weight to local markets located approximately 45 km from 

the forest. As for logging residues, potential bioenergy alternatives include hog fuels (a biomass 

power plant 238 km away), wood pellets (a pellet plant 45 km away), and biochar (mobile pyrolysis 

equipment on-site). 

 

 
Figure 1.5 Equipment feller-buncher (a), skidder (b), delimber (c), and loader (d) used in the 
ground-based clearcut salvage harvest in Colorado State Forest. 
 

1.4 Forest supply chain management 

Supply chain is the network of material flows from the source to the end-user where four business 

entities, i.e. supplier, manufacturer, distribution centers, and customers are involved (Beamon 

1998). The management of supply chain focuses on integration of all entities so as to deliver the 

right amount of the right product to the right place at the right time (Feigin 2011). Forest supply 

chain planning focuses on producing and delivering diverse wood products from standing trees in 

forests to end customers in an economically viable and environmentally sound manner (Weintraub 

and Epstein 2005). The performance of a forest supply chain is decided by the degree of 

coordination and integration among entities, where various decisions are made during management 

to ensure the efficient flow of material and information (Sharma et al. 2013).  

 

1.4.1 Strategic, tactical, and operational decisions 

Based on the degree of significance and periods of effectiveness, decisions relevant to supply chain 

management fall in three levels: strategic (long-term, ten to 100 years), tactical (medium-term, six 
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months to several years), and operational (short-term, weekly, daily or even hourly) (Huang et al. 

2003). Depending on the area of MPB infested forests, amount of salvageable timber, and the time 

horizon of management, decisions at different levels may be involved that affect the final 

performance of the supply chain during forest salvage utilization. 

 Strategic decisions focus on the design of efficient supply chain network to increase the 

competitiveness and to achieve organizations overall objectives (Sharma et al. 2013). They are 

usually investment intensive to pursue long-term interests and may need revision after several 

years (De Meyer et al. 2014). The management goal is usually to determine the proper technology 

(e.g., bioenergy pathway), facility (e.g., number, location, and capacity), and corresponding supply 

chain configurations for a salvage utilization project. It is important to ensure timber and/or 

biomass supplies to be abundant and consistent during the entire project life cycle and comply with 

sustainable forest management. For example, a dedicated bioenergy combined heat and power 

plant is normally designed to serve more than 30 years so it should be built in a region with 

continuous sufficient biomass supply from nearby areas at reasonable logistic costs. 

Under prerequisites to meet established strategic goals, tactical planning serves as a bridge 

between the long term comprehensive strategic planning and the short term detailed operational 

planning to ensure the subsequent operations conform to the strategic directives (D’Amours et al. 

2010). Given the established infrastructure, tactical planning during forest salvage utilization 

focuses on improving the efficiency of resource (e.g., raw material, machine, manpower) 

utilization to best meet strategic goals while complying various practical constraints. This usually 

includes harvest scheduling among selected forest stands, material logistics control from forests to 

customers, and biomass pre-treatment management, etc. For example, harvesting operations are 

greatly influenced by the shifting weather conditions (e.g., summer fire restriction and spring thaw) 

so timber production (e.g., production volume, crew and machine allocation) should be planned 

accordingly to ensure the efficiency of the biomass supply chain. 

Operational decisions concentrate on details and precise timing of operations constrained 

by the tactical decisions (Sharma et al. 2013). They deal with detailed production, inventory, and 

transportation management to ensure consistent and efficient operations of all facilities along the 

supply chain (De Meyer et al. 2014). In forest salvage utilization, operational decisions include 

harvest system configuration, bucking pattern selection, and log sorting determination, etc. For 
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instance, daily truck scheduling and routing for hauling wood from forests to destinations is a 

typical operational planning problem. 

 

1.4.2 Operations research 

Operations research (OR) has long been used to develop models and solution methods to support 

forest management decision-making for forest industries and public forestry organizations 

(Rönnqvist et al. 2015). Applications include forest management planning and harvest scheduling  

(D’Amours et al. 2008) as well as supply chain management for forest products (e.g., wood 

products, paper, lumber, and biofuel) (Carlsson et al. 2008). Through modeling and quantitative 

analysis, a performance criterion (e.g., production cost, unit revenue, carbon emission amount) of 

interests is estimated to evaluate a management strategy or compare different strategies.  

Simulation, defined as “an approximate imitation of the operation of a process or system” 

(Banks 1984), is an effective tool in industrial and manufacturing engineering to understand 

production systems and estimate system productivity and costs (Ziesak et al. 2004). As a 

simulation approach, the time study technique has been widely applied in forest operational 

analysis to understand the performance of individual machines as well as the entire system (Acuna 

et al. 2012). In general, the field data collected are used to model the productivity of individual 

machines based on independent variables (e.g., stand density, skidding distance, terrain slope, tree 

size, etc.) through regression. These regression models are then used to predict machine 

productivity in productive machine hours under various work conditions (Schillings 1969; LeDoux 

et al. 1986; Kellogg and Bettinger 1994). Because machines encounter various delays (e.g., 

operator break, mechanical breakdown, machine queueing), the productivity in productive 

machine hour is converted to the productivity in scheduled machine hours by applying the rate of 

machine utilization. All machine productivities in scheduled machine hours are compared to 

identify the bottleneck function in the system. This bottleneck productivity is then used to estimate 

the productivity of the entire production system and unit production costs (Gingras and Godin 

1996; Han et al. 2004; Anderson et al. 2012).  

Mathematical optimization, or mathematical programming, is the technique of selecting 

the best alternative (with regard to some criterion) from a number of candidate solutions under 

some restrictions. In the optimization process, the problem is formulated as a mathematical model 

where one or more objective functions are to be optimized (e.g., maximizing net present value, 
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minimizing deviations in wood flow) by changing values of decision variables (e.g., harvesting 

system selection, production amount) while satisfying all constraints (e.g., capacity limitation, 

harvest area restriction) (Kaya et al. 2016). With an increasing interest in addressing sustainability 

in forest management, multi-objective optimization, one of the most popular multi-criteria decision 

making methods, has been widely applied to account for multiple, non-comparable, and often 

conflicting objectives simultaneously (Ananda and Herath 2009). The output is a set of “Pareto 

optimal” nondominated solutions, of which there is no other solution that is equal or better in all 

objectives (i.e., dominate this solution) (Ehrgott 2005). In any of nondominated solutions, one 

objective cannot be improved without sacrificing other objectives and form the Pareto front which 

shows trade-offs among objectives (Deb 2001). Decision makers can then select solutions that 

balance among objectives such as economic gains (e.g., property values), improvement on 

ecosystem services (e.g., water quality, wildlife habitat), and increasing social benefits (e.g., job 

generation, public acceptance) (Yue et al. 2013; Schroder et al. 2016).  

 

1.4.3 Challenges of supply chain management in salvage utilizing MPB infested forests 

1.4.3.1 Practical challenges 

One of the biggest challenges in salvage harvest logs from beetle-killed forest stands may be the 

low market values of dead timber due to relatively small trees size and wood defection (Byrne et 

al. 2006). For this reason, the central Rocky Mountain states of Colorado, Utah, and Wyoming, 

which have the largest percentage volume and acreage impacts from salvable standing dead timber, 

would not generate profitable timber salvage at many forest stands (Prestemon et al. 2013). In 

addition, salvage harvest logs from natural disasters only has a narrow window (Sessions et al. 

2004). Delay in salvage harvest following wildfire caused millions of dollar losses in two years 

(Prestemon et al. 2006). As beetle killed trees decay over time, their wood quality degrade (Lewis 

and Thompson 2011) and their market values continue to decrease (Barrette et al. 2015). However, 

at the same time, harvesting costs at beetle-killed stands continue to increase as the down tree 

proportion increases (Kim et al. 2017; Han et al. 2018) and salvageable volume decreases (Byrne 

et al. 2006). Thus ensuring the economic feasibility is of critical importance to facilitate salvage 

harvest of MPB infested forests. 

In terms of forest bioenergy, logistics of procuring, transporting and using forest biomass 

can become complex and expensive, making bioenergy less competitive than other energy sources 
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and impeding the development of bioenergy industries (D’Amours et al. 2010). The bulky shape, 

low energy density, and wide spread of forest biomass all cause high costs of biomass feedstock 

collection, handling and transportation (S. M. Wood 2003). The variation in quantity and quality 

of biomass by geographic locations, forest accessibility, seasonality, weather conditions, pre-

processing, transportation and storage conditions, etc. contributes to increased complexity and 

uncertainties of the supply chain (McKendry 2002a). The interrelationship with and dependence 

on other forest industries also complicate the management and supply of biomass feedstock to the 

bioenergy sector (Bolkesj⊘ et al. 2006). As logistic costs in bioenergy supply chain are estimated 

to account for 20 to 40 percent of total production costs (Angus-Hankin et al. 1995), a cost-efficient 

supply chain is important to promote the utilization of forest biomass for bioenergy. 

In addition to the economic status, the potential carbon benefits associated with timber and 

bioenergy products are also usually considered during the supply chain management of salvage 

utilization of MPB-attacked forests. However, because not all timber salvage and bioenergy 

production are profitable (Mahmoudi et al. 2009; Prestemon et al. 2013), carbon benefits from 

unprofitable forest stands can only be achieved through a sacrifice in the economic status of the 

supply chain. Balancing the two objectives, maximizing net revenues and maximizing carbon 

benefits from forest salvage utilization, is important to achieve sound supply chains in practice.  

Finally, multiple stakeholders, including land owners, timber producers, and bioenergy 

producers etc., are involved in the supply chain of forest salvage utilization (Flint et al. 2009). 

While their decisions and operations affect the utilization of infested forests and performance of 

supply chain, their management objectives are developed independently, and integration and 

cooperation among multiple stakeholders seldom occur. Potential misalignment in stakeholders’ 

objectives may lead to an inefficient use of resources and an overall weak performance of the 

supply chain. 

 

1.4.3.2 Analytical challenges 

When modeling timber harvesting systems, regression models are often used to describe 

relationships between machine cycle times of individual machines and influencing factors and 

estimate machine productivities in productive machine hours. However, without long-term data 

on machine utilization rates, the use of ‘standard’ utilization rates of individual machines may not 

generate accurate estimates of machine productivity in scheduled machine hours. This issue 
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becomes more apparent when regression models are applied beyond the range of observed data 

(e.g., a different skidding distance range). The time study and regression modeling approach also 

often fails to provide details on machine interactions and reflect site-specific operational 

conditions on productivity estimation. As salvage utilization of MPB-infested forests usually has 

narrow profit margins, more appropriate estimation on system productivity and cost of salvage 

harvest is extremely important. It is thus desirable to explore alternative approaches of harvesting 

simulation in order to provide more accurate system performance information for various 

management scenarios. 

 When both net revenues and carbon benefits need to be maximized along the supply chain 

of forest salvage utilization, multi-objective optimization can be employed to account for the two 

potentially conflicting objectives simultaneously. As the planning process involves multiple 

periods, multiple units, and multiple products, the planning problem becomes a combinatorial 

optimization problem that is NP-hard, meaning its computation complexity increases 

exponentially as the problem scale increases. When the problem is large, using exact methods (e.g., 

mixed integer programming) becomes prohibitive due to the overwhelming computation. Multi-

objective metaheuristics (MOMHs) are developed as alternative methods to tackle these 

computationally intensive problems (Gandibleux et al. 2004). Instead of trying to find all Pareto-

optimal solutions, MOMHs intend to obtain satisfactory nondominated solutions that approximate 

the Pareto front as much as possible within reasonable computation time (Durillo and Nebro 2011). 

Although many existing MOMHs demonstrate satisfactory performance (Zhang and Li 2007; 

Zouache et al. 2018), they often have a complex algorithm structure that involves a number of sub-

processes with many parameters requiring user-inputs and fine tuning. Not only does it contribute 

to the algorithm computation complexity, it also complicates the parameterization process because 

determining parameter values itself becomes a combinatorial optimization problem. Since 

parameters in MOMHs are highly instance sensitive, meaning that no common values are suitable 

for solving all problems, a complicated parameterization process is effort-demanding and 

significantly restricts the algorithm adaptability and applications. It is beneficial to develop simple 

yet high performance MOMH algorithms that can efficiently produce nondominated solutions.  
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1.5 Study objectives 

This Ph.D. dissertation uses OR methods to analyze the supply chain of forest salvage utilization 

of post-outbreak lodgepole pine stands in Colorado State Forest. The study goal is to develop and 

demonstrate the ability of simulation and optimization approaches in providing data-driven 

solutions to the management of MPB-killed stands and timber and biomass supply chain. Specific 

objectives are: 

• Develop a stochastic discrete-event simulation model for a ground-based tree harvesting 

system and demonstrate the use of DES techniques in timber harvesting operations modeling. 

• Develop a multi-objective optimization model to evaluate the economic and environmental 

objectives of the entire timber and biomass supply chain while considering options of upstream 

timber harvesting and residue management operations. 

• Develop a new multi-objective metaheuristic algorithm to efficiently solve multi-objective 

combinatorial optimization problems of MPB-killed stands and biomass supply chain 

management. 

 

 

 

 



 

 

 

 

 

 

  
Discrete-Event Simulation of Ground-Based Timber Harvesting 

Operations 
 

 

 

Abstract 

Operational studies are necessary to support production and management decisions of forest 

industries. A time study (TS) approach is widely used in timber harvesting operations to 

understand the performance of individual harvesting machines as well as the entire system. 

However, several limitations of the TS approach include the use of generalized utilization rates, 

incapability of capturing interactions among equipment, and model extrapolation in sensitivity 

analysis. In this study, we demonstrated the use of discrete event simulation (DES) techniques in 

modeling a ground-based timber harvesting system, and compared the DES results with those of 

the TS model developed with the same observed data. Although both TS and DES models provided 

similar estimation results for individual machine cycle times and productivities, the estimated 

machine utilization rates were somewhat different due to the difference in synthesizing machine 

processes in each approach. Our sensitivity analysis and model expansion to simulate a 

hypothetical harvesting system suggest that the DES approach may become an appropriate method 

for analyzing complex systems especially where interactions among different machine processes 

are unknown. 

 

Keywords: discrete-event; machine interactions; operational details; hypothetical systems 
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2.1 Introduction 

Various timber harvesting systems have been developed to implement silvicultural treatments (e.g., 

clearcut, commercial thinning, and selective harvesting) under a wide range of vegetation and 

terrain conditions (Uusitalo and Pearson 2010). Involving multiple machines and operators, timber 

harvesting is a complex process that, if poorly designed and implemented, could become 

dangerous, costly or environmentally damaging. Efforts to understand harvesting system 

performance and the ability to identify the most suitable system for given operational conditions 

are essential to achieve safe, economically viable, and environmentally sound harvesting 

operations. 

 Time study (TS) techniques have been widely applied to timber harvesting operations to 

understand the performance of individual harvesting machines as well as the entire system (Acuna 

et al. 2012). In general, the field-collected data are used to model the productivity of individual 

machines based on independent variables (e.g., stand density, skidding distance, terrain slope, tree 

size, etc.) through regression. These regression models are then used to predict machine 

productivity in productive machine hours (PMH) in various scenarios under similar work 

conditions (Schillings 1969; LeDoux et al. 1986; Kellogg and Bettinger 1994). A timber harvesting 

system often involves multiple machines working simultaneously, and estimating the productivity 

of the entire harvesting system requires the productivity of individual machines in scheduled 

machine hours (SMH). The conversion of productivity from PMH to SMH is based on the rate of 

machine utilization which incorporates potential delays that may occur to individual machines. 

Because the entire system productivity is limited by bottlenecks in any given machine or operation, 

it is important to understand and accurately quantify the utilization rates of individual machines 

(Gingras and Godin 1996; Han et al. 2004; Anderson et al. 2012). 

 However, quantifying machine utilization rates is often omitted in TS techniques when the 

field observation period is not long enough to accurately assess utilization rates. It has been a 

custom to use the published machine utilization rates from past studies (Brinker et al. 2002; Bisson 

et al. 2015; Kizha and Han 2016), or the average values from long-term shift-level production data 

(Mitchell and Gallagher 2007; Pan et al. 2008b,  2008a). But either approach may not provide 

suitable estimates unless the harvesting system and site are similar to the ones used in the past 

studies, or represent the average system and work conditions. Using the published or average data 

becomes a larger issue when one attempts to compare different harvesting systems or system 
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configurations. It may not be justifiable to assume the same utilization rates for machines used in 

different systems. 

 One might collect machine delay times during a detailed time study for future uses. 

However, due to high costs of field data collection, most detailed time studies are conducted only 

for a short time period (e.g., a few days) (Aedoortiz et al. 1997), and short-term data on delays 

might misrepresent the “normal” operational conditions as data can be biased with the presence or 

absence of any irregular and unpredictable events, such as machine breakdowns and adverse 

weather conditions. Alternatively, shift-level time studies are less costly (Olsen and Kellogg 1983) 

and can provide long-term delay data, but once data are averaged out, they lack detail, such as 

delay types and causes, and thus provide limited insights for future improvement (Olsen et al. 

1998). It is also noted that some studies only reported delays longer than 15 min and included 

shorter delays as part of productive time (Spinelli and Visser 2008). A drawback with an arbitrary 

cutoff time is that this interpretation could depict system performance very differently when most 

delays last less than the cutoff time. 

 The TS approach also provides limited insights on how multiple machines interact with 

each other during the harvesting process. Although delay-free cycle time regression models depict 

the relationship between dependent and independent variables  (Spinelli and Magagnotti 2010), 

outputs are only mean cycle time values without accounting for variation, especially variation 

caused by chain effects across multiple machines and tasks. When system components (i.e., 

individual machines) are highly interdependent, cycle time regression developed for individual 

machines can lead to biased productivity and cost estimates (Asikainen 1998). In addition, when 

one machine performs multiple tasks (e.g., a loader is used to sort and deck logs, as well as to load 

log trucks), it would be difficult to build a regression model representing a series of different tasks. 

 Simulation techniques have been widely used in industrial and manufacturing engineering 

as an effective tool to understand production systems and estimate system productivity and costs 

(Ziesak et al. 2004). When properly developed and applied, simulation techniques can be useful to 

overcome the aforementioned limitations of the conventional TS approach in forest operations. 

Discrete-event simulation (DES) models the operation of a system as a series of events occurring 

at discrete points in time. In DES, events are broadly defined as things that may happen and cause 

a change in the system’s state (Karnon et al. 2012). The term ‘discrete’ means the system’s state 

changes only at specific time points in response to events occurring at those time points. The 
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simulation clock advances by jumping from one event time point to the next. No system 

components change in the interval between two events. As events occur in sequence, mimicking 

operations in practice, all operational information (e.g., processing time, wait time, queue length) 

is recorded to evaluate the performance of the modeled system. With DES, systems are analyzed 

by numerical methods rather than analytical methods (Banks 1984), which becomes an advantage 

when a large number of variables, parameters and functions are involved in a system, and various 

interactions occur among system components. 

 In addition, the ability of DES models to keep track of all events throughout the simulation 

process enables the user to build and test various operational scenarios simply by changing 

simulation inputs and observing the resulting outputs without disturbing the actual workflow 

(Banks 1984). Another attractive benefit of the DES technique is the ability to construct and 

examine hypothetical, unobserved systems. Production and supply systems can be studied by 

observing the operation of the system if the system is already in operation (Spinelli and Hartsough 

2001). However, due to high costs and the laborious work of field data collection, it would be 

beneficial if previously collected data can be used to estimate the performance of an unobserved 

system. The DES model can facilitate this because with the same machines and technology, some 

processes and parameter values are invariant and still applicable under different circumstances. 

For instance, when the same machine is operated by the same operator under similar terrain and 

vegetation conditions for the similar harvest practice (e.g., clearcut), a skidder’s empty travelling 

speed might not dramatically change by skidding distances or system layouts. In such cases, 

previously collected data may be used in designing and analyzing new systems through DES 

models. 

 DES techniques have been applied to operational studies in forestry for many years, and 

simulation of harvesting operations was among the first attempts. Some studies focused on the 

productivity and operation of individual machines (Winsauer and Bradley 1982) and others 

addressed interactions among harvest equipment and interactions between the harvesting system 

and log transportation (Bradly et al 1975, Baumgras et al 1993). These early stage models were 

implemented with the General Purpose Simulation System (GPSS/360, International Business 

Machines Corporation, Armonk, NY, USA) or programming language (e.g., FORTRAN, 

International Business Machines Corporation, Armonk, NY, USA), and thus required long 

development times especially when complex model construction was required. Later, the 



24 
 

 

emergence of graphical-based simulation software development systems (e.g., Arena, Arena 15, 

Rockwell Automation Technologies, Inc., Milwaukee, WI, USA), AnyLogic (AnyLogic 8.3, The 

AnyLogic Company, Oakbrook Terrace, IL, USA), and Witness (Witness Horizon 22.0, Lanner 

Group Limited, Houston, TX, USA) facilitated the DES modeling process, and DES has been 

proved to be a reliable approach in supply chain management through various applications (Abu-

taieh et al. 2007). In recent years, there were some DES applications in the fields of forest biomass 

supply chains where different chipping locations (Spinelli et al. 2014), equipment configuration 

(Asikainen 1998, 2010), trucking options (Zamora-Cristales et al. 2014), and transportation 

methods (Wolfsmayr et al. 2015) were examined. These studies mainly focused on supply chain 

logistics, comparing different systems under various circumstances in order to support operational 

decisions. For upstream forest harvesting operations, however, there is a dearth of studies that have 

employed the DES technique. Asikainen (1995, 2001) modeled mechanized harvesting systems 

and log transportation, incorporating the effects of random elements such as machine failures and 

transportation distances on the entire system. Hogg et al. (2010) simulated stump-to-mill multi-

stem Eucalyptus harvesting and transport operations for system comparisons. However, none of 

the past studies explicitly compared DES with TS to highlight the differences between the two 

approaches and the potential benefits of the DES approach in analyzing the performance of 

harvesting systems. 

 In this study, we developed a stochastic DES model for a ground-based, whole-tree 

harvesting (WT) system, and compared it to the conventional TS approach in order to demonstrate 

the use of DES techniques in timber harvesting operations modeling and highlight its potential 

advantages in flexibility, precision, and analytical ability. We also applied the data from the WT 

DES model to a new DES model simulating another ground-based harvesting method called “lop-

and-scatter (LS)”, to demonstrate the ability of DES in analyzing hypothetical harvesting systems 

by reusing the previously collected data from the existing system. 

 

2.2 Materials and methods 

2.2.1 Harvesting system and data collection 

We conducted a time study on a ground-based, whole-tree clear cut of the beetle-killed lodgepole 

pine (Pinus contorta Dougl. ex. Loud. var. latifolia) harvest unit located in Colorado State Forest 

(Figure 2.1) in northern Colorado (40°35’59” N, 106°00’27” W) (Han et al. 2018). This 1.9-ha 
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unit was affected by the mountain pine beetle outbreak since 2008 and the mortality rate in 2015 

was 47.3%. The stand density was 865 trees ha-1 and the average basal area was 34.6 m2 ha-1. The 

mean diameter at breast height (dbh) of trees was 22.4 cm and the mean height was 19.6 m. Due 

to the small tree size, most trees were processed into only one piece of log. Post harvesting, we 

sampled 28 logs to measure small end diameter and length. These measured data were used to 

estimate oven dry log weight (Chung et al. 2017), resulting in 0.1185 oven dry ton (odt) per piece. 

 

 
Figure 2.1 Site map showing the harvesting unit in Colorado State Forest. 

 

 The WT system consisted of one tracked feller-buncher for cutting trees down (TimberPro 

TL-735-B, TimberPro Inc., Shawano, WI, USA), one grapple skidder (Tigercat 615C, Tigercat 

Industries Inc., E. Brantford, ON, Canada) for primary transportation (i.e., from stump to landing), 

two stroke boom delimbers (Timberline SDL2, DDI Equipment, Whitewater, CO, USA) for 

delimbing and bucking, and one grapple loader (Barko 495ML Magnum, Barko Hydraulics, LLC, 

Superior, WI, USA) for sorting, decking, and loading logs (Figure 2.2). All equipment was 

operated by experienced operators and worked simultaneously on site. Cut trees were transported 

to the landing by the skidder in the form of whole trees. The delimbers staying close to the landing 

processed trees into logs. When there was a truck on site, the loader performed sorting and loading 
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simultaneously by directly loading some logs onto the truck while placing other logs (i.e., different 

sorts) onto the deck. When no trucks were on site, the loader performed only log sorting and 

decking.  

 

 
Figure 2.2 Description of the whole-tree harvesting system used in Colorado State Forest. 

 

 Following standard work study methods (Olsen et al. 1998; Acuna et al. 2012), we 

collected detailed time study data in December 2015 from the harvesting unit. Readers are referred 

to Han et al. (Han et al. 2018) for a detailed description of the WT harvest unit and field data 

collection. Table 2.1 shows cycle time elements and corresponding operational data for each 

machine and their applications in building TS and DES models. Some data were only used in the 

DES model because they were not related to delay-free machine cycles. Some other data were only 

used in the TS model because they were identified as independent variables of regression models 

whereas the DES model used other information to describe the same processes. 

 Hourly machine costs (Table 2.2) were estimated using the commonly accepted machine 

rate calculation method (Miyata 1980; Brinker et al. 2002). In addition to machine fixed and 

operation costs, we distinguished machine idle costs from operating costs to differentiate costs 

related to machines idling (e.g., operational delay, warm-up, etc.). This is deemed necessary 

because some machine operating costs, such as for fuels and lubricants, are lower during idle time. 

We assumed the fuel consumption rate during idle times is 10% of the productive time rate 

(Tigercat; Nordfjell et al. 2003).  
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Table 2.1 Field collected data and applications in models. 
Equipment Data Value Range Mean Application 

Feller-buncher Felling time (s) 7-71 20.8 Both 
 Move distance (m) 0-11.6 0.9 TS 

 Number of standing trees 0-4 1.9 Both 

 Number of down trees 0-2 0.1 Both 

 Tree pile size 9-20 14.5 DES 

 Relocation chance (0 = no, 1 = yes) 0 or 1 0.05 DES 

 Relocation time (s) 11-63 46.0 DES 

Skidder (Tree) Empty travel time (s) 60-128 88.6 Both 
 Positioning and grappling time (s) 12-33 20.8 Both 

 Bunching time (s) 25-130 40.7 Both 

 Loaded travel time (s) 58–145 86.1 Both 

 Empty travel distance (m) 82.6-219.8 165.0 Both 

 Loaded travel distance (m) 43.9-230.7 141.3 Both 

 Number of trees 9-40 21.9 Both 

Skidder (Log) Empty travel time (s) 22-43 35.1 Both 
 Positioning and grappling time (s) 5-18 8.9 Both 

 Loaded travel time (s) 11-42 21.0 Both 

 Empty travel distance (m) 29.0-63.7 44.3 TS 

 Loaded travel distance (m) 6.7-43.6 27.1 TS 

 Number of logs 9-40 22.9 TS 

Delimber Delimbing time (s) 12-104 42.3 Both 

 Reposition chance (0 = no, 1 = yes) 0 or 1 0.1 DES 

 Positioning time (s) 9-88 29.8 DES 

 Number of live trees 0-5 0.76 Both 

 Number of dead trees 0-5 0.92 Both 

Loader Sorting and decking time (s) 6-119 36.4 Both 

 Loading time* (s) 11-115 43.7 Both 

 Task (0 = sort and deck, 1 = direct loading) 0 or 1 0.30 TS 

 Direct loading chance † (0 = no, 1 = yes) 0 or 1 0.50 DES 

 Number of logs 1-14 3.3 Both 
* Loading cycle time data include both direct loading and loading from deck. † Proportion of direct loading while a truck 
is on site. TS = time study, DES = discrete-event simulation. 
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Table 2.2 Estimated hourly costs of each machine in the study. 

Cost component 
Feller-Buncher Delimber Skidder Loader 

Operating Idle Operating Idle Operating Idle Operating Idle 

Sale price ($) 395,000 395,000 355,000 355,000 219,000 219,000 205,000 205,000 

Salvage value ($) 59,250 59,250 71,000 71,000 32,850 32,850 61,500 61,500 

Machine life (year) 5 5 5 5 5 5 5 5 

Depreciation ($/year) 67,150 67,150 56,800 56,800 37,230 37,230 28,700 28,700 

Interests ($/year) 26,070 26,070 24,140 24,140 14,454 14,454 14,760 14,760 

Insurance ($/year) 10,428 10,428 9,656 9,656 5,781.6 5,781.6 5,904 5,904 

SMH (h/year) 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 

Fixed cost ($/h) 51.82 51.82 45.30 45.30 28.73 28.73 24.68 24.68 

Fuel (L/h) 29.9 3.0 32.0 3.2 23.3 2.3 14.2 1.4 

Fuel ($/h) 17.46 1.75 18.68 1.87 13.61 1.36 8.28 0.83 

Lubricant ($/h) 6.46 0.65 6.91 0.69 5.04 0.50 3.06 0.31 

R & M * ($/h) 55.96 0 39.32 0 27.92 0 19.87 0 

Labor ($/h) 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 

Operation cost ($/h) 114.16 36.68 88.29 36.85 80.86 36.16 65.50 35.42 

Total cost ($/h) 165.99 88.51 144.51 82.15 109.60 64.89 90.19 60.11 
* Repair and maintenance cost proportional to machine depreciation and utilization, adapted from Brinker et al. (2002). SMH 
= scheduled machine hours. 

 

2.2.2 Model building 

Detailed time study data were used to build both DES and TS regression models to evaluate the 

stump-to-truck harvesting process of the WT system. Two thirds of the cycle time data were 

randomly selected for model construction and the rest were used for model validation. In the DES 

model, time element data and other observed operational data were used to create discrete events 

of each machine process and corresponding input probability distributions. In the TS model, cycle 

time data were used as dependent variables to build delay-free cycle time equations for each 

machine based on independent variable values. Both models (referred to as base DES and TS 

models) were applied to the harvesting of 1700 trees where the average skidding distance was 152 

m. The system productivity per scheduled machine hour (SMH) and the timber stump-to-truck 

cost estimated by both models were compared to show the differences between these two modeling 

approaches. The DES and TS models are described in detail below. 

 



29 
 

 

2.2.2.1  Discrete-event simulation models 

We constructed our DES model in the Rockwell Arena simulation software (Rockwell Automation 

2012), which has been widely used as a DES simulation tool for both research and practical 

applications (Altiok and Melamed 2010; Rossetti 2015). In the simulation, entities are used to 

represent objects (e.g., products, customers) that are processed by resources (e.g., machine, labor) 

of the modeled system. They flow through the system from one resource to another, triggered by 

the occurrence of events. Events themselves occur due to the arrival of entities, the completion of 

process tasks, random equipment failures, and other related items (e.g., break times). The model 

generates random realizations of these operational items from the user-defined probability 

distributions representing their durations. In this manner, events occur and entities move through 

the system over time until the simulation meets the designated terminating condition (e.g., the 

completion of processing of all entities, a certain length of simulation time). The DES model is 

normally run multiple times and provides summary statistics of the simulation results in order to 

account for uncertainties that may exist in the system (Kelton et al. 2009). 

In our study, trees/logs were modeled as entities and machines were modeled as resources. 

All procedures related to the harvesting process, such as machine processing times, machine 

reposition probabilities, the number of trees/log pieces in a machine cycle, etc. were modeled 

within the simulation. To derive appropriate probability distributions for these procedures, several 

theoretical distributions in the form of mathematical formulations (e.g., Exponential, Gamma) 

were statistically “fit” to the field time study data. The quality of fit was determined by the Chi-

square Goodness-of-Fit test and all proposed distributions were ranked by p-values from high to 

low. A p-value greater than 0.05 indicated an acceptable fit and the distribution could be used in 

the simulation model. If no theoretical distributions were acceptable, an empirical distribution was 

used, which merely divided data into groups with values representing proportions of data in each 

group. For example, the number of trees that were delimbed in a delimbing cycle followed an 

empirical distribution, and the time used for delimbing one tree was drawn from an Erlang 

distribution. The final fitted distributions of all modeled processes are listed in Table 2.3. Events 

were connected by logical links developed to form the structure and logic of the DES model 

(Figure 2.3). A simulation run began as the feller-buncher started cutting trees. Trees/logs were 

then processed by each machine following the order in practice. For a feller-buncher cutting cycle, 

the model first determined if a machine relocation was necessary prior to cutting based on the 
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machine relocation probability. If yes, the model randomly drew a relocation time from the 

relocation time distribution and added it to the machine cycle time. The model then generated the 

number of trees cut for the cycle and assigned a cutting time randomly drawn from the cutting time 

distribution. After completing one tree-cutting cycle, the feller-buncher was ready for the next 

cycle and trees were stacked in a pile waiting to be transported by the skidder. 

 

Table 2.3 Fitted distributions for each event of machine operations. 
Equipment Event Distribution Arena Expression* p-value 

Feller-buncher 

Relocation chance Empirical DISC (0.95, 0, 1, 1) - 

Relocation time Empirical 
CONT (0.00, 10.50, 0.29, 23.50, 0.64, 

36.50, 0.86, 49.50, 1, 63.50) 
- 

Down tree cycle chance Empirical DISC (0.94, 0, 1, 1) - 

Down tree cycle time Beta 11.5 + 31 × BETA (1.57, 1.47) 0.30 

Cycle cut piece Empirical DISC (0.22, 1, 0.85, 2, 0.96, 3, 1, 4) - 

One-piece felling time Erlang 4.5 + ERLA (2.57, 4) 0.37 

Two-piece felling time Erlang 7.5 + ERLA (2.4, 5) 0.09 

More-piece felling time Gamma 12.5 + GAMM (3.25, 3.37) 0.17 

Tree pile size Weibull 8.5 + WEIB (6.73, 2.06) 0.06 

Delimber 

Reposition chance Empirical DISC (0.90, 0, 1, 1) - 

Reposition time Erlang 8.5 + ERLA (10.7, 2) 0.36 

Cycle cut piece Empirical DISC (0.53, 1, 0.87, 2, 0.94, 3, 1, 4) - 

One-piece delimb time Erlang 11.5 + ERLA (4.96, 5) 0.23 

Two-piece delimb time Gamma 12.5 + GAMM (7.67, 4.13) 0.17 

More-piece delimb time Beta 27.5 + 54 × BETA (1.36, 1.59) 0.12 

Skidder 

Empty distance ratio † Triangular TRIA (0.55, 1.15, 1.57) 0.14 

Loaded distance ratio Triangular TRIA (0.09, 0.77, 1) 0.49 

Empty speed Triangular TRIA (1.41, 1.91, 2.27) 0.27 

Loaded speed Triangular TRIA (0, 1.27, 2.44) 0.06 

Skid log trip Triangular TRIA (49.5, 67, 88.5) 0.44 

Loader 

Loading piece Poisson POIS (2.88) 0.74 

Direct loading chance Empirical DISC (0.51, 0, 1, 1) - 

Loading time Beta 13.5 + 69 × BETA (1.27, 1.91) 0.36 

Sort and deck piece Poisson POIS (3.45) 0.31 

Sort and deck time Erlang 5.5 + ERLA (7.35, 4) 0.24 
* In Arena expression, DISC (CumP1, Val1, …, CumPn, Valn) and CONT (CumP1, Val1, …, CumPn, Valn) are empirical 
distributions showing pairs of cumulative probabilities and associated values. For other distributions, input values are parameters 
specified according to distribution mathematical forms. More details on Arena’s probability distribution can be found in Kelton 
et al. (2009). † The skidder empty travel distance in each trip was estimated to be proportional to the average skidding distance. 
In the same trip, the skidder loaded travel distance was estimated to be proportional to the empty travel distance 
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Figure 2.3 The DES model logic developed for the feller-buncher (FB, a), skidder (SK, b), 
delimber (DL, c), and loader (LO, d) in the whole-tree harvesting system. 
 

The skidder started a new cycle with an empty travel from the landing to a tree pile. Travel 

time was estimated using travel distance and speed that were randomly drawn from the user-

defined distance and speed distributions. When the skidder arrived at a tree pile, the skidder 

operator checked if the pile was ready for transportation; if not, the operator had to wait for the 

feller-buncher to finish cutting trees and completing a tree pile. The skidder grabbed a tree pile 

otherwise, and then sought another tree pile to combine if the capacity was not met yet. As the 

skidder travelled loaded towards the landing, the operator checked if any of the two delimbers had 

completed processing of the previously delivered trees. If no delimber was available, the skidder 
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waited until one delimber was ready, and then passed the trees onto the available delimber. The 

skidder then grabbed the processed logs and skidded them to the loader. Similarly, the operator 

checked the loader’s availability before passing logs. 

The delimber operator started a new cycle by checking if the previous tree pile had been 

finished. If there was no tree to delimb, the operator stayed idle and waited for the skidder to 

deliver trees. If there were trees from the previous pile, the model determined if the delimber 

needed to adjust machine position before delimbing. If yes, it added a reposition time. The model 

then randomly generated the number of trees and delimbing time to complete the delimbing cycle. 

Processed logs were stacked in a log pile and readied for pick up by the skidder that delivered a 

log pile to the log deck at the landing. 

The loader had different tasks depending on the availability of log trucks and sorted logs. 

When the skidder delivered logs and a truck was available on site, the loader operator 

simultaneously sorted logs and loaded the requested sort onto the truck (“direct loading”). When 

a truck was available but there were no more logs to sort, the loader loaded the previously sorted 

and decked logs onto the truck (“load from deck”). When no truck was available at the landing, 

the loader operator sorted logs and stacked them on the deck (“sort and deck”). When neither logs 

to sort nor trucks were available, the loader stays idle. 

Because long-term shift level information was not available, assumptions were made 

during the simulation in order to setup work shifts and machine breakdowns. A work day was 

assumed to be 10 SMH with a 45-min machine warm-up period in the morning and 45-min 

machine maintenance work at the end of day. Five trucks were scheduled to visit the harvest site 

to haul logs and their inter-arrival time was assumed to be normally distributed (i.e., NORM (60, 

15) in Arena). For all equipment, machine failures might occur at any time. The failure rate and 

repair times were assumed to follow an exponential distribution with parameters of 1,000 and 30 

min (i.e., EXPO (1000) and EXPO (30) in Arena), respectively. For each machine, time spent on 

operation, warm-up and maintenance, idle state, and other disturbances (e.g., repair, personal delay) 

were categorized as utilization, scheduled delay, operational delay, and other delays. Scheduled 

delays included machine warm-up and scheduled maintenances, while operational delays were 

mainly caused by machine interactions (i.e., time spent to wait until other machines finish their 

cycles). When all harvested logs were delivered to the landing, all the machines except for the 

loader stopped working and returned to their parking spots. The loader continued working until all 
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harvested logs were loaded onto trucks. Once all logs were loaded, a single simulation run was 

considered completed. In this study, a total of 100 simulation runs were made. 

 

2.2.2.2 Time study regression models 

We adopted the multiple least-squares linear regression models in Han et al. (2018) for most 

machines in our TS models except for the skidder. In this study, we developed two separate 

regression equations (R Statistical Software version 3.4.0 (R Core Team 2017)) for the skidder to 

estimate delay-free cycle times of two different tasks: skidding trees to the delimbers at the landing, 

and skidding logs from the delimbers to the loader. A tree skidding cycle included empty travel 

from the landing, grabbing trees, bunching trees, loaded travel and dropping trees. A log skidding 

cycle included empty travel to a processed log pile, grabbing logs, loaded travel to the loader, and 

dropping logs. 

For each machine, the average values of independent variables were used to predict the 

mean delay-free cycle times. Combined with the average processed log volume in each machine 

cycle, hourly productivities in PMH were calculated for all equipment. Because TS models were 

static, machine interactions and different types of delays could not be captured by the model. 

Instead, machine productivities in PMH were converted to productivities in SMH by applying the 

following empirical utilization rates (Brinker et al. 2002; Han et al. 2018): 60% for the feller-

buncher, 65% for the delimbers, 60% for the skidder, and 65% for the loader. A machine with the 

lowest SMH productivity became the system bottleneck and its productivity was used for the entire 

system productivity. As the result, unit production costs, resulting machine utilization rates, and 

unutilized machine times (categorized as delay) were estimated. 

 

2.2.3 Sensitivity analysis 

The average skidding distance normally has a large influence on the skidder’s cycle time, 

productivity, interactions with other machines, and ultimately the performance of the entire system. 

We conducted a sensitivity analysis to evaluate the impact of the average skidding distance on 

both the DES and TS models. Different average distances were used ranging between 50 and 600 

m with an increment of 50 m. The results from the DES and TS models are compared in terms of 

system productivity, unit production cost, and machine utilization rates. 
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We also examined the sensitivity of the DES model to truck availability to assess how the 

harvest system responds to different number and frequency of trucks. In our studied system, the 

loader serves as a link between in-woods harvesting operations and truck transportation. Different 

trucking schedules likely affect the loader’s work pattern and its interactions with other machines. 

Truck scheduling has been traditionally dealt with as a separate problem from stump-to-landing 

operations in forest operations analysis, but it may become an important factor for operational 

efficiency when harvesting units have limited space for landing and log decking. Using the DES 

model, we varied the number of trucks on site from 0 to 10 trucks per day and examined its 

influence on the loader’s utilization, time used for different tasks, and truck on-site time. We were 

not able to estimate the impact of different truck schedules using the TS approach because TS 

regression models were static and the loader’s interactions with trucks were impossible to model 

with our limited data. Therefore, we did not make comparisons between the DES and TS models 

for varying truck schedules. 

 

2.2.4 Hypothetical systems 

To demonstrate the potential advantage of DES models in analyzing hypothetical systems, we built 

a new DES model to simulate another ground-based harvesting system called lop-and-scatter (LS) 

(Han et al. 2018). The LS system employs the same machines as the WT system, but with 

differences in the delimbing location and the order of operations (Figure 2.4). In LS, the delimber 

processes trees at the stump instead of at the landing, leaving limbs and tree tops in the woods. 

The skidder then forwards the processed logs to the loader at the landing. 

For the DES model developed for the LS system (hereafter referred to as LS DES), we 

used the same discrete events and input probability distributions as those used in the previous DES 

model developed for the WT system (hereafter referred to as WT DES). A new additional event 

required for the LS DES model was a delimber’s in-woods movement from tree pile to pile. For 

this, we used a delimber’s reposition time distribution as a substitution. Logical links were 

developed to connect sequential events necessary for the LS system (Figure 2.5). In this system, 

the delimbers directly interact with the feller-buncher, while the skidder transports only processed 

logs from stump to landing. 
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Figure 2.4 Description of the lop-and-scatter system used in Colorado State Forest. 
 

 The LS DES model was run under the same harvesting conditions used in the WT DES 

model. The results were then compared with our independent data obtained from the LS operations 

conducted in the same unit in Colorado State Forest for model validation (Han et al. 2018). 

 

 
Figure 2.5 The DES model logic developed for the delimber (DL) (a) and skidder (SK) (b) in the 
lop-and-scatter system. The feller-buncher (FB) and loader (LO) have the same work patterns as 
in the WT DES model (Figure 2.3a, d), and thus are not presented here. 
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The field LS data were also used to develop a new TS model for the LS system (LS TS). 

We compared the results of the LS TS model with the LS DES model. For further analysis, we 

used two sets of machine utilization rates when converting machine productivities in PMH to those 

in SMH. The first set is the general utilization rates (Brinker et al. 2002) used in the WT TS model. 

The other set is the utilization rates resulting from the LS DES model. Estimations from these two 

approaches are referred to as LS TS_conventional and LS TS_adjusted, and are compared with the 

outputs from the LS DES model in terms of system productivity in SMH and unit production cost 

to further highlight the importance of machine utilization rates in system performance evaluation. 

 

2.3 Results 

2.3.1 DES and TS models for whole-tree harvesting 

The results of 100 simulation runs of the base WT DES model are presented in Table 2.4. 

Individual machine process productivities ranged from 17.08 to 145.01 odt/PMH with log 

processing by delimber B having the lowest productivity and log skidding by the skidder having 

the highest productivity in the system. The utilization rates were fairly even among the individual 

machines except for the feller-buncher that had the lowest rate of 51.7%. The entire system 

productivity was 20.16 odt/SMH and unit production cost was estimated at $29.71/odt. The 

coefficient of variation (i.e., the ratio of standard deviation to the mean) was less than 7% for all 

the machines, indicating the simulated machine processes were not variable among simulation runs. 

 

Table 2.4 Performance metrics of individual machines and the entire system of whole-tree 
harvesting generated by 100 simulation runs of the DES model. Standard deviations are shown 
inside parentheses. 

Machine 
Cycle Time* 

(s) 

Productivity 

(odt/PMH) 

Utilization 

(%) 

Sys. Prod. 

(odt/SMH) 

Unit Cost 

($/odt) 

Feller-buncher 20.5 (1.5) 41.83 (0.66) 51.7 (4.2) 20.16 (1.71) 29.71 (1.92) 

Delimber A 42.5 (3.0) 17.14 (0.35) 61.6 (6.1)   

Delimber B 42.9 (3.0) 17.08 (0.40) 56.3 (6.0)   

Skidder (trees) 256.0 (3.1) 39.86 (1.71) 64.5 (5.2)   

Skidder (logs) 71.3 (9.1) 145.01 (4.49)    

Loader (loading †) 42.2 (3.0) 29.43 (1.86) 66.9 (4.5)   

Loader (sort and deck) 36.4 (3.0) 40.17 (1.31)    
* Delay free cycle time. † Loading includes both direct loading and load from deck. odt = oven dry ton, 
PMH = productive machine hours 
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 Table 2.5 presents the delay-free cycle time regression models used in this study for the TS 

approach. Each regression model was tested for assumptions of normality, independence and equal 

variance in order to ensure the validity of regression analysis. No serious violations were identified, 

and all models were significant (p < 0.05). The TS model predicted the system productivity and 

unit production cost to be 18.67 odt/SMH and $30.21/odt, respectively (Table 2.6). The skidder 

became the system bottleneck due to its lowest productivity in SMH after conversion using the 

generalized utilization rate. The feller-buncher was predicted to have the highest productivity and 

therefore the lowest utilization in the system. 

 

Table 2.5 Delay-free cycle time regression models for individual machines used in whole-tree 
harvesting (adopted from Han et al. (2018)). 

Machine Average Cycle Time Estimator (s) SE t 𝒑-value Adj. 𝑹𝟐 
Model 

𝒑-value 

Feller-

buncher 

= 10.140 0.614 16.50 <0.01 0.4329 <0.01 

+ 3.709 × No. of standing trees 0.296 12.54 <0.01   

+ 13.082 × No. of down trees 0.870 15.04 <0.01   

+ 0.301 × move dist. (m) 0.025 12.29 <0.01   

Delimber = 30.765 1.522 22.22 <0.01 0.1898 <0.01 

+ 6.624 × No. of live trees 0.913 7.25 <0.01   

+ 5.729 × No. of dead trees 0.961 5.96 <0.01   

Skidder 

(trees) 

= 25.125 47.53 0.529 0.603 0.5976 <0.01 

+ 0.192 × empty travel dist. (m) 0.099 1.944 0.066   

+ 0.145 × loaded travel dist. (m) 0.073 1.983 0.061   

+ 1.881 × No. of trees 0.984 1.913 0.070   

Skidder 

(logs) 

= 42.290 6.964 6.073 <0.01 0.2625 <0.01 

+ 0.890 × No. of logs 0.312 2.850 0.010   

Loader = 22.006 1.892 11.629 <0.01 0.2033 <0.01 

+ 3.739 × No. of logs 0.471 7.937 <0.01   

+ 8.248 × loading activity (1 or 0) 1.794 4.597 <0.01   
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Table 2.6 Performance metrics of individual machines and the entire system of whole-tree 
harvesting predicted by the TS model. 

Machine 
Cycle time* 

(s) 

Productivity 

(odt/PMH) 

Utilization 

(%) 

Sys. Prod. 

(odt/SMH) 

Unit cost 

($/odt) 

Feller-buncher 19.5 41.83 44.6 18.67 30.21 

Delimber A 41.1 17.53 53.3   

Delimber B 41.1 17.53 53.3   

Skidder (trees) 237.5 39.33 60   

Skidder (logs †) 62.6 148.29    

Loader (loading §) 42.5 28.89 48.8   

Loader (sort and deck) 34.3 42.94    
* Delay free cycle time. † Calculated by assuming equal number of skidding tree process and skidding log process. § Calculated 
with the assumption that loader spends 30% and 70% of its times on direct loading, and sorting and decking, respectively. 

 

The comparisons of machine productivity between the estimated values and the field-

observed values in the validation data set show that the estimated average machine productivities 

of all equipment by both models deviate less than 9% from the observed values (Table 2.7). The 

DES model has better estimates of productivity for the feller-buncher, skidder and loader, while 

the TS model has better estimates for the delimbers. The biggest difference was found with the 

loader “sort and deck” process where the TS model overestimated the productivity by 8.6%. As 

for machine utilization, the two models reported similar rates for all machines but the loader 

(Figure 2.6). For the feller-buncher, delimbers and skidder, the minor differences in machine 

utilization rates by the two models mainly came from the differences in estimated machine 

productivities and the system productivity. In the DES model, Delimber A had a higher utilization 

than Delimber B because during the simulation it was assigned as the primary resource, which 

means Delimber A is used first if delimbers were available. In the TS model, the two delimbers 

were equally treated. For the loader, the difference in the reported utilization is apparent. The TS 

model reported lower utilization because it only included “direct loading” and “sort and deck” 

whereas the DES model also considered “load from deck” processes. The occurrence of this last 

process depends on the status of the loader (i.e., no log pile to sort and load) and the truck (i.e., 

available on site). The TS model could not assess this situation so that it overestimated loader 

productivity and underestimated the loader utilization. 
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Table 2.7 Comparison of the estimated mean machine productivities obtained from the WT 
DES and TS models with the field-observed productivities for whole-tree harvesting. 

Machine Observed Productivity (odt/PMH) 
Difference * (%) 

DES WT 

Feller-buncher 42.75 −2.1 −2.2 

Delimber A 17.30 −1.0 1.3 

Delimber B 17.30 −1.3 1.3 

Skidder (tree) 37.30 6.9 5.4 

Skidder (log) 153.18 −5.3 −3.2 

Loader (load) 27.78 5.9 4.0 

Loader (sort and deck) 39.54 1.6 8.6 
* Percentage difference between model estimates and the observed values. WT = whole-tree 
harvesting, DES = discrete event simulation, TS = time study. 

 

 
Figure 2.6 Machine utilization and delay proportions estimated by the WT DES and WT TS 
models. 
 

The DES model was also able to provide both delay type and quantity of each machine. 

The amount of scheduled delays and other delays were similar across all machines, while the feller-

buncher had the largest proportion of operational delay because of its high productivity and 

interactions with lower productivity machines. Due to the variation of operations and 

interdependencies among machines, there was no “absolute” system bottleneck and all other 



40 
 

 

machines experienced a certain amount of operational delays. The TS model was able to estimate 

only the overall utilization of individual machines based on their published empirical utilization 

rates (or long-term utilization rates) and the bottleneck machine’s productivity. The feller-buncher 

had the largest overall delays as well in the TS model due to its high productivity compared to the 

other machines. The skidder was the system bottleneck and its utilization rate was estimated to be 

equal to the empirical rate. 

 

2.3.2 Sensitivity analysis 

2.3.2.1 Skidding distances 

The utilization rates of individual machines changed with different skidding distances (Figure 2.7). 

The results show that operational delays of individual machines varied widely across different 

skidding distances, while the proportions of scheduled and other delays were relatively constant 

over the range of skidding distance. A longer skidding distance increased the skidder’s cycle time 

and utilization, and decreased its operational delay, while it increased operational delays of all the 

other machines. This indicates the skidder becomes the system bottleneck causing the delimbers 

and the loader to wait for the skidder to supply logs. As skidding distance increases, the feller-

buncher appears to experience increased operational delay because it has to spend a longer time 

waiting for the other machines. The TS model shows similar patterns of changes in total delays 

but with more abrupt transitions as skidding distance increases. This is because the utilization rate 

of the bottleneck machine is assumed to be constant. 
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Figure 2.7 Changes in machine utilization and delay proportions over different skidding distances 
estimated by the WT DES model (a) and the WT TS model (b). 
 

The productivity of the entire system and its unit production cost also change in response 

to different skidding distances (Figure 2.8). Overall, the estimated system productivity decreased 

and the unit cost increased as skidding distance increased in both models. However, when skidding 

distances were relatively short (i.e., less than 100 m), the TS model estimated the system 

productivity and unit cost to be constant, whereas the DES model showed gradual changes. This 

is because for the short skidding distances the delimber was the system bottleneck and skidding 

distance does not influence the system cost nor the productivity in the TS model. The DES model, 

however, was able to capture changes in skidder efficiency caused by different skidding distances 

and incorporate them into system productivity and cost estimation. 
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Figure 2.8 Changes in system productivity (left y-axis) and unit production cost (right y-axis) over 
different skidding distances estimated by the DES and TS models. 
 

2.3.2.2 Trucking schedules 

The DES model estimated the utilization rate of the loader at about 55% when no trucks were 

scheduled (Figure 2.9). The utilization rate increased by approximately 2% per truck as more 

trucks were scheduled to pick up the logs. The results show that the loader spends an increasing 

amount of time in “direct loading” as more trucks are scheduled. On the other hand, the truck on-

site time, which includes truck waiting time in queue and truck loading time, increased due to 

higher chances of queueing. When the scheduled truck number was less than four, the truck on-

site time had an average of 60 min and a standard deviation of 15 min. Beyond that, the on-site 

time increased quickly in both the average and standard deviation. With 10 trucks visiting the 

harvesting site per day, the loader would spend about 30%, 25% and 25% of its productive times 

on “direct loading”, “load from deck”, and “sort and deck”, respectively, with a total utilization 

rate of approximately 80%. But the truck on-site time had an average of 177 min and a standard 

deviation of 35 min. 
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Figure 2.9 Loader utilization with task proportions (left y-axis) and truck on-site time (right y-
axis) under different trucking schedules. 
 

2.3.3 DES model for the lop-and-scatter system 

The results of the DES model built for the lop-and-scatter harvesting system using the whole-tree 

harvesting data show that the estimated machine productivities for individual machines were 

similar to the field-observed productivities (Table 2.8). The biggest difference was with the skidder. 

The model underestimated the skidder productivity by 9.7% with the observed value being about 

two standard deviations from the mean estimate. This difference might be attributed to the intrinsic 

differences between transportation of trees and logs (e.g., turn size). Our comparisons of the LS 

DES model with the two LS TS models (i.e., TS conventional and TS adjusted) show that the LS 

DES model estimates were similar to those of TS adjusted, but somewhat different from TS 

conventional in terms of system productivity and unit production cost (Figure 2.10). This indicates 

that both the DES and TS models assess the performance of individual machines similarly when 

the same, scenario-based machine utilization rates are used as inputs. The results of the TS 

conventional model were different (15.7% and 10.7% difference in productivity and cost estimates, 

respectively) because of the published machine utilization rates used in the analysis. 
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Table 2.8 Comparison of the estimated mean machine productivities obtained from the LS 
DES model with the field-observed productivities for lop-and-scatter. 

Machine 
Productivity (odt/PMH) 

Difference* (%) 
Observed DES 

Feller-buncher 41.35 41.88 (0.60) 1.3% 

Delimber A 13.20 13.81 (0.35) 4.6% 

Delimber B 13.20 13.72 (0.40) 4.0% 

Skidder 41.07 37.10 (2.02) −9.7% 

Loader (load) 28.40 29.16 (3.98) −3.4% 

Loader (sort and deck) 40.98 39.60 (1.76) 2.7% 
* Percentage difference between model estimates and the observed values. 

 
Figure 2.10 LS system performance estimated by the DES, TS conventional and TS adjusted 
models. 
 

2.4 Discussion 

2.4.1 Process synthesis and model resolution 

Comparing the WT TS and DES model results, the TS model estimated the system productivity to 

be 7.4% lower and the unit cost to be 1.7% higher (Tables 2.4 and 2.6). The differences were 

mainly caused by the synthesis procedure for machine processes of the two modeling approaches. 

The TS model does not track the material flow in the system and thus determines the system 

productivity as the lowest machine SMH productivity, whereas the DES model is able to keep 

track of material flow and machine activities as a series of events. As Asikainen (1998) noted, 
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static, deterministic models, such as the TS model, generate satisfactory results when the studied 

system is simple and unbalanced (i.e., apparent bottleneck) but may lead to biased estimates for 

complex systems. 

 The ability of capturing operational details in DES modelling is of great value for system 

improvement. In this study, the TS model was not able to provide information on machine 

utilization in enough detail to understand the system dynamics (Figures 2.6 and 2.7). The DES 

model, however, could capture machine interactions more precisely by mimicking the actual work 

pattern and machine-to-machine wood flows. The DES model was able to not only quantify the 

amount of operational delays but also identify the cause of delays (e.g., the skidder’s operational 

delays were caused by other “bottleneck” machines, such as the delimber or the loader). While 

scheduled and other delays are unavoidable in machine operations, the amount of operational 

delays depicts the efficiency of the harvesting system, and understanding the cause-and-effect of 

delays can greatly help improve system balance and thus overall efficiency (Spinelli and Visser 

2008). 

 

2.4.2 Sensitivity analysis 

When TS regression models are applied to a wide range of independent variable values, model 

extrapolation always becomes a concern. In the TS approach, coefficients in a regression model 

only infer associations between the dependent and independent variables in the given data set, not 

necessarily cause-and-effect relationships in general. For example, estimating skidding cycle times 

based on a linear relationship may produce unreasonable results when the coefficient is applied 

beyond the original observation range (Figures 2.7 and 2.8). The DES approach has a similar 

restriction because input probability distributions are produced from site-specific data. However, 

in DES models, a full machine cycle is broken into multiple processes that can be estimated 

independently. Grappling time, dropping time, skidder empty and loaded traveling speed are still 

likely to be the same across a wide range of skidding distances, whereas skidder travel times is a 

direct function of skidding distance. This separate estimation of process times makes the DES 

models more applicable to a wider range of independent variable values than the TS models. The 

more gradual changes shown in the DES model outputs from the current study confirmed this 

benefit (Figures 2.7 and 2.8). 
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The results of our sensitivity analysis on truck availability shows that loader operations and 

log transportation mutually affect each other. With very few trucks scheduled, the loader has to 

spend time for “sort and deck” and later “load from deck”, handling logs twice. Increasing the 

number of scheduled trucks increases the loader “direct loading” time and loader utilization, but 

too many trucks on site increases the average and variability of truck queue time. This leads to 

decreased trucking efficiency and increased transportation cost. In a forest supply chain, efficient 

wood flow from the harvesting system to transportation is critical in reducing logistics costs (Beck 

and Sessions 2013). The strength of the DES in capturing changes in machine interactions is 

particularly beneficial to scenario analysis on trucking schedules (Spinelli et al. 2014; Zamora-

Cristales et al. 2014). Our DES model shows the potential tradeoff between loader utilization and 

truck on-site time (Figure 2.9) and can be used in operational planning to balance harvesting and 

transportation efficiency for optimal outcomes. 

 

2.4.3 Analysis of hypothetical systems 

In harvesting operations, delay times may vary significantly by system design, as well as stand and 

terrain conditions (Spinelli and Visser 2008). Our study shows that the use of general machine 

utilization rates in evaluating new harvesting systems (e.g., TS_conventional) may not be 

appropriate because such utilization rates do not reflect system-specific work conditions, such as 

machine interactions, that may be caused by a new composition or arrangement of machine 

processes (Figure 2.10). A discrete-event simulation of wood flow through a series of machine 

processes seems more appropriate for new system evaluation because of its ability to address 

potential machine interactions and precisely estimate the utilization of individual machines. Our 

finding is consistent with a previous study (Asikainen 2010) that compared a DES model with a 

deterministic spreadsheet model developed for stump crushing and truck transportation. 

 

2.4.4 DES model drawbacks 

While the DES approach has many advantages, there are also drawbacks. Special skills are 

required to build DES models, and the modeling process can be expensive and time-consuming 

(Banks 1984). DES model construction also requires a considerable amount of data, such as time 

elements of individual machines and their probability distributions, and it is often the case that 

sufficient data are not available in forest operations to make DES modeling feasible. Although 
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modern data acquisition technologies (e.g., auto-video recording, GPS tracking, sensors) can help 

access operational data more easily and frequently (Mușat et al. 2015; Contreras et al. 2017; Borz 

et al. 2018), long-term field data collection is still necessary to obtain a representative sample of 

field operations and thus ensure quality output. Also, the large amount of random inputs in DES 

modeling can make it difficult to interpret the output in simple terms, especially for highly complex 

systems (Sharma 2015). 

 

2.5 Conclusions 

Our comparison of the TS and DES approaches in modeling a ground-based timber harvesting 

system indicates that the DES approach may be a more appropriate method for analyzing complex 

systems especially where interactions among different machine processes are unknown. 

Randomness and uncertainties can be considered in DES throughout the modeling process to 

account for variations of operations. Replications of DES model runs enable the user to show a 

comprehensive picture of the system performance in terms of both average and variability. In 

addition, the ability of DES to reuse the previously collected data provides an opportunity to 

evaluate alternative or hypothetical systems that have not been tested in field. Although model 

construction and output interpretation can be complex and expensive, we believe the potential 

benefits of the DES approach to provide more comprehensive and precise information that can 

help identify problematic areas and improvement opportunities in forest operations planning, 

surpass its potential drawbacks. 
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Economic and Environmental Optimization of Forest Supply Chain 

for Timber and Bioenergy Production from Beetle-killed Biomass in 

Northern Colorado 
 

 

 

Abstract 

 

In the northern Colorado Rocky Mountains, harvesting mountain pine beetle infested forest stands 

provides an opportunity to utilize otherwise wasted resources and generate net revenues and 

greenhouse gas (GHG) emission savings. While sound wood from beetle-killed stands can be still 

used for traditional timber products, degraded wood and logging residues can provide a feedstock 

for bioenergy. However, timber and bioenergy production are commonly managed separately, and 

their integration is seldom considered. In addition, due to the relatively low market value and high 

harvesting cost of beetle-killed wood, the GHG emission saving benefit is often realized only at 

the expense of compromises in net revenues during salvage harvest. In this study, we compared 

two decision-making scenarios of managing the supply chain of salvage utilizing beetle-killed 

forests. In the Sequential scenario, timber and bioenergy production was managed sequentially in 

two separate processes, where salvage harvest was conducted without considering influences on 

or from bioenergy production and then biomass availability was assessed as outcomes from timber 

production managed for bioenergy production. In the Integrated scenario, timber and bioenergy 

production was managed jointly in one process, where collective decisions are made on salvage 

harvest, residue treatment, and bioenergy product selection and production. We applied a multi-
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objective optimization approach to integrate the economic and environmental objectives measured 

by the total net revenues and the total net GHG emission savings, respectively, through the use of 

timber and bioenergy products. The results show that distinctive decisions are made for harvesting 

system selection and residue treatment by the two scenarios. When the optimization is fully 

economic-oriented, 49.6% more forest areas are harvested under the Integrated scenario than the 

Sequential scenario, generating 12.3% more net revenues and 50.5% more net GHG emission 

savings. Comparison of Pareto fronts also indicates the Integrated scenario provides more efficient 

trade-offs between the two objectives and performs strictly better than the Sequential scenario in 

both objectives. 

 

Key words: Multi-objective optimization, beetle-killed biomass, forest supply chain, scenario 

comparison 

 

 

 

3.1 Introduction 

 The recent mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic has 

affected a massive area of forests in North America (US Department of Agriculture Forest Service 

2017). Between 1996 and 2013, Colorado has severely suffered from MPB infestation where more 

than 1.38 million ha of forest lands were affected (Colorado State Forest Service., 2016). This has 

caused enormous economic costs to landowners and local communities due to degradation in wood 

quality (Lewis and Thompson 2011), reduction in timber production (Romme et al. 1986), and loss 

of long-term stability of wood supply in the region (Corbett et al. 2015). Negative influences are 

also reported on non-timber values including landscape preference (Arnberger et al. 2018), 

recreation (Rosenberger et al. 2013), and housing depreciation in the outbreak areas (Price et al. 

2010).  

On the environmental side, increased tree mortality not only weakens forest ecosystem 

services (Dhar et al. 2016), but it also affects wildlife species to various extent (Saab et al. 2014) 

and alters forest fuel structure and fire behavior (Hicke et al. 2012b; Harvey et al. 2014). As dead 

trees decay over time, they become a net source of carbon (i.e., dead trees stop absorbing CO2 and 

emit CO2 during decomposition) and contribute to climate change (Kurz et al. 2008).  
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Salvage harvest of dead trees provides an opportunity to utilize forest resources that are 

otherwise wasted, contributing to the economies of rural areas and local wood product industries. 

It is estimated that beetle-killed logs can still yield 56.1% to 99.8% values of healthy logs 

depending on extent of damage (Orbay and Goudie 2006). Prestemon et al ( 2013) reports that 

there are 0.56 billion m3 of dead timber available for salvage across 8.22 million hectares in 12 

western states. This represents a considerable amount of revenues for affected landowners to 

mitigate economic losses. On the other hand, usage of salvage timber creates carbon benefits by 

reducing carbon emissions from dead wood decay in the infested forests (Campbell et al. 2016). 

Replacing non-renewable resources that require more energy intensive manufacturing than timber 

products is another benefit of utilization of dead wood (Werner et al. 2005; Gustavsson et al. 2006). 

Timber products can also serve as carbon storage while in use (Bergman et al. 2014) and substitute 

fossil fuels as energy feedstock (Kayo et al. 2015) or continue to preserve carbon in landfill 

(Ximenes et al. 2008) at the end of service life. 

In addition to timber production, degraded wood and logging residues (e.g., tree tops, 

branches and non-merchantable parts), which are a byproduct of salvage harvesting, can serve as 

feedstock for bioenergy production (Lamers et al. 2014). Because of wood degradation over time, 

some salvaged trees might fail to meet the quality of lumber or pulp and paper production 

especially when salvage harvest is delayed significantly (Barrette et al. 2015). This leads to a great 

amount of biomass residues as potential high-quality bioenergy feedstock with high woody 

composition and low moisture content (Chow and Obermajer 2006). Further utilizing them for 

bioenergy production avoids costs and emissions (e.g., greenhouse gas, particulate matter) 

associated with open pile burning (Springsteen et al. 2011, 2015) that is often required to reduce 

fire risks and prepare harvest sites for regeneration (Stephens et al. 2012; Jones et al. 2013). It also 

reduces society’s heavy dependence on fossil fuels and contributes to climate change mitigation 

(Panwar et al. 2011; Creutzig et al. 2015). 

Because MPB-infested stands often have high harvesting costs due to complicated stand 

conditions (Kim et al. 2017) and low product values due to wood defects (Byrne et al. 2006), 

timber salvage often only has narrow profit margins or may even be unprofitable in some forest 

area (Prestemon et al. 2013). Besides, high costs of comminution and transportation of biomass 

have been an obstacle to the wide utilization of beetle-killed wood for bioenergy (Anderson and 

Mitchell 2016). Therefore, although producing timber and bioenergy products from beetle-killed 
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forests have a potential for reducing GHG emissions, such an environmental benefit is sometimes 

realized at the expense of economic compromises. Understanding the trade-offs between economic 

and environmental benefits of beetle-kill resource utilization would be important in decision-

making on salvage harvest operations and supply chain management. 

To achieve sound forest supply chain management, mathematical optimization is 

frequently used to support the decision-making process (D’Amours et al. 2008; Rönnqvist et al. 

2015). If there is only one stakeholder managing all resources in the forest supply chain, bioenergy 

can be treated as a byproduct from timber production and included as part of the optimization 

(Carlsson and Rönnqvist 2005; Kong et al. 2012; Feng et al. 2013). In a fragmented supply chain 

that involves multiple stakeholders, however, until now most studies have exclusively dealt with 

either timber products (Bredström et al. 2004; Dems et al. 2017) or bioenergy feedstocks 

(Rentizelas et al. 2009; Gunnarsson et al. 2004), whereas the linkage between the two products has 

not been thoroughly investigated yet. Such a gap is caused by the fact that timber production is at 

much greater scales in amounts and values than bioenergy production so that the latter has minimal 

influences on the former. As a result, timber supply chain studies sometimes neglect the treatment 

of biomass residues (Richards and Gunn 2000; Karlsson et al. 2004; D’Amours et al. 2008) 

whereas bioenergy supply chain studies (Kanzian et al. 2009; Ghaffariyan et al. 2013) often 

assume biomass residues become available at the landing in a ready-to-use form at free of charge. 

The decision-making process is thus decoupled, where decisions regarding timber and bioenergy 

production are made separately and sequentially. Nevertheless, not only technical and economic 

feasibility of biomass feedstock logistics, but also conventional silvicultural treatments and 

harvesting methods often become barriers of producing and utilizing forest biomass for bioenergy. 

When utilizing MPB-infested forest resources, due to lower values of timber products and a higher 

proportion of biomass residues, the cooperation between timber and bioenergy production needs 

to be strengthened to enhance the economic feasibility of forest salvage utilization. Integrating 

timber and bioenergy production in planning may improve the performance of the entire forest 

supply chain network.  

In recent years, an increasing number of studies adopt multi-objective optimization (MOO) 

technique (Deb 2001) to evaluate environmental impacts of the biomass supply chain in addition 

to its economic performance (Yue et al. 2013; Cambero and Sowlati 2014). The economic 

objective is often formulated as minimizing operation costs (You and Wang 2011; You et al. 2012) 
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or maximizing net revenues (Santibañez-Aguilar et al. 2011; Čuček et al. 2012; Sacchelli et al. 

2014). As for the environmental objective, among various criteria that can be considered (e.g., eco-

indicator 99 points, impact 2002+ points, carbon footprint) (Santibañez-Aguilar et al., 2011; Pérez-

Fortes et al., 2014; Čuček et al., 2012), minimizing product life cycle GHG emissions via Life 

Cycle Assessment (LCA) (Corporation and Curran 2006) has been used most frequently due to 

interests in mitigating climate change (You and Wang 2011; You et al. 2012; Kanzian et al. 2013). 

Cambero et al ( 2016a) argued that minimizing GHG emissions does not guarantee to provide the 

maximum environmental benefits when considering the substitution effect of wood products. 

Therefore, maximizing the net GHG emission savings is a more appropriate environmental 

objective for the optimization model. Similarly, Sacchelli et al ( 2014) optimized the 

environmental performance as maximizing the amount of avoided carbon emissions by 

combustion of renewable resources.  

So far most studies have presumed timber and bioenergy products to be “carbon neutral” 

under sustainable forest management, meaning there is a net zero emission because the amount of 

carbon released from biomass sources (i.e., biogenic carbon) is captured by plants during regrowth 

(Cherubini et al. 2009). However, this assumption has been questioned increasingly because it 

neglects the fact that forest regrowth is a much longer process compared to the immediate 

emissions (e.g., burning) (Johnson 2009; Zanchi et al. 2012). A carbon debt (Mitchell et al. 2012) 

is created referring to a deficiency between carbon emission and sequestration that requires a 

“payback period” (Jonker et al. 2014) to offset. Evidence further shows that carbon benefits of 

timber and bioenergy products greatly depend on the accounting method of biogenic carbon 

(Bergman et al. 2013; Klopp and Fredeen 2014) and the “carbon neutrality” assumption may be 

need to be revaluated (Cherubini et al. 2011). One proposal is to use a global warming potential of 

biogenic carbon (𝐺𝑊𝑃*+,) indicator, based on regional forest growth, rotation length, time horizon, 

etc., to assess the effects of biogenic carbon relative to fossil carbon (Cherubini et al. 2011; Guest 

et al. 2013). As carbon accounting is critical in evaluating trade-offs between revenues and carbon 

benefits, it is useful to include such considerations and explore the effects of carbon accounting 

method to assist the decision-making in salvaging MPB-attacked forests. 

In this study, we compared the Sequential scenario and our proposed Integrated scenario 

in managing timber and bioenergy production from beetle-killed forests. We applied a multi-

objective optimization approach to evaluate the economic and environmental objectives (i.e., net 
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revenues and net GHG emission savings) of the entire forest supply chain from stump to mill or 

processing facility while taking into account options in the upstream timber harvesting and residue 

management operations. We showed the potential improvement to achieve in both objectives when 

the timber and bioenergy supply chains are integrated and managed simultaneously. Biogenic 

carbon is accounted by a series of 𝐺𝑊𝑃*+, values to fully investigate the carbon benefits of forest 

salvage utilization, trade-offs between economic and environmental objectives, and influences on 

forest supply chain management decisions. 

 

3.2 Problem statement 

In the Colorado State Forest in northern Colorado (40°57´N, 106°00´W), lodgepole pine 

(Pinus contorta) stands (Figure 3.1) have been heavily impacted by the MPB outbreak since 2008 

and the current mortality rate is 47.3%. The 3,400 ha infested forest is located on relatively flat 

terrain with a stand density of 865 trees ha-1 and a basal area of 34.6 m2 ha-1. The average diameter 

at breast height (dbh) of trees is 22.4 cm and the average height is 19.6 m. Ground-based clearcut 

operation is prescribed for salvage harvest in this area due to the high level of mortality rate. After 

accounting for slope and primary transportation distance, in total 627 harvest units are applicable 

for salvage harvest with an average size of 5.4 ha (Han et al. 2018). Depending on the small-end 

diameter and defects, three log products, saw logs, post and pole, and firewood, are produced and 

sold to a timber mill (45 km away) based on oven dry weight. As for logging residues, potential 

bioenergy alternatives include hog fuels (a biomass power plant 238 km away), wood pellets (a 

pellet plant 45 km away), and biochar (mobile pyrolysis equipment on-site). 
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Figure 3.1 Mountain Pine Beetle infested lodgepole pine stands in Colorado State Forest. 

 

The supply chain network of forest salvage utilization consists of a timber supply chain 

(TSC) and a bioenergy supply chain (BSC), where each operation is associated with a cost and 

GHG emission but revenues and GHG savings are achieved through end products use (Figure 3.2). 

At the TSC, lop-and-scatter (LS) and whole-tree harvesting (WT) are the primary harvesting 

systems and they employ the same set of equipment. The distinct feature of LS is that delimbers 

delimb and buck trees to logs at the stump. While processed logs are brought to the landing by a 

skidder, logging residues are dispersed over the harvest unit and left on the forest floor (i.e., not 

economical to collect). By comparison, whole trees are transported in WT by a skidder and 

processed by delimbers at the landing, where slash piles are accumulated as part of timber 

harvesting (Nisbet et al. 1997). In addition to the two existing systems, a whole-tree harvesting 

with sorting (WTwS) system can be deployed by including a sorting procedure in the delimbing 

process of the WT system (Kizha and Han, 2016). WTwS separates sorted biomass (e.g., tree tops 

left from saw log processing, small diameter trees delimbed) from slash piles, which facilitates the 

production of high-quality (i.e., less contamination from dirt, and uniform in size) feedstock and 

thus high-value bioenergy products but also increases the overall cost of timber harvesting 

compared to that of WT. 
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Figure 3.2 The supply chain network of salvage harvest of Mountain Pine Beetle infested forests 
in Colorado State Forest.  
 

Upon completion of salvage harvest, trees at unharvested units and scattered logging 

residues from LS harvested units are left to decay and emit GHG as carbon sources. Forest residues 

and sorted biomass from WT and WTwS harvested units, respectively, can be further utilized at 

the BSC for bioenergy production. Pellets and biochar production normally require homogenous 

sized, less contaminated feedstock, which can be produced through chipping sorted biomass with 

a chipper. In contrast, forest residues from WT harvest units contain a wide range of woody 

materials (e.g., tops, limbs and chunks) and high amount of soil contaminations so that 

comminution is limited to grinding, which is capable of handling such materials and produces low-

quality feedstock (i.e., hog fuels) (Han et al. 2015). To use them for pellet or biochar production, 

we assume a screening process has to be added after grinding to reduce contamination content and 

improve feedstock quality (Dukes et al. 2013). After comminution, produced feedstock is 

transported to the selected bioenergy facility to manufacture bioenergy products, whereas 

unutilized forest residues should be burnt as part of disposal management. 

Timber harvesting and biomass utilization in the study region are conducted by different 

stakeholders (i.e., timber and bioenergy producers) and the landowner works with them separately 

to manage the TSC and BSC, where harvest decisions are made to optimize performances of the 
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TSC without considering influences on or from the BSC, even though salvage harvesting affects 

the amount and form of recoverable biomass feedstock and biomass utilization affects the residue 

disposal management. Post to harvest, biomass availability is assessed as outcomes from the TSC 

and managed for bioenergy production accordingly to optimize performances of the BSC. Disposal 

of unutilized biomass residues remains as a responsibility of the TSC. Such a sequential decision-

making process (referred as a Sequential scenario) lacks cooperation between the TSC and BSC, 

neglects interactions of the two supply chains, and may lead to suboptimal outcomes when their 

performances are combined and evaluated afterward. 

We hypothesize that an Integrated scenario where the TSC and BSC are managed jointly 

may utilize the beetle-killed forest resource more efficiently and benefit both timber and bioenergy 

production. This scenario represents a fully communicated and cooperative supply chain network 

where the landowner collectively work with timber and bioenergy producers optimize the 

performance of the overall forest supply chain (FSC) rather than individual performances of TSC 

and BSC separately. 

 

3.3 Methods 

3.3.1 Mathematical model 

 We combined multi-objective optimization (MOO) with mixed integer linear programming 

(MILP) to optimize the economic and environmental objectives of the forest supply chain under 

the Sequential and Integrate scenarios. The economic objective was measured by net revenues (𝑁𝑅) 

and the environmental objective was measured by the net GHG emission savings (𝑁𝑆). For the 

MOO outputs, instead of a single solution optimizing both objectives, a set of “Pareto optimal 

solutions” were obtained where in each solution, one objective could not be improved without 

sacrificing the other objective (Ehrgott 2006). 𝑁𝑅 and 𝑁𝑆 values calculated from the  solution set 

constructed the Pareto front which showed the trade-offs between the two objectives (Deb 2001). 

In model formulation, the Sequential and Integrate strategies shared the same variables, parameters 

(Table 3.1), and constraints but differed in the solving procedures, simulating the distinctive 

decision-making processes of the two planning strategies.   
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Table 3.1 Nomenclature. 
Sets  

𝐼 𝑆𝑒𝑡	𝑜𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝑢𝑛𝑖𝑡𝑠	𝑖 

𝑆 𝑆𝑒𝑡	𝑜𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚𝑠	𝑠 

𝑇 𝑆𝑒𝑡	𝑜𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠	𝑡 

𝐶 𝑆𝑒𝑡	𝑜𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑜𝑛	𝑚𝑒𝑡ℎ𝑜𝑑𝑠	𝑐 

𝐿 𝑆𝑒𝑡	𝑜𝑓	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠	𝑙 

𝐾 𝑆𝑒𝑡	𝑜𝑓	𝑏𝑖𝑜𝑒𝑛𝑒𝑟𝑔𝑦	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘𝑠	𝑘 

𝑃 𝑆𝑒𝑡	𝑜𝑓	𝑏𝑖𝑜𝑒𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠	𝑝 

Parameters  

1) General 

𝑚+,R
S,T 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑙	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	(o𝑑𝑡) 

𝑚+
YZ[ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	(o𝑑𝑡) 

𝑎+ 𝐴𝑟𝑒𝑎	𝑜𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	(ℎ𝑎) 

𝑑+
S,T 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑡𝑖𝑚𝑏𝑒𝑟	𝑚𝑖𝑙𝑙	(𝑘𝑚) 

𝑑+,^#ZZ_ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑏𝑖𝑜𝑒𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑝	𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦	(𝑘𝑚) 

𝐺𝑊𝑃*+,
_Z`ab 𝐺𝑊𝑃	𝑓𝑎𝑐𝑡𝑜𝑟	𝑜𝑓	𝑏𝑖𝑜𝑔𝑒𝑛𝑖𝑐	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑟𝑜𝑚	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑑𝑒𝑐𝑎𝑦𝑖𝑛𝑔 

𝐺𝑊𝑃*+,*-./ 𝐺𝑊𝑃	𝑓𝑎𝑐𝑡𝑜𝑟	𝑜𝑓	𝑏𝑖𝑜𝑔𝑒𝑛𝑖𝑐	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑟𝑜𝑚	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑏𝑢𝑟𝑛𝑖𝑛𝑔 

2) Economic 

𝑐+c_d+/ 𝑆𝑎𝑙𝑣𝑎𝑔𝑒	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡	($/ℎ𝑎) 

𝑐+,[
S,T,ga. 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑠𝑎𝑙𝑣𝑎𝑔𝑒	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑠𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠	𝑎𝑡	𝑢𝑛𝑖𝑡	𝑖	($/𝑜𝑑𝑡) 

𝑐R
S,T,h.a/[ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑙𝑜𝑔	𝑡𝑦𝑝𝑒	𝑙	($/𝑜𝑑𝑡 ∗ 𝑘𝑚) 

𝑟R
S,T 𝑅𝑒𝑣𝑒𝑛𝑢𝑒	𝑜𝑓	𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑙	($/𝑜𝑑𝑡) 

𝑐YZ[,*-./ 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑏𝑢𝑟𝑛𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑜𝑛	𝑠𝑖𝑡𝑒	($/ℎ𝑎) 

𝑐`YZ[,`,d 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑤𝑖𝑡ℎ	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	($/𝑜𝑑𝑡) 

𝑐j
#ZZ_,h.a/[ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘	𝑘	($/𝑜𝑑𝑡	 ∗ 𝑘𝑚) 

𝑟j,^#ZZ_ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒	𝑜𝑓	𝑢𝑠𝑖𝑛𝑔	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘	𝑘	𝑓𝑜𝑟	𝑏𝑖𝑜𝑒𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑝	($/𝑜𝑑𝑡) 

3) Environmental 

𝑒+,[
S,T,ga. 𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑠𝑎𝑙𝑣𝑎𝑔𝑒	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑠𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠	𝑎𝑡	𝑢𝑛𝑖𝑡	𝑖	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒R
S,T,h.a/[ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑙𝑜𝑔	𝑡𝑦𝑝𝑒	𝑙	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡 ∗ 𝑘𝑚) 

𝑠R
S,T 𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑠𝑎𝑣𝑖𝑛𝑔𝑠	𝑜𝑓	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑙	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒_Z`ab 𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑑𝑒𝑐𝑎𝑦	𝑜𝑛	𝑠𝑖𝑡𝑒	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒*-./ 𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑏𝑢𝑟𝑛𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑜𝑛	𝑠𝑖𝑡𝑒	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒`YZ[,`,d 𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑤𝑖𝑡ℎ	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 
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𝑒j
#ZZ_,h.a/[ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘	𝑘	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡 ∗ 𝑘𝑚) 

𝑠j,^#ZZ_ 𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑠𝑎𝑣𝑖𝑛𝑔𝑠	𝑜𝑓	𝑢𝑠𝑖𝑛𝑔	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘	𝑘	𝑓𝑜𝑟	𝑏𝑖𝑜𝑒𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑝	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

Decision variables  

1) Continuous variables 

𝑥+,R
S,T 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑙𝑜𝑔	𝑡𝑦𝑝𝑒	𝑙	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖 

𝑥+YZ[ 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖 

𝑥+,j#ZZ_ 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘	𝑘	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖 

𝑥+,j,^#ZZ_ 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘	𝑘	𝑢𝑠𝑒𝑑	𝑡𝑜	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	𝑏𝑖𝑜𝑒𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑝	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖 

2) Integer variables  

𝑦+,[ 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑠	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑢𝑠𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑧+,h 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑎𝑟𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑	𝑏𝑦	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝑡; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑣+,` 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑎𝑟𝑒	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑒𝑑	𝑏𝑦	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐; 	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝑢` 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑜𝑛	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	𝑖𝑠	𝑢𝑠𝑒𝑑; 	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

The net revenues and net GHG emission savings of the TSC (𝑁𝑅w$%  and 𝑁𝑆w$%) and BSC 

(𝑁𝑅x$%  and 𝑁𝑆x$%) are summarized (Eqs. (3.1-3.4)) and are used to construct objective functions 

in MOO models of the Sequential and Integrated strategies. 𝑁𝑅w$%  is calculated by using log sale 

revenues to subtract log stumpage costs, harvesting costs, residue burning costs, and log 

transportation costs (Eq. (3.1)). Correspondingly, 𝑁𝑆w$%  is calculated by using log product GHG 

emission savings to subtract harvesting emissions, log transportation emissions, unharvested forest 

decay emissions, residue decay emissions, and residue burning emissions (Eq. (3.2)). 𝑁𝑅x$%  is 

calculated by using bioenergy sale revenues to subtract machine move-in costs, residue 

comminution costs, feedstock transportation costs, and bioenergy product manufacturing costs (Eq. 

(3.3)). 𝑁𝑆x$%  is calculated by using bioenergy GHG emission savings to subtract GHG emissions 

from residue comminution, feedstock transportation, bioenergy product manufacturing (Eq. (3.4)). 

𝑁𝑅w$% =zz𝑥+,R
S,T ∗ 𝑟R

S,T

R∈S+∈|

−z𝑎+ ∗ 𝑐+c_d+/

+∈|

−zzz𝑚+,R
S,T

R∈S[∈$

∗ 𝑦+,[ ∗ 𝑐+,[
S,T,ga.

+∈|

 

												−𝑐*-./ ∗z𝑎+ ∗ 𝑧+,*-./
+∈|

−zz𝑥+,R
S,T

R∈S

∗ 𝑑+
S,T

+∈|

∗ 𝑐R
S,T,h.a/[																																															(3.1) 

𝑁𝑆w$% =zz𝑥+,R
S,T ∗ 𝑠R

S,T

R∈S+∈|

−zzz𝑚+,R
S,T

R∈S[∈$

∗ 𝑦+,[ ∗
+∈|

𝑒+,[
S,T,ga. 
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												−𝐺𝑊𝑃*+,
_Z`ab ∗ 𝑒_Z`ab ∗z��z𝑚+,R

S,T

R∈S

+ 𝑚+
YZ[� �1 −z𝑦+,[

[∈$

� + 𝑚+
YZ[ ∗ 𝑧+,_Z`ab�

+∈|

 

													−𝐺𝑊𝑃*+,*-./ ∗ 𝑒*-./ ∗z𝑚+
YZ[ ∗ 𝑧+,*-./

+∈|

−zz𝑥+,R
S,T

R∈S

∗ 𝑑+
S,T ∗ 𝑒R

S,T,h.a/[

+∈|

																	(3.2) 

𝑁𝑅x$% =zzz𝑥+,j,^#ZZ_ ∗ 𝑟j,^#ZZ_

j∈�^∈�+∈|

− 𝑢YZ[ ∗ 𝑐�,�Z −zz𝑚+
YZ[ ∗ 𝑣+,` ∗ 𝑐`

YZ[,`,d

`∈%+∈|

 

														−zz𝑥+,j#ZZ_ ∗ 𝑑+,^#ZZ_ ∗ 𝑐j
#ZZ_,h.a/[

j∈�+∈|

																																																																																					(3.3) 

𝑁𝑆x$% =zzz𝑥+,j,^#ZZ_ ∗ 𝑠j,^#ZZ_

j∈�^∈�+∈|

− 𝑢YZ[ ∗ 𝑒�,�Z −zz𝑚+
YZ[ ∗ 𝑣+,` ∗ 𝑒`

YZ[,`,d

`∈%+∈|

 

														−zz𝑥+,j#ZZ_ ∗ 𝑑+#ZZ_ ∗ 𝑒j
#ZZ_,h.a/[

j∈�+∈|

																																																																																					(3.4) 

 

 In salvage harvest, each harvest unit 𝑖 can be harvested at most once by one of the available 

harvesting systems (Eq. (3.5)). The produced amount of each log type 𝑙  equals the available 

amount at that unit if the unit is harvested (Eq. (3.6)). 

z𝑦+,[
[∈$

≤ 1								∀	𝑖 ∈ 𝐼																																																																																																																													(3.5) 

𝑥+,R
S,T =z𝑦+,[ ∗ 𝑚+,R

S,T

[∈$

								∀	𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼																																																																																													(3.6) 

 

For residue treatment, if a unit is harvested by the LS system, logging residues are left on-

site for decaying (Eq. (3.7)). If logging residues are burnt, the unit should be harvested by the WT 

system (Eq. (3.8)). If logging residues are used for bioenergy production, the unit should be either 

harvested by the WT or WTwS system (Eq. (3.9)).  

𝑧+,_Z`ab = 	𝑦+,R[								∀	𝑖 ∈ 𝐼																																																																																																																						(3.7) 

𝑧+,*-./ ≤ 	𝑦+,�h								∀	𝑖 ∈ 𝐼																																																																																																																							(3.8) 

𝑧+,-[Z ≤ 	𝑦+,�h + 𝑦+,�h�[								∀	𝑖 ∈ 𝐼																																																																																																							(3.9) 

 

At each unit, if no logging residues are utilized, none comminution methods should be 

chosen. Otherwise, one comminution method should be chosen to process logging residues (Eq. 
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(3.10)). Specifically, the chipping method can only be used at units harvested by the WTwS system 

while grinding only or grinding with screening can be used at units harvested by the WT system 

(Eqs. (3.11-3.12)). For the entire forest site, if logging residues from any unit are processed by a 

comminution equipment, this equipment need to be deployed to the site (Eq. (3.13)). 

z𝑣+,`
`∈%

= 	 𝑧+,-[Z								∀	𝑖 ∈ 𝐼																																																																																																																		(3.10) 

𝑣+,`g+^ = 	𝑦+,�h�[								∀	𝑖 ∈ 𝐼																																																																																																																	(3.11) 

𝑣+,T.+/_ + 𝑣+,T�[ ≤ 	𝑦+,�h								∀	𝑖 ∈ 𝐼																																																																																																		(3.12) 

|𝐼| ∗ 𝑢` ≥ z𝑣+,`
+∈|

								∀	𝑐 ∈ 𝐶																																																																																																													(3.13) 

 

At each unit, as outputs from the comminution process, low-quality feedstock is produced 

from the grinding operation and high-quality feedstock is produced from chipping or grinding with 

screening operations (Eqs. (3.14-3.15)). The total amount of feedstock used for all bioenergy 

products equals the available feedstock in each type (Eq. (3.16)).  

𝑥+,R,�#ZZ_ = 𝑚+
YZ[ ∗ 𝑣+,T.+/_								∀	𝑖 ∈ 𝐼																																																																																																				(3.14) 

𝑥+,g+Tg#ZZ_ = 𝑚+
YZ[ ∗ (𝑣+,T�[ + 𝑣+,`g+^)								∀	𝑖 ∈ 𝐼																																																																																	(3.15) 

𝑥+,j#ZZ_ = z𝑥+,j,^#ZZ_

^∈�

								∀	𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼																																																																																																(3.16) 

 

Lastly, Eqs. (3.17-3.18) show variable type constraints for continuous and binary variables 

for the MOO model. 

𝑥+,R
S,T, 𝑥+YZ[, 𝑥+,j,^#ZZ_, 𝑥+,j#ZZ_ ∈ 𝑅�								∀	𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃																																																					(3.17) 

𝑦+,[, 𝑧+,h, 𝑢`, 𝑣+,` ∈ 	 {0, 1}								∀	𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼																																																																												(3.18) 

 

We compared the Sequential and Integrate scenarios in managing the supply chain of 

salvaging beetle-killed stands in the Colorado State Forest. The Sequential scenario was simulated 

by sequentially optimizing the TSC and BSC in two steps with regards to their individual 

performances and then combining the performance of the two solutions for overall solution quality 

(Figure 3.3), whereas the Integrated scenario was simulated by simultaneously optimizing the 
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overall performance of the two supply chains (Figure 3.4). The detailed procedures are as 

following. 

 

 
Figure 3.3 Modeling steps in the Sequential scenario. 
 

Sequential scenario: 

Step 1: Solve the TSC MOO model with objective functions to maximize 𝑁𝑅w$%�  and 

𝑁𝑆w$%�  (Eq. (3.19-3.20)), subject to constraints Eq. (3.5-3.7, 3.17-3.18, 3.21-3.24). 𝑁𝑅w$%�  and 

𝑁𝑆w$%�  are not the final TSC net revenues and net GHG emission savings but are estimated values 

where logging residues from all WT harvested units are burnt. Due to lack of cooperation between 

the TSC and BSC, when the infested forest is managed for salvage harvest, it is unknown whether 

logging residues from WT harvested units are to be used for bioenergy production or not. 𝑁𝑅w$%� , 

𝑁𝑆w$%� , and 𝑧+,*-./�  are used to conservatively estimate TSC performances where piled logging 

residues are treated as wastes (Eq. (3.23)) and account for costs and GHG emissions associated 

with burning. Without cooperation with bioenergy production, timber production would not use 

WTwS system for salvage harvest (Eq. (3.24)) because it is always more expensive than the WT 

system. This step mimics the process where harvesting operations at the TSC are conducted 

without consideration for residue utilization at the BSC. The outputs of TSC MOO model are 
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solutions for timber production showing trade-offs between 𝑁𝑅w$%�  and 𝑁𝑆w$%� . For each solution, 

harvesting decisions are used as inputs to the BSC MOO model, indicating availabilities of logging 

residues at harvest units. 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑁𝑅w$%� 																																																																																										(3.19)	
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑁𝑆w$%� 																																																																																(3.20) 

where 
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𝑁𝑆w$%� =zz𝑥+,R
S,T ∗ 𝑠R

S,T

R∈S+∈|

−zzz𝑚+,R
S,T

R∈S[∈$

∗ 𝑦+,[ ∗
+∈|

𝑒+,[
S,T,ga. 

													−𝐺𝑊𝑃*+,
_Z`ab ∗ 𝑒_Z`ab ∗z��z𝑚+,R

S,T

R∈S

+ 𝑚+
YZ[� �1 −z𝑦+,[

[∈$

� + 𝑚+
YZ[ ∗ 𝑧+,_Z`ab�

+∈|

 

													−𝐺𝑊𝑃*+,*-./ ∗ 𝑒*-./ ∗z𝑚+
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−zz𝑥+,R
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															(3.22) 

𝑧+,*-./� = 𝑦+,�h								∀	𝑖 ∈ 𝐼																																																																																																																					(3.23) 

𝑦+,�h�[ = 0								∀	𝑖 ∈ 𝐼																																																																																																																										(3.24) 

 

 Step 2: Corresponding to each solution from the TSC MOO model, solve the BSC MOO 

model with objective functions to maximize 𝑁𝑅x$%  and 𝑁𝑆x$%  (Eq. (3.25-3.26)), subject to 

constraints Eq. (3.3-3.4, 3.8-3.18). In the BSC MOO model, 𝑦+,�h and 𝑦+,�h�[ in Eq. (3.8-3.9) are 

not variables but input values read from the TSC solution. This step mimics the process that 

availabilities of logging residues are assessed post-harvest and the landowner determines whether 

to process residues for bioenergy production, what bioenergy pathway to choose, and how much 

amount of feedstock to produce. The outputs of the BSC MOO model are solutions for bioenergy 

production showing trade-offs between 𝑁𝑅x$%  and 𝑁𝑆x$%  based on the residue availability from 

the input TSC solution. Because each TSC solution represents a new situation for the residue 

availability, a new Pareto front is generated in the BSC MOO model. 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑁𝑅x$%																																																																																									(3.25)	
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑁𝑆x$%																																																																														(3.26) 
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Step 3: Based on timber production and biomass utilization decisions made from Steps 1 

and 2, calculate 𝑁𝑅w$%  and 𝑁𝑆w$%  (Eq. (3.1-3.2)) and combine with 𝑁𝑅x$%  and 𝑁𝑆x$%  to obtain 

𝑁𝑅#$%  and 𝑁𝑆#$%  (Eq. (3.27-3.28)). In this step, every Step 1 TSC solution corresponds to a Step 

2 BSC Pareto solution set.  

𝑁𝑅#$% = 𝑁𝑅w$% + 𝑁𝑅x$%																																																																																																																				(3.27)	
𝑁𝑆#$% = 𝑁𝑆w$% + 𝑁𝑆x$%																																																																																																																						(3.28)	
 

Integrated scenario: 

Step 1: Solve the integrated FSC MOO model with objective functions to maximize 𝑁𝑅#$%  

and 𝑁𝑆#$%  (Eq. (3.29-3.30)), subject to constraints Eq. (3.1-3.18, 3.27-3.28). This step mimics the 

process that timber and bioenergy production is jointly managed during the decision-making 

process to optimize the overall economic and environmental performances of the forest supply 

chain. The outputs of the FSC MOO model are solutions for timber and bioenergy production 

showing trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$% .  

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑁𝑅#$%																																																																																										(3.29)	
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑁𝑆#$%																																																																															(3.30) 

 

 
Figure 3.4 Modeling steps in the Integrated scenario. 

 

3.3.2 Model solving 

In order to solve MOO models, we applied the augmented ε-constraint (AUGMECON) 

method (Mavrotas 2009) which was developed based on the widely used e-constraint method 

(Ehrgott 2006). During the solving process, an MOO model is first reformulated as single objective 
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problems and solved to obtain bounds of each objective. Then one objective is selected and the 

others are transformed to additional constraints. The new single objective optimization problem is 

solved iteratively where in each iteration, the right-hand side of an objective converted constraint 

is changed with a user-specified step-size of ε value. The AUGMECON method improves the e-

constraint method in the sense that it uses lexicographic optimization to identify objective bounds. 

Slack variables are added to objective converted constraints and the final objective function to 

avoid the production of weakly Pareto optimal solutions (Mavrotas 2009). 

In our bi-objective MOO models, after identifying bounds of each objective through single 

objective optimization, the environmental objective was converted to the additional ε-constraint 

and the economic objective was used as the objective function during the iterative optimization 

process. In the Sequential scenario, the TSC MOO model in Step 1 consisted 2526 constraints, 

3135 binary variables, and 1896 continuous variables and the BSC MOO model in Step 2 consisted 

4413 constraints, 3766 binary variables, and 1896 continuous variables. A set of 50 Pareto-optimal 

points was generated from the TSC MOO model and corresponding to each TSC solution, a set of 

3 Pareto-optimal points was generated in the BSC MOO model. In the Integrated scenario, the 

FSC MOO model consisted 6942 constraints, 5647 binary variables, and 3794 continuous 

variables and a set of 50 Pareto-optimal points was generated. All MOO models were formulated 

in Python 2.7 and solved by the MIP solver CPLEX 12.6.3 on a computer with an Intel 3.40 GHz 

processor and 16 GB memory. Solving time for the Sequential and Integrate scenarios was 264 

and 629 seconds, respectively. 

We used 0.1 and 0.32 for 𝐺𝑊𝑃*+,
_Z`ab  and 𝐺𝑊𝑃*+,*-./  to discount the global warming 

potential (Corporation and Curran 2006) of biogenic carbon relative to fossil carbon (Liu et al. 

2017). Other process parameters and product data used in MOO models are provided in Tables 3.2 

and 3.3. The detailed estimation process of all parameters can be found in Appendix A. 
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Table 3.2 Process parameters. 
Unit process Criteria Value Assumptions and references 

Timber harvesting 

Administration Cost 494.21 $/ha Sale preparation, environmental analysis, and harvest 

monitoring costs at 200 $/acre (Abt et al. 2011). 

Salvage harvest Cost 21.51~122.66 $/odt Harvesting costs and GHG emissions for each system at 

each unit are estimated based on She et al. (2018)  Emission 9.74~55.90 kg CO2-eq/odt 

Residue treatment 

Chipping Cost  18.14 $/odt A chipper processes logging residues (Spinelli et al. 2012; 

Jernigan et al. 2013)  Emission 12.14 kg CO2-eq/odt 

Grinding Cost  22.81 $/odt A grinder processes clearcut roundwood logging residues 

without screening (Dukes et al. 2013). Emission 16.19 kg CO2-eq/odt 

Grinding with 

screening 

Cost  48.45 $/odt A grinder processes clearcut roundwood logging residues 

with screening (Dukes et al. 2013).  Emission 35.81 kg CO2-eq/odt 

Burn Cost 200 $/ha Burning logging residues on site (Rummer 2008; Lee et al. 

2011).  Emission 1740 kg CO2-eq/odt 

Decay Emission 1580 kg CO2-eq/odt Scattered residues decay on forest floor (Lee et al. 2011). 

Transportation 

Log Cost 0.1735 $/odt*km Two-way transportation with log truck payload of 26.7 t. 

Cost is $2.52/mile and fuel economy is 5.1 mile/gallon 

(Mason et al. 2008). 

Emission 0.1695 kg CO2-eq/odt*km 

Feedstock Cost 0.2038 $/odt*km Two-way transportation with chip van payload of 22.7 t. 

Cost is $0.2038/km and fuel economy is 1.98 km/L (Beck 

and Sessions 2013; Loeffler and Anderson 2014). 

Emission 0.2183 kg CO2-eq/odt*km 
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Table 3.3 Timber and bioenergy product details. 

Product Criteria* Value Assumptions and references 

Timber    

Saw log a 81.53  Lumber has a recovery ratio of 0.46 (Keegan III et al. 

2010) and substitutes steel stud (Bergman et al. 2014).  b 1125.12  

Post and pole a 58.70  Pole is used as fences and stores carbon during service 

life (Bergman et al. 2014).  b 705.13  

Firewood a 48.92  Firewood is combusted in a fireplace for domestic 

heating, substituting natural gas (Katers et al. 2012). b 389.31  

Residue utilization 

Low-quality feedstock  

(hog fuels) 

a 55.10  Hog fuel combusted in a boiler to generate electricity, 

substituting coal (Loeffler and Anderson 2014). b 1107.23  

High-quality feedstock 

(pellets) 

a 70.00  Pellet combusted in a pellet stove for domestic heating, 

substituting natural gas (Katers et al. 2012). b 203.17  

High-quality feedstock 

(biochar & syngas) 

a 43.43  Pyrolysis outputs contain 17.5% biochar and 82.5% 

syngas (Bergman et al. 2017), which are used as soil 

amendments and to generate electricity, respectively. 

b 983.72  

  
* a. Product unit revenue ($/odt), b. Product unit GHG emission savings (kg CO2-eq/odt) 

 

3.4 Results 

3.4.1 Salvage harvest and residue treatment in the Sequential scenario 

 In the Sequential scenario, TSC solutions are sorted (x-axis) according to the 

environmental objective (i.e., 𝑁𝑆w$%� ) in the TSC MOO model (Figure 3.5). Only LS and WT 

systems are used for salvage harvesting in all TSC MOO model solutions and logging residues are 

either decayed, burnt, or used for hog fuels in BSC MOO model solutions. The maximum 𝑁𝑅w$%�  

solution leads to 919.35 ha of forest area being harvested (93% by LS and 7% by WT), resulting 

in a production of 84.76 thousand (M) odt of timber products (63% saw logs, 22% post and pole, 

and 15% firewood). As the TSC MOO model focuses more on the environmental objective, 

meaning a higher 𝑁𝑆w$%�  needs to be satisfied as the additional e-constraint during the optimization 

process, LS harvested areas increase while WT harvested areas remain relatively constant. These 

WT areas eventually also switch to the LS system gradually as the environmental objective further 

increases and the entire forest stand is harvested by LS, where the maximum 𝑁𝑆w$%�  solution is 

obtained at 203.67 M odt of timber products (52% saw logs, 27% post and pole, and 20% firewood) 

produced from 3070.43 ha of harvested forest area. 
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Figure 3.5 (a) Harvesting operations at timber supply chain (TSC) and (b) residue utilization at 
the bioenergy supply chain (BSC) in the Sequential scenario. 
 

As for bioenergy production, the maximum 𝑁𝑅w$%�  solution results in 12.89 odt of residues 

from LS harvested units that are left for decaying and 1.07 odt of residues from WT harvested 

units that are available for further utilization. The residues from WT units then become inputs to 

the BSC MOO model. The maximum 𝑁𝑅x$%  solution results in all residues being burnt on site 

because no bioenergy pathway is economically feasible given the form and amount of available 

logging residues. The maximum 𝑁𝑆x$%  solution results in all residues being utilized for hog fuels 

because they are the most GHG emission saving bioenergy product. A compromise solution, 

achieving the average 𝑁𝑆x$%  of the previous two solutions, results in 0.53 odt of residues being 

burnt and 0.54 odt residues being utilized. As the TSC MOO model focuses more on the 

environmental objective, residue decay amount increases, while residue available for bioenergy 

production remains relatively constant. Depending on the e-constraint in the BSC MOO model, 

residues are fully burnt, fully utilized for hog fuels, and partially burn and partially utilized in the 

maximum 𝑁𝑅x$% , the maximum 𝑁𝑆x$% , and the compromise solutions, respectively. 

Corresponding to the maximum 𝑁𝑆w$%�  solution, no residues are available for further utilization so 

all BSC solutions lead to zero burning or hog fuel production. 
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3.4.2 Salvage harvest and residue treatment in the Integrated scenario 

In the Integrated scenario, FSC solutions are sorted (x-axis) according to the environmental 

objective (i.e., 𝑁𝑆#$%) in the FSC MOO model (Figure 3.6). The maximum 𝑁𝑅#$%  solution leads 

to 1,375.45 ha harvested (24% by LS, 57% by WT, and 19% by WTwS) and 109.78 M odt of 

timber products produced (59% saw logs, 24% post and pole, and 17% firewood). As the 

optimization shifts from maximizing 𝑁𝑅#$%  to maximizing 𝑁𝑆#$% , a higher 𝑁𝑆#$%  needs to be 

satisfied as the additional e-constraint during the optimization process. As a result, LS harvested 

areas increase while WTwS harvested areas remain constant at first, but both change to the WT 

system when the 𝑁𝑆#$%  is high enough. WT harvested areas increase throughout the whole process, 

either from harvesting previously unharvested areas or switching the harvest system at previously 

LS or WTwS harvested areas, until WT takes over the entire forest area of 3070.43 ha in the 

maximum 𝑁𝑆#$%  solution.  

For residue treatment at the BSC, no residue burning operations are ever chosen. The 

maximum 𝑁𝑅#$%  solution leads to 4.97 M odt of residues being left for decaying and 13.30 M odt 

being used for pellet production (for comminution, 3.96 M odt are chipped and 9.34 M odt are 

ground and screened). As the optimization focuses more on maximizing 𝑁𝑆#$% , residue decay 

amount increases first and then decreases to zero, following the trend of LS harvested areas. 

Residue utilization amount increases because the WT system is applied to larger areas, providing 

greater amounts of logging residues available for bioenergy production. There is a transition in the 

bioenergy production from pellets (the most profitable product) to hog fuels (the most GHG 

emission saving product). The maximum 𝑁𝑆#$%  solution utilizes 34.68 M odt of residues for hog 

fuel production. 
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Figure 3.6 (a) Harvesting operations at timber supply chain (TSC) and (b) residue utilization at 
the bioenergy supply chain (BSC) in the Integrated scenario. 

 

3.4.3 Net revenues and GHG emission savings in the Sequential and Integrated scenarios 

The Sequential and Integrated scenarios produce distinctive results when either the 

economic or environmental objective is used for optimization (Table 3.4). In the Sequential 

scenario, maximizing 𝑁𝑅w$%�  in the TSC MOO model and 𝑁𝑅x$%  in the BSC MOO model 

generates 1.29 and 0 million (MM) $ net revenues with 73.36 and 0 MM t CO2-eq GHG emission 

savings from the TSC and BSC, respectively. Maximizing 𝑁𝑅w$%�  from the TSC and 𝑁𝑆x$%  from 

the BSC generates 1.31 and -0.03 million (MM) $ net revenues with 73.96 and 1.11 MM t CO2-eq 

GHG emission savings from the TSC and BSC, respectively. The increased 𝑁𝑅w$%  and decreased 

𝑁𝑅x$%  in the second solution are shown because the TSC does not need to burn logging residues 

on-site and the BSC has to utilize them. When performances of TSC and BSC are combined, 

𝑁𝑅#$%  and 𝑁𝑆#$%  of these two solutions are 1.29 MM $ with 73.36 MM t CO2-eq GHG emission 

savings and 1.28 MM $ with 75.07 MM t CO2-eq GHG emission savings. In the Integrated scenario, 

maximizing 𝑁𝑅#$%  results in 𝑁𝑅w$% , 𝑁𝑅x$% , and 𝑁𝑅#$%  being 1.18, 0.27, and 1.45 MM $, 

respectively, and 𝑁𝑆w$% , 𝑁𝑆x$% , 𝑁𝑆#$%  being 108.21, 2.21, and 110.42 MM t CO2-eq GHG, 

respectively. 
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Table 3.4 Single objective optimization under Sequential and Integrated scenarios. 
Scenario Sequential Integrated Sequential Integrated 

Solution 𝑀𝑎𝑥	𝑁𝑅w$%�  𝑀𝑎𝑥	𝑁𝑅#$% 𝑀𝑎𝑥	𝑁𝑆w$%�  𝑀𝑎𝑥	𝑁𝑆#$% 

 𝑀𝑎𝑥	𝑁𝑅x$% 𝑀𝑎𝑥	𝑁𝑆x$%  𝑀𝑎𝑥	𝑁𝑅x$% 𝑀𝑎𝑥	𝑁𝑆x$%  

𝑁𝑅w$% (MM $) 1.29 1.31 1.18 0.11 0.11 -0.32 

𝑁𝑅x$% (MM $) 0 -0.03 0.27 0 0 -0.53 

𝑁𝑅#$% (MM $) 1.29 1.28 1.45 0.11 0.11 -0.85 

𝑁𝑆w$% (MM t CO2-eq) 73.36 73.96 108.21 224.76 224.76 230.42 

𝑁𝑆x$%  (MM t CO2-eq) 0 1.11 2.21 0 0 36.08 

𝑁𝑆#$% (MM t CO2-eq) 73.36 75.07 110.42 224.76 224.76 266.50 

 

Maximizing 𝑁𝑆w$%�  in the TSC MOO model in the Sequential scenario results in 0.11 MM 

$ net revenues with 224.76 MM t CO2-eq GHG emission savings at the TSC. This corresponds to 

the solution where the entire forest is harvested by the LS system and no logging residues are 

available for the BSC to utilize. As a result, maximizing 𝑁𝑅x$%  or 𝑁𝑆x$%  leads to the same outputs, 

where 0 net revenues and 0 GHG emission savings are achieved at the BSC. In the Integrated 

scenario, maximizing 𝑁𝑆#$%  results in 𝑁𝑅w$% , 𝑁𝑅x$% , and 𝑁𝑅#$%  being -0.32, -0.53, and -0.85 

MM $, respectively, and 𝑁𝑆w$% , 𝑁𝑆x$% , and 𝑁𝑆#$%  being 230.42, 36.08, and 266.50 MM t CO2-

eq GHG, respectively. 

 In the Sequential scenario, given the same TSC solution, the three BSC solutions only show 

small differences due to the small amount of residue available for bioenergy production (Figure 

3.7). After combining TSC and BSC performances, the resulting three curves are not very distinct 

in terms of trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$% . The Pareto front from the Integrated scenario 

lies above all curves of the Sequential scenario and provides a wider range of trade-offs between 

𝑁𝑅#$%  and 𝑁𝑆#$% . For both scenarios, trade-off curves have negative slopes because the two 

objectives, 𝑁𝑅#$%  and 𝑁𝑆#$% , are conflicting and cannot be improved at the same time. When the 

optimization emphasizes the economic objective, a small compromise in 𝑁𝑅#$%  causes significant 

improvements in 𝑁𝑆#$% . When the optimization is skewed toward the environmental objective, a 

much greater sacrifice has to be made in 𝑁𝑅#$%  to obtain a small increase in 𝑁𝑆#$% . 
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Figure 3.7 Trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  in the Sequential and Integrated scenarios. 
 

3.5 Discussion 

3.5.1 Fully economic-oriented or environmental-oriented solutions 

When MOO models are fully economic-oriented (i.e., maximizing 𝑁𝑅w$%�  and 𝑁𝑅x$%  in 

the Sequential scenario and maximizing 𝑁𝑅#$%  in the Integrated scenario), 49.6% more forest 

areas are harvested in the Integrated scenario (Figure 3.5 and 3.6), generating 12.3% more 𝑁𝑅#$%  

and 50.5% more 𝑁𝑆#$%  than those in the Sequential scenario (Table 3.4). The distribution of the 

produced log products shows that the additional harvested areas are composed of the harvest units 

with lower saw log proportion, which indicates cooperation between the TSC and BSC results in 

the salvage harvest being economically feasible in larger harvest units. When MOO models are 

fully environmental-oriented (i.e., maximizing 𝑁𝑆w$%�  and 𝑁𝑆x$%  in the Sequential scenario and 

maximizing 𝑁𝑆#$%  in the Integrated scenario), the entire beetle-infested forest is harvested under 

both scenarios. The Integrated scenario utilizes all logging residues for hog fuel production and 

achieves 18.6% greater 𝑁𝑆#$% , but results in loss of 0.96 MM $ in 𝑁𝑅#$%  compared to the 

Sequential scenario solution.  

While the fully environmental-oriented solutions may be economically prohibitive for 

practical implementations, operations following fully economic-oriented solutions are commonly 
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practiced. In the current salvage harvest in Colorado State Forest, timber salvage and residue 

utilization are managed by the landowner as two separate operations with economic feasibility 

being the main consideration for either operation, similar to the fully economic-oriented solution 

in the Sequential scenario. During the salvage harvest, although the WT system can be less 

expensive than the LS system when the skidding distance is short, the extra burning cost disfavors 

its application (Han et al. 2018). Without knowing whether residues are to be utilized, the 

landowner has preferred the LS system for salvage harvest up to date because it is easy to 

implement and more economical for slash management (Berryman et al. 2015). This suboptimal 

decision may lead to higher harvesting cost at the TSC and a small amount of residues in 

undesirable form for bioenergy production at the BSC. Consequently, only a small portion of 

infested forests are harvested and no bioenergy products are produced from logging residues. 

In this study, the fully economic-oriented solutions clearly demonstrate that the Integrated 

scenario outperforms the Sequential scenario in both 𝑁𝑅#$%  and 𝑁𝑆#$% . Our analysis confirms that 

the BSC generates net revenues and GHG emission savings at a much smaller scale than the TSC. 

However, timber production should still be managed together with bioenergy production to prepare 

residues in a desirable form for bioenergy production and avoid on-site pile burning. The joint 

management in the TSC and BSC, through an integrated decision-making process, results in quite 

distinct decisions in salvage harvest and residue utilization (Figure 3.6) compared to those in the 

Sequential scenario (Figure 3.5). The integrated solution promotes more efficient use of logging 

residues and thus can benefit the landowner both economically and environmentally. 

 

3.5.2 Trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  

As the e-constraint sets a higher environmental objective, harvest areas increase in both 

scenarios, but the difference in harvest system selection is apparent. The Sequential scenario favors 

the LS system to avoid residue burning (Figure 3.5) while the Integrated scenario favors WT and 

WTwS systems to facilitate bioenergy production (Figure 3.6). As a result, logging residue 

availability and utilization is limited in the Sequential scenario (Figure 3.5), whereas utilized 

residue amount increases and bioenergy production switches from the most profitable product (i.e., 

pellets) to the most GHG saving product (i.e., hog fuels) in the Integrated scenario.  

In terms of trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  (Figure 3.7), all three curves of the 

Sequential scenario are completely dominated (Zitzler and Thiele 1998) by the Pareto front of the 
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Integrated scenario, meaning for any solution from the Sequential scenario, there always exists at 

least one solution from the Integrated scenario that outperforms in both 𝑁𝑅#$%  and 𝑁𝑆#$% . 

Therefore, the Integrated scenario is proved strictly better than the Sequential scenario. 

 

3.5.3 Impact of carbon accounting on trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  

Carbon accounting has a strong influence on evaluating the GHG emission savings of 

timber and bioenergy products. Because the estimation of carbon sequestration (e.g., biomass 

growth, soil carbon pool, land use changes) is site-specific, the exact values of GHG emission 

savings provided by woody products are often uncertain (Cherubini et al. 2009). The assumption 

of carbon neutrality of all biogenic sources appears to be inappropriate and has raised debate 

especially on how to account for carbon emissions from burning woody materials (Katers et al. 

2012; Zanchi et al. 2012; Guest et al. 2013). We explored different 𝐺𝑊𝑃*+,*-./ values when solving 

the MOO models to assess the influence of carbon accounting on trade-offs between 𝑁𝑅#$%  and 

𝑁𝑆#$%  (Figure 3.8). GHG emissions from biomass burning are treated equivalently to biomass 

decay emissions when 𝐺𝑊𝑃*+,*-./  equals 0.1 and equivalently to fossil carbon when 𝐺𝑊𝑃*+,*-./ 

equals 1.0. The results show a significant difference in the Pareto fronts when different 𝐺𝑊𝑃*+,*-./ 

values are used for GHG accounting. As 𝐺𝑊𝑃*+,*-./ increases from 0.1 to 1, the maximum 𝑁𝑅#$%  

in the Sequential and Integrated scenarios do not change because economic features of timber and 

bioenergy products remain the same. However, the maximum 𝑁𝑆#$%  of the two scenarios decrease 

drastically because carbon benefits of timber and bioenergy products are considered much smaller. 

Trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  become more apparent with low 𝐺𝑊𝑃*+,*-./ cases than high 

𝐺𝑊𝑃*+,*-./ cases because with high 𝐺𝑊𝑃*+,*-./,greater economic compromises should be made to 

obtain the same environmental improvement. In addition, the 𝐺𝑊𝑃*+,*-./ also affects the bioenergy 

product produced. If 𝐺𝑊𝑃*+,*-./ equals 0.1 or 0.32, meaning burning woody biomass has small 

global warming potential relative to emitting fossil carbon, substituting coal with hog fuels is the 

most GHG emission saving pathway and is selected to achieve high 𝑁𝑆#$% . In contrast, if 

𝐺𝑊𝑃*+,*-./ equals 1, meaning there is no difference between burning woody biomass and emitting 

fossil carbon, producing biochar to preserve carbon is the most GHG emission saving pathway and 

is selected to achieve high 𝑁𝑆#$% . 
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Figure 3.8 Trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  in the Sequential and Integrated scenarios with 
various 𝐺𝑊𝑃*+,*-./. 

 

Given the same 𝐺𝑊𝑃*+,*-./  value, the Integrated scenario always outcompetes the 

Sequential scenario, shown by the dominating relationship of the two trade-off curves (Zitzler and 

Thiele 1998). This is because cooperation between the TSC and BSC in the Integrated scenario 

avoids residue burning and facilitates bioenergy production no matter what the 𝐺𝑊𝑃*+,*-./ value is. 

However, as 𝐺𝑊𝑃*+,*-./  increases from 0.1 to 1, the gap between trade-off curves shrinks, 

indicating a decreasing difference in trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  of the two scenarios. 

This is because higher 𝐺𝑊𝑃*+,*-./ decreases the amount of carbon benefits of timber and bioenergy 

products, and therefore the gain in 𝑁𝑆#$%  is not as significant as in the low 𝐺𝑊𝑃*+,*-./ case.  

 

3.6 Conclusion 

Salvage harvesting of beetle-kill trees in northern Colorado provides an opportunity to 

mitigate economic losses and produce carbon benefits. Our multi-objective optimization analysis 

shows that the Integrated scenario representing joint management for timber and bioenergy 

production can enhance the economic feasibility of forest salvage utilization and simultaneously 

increases GHG emission savings. When the optimization is fully economic-oriented, the Integrated 

scenario tends to harvest more forest areas and produce more bioenergy products than the 
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Sequential scenario, generating greater total net revenues and GHG emission savings from timber 

and bioenergy production. Comparison of Pareto fronts indicates the Integrated scenario offers 

more efficient trade-offs between 𝑁𝑅#$%  and 𝑁𝑆#$%  and always outperforms the Sequential 

scenario in both objectives even under different carbon accounting scheme. From landowner’s 

perspective, the Integrated scenario generates more profits and requires less monetary sacrifice 

than the Sequential scenario for the same GHG emission savings.  

 

 

 

 



 

 

 

 

 

 

  
Using Multi-objective Record-to-Record Travel metaheuristic to 

solve forest supply chain management problems with economic and 

environmental objectives 
 

 

 

Abstract 

Multi-objective optimization has been increasingly used to assist decision-making in forest 

management with consideration in multiple aspects that are sometimes conflicting with each other. 

Exact methods have been used to solve such problems and produce the Pareto front as the output, 

where one objective of any solution cannot be improved without sacrificing other objectives. 

However, some forest management practice, such as forest supply chain problems, may deal with 

combinatorial optimization that involves many units, products, processes and many planning 

periods, with multiple objectives and large sets of constraints. The computation complexity 

increases exponentially and becomes overwhelming for exact methods. We propose a multiple-

objective metaheuristic method, referred to as Multi-objective Record-to-Record Travel (MRRT), 

to solve such challenging problems. We examined the performance of MRRT on a forest supply 

chain multi-objective optimization problem where net revenues and greenhouse gas emission 

savings from the salvage harvest and utilization of beetle killed forest stands are simultaneously 

considered. Solutions from the MRRT algorithm were compared against those obtained from a 

Mixed Integer Programming (MIP) optimizer. Through testing on four cases of different sizes, we 

showed that MRRT performed satisfactorily in approximating the actual Pareto fronts (in terms of 

both convergence and coverage) and distribution of solutions was approximately uniform. MRRT 
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produced such solutions within reasonable computation time and the computational advantage 

over MIP was more apparent for large-scale test cases. 

 

Key words: Multi-objective optimization, metaheuristics, forest supply chain 

 

4.1 Introduction 

Linear Programming (LP), Integer Programming (IP), and Mixed Integer Programming 

(MIP) have long been used as optimization tools in forestry such as selection of silvicultural regime 

and regeneration strategies, harvesting and transportation management, and cutting pattern 

selection (Rönnqvist et al. 2015). Traditionally, these mathematical programming models are 

formulated given an objective function to optimize (e.g., maximizing net present value, 

minimizing deviations in wood flow) and a series of constraints to satisfy (e.g., capacity limitation, 

harvest area restriction) which represent the management goal and limitations in practice, 

respectively (Kaya et al. 2016). The obtained optimal solution assists forest managers and public 

forestry organizations in their decision-making (D’Amours et al. 2008). 

With an increasing interest in addressing sustainability considerations in forest 

management, multi-objective optimization, as one of the most popular multi-criteria decision-

making methods, has been widely applied to account for multiple, non-comparable, and sometimes 

conflicting objectives simultaneously (Ananda and Herath 2009). The output of multi-objective 

optimization is a set of “Pareto optimal” nondominated solutions, of which there is no other 

solution that is equal or better in all objectives (i.e., dominate this solution) (Ehrgott 2005). In 

these solutions, one objective cannot be improved without sacrificing other objectives and the 

solutions form the Pareto front which shows trade-offs among objectives (Deb 2001). Decision 

makers can then select solutions that balance among objectives such as economic gains (e.g., 

property values), ecosystem services (e.g., water quality, wildlife habitat), and social influences 

(e.g., job generation, public acceptance) (Yue et al. 2013; Schroder et al. 2016). In recent years, 

the application of multi-objective optimization has grown substantially in forest biomass supply 

chain management as the bioenergy/biofuel industry expands (Cambero and Sowlati 2014). In 

addition to an economic objective (e.g., minimizing logistics costs, maximizing net revenues), 

many studies incorporate an environmental objective that minimizes greenhouse gas emissions 

(You and Wang 2011; You et al. 2012; Kanzian et al. 2013) or maximizes carbon benefits 
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(Sacchelli et al. 2014; Cambero et al. 2016b) of the supply chain network. The goal is to design 

the supply chain to efficiently utilize the biomass resource and perform satisfactorily in both 

economic and environmental aspects. 

In order to solve multi-objective optimization problems (MOPs), many exact methods have 

been proposed including the weighted sum method, the two-phase method, the e-constraint method, 

modified branch and bound methods (Ehrgott 2005). Although any solution identified is Pareto 

optimal, there is no guarantee that all Pareto optimal solutions can be found and the solution time 

varies substantially (Tóth et al. 2006). In addition, many forest management problems deal with 

combinatorial optimization so that as the problem scale increases, the computation complexity 

increases exponentially and becomes overwhelming (Bettinger et al. 2016). For these problems, 

even solving single-objective optimization (i.e., one optimal solution) with exact methods is 

prohibitive, not to mention the difficulty of finding the Pareto front in multi-objective optimization. 

Since forest supply chain planning typically involves many units, products, processes and many 

planning periods, with multiple objectives and large sets of constraints, it easily becomes a large 

scale MOP that is difficult to be solved (Rönnqvist et al. 2015). 

A number of metaheuristic methods, referred as multi-objective metaheuristics (MOMHs), 

have been developed as alternatives to exact methods to tackle challenging MOPs (Gandibleux et 

al. 2004). Instead of trying to find all efficient solutions, MOMHs intend to obtain satisfactory 

nondominated solutions that approximate the Pareto front as much as possible within reasonable 

computation time (Durillo and Nebro 2011). Through testing on various benchmark problems 

(Zitzler and Thiele 1999; Zitzler et al. 2000; Huband et al. 2006), many MOMHs have 

demonstrated strong performances (Zhang and Li 2007; Zouache et al. 2018). However, while 

newly emerged MOMHs continue to strengthen performances, their algorithm structure also 

becomes increasingly complex which involves a number of sub-processes and contains many 

parameters that require user-inputs and fine tuning. Not only does it contribute to the algorithm 

computation complexity, it also complicates the parameterization process because determining 

parameter values itself becomes a combinatorial optimization problem. Since parameters in 

metaheuristics are highly instance sensitive, meaning that no common values are suitable for 

solving all problems, a complicated parameterization process is effort-demanding and significantly 

restricts the algorithm adaptability and application. Nevertheless, this is often neglected in MOMH 

development and few efforts have been seen in exploring simple algorithms. 
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Record-to-Record Travel (RRT) algorithm (Algorithm 1) was proposed for single-

objective optimization with the intention of identifying a high performance Monte Carlo method 

with a simpler algorithm structure than Simulated Annealing (Dueck and Scheuer 1990; Dueck 

1993). The simplification aims at accelerating algorithm run time and easing parametrization 

process. In RRT, only two parameters are required: an allowed disimprovement deviation and a 

terminating condition (e.g., number of iterations). During the RRT optimization process, these two 

parameters control the extent of exploitation and exploration, respectively. The random search at 

each iteration is generated from the local record and is constrained within the deviating range of 

the global record. The search process is terminated and the global record is reported when the 

terminating condition is fulfilled.  

 

Algorithm 1 Record-to-Record Travel (RRT)* 

Generate a random initial solution 𝒙, local record 𝒍 ← 𝒙, global record 𝒈 ← 𝒙 

Determine an allowed deviation 𝒅𝒆𝒗 > 𝟎 

while terminating condition not met do 

    Generate a candidate solution 𝒙 randomly from the neighborhood of 𝒍 

    if 𝒙 > 𝒈 ∗ (𝟏 − 𝒅𝒆𝒗) then 

        𝒍 ← 𝒙 

        if 𝒙 > 𝒈 then 

            𝒈 ← 𝒙 

        end if 

    end if 

end while 

Output 𝒈 

* The algorithm is used for a maximization problem. 

 

Although high quality outputs have been reported in most applications (Li et al. 2007; 

Mafarja and Abdullah 2015), the RRT algorithm has not received much attention since developed 

relative to other metaheuristic algorithms, such as Simulated Annealing and Tabu Search (Glover 

1989). To the best of our knowledge, the RRT algorithm has never been modified or adapted for 

multi-objective optimization. However, simpler solution processes and fewer parameters in RRT 
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could be an advantage when tackling complex MOPs that require intensive computation for 

repeated solution comparisons.  

In this study, we develop a new MOMH, referred to as Multi-objective Record-to-Record 

Travel (MRRT), based on RRT for multi-objective optimization. We incorporate a population 

strategy that facilitates parallel searching to increase the algorithm efficiency. We apply MRRT to 

a combinatorial optimization problem in forest management where two objectives are of interests. 

The problem focuses on salvaging forests infested by the mountain pine beetle (Dendroctonus 

ponderosae) for timber and bioenergy production, in which sound supply chain planning is needed 

to make timely and efficient use of these resources from both economic and environmental 

perspectives. Four test cases are created with different numbers of units and time periods involved 

in management to examine MRRT in solving multi-objective optimization at various problem 

scales. The mathematical programming formulation is also developed and solved via the mixed-

integer programming (MIP) approach to build the actual Pareto front in each test case. 

Performances of the MRRT and MIP approaches are compared in terms of solution quality and 

computation time. 

 

4.2 Problem statement 

The recent mountain pine beetle epidemic has affected a massive area of forests in North 

America, caused high rates of tree mortality, and created a vast amount of dead forest resource 

(US Department of Agriculture Forest Service 2017). Salvage harvesting dead trees for timber and 

forest biomass, such as logging residues (e.g., degraded wood, tree tops, branches and non-

merchantable parts) for bioenergy production provides an opportunity to utilize forest resources 

that are otherwise wasted, and to contribute to the economies of rural areas and local wood product 

industries. Environmentally, utilization of infested forests creates carbon benefits by reducing dead 

wood decay emissions (Campbell et al. 2016), replacing non-wood alternatives that require more 

energy intensive manufacturing than timber products (Werner et al. 2005; Gustavsson et al. 2006), 

and reducing greenhouse gas (GHG) emissions by using bioenergy to replace fossil fuel burning 

(Lamers et al. 2014).  

Managing the supply chain of beetle-killed timber and biomass considering both the net 

revenues and GHG emission savings presents a multi-objective optimization problem. In Colorado 

State Forest (40°57´N, 106°00´W), lodgepole pine (Pinus contorta) forests (Figure 4.1) have been 
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heavily impacted by the MPB outbreak since 2008 and the current mortality rate is 47.3% (Han et 

al. 2018). We selected a portion of the Colorado State Forest as our study area (size: 3,400 ha, 

stand density: 865 trees ha-1, basal area: 34.6 m2 ha-1) that is located in relatively flat terrain (i.e., 

slope < 35%) and close to existing roads (i.e., average skidding distance < 610 m, or 2,000 ft) so 

that ground-based clearcut operations are applicable. Forest salvage harvest in the study area 

typically produces three log products (i.e., saw logs, post and pole, and firewood depending on 

small-end diameter) and one potential bioenergy product (i.e., pellet). Timber and biomass 

harvesting, collection and transport operations incur associated costs and produce GHG emissions 

throughout the supply chain, whereas revenues and GHG emission savings are usually realized 

when end products are used (Figure 4.1). The two objectives in the beetle kill salvage harvest and 

utilization are set to maximize net revenues and net GHG emission savings of the supply chain 

network. 

 

 
Figure 4.1 Forest supply chain for beetle kill timber and pellet production in Colorado State Forest. 

 

Three harvesting systems, lop-and-scatter (LS), whole-tree harvesting (WT), and whole-

tree harvesting with sorting (WTwS), can be configured with the same set of equipment for timber 

harvest and are considered in this study. The LS system delimbs and bucks trees to logs at the 
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stump, resulting in logging residues dispersed over the harvest unit and left on the forest floor for 

decaying (i.e., not economical to collect). In contrast, whole trees are transported in WT and 

WTwS systems by a skidder and processed at the landing by delimbers. WTwS includes a sorting 

procedure in the delimbing process to separate woody biomass (e.g., tree tops left log processing, 

small diameter trees delimbed) from slashes to facilitate biomass feedstock production for pellets 

(Kizha and Han, 2016). As a result, slash piles and sorted biomass (with small amount of slashes) 

are accumulated at the landing as part of timber harvesting in WT and WTwS, respectively. The 

additional sorting procedure raises WTwS harvesting costs compared to WT but sorted biomass 

represents a better quality bioenergy feedstock with higher woody content and less contamination 

from dirt. 

 Post to harvest, trees in unharvested units and scattered slashes from LS harvested units 

decay and emit GHG as carbon sources. Slash piles from WT harvested units are either burnt or 

further utilized together with sorted biomass from WTwS harvested units for pellet production. 

Pellet production requests homogenous sized, less contaminated feedstock, which can be produced 

by sorted biomass through chipping or by slash piles through grinding with screening (Dukes et 

al. 2013). After comminution, feedstock is transported to a pellet plant for manufacturing and 

produced pellets are delivered to end users. 

 It is of critical importance to account for the changes at beetle-killed forests along time 

when managing the supply chain to enhance economic and environmental benefits obtained 

through forest salvage utilization. As time passes since the beetle infestation, dead trees deteriorate 

and wood quality degrades (Lewis and Thompson 2011). The proportion of high value log products 

also decreases (Loeffler and Anderson 2018), resulting in low market values of final products 

(Barrette et al. 2015). Meanwhile, unused dead trees decay and become a net source of carbon (i.e., 

dead trees stop absorbing CO2 and emit CO2 during decomposition) that may contribute to climate 

change (Kurz et al. 2008). On the other hand, the proportion of downed trees generally increases 

over time especially between 10 to 18 years post-mortality when most fall-down occurred (Lewis 

and Hartley 2005). Compared to standing trees, handling downed trees is more time-consuming 

during harvesting operations resulting in reduced system productivity and increased harvest costs 

(Kim et al. 2017; Han et al. 2018). Assuming 5% annual product degrade rate and 5% annual tree 

fall rate, we estimated the available timber and residue amounts as well as unit production costs of 
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the three harvesting systems (Chung et al. 2017; She et al. 2018) at the beetle-killed forest of the 

study area in Colorado State Forest in the following 10 years (Figure 4.2).  

 

 
Figure 4.2 Changes in (a) available timber product and residue amount (b) mean and standard 
deviation (std) of lop-and-scatter (LS), whole-tree harvesting (WT), and whole-tree harvesting 
with sorting (WTwS) harvesting costs over time. 

 

4.3 Methods 

4.3.1 Multi-objective Record-to-Record Travel Algorithm 

We developed a multi-objective metaheuristic referred to as Multi-objective Record-to-

Record Travel (MRRT) to solve the multi-objective supply chain management problem. The 

MRRT algorithm incorporates the record travel search process of the RRT algorithm, but five 

modifications were made as follows to adapt the algorithm to optimize the economic and 

environmental objectives simultaneously. 

• Deviation set. MRRT uses a deviation set where an individual deviation rate is selected for 

each objective. This serves to resolve the problem that value changes associated with one 

random move may be different in each objective, which is highly likely because of the two 

objective functions are in different units and magnitudes. 

• Deviation rates are not constant. Objective function values may change significantly over the 

course of optimization, so does the ratio of the effects caused by a random move to the 

objective values. We modified the RRT algorithm so that it can track these changes and vary 

deviations according to recent disimproving moves during the optimization. Also, we set 

deviations as the actual values instead of ratios because objective values (as denominators in 
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the ratios) are always changing. Therefore, deviations are no longer input by users but 

determined from recent random moves. The user instead defines the allowed proportion of 

disimprovement of random moves as an input parameter.  

• MRRT maintains a set of global and local records. The former results from the nature of multi-

objective optimization outputs (i.e., generating a number of nondominated solutions) and the 

latter intends to increase the search efficiency by parallel searching (i.e., exploring different 

regions in the search space) during the optimization process. Global records do not dominate 

each other and are in sorted order based on the first objective. 

• The record accepting scheme is different. Because there is no single global optimum, we 

compare a new solution against the local record that it derives from when assessing its 

acceptance as a local record. If both objectives are improved or one objective is improved and 

the other is disimproved within the allowed deviation, the new solution is accepted to replace 

the corresponding old local record. If there is not a global record dominating the new solution, 

it is added to the global record set. 

• Solution pruning and thinning. Pruning and thinning ensure the global record set only contain 

nondominated solutions and is within the set size limit, respectively. After a solution is added 

the global record set, MRRT checks if any existing global records become dominated and 

removes them from the global record set (pruning). In addition, each global record has a 

crowding distance (Deb et al. 2002), a measure of how close a solution is to its neighbors 

(solutions on the boundary have crowding distance of infinity), to indicate its “uniqueness”. 

MRRT removes the solution with the lowest crowding distance (i.e., most crowded) when 

number of global records exceeds the record size limit (thinning). 

 

The MRRT algorithm requires three user defined parameters: allowed disimprovement 

proportion 𝛿, record size 𝑛, and terminating iteration 𝐼𝑇𝐸𝑅. The solving process of MRRT begins 

with performing RRT for each objective to find initial objective bounds (i.e., lower bound for a 

maximizing objective and upper bound for a minimizing objective). Then 𝑛/𝑘 − 1  random 

solutions are generated from each bound, where k is the number of objectives (for the application 

in this study, 𝑘 = 2). This process generates a total of 𝑛  initial local records including 𝑛/𝑘 

solutions generated for initial objective bounds. Nondominated solutions among the local records 

are identified as the initial global records. In the record travel process, 𝑛  also becomes the 
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maximum size of the global record set. The exact number of global records may vary at each 

iteration.  

During the solving process, the changes in objective function values of recent 100,000 

deteriorating moves (i.e., objective function values disimprove in all objectives) are recorded and 

the lower 100 × 𝛿  percent moves are considered as allowed disimproving moves. The cutoff 

values are used as the allowed deviation quantity from local records until the next 100,000 

deteriorating moves are recorded. To be noted, 100,000 is an arbitrarily selected large number to 

concrete the consideration of recent moves and it does not significantly affect the performance of 

MRRT as long as the number is within a reasonable range. The purpose is to find a relative long-

term average to determine the allowed deviation so that the influence of any erratic move is 

minimal. Algorithm 2 details the operating steps of the MRRT algorithm. 

 

Algorithm 2 Multi-objective Record-to-Record Travel 

Input allowed disimprovement proportion 𝜹, record size 𝒏, and terminating iteration 𝑰𝑻𝑬𝑹 

Run RRT for all 𝒌 objectives to get the initial objective bounds 

Generate 𝒏/𝒌 − 𝟏 solutions from each objective, local record set 𝑳 ← all initial solutions 

Identify nondominated solutions in 𝑳, global record set 𝑮 ← nondominated initial solutions 

Sort 𝑮, create crowding distance dictionary 

Initiate deviation set 𝒅𝒆𝒗 = 𝟎 

while terminating iteration 𝑰𝑻𝑬𝑹 not reached do 

    for all 𝒍 ∈ 𝑳 

        Generate a candidate solution 𝒙 randomly from the neighborhood of 𝒍 

        if 𝒙 ≺ 𝒍 then 

            track disimprovement and update 𝒅𝒆𝒗 set based on 𝜹 if necessary 

        end if 

        if not 𝒙 ≺ 𝒍 − 𝒅𝒆𝒗 then 

            𝒍 ← 𝒙 

            if 𝒈 ≺ 𝒙, ∄𝒈 ∈ 𝑮 then 

                Insert 𝒙 to 𝑮, prune 𝒈 ≺ 𝒙, ∀𝒈 ∈ 𝑮, update crowding distance dictionary 

            end if 
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        end if 

    end for 

    while |𝑮| > 𝒏 do 

        thin 𝑮 based on crowding distance, update crowding distance distionary 

    end while 

end while 

Output 𝑮 

 

 The computation complexity of MRRT is explained using the Big O notation (Cormen et 

al. 2009), where 𝑂(1), 𝑂(1), 𝑂(1), 𝑂(1) indicate constant, linear, logarithmic, and quadratic time 

complexities, respectively. At each iteration, the MRRT performs only one main loop on local 

record neighborhood search with 𝑂(𝑛) computation complexity. The deviation updating process 

is 𝑂(𝐷) where 𝐷 is the number of disimprovement threshold for updating 𝑑𝑒𝑣. For each newly 

generated solution, the local record comparison is 𝑂(𝑘) and replacement is 𝑂(1). The global 

record identification is 𝑂(𝑙𝑔(𝑛)) (i.e., to determine from which global record to start comparing 

with the new solution), comparison is 	𝑂(𝑘𝑛), insertion is 𝑂(𝑘𝑙𝑔(𝑛)), and the crowding distance 

updating is 𝑂(𝑘). The pruning process is 𝑂(𝑘𝑛) on average and 𝑂(𝑘𝑛m) as the worst case, which 

corresponds to the situation that a newly generated solution prunes one solution and all previous 

solutions (very unlikely to happen due to the existence of bounds), respectively. The thinning 

process is 𝑂(𝑘𝑛) and the crowding distance updating is again 𝑂(𝑘). It is noteworthy that the 

thinning process is triggered only when the global record size exceeds 𝑛, so it does not happen 

together with the pruning process. In terms of record update in one iteration, three scenarios may 

happen: 

• No local record is replaced. Then computation only includes local record comparisons and 

the running time is 𝑂(𝑘𝑛). 

• All local records and global records are updated for each new solution. In this extreme case, 

the runtime complexity of local record comparison with replacement is still 𝑂(𝑘𝑛) and the 

global record update is 𝑂(𝑘𝑛m). 

• Some local records are replaced, and the global records are changed a few times. This is 

the most likely scenario and the time complexity is between 𝑂(𝑘𝑛) and 𝑂(𝑘𝑛m).  
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Over the course of optimization, the running time at each iteration shifts towards 𝑂(𝑘𝑛) 

because it is decreasingly probable to identify new global records. Because there are in total 𝐼𝑇𝐸𝑅 

iterations, the maximum computation complexity of MRRT is bounded by 𝑂(𝐼𝑇𝐸𝑅 ∗ 𝑘𝑛m), but 

must be sufficiently less than that.  

 

4.3.2 Mixed integer programming model of the test problem 

 A deterministic multi-objective mixed integer linear programming model is formulated to 

mathematically represent the supply chain network of the beetle kill salvage harvest and utilization 

with an economic objective and an environmental objective. The two objectives aim at maximizing 

the net present value and the net GHG emission savings of the forest salvage utilization in the 

study area. The integer variables determine harvesting system and time period (i.e., year) for each 

unit, as well as residue treatment and its time period. The continuous variables are calculated based 

on the harvest and residue treatment decisions, showing the amount of timber and pellet production, 

and residue burn. The complete list of indices, sets, parameters and decision variables is provided 

in Table 4.1.  

 

Table 4.1 Nomenclature. 
Sets 

𝐼 𝑆𝑒𝑡	𝑜𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝑢𝑛𝑖𝑡𝑠	𝑖 

𝑇 𝑆𝑒𝑡	𝑜𝑓	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟𝑖𝑜𝑑𝑠	𝑡 

𝑆 𝑆𝑒𝑡	𝑜𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚𝑠	𝑠 

𝐶 𝑆𝑒𝑡	𝑜𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠	𝑚𝑒𝑡ℎ𝑜𝑑𝑠	𝑐 

𝐿 𝑆𝑒𝑡	𝑜𝑓	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠	𝑙 

Parameters 

1) General 

𝑚+,R,h
S,T 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑙	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	(o𝑑𝑡) 

𝑚+,h
YZ[ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	𝑖𝑓	𝑢𝑛𝑖𝑡	𝑖𝑠	𝑛𝑜𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	(o𝑑𝑡) 

𝜆 𝐷𝑒𝑔𝑟𝑎𝑑𝑒	𝑟𝑎𝑡𝑒	𝑜𝑓	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑏𝑦	𝑤𝑒𝑖𝑔ℎ𝑡	𝑑𝑢𝑒	𝑡𝑜	𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑎+ 𝐴𝑟𝑒𝑎	𝑜𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	(ℎ𝑎) 

ℎ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	ℎ𝑜𝑢𝑟	(𝑆𝑀𝐻)𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑝𝑒𝑟𝑖𝑜𝑑	(𝑆𝑀𝐻) 

𝑝+,[,h
S,T,ga. 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑢𝑠𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠	𝑎𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	(𝑜𝑑𝑡/𝑆𝑀𝐻) 

𝑝+,`,h
YZ[,`,d 𝐶𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	𝑎𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	(𝑜𝑑𝑡/𝑆𝑀𝐻) 
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𝑑+
S,T 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑡𝑖𝑚𝑏𝑒𝑟	𝑚𝑖𝑙𝑙	(𝑘𝑚) 

𝑑+YZ[ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑝𝑒𝑙𝑙𝑒𝑡	𝑝𝑙𝑎𝑛𝑡	(𝑘𝑚) 

𝜌�ZR 𝑊𝑒𝑖𝑔ℎ𝑡	𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦	𝑟𝑎𝑡𝑖𝑜	𝑓𝑟𝑜𝑚	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑡𝑜	𝑝𝑒𝑙𝑙𝑒𝑡𝑠 

𝐺𝑊𝑃*+,
_Z`ab 𝐺𝑙𝑜𝑏𝑎𝑙	𝑤𝑎𝑟𝑚𝑖𝑛𝑔	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝑓𝑎𝑐𝑡𝑜𝑟	𝑜𝑓	𝑏𝑖𝑜𝑔𝑒𝑛𝑖𝑐	𝑐𝑎𝑟𝑏𝑜𝑛	𝑓𝑟𝑜𝑚	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑑𝑒𝑐𝑎𝑦𝑖𝑛𝑔	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑡𝑜	 

𝑓𝑜𝑠𝑠𝑖𝑙	𝑐𝑎𝑟𝑏𝑜𝑛  

𝐺𝑊𝑃*+,*-./ 𝐺𝑙𝑜𝑏𝑎𝑙	𝑤𝑎𝑟𝑚𝑖𝑛𝑔	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝑓𝑎𝑐𝑡𝑜𝑟	𝑜𝑓	𝑏𝑖𝑜𝑔𝑒𝑛𝑖𝑐	𝑐𝑎𝑟𝑏𝑜𝑛	𝑓𝑟𝑜𝑚	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑏𝑢𝑟𝑛𝑖𝑛𝑔	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑡𝑜	 

𝑓𝑜𝑠𝑠𝑖𝑙	𝑐𝑎𝑟𝑏𝑜𝑛  

2) Economic 

𝛼 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 

𝑐R
S,T,da[[ 𝑈𝑛𝑖𝑡	𝑠𝑡𝑢𝑚𝑝𝑎𝑔𝑒	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑙𝑜𝑔	𝑡𝑦𝑝𝑒	𝑙	($/𝑜𝑑𝑡) 

𝑐+,[,h
S,T,ga. 𝑈𝑛𝑖𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝑐𝑜𝑠𝑡	𝑢𝑠𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠	𝑎𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	($/𝑜𝑑𝑡) 

𝑐S,T,h.a/[ 𝑈𝑛𝑖𝑡	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑙𝑜𝑔𝑠	($/𝑜𝑑𝑡 ∗ 𝑘𝑚) 

𝑟R
S,T 𝑈𝑛𝑖𝑡	𝑟𝑒𝑣𝑒𝑛𝑢𝑒	𝑜𝑓	𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑	𝑙𝑜𝑔	𝑡𝑦𝑝𝑒	𝑙		($/𝑜𝑑𝑡) 

𝑐`�,�Z 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡	𝑚𝑜𝑣𝑒- 𝑖𝑛	𝑐𝑜𝑠𝑡	𝑓𝑜𝑟	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑜𝑛	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	($) 

𝑐YZ[,*-./ 𝑈𝑛𝑖𝑡	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑏𝑢𝑟𝑛𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑜𝑛	𝑠𝑖𝑡𝑒	($/ℎ𝑎) 

𝑐`YZ[,`,d 𝑈𝑛𝑖𝑡	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	($/𝑜𝑑𝑡) 

𝑐YZ[,h.a/[ 𝑈𝑛𝑖𝑡	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑒𝑑	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	($/𝑜𝑑𝑡	 ∗ 𝑘𝑚) 

𝑐�ZR,da/- 𝑈𝑛𝑖𝑡	𝑝𝑒𝑙𝑙𝑒𝑡	𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔	𝑐𝑜𝑠𝑡	($/𝑜𝑑𝑡) 

𝑟�ZR 𝑈𝑛𝑖𝑡	𝑟𝑒𝑣𝑒𝑛𝑢𝑒	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑝𝑒𝑙𝑙𝑒𝑡𝑠	($/𝑜𝑑𝑡) 

3) Environmental 

𝑒+,[,h
S,T,ga. 𝑈𝑛𝑖𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑢𝑠𝑖𝑛𝑔	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠	𝑎𝑡	𝑢𝑛𝑖𝑡	𝑖		𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒S,T,h.a/[ 𝑈𝑛𝑖𝑡	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑙𝑜𝑔𝑠	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡 ∗ 𝑘𝑚) 

𝑠R
S,T 𝑈𝑛𝑖𝑡	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑠𝑎𝑣𝑖𝑛𝑔𝑠	𝑜𝑓	𝑙𝑜𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑙	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒`�,�Z 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡	𝑚𝑜𝑣𝑒- 𝑖𝑛	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑓𝑜𝑟	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑜𝑛	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	(𝑘𝑔	𝐶𝑂m-𝑒𝑞) 

𝑒_Z`ab 𝑈𝑛𝑖𝑡	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑑𝑒𝑐𝑎𝑦	𝑜𝑛	𝑠𝑖𝑡𝑒	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒*-./ 𝑈𝑛𝑖𝑡	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑏𝑢𝑟𝑛𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑜𝑛	𝑠𝑖𝑡𝑒	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒`YZ[,`,d 𝑈𝑛𝑖𝑡	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑛𝑔	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑒YZ[,h.a/[ 𝑈𝑛𝑖𝑡	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑒𝑑	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡 ∗ 𝑘𝑚) 

𝑒�ZR,da/- 𝑈𝑛𝑖𝑡	𝑝𝑒𝑙𝑙𝑒𝑡	𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

𝑠�ZR 𝑈𝑛𝑖𝑡	𝐺𝐻𝐺	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑠𝑎𝑣𝑖𝑛𝑔𝑠	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑝𝑒𝑙𝑙𝑒𝑡𝑠	(𝑘𝑔	𝐶𝑂m-𝑒𝑞/𝑜𝑑𝑡) 

Decision variables 

1) Continuous variables 

𝑥+,R,h
S,T 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑙𝑜𝑔	𝑡𝑦𝑝𝑒	𝑙	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	 

𝑥+,`,h
YZ[,`,d 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑒𝑑	𝑏𝑦	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡 

𝑥+,h
YZ[,*-./ 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑏𝑢𝑟𝑛𝑡	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡 
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𝑥+
x+,,_Z`ab 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑑𝑒𝑐𝑎𝑦	𝑎𝑡	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑜𝑢𝑡	𝑎𝑙𝑙	𝑝𝑒𝑟𝑖𝑜𝑑𝑠 

𝑥h�ZR 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑝𝑒𝑙𝑙𝑒𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡  

2) Integer variables 

𝑦+,[,hga. 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑠	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑏𝑦	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑦+,h´,`,h
`,d  𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑠	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡�	𝑎𝑛𝑑	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑎𝑟𝑒	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑒𝑑	 

𝑏𝑦	𝑚𝑒𝑡ℎ𝑜𝑛𝑑	𝑐	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡; 	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝑦+,h´,h
*-./ 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	ℎ𝑎𝑟𝑣𝑒𝑠𝑡	𝑢𝑛𝑖𝑡	𝑖	𝑖𝑠	ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡	𝑎𝑛𝑑	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑏𝑢𝑟𝑛𝑡	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	 

𝑡�; 	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑧`,h`,d 𝐵𝑖𝑛𝑎𝑟𝑦: 1, 𝑖𝑓	𝑐𝑜𝑚𝑚𝑖𝑛𝑢𝑡𝑖𝑜𝑛	𝑚𝑒𝑡ℎ𝑜𝑑	𝑐	𝑖𝑠	𝑢𝑠𝑒𝑑	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑡; 	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

The economic objective is to maximize the net revenues (𝑁𝑅) of the forest supply chain, 

which consists of the sum of all discounted cash-flows associated with the revenue from all timber 

and bioenergy product (sales of logs and pellets to entities external to the forest industry), biomass 

procurement costs, harvesting cost, transportation cost, residue burning and comminution costs, 

and pellet manufacturing costs (Eqs. (4.1-4.3)).  

𝑀𝑎𝑥	𝑁𝑅 =z
1

(1 + 𝛼)hµ¶ ∗
(𝑅𝑒𝑣𝑒𝑛𝑒h − 𝐶𝑜𝑠𝑡h)

h∈w

																																																																												(4.1) 

where 

𝑟𝑒𝑣𝑒𝑛𝑒h =zz𝑥+,R,h
S,T ∗ 𝑟R

S,T

R∈S+∈|

+ 𝑥h�ZR ∗ 𝑟�ZR								∀𝑡 ∈ 𝑇																																																																(4.2) 

𝑐𝑜𝑠𝑡h =zz𝑥+,R,h
S,T

R∈S+∈|

∗ 𝑐R
S,T,da[[ +zzz𝑚+,R,h

S,T

R∈S[∈$

∗ 𝑦+,[,hga. ∗ 𝑐+,[,h
S,T,ga.

+∈|

 

												+zz𝑥+,R,h
S,T

R∈S

∗ 𝑑+
S,T

+∈|

∗ 𝑐S,T,h.a/[ +z�𝑎+ ∗ 𝑐YZ[,*-./ ∗ z 𝑦+,h´,h
*-./

h´∈w

�
+∈|

+z𝑧`,h`,d ∗ 𝑐`�,�Z
`∈%

 

												+zz𝑥+,`,h
YZ[,`,d ∗ 𝑐`

YZ[,`,d

`∈%+∈|

+zz𝑥+,`,h
YZ[,`,d ∗ 𝑑+YZ[ ∗ 𝑐YZ[,h.a/[

`∈%+∈|

 

												+𝑥h�ZR ∗ 𝑐�ZR,da/-							∀𝑡 ∈ 𝑇																																																																																																						(4.3) 

 

 The environmental objective is to maximize the net GHG emission savings associated with 

the salvage utilization of the beetle-killed forests (Eq. (4.4)), where GHG emission savings are 

obtained through the end use of log products and wood pellets (Eq. (4.5)), and GHG emissions 

consist of emissions associated with operations include timber harvesting, log transportation, 
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residue burning, and comminution, residue transportation, and pellet manufacturing (Eq. (4.6)) and 

biomass decay emissions.  

𝑀𝑎𝑥	𝑁𝑆 =z(𝑆𝑎𝑣𝑖𝑛𝑔h − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛h)
h∈w

− 𝐺𝑊𝑃*+,
_Z`ab ∗z𝑥+

x+,,_Z`ab ∗ 𝑒_Z`ab
+∈|

																						(4.4) 

where 

𝑠𝑎𝑣𝑖𝑛𝑔h =zz𝑥+,R,h
S,T ∗ 𝑠R

S,T

R∈S+∈|

+ 𝑥h�ZR ∗ 𝑠�ZR								∀𝑡 ∈ 𝑇																																																																	(4.5) 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛h =zzz𝑚+,R,h
S,T

R∈S[∈$

∗ 𝑦+,[,hga. ∗ 𝑒+,[,h
S,T,ga.

+∈|

+zz𝑥+,R,h
S,T

R∈S

∗ 𝑑+
S,T

+∈|

∗ 𝑒S,T,h.a/[ 

																						+𝐺𝑊𝑃*+,*-./ ∗z𝑥+,h
YZ[,*-./ ∗ 𝑒*-./

+∈|

+z𝑧`,h`,d ∗ 𝑒`�,�Z
`∈%

+zz𝑥+,`,h
YZ[,`,d ∗ 𝑒`

YZ[,`,d

`∈%+∈|

 

																						+zz𝑥+,`,h
YZ[,`,d ∗ 𝑑+YZ[ ∗ 𝑒YZ[,h.a/[

`∈%+∈|

+ 𝑥h�ZR ∗ 𝑒h
�ZR,da/-																																										(4.6) 

 

During the salvage harvest and utilization, a series of constraints need to be satisfied. For 

harvest operations, each unit 𝑖 can be harvested at most once by one of the available harvesting 

systems throughout all periods (Eq. (4.7)). Post to harvest, logging residues from units harvested 

the LS system does not require any further treatment and are left on-site for decaying. However, 

if a unit is harvested by the WT system in one period, logging residues should be either ground 

with screening (gws) to produce feedstock for pellet production or burnt on-site through disposal 

management in the same or later periods (Eq. (4.8)). If a unit is harvested by the WTwS system in 

one period, logging residues must be chipped to produce feedstock in the same or later periods (Eq. 

(4.9)). In each period, if logging residues from any harvested unit is comminuted, corresponding 

machineries need to be allocated to the site (Eq. (4.10)). For either harvesting or comminution 

operations, the accumulated working hour cannot exceed the scheduled machine hour (Eqs. (4.11-

4.12)). 

zz𝑦+,[,hga.

[∈$h∈w

≤ 1								∀	𝑖 ∈ 𝐼																																																																																																																			(4.7) 

z z ·𝑦+,h´,T�[,h
`,d + 𝑦+,h´,h

*-./¸
h´∈¶..hh∈w

=z𝑦+,�h,hga.

h∈w

								∀	𝑖 ∈ 𝐼																																																																				(4.8) 

z z 𝑦+,h´,`g+^,h
`,d

h´∈¶..hh∈w

=z𝑦+,�h�[,hga.

h∈w

								∀	𝑖 ∈ 𝐼																																																																																				(4.9) 
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|𝐼| ∗ 𝑧`,h`,d ≥z z 𝑦+,h´,`,h
`,d

h´∈¶..h+∈|

								∀	𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇																																																																												(4.10) 

zzz𝑦+,[,hga. ∗ 𝑚+,R,h
S,T 𝑝+,[,h

S,T,ga.¹
R∈S[∈$+∈|

≤ ℎ								∀	𝑡 ∈ 𝑇																																																																									(4.11) 

zz𝑥+,`,h
YZ[,`,d 𝑝+,`,h

YZ[,`,d¹
`∈%+∈|

≤ ℎ								∀	𝑡 ∈ 𝑇																																																																																							(4.12) 

 

In each period, the amount of each log type 𝑙 produced equals the available amount in that 

unit if the unit is harvested by any system (Eq. (4.13)). Logging residues comminuted or burnt at 

a unit equals the available residues on-site after accounting for the decay since the time of harvest 

(Eqs. (4.14-4.15)). The produced pellet amount is equal to residue comminution amount from all 

methods multiply by the recovery ratio (Eq. (4.16)). For any unit, biomass decay amount equals  

the total biomass amount from period 1 subtracting any utilized log amount, utilized residue 

amount, and burn residue amount throughout all periods (Eq. (4.17)). In other words, biomass 

decay amount at a unit includes unharvested trees, biomass decay prior to harvest, residue decay 

if LS is applied, and residue decay between the times of harvest and residue comminution or 

burning. 

𝑥+,R,h
S,T =z𝑦+,[,hga. ∗ 𝑚+,R,h

S,T

[∈$

								∀	𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇																																																																												(4.13) 
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 Finally, there are non-negativity constraints and variable type constraints for all continuous 

and binary variables (Eqs. (4.18-4.19)). 

𝑥+,R,h
S,T, 𝑥+,`,h

YZ[,`,d, 𝑥+,h
YZ[,*-./, 𝑥+

x+,,_Z`ab, 𝑥h�ZR ∈ 𝑅�								∀	𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇																								(4.18) 
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𝑦+,[,hga., 𝑦+,h´,`,h
`,d , 𝑦+,h´,h

*-./, 𝑧`,h`,d ∈ 	 {0, 1}								∀	𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑡� ∈ 𝑇																																	(4.19) 

 

Four test cases of this forest supply chain MOP were analyzed which represent 

management at different spatial and temporal scales, where 60, 180, 300, and 627 harvest units 

were managed over 1, 3, 5, and 10 periods (Figure 4.3). The number of total periods available in 

each case was determined by estimating the total scheduled machine hours needed if all units were 

harvested by the most time-consuming harvesting system. The four cases include a total amount 

of 12,935, 54,251, 102,998, and 203,665 odt of timber and 2,349, 9,390, 17,606, and 34,684 odt 

of biomass residues in the beginning period, respectively. In each case, it was assumed that there 

was only one timber buyer and one pellet producer, and the potential biomass flow between the 

two buyers was not considered. 

 

 
Figure 4.3 Forest supply chain multi-objective optimization problem with (a) 60 units (Unit 1-60) 
and 1 period (b) 180 units (Unit 1-180) and 3 periods (c) 300 units (Unit 1-300) and 5 periods (d) 
627 units and 10 periods (Unit 1-627). 

 

According to our model formulation, in general, a test case includes (|𝑆| + |𝐶| + 1) ×

|𝐼| × |𝑇|  binary variables, º(|𝐿| + |𝐶| + 1) × |𝐼| × |𝑇| + |𝐼| + |𝑇|»  continuous variables, and 

º(|𝐿| + |𝐶| + 1) × |𝐼| × |𝑇| + |𝐶| × |𝑇| + 4|𝐼| + 3|𝑇|»  constraints, where |𝑆|, |𝐶|, |𝐿| , |𝐼|, |𝑇| 
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are numbers of harvesting systems, comminution systems, log product types, harvesting units, and 

time periods, respectively. If a unit is harvested, combining harvesting systems and residue 

comminution/burning, there are (|𝑆| + 1) operational alternatives since residues from the WT 

system can either be ground or burnt. Because harvesting operations can occur in any period and 

residue comminution or burning must be conducted in the same or later periods, the number of 

operational alternatives is (|𝑆| + 1) × (|w|�¶)×|w|
m

. Alternatively, a unit may not be harvested at all 

and there is no residue treatment for the unit. As a result, the total number of combinations in a 

test case is ¼(|𝑆| + 1) × (|w|�¶)×|w|
m

+ 1½
|||

. Given the increased numbers of units and periods, the 

complexity in solving test case from (a) to (d) increases exponentially due to the combinatorial 

optimization nature of this test problem (Table 4.2). 

 

Table 4.2 Numbers of binary variables, continuous variables, constraints, and combinations in 
each test case of the forest supply chain multi-objective optimization test problems. 

Test case (unit, period) Number of binary 

variables 

Number of continuous 

variables 

Number of 

constraints 

Number of 

combinations 

(a) 60, 1 360 421 605 530 

(b) 180, 3 3,240 3,423 3,975 25180 

(c) 300, 5 9,000 9,305 10,225 61300 

(d) 627, 10 37,620 38,257 40,178 221627 

 

4.3.3 Setting parameters 

 MRRT requires values for the allowed disimprovement proportion 𝛿, the record size 𝑛, and 

the terminating iteration 𝐼𝑇𝐸𝑅. 𝛿 sets the threshold for acceptance of disimproving moves when 

conducting random search around a local solution. 𝑛 determines the number of local and global 

records, which are spread across the entire search space. These two parameters control the extent 

of exploration locally and across the solution ranges, respectively. By comparison, 𝐼𝑇𝐸𝑅 does not 

affect the search or record updating procedures but determines the amount of computation allowed 

for MRRT when solving a problem. It thus controls the extent of exploitation of the entire search 

process. When setting parameter values, 𝛿 should allow enough deviation from the local optima 

but constrain the limit within a reasonable range so that the local search is not trapped at the local 

optima or wandering too far away. 𝑛 should ensure the coverage of the full search space while 



94 
 

 

keeping solutions well-spaced so that each local search is efficient and does not largely overlap. 

𝐼𝑇𝐸𝑅 should be determined to give the algorithm enough time to find a high-quality solution set 

that does not improve frequently. Based on initial runs, 𝛿 and 𝑛 were set to be 0.05 and 100, 

respectively, in all test cases while 𝐼𝑇𝐸𝑅 was set to 104, 5×104, 2×106, and 5×106 in test cases (a) 

through (d), respectively. The MRRT algorithm was implemented in Python 2.7 on a computer 

with a 3.40 GHz processor and 16 GB memory.  

 

4.3.4 Model verification and performance evaluation 

 To evaluate the performance of MRRT and verify the results, we solved the MOPs via the 

augmented 𝜀-constraint method (Mavrotas 2009) and obtained the actual Pareto front in each test 

case. During the iterative solving process, the economic objective was used as the objective 

function and the environmental objective was used as the additional constraint, where in each 

iteration, the right-hand side was changed with a user-specified step-size of 𝜀 value. The multi-

objective optimization model was formulated in Python 2.7 and solved with the MIP solver 

CPLEX 12.6.3 on the same computer. The default MIP terminating criteria in CPLEX (relative 

MIP gap 10-4) was used for test case (a) through (c), which means in each iteration, the MIP solver 

terminates the solving process and reports the best integer solution when the difference in objective 

functions between the best integer solution and the linear solution bound is less than or equal to 

10-4. However, due to overwhelming computation in case (d), the terminating relative MIP gap 

was increased to 10-2 to allow the feasibility of using the MIP solver. 

We compared nondominated solutions produced by MRRT against the Pareto fronts 

produced by MIP in each test case. When evaluating metaheuristic solutions, convergence towards 

the Pareto front and preservation of the solution set diversity are two important criteria, where the 

former affects solution quality in terms of dominance and the latter relates to the spread of solutions 

(Zitzler and Thiele 1999). Therefore, we used four solution quality indicators to quantitatively 

evaluate the performance of MRRT regarding to convergence and diversity. Because the economic 

and environmental objectives in our test problem are of different units and magnitudes, their values 

were normalized prior to calculating indicator values.  

• End-point distance. End-point distance (𝐸𝐷) shows the “coverage” of the entire Pareto optimal 

set by heuristic solutions. It is calculated as the Euclidean distances between the extreme points 
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of the actual Pareto front and the boundary solutions of the obtained heuristic solutions (Deb 

et al. 2002). 

• Generational Distance. Because metaheuristic solutions are approximations to the Pareto front, 

one of the most important evaluation criteria is the convergence to the actual Pareto optimal 

solutions (Veldhuizen and Lamont, 1998; Zitzler, 1999). We used generational distance (𝐺𝐷) 

(Veldhuizen and Lamont, 1998) to estimate the distance from heuristic solutions to the true 

Pareto front in each generation, which is defined in Eq. (4.20): 

𝐺𝐷 =
¿∑ 𝑑+mÁ

+Â¶

𝑁 																																																																																																																															(4.20) 

where 𝑑+ is the minimum Euclidean distance from the solution point 𝑖 to the actual Pareto front, 

indicating its “closeness” to convergence, and 𝑁 is the number of nondominated solutions 

obtained. 𝐺𝐷 = 0 indicates that all solutions are in the actual Pareto optimal solutions.  

• Inverted Generational Distance. We also used inverted generational distance (𝐼𝐺𝐷) (Coello 

and Cortés, 2005) which calculates the distance from each Pareto optimal solution to the 

nondominated solutions generated by MRRT (Eq. (4.21)). The purpose of 𝐼𝐺𝐷 is to reduce the 

potential problems with 𝐺𝐷 when very few nondominated solutions are generated by MRRT. 

𝐼𝐺𝐷 =
¿∑ 𝑑Ãm�

ÃÂ¶

𝑀 																																																																																																																													(4.21) 

where 𝑑Ã is the minimum Euclidean distance from the Pareto optimal solution j to the algorithm 

generated solutions and 𝑀 is the number of Pareto optimal solutions. A small 𝐼G𝐷 indicates 

good performance of the algorithm, and 𝐼G𝐷 = 0 means that all Pareto optimal solutions are 

included in the nondominated solution set. 

• Spacing. The spacing (𝑆𝑃) metric calculated with Eq. (4.22) evaluates the extent of uniform 

distribution of nondominated solutions (Schott 1995): 

𝑆𝑃 = Å
1

𝑁 − 1zº�̅� − 𝑑+»
m

Á

+Â¶

																																																																																																										(4.22) 

where 𝑑+ is the Manhattan distance between solution 𝑖 and its nearest neighbor, defined by Eq. 

(4.23): 
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𝑑+ = 𝑚𝑖𝑛Ã∈Ç∧ÃÉ+ zÊ𝑓j+ − 𝑓j
ÃÊ

�

jÂ¶

																																																																																																						(4.23) 

where 𝐾 is the number of objectives, 𝑓j+ is the value of objective 𝑘 of solution 𝑖, and 𝑄 is the 

nondominated solution set. �̅�  denotes the average of the 𝑑+  distances and 𝑆𝑃  denotes the 

standard deviation of 𝑑+ in set 𝑄. A smaller 𝑆𝑃 value represents a better distribution of the 

solutions in terms of uniformity and a null value indicates that all solutions are equidistant. 

 

4.4 Results 

 The MRRT was able to find feasible solutions for all four test cases of the forest supply 

chain MOP. The MIP solver was run to optimality for all test cases, but with a greater relative MIP 

gap (10-2) than default (10-4) in the 627-unit, 10-period test case. In each test case, a set of 100 

nondominated solutions were generated by either approach, where MRRT reported the global 

record set when terminating algorithm running while MIP solved the single-objective (economic 

objective) optimization problem for 100 times with stepwise-increasing 𝜀-constraint (transformed 

from the environmental objective).  

 

Table 4.3 Comparisons on end points produced by MRRT and MIP in four test cases. 
Case (unit, period) Scenario MRRT MIP Difference* ED 

(a) 60, 1 𝑀𝑎𝑥	𝑁𝑅 (4.62e4, 8.89e5)† (4.62e4, 8.89e5) 0 0 

 𝑀𝑎𝑥	𝑁𝑆 (-2.42e5, 1.41e7) (-2.42e5, 1.41e7) 0 0 

(b) 180, 3 𝑀𝑎𝑥	𝑁𝑅 (2.73e5, 2.88e7) (2.75e5, 2.39e7) 1.0% 0.024 

 𝑀𝑎𝑥	𝑁𝑆 (-2.52e5, 6.22e7) (-2.39e5, 6.23e7) 0.2% 0.024 

(c) 300, 5 𝑀𝑎𝑥	𝑁𝑅 (6.39e5, 5.90e7) (6.47e5, 5.65e7) 1.2% 0.042 

 𝑀𝑎𝑥	𝑁𝑆 (-9.47e4, 1.17e8) (-1.58e5, 1.18e8) 0.3% 0.079 

(d) 627, 10 𝑀𝑎𝑥	𝑁𝑅 (9.79e5, 6.27e7) (1.00e6, 6.32e7) 2.0% 0.014 

 𝑀𝑎𝑥	𝑁𝑆 (-4.97e5, 2.17e8) (-5.26e5, 2.19e8) 1.1% 0.022 
* Difference of the maximized objective function values between MRRT and MIP. 
† The values in the pair are values of 𝑁𝑅 and 𝑁𝑆, of which measuring units are dollars and kg CO2-eq, respectively. 
The expression “e n” is equivalent to “×10n” (e.g.,4.62e4 is equivalent to 4.62×104). 
 

 Objective function values of end points from the two approaches are compared to show the 

coverage of MRRT nondominated solution set on the Pareto front produced by MIP (Table 4.3). 

For 60-unit, 1-period test case, MRRT and MIP report the same solutions as end points, where the 
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maximum net revenue is $4.6×104 and the maximum net GHG emission saving is 8.9×105 kg CO2-

eq. The difference in the target objective function value is 0 in both scenarios. EDs are also both 

0 because the two end points of MRRT and MIP overlap (Figure 4.4a). For other test cases, the 

target objective function values from MRRT are very close to those from MIP, with the largest 

difference to be 2.0% from the maximum NR scenario in the 627-unit, 10-period test case. EDs 

are also very small in most scenarios, with the only exception being 0.079 from the maximum NS 

scenario in the 300-unit, 5-period test case. Although the difference in NS (i.e., the target objective 

function) is only 0.3%, the disparate NR ($-9.47×104 vs. $-1.58×105) of MRRT and MIP leads to 

a relatively large ED. Nevertheless, the approximation to end points appear to be satisfactory in 

these test cases (Figure 4.4b-4.4d) 
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Figure 4.4 Comparisons on nondominated solutions from MRRT and Pareto fronts from MIP in 
test case (units, periods) (a) 60, 1 (b) 180, 3 (c) 300, 5 (d) 627, 10 for the forest supply chain MOP. 
 

 Not only are end points, the entire nondominated solution sets from MRRT generally very 

close to Pareto fronts from MIP in all test cases (Figure 4.4). For quantitative indicators of solution 

quality (Table 4.4), nondominated solution sets from MRRT have the greatest GD in the 300-unit, 

5-period test case and the greatest IGD in the 627-unit, 10-period test case. This shows considering 

economic and environmental objectives simultaneously after normalization, the quadratic mean 

Euclidean distances are all within 3.2×10-3 when measuring MRRT solution sets to MIP Pareto 

fronts and are all within 2.3×10-3 when measuring MIP Pareto fronts to MRRT solution sets. The 

largest SP is 6.4×10-3 from the 180-unit, 3-period case and all SP values are fairly close to each 

other, which indicates nondominated solutions are very evenly distributed in all test cases. 
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Table 4.4 Performance matrix in each test case. 
 Performance matrix 

Test case (unit, period) GD IGD SP 

(a) 60, 1 1.5e-3 9.4e-4 5.4e-3 

(b) 180, 3 2.3e-3 1.2e-3 6.4e-3 

(c) 300, 5 3.2e-3 2.0e-3 3.7e-3 

(d) 627, 10 2.8e-3 2.3e-3 6.2e-3 

 

 Computation times taken by MRRT and MIP for test cases from (a) to (d) were 605 and 13 

seconds (s), 4.5×103 and 1.2×103 s, 7.8×103 and 1.9×105 s, 4.7×104 and 5.5×105 s, respectively. As 

the MOP involves more units and periods, computation time of both approaches increases 

significantly (Figure 4.5). For MRRT, its computation time increased because the terminating 

iteration was increased to allow enough time for convergence. For MIP, as problem size increased, 

it became more difficult to implement “branch and bound” and “brand and cut” to solve the MIP 

problem in each iteration, resulting in higher computation time. 

 

 
Figure 4.5 Computation time taken by MRRT and MIP to solve each test case of the forest supply 
chain multiple-objective optimization problem. For the MIP approach, a terminating MIP gap of 
10-4 was used in test cases (a) through (c), whereas a gap of 10-2 was used in test case (d). 
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4.5 Discussion 

 In all cases, nondominated solutions from MRRT converged to Pareto fronts from MIP 

satisfactorily (Figure 4.4) with very small GD and IGD values (Table 4.4). As the MOP increased 

in size, MRRT was able to maintain solution quality at the similar level (i.e., similar GD and IGD 

values compared to smaller MOPs) given more iterations allowed for the algorithm to solve the 

problem. However, it was more difficult to cover the entire Pareto front, indicated by the increased 

difference in the target objective function value between MRRT and MIP (Table 4.3). MRRT 

nondominated solutions also become more sparse approaching to the end points as the problem 

size increases from test case (a) to (d) (Figure 4.4). 

 Solution distribution appears to be more uniform in MRRT nondominated solutions 

compared to MIP Pareto fronts (Figure 4.4). The augmented 𝜀-constraint method implements a 

step-wise increment in the additional 𝜀-constraint, leading to an approximately equal distance in 

the environmental objective between two consecutive final solutions. However, as the trade-off 

between the two objectives is more imbalanced while approaching to end points, the compromise 

made in the economic objective increases substantially when the environmental objective 

approaches to its maximum value. As a result, the Hamilton distance between two consecutive 

solutions also increases (Figure 4.4). In test cases from (a) to (d), SP of Pareto fronts from MIP 

are 1.8×10-2, 2.5×10-2, 2.9×10-2, and 2.4×10-2, respectively, which are significantly greater than 

those of MRRT solutions (Table 4.4). 

In terms of computation times, the MIP approach solved the MOP faster when the problem 

size was small (i.e., test cases (a) and (b)) while MRRT were more efficient for large test cases 

(i.e., test cases (c) and (d)) (Figure 4.5). Although both approaches took longer time to solve the 

MOP as the problem size increased, the trend was much more dramatic for MIP. Moreover, it was 

time prohibitive to use the MIP solver with the default optimality MIP gap to generate the Pareto 

front in the 627-unit, 10-period test case because it took more than 10 h to produce one solution 

and the computation time kept increasing over iterations as the solving process continued. Even 

after relaxing the optimality MIP gap to 10-2, it still took the MIP solver more than 151 h to 

complete the solving process.  

 Relaxing the terminating criteria (i.e., increasing the relative MIP gap) reduces 

computation time required by MIP to claim optimality when evaluating a solution, as the situation 

in our 627-unit, 10-period test case. However, it does not ensure computation time will be reduced 
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to acceptable range or guarantee the quality of the final outputs. We examined the MIP approach 

with two new relative MIP gaps on the 300-unit, 5-period test case and contrasted outputs to 

previous MIP (with default relative MIP gap of 10-4) and MRRT outputs. With a relative MIP gap 

of 10-2, the MIP nondominated solutions are more converged to the Pareto fronts (i.e., MIP output 

solution with a relative MIP gap of 10-4) than those from the MRRT approach (Figure 4.6). 

However, it still took 23 h for the MIP solver to produce this solution set, which was much longer 

than using the MRRT approach. Further increasing the gap to 5×10-2 dramatically reduced 

computation time to 13 min, but the solution quality also significantly deteriorates and becomes 

inferior to that of MRRT nondominated solutions in both convergence and spread (Figure 4.6). 

Therefore, it is thought that MRRT can serve as a useful approach considering the trade-offs 

between computation time and solution quality in this test case. 

 

 
Figure 4.6 Comparisons on nondominated solutions from MIP with different terminating criteria 
(relative MIP gaps of 10-4, 10-2, and 5×10-2) and MRRT in the 300-unit, 5-period forest supply 
chain MOP test case. 

 

 As in any metaheuristic methods, parameter values in MRRT have significant influences 

on the final outputs. With a population size of 100, a greater terminating criterion 𝐼𝑇𝐸𝑅 prolongs 

the solution process, which in turn the convergence to the Pareto front improves in all 𝛿 values 

(Figure 4.7a). This improvement flattens out as the solution process continues because it is 
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increasingly difficult to find better solutions. For random search around local records, if the 

allowed disimprovment proportion 𝛿  is too small, the search is trapped at local optimum and 

cannot explore larger space for better solutions. On the other hand, if 𝛿  is too big, too many 

disimproving moves are accepted and the search is not focused or intensive enough to discover 

better solutions (Figure 4.7a). As for population size 𝑛, a greater population segments the search 

space into more pieces so that exploration is more exhaustive and output solution quality is higher 

(Figure 4.7b). However, this also means there are more local records performing local search and 

more comparisons on the global record set, leading to more computation in each iteration and 

longer computation time to complete the solution process. To complete 10,000 iterations, MRRT 

with population size of 50, 100, 150, and 200 took 1 h 8 min, 2 h 9 min, 3 h 20 min, and 4 h 25 

min, respectively. It is critical, when setting MRRT parameter values, to balance search intensity, 

computation complexity and desired convergence to the Pareto front to achieve satisfactory 

solutions in a reasonable time. 

 

 
Figure 4.7 Effects of (a) allowed disimprovement proportion 𝛿 and terminating criteria 𝐼𝑇𝐸𝑅 and 
(b) population size 𝑛 on the GD value of MRRT nondominated solutions to in the 300-unit, 5-
period test case. 

 

4.6 Conclusion 

This study proposes a new multi-objective metaheuristics named Multi-objective Record-

to-Record Travel (MRRT) as an optimization technique in forest supply chain management with 

multiple objectives. The ability to efficiently produce nondominated solutions may assist decision 

makers’ comprehensive understanding of trade-offs among various objectives at the planning stage, 
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especially when the problem size is large and using exact methods is prohibitive due to excessive 

computation burden. 

Through testing on four cases of a forest supply chain multi-unit, multi-period, multi-

objective optimization problem, we showed that MRRT performed satisfactorily in approximating 

the true Pareto fronts within a reasonable computation time. Not only the distances between MRRT 

nondominated solutions and MIP Pareto fronts were small, the coverage on the ranges of Pareto 

fronts was also complete. The distribution of solutions was more uniform in the MRRT 

nondominated solution sets than those from MIP with very small variance on the distance between 

two consecutive solutions.  

 MRRT has a simpler algorithm structure than most existing MOMHs that involve many 

sub-processes and parameters. This reduces algorithm computation complexity during the solution 

process and increases the speed of the algorithm. MRRT requires only three user-defined 

parameters: allowed disimprovement proportion 𝛿, record size 𝑛, and terminating iteration 𝐼daÌ. 

This simplicity eases the parameterization process and makes MRRT adaptable for solving various 

MOPs. 

Future work could incorporate temporal and spatial limitations of forest management 

problems, such as seasonal restrictions on harvesting and access, in order to improve the validity 

and practicality of the model solutions. Such restrictions increase problem complexity even further 

with additional constraints. In addition, responding to increasing demand for sustainable forest 

management entails consideration of multiple management objectives for management activity 

scheduling and decision-making. Metaheuristic approaches, such as MRRT, could provide an 

advantage of efficiency and simplicity over the exact methods, but potentially at the expense of 

solution quality.  

 

 

 

 



 

 

 

 

 

 

  
General Conclusion 

 

 

 

Mountain pine beetle infested forests in the Rocky Mountain region represent a vast forest resource 

that is wasted if not utilized in a timely and efficient manner. Due to high operation costs and low 

product values, sound supply chain planning is of critical importance to the success of forest 

salvage utilization. To achieve this goal, following issues are identified and need to be solved. 

Knowledge gaps and operational uncertainties obscure the understanding of timber harvest in 

beetle attacked stands and impede forest salvage operations; lack of cooperation among 

stakeholders in the supply chain can constrain forest salvage utilization but the potential benefits 

of cooperation are unknown; the combinatorial nature of supply chain optimization makes any 

solution approach to multi-period, multi-unit, multi-product, multi-objective management 

problems analytically and computationally challenging. 

 In this dissertation, we applied simulation and optimization techniques of operations 

research to tackle the abovementioned issues in three studies. We believe our work can provide a 

set of useful analytical tools for the management of beetle kill forests and post-outbreak forest 

salvage utilization. We also hope our work offers novel approaches to solving various challenging 

forest management problems for future researchers and practitioners. We will conclude this 

dissertation by providing a summary of contributions and recommendations for future work. 
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5.1 Summary of contributions 

Chapter 2 presents a comparison of time study and discrete-event simulation (DES) approaches in 

modeling a ground-based timber harvesting system. With the ability to account for variations of 

operations in both model inputs and outputs, DES is shown to be a more appropriate method for 

analyzing complex systems especially where multiple machine processes interact. We provided 

detailed steps in building DES models, conducting sensitivity analysis, and integrating previously 

collected data to evaluate alternative systems. This study demonstrates the applicability of DES in 

modeling forest production systems and offers a reference of model construction for future studies. 

 In Chapter 3, we investigated achievable net revenues and net greenhouse gas (GHG) 

emission savings from salvage harvesting of beetle-killed forests, and presented trade-offs between 

these two performances via bi-objective optimization. This study shows cooperation between the 

timber and bioenergy producers, through joining the management for timber and bioenergy 

production, can promote efficient use of logging residues and enhance the economic feasibility of 

forest salvage utilization, while simultaneously increasing GHG emission savings. The main 

contribution of this Chapter is to demonstrate and quantify the potential benefits of the integrated 

timber and biomass harvest operations from the economic and environmental perspectives. 

 Chapter 4 devoted to a new multi-objective metaheuristic, referred to as Multi-objective 

Record-to-Record Travel (MRRT), that was developed to solve large multi-objective 

combinatorial optimization problems for forest supply chain management. Requiring only three 

user-determined parameters, MRRT performs well in approximating actual Pareto fronts produced 

by the mixed integer programming method, and shows computational advantages when solving 

large-scale problems. The proposed method adds to the existing body of literature by offering a 

new, efficient metaheuristic approach for multi-objective optimization problems with promising 

adaptability and flexibility for various problems. 

 

5.2 Future work 

Sustainable forest management and supply chain planning is complex and involves many decisions. 

Operations research has provided optimization models and algorithms that lead to efficient 

solutions for the complex forest planning problems, and its development and applications keep 

evolving and expanding as forestry problems become larger and more complex with more 

objectives and constraints to consider. Below we present our suggestions for future development 
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and applications of operations research methods for forest and supply chain management planning 

problems. 

• Operations research models are usually built on well-defined problem boundaries and 

assumptions. However, it is a challenging task to clearly define problems in natural resources 

management planning due to the complex nature of the problem and its far-reaching influences 

on economic, environmental and social outcomes. Models can be practically useful only if they 

reflect reality. Strong collaboration between researchers and practitioners should be pursued 

in the future work in order to precisely identify and represent real world problems in 

mathematical terms.  

• The success of simulation and optimization modeling highly depends on data availability. 

However, it is often the case that sufficient data are not readily available in forest operations 

and management. Combining modern data acquisition technology and methods (e.g., auto-

video recording, GPS tracking, and sensors) with operations research models should be 

considered for future work. 

• Even though operations research models could be useful in assisting with decision making, 

they often require specially trained personnel to formulate problems and process the data. 

Future work may include development of easy-to-use decision support tools to improve the 

usability of simulation and optimization models.  

• In Chapter 2, discrete-event simulation modeled individual machine processes (e.g., skidder 

traveling speed, delimber tree-processing time) using probability distributions. Future study 

should collect and analyze long-term machine data to characterize machine performance 

specific to work conditions. This work will help develop and choose the right probability 

distribution for individual machines that can better represent site-specific work conditions.   

• A new multi-objective metaheuristics was developed and tested against the mixed-integer 

programming approach on a forest supply chain bi-objective optimization problem in Chapter 

4. To more rigorously evaluate the algorithm’s performance, it is necessary to examine it on 

benchmark problems, compare it against other existing algorithms. Future work should also 

apply and test the algorithm for problems with more than two objectives. 

• We used deterministic optimization in Chapters 3 and 4. To account for uncertainties in real-

world applications, a probabilistic programming approach may be used to generate more 

comprehensive results and provide solutions tailored to the interest of decision-makers (e.g., 
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aggressive revenue-seeking VS. risk-averse). The problem is likely to become more 

complicated and high performance solution algorithms would be needed. 

• We presented the potential benefits of integrated decision-making on both timber and 

bioenergy production in Chapter 3. In practice, forest supply chains consist of many more 

stakeholders including landowner, logging contractor, mill, bioenergy facility, forest product 

and biomass market, local community, etc. It would be beneficial to understand the effects of 

cooperative and non-cooperative behaviors among stakeholders. Future study may use game 

theory to investigate and compare cooperative and non-cooperative decision-making in forest 

supply chain management. 
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Appendix A 
 

 

 

Table A.1 Measuring units and abbreviations. 
Unit Abbreviation 

Mile mi 

Kilometer km 

Kilogram kg 

Pound lb 

US short ton ton 

Metric tonne t 

Oven dry metric tonne* odt 

Liter L 

Gallon gal 

Joule J 

Megajoule MJ 

Gigajoule GJ 

Kilowatt hour kWh 

Megawatt hour MWh 

Thousand board feet MBF 

Carbon dioxide equivalent CO2-eq 

* Oven dry metric tonne has zero percent moisture content 
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Table A.2 Material moisture content (wet basis). 
Material Moisture content (%) Assumptions and references 

Timber products* 32.4 (Han et al. 2018) 

Logging residues 32.4 (Han et al. 2018) 

Hog fuel 32.4 (Han et al. 2018) 

Pellet 11.8 (Lehtikangas 2001) 

Biochar 5.0 (Denyes et al. 2014) 
* Timber products includes saw logs, post and pole logs, and firewood logs 

 

Table A.3 Recovery ratio of products from raw materials. 
Raw material Product Recovery ratio Assumptions and references 

Saw logs Lumber 0.46 (Keegan III et al. 2010) 

 Wood chips for pellets 0.3  

 Wood used for energy 0.24  

Post and pole logs Pole 0.877 (Morgan et al. 2005) 

 Hog fuel 0.123  

Firewood logs Firewood 1.0 Oregon Department of Forestry* 

Low-quality feedstock Hog fuel 1.0 Assumed 

High-quality feedstock Pellet 0.845 (Katers et al. 2012) 

 Wood used for energy 0.155  

High-quality feedstock Biochar 0.155 (Bergman et al. 2017) 

 Syngas 0.732  
* Oregon Department of Forestry: Eastern Oregon Small Diameter Wood Study 

 

Table A.4 Fuel higher heating values (HHV) during combustion. 
Material HHV Assumptions and references 

Coal 24.6 GJ/t (Loeffler and Anderson 2014) 

Natural gas 47.1 GJ/t The Hydrogen Analysis Resource Center (HyARC)* 

Firewood 16 GJ/odt World Nuclear Association† 

Hog fuel 16.47 GJ/odt HyARC 

Pellet 20.78 GJ/odt (Lehtikangas 2001) 

Syngas 18.06 GJ/t (Bergman et al. 2017) 

* HyARC Calculator Tools. Lower and Higher Heating Values of Fuels: http://hydrogen.pnl.gov/tools/lower-and-
higher-heating-values-fuels, accessed on 4/11/2019. 
† World Nuclear Association: Heat Values of Various Fuels: http://www.world-nuclear.org/information-
library/facts-and-figures/heat-values-of-various-fuels.aspx, accessed on 4/11/2019. 
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Table A.5 Cost generated per unit processes. 
Unit process Cost Assumptions and references 

Timber harvesting   

Administration 494.21 $/ha Sale preparation, environmental analysis, and harvest monitoring 

costs at 200 $/acre (Abt et al. 2011) 

Salvage harvest 21.51~122.66 $/odt Harvesting costs for each system at each harvest unit are 

estimated based on She et al. (2018). 

Residue treatment   

Chipping 18.14 $/odt A mobile chipper chips logging residues with a cost at 12.26 $/t 

(Jernigan et al. 2013). 

Grinding 22.81 $/odt A grinder grinds logging residues with a cost at 15.42 $/t (Dukes 

et al. 2013). 

Grinding w/ screening 48.45 $/odt A grinder grind logging residues followed by a screening process 

with a cost at 32.24 $/t (Dukes et al. 2013). 

Burn 200 $/ha On-site pile-burning logging residues (Rummer et al. 2005) 

Transportation   

Timber products* 0.173 $/odt*km For log trucks with a net payload of 58,835 lbs, (one-way) 

transportation cost is $2.52/mi (Mason et al. 2008).   

Residue 0.204 $/odt*km For chip van with a net payload of 22.7 t, (two-way) 

transportation cost is $0.204/km (Beck and Sessions 2013).   

Biochar 0.098 $/odt*km For biochar two-way transportation, cost is $0.15/t*mi (Qian and 

McDow 2013). 

Manufacturing   

Biochar & Syngas 2,991.70 $/odt Cost based on biochar output weight. Biochar production cost of 

390.54 $/t (feedstock weight) with feedstock moisture content at 

15.78% (Kim et al. 2014).  

* Timber products includes saw logs, post and pole logs, and firewood logs 
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Table A.6 Greenhouse gas (GHG) emissions generated per unit process. 
Unit process GHG emissions Assumptions and references 

Supporting unit processes 

Diesel consumption 3.32 kg CO2-eq/L Diesel production, transport, and refining: 0.73 kg CO2-eq/kg, 

or 0.62 kg CO2-eq/L. Diesel internal combustion in engine: 

10.21 kg CO2-eq/gal, or 2.70 kg CO2-eq/L (National Energy 

Technology Laboratory (NETL))*. 

Coal combustion 306.39 kg CO2-eq/GJ GHG emission of 1,103 g CO2-eq/kWh is produced when 

generating electricity from coal fired power plants (U.S. 

Energy Information Administration (EIA))†. 

Natural gas heating 78 kg CO2-eq/GJ GHG emission of 0.078 kg CO2-eq/MJ is produced when using 

natural gas for residential heating (Katers et al. 2012). 

Colorado grid mix 0.71 kg CO2-eq/kWh GHG emission of 1,571 lbs CO2-eq/MWh is produced on 

average for electricity generation in Colorado (EIA)ǂ.  

Timber harvesting   

Salvage harvest 9.74~55.90 CO2-eq/odt Harvesting GHG emissions for each system at each harvest unit 

are estimated based on She et al. (2018). 

Residue treatment   

Chipping 12.14 kg CO2-eq/odt A chipper chips logging residues with diesel consumption at 

3.66 L/odt (Spinelli et al. 2011). 

Grinding 16.19 kg CO2-eq/odt A grinder grinds logging residues with diesel consumption at 

3.3 L/t (Dukes et al. 2013). 

Grinding w/ screening 35.81 kg CO2-eq/odt A grinder grinds logging residues followed by a screening 

process with diesel consumption at 7.3 L/t (Dukes et al. 2013). 

Burn 1740 kg CO2-eq/odt On-site pile-burning logging residues (Lee et al. 2011). 

Decay 1580 kg CO2-eq/odt Scattered residue decay on forest floor (Lee et al. 2011). 

Transportation 

Timber products 0.170 kg CO2-eq/odt*km For log trucks with a net payload of 58,835 lbs, (one-way) 

transportation fuel economy is 5.1 mi/gal (Mason et al. 2008). 

Residue 0.219 kg CO2-eq/odt*km For chip van with a net payload of 22.7 t, (two-way) 

transportation fuel economy is 1.98 km/L (Loeffler and 

Anderson 2014). 

Pellet 0.115 kg CO2-eq/odt*km For pellet two-way transportation, fuel consumption is 0.013 

gal/t*mi (Qian and McDow 2013).  

Biochar 0.107 kg CO2-eq/odt*km For biochar two-way transportation, fuel consumption is 0.013 

gal/t*mi (Qian and McDow 2013). 

Manufacturing 
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Lumber 1610.46 kg CO2-eq/odt 12.32 lb CO2-eq emission when producing one piece 2×4 

lumber stud (7.65 od lb) (Bergman et al. 2014) 

Pole 76.1 kg CO2-eq/odt 101 lb CO2-eq emission when producing 1,315 ob lb pole 

(Bergman et al. 2014) 

Pellet 397.44 kg CO2-eq/odt Gate-to-gate pellet manufacturing process (Katers et al. 2012). 

Biochar & Syngas 2974.18 kg CO2-eq/odt Emission based on biochar output weight. Gate-to-gate biochar 

manufacturing process through mobile pyrolysis. 

End use   

Firewood 1786.40 kg CO2-eq/odt Firewood burnt in a fireplace (77% energy efficiency to 

produce heat) emits 0.145 kg CO2-eq/MJ (Katers et al. 2012) 

Hog fuel combustion 1700.67 kg CO2-eq/odt Hog fuel combusted in boiler emits 1149.65 kg CO2-eq/t 

(Loeffler and Anderson 2014) 

Pellet combustion 1869.11 kg CO2-eq/odt Pellet burnt in a pellet stove (83% energy efficiency to produce 

heat) emits 0.116 kg CO2-eq/MJ (Katers et al. 2012) 

Syngas combustion 1326.14 kg CO2-eq/odt Syngas burning emission (Gu and Bergman 2015) 

   

End use avoided emission 

Lumber 4091.50 kg CO2-eq/odt Substitute steel stud and store carbon, avoiding 31.3 lb CO2-eq 

per lumber stud (7.65 od lb) (Bergman et al. 2014) 

Pole 1946.01 kg CO2-eq/odt Store carbon, avoiding 2,559 lb CO2-eq per 1,315 ob lb pole 

(Bergman et al. 2014) 

Firewood 960.96 kg CO2-eq/odt Substitute natural gas for residential heating (77% energy 

efficiency to produce heat) (Katers et al. 2012) 

Hog fuel 1651.44 kg CO2-eq/odt Substitute coal for power generation (32.5% energy efficiency 

to produce electricity) (Loeffler and Anderson 2014) 

Pellet 1257.90 kg CO2-eq/odt Substitute natural gas for residential heating (83% energy 

efficiency to produce heat) (Katers et al. 2012) 

Syngas 1226.62 kg CO2-eq/odt Substitute state average electricity generation GHG emission 

(0.732 kg syngas generates 1.26 kWh) (Gu and Bergman 2015; 

Bergman et al. 2017) 

Biochar 2937.54 kg CO2-eq/odt 0.456 kg CO2-eq is sequestered by 0.155 kg biochar (Gu and 

Bergman 2015) 

* NETL unit process library https://www.netl.doe.gov/node/2573, accessed on 4/11/2019 
† EIA report https://www.eia.gov/conference/2015/pdf/presentations/skone.pdf 
ǂ EIA state electricity profile https://www.eia.gov/electricity/state/colorado/, accessed on 4/11/2019 
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Table A.7 Timber and bioenergy product unit revenue (based on input material weight). 
Product Revenue ($/odt) Assumptions and references 

Saw log 81.53  300 $/MBF* (Northwest Management, Inc†) 

Post and pole 58.70  36 $/ton (Oregon Department of Forestryǂ) 

Firewood 25.34  Lodgepole pine firewood worth $30/cord (Southern Maine 

Forestry Services, Inc§) and 1 cord weighs 2,610 od lb (Utah State 

University Forestry Extension£) 

Hog fuel 55.10  50 $/od ton (Kizha. et al. 2015) 

Pellet feedstock 70 .00 70 $/odt (Qian and McDow 2013) 

Biochar & Syngas 15.29 Pyrolysis output weight ratio of syngas to biochar is 82.5/17.5 (Gu 

and Bergman 2015). Cost saving of avoided natural gas usage 

(0.094 $/kWh) and biochar sale (2,512 $/t) (Campbell et al. 2018). 
* 1 MBF saw logs weigh 6 green ton. Mississippi State University Extension. Pine Timber Volume-to-Weight 
Conversions. https://extension.msstate.edu/sites/default/files/publications/publications/p2244_0.pdf 
† Northwest Management market report: http://northwestmanagement.com/log-market-report/, accessed on 
4/11/2019 
ǂ Oregon Department of Forestry: Eastern Oregon Small Diameter Wood Study 
§ Southern Maine Forestry Services, Inc: https://www.someforest.com/timber-market, accessed on 4/11/2019 
£ Utah State University Forestry Extension: http://forestry.usu.edu/forest-products/wood-heating, accessed on 
4/11/2019 

 

Table A.8 Timber and bioenergy product unit GHG savings (based on input material weight). 
Product GHG savings (kg CO2-eq/odt)* Assumptions and reference 

Saw log 1203.67 46% lumber, 30% pellet feedstock, 24% burn 

Post and pole 1640.64 87.7% pole, 12.3% burn 

Firewood 389.31 100% burn 

Hog fuel 1107.23 100% burn 

Pellet 203.17 84.5% pellet, 15.5% burn 

Biochar & syngas 956.29 15.5% biochar, 73.2% syngas 
* 1 kg biogenic carbon from burning has GHG potential equivalent to 0.32 kg fossil carbon (Liu et al. 2017) 

 

 


