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In four dimensions, two metrics that are conformally related define the same Hodge dual 
operator on the space of two-forms. The converse, namely, that two metrics that have the same 
Hodge dual are conformally related, is established. This is true for metrics of arbitrary 
(nondegenerate) signature. For Euclidean signature a stronger result, namely, that the 
conformal class of the metric is completely determined by choosing a dual operator on two­
forms satisfying certain conditions, is proved. 

I. INTRODUCTION 

Self-dual fields have played a major role in many of the 
recent developments in general relativity. Foremost among 
these is Penrose's twistor program (see, e.g., Refs. 1 and 2). 
Such fields seem to be fundamentally involved in attempts to 
quantize gravity (see, e.g. Ref. 3), notably Ashtekar's new 
variables (for a review see Ref. 4). The material discussed 
here was motivated by the attempts of one of us (JS) to 
better understand Ashtekar's new variables, but the presen­
tation is entirely self-contained. 

In four dimensions the Hodge dual operator on two­
forms is manifestly conformally invariant. Thus, if two met­
rics are conformally related, they have the same Hodge dual. 
We show that the converse is also true: Two metrics of arbi­
trary (nondegenerate) signature that have the same Hodge 
dual are conformally related. For Riemannian manifolds 
(signature + + + + ), we are able to establish a much 
stronger result: Any choice of a three-dimensional, positive­
definite subspace of the space of two-forms determines a 
dual operator, which in turn determines a conformal class of 
metrics whose Hodge dual agrees with the original choice. 
Thus there is a one--one correspondence between conformal 
classes of metrics and dual operators. 

Our presentation is organized as follows. After estab­
lishing the notation in Sec. II we show that the equality of 
Hodge duals implies that the metrics are conformally relat­
ed. In Sec. III we consider the Riemannian case and establish 
the stronger result described above. Finally, in Sec. IV we 
discuss our results. 

II. CONVERSE 

Let M be an oriented four-dimensional manifold with 
(nondegenerate) metric gab' The volume element (Levi-Ci­
vita tensor) is the four-form Eabed = E[abed I' which agrees 
with the orientation and whose nonzero components are 

aJ Permanent address: Department of Mathematics, Oregon State Universi­
ty. Corvallis. Oregon 97331. 

bJ Permanent address: Department of Mathematics. University of Poona. 
Pune 411007. India. 

cJ Present address: Department of Physics. University of Utah. Salt Lake 
City. Utah 84112. 

± Jjgf, whereg = det(gab)' Denote by A 2
, the space of two­

forms Fab = F[ab I on M. Then the Hodge dual operator *, 
defined by gab' is a map from A 2 

..... A 2 given by 

(*F)ab = !Eab edFed · (1) 

It is straightforward to check that 

gab = 11gab =:> * == *. (2) 

One also has 

**= ±/, (3) 

where / is the identity operator and 

(4) 

where the - sign holds for the Lorentzian signature 
[( - + + + ) or ( + - - - )] and the + sign holds 
for all other signatures. We are now ready to prove the con­
verse to (2). 

Theorem 1: Let gab and gab be (real, nondegenerate) 
metrics of arbitrary signature on a four-dimensional mani­
fold M, such that for all two-forms F on M, 

*F==*F. 

Then 
gab = ± 11gab , 

where 11 = IgIgI 1
/
4

• 

Proof: 
Step 1: Equation (1) implies 

which implies 

Ecd
mn = Ecd

mn
• 

But from the definition of the volume element, 

Contracting (8) with (7b), using (4), yields 

ga[egdlb = 11
2
ga[egdlb' 

(5) 

(6) 

(7a) 

(7b) 

(8) 

(9) 

Step 2: It is sufficient to establish (6) at each point pEM. 
Choose coordinates Xi on a neighborhood of p so that gij Ip is 
diagonal. Then 

giUgk II = 0, unless (i,k) = (j,/) 
or (i,j) = (k,i). (10) 
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In particular, (10) holds ifj, k, and I are all different. (Here 
and for the remainder of the proof, all quantities are to be 
evaluated at p. ) 

Using (9) and (10) we have 

(gugjj - it )ril = (gugkl) (gjjgkl) - (gijgkl) (gijglk) 

= (gikgi/) (gjkgjl) - (gikgjl) (gi/gjk ) 

= 0 (for E ijkl # 0) . (11) 

But since gugjj - kt #0 by assumption, one final use of (9) 
yields 

(12) 

so that gij is also diagonal at p. 

Step 3: Inserting the diagonality of both gij and gij into 
(9) yields 

h h c.2 !" • ...J. • 
gugjj = U giigjj' lor l-r'j, 

which implies the result (6). 

III. EUCLIDEAN SIGNATURE 

(13) 

Q.E.D. 

We now turn to the special case of an oriented Rieman­
nian manifold [signature ( + + + + ) or ( - - - - )] 
with volume element Eabcd' First we need some results about 
the vector space A; of two-forms at a point pEA/. 

There is a natural product (symmetric bilinear form) on 
A2

, given by the wedge product offorms, namely, 

(Fab,Gcd ) = ~bcdFabGcd' 

or equivalently 

(F,G)E = FI\G, 

where ~bcd = Elabcd I is defined by 

Eabcd~bcd = 4! . 

(14a) 

(14b) 

(15) 

Note that the metric has not been used in defining (14) 
and that the inner product is not positive definite. If one 
chooses a basis a i of the space A! of one-forms at p, then the 
independent a i 1\ d form a basis for A;. In four dimensions 
there are six such two-forms, so dim A; = 6. Furthermore, 
by choosing appropriate linear combinations, one easily sees 
that the signature of the wedge product (14) on A; is 
(+ + + - - -). 

Lemma 1: Given a vector space V with a symmetric 
bilinear form w: V X V ..... R and a subspace W + C V, such that 
( W +, w) is an inner product space (i.e., wi w + is positive 
definite), there exists an operator #: V ..... V, such that 

V=W+ffiW-, 

with 

(16a) 

(16b) 

Proof Pick an orthonormal basis Wi of W +. Then the 
projection operator P from V to W + is given by 

P: V ..... W+, 

V ~ (v,w,)wi • (17) 

Define # by 

#v= 2Pu- v. (18) 
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Then 

P=!(I+#), (19) 

and the result follows. Q.E.D. 
Corollary: It is an immediate consequence of ( 18) that 

## =1. (20) 

Furthermore, since (I + #) (1- #) = 0, we have 

(w+,w-) = 0, 'VW±EW ±, (21a) 

or equivalently 

(2Ib) 

Let TpM denote the tangent space to M at p and for 
TETpM let Ker( T) = {aEA!: a( n: = aa ra = O} denote 
the kernel. 

Lemma 2: Let A + be a three-dimensional subspace of 
A;, such that 

O#FEA + => F I\F #0. (22) 

Then for each vector TETpM, the map 

ifJT: A + ..... Ker T, 

(23) 

is an ismorphism. 
Proof Since dim(Ker n = 3 is suffices to show that ifJT 

is one-one, i.e., that F( T) = 0 implies F = O. But by choos­
ing a basis of Ker T and extending it to a basis a i of A! and 
then forming the associated basis of A;, one sees that 

F(n =0 => FI\F=O. (24) 

Using (22) now proves the assertion. Q.E.D. 
For the remainder ofthis section, we assume that A + is 

as in Lemma 2, and that the wedge product (14) is positive 
definite on A +. Using Lemma 1, this is equivalent to giving a 
dual operator # on A;; A + is the space of self-dual two­
forms, i.e., 

FEA + ¢:} #F= F. (25) 

We now show how to construct a conformal metric hI! 
from A +. Fix any 7]EA!. Then for any a,/3E A!, choose 
TEKer anKer /3nKer 7]. By Lemma 2, there exist unique 
Fa,Fp, F'I EA+, so that Fa(n =a, Fp(n =/3, and 
F'I (n = 7]. Define 

hI! (a,/3)lhl! (7],7]) = (Fa,Fp )/(F'I,F'I)' (26) 

This defines hI! up to the single choice of the scale hI! (7],7]), 
i.e., hI! is determined up to a conformal factor. 

We now establish that hI! is well defined, i.e., that the 
right-hand side of (26) is unchanged under the transforma­
tion T~ T' with both T,T'EKer anKer /3nKer 7]. This is 
obvious if T' is a multiple of T, so we will assume that T and 
T' are linearly independent. First we introduce some nota-
tion. 

Extend T and T' to a basis {eo = T,e, = T',e2,e3 } of 
TpM and let {wO,W

1
,W

2
,W

3
} be the dual basis of A!. Let F2, 

F3, F2', and F3' be the unique elements of A + obtained using 
Lemma 2 that satisfy 
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But since (27) implies 

Fz(T',n = 0 = Fz(T',T'), 

we have 

Fz(T') =A22W2 + A 23W3, 

(28) 

(29a) 

for some constantsA22 andA23 so that, again using Lemma 2, 

F2=Az2F2' +A23F3'· 

Similarly, 

(29b) 

F3=A32F2' +A33F3'. (29c) 

Since this argument can be reversed to express F2', and F3 ' in 
terms of Fz and F3, we must have 

(30) 

Now consider the transformation TpM -+ TpM, defined 
by 

(31a) 

where 

b: = tr A = A22 + A33, (31b) 

and c,d are constants to be determined. The induced trans­
formation on A! is 

Wo t---+ - (b I A )wo + WI - cwz - dw\ 

which we will also write as 

d t---+ B 5wj. 
Lemma 3: Let YEA! satisfy 

y(T) =O=y(T') 

and let F,F'EA + be determined by Lemma 2, so that 

F(T) = Y = F'(T'). 

(32a) 

(32b) 

(33) 

(34) 

Then (for an appropriate, y-independent choice of c,d), 

F'=B'FB, (35a) 

i.e., 

(35b) 

Proof One has immediately that 

B'FB(T') =B'F(n =B'y=y=F'(T). (36) 

In order to invoke Lemma 2 to conclude that (35) holds by 
uniqueness we must show that c,d can be chosen, so that 
B tFB is in A + . 

But since 

y=Y2W2 + Y3W3, 

we see that 

(37a) 

(37b) 

so that it is enough to show that B tF2B and B tF3B are in 
A +. Direct calculation using (29), (34), and (37) shows 
that the first of these reduces to a linear equation involving d 
only, while the second determines c. We note in passing that 
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(32) is not the only linear transformation that satisfies (35). 
Q.E.D. 

Lemma 4: h# is well-defined. 
Proof Assume, as above, that Tand T' are linearly inde­

pendent and let Fa', FI/, and F,.,' be the unique elements of 
A + determined by Lemma 2 which satisfy F/(T') = a, 
FI/C T ') = (J,F,.,'(T') = 1]. Then 

(Fa ',FP') = €"bcdFa 'ab F{3' cd 

_€"bcdF F Bm B n BP Bq - amn {3pq abc d 

=€mnpqFamnF{3pq (detB)f 

= (Fa ,F{3) C det B) J, 

where f is a constant that depends on the volume element. 
Therefore the two factors of C f det B) in the primed version 
of (26) cancel so (26) is independent of the choice of T. 

Theorem 2: Let * be the Hodge dual defined by the met­
ric gab' Then h. artd g are conformally related. 

Proof For F = *F, G = *G, we have 

(F,G): = €"bcdFab Gcd 

= 2FabC*G)ab = 2FobGab · 

But for any TETpM, we have 

Fam TmG anTn = !€ampqFpqTm€"nrsGrs Tn 

= ~!5lm "!5/!5q]sFpqGrsTmTn 

so that 

4Fam TmGa"Tn = FpqGpq TmTm, 

or in other words, 

g(Fcn,G(n} = (F,G)(gCT,n/8), 

so that 

g(F(n,G(n)lg(Hcn,Hcn) = (F,G)/(H,H). 

(38) 

(39) 

C40a) 

(40b) 

(41 ) 

Comparison with (26) shows that g is in the same conformal 
class as h. . Q.E.D. 

This shows that our definition (26) reproduces the giv­
en metric from its Hodge dual. We now show the converse. 

Theorem 3: Let h# be defined by (26) and denote its 
Hodge dual by •. Then. = #. 

Proof Choose an orthonormal (with respect to h# ) ba­
sis w a of A! satisfying 

(42) 

Let Fi, i = 1,2, 3, be the self-dual (with respect to #) two­
forms defined by FiCXO) = Wi, where Xa is the basis of TpM 
dual to w a

• Then, e.g., 

FI = WO I\wl + a(ll21\(ll3 + bwl l\w2 + cw3 l\w l, (43) 

with a > O,b,c, to be determined. But using the definition 
(26)~ we have 

(F i, Fi) = 8ij(F', FI), (44) 

which implies 
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p 2 = mO Am2 + am3 Ami + cm2 Am3 + dm l Am2, 

p 3 = mO A m3 + ami A m2 + dm3 Ami + bm2 A m3
• 

Repeating this procedure for XI' e.g., constructing 
GO(XI ) = mO, etc., and using the fact thatthepiform a basis 
for self-dual two-forms, yields a set of linear equations that 
can be solved to give 

b = c = O. 

Finally, using X 2 gives 

d = 0, a2 = 1, 

so that 

pi = mO A ml + m2 A m3, 

p 2 = mO Am2 + m3 Ami, 

p3 = mO Am3 + ml Am2. 

(45) 

(46) 

(47) 

But this is just the standard basis for self-dual two-forms 
with respect to *! Q.E.D. 

IV. DISCUSSION 

For Euclidean signature, let JI denote the manifold of 
classes of conformal metrics at a point pEM and JY denote 
the manifold of dual operators on A;. We have the following 
situation: 

A 
JI<=tJY, 

B 

where A takes a metric to its Hodge dual, and B is given by 
(26). Theorem 2 says that BoA = I, while Theorem 3 says 
that A 0 B = I. Thus both A and Bare one-one and onto, and 
are therefore isomorphisms. The manifold JI is nine-dimen­
sional (10 metric component~ - 1 constraint), and the 
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manifold JY:::::;SO(3,3)/[SO(3) + SO(3)], so dim JY 
= 15 - 6 = 9. 

All of our results have been obtained at a point pEM. 
Suitably smooth metric tensors and dual operators are ob­
tained by working throughout with suitably smooth tensor 
fields in a neighborhood of p. 

We believe that a result similar to Theorems 2 and 3 
holds for other signatures. However, our attempts to modify 
the argument in Sec. III have so far failed, primarily because 
of the failure of Lemma 2 if Tis null. In the Lorentzian case, 
one can define aEA! to be null if there exists a (real) two­
form P and a vector T such that 

F(n =a, ~W(n =0, PAP=O=PAf,P. (48) 

Although this definition is correct if f, is the Hodge dual of a 
Lorentzian metric, we have been unable to use it to actually 
construct a conformal metric. 
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