Duality and conformal structure

Tevian Dray?
Raman Research Institute, Bangalore 560080, India

and Department of Mathematics, Oregon State University, Corvallis, Oregon 97331

Ravi Kulkarni® and Joseph Samuel®
Raman Research Institute, Bangalore 560080, India

(Received 22 November 1988; accepted for publication 15 February 1989)

In four dimensions, two metrics that are conformally related define the same Hodge dual
operator on the space of two-forms. The converse, namely, that two metrics that have the same
Hodge dual are conformally related, is established. This is true for metrics of arbitrary
(nondegenerate) signature. For Euclidean signature a stronger result, namely, that the
conformal class of the metric is completely determined by choosing a dual operator on two-

forms satisfying certain conditions, is proved.

I. INTRODUCTION

Self-dual fields have played a major role in many of the
recent developments in general relativity. Foremost among
these is Penrose’s twistor program (see, e.g., Refs. 1 and 2).
Such fields seem to be fundamentally involved in attempts to
quantize gravity (see, e.g. Ref. 3), notably Ashtekar’s new
variables (for a review see Ref. 4). The material discussed
here was motivated by the attempts of one of us (JS) to
better understand Ashtekar’s new variables, but the presen-
tation is entirely self-contained.

In four dimensions the Hodge dual operator on two-
forms is manifestly conformally invariant. Thus, if two met-
rics are conformally related, they have the same Hodge dual.
We show that the converse is also true: Two metrics of arbi-
trary (nondegenerate) signature that have the same Hodge
dual are conformally related. For Riemannian manifolds
(signature + + + + ), we are able to establish a much
stronger result: Any choice of a three-dimensional, positive-
definite subspace of the space of two-forms determines a
dual operator, which in turn determines a conformal class of
metrics whose Hodge dual agrees with the original choice.
Thus there is a one—one correspondence between conformal
classes of metrics and dual operators.

Our presentation is organized as follows. After estab-
lishing the notation in Sec. II we show that the equality of
Hodge duals implies that the metrics are conformally relat-
ed. In Sec. III we consider the Riemannian case and establish
the stronger result described above. Finally, in Sec. IV we
discuss our results.

. CONVERSE

Let M be an oriented four-dimensional manifold with
(nondegenerate) metric g,,. The volume element (Levi-Ci-
vita tensor) is the four-form €,,., = €. » Which agrees
with the orientation and whose nonzero components are
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+ \/H ,whereg = det(g,, ). Denote by A?, the space of two-
forms F,, = F|,, , on M. Then the Hodge dual operator *,
defined by g, is a map from A% — A? given by

(*F) oo = 362 “F 4. (D
It is straightforward to check that

Bap = Qg > x=x. (2)
One also has

= 1], (3)
where / is the identity operator and

€atmn€ca’ = * 4ga[cgd]b’ (4)
where the — sign holds for the Lorentzian signature
[(=—+ 4+ +)or (+ — — —)] and the + sign holds

for all other signatures. We are now ready to prove the con-
verse to (2).

Theorem 1: Let g, and g, be (real, nondegenerate)
metrics of arbitrary signature on a four-dimensional mani-
fold M, such that for all two-forms F on M,

«F=x*F (3
Then

8 = + 08 (6)
where Q = |g/g|"/*.

Proof:

Step 1: Equation (1) implies

&, F,, =¢€,""F,,, VFeA? (7a)
which implies

€™ =€4"" (7b)
But from the definition of the volume element,

Eatmn = QL€ (8)
Contracting (8) with (7b), using (4), yields

ga[cgd]b = nga[cgd]b' 9

Step 2: 1t is sufficient to establish (6) at each point peM.
Choose coordinates x' on a neighborhood of p so that g | 18
diagonal. Then

8i;8xy1 =0, unless (i,k) = ()
or (i, )) = (kD). (10)
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In particular, (10) holds if j, k, and / are all different. {Here
and for the remainder of the proof, all quantities are to be
evaluated at p.)

Using (9) and (10) we have

(8485 — 858k = (88 (8;81) — (8;81)(858u)
= (&) (881 — (&) (gilgjk)
But since 8,8, — &, #0 by assumption, one final use of (9)
yields
8 = 0,
so that g;; is also diagonal at p.

Step 3. Inserting the diagonality of both g, and g; into
(9) yields

(12)

8.8, = 0’g.g;, for i#j, (13)
which implies the result (6). Q.E.D.

1il. EUCLIDEAN SIGNATURE

We now turn to the special case of an oriented Rieman-
nian manifold [signature ( + + + +)or(— — — — )]
with volume element €., . First we need some results about
the vector space Af, of two-forms at a point peM.

There is a natural product (symmetric bilinear form) on
AZ, given by the wedge product of forms, namely,

(Fab ’ch> = eadeFab Gca" ( 143.)
or equivalently

(F,G)Ye=FAG, (14b)
where € = €!%%°9] is defined by

€abed €0de = 4! . ( 15)

Note that the metric has not been used in defining (14)
and that the inner product is not positive definite. If one
chooses a basis a' of the space A, of one-forms at p, then the
independent o' A ¢ form a basis for A2. In four dimensions

there are six such two-forms, so dim Aj = 6. Furthermore, .

by choosing appropriate linear combinations, one easily sees
that the signature of the wedge product (14) on A’ is
(+++———).

Lemma 1: Given a vector space ¥V with a symmetric
bilinear formw: ¥ X V- Rand asubspace W * C V, such that
(W™, w) is an inner product space (i.e., @[, - is positive
definite), there exists an operator #: ¥'— ¥, such that

V=W* oW,
with

W=*=iI+#V (16b)

Proof: Pick an orthonormal basis w; of W . Then the
projection operator P from ¥ to W ™ is given by

(16a)

P VW™,
vi— (v,w,)w,. (17)
Define # by
$v=2Pv —v. (18)
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Then
P=iI+#%), (19)
and the result follows. Q.ED.

Corollary: 1t is an immediate consequence of (18) that

=1 (20)
Furthermore, since (/ 4+ #) (/ — #) = 0, we have

(wr,w™) =0, VwteW *, (21a)
or equivalently

(v, Hv,) = (Bv0,), Yeel. (21b)

Let T,M denote the tangent space to M at p and for
TeT,M let Ker(T) = {aeA}: a(T): = a,T* =0} denote
the kernel.

Lemma 2: Let A be a three-dimensional subspace of
A?, such that

0#FeAr = FAF#0. (22)
Then for each vector T€T, M, the map
¢r: AT -Ker T,
F—FT):.=F,T" (23)

is an ismorphism.

Proof: Since dim(Ker T) = 3 is suffices to show that ¢,
is one-one, i.e., that F(7) = 0 implies F = 0. But by choos-
ing a basis of Ker 7 and extending it to a basis @' of A, and
then forming the associated basis of Af,, one sees that

F(T) =0 = FAF=0. (24)

Using (22) now proves the assertion. Q.E.D.

For the remainder of this section, we assume that A is
as in Lemma 2, and that the wedge product (14) is positive
definite on A*. Using Lemma 1, this is equivalent to giving a
dual operator # on Af,; A™ is the space of self-dual two-
forms, i.e.,

FeA*™ & #F=F. (25)

We now show how to construct a conformal metric A,
from A*. Fix any neAI‘,. Then for any a,ﬂeA},, choose
TeKer aNKer fNKer 7. By Lemma 2, there exist unique
F,,F,, F,eA™, so that F,(T)=a, Fe(T) =/, and
F,(T) = . Define

hy (a,8)/hy (,m) = (F . Fg)/(F,,F,). (26)
This defines 4, up to the single choice of the scale A, (17,7),
i.e., hy is determined up to a conformal factor.

We now establish that A, is well defined, i.e., that the
right-hand side of (26) is unchanged under the transforma-
tion T'— T’ with both 7,7 'eKer aNKer SNKer 7. This is
obvious if 7' is a multiple of 7, so we will assume that Tand
T’ are linearly independent. First we introduce some nota-
tion.

Extend 7 and T’ to a basis {e, = T,e, = T",e,,e;} of
T,M and let {0’ w',0%,»°} be the dual basis of A}. Let F,,
F;, F,', and F,' be the unique elements of A™ obtained using
Lemma 2 that satisfy

F(T)=w*=F/(T"), F(D=0*=F'T"). @27
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But since (27) implies

F (T T) =0=F,(T",T", (28)
we have
Fz(T') =A22(1)2 +A23m3, (293)

for some constants A4,, and A4, so that, again using Lemma 2,

E,=A,,F) + A, F. (29b)
Similarly,
F,=A,F) + A5 F5. (29¢)

Since this argument can be reversed to express F,’, and £’ in

terms of F, and F;, we must have
A:=det A=A4,,4,; — A,3A45,7#0. (30)

Now consider the transformation 7,M— T, »M, defined
by

e >e, e —Ay+ bey,
(31a)
e, e, +ce, e r—>e;+de,
where
bi=trd=4,, + 45, (31b)

and ¢,d are constants to be determined. The induced trans-
formation on A, is

&> — (/D) + o' — cw® — d?,

(32a)
o' (1/)0°, 0*—o?, o°— o’
which we will also write as
o' Blo’. (32b)
Lemma 3: Let yeA, satisfy
() =0=¢9(T" (33)
and let F,F'eA™ be determined by Lemma 2, so that
F(T)=y=F'(T"). (34)

Then (for an appropriate, y-independent choice of ¢,d),

F'=B'FB, (35a)
ie.,

F' ,=F, B",B",. (35b)

Proof: One has immediately that

B'FB(T')=B'F(T)=B'y=y=F'(T). (36)

In order to invoke Lemma 2 to conclude that (35) holds by
uniqueness we must show that ¢,d can be chosen, so that
B'FB isin A™.

But since

rY=70" + 730°, (37a)
we see that

F=1.F,+v:F;, F'=pF +vF)/, (37b)

so that it is enough to show that B‘F,B and B'F,B are in
A™. Direct calculation using (29), (34), and (37) shows
that the first of these reduces to a linear equation involving d
only, while the second determines ¢. We note in passing that
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(32) is not the only linear transformation that satisfies (35).
Q.E.D.

Lemma 4: hy is well-defined.

Proof: Assume, as above, that Tand T’ are linearly inde-
pendent and let F,’, Fp', and F,’ be the unique elements of
A™ determined by Lemma 2 which satisfy F,'(T') = a,
F,(T") =,6’,F,,’(T') = 1. Then

(Fa ,’Fﬁ') = eﬂdeFa IabFBch

= eadeFamnFquB maB anpcB qd
=€e""F,,,,Fp,, (det B) f
= (F,,Fz)(det B) f,
where fis a constant that depends on the volume element.
Therefore the two factors of ( fdet B) in the primed version
of (26) cancel so (26) is independent of the choice of T.
Theorem 2: Let * be the Hodge dual defined by the met-

ric g,,. Then A, and g are conformally related.
Proof: For F = «F, G = *G, we have

(F,G):=¢e"F,,G,

= 2F(%G) 4 = 2F G- (38)
But for any T7€T, M, we have
F,.T7"GT, = }€4mp F T "€"""G T,
=36,,"8,"6,,'F"G,, T"T,
= {F"G,T"T, + F*G,,T"T,, (39)
so that
4F,, T"G*"T,=F>G,, T"T,, (40a)
or in other words,
gF(T),G(T)}=(F,G)(g(T,T)/8), (40b)
so that
gF(T),G(T))/gH(T),H(T))={F,G)/{HH). (41)

Comparison with (26) shows that g is in the same conformal
classas 4, . Q.ED.
This shows that our definition (26) reproduces the giv-
en metric from its Hodge dual. We now show the converse.
Theorem 3: Let 4, be defined by (26) and denote its
Hodge dual by », Then «+ = §.
Proof: Choose an orthonormal (with respect to &, ) ba-
sis % of A} satisfying

P No' ANo* Ne® =€ (42)

Let F, i =1, 2, 3, be the self-dual (with respect to #) two-
forms definéd by F(X,) = o', where X,, is the basis of T,M
dual to @“. Then, e.g.,

F'=0°Ao' + ao* A&® + bo’ Ao® + c® o', (43)
with @ > 0,b,¢c, to be determined. But using the definition
(26), we have

<Fi, Fj) = 6‘}<F17 F1>9

which implies

(44)
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FP=0’Ao? + a0’ Ao + co® No® + do' Ao?,

F} =0’ Aep® + a0’ No® + do® A" + bo* N o®.
Repeating this procedure for X,, e.g., constructing
G°(X,) = & etc., and using the fact that the F'form a basis

for self-dual two-forms, yields a set of linear equations that
can be solved to give

b=c=0. (45)
Finally, using X, gives

d=0, a*=1, (46)
so that

F'=0’Ao' + 0® A&,

F?=0°No* + 0’ N o', (47)

F’=0"No® + 0' N
But this is just the standard basis for self-dual two-forms
with respect to ! Q.E.D.

IV. DISCUSSION

For Euclidean signature, let .# denote the manifold of
classes of conformal metrics at a point peM and 57 denote
the manifold of dual operators on A2. We have the following
situation:

Mo,
B

where 4 takes a metric to its Hodge dual, and B is given by
(26). Theorem 2 says that Bo4 = I, while Theorem 3 says
that AoB = I. Thus both 4 and B are one~one and onto, and
are therefore isomorphisms. The manifold .# is nine-dimen-
sional (10 metric components — 1 constraint), and the
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manifold 7 ~S0(3,3)/[SO(3) +S0(3)], so dim ¥
=15—-6 =9.

All of our results have been obtained at a point peM.
Suitably smooth metric tensors and dual operators are ob-
tained by working throughout with suitably smooth tensor
fields in a neighborhood of p.

We believe that a result similar to Theorems 2 and 3
holds for other signatures. However, our attempts to modify
the argument in Sec. IIT have so far failed, primarily because
of the failure of Lemma 2 if T'is null. In the Lorentzian case,
one can define aeA,‘, to be null if there exists a (real) two-
form F and a vector T such that

F(TN'=a, #$F(T) =0, FAF=0=FA}F. (48)

Although this definition is correct if # is the Hodge dual of a
Lorentzian metric, we have been unable to use it to actually
construct a conformal metric.
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