If you buy the
Decreased costs.
Decreased receipts.

2.
list the information you
need:

2.
Consider the nonmonetary factors
Evaluate the accuracy of your partial
budgeting:

1.
Increased costs.

Increased costs:

1.
Decreased cost:

Decreased cost:

2.
Reduced gear loss, 8%, $1,500 = $120

Total decreased cost

$120

Increased cost:

1.
Increased cost of equipment:

Total increased cost

$5,000

Increased receipts:

1.
Repairs and operation,

$900

2.
Savings in running time, 3 to 5% (you
would be worse off in the first year
if this figure was greater than 5%)

3.
Savings in time thinking about Loran-C. If you
had to do the same amount of searching
by $1,084 to $1,484 if you purchase and
install the Loran-C Delux Model, will receipts or income

be credited to the Loran-C receiver?

If so, how much decrease?

If not, add increased cost to decreased
receipts:

Positive side

Year 1

$976

Year 2

$576

Year 3

$109

Year 4

$325

Year 5

$433

Year 6

$1,050

Year 7

$2,060

Year 8

$3,076

Year 9

$4,092

Year 10

$4,599

Year 11

$5,105

Year 12

$5,717

Total decreased receipts

$3,076

Total increased receipts

$976

Total increased receipts

$3,076

The purchase price is not the whole story. A model that sells for more may still cost less over
its life. For example, the Loran Delux Model is a radio-navigation system that you can
afford in early 1974. It delivers a 10-mile range at speeds from 0 to 20 knots. You would have
the same range at a cost of only $3,250. Selecting the right combination of features can add up to
savings in search time, meaning more time
for fishing. Can you use all the features built into the set? Could you use some that are not included?

Now, apply the available information to the budgetary analysis:

Next, list the information that is available for the budgetary analysis:

Loran-C receiver.

In 1974 the U.S. Department of Transportation announced the Loran-C,
a modified system, will replace the old Loran-C as the receiver in a completely
radio-navigation system for U.S. coastal waters. This bulletin explains and illustrates
how the new Loran-C system works.

The marine business
management

Loran-C receivers: Making the decision

by Frederick J. Smith
Extension Marine Economist
Oregon State University

Loran, an acronym for Dial-Away Navigation, is a radio-navigation system
that uses shore-based transmitters and has been available to the public
since World War II. It is now available for private marine navigation as well. In
1974 the U.S. Department of Transportation announced the Loran-C,
a modified version of the old Loran-C, which is a radio-navigation system
that uses shore-based transmitters and has been available to the public
since World War II. It is now available for private marine navigation as well.

The right combination of features can add up to savings in search time, meaning more time
for fishing. Can you use all the features built into the set? Could you use some that are not included?

Now, apply the available information to the budgetary analysis:

Next, list the information that is available for the budgetary analysis:

Loran-C receiver.

In 1974 the U.S. Department of
Transportation announced the Loran-C,
a modified system, will replace the old
Loran-C as the receiver in a completely
radio-navigation system for U.S. coastal
cwaters. This bulletin explains and illus-
trates how the new Loran-C system works.

The marine business
management

Loran-C receivers: Making the decision

by Frederick J. Smith
Extension Marine Economist
Oregon State University

Loran, an acronym for Dial-Away Navigation, is a radio-navigation system
that uses shore-based transmitters and has been available to the public
since World War II. It is now available for private marine navigation as well. In
1974 the U.S. Department of Transportation announced the Loran-C,
a modified version of the old Loran-C, which is a radio-navigation system
that uses shore-based transmitters and has been available to the public
since World War II. It is now available for private marine navigation as well.
As you can see from the analysis in Table 2, the Delux Model is the most economical choice for the long run. Although the initial investment is higher than for the Everybody or Econo models, the break-even point is reached quickly and permanent savings in operation costs become greater over the years. This is so because the cost of maintenance for the Delux Model is lower than for the other models; therefore, the total running costs (including depreciation charges) for the Delux Model are the lowest of the three models.

Therefore, we recommend the Delux Model to the Loran-C receiver user. The Delux Model is the best investment for the long run. It is less expensive in the long run than the other models and it provides a better service than the other models.

Table 1—Break even analysis of three hypothetical Loran-C models

<table>
<thead>
<tr>
<th>Model</th>
<th>Life (years)</th>
<th>Total purchase and installation cost</th>
<th>Annual maintenance and operation costs</th>
<th>Additional time required to produce added service (Dollars)</th>
<th>Additional time chargeable to this model and the Delux Model</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>6</td>
<td>$1,000</td>
<td>$300</td>
<td>$100/year</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Everybody</td>
<td>10</td>
<td>$1,000</td>
<td>$300</td>
<td>$100/year</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Delux</td>
<td>15</td>
<td>$1,000</td>
<td>$300</td>
<td>$100/year</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Note: The Delux Model is the best investment in the long run because it has the lowest total running costs, including depreciation charges. It is also the most economical choice for the long run because it is less expensive in the long run than the other models and it provides a better service than the other models.

Furthermore, it is important to note that the Delux Model is the best investment choice because it is less expensive in the long run than the other models and it provides a better service than the other models.

Bills of sale are shown in the table below as the source of the data that does not contradict the conclusion that the Delux Model is the best investment in the long run.

The Delux Model is the best investment choice because it is less expensive in the long run than the other models and it provides a better service than the other models.

For further details, please contact [Company Name] at [Contact Information].
Loran-C receivers: Making the decision

by Frederick J. Smith

Extension Marine Economist
Oregon State University

Loran, an acronym for Dog Desk Navigation, is a radio-navigation system that has been developed to fill the need for a reliable, accurate, and inexpensive means of obtaining bearings. Loran was developed during World War II to meet wartime navigational needs. Its use for private marine navigation has been widespread since that time. In 1974 the U.S. Navy Department of Transportation announced the Loran-C, a modified system, will replace the old Loran-A as the government-sponsored radio-navigation system for U.S. coastal waters. This new system is expected to be in full operation by 1980.

Several important factors play a part in the decision to buy a Loran-C receiver. These include cost of the receiver, the receiver's reliability, its size and weight compared to other navigational equipment, and the availability of Loran-C signals. In this article, we will look at the cost aspects of the decision.

Making the decision (Step 1)

To summarize:

To eliminate some of the uncertainties of our decision, by going through the following steps and analyzing your own personal needs, you can make a decision to purchase a Loran-C receiver. If you feel comfortable with the information we have used in preparing this decision, you may make your decision even more accurate, and you may get other information that will aid you in the final decision. Figure out as clearly as you can, by following the steps included in this article, how you will make your decision—whether to purchase or not to make the same mistake again.

For more information

References: