
PATRICK C. ENDICOTT for the degree DOCTOR OF PHILOSOPHY

in MATHEMATICS presented on

Title: SIMPLICIAL BUNDLES AND THE HOMOLOGY STRUCTURE

OF SUBMERSIONS

AN ABSTRACT OF THE THESIS OF

July 15, 1977

Abstract approved:
J.(1)T0lfgang Smith

In this dissertation we construct a homology spectral sequence

attached to a submersion whose E2 term takes values in a certain

homology with local coefficients. The motivation for this work is

that the spectral sequence provides an effective tool for the conjec-

ture and proof of theorems regarding the global structure of submer-

sions. The spectral sequence is first derived for certain combina-

torial objects known as simplicial bundles which at once generalize

the notion of fiber bundles (over polyhedra) and simplicial complexes.

The spectral sequence of a submersion is then obtained by taking the

direct limit of the spectral sequences associated with an approximat-

ing system of simplicial bundles.

Signature redacted for privacy.



Simplicial Bundles and the Homology
Structure of Submersions

by

Patrick C. Endicott

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed July 1977

Commencement June 1978



APPROVED:

or's.

Professo of MenJtics
in charge of major

Chai an of Department of Mathematics

Dean of Graduate School

Date thesis is presented July 15, 1977

Typed by Illa Atwood for Patrick C. Endicott

Signature redacted for privacy.

Signature redacted for privacy.

Signature redacted for privacy.



ACKNOWLEDGEMENT

The author would like to thank Professor J. Wolfgang Smith

for suggesting the topic of this dissertation and for his help and en-

couragement in bringing it to completion. The author considers

himself very fortunate to have worked with such a gifted and sensitive

scholar.



TABLE OF CONTENTS

Chapter Page

INTRODUCTION 1

THE HOMOLOGY OF A SIMPLICIAL BUNDLE 10

1-1. Simplicial Bundles 10

1-2. The Homology of a Simplicial Bundle 12

II THE SPECTRAL SEQUENCE OF A SIMPLICIAL
BUNDLE 18

III THE SPECTRAL SEQUENCE OF A SUBMER-
SION 39

BIBLIOGRAPHY 58



SIMPLICIAL BUNDLES AND THE HOMOLOGY
STRUCTURE OF SUBMERSIONS

INTRODUCTION

Since the objects of study of this dissertation are submersions,

we shall begin with a brief introduction to this topic. By a submer-
oosion we shall understand a surjective C - map f:X Y between

paracompact differentiable manifolds, with dim X > dim Y, whose

differential has everywhere maximal rank. For each y E Y, f-1(y)

constitutes a regularly imbedded submanifold of X, with

dim f-1(y) = dim X - dim Y

(referred to as the codimension of the submersion). Each such sub-

manifold is known as a fiber of the submersion.

If X is compact, or more generally, if each fiber is compact,

it follows from a result of Ehresmann [1], that f:X Y may be

viewed as the projection of a fiber bundle, which implies in particu-

lar, that each fiber is then homeomorphic to a standard fiber F.

Obviously an extensive theory already exists for that case. It is

known, moreover, that the topological structures of X, Y, and F,

as measured by means of homology groups, are related by an E2

spectral sequence which converges to H (X) and whose E2 term is

given by the formula:
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E2 H (Y; H (F)).
P9

However, if the fibers are permitted to be noncompact, the submer-

sion will in general fail to be a fiber bundle, and in this case the

topological structure of the fibers may vary from point to point. In

1967 J. W. Smith began to investigate the question as to whether in

this more general setting there exist relationships between the topo-

logical structures of X, Y and of the various fibers, and he found

that in the case of codimension 1 a fairly extensive theory can be

developed. One of the most striking results which was obtained is

the following generalization of the classical Thom-Gysin sequence

for sphere bundles [5].

Theorem. Let f:X Y be an orientable submersion of codi-

mension 1 whose fibers are path-connected, and let U denote the set

of all y E Y such that f-1(y) is compact. There exists an exact Se-

quence

H (X) H (Y) Hq-2(U) Hq-1(X)

relating the homology groups. In the case where the submersion is

a fiber bundle the above sequence reduces to the classical Thom-

Gysin sequence of a circle bundle, which may be regarded as an

immediate consequence of the Serre spectral sequence for fiber

bundles. The question naturally arises therefore whether the Serre

spectral sequence can be generalized to the case of an arbitrary



submersion, with its E2 term given in terms of an appropriate

homology, which now must of necessity involve local coefficients.

Such a homology theory has indeed been extensively developed by

Sekino [4], based on the concept of a simplicial bundle, previously

introduced by Smith [6], which is a combinatorial device by which a

submersion may be approximated.

Given a sirnplicial complex K, a simplicial bundle over K is a

function which assigns to each simplex geK a commutative triangle

c.g

where E, F are topological spaces, (1)
0" g

Tr is the natural projection, subject to the condition that for T <
-1 -1

p (x) C p (x) for all x c T I. Setting E = v Ea. (the topo-g g E K
logical sum) there is a projection p:E JKI. The connection be-

tween simplicial bundles and submersions is given by the following

approximation theorem.

Theorem 3.1. Given a submersion f:X Y and a compact

subset C C X, there exists a simplicial bundle over K with

CC EC x, f(c) C 1K I C and p = f IE.

This suggests that a submersion may be viewed as the direct

3

is a homeomorphism and
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limit of an approximating system of simplicial bundles, and more-

over, that construction of a spectral sequence for a submersion may

be accomplished in terms of a direct limit of spectral sequences

associated with simplicial bundles. The present dissertation consti-

tutes a direct approach leading to the realization of this program.

In the first chapter the homology of a simplicial bundle is de-

fined. Let p:E IKI be a simplicial bundle. The inclusions
-1

P-1(x) C pT (x) given for all pairs 0, T c K with T < CT induce
0-

Tfiber injections iu:Fo_ _FT satisfying the homotopy transitivity
. wcondition
I.T

o iT i w for w < T < 0. Taking singular

homology of the fibers with coefficients in some group G, we obtain

an algebraic structure

{H* (Fu:G);
-r K

known (see [4]) as a local coefficient system for the simplicial com-

plex K. Define

C (K;H (F;G)) = 0 H ( 1 0-1, I CY I )
Hq (FG. ;G)

q
(P)0- E K

where K(p) denotes the set of p-simplexes of K. A boundary opera-

tor

a:C (K;H (F;G)) C (K;H (F;G))
P q 13-1 q

is defined on generators by the formula



a(a. 0 C)
;

E (a) iT (c)
0-*

T< 0-

where E
T

:H
0- p(Igl, Igo I) Hp-1( ITI, IT. ) is given by the compo-

sition

H (JOH, II) H (IKPI,
,

H
1
(IKp-11, Kp-2I)

p -

T

Hp-1(ITI,ITI).

Here e denotes the p-skeleton of K, jthe inclusion map, a, the
0-

connecting homomorphism of the exact sequence of the triple (Ile',

/K21), qT the direct sum projection and

T E K(p-1)
}: H

1
(ITI,p-

0
TEK -1) Hp-1(ITI,ITI)

5

H (IKP-11, IKP-21)
P - 1

a direct sum representation.

The homology H*(K; H*(F;G)) of the resulting chain complex is

defined to be the homology of the simplicial bundle.

In Chapter 2 we define the spectral sequence of a simplicial

bundle and evaluate its E2 term. Let p:E IKI be a simplicial

bundle and set E = n E for p > 0 and E = 0 for0- E Kr 0-

p < 0. Then {Ep} constitutes an increasing filtration of E, and



consequently one has the following (see Spanier [8]).

Theorem 2.1. For singular homology with any coefficient

group G there is a convergent El spectral sequence with E1 =

H (E ,E G), d1 the boundary operator of the triple (Ep, Ep-1,P P P-1'
oo

Ep-2), and E isomorphic to the bigraded group associated to the

filtration of H*(E;G) defined by

F H, (E;G) = im[H(E ;G) H*(E;G)].p 4 p

The problem of identifying the El term of the spectral sequence thus

reduces to the problem of computing the groups Hn(Ep,

The following theorem will be proved in Chapter 2.

Theorem 2.5. There exists an isomorphism

Lp:C
P

(K;11
q(F;G)) Hp+q(Ep, Ep-1;G)

given by the composition of isomorphisms

®
0-

0 H Hq(F;G) H (( I 0-1, 16- I ) X F G)
P+ci(P) (P)E K OK

{i,_ }
0 (1) 0-* u*

® H (E , E ;G) H (E ,E ;G),
(P)

p+q g g P+q P 1

O E K

-where E& = p0-1 (101), p,' is the homology cross product, it is
0-

induced by the homeomorphisms of the simplicial bundle and {i, }
V:::

6



is an inclusion induced direct sum representation.

The decisive step in the evaluation of the E2 terms, and the one

involving the greatest technical difficulties encountered in the disser-

tation, may now be stated in terms of the following.

C (K;H (F;G))p-1 Elp-1 q

commute s.

The main theorem on the spectral sequence of simplicial

bundles is obtained as an immediate consequence:

MAIN THEOREM. Given a simplicial bundle p:E I KI there

exists a convergent E1 spectral sequence such that

2 = H (K;H (F;G))
Pq P q

co
and E is isomorphic to the bigraded group associated to the filtra-

tion 91 H*(E;G) defined by

F H,(E;G) = im[H(E ;G) IVE;G)].p p

In the last chapter the spectral sequence of a submersion is

obtained. As a first step in that direction, the following full

7

Theorem 2.6. The diagram

C (K;H (F;G)) El
P q Pq

a
1



approximation theorem is proved.

Theorem 3.2. Let f: X Y be a submersion. Then there is

a sequence p: E
I

K I of simplicial bundles such that
s s

Given C C X compact there exists a positive integer s

such that C C sE, f(C) C I sK I and sP Z: flsE

For s < t,
sE C tE and there exists a nonnegative integer

n such that nK C tK where
sK denotes the nth barycentric subdi-

vision of sK.

As a consequence of this theorem we obtain a direct system
sr sr{ E , d } of spectral sequences indexed by the directed set J of

positive integers and we define {Er(f), dr}, the spectral sequence of

the submersion f:X Y, to be the direct limit of this system.

We show that the E2 term of the spectral sequence of a sub-

mersion is isomorphic to the homology H *(Y;F1,(fy ;G)) of a submer-

sion defined in [4] as a direct limit of a suitable system of homol-
coogy groups of simplicial bundles. The E term is then shown to be

isomorphic to the bigraded group associated with a suitably defined

filtration FH (X;G) of H (X;G). Thus we obtain the main theorem

on the spectral sequence of a submersion.

MAIN THEOREM. Let f:X Y be a submersion. There is

a convergent El spectral sequence such that

E2 (f) 2--- H (Y;H (f ;G))
Pq P q Y

8
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00and E (f) isomorphic to the bigraded group associated to the filtra-

tion FF1.,(X;G) of F1(X;G).

Symbols and Notations

We shall use the following symbols and notations: Let K

denote a simplicial complex. Then

KP p-skeleton of K

K(p) = the set of p-simplexes of K

= the nth barycentric subdivision of K

= a p-simplex

0- the open simplex of 0-

1°1 = the closed space of 0-

161 = the union of all proper faces of 0-

161 = the union of all faces of 0- of dimension < p - 1.

= the empty set

0 = the empty function, trivial group etc.

= the group of integers

= homeomorphism

= isomorphism

= homotopy

1 = the identity morphism

= an arbitrary coefficient group



is a continuous sur-

10

I. THE HOMOLOGY OF A SIMPLICIAL BUNDLE

1-1. Simplicial Bundles

Let K be a finite simplicial complex. Suppose there is given

a function I. which assigns to each simplex (YE K a commutative

triangle
''0.

J0. Ix X F --.- E
0- 0-

Tr0\ /p

where
F0-

and E0- are topological spaces, I Cr I
is the underlying

space of g, iT0. is the natural projection, p0.

jection, and (1. is a homeomorphism.
0-

Assume the following descending face condition:

If T < g then for each x E ITI, p-1(x) C pT1 (x), and thus-

-1 , ,po. (ITO C ET.

The function (Z. shall be called a simplicial bundle over K, or more

precisely, a descending simplicial bundle over K (in contrast to the

"ascending" simplicial bundle considered by Smith in [6]).

E0. shall be referred to as the total space over if and p0. as

a projection. The spaces F0. shall be called the fibers of the bundle.
-1For each x E I 0- I the restriction of (1. to p-1(x) determines a

- -homeomorphism p0-1 (x) Fg ' p0-1 (x) shall be called a fiber over x.
""



We shall refer to IKI as the base space of the bundle. Define

E = E (the topological sum) and observe that there is deter-
if E K

mined a well-defined function p:E IKI. We shall call E the total

space of the bundle and often denote a simplicial bundle by the func-

tional notation

E IKI

where p shall be called the projection of the bundle.

If T < 0-, by the descending face condition, there exists a

composition

<DU
-1ITI X F

p0- ET I TI x FT.g

Let Tr' T I X FT FT denote the natural projection, and forT.
Teach x c T I, define the injection .

:Fg F by the formula
x

.T
(y) = Tr' o-1 o (x, y).x T T

We refer to iT as a fiber injection from Fa. to FT.g, x

The following properties of the fiber injections have been

established in [4].
.T .TIf b,c E ITI
10-, b -"-- 1 g, c'

If T< g < p, C E I g 1 , and b,d E I T I then the fiber
.T .g Tinjections i

0_, b, ip , c and i
p , d

satisfy the homotopy transitivity

condition

11



.T .T
o 1

p , d.0",b p c

From condition (1) it follows that the induced homomorphisms

.T
), (F -G) H, (F G)

x ).4 0"' 4 T'

agree for all x c T I. This common homomorphism shall be de-

noted by

iT:H (F ;G) H(FT;G).g

If T < if < p condition (2) implies that the induced homo-
Tm o rphi sm s

.T .

, , and i0- satisfy the transitivity condition
p

.TiT o 1 = I.
0-

1-2. The Homology of a Simplicial Bundle

Let K denote a finite simplicial complex and assume that:

(1) For each simplex if e K, there is given an abelian group

GO-

If T < if there is given a homomorphism w :Gg GT.

If T < if < p then the homomorphisms wT , w and
p

wT satisfy the transitivity condition

The system of groups and homomorphisms

G = {G wT}
o- o- T E K

12



constitutes a local coefficient system for the complex K as defined

by Sekino in [4].

Lemma 1.2.1

The inclusions j (Ig1,16-1) C (IKP1,1/Cp-1o-

direct-sum representation

}: e H (0.1,16-1) H
p-1

1)*
(P) P

where K(p) is the set of p-simplexes of K.

Proof. The lemma is a consequence of lemma 2, p. 474 of

Spanier [8] applied to the trivial fib ration 1:1K1 K //

For each CI E K(p) we define a projection

crc K

q' :H (1KPI,IKP-11)
0" p H( if1,16I)

to be the following composition

1

cr*} o-p-.H ( KP 11) H (101,161) H (101,16-1)
(P)

where go. is the direct-sum projection.

Let a* denote the connecting homomorphism of the exact se-

quence of the triple (IKPI,IKP-11,1KP-21) and consider the following

diagram:

ifc K

induce a

13



Proof.

crE K

T
0-

Eg(a) = 0.
(P)

CrE

E0-
(a) =

o (P)E K 0-E K

Let T < 0- < p and let ac Hp+1(lp 1,1p I) then

gE K

q oa ojoa.....oj (a)T o
(P) *

= q' o (

(13)j0-;
o q' )(a,. o jp *(a))

T
0- E K

= cif 0 a, -1
T

j oq o fj )(a,o j (a))
(P 13-*

= q;- a {i } o {j 0}1(a o j(a))
01, P *

14

H (IKpl, I Kp-1
a*

Hp-1( IKP-11, IKP 21)

jo- cll..'

H(Icrl10-I) Hp-1(ITI,ITI)

,Define E :Hp(10.1, I l) Elp...1(11-1, 1+1) to be the composition

E = qT1 ° a* ° j0-**

Lemma 1.2. 2



= q' o o a, o j (a)
* P.,

= 0 (since 8 o a = 0) 1/

Let G = {G' wTT K be a local coefficient system for K.
0- E

Define

C (K;G) =
HP(10-1,16-1)

Go-
13

(13)

and define a: C (K;G) C
1
(K;G) on the 0--component of C (K;G)

p -

by the formula

a(a 0 c) = E 0.(a) 0 w 0.(c)

-r<cr

where a E H ( 1 g 1 1 g 1) and c E G .

O-

a clearly determines a function C (K;G) C (K;G)
13 p-1

Lemma 1. 2. 3

0- E K

a is a homomorphism and {C (K;G), a} is a chain complex.

Proof. In order to show that a is a homomorphism it suffices

to show that a is component wise a homomorphism. Let 0- E

H(101, lo-1) be a generator and a,b e G.
0-

15



a(0 Ø (a + b)) =

T<0

T <

T<ff

T
G. ( ) W 0. (a + b)

T -0.(g) (vIT (a) + wT (b))

T<ff

T T(E °(O') 0 w g (a) + E 0. ( ) 0 w 0.(b))

T T
( 0- ) WT (a) + ET) wT (b)

T<

= a (6-- 0 a) + a(0 Oh)

Suppose T < < p and let a e Hp+1( Ip I) and C E G

[8(a 0 c)] shall denote the 0"-component of a(a )

a([ ma 0 cng) = NE °:. (a) 0 w°:,(c))

o- T 0- T 0"[3(Eg(a)0 leN/ )1 E g 0 E ( a ) ® w 0_ o w (c)
P P T P P

T gEE (a) 0w (c)(c)
g P

T 0- T[8(8(a® c))] = E 0 E (a) 0 w (c)
(P)

O E K

T
E (a)}

0
wTE (c)g

(P)e K

16



= 0 wT (c) by lemma 1.2.2

= o

Thus [ a(a(a c)HT = 0 for all T K -1). Therefore aa = o .II
We define the homology of K with coefficients in the local coef-

ficient system G to be the homology of the above chain complex.

Let p:E IK1 be a sirnplicial bundle, let G be an arbitrary

group and let Go. = H*(Fo.;G) for each 0'e K. If T < 0" let wo.:

Go. GT be io. :H*(Fo.;G) F1*(FT;G). We observe that

T{H*(F
'
G), .

} is a local coefficient system for K. The resulting
o- o-

chain complex {C (K;H,(F;G)), a} we define to be the chain com-

plex of the simplicial bundle. The homology of this chain complex is

defined to be the homology of the simplicial bundle, and we shall de-

note this group by 11*(K;H*(F;G)).

17



II. THE SPECTRAL SEQUENCE OF A SIMPLICIAL BUNDLE

Let p:E - JKI be a simplicial bundle and define

= E
E KP

where KP denotes the p-skeleton of K, for p> 0 and let E = 0 if

p < 0. Then E C E
+1

so {E} is an increasing filtration of E.p

Furthermore, E = 0, E = E, and E = E where m = dim K.pp m

Our starting point will be the following classical result [see Spanier

[8], page 473, theorem 1].

Theorem 2.1. Let p:E I KI be a sirnplicial bundle. For

singular homology with any coefficient group 0 there is a convergent

El spectral sequence with E1 H (E ,E -0), d1 the boundary
Pq p+q p p-1'

operator of the triple (Ep, Ep-1, Ep 2), and Ew isomorphic to the bi-

graded group associated to the filtration of H(E; G) defined by

F H* (E;G) = im[H,(E ;G) H*(E;0)].p p

Our aim shall be to evaluate the E2 term of the given spectral

sequence by identifying the El chain complex with the chain complex

C (K;H (F; G)) attached to the simplicial bundle. The first step in

this identification is effected by the following lemma, corresponding

to Spanier ([8], page 474 lemma 2) .

18



Lemma 2.2

-1 -The inclusion maps 1.0.:(p ( I 0" ), p

induce a direct-sum representation

0 Hn(p-1( 10-1), p-1(161)):: Hn(Ep, Ep_i)
(P)0-E K

where if denotes the simplicial complex consisting of all proper

faces of

Proof. For each 0- cK(p) let e be a p-cell contained in the
ointerior of if and let= e0" - e . There exists a deformation

0- 0"

retraction
rCI

:( I CT I -
o
e ) 1" 16 I. Let -,i)-1 denote the restriction of

0- CI

-1 -1 , , o 1 ) -a; -1: -111 0. i 2 )
Igo_ to p0. (10-1 - e0.). Then 1)0. o (r0. X

Fo- 0" ij 0- " I 0-

-1 ,p (10-1) determines a deformation retraction which extends by the
- o -inclusion to a deformation retraction

0-
:p1 (101 - e ) p1 (101).

TheT combine to give a deformation retraction
0-

-1 or:(E - p (e )) E1.
(P)

Thus the inclusions

-1 -1
(I) (I01), P (101)) C (13 (1g1),13 ( - e0-))-1 1 °

and

K

°- C (Ep, E )
p-1

19

(E ,E ) C (E ,E - P-1(2 ))
P P-1 P P

E K(P)



are homotopy equivalences. There is a commutative diagram in-

duced by inclusion maps

fin- }
- *

0 H (13-1(10-1),P-1(16-1)) Hn(Ep, Ep-1)
E K(P) n

1 1

- o -1 o0 (p) Hn(p1 ( 1 U 1), p 1(1 0" 1 - o.)) --.- Hn(Ep, Ep - v p (e))
0- c K

t g c K(P)

1 -1 -1 t -10 (p) Hn(P (e0-), P (eg)) --... Hn( k-1 P (eg), L) p (ea.))
g E K (P) (P)0-E K ge K

in which the vertical maps are isomorphisms, the top two because

they are induced by homotopy equivalences and the bottom two be-

cause they are induced by suitable excision maps. Since e0" is dis-

joint from e if 0- p, the bottom map is an isomorphism because

it is induced by a chain isomorphism.

Lemma 2.3

For g E K(P) the inclusion map

-1-1 -1
(10-1),P0-(10.1»C (Ig1),P 001»

induces an isomorphism

- -1
0- 3 0- (I° -I) P1o- (101) = Hn(P-1 (10-1),P (101)).

Proof. Let e be a p-cell contained in the interior of Igl.

There is a commutative diagram induced by inclusion maps



-1 -1 -1
Hn(130-1(10-1),P (10-I)) Hn(P0- (I 0-1),130-(1 I 2))

0-

io-

Fincp-1(10-1),p-1(16-1)) Hn(p-1(10-0,p-1(10-1 - 2))

Assume if cK(p) then there exists an isomorphism

:H (I01, 161) Hq(F;G)Hp+q (IffIX F I&IxF0-;G)0- p

where p.0_1 is the homology cross product.

Proof. In the relative Kanneth theorem (Spanier [8], theorem

10, p.235), take X = I Iigi, A= 161, Y = Fo_ and B = 0. Since

{0, 1(11 X F} is an excisive couple in 10-IX Fo_ , there is a short

exact sequence

21

-1The top map is an isomorphism since P (IgI) is a deformation re-
-tract of p0"1 (101 - e) and the bottom map is an isomorphism since

p1 (101) is a deformation retract of p-1(1g1-

of p1 WTI) - p1 (10-1) is contained in the interior of p1 (101 e)
0-

the vertical map to the right is induced by a suitable excision map

and hence is an isomorphism. //

Lemma 2.4

Since the closure



[H((0-1, 161) H(Fo., cp;G)]n Hn(( I g I 16-1) X (Fa-, (P);G)

[H(10-1, 16-1) * H(Fg,95;G)]n_1 0

Since H(10-1, 16-1) is free the torsion product vanishes and the follow-

ing isomorphism is obtained

1-00-

[H(101, 16-1) H(F,;cfl FinU101 161) (F0.05);G) - 0.

Taking n = p+q and recalling the definition of the tensor product

chain complex one obtains

[H(10-1,16-1) Fl(F0-,95;G)Jp+q = H.(10-1, 161)
Fl.(F0"

y6;G)
Ji+j=p+q 1

S linceH.( 0-1, 10-1 .7-- 0 if

( I 0- I , & I ) H ( Fo. , ; +c, = Hp(IUM&I) J Hci(F0.;G)

where the pair (Fo., 0) is identified with Fo_ Also by the definition

of the product of topological pairs

H((1°1,16-1) x (F0.10);G)
= Hp+q( 0- I X

Fo-,
I X F ;G)p+q 0-

Thus the following isomorphism is obtained

p..'0.Hp( 1 0- 1 , 1 & 1) 0 Hol(Fo_;G) Hp+q( I 0' I X F0., I(I X Fo.;G).

22



1

We summarize the identification of E
P9

-Let = p1 (10-i).
0- 0-

Theorem 2.5.

1
E 0 H ( 10- I , I )

Hq(F0_;G)P9
(P)E K

where the isomorphism is given .lay the following composition of iso-

mo rphism s:

® rr,
CD H,(101,16-1)0 H (F;G) 0 H (10-IxF" IgixF G)

0- p-Fq 0
(P) (P)K 0" K

{i }0 01:,- 0 H (E,E ;G) H(E,E;G) El .
p+q 0- g p+q p p-1 P9

cYc(P)K

Here
{i0_4e.}

is inclusion induced, 'I. T is induced la the homeomorph-I4

ism of pairs

:(10-IXF F) (E E),g g g 0" g

and p.' is the homology cross product.g

Proof. Throughout we use the fact that a direct sum of iso-

morphisms is again an isomorphism. Lemma 2.4 gives the first

identification, .1)(i. is induced by a homeomorphism of pairs and is
-*

thus an isomorphism, lemmas 2.2 and 2.3 combined give the next

identification, and theorem 1.2 gives the final identification.

in the following theorem.
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Define

In order to identify the chain complex (E1 ,d1 i) t remains to

identify the differential di. By the definition of the product of topo-

logical pairs (10.1, 1 6-1) X (Fo_, 0) = ( 1 g 1 X Fg, 161 X Fo.). Thus

Hp+q(10-1 X F0" 161 X F ;G) = Hp+q((10-1, 16-1) X F ;G)

and we may regard

:HP-Fq
( 1 crl x F , 1 X F ;G)

Hp+q (E E G)
0-

as an isomorphism

:H (( I CI , II) X F ;G) (E , E ;G).
p-Fq p+q 0" 0"

to be the following composition:

v*

HP
16-1) Hq(Fg;G) Hp+ci« I I

) X Fo_;G)

iCr*
H (E ,E ;G) H(E,E;G).

p-Fq 0- p+q p p-1

Define

® H °- I I °- I ) Hq(Fg;G) Hp+q(Ep,Ep-1;G)
g K(ID)

to be the composition:

Hq(F0.;G) Hp+q(Ep,Ep-1;G)
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0 -10 H ( (3" )
Hq(F0_;G)

14 0 Hp+q ' )XF0.;G)« I 16- I

UEK(P) 0- E K(P)

}

0 H (E ,E ;G) H (E,Ep- ;G).
(p) p+q 0- p+q p

E K

Observe that (a (a 0 c) = a X c is the homology cross product. Also

observe that LIJ is precisely the isomorphism under which we identify

.EI with
Pq

The identification of d 1will be completed once the following theorem

is established.

Theorem Z. 6. The following diagram is commutative

® HDOCH,161) Hq(F;G).
0-E K(P)

where the boundary operator

of the triple (E , E E ,).p p-

25

to the right is the boundary operator

0 H(
K(P)

)

a

Hq(F0";G)
LIJ

Hp+q(Ep,Ep-1;G)

1

T e K(13-1)
Hp-1(ITI, ITI) Hq(FT;G) Hp+q-1(Ep-1,Ep-2;G)



The proof of the above theorem will conclude the identification

of d1 with the boundary operator of the chain complex of the simpli-

Elcial bundle p:E KI. For theorem 2.1 identifies with
P9

Hp+q (Ep ,Ep-1 ;G) and d1 with the boundary operator of the triple

(Ep, Ep- 1 , Ep-2). Also theorem 2.5 identifies Hp+q (Ep ,E 1;G),

under the composition of isomorphisms which determine , with

0 H (10-1,161) H
q (Fg ;G).

0- K(13) P

The above theorem identifies the boundary operator of the triple

(Ep, Ep-1, Ep-2) with the boundary operator of the chain complex

{C (K;H (F:G)), a} which is the chain complex of the simplicial

bundle. The proof of theorem 2.6 will depend upon the following key

lemma.

Lemma 2.7

Let g e K(P) and T be a (p-1)- face of g. Let
xo

ITI and
.define (I. I = (1) I I T I X F. Then i o CPT o (1TX 1Tg, xo) =0" T . 0- 0- T*

0-* o ((bo_IT).* : H* ((I? 1, 11-) ) X FG;G) ---.- H* (Ep-1, Ep_2:G).

Proof. Since homotopic maps induce the same homomorphism

on homology it suffices to show

iT To o (1 X ig ) ig 0T x cr
o

. Define
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by the formula

p (x, y) =

First it will be shown that the following diagram commutes:

Thus

IT!, ITI)X

0 I

0" T

, , -1(po_ (11-0, p ( c ( E' E )T 'T

where j is an inclusion. Let (x,y) c IT! X Fo_

.T
OT o p (x, y) = 0 (x, (y))

T 0-,x

-1= 0 (x
T TrT

' o OT 0jo0 (x,y))

-1= 0 (x, Tr' o OT (z))T T

where0 (x,y) = z, whence j o 0 (x,y) = j(z) = z. Thus
0- 0-

OT P (x,Y) = OT(x, (x, Yin

where

0-1(z) = (x,yr).

x, iT (y)).0-,x

(171, ITI)X FT

27
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iT(1171 X

(x, y, 1) = (x, Hx (y, 1))

.T
= (x, x(Y))

= p (x,y).

xo) (x, y).

28

° P (x'Y) = = z
o

CT

TNext we demonstrate p 17 X . for xo c IT I. For each
0-,x0

x E IT I there exists a canonical homotopy [ see Sekino [4] page 39]

.T
Hx o. x:i

1 0-,x

More precisely, Hx:Fo. X I FT is defined by identifying I with

the line segment joining xo to x and setting

-1
Hx(y,t) = Tr' o

(DT
o

We may then define the desired homotopy

(1 T 1, IT 1) X Fo- X I . (1 T j, I) x FT

by the formula

T-1(x, y, t) = (x, Hx(y, t)).

y, 0) (x, Hx(y, 0))

T(x, i (Y))0- x



.

Thus 171 T-establishes a homotopy between p and 1, X IIT! x
0

By commutativity of the preceding diagram we have:

j o = 15T o p .

Thus

1T° j o sToT = 1T° TO p.

Observing that iT o j= io_ one obtains

io_ o = iT o o p.

.TBut p liT/ X 30_,x0 Thus

i ocl) i o(Z.To(1 XiT
IT I x0

Therefore

io_ o i o
T T T (11 IX

iT

Before proceeding with the proof of theorem 2.6, we cite for

the reader's convenience certain results from Spanier.

Spanier, p. 235 #11.

Let f: (X, A) (X', A') and g:(Y, B) (Y', B') be maps and

let z E H (X, A) and z' c H (Y,B). Then in the group

Hp+q ((X', A') X (Y',B')) we have

(f X g),, (z X z') = fz X g*zt.

Spanier, pp. 180-190.
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If (Xi, Ai) and (X2, A2) are pairs in a space X, we say that

{(Xl, Ai), (X2, A2)} is an excisive couple of pairs if {X1' X2} and

{Al ,A2} are both excisive couples of subsets.

If {(X1' Al), (X2' A2)} is an excisive couple of pairs, there is

an exact sequence of the form

a* i*

Hq(X1 X2, Al 'mA2 ) Hq(X1,A1) 0
Hq(X21 A2)

i* a*

Hq (X1 v X2, Al v A2)

called the relative Mayer-Vietoris sequence of {(X1 ,A1), (X2, A2)}.

Also given the triple (X, A,B), {(X,B), (A, A)} is always an excisive

couple of pairs, and the relative Mayer-Vietoris sequence of

{(X, B), (A, A)} coincides with the homology sequence of the triple

(X, A, B).

(3) Spanier, p. 235 #15.

Let {(X1' A1),(X2'A2)} be an excisive couple of pairs in X and

let z c Hp(X1 v X2, A1 v A2) and z' c H (Y,B). For the connecting

homomorphism of the appropriate Mayer-Vietoris sequence we have

a (zx =azx z

where z X z' is the homology cross product.

Proof of Theorem 2.7. It suffices to show ip o a= ao

for each 0c Ic(P). Let a c
HP( I 0- I , I & I ) and cc

Hq
( F ).



{iT* } 0 ® .T 0 ® ET(a) iT(c))
T 0 LT-

= {iT } o

= }

.TET(a) (0)
o-

EG(a) X iG(c))

-r
(ET(a) X i7(c)))

o- o-

iT. o
157 (Eg(a) X i7(c)).

.7 .TBy the first property of the fiber injections i0. = (1. ),
0

where x0 ITI. Thus we may continue the calculation as:

iT
.T

o .1) (E T(a) X (c))
0-

-r

iT o (TZ. (E T(a) X (iT ) (C))
x0

iT o 7 (1I (E T(a)) X (ii ) (c))
TI4, g,x

In the first result from Spanier cited above, take X = X' = I ,

A = A' = JT, Y =FG., Y' =FT, B =B' = 0, f =

(iT1,171) and g = xo: FG_ FT.

Since E G(a) E Hp_i(ITI, ITI) and c E Hg(Fg;G), in

31

LP o a(a c) = LP (

LP o a(a 0 c) =



Hp+q-1(( T I , I) X FT ;G) we have

.T
(E T(a)) X (iT(1 X (E 0.(a) X C) =

11T g1 T 1 1

0 f' X0)(c)
Thus

iji0 a (a-0 c) =

Also by lemma 2.7

iIio a(a c) =

Hp+q-

iT o CT (1 T(E0.(a)) X (i ), (c))
* U'x0

iT o CT o (1 X i ) (E Tx c).
I TI g x *

0

.T
iT o o (1I T I

X
0-

) (ETg(a) X c)
*'x0

i 0 el' I (E ifT(a) X c)
0-*

0-1T *

Next we compute atlio_(a 0 c). View if as a simplicial complex

and let if denote the (p-2) - skeleton of if and defineE
0-

-1
13 0°1)-o-

First it is to be observed that by naturality of the connecting

homomorphism of a triple the following diagram commutes.

0-*
H (E

p+q,E'G) H(Ep p-1, E;G)p+q 0- 0-

,Eu;G) Hp+q- (Ep_ 1, Ep-2;G)
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where we are considering the triples (Ep,Ep-1,Ep-2) and

(E ,E g and where ia and are inclusions.
g g

Thus

a 0 iiya® 0) = 8 o io_ o ,Tg (a X c)

= o a o (a X c).

Recall that (10-1,10-.1) X Fg = (10.1 x Fg, 16-1 X F). Thus

H ((Ial,16-1).XF ;G) = H (10-I X F 10-.1 X F
P+cl p+q

Again by naturality of the connecting homomorphisms of a triple we

have the following commutative diagram.

Hp+q(10-1 x Fg, 16.1 X Fg;G)
cL

H (E
p+q T,E ;G)

Hp+q-1(16- I X Fo., loll X Fo4G) Hp+q-

where is induced by'I. and the triples under consideration are
u* 0-

(E g (10E) and 0_-1XF, l&IXF 1.02
0-

1XF ). Thus

a o ii(a®c) 0 a 0 ,1) (a X c)

= i c) a (a X c).

;G)
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In the second result from Spanier take X = 10-1, B =

A=(16-1) then {(1g1,161),(1g1,10)} is an excisive couple of pairs

and the associated relative Mayer-Vietoris sequence reduces to the

exact sequence of the triple (IgI,IgI,Iffl) and the connecting homo-

morphisms coincide. In the third result from Spanier take Y = Fif

B=0' X1 = 101' X = 161, Al =A2=10-1. Then in
2

Hp+q-1«16-1, 16'1) X Fo_;G) = Hp+q-l(10-1 X F0_,
10-1 X Fo_;G)

we have 3(z X z') = 83z X z' where the second a is the connecting

homomorphism of the triple (IgINC11,1g1). Adapting this to the

present situation one obtains:

a 0 ktig(a c) =a0 o (a X c)
4)0-

= 0 (a (a) X c).

To establish commutativity we must compare

o0- TI T(a) X c)

and

i cz. (a (a) X c).

0-Let j (1T1, I TI) C (Kik 1.011) denote the inclusion and consider the

following commutative diagram.
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(ITI,I+1) x F.

(E ,E)
CI 0"

I, 1.61) x F.

0.*

Hp+q_1 (Ea.* , Eoz;G)

From this it follows that:

(pg--1(IT -1
),130- (ITI))

(Ep-1,Ep-2)

by functoriality we obtain the commutative diagram:

(cliff I T)*
H ((1+1 I+1)Xp+q-1, FO)'G -101),P-100;G)Hp+q- 0- 0-

dr x )
T F

H

o-

X F )p+q-1«l&I, 161) 0-'G

Hp+q_ 1 (Ep_ ,E 2; G)

io_ci- x0 (. 0.1,r)*(E0.(a) x 0) = (j T(a) X c)
u* v* T F)(Eg
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.6-
= i it. 0 0 x 1 )(ET(a) X c)

1

0-* 0-,, T H(F ) 0-

I

,13

a-* T*
E

T
= (a) X c)

Whence:

ioc 0 (1%-fT)*(EG.T(a) x c)

(01,161)

o-,

'&1)

= o

= i o iD
0-*

Consider the following commutative diagram:

a*

E 0-

where jand j are inclusion maps.
0- 0-

From this diagram it follows that:

.6-
i 0 0 E (a) X c)

01, 0-

o ET(a) x c))

T
o E (a) X C)

H ( IT
13-1

j
*

36

( 1 )

( 1 KP 1 , I KP 1 1) 9-1
( I KP-11, 1K21)



Thus

Hence

/ET(a) =
T

q' o a 0

a* (a) =

Thus

o
j0- j- o 8*

*
0

Thus we may conclude the relation:

Comparing (1) and (2) we obtain:

T(a) X c)OT* i1.o (8 (a) X c)
0-* 0- *

o c. (8,(a) X c) =i o

o q'T o 0 a* (a)

.

3
T*

o q o o a (a)
T T* 30j,

fig } {.L} -1 0 id_ 0 a (a)
7-*

Hp-1(161,1F1) o a (a)

JO- o E T(a).
Ts

T.0-

J o E(a) x c)
T*
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Thus Ilioa=a04, and this concludes the proof of theorem

2.6.

We may summarize this chapter in the following theorem.

MAIN THEOREM. Given a simplicial bundle p:E 1K I and

G an arbitrary group. There exists a convergent El spectral se-

quence such that

2 = H (K;H (F;G))
Pq P q

oo
and E isomorphic to the bigraded group associated to the filtration

of H (E'G) defined by

F H, (E;G) = im [H (E ;G) HJE;G)].p
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III. THE SPECTRAL SEQUENCE OF A SUBMERSION

In this chapter we define the spectral sequence of a submer-
oo

sion and evaluate the E2 and E terms. A simplicial bundle

p:E I KI is said to approximate a submersion f:X Y with re-

spect to a compact subset CC X provided CCEC X,

f (C) C IKI C Y and p flE. The proof of the basic approximation

theorem, theorem 3.1, rests upon the following tubular neighborhood

theorem which is proved in [7].

TUBULAR NEIGHBORHOOD THEOREM

Let f:X Y be a submersion and let y c Y. Given a compact

subset C C X and a compact neighborhood F C (1(y) of

C r f-1(y) there exists a tubular neighborhood

e:D X F V

where D is a neighborhood of y 6 Y, V C X and 0 is a homeo-

morphism such that

f o 0 = Tr (where Tr :D x F D is the natural projection).

0 (y,x) = x for all x E F.

C rTh (1(D) C V.

The basic approximation theorem may be formulated as follows.

Theorem 3.1. Let f:X Y be a submersion and let C C X

be compact. Let M be a simplicial complex which triangulates Y,
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i.e. assume without loss of generality (12x [3]) that Y = IMI. Then

there exists a simplicial bundle p:E I KI which approximates f

with respect to C and such that K is a barycentric subdivision of a

subcomplex N of M.

Proof. Let N be the smallest subcomplex of M such that

INI 3 f (C). Since f (C) is compact N is a finite sirriplicial com-

plex. For every y c IN I, let F be a nonempty compact neighbor-
-hood of f1 (y) n C in f-1(y). By the tubular neighborhood theorem

there exist tubular neighborhoods 0 :D X F V such that
Y Y

C n Cl(D ) C V . By the compactness of IN I one obtains a finite

family V1' ..., Vr of these neighborhoods which cover C. The set

{D1' ... , Dr} forms an open covering of IN I . Let L0 be a bary-

centric subdivision of N subordinate to this covering. Thus there

exists a function j which associates to every m- simplex 0- E L
0

(where m = dim L0) a tubular neighborhood

0 :D. X F. .

PO-) J(0-) 3Kr) VJ(g)

such that ICrI C D.ACT) . In this way we obtain a collection of tubular

neighborhood s

{0 :D X F V Ijc I }

m. 0".

where I indexes the set of m-simplexes of Lo. Define a subset

CC X by C =
Vi(g)

f-1(10-1) and let C denote the union of
0- o-



the Cas g ranges over all m- simplexes of Lo. Clearly
0-

C C
C0

and
C0

is compact. For every y E IL' letlet F' be a
0 Y

nonempty compact neighborhood of f- 1(y) n Co in f- 1 (y). By the

tubular neighborhood theorem there exist tubular neighborhoods

A' :D' X F' V' such that Co r, f1(DI ) C V'. By the corn-
y Y Y Y Y Y

m-1pactness of IL one obtains a finite family VI` ,... , V' of these
s

neighborhoods which cover C0 I Lm- 1 I C0 c loL1I). The
0 0 = `-o 1 o

m-set {D,..., D'} forms an open covering of IL
1o

I. Let
L1

be a
s

m-barycentric subdivision of L1o subordinate to this covering. Thus

there exists a function j' which associates to every (m-1)-simplex

0- E LI a tubular neighborhood

X F! V'
31(0.) 31() J'(g)

such that IU I C Di',(0.,). In this way we obtain a collection of

tubular neighborhoods

{e -1:D m-1 x F V I j E Im-1}m m-1 m-1
Cr.

where Im-1 indexes the set of (m-1)-simplexes of L1. Define a

compact subset Co_ C X by Co_ = n f-1( 1 0- 1 ) and let C1

denote the union of the C0. as 0. ranges over all (m-1)-simplexes

of LI. Clearly C1 is compact and Co Pm f-1 m-1
(IL° C C1.

Repeat this construction with
C1

replacing C and ILm-21 replac-
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ing I Lm-11. The construction will now involve a suitable barycentric
0



subdivision
L2

of Lm-2 and will furnish a compact set
C2

such that
1

C1 n f-1(ILm-2I) C C2
and a collection of tubular neighborhoods

1

.m-2 0.m-2m-2 x F V I j C Im-2}m-2 m-2
ff. 0". 0".

J 3 J J

where Im-2 indexes the set of (m-2)-simplexes of L2. Continuing

in this manner one obtains a finite sequence CO, CI, ... , Cm of corn-

pact subsets whose union C contains C and such that

- rn--1
Ck f1 (ILkk I) C ck+1

for k = 0,1, ... ,m-1. Also one obtains collections of tubular neigh-

borhood s

{0 .:D . X F . V .

0-.1 CF.1

J J

j
1.

where I., i = m, m-1, , 0, indexes the set of i-simplexes of L
m- 1

Let K be a barycentric subdivision of L such that L C Ko (i.e.
0

each ch that sL. C K).

Let Cr E K and consider the following sequence

IKI =01 D IL11 3...3 IL I c 101.

There exists a largest index i such thatI I C I L. I Also there

e ere

exists if c L. such that 101 C 10-1. By the maximality of i
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dim 0. = m-i, for otherwise I 0" I C L. ,. Thus there exists a
1+1

unique pair of integers (i, j) such that I 0-I C OP for some j

Set

-Ef=V.r, 1(10-1 )

g.

F = F .

0-.

I cr I X F
(Ti'

p :E 10-I to be OEg o-

The following diagram commutes by property 1 of the tubular

neighborhood theorem

cDo-
110-I x F0. E

o-

-
E f 1(ITI)C ET.

0-
Also

I 0- I

Next suppose T < 0.; then there exists a unique pair of inte-

gers (p, q) such that IT! C I 0-131 for some q E 1. It is clear that
- mp > i, where Igl C lg 1.iI, and since Ck f ( I L-k- 1k I) C
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E= E D C
0"

0- k

and IKI D f(c). Thus we obtain a simplicial bundle satisfying the



a sequence p: E 1 K1 of simplicial bundles such that
S s

Given C C X compact there exists a positive integer s

such that p: E 1

sK
1 approximates f with respect to C.s s

For s < t, sE C tE and there exists a nonnegative integer

n such that 11K C tK.s
Proof. Without loss of generality we assume X to be connect-

ed. X admits a complete Riemannian metric [2]. Let x E X and

for s = 1,2, ..., let C denote the closed ball in X centered at x.

Each Cs is compact and
Cs

C Cs+1, moreover, v Cs = X. Let

C C X be compact then C is bounded thus C C
Cs for some s. By

theorem 3. 1 there exists a simplicial bundle 1p:1E 11KI which
ni

approximates f with respect to C1 and 1K = N1
for n 0' where

N1 is the smallest subcomplex of M such that
IN1

I D f(C1). Con-

sider 1E C2 which is compact; then by theorem 3. 1, there exists

a simplicial bundle 2p:2E -- 12K1 which approximates f with respect
n2

to
1E C2

and such that
2K

=N2 for n2 > n1 , where
N2

is

the smallest subcomplex of M such that
IN21

D f(lE v C2). Since

f(C1) C f(C2), f(C1) C f(iE v C2) and thus 1N11 C
1N21.

Con-

tinuing in this manner we obtain for each Cs a simplicial bundle

44

conditions of the theorem. 1/

We are now able to state and prove the full approximation

theorem.

Theorem 3.2. Let f: X Y be a submersion. Then there is



45

p: E sKI approximating f with respect to E Li Cs and such
s s s-1

ns
that sK = Ns for n > n , where N is the smallest subcom-5 s-1 s

plex of M such that INS' 9 f(s-lE Cs). Let C C X be com-

pact; then CC C C
S s

a spectral sequence

sE C tE

morphism

fies that

E C X for some s. Moreover,

f(C) C f (Cs) C f (s_iE Cs) C Y

and sp
= f I sE. Thus p: E I sK I approximates f with respect

s s

to C. For s < t, sE C tE
by construction and taking n = nt n

S

nwe obtain sK C tK. Thus we obtain a sequence of simplicial bundles

satisfying the conditions of the theorem.

We are now in a position to construct a direct system of spec-

tral sequences (over the directed set of natural numbers J). Thus,

let p: E isKI denote a sequence of simplicial bundles satisfy-

ing the conditions of theorem 3.2. Then, for each s c J, we obtain

{sEr, sdr} associated with p: E 'SKIS s

satisfying the conditions of the main theorem on the spectral se-

quence of a simplicial bundle. For s < t, the inclusion

ISKI c ItKI preserves skeleta and therefore the inclusion

is a filtration-preserving map. Hence j induces a horno-

t4:1)r: sr tr of spectral sequences. One readiE E ly yeri-
s

{{sEr, sdr}, tA,r}
S < t

forms a direct system of spectral sequences indexed by the directed



set J. Define
lim

Er(f)
e J

and

dr
lim

sd .
s c J

Next we verify that {Er(f), dr} is a spectral sequence.

Theorem 3.3. {Er(f), dr} is a spectral sequence.

Proof. The following diagram commutes since the projections
t r are homomorphisms of spectral sequences.

t r

sE tEr

tdr
t r
sl)

sE tEr

Thus the differentials Sdr determine an endomorphism of the direct

rS rsystem E , t r- and hence dr is defined. Since

Sr sr
d o d = 0 for all s E J, dr o dr = 0 and thus Er(f) is a bi-

graded group and dr is a differential of bidegree (-r, r-1). Again,

since t r is a homomorphism of spectral sequences, we have the

following commutative diagram:
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sEr-1

1irn H(sEr)SE J
Hence

t r-1
sl4)

II?t r II?
( (I) ),s 4

H(sEr) H(E )

where the vertical morphisms are the isomorphisms of the respec-

tive spectral sequences. Thus

lim s
H (Er(f)) = H ( )

s J

lim- H(E)
S E J

= sEr-1
SE J

= Er-1(f).

Thus {Er(f), dr} is a spectral sequence. //

We now direct our attention to the evaluation of E2(f). In order

to do this we shall require various results obtained in [4]. Let

p:E IKI and -IKI be sirnplicial bundles such that nK C K

and E C E. Then there exists a chain map

(K;H (F;G)) C (R;H (P ; G))
P q

defined on generators by the formula

tEr-1

lim sE r -1.
s c J
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(if c) = (if) 0 (c )

where if is a generator of H 0°1,0'0, c E H (F ), j: F C F.
P q g g g

is inclusion, and r :C (K) C (nK) is the subdivision chain map.
P P

Let nK denote the nth barycentric subdivision of the simplicial com-

plex K. Let p:E -.- IKI be a simplicial bundle {E0_,p0., 'T V, Fg}o_c K;

then for each T E K there are two possibilities

T c K i.e., T is a vertex of K

T K and therefore, ITIC 10-1 where if is the unique
0 0

simplex of K such that IT! C 1°1'

If (1) is the case, we have spaces and maps ET, pT .t.T and

. If (2) is the case, we define

-1
ET - po_ (IT!) C Eg

pT = pIET:ET

FT = Fif

(DTifIITIXFT:ITIXFTET

Thus one obtains the family

{E ,pT'FT}T E nK
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which is called the canonical nth subdivision of p:E IKI and shall

be denoted by p: nE I nK I. It is shown in [ 4] that p:nE I nK



is a sirnplicial bundle.

Theorem 3.4. Let p: E sKI be a sequence of simplicial
s s

bundles as given la theorem 3.2. If s < t then the following diagram

commutes:

H (T1,16-1)0 Hq(F0_;G)

H (10-1, I [nO1P-11)0Hq(F0.;0)

} 1

LI) s 1C(K;H(F;G))ps qs E
P9
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Proof. In order to simplify notation let p:E I KI denote

p: E I sKI and denote tp:tE ItK I. It clearly suf-

fices to show that the diagram is componentwise commutative. Con-

sider the following diagram

Hp+q((i
cri , 16-i) x Fo_;c)

(k x 1)*

III

H ((10-I, I[n ]-13-1)x F0."G)p+q

I{(j_rff
X 1)*}

p:T
0 FT (IT1,1+1)0H (F G)-- H ((ITI,ITI)xFT,G)

ITIC IIP 1°1 P-fq

® 0 J3d CD (1 x j)*

014
H (IT1,1+1)0H G) H (01,1+1)X-17 G)

P
q T' C II P+cl T'

ITICIcTI

C ( K; Hpt

t's

( F;G))q t
qi t

t 1

s`l?pq

El
P9



Here j; 3
s

and k are inclusion maps. This diagram commutes by
T

.0- -1
the naturality of the homology cross product. Also {3 } o k =

T*

and thus the composition

Si -1(9 1 j) o ({3 } 1) o (k 1)

coincides with

Next consider the diagram:

Hp+4(1 gl ) X Fu;G)

( k X 1)*

H (010.;i[ngi
)p-1.1 X F G)

p+q I I ff'

{(jT X 1)*}

H (E,E ;G)
p+q 0- g

1*

0-* -1 n p-1
Hp+q(E0_, p0-(

[ 0-1 I );G)

®
0 H ((IT1,1+1)X F G) H (E E ;G)

ITICIffl P-fq ITIC Igl P+q T

T*
)(i)H ((jT1,1+1)x ® H T,; °G)

ITIC10-1 P+q ITIC Igl P+q

Here 1 1 and m are inclusion maps. The top two rectangles corn

mute by functoriality, since the corresponding diagrams on the space

level commute. Although the lower rectangle does not commute on
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9- (1 X j)* ®



the space level, it has been shown by J. W. Smith to be homotopy

commutative, which suffices.t Coftsider the diagram:

H (E ,E ;G)
p+q 0-

1 1* i,.

1 n
*

v.*
___ Hp+q

(nE
p ,nEp-1 ;G)Hp+q(ECT,p0-0 [ 1);G) _.

I {1U }
1

1

E ,E ;G)
T

---.-4..
Hp+q (nEp,n p-1 ;G)

I TICIOI P+q

0 H E .G)
JTICII 13+q 1."

Here n and r are inclusion maps and the diagram commutes since it

is inclusion induced.

Also
1H (E ,E G) = E

p+q p p-1' P9

o n*

}T*

Hp+q(Ep,Ep--1;G)
;12 El

P9

1where r o n corresponds to (I)

P9

Hp+q(Ep,Ep-1;G)

H ,E ;G)
p+q p p-1
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From the above we conclude that the diagram

qiC (K;H (F;G)) E1
P 9 P9

S

1 t 1

sil)pq

4J
E-1C (R;H (T;G))

13 9 139

commute s.

In order to complete the identification of E2(f), we summarize

below the definition of the homology of a submersion as given in [4].

Let f:X Y be a submersion and let (2 denote the set of all simpli-

cial bundles p:E 1KI such that E C X, IKI C Y, and p = f IE. It

is shown in [4] that 61 forms a directed set, where p < for

13, P E ad provided E C E. With each simplicial bundle in this

directed set there is associated its homology H*(K;H*(F;G)), and if

p < IT) there exists a homomorphism

1)*:H*(K;H*(F;G)) H*(17; 1-1*(7; G)).

It is further shown in [4] that the set {H*(K;H*(F;G));1),4,1 forms a

direct system of homology groups. The homology H*(Y;H*(fy;G))

the submersion f: X Y is defined to be the direct limit of this sys-

tem. We observe that the sequence of simplicial bundles guaranteed

by theorem 3.2 forms a cofinal set in B Thus the direct limit taken

over the directed set 63 is isomorphic to the direct limit of the
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sequence p: E I sKI taken over the directed set J and hence
s s

lirn
H (Y;H (f ;G)) H ( K;H ( F;G)).

Y sEJ Ps qs

As a consequence of theorem 3.4 it follows that the following diagram

is commutative for s < t:

H (K; H(F; G)) sEps qs
2

P9

t 2

sc-11)pq

Hp(tK; Hq(tF; G))

Thus we have that 41 is an isomorphism of direct systems and hence

E2 (f) = urnsE2
P9 s E J P9

lirn
s E J Hp(sK; Hq(sF; G))

lim
pc ts Hp(K; Hq (F;G))

= H (Y;H (f ;G))
Y

Thus the E2 term of the spectral sequence of a submersion is iso-

morphic to the homology of the submersion.

tE2
P9
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ooIt remains to interpret the E term of the spectral sequence of



a submersion. To this end let

{ p: E I sK I Ise J}
s s

be an approximating system of simplicial bundles for the submersion

f:X Y as given by theorem 3.2 and consider the following diagram:

jp
F H ( E;G) Fp+1H*s(E;G)
p *s

is*

F E;G) F, H E;G) H(s+1E;G)p s+1 p+1 s+1 *

The horizontal arrows are inclusions and the vertical arrows are in-

clusion induced and thus the diagram commutes. For every

p, {F H, ( E;G);} clearly forms a direct system indexed by J.
p s

Define
lim

F H (X;G) = F H( E;G).
P sEJ p s

The j constitute a monomorphism of direct systems and therefore

determines a monomorphism

F H (X;G) -4-
Fp+1H*(X;G)P *

of direct limits. Since E = E for p = dimK ands p 5 5

H,( E;G)
s
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urn
H(X;G) = sEJ H, ( E;G), {F H,,,(X;G)}:

s P '

s wconstitutes an increasing filtration of H (X; G). Each E is
*

naturally isomorphic to the bigraded group associated to the filtration

{Fp H*(sE; G)} of H*(sE;
G), more explicitly, there exists a natural

isomorphism p

F H ( E;G)
p p+q s P

sE00 .

Fp.4 Hp+q (5E; G) Pq

Equivalently, there is a short exact sequence

ip_i
P s 00

0 Fp-1 H (E; G) FH(E;G) E 0p+qs pp qs Pq

where p is the composition

Fp Hp+q(sE; G) r
5E

00
.FH (E; G)p p+qs F H ( E; G) Pqp-1 p+q s
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The inclusions i : E
s+1E

induce a homomorphism of short exact
S S

sequences:

0 -. Fp-1 p+qs p p+qsH(E; G) -. FH(E; G) 5E00 0
Pq

4 4 1 i

iS is
00

* *

p-1 p+q s+1 p p+q s+1
s+lEco

Pq
0 F H ( E;G) -. F H ( E;G) -4. 0



Taking the direct limit of these short exact sequences we obtain a

short exact sequence:

lim
0 Fp_,H*(X;G) F H (X;G) s 0.

* s J pq

Since each {s Er , s
dr } is a first quadrant spectral sequence and

therefore fEr(f), dr, is likewise a first quadrant spectral sequence,
S 00 s rwe have E = E for some r = r(p, q) and thus

P9 P9

urn S colim s r co
E = E =

rE (f) = E (f).
s e J pq s E J pq 139 P9

Therefore, we obtain the short exact sequence

oo
0 F H (X;G) F H (X;G) E (f) 0

p-1 p * P9

and thus
F H (X; G)

co p p-Fq

E(f) =pq Fp-1Hp+q(X;G)

Thus we conclude that the Eoo term of the spectral sequence of a sub-

mersion is isomorphic to the bigraded group associated to the filtra-

tion of H (X; G) defined above. We may now summarize this chapter

in the following main theorem on the spectral sequence of a submer-

sion.

MAIN THEOREM. Let f: X Y be a submersion and let G
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be an arbitrary group. There is a convergent El spectral sequence



such that

E2 (f) H (Y;H (f ;G))
Pq p q Y

coand E (f) isomorphic to the bigra.ded group associated to the filtra-

tion FH (X; G) of H (X; G).
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