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NONLINEAR DYNAMIC RESPONSE OF CABLE/LUMPED-BODY SYSTEM

BY DIRECT INTEGRATION WITH SUPPRESSION

1.0 INTRODUCTION

1.1 Background

The Naval Civil Engineering Laboratory (NCEL) as part of its efforts in the

Advanced Ocean Ranges (AOR) project has identified several technical problems in

the efficient design and installation of cable/lumped body systems at predetermined

bottom positions in deep sea waters. Two of those problems are 1) the necessity to

predict optimum installation parameters with given constraints and performance; 2)

the necessity to predict corrective procedures during installation. The key to achieve

these objectives lies in the development of a three dimensional deterministic analysis

program for predicting the dynamic behavior of cable/lumped-body system subject to

ocean environmental loadings (Leonard,1989).

A cable/lumped body system is comprised of a buoy or boundary body,

mooring lines connecting the buoy and intermediate bodies located at intermediate

points along the cable scope and either an anchor to the sea-bottom or a winch on the

ship. The mooring lines consist of cable segments that may have different geometry

and material properties. The cable segments are three dimensional curved, slender,

flexible cylinders with no bending stiffness. Buoys or bodies may have various

geometries depending on their different functions. Factors that should be considered

in the modelling of the buoys or bodies include: wave induced force models for small
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and large buoys and coupling of loading and response; three dimensional character of

system response; the nonlinear rotational degrees of freedom; the buoy-sea-air

interface. The loadings acting on the system are, in addition to dead load due to

gravity, environmental loadings from buoyancy, winds, hydrodynamic loads, and a

variety of live loads peculiar to its application. Hydrodynamic loadings devolve from

both surface waves and non-uniform currents from arbitrary directions. The live load

may result from time varying concentrated loads or excitations imposed on the bodies.

The boundary conditions can be divided into two types: 1) kinematic boundary

conditions at the boundary points where velocities are specified by the known

conditions of the problem such as anchoring, maneuver of installation vessel, and

cable payout; and 2) force boundary conditions from dynamic equilibrium equations

at the boundary or intermediate bodies.

The analysis of such ocean cable systems is difficult. Firstly, the stiffness of

the cable system depends on the displacement of the system. When in a slack

configuration, the stiffness of the system may nearly vanish and its behavior becomes

highly nonlinear. Secondly, nonlinearities are introduced by hydrodynamic drag force

terms on the cable and bodies which vary with the cable orientation as well as

quadratically in magnitude of the relative flow. Hydrodynamic forces are also position

dependent and even linear waves will introduce nonlinear geometric changes in the

system configuration (Leonard and Tuah,1986). Further, the position and orientation

changes in the cable segments adjoining the body will cause nonlinear interactions of

the mooring line and the bodies. Other nonlinearities may be attributed to material
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simulate the three dimensional maneuver of vessels, shear and rotary currents and

crossing seas, and three dimensional character of buoy response, all of which effect

the performance of the system. A three dimensional analysis complicates the problem

by an order of magnitude and could result in a computer program that may not run

efficiently on a IBM-PC/AT or compatible.

1.2 Review of Previous Studies

Research has been ongoing since 1987 at Oregon State University under the

auspices of NCEL and ONR to develop a dynamic response simulation method for the

cable/lumped body system. A FORTRAN program named KBLDYN was developed

by Chiou in 1989 for modelling the three-dimensional nonlinear dynamic behavior of

such systems. His work was summarized in his Ph.D. dissertation entitled "Nonlinear

Hydrodynamic Response of Curved Singly-Connected Cables" (Chiou,1989).

In his work, the governing equations of motion of a cable continuum are

derived from the dynamic equilibrium equations and the kinematic compatibility

equations. The equations of motion of boundary bodies serve as the boundary

conditions of the segmented boundary-value problem. The equations of motion of

intermediate bodies are considered as the internal boundary conditions of the

boundary-value problem. The governing equations of cable and the boundary

conditions constitute a nonlinear combined initial-value and boundary-value problem.

The time-domain approach based on an implicit integration scheme was

adopted in KBLDYN to deal with time varying loads on the cable/buoy system
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(Leonard,1988; Wang,1977; Chiou,1989). The time domain approaches, unlike the

frequency-domain approaches (Clough and Penzien,1975; Leonard,1988), do not

require linearity of the response. Although time-domain approaches are not as

computational efficient as frequency-domain approaches, they provide better estimates

of nonlinear responses. Also, nonlinear responses can be modelled by direct

integration in time of the equations of motion of selected points in the system.

Different direct integration algorithms can be adopted, explicit or implicit, to

propagate solutions from one time step to the next (Bathe,1984). The explicit methods

do not require iterative solutions of equations to determine solutions at a given time

and are more computational efficient for a single time step. However, the solutions

are conditionally stable depending on the time step size and, thus, overall

computational efficiency is lost for long reaches of integration. The further problem

of numerical drift of solutions has been pointed out by Wang (1984). Chiou (1989)

used an implicit method based on a backward finite difference formula. It is

unconditionally stable and enables use of very large time steps (consistent with the

variability of the loads) and is better suited for longer reaches of integration. Iterative

procedures are required at each time step which implies more computational time for

each real time step. Once the implicit method is used, the problem is transformed into

an equivalent "static" two-point nonlinear boundary-value problem along the cable at

every time instant.

Numerical spatial discretization of the cable is required for realistic loading

conditions. Three classes of discretization are prevalent (Leonard and Nath,1988):
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Lumped Parameter Method (LPM); Finite Element Method (FEM) and Direct

Integration Method (DIM).

The LPM and FEM represent the cable as a series of discrete elements with

nodes and degrees of freedom at the end of each element (Delmer,1988; Thresher and

Nath,1975; Leonard and Nath,1981; Liu,1977,1982). The greater the number of

degrees of freedom, the greater the accuracy of response and the greater the

computational time required. For two-dimensional problems, the computer memory

provided by a microcomputer will suffice. For three-dimensional problems, the

number of degrees of freedom required in the LPM and FEM models may be a

limitation in using microcomputers. The LPM assumes that all loads, parametric

effects and responses are lumped at the nodes (Leonard and Nath 1981, Wang 1977)

and usually an explicit integration method is used to integrate the equations in the time

domain. This leads to an efficient solution if the time step required for stability is not

too small.

The FEM does not make as many assumptions as the LPM regarding the

properties and behavior of the cable and considers effects integrated over the lengths

of the elements (Leonard and Nath 1981, Webster 1975). In fact the LPM can be

considered a simplified subset of the FEM (Wang 1977). In the FEM, coupled

equations for the degrees of freedom are obtained. There are several general purpose

structural analysis programs based on the finite element method which have been

considered for buoy system analysis (Webster 1975, Leonard and Tuah 1986). The

use of such programs for singly-connected mooring legs requires a significant
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computational time in that numerous degrees of freedom at nodal points along the

cable must be introduced and calculated over the time history of response. Difficulties

have been reported for FEM programs used for buoy system analysis when disparate

stiffness between cable elements and buoys are present (Webster and Palo 1986). Also

difficulties are anticipated when nearly inextensible cables are present.

In the DIM, coupled first-order differential equations for the spatial distribution

of behavior are numerically integrated along the scope of the cable (Leonard 1979,

Chiou 1985, 1989). Variable parameters and loads along the scope can then be easily

handled and extremely accurate predictions of response are possible. Since

intermediate nodes and degrees of freedom along the scope are not required as in the

LPM and FEM, considerable savings in computational expense are possible because

solutions of large sets of simultaneous equations are not required. Further,

considerably less computer memory storage is required and, hence, the code can be

used aboard the installation vessel where large computer system may not available.

In KBLDYN, the spatial direct integration is a semi-analytical method. The

boundary-value problem, posed as a set of nonlinear partial differential equations, are

first transformed into an iterative set of quasi-linear boundary-value problems. The

quasi-linear boundary-value problem is then further decomposed into a set of linear

initial-value problems so that numerical integration may be performed along the cable

from one end to the other. The solutions to each of the initial-value problem, hereafter

called "partial solutions", are recombined so as to satisfy the boundary conditions.

The nonlinear boundary-value problem is then solved by successive iterations.
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(Chiou,1989)

The numerical method developed in Chiou's work has been demonstrated and

validated by comparison to solution accuracies and computation times for

representative cable problems treated with other solution methods and by comparison

to experimental results and therefore has been selected as the base model for the

dynamic response simulation program of AOR project (Harris and Shields,1990).

However,as reported by Chiou (1989), some difficulties were encountered

during the test of the program KBLDYN:

1) Divergence or overflow occurred for some particular problems. The

solutions to the governing equations of the cable system are of exponential type. When

using the direct integration method, the numerical solutions may grow very fast as the

integration is carried out along the cable length. If the closed form solutions were

available, the coefficients of the exponential solutions with positive exponents would

be equated to zero by satisfying the boundary conditions at the terminal end .

However, for the direct integration scheme adopted in KBLDYN the erroneous growth

of the numerical solutions may become out of control during the numerical integration

of the partial solutions of the quasi-linear initial-value problem. That is to say, the

exponential terms in the partial solutions grow rapidly along the cable length before

reaching the terminal end where the erroneous partial solutions are to be suppressed

by applying boundary conditions. This may result in ill-conditioned boundary

conditions at the terminal end and cause larger and larger errors during the Newton-

Raphson iteration process. It was found that such erroneous growth rates of partial
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solutions are proportional to the spatial integration step size AS, to the inverse of the

tension T, to the inverse of time step size At and to the velocity change within each

time step AV. Therefore, difficulties arise when: a) the problem contains long cable

lengths; b) low tension regions appear within the cable scope; c) a small time step is

required to predict the response of a system with high-frequency excitation; and d)

near the buoy or tow point where the velocity of the cable may have dramatic change

or near cable material discontinuity points where rapid changes in cable curvature may

occur.

2) Numerical damping and numerical drift were noticed. The numerical

integration scheme based on the backward difference formula uses only the

information of known velocities at the previous time step to predict the unknown

acceleration at the present time. Although it is an unconditionally stable method, it

provides an estimate of the acceleration with less accuracy based solely on the

previous time and thus introduces numerical damping into the solution. The existence

of numerical damping may lead to an inaccurate prediction of long term response and

prevent it from being incorporated into a dynamic optimization and control program

for the cable/body installation based on the "time decrement method", i.e. given a

final desired state for all variables, use small steps backward in time to predict the

solutions at previous times to achieve that final desired state (Leonard,1989).

3) The potential singularity, i.e. T=0, exist throughout the governing

equations. Thus, difficulties may arise when dealing with some special boundary

conditions during the cable/lumped body installation procedures such as cable free end
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boundary conditions and slack-cable/ocean-bottom contact boundary conditions in

which singularities exist either at the cable tip or at the touchdown point.

It is the intent of this work to develop an improved theoretical formulation and

numerical algorithms to overcome the difficulties described above. The primary

research interest focuses on developing a numerical method to alleviate the difficulties

encountered in the direct integration of the partial solutions to each quasi-linearized

initial-value problem.

There are two methods considered to be applicable to achieve this purpose.

One method, the multi-segment method, was first developed in analyzing static and

dynamic behavior of nonuniform conical shells (Goldberg and Bogdanoff,1961) and

was later applied to the direct numerical integration for the large defection analysis

of elastic-plastic shells of revolution (Gerdeen,1970). The method consists of

subdividing the integration region into short segments. The initial-value problems are

integrated within each segment, and solutions are combined to satisfy compatibility

requirements at the junctions of the various segments. The second method, the

suppression method (Goldberg, 1961; Zarghamee and Robinson, 1965), was used by

Carter, Robinson and Schnobrich (1969) and by Leonard (1969) for the dynamic

response of elastic shells. The method consists of combining the partial solutions at

computer-selected points along the region in order to suppress the extraneous

solutions. The suppression method is implemented by requiring that at certain spatial

points fictitious conditions be satisfied by linear combinations of the unsuppressed

partial solutions. The fictitious conditions to be satisfied must be arbitrary,



10

independent conditions which have small magnitudes compared with the partial

solutions. The partial solutions are therefore combined to form new arbitrary partial

solutions in which the extraneous growing functions are suppressed. The linear

combinations at the point of suppression and at all prior points constitute the new set

of arbitrary solutions which are then propagated along the integration path to the next

point at which suppression is required. Although the two methods are similar in

concept, and although the multi-segment method lends itself to an easier physical

interpretation, the suppression method seems to have more advantages over the multi-

segment method. First of all, in the multi-segment method the selection of the size of

each segment is the only way to control the growth of the extraneous erroneous

solution. In the suppression technique the growth of the extraneous solutions is

controlled based on a criteria imposed on the growth of the selected dependent

variables. The choice of the suppression points is then arbitrary and the suppression

points can be unevenly spaced. Also, the suppression method requires much less

computation than that of multi-segment method. Instead of solving, for example, one

set of 3N equations simultaneously, N sets of 3 simultaneous equations are solved

successively. For the above reasons the suppression method was chosen in this study.

1.3 Objectives of Present Study

The objectives of this study can be summarized as follows:

1) Set up a new formulation with dependent variables of cable

velocities,direction cosines and tension magnitude such that the potential



11

singularities,i.e. T =O, are localized in the governing equations for the direction

cosines. This may provide benefit when dealing with some particular boundary

conditions where a singularity exists.

2) Investigate the numerical difficulties encountered by KBLDYN and develop

a suppression scheme to effectively control the growth of extraneous erroneous partial

solutions during the direct numerical integration along the cable length in order to

provide an improved solution algorithm of direct integration method.

3) The implicit integration scheme based on the backward difference formula

for time integration will be modified to eliminate the numerical damping that is

present in KBLDYN. A new implicit integration scheme based on a Newmark-like

method will be adopted.

4) Investigate the treatment of special boundary conditions such as payout

boundary conditions,free end boundary conditions and cable/ocean-bottom contact

boundary conditions that may encountered during the cable/body installation

procedures.

5) Validate, by a set of sample example,the new formulation and numerical

algorithms by comparing the numerical results to available analytical solutions or

experimental data.

1.4 Scope of Study

In this study an improved theoretical formulation and solution algorithms based

on direct integration method for the three-dimensional nonlinear dynamic analysis of
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cable/lumped body system subject to hydrodynamic loads are presented.

In Chapter 2, the basic assumptions made to mathematically model the cable-

body system are summarized. The governing equations of motion of the cable/lumped

body system, with dependent variables of cable velocities, direction cosines and

tension magnitude, are then derived so as to form a nonlinear combined initial-value

and boundary-value problem. A set of Newmark-like formulas are presented to

provide a implicit time integration scheme without numerical damping. Once the

implicit integration scheme is adopted, the problem is transformed into an equivalent

"static" nonlinear two-point boundary-value problem at every time instant.

The numerical methods.including the Newton-Raphson quasi-linearization, the

decomposition of quasi-linear two-point boundary-value problem and the suppression

technique are reviewed in Chapter 3. The solution algorithm and implementation

procedures are then developed by applying these numerical methods to the cable/body

system. The emphasis is placed on developing a suppression technique and

incorporating it into the solution algorithm for the cable/body system to provide an

improved, more stable direct integration method. The general solution algorithm is

presented at the end of Chapter 3.

A set of sample problems are given in Chapter 4 to validate and demonstrate

the present theoretical formulation and solution algorithms. Chapter 5 contains

conclusions and recommendations resulting from this study.
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2.0 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The general definition sketch of the cable system in this study is shown in

Fig.2.1. The X, (i=1,2,3) frame is a global coordinate system, and S is the local

coordinate along the cable scope. Let E be an arbitrary material point on the cable at

some distance S from one end of the cable, and dS be an infinitesimal arc length along

the cable. The position coordinates, X(s,t), velocity components (s,t) and tension

components T(s,t) (or direction cosines 0,(s,t)) are desired under the hydrodynamic

loadings from surface waves and the subsurface currents in time domain,t. Through

out the study, the term "boundary body" is used when referring to the discrete

package at either end of the singly-connected cable system. The word "joint" refers

to the point where two adjacent cable segments meet. The term "intermediate body"

refers to a package at a joint.

In Section 2.1., the basic assumptions of the present model are summarized.

The basic relationships are provided in Section 2.2. Section 2.3 contains the

description of the external loads on the cable/body system. The governing equations

of the system are derived in Section 2.4. The various boundary conditions are

specified in Section 2.5. In Section 2.6, the implicit integration scheme is introduced.

Thus, a two-point boundary-value problem posed by a set of quasi-static governing

equations and boundary conditions is formed.
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2.1 Basic Assumptions

The following assumptions are made to mathematically model the cable-body

system:

1) The cable is treated as a slender, flexible circular cylinder. Thus, the

calculation of the hydrodynamic forces by the Morison equation is valid.

2) The cable segment may be curved in three dimensions.

3) The cable is subject to uniaxial stress with no flexure, shear or torsion.

4) Nonlinear elastic behavior of the cable material is assumed with a tension-

strain relation of the form

3

E = E an Tn
n=0 (2.1.1)

where E is the cable stain, T is the magnitude of cable tension and ar, are

constants which describe the material characteristics. For a linear elastic

cable material with modulus of elasticity E and cross-sectional area A,

al = 1/EA, ao = a2 =a3 =0.0. For an inextensible cable material,

ao=a,=a2=a3=0.0.

5) Only small elastic strains of the cable are considered.

6) Mass is conserved and the density of material does not change upon

stretching. Thus, for a solid circular section the stretched cable diameter

may be related to the unstretched cable diameter by

p 40 X1 = p 71-D2x(l+E)
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D
D = o
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(2.1.2)

where Do is the unstretched cable diameter, D is the stretched cable

diameter, and c is the elastic strain.

7) Hydrodynamic drag and inertia forces on the slender cable are taken from

the relative velocity form of the Morison equation. (Sarpkaya and

Isaacson, 1981)

8) The drag coefficients CD` and CD' in the Morison equation are Reynolds'

number dependent and also vary with relative roughness of the cable. In

this study, they are taken as constant values.

9) In this study, intermediate and boundary bodies are assumed to be small

enough that the Morison equation is applicable and only translational

degrees-of-freedom (surge, sway and heave ) of the bodies are considered.

The enhancement of buoy treatment to include different buoy models and

to consider buoy rotational degrees of freedom (pitch,roll and yaw) is

under a separate study.
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2.2 Basic Relationships

Let 7 be the position vector of the material point at on the cable segment

r = )e
_-

i = 1,2,...,N

(2.2.1)

where X, is the coordinate of point 7 the unit base vectors of cartesian space and

N the dimension (2 or 3) of the problem. The summation convention on repeated

indices is invoked.

The unit vector tangent to the cable segment T can then be obtained by

differentiating the position vector with respect to the stretched arc length of the cable

a7 ax= - = e =
as as

where 0, is the direction cosines of the cable segment at point

Let 7 he a relative velocity vector in cartesian space

q q1 e. i = 1,2,...,N

Then, the tangent component of 11 can be calculated by

qt = (.775

= (q, 0,)

= (0 0,q,) e

(2.2.2)

(2.2.3a)

(2.2.3b)



The ith component of --, q 1 in cartesian space is

and the magnitude of isis

= 0, Ok qk

q = I q` I= 4,1 gif

The normal component of --sq may be found according to

q1

= ql (qk Ok 01) el

(qi Ok qde:

The ith component of --.11 n in cartesian space is thus

and the magnitude of qn is

q I qn I Jqin gin

Tension T has the direction of 7 and has magnitude T, thus

Alternatively,

T =T. 7,

T

i = 1,2,...,N

18

(2.2.3c)

(2.23d)

(2.2.3e)

(2.2.3f)

(2.2.3g)

(2.2.4)

(2.2.5)



therefore,

Also,

T = (T Ti)-2

T = T

19

(2.2.6)

(2.2.7)

Substituting (2.2.7) into (2.2.6), one obtains the familiar constraint on direction

cosines

{0 0,} 7 = 1
(2.2.8)

Assuming small strain, one can relate the stretched cable differential arc length, dS,

to the unstretched cable differential arc length, dS0, by

as = 1 +
aso (2.2.9)

2.3 Loads

In addition to dead loads due to gravity, a submerged cable system is subject

to environmental loadings from buoyancy, currents ,waves, tides and a variety of live

loads peculiar to its application.

Gravity and Buoyancy

Assuming a completely submerged cable, both gravity and buoyancy forces are
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uniformly distributed along the arc length of the cable segment. Let WB represents the

buoyant weight per unit length of the unstretched cable. Then

= wB WB = (m-pAo) g
(2.3.1)

where m is the mass of unstretched cable per unit length, Ao the cross-sectional area

of the unstretched cable, p the fluid density and g the acceleration of gravity.

Fluid Drag Force

By the independence principle for drag on a slender inclined cylinder using the

relative velocity form of the Morison equation (Sarpkaya and Isaacson, 1981), one can

write the drag force per unit length of unstretched cable as

Too = pD0C;;I-1n1---qn + p7I-DOC;DIq`jqt
(2.3.2)

where p is the fluid density, Do the diameter of unstretched cable, CD' the normal drag

coefficient, CB: the tangential drag coefficient, n the normal component of relative

velocity vector, I the tangential component of relative velocity vector. The terms

? I and I I denote the magnitudes of n and 1 , respectively. The relative

velocity is defined by

7-
q = 0 + X

(2.3.3)

where /7:is the wave induced water particle velocity vector, 7 the current induced

water particle velocity and X the cable velocity vector.
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Using the relationships of (2.2.3a) through (2.2.3g), one can write Eq.(2.3.2)

in the component form as

where

Fro, = ai qnqin + a2 q'qi`

a, = 0.5pD0C;;

a2 = 0.5pDorCD1

git = Ok qk

= qit = li cbiOkqk

i = 1,2,...,N (2.3.4a)

(2.3.4b)

(2.3.4c)

(2.3.4d)

(2.3.4e)

(2.3.40

(2.3.4g)

Vqkt
qk

qkn qk

The drag force per unit length of stretched cable FD can be related to the drag

force per unit length of unstretched cable FDO by replacing D0 by D in Eq.(2.3.2) and

using the relationship (2.1.2).

D
FDO

(1 + (2.3.5)

Fluid Inertia Force

The fluid inertia force is that due to both the relative normal acceleration of

the cable and to the pressure gradient of the oscillatory fluid flow. (Sarpkaya and

Isaacson, 1981, Chakrabarti, 1987). The fluid inertia force per unit unstretched cable

length can be written as



irD(;
P (CA+1) 4 P CAr4
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(2.3.6)

where Do is the diameter of unstretched cable, p the fluid density, CA the added mass

coefficient, an the normal component of wave induced water particle acceleration andgn

the normal component of cable acceleration. The current induced water particle

acceleration is taken as zero. The first term of is due to the pressure gradient of the

oscillatory fluid flow. The second term is attributed to the cable accelerating in still

water.

where

Eq.(2.3.6) may be given in component form by

= a3 0: a4 gin i =

a3 = p A0 (CA4-1)

a4 = p A0 CA

n
ui ui

gin = Agk

(2.3.7a)

(2 . 3 . 7b)

(2.3.7c)

(2.3.7d)

(2 . 3.7e)

Concentrated Loads and Body Excitations

To permit some versatility in loading, provision is made for the use of both

concentrated loads and body excitations. The concentrated loads, both time dependent

and time invariant, may be applied in arbitrary directions at the "joints" within the

cable scope. Body motions may be prescribed only at boundary points. Both

concentrated loads and body motion may be specified as sinusoidal functions or as

discretized time histories.
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2.4 Governing Equations

2.4.1 Kinematic Equations

From Eq.(2.2.2), the cartesian coordinates X, of the cable point are related

to the direction cosines 4), by

ax;

as
i = 1,2,...,N

(2.4.1)

where X, is the coordinate of cable material at point E, S the stretched cable length

and 0, the direction cosines of cable differential arc length, dS, at point

The Eq.(2.4.1) can be expressed in term of the unstretched cable length So by

using the relationship (2.2.9).

ax.
= (1 E )

as°
(2.4.2)

i=1,2,...,N

where E is the strain of the cable differential arc length,dS,at point

2.4.2 Dynamic Equilibrium Equations of Cable Segment

At a general point on a cable, a stretched differential length,dS, can be

isolated as a free body as shown in Fig.2.2. The external forces acting on that free

body are the buoyant weight, the drag force and added inertia forces due to relative

motion through the fluid. These external forces are balanced by the variation in end

point tensions over the differential length dS and the inertia force due to the cable

acceleration. The balance of the forces at a point of the stretched cable may be

written in a vector form (Ablow and Schechter, 1983)



a T+ 1

B

710 =0
as ( 1 + E ) ( 1 + E ) 1 + E )
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(2.4.3)

where the independent variable S is the arc length along the stretched cable, 7 is the

tension, VvB is the buoyant weight per unit length of unstretched cable, 7Dis the

hydrodynamic drag force per unit stretched length and To is the hydrodynamic inertia

force per unit unstretched length, and 7 is the d'Alembert force due to the cable

acceleration per unit unstretched length and E is the strain.

Expressing (2.4.3) in term of unstretched cable length and using the

relationship (2.3.5), one obtains

aT
= + E ) = m Xi 710 (1 +E)7 7D0 17vB

as° as (2.4.4)

where m is the mass density of the cable per unit unstretched length and g. the

acceleration vector of the cable at point

This vector dynamic equation can be written in component form in cartesian

space as

aT 1

= -m Xi Fla (1+07 FDoi W8 51;as°
(2.4.5)

where 51, is the Kronecker delta (61,=1, if i=1, otherwise 61; =0). One should note

that all the terms on the right hand side of the equilibrium equation (2.4.5) are now

expressed in term of the unstretched cable length.
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F.

Figure 2.2 Free Body Diagram of Cable Segment
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The gradient of the auxiliary variables T, in Eq.(2.4.5) needs to be expressed

in terms of the fundamental variables (1),. Taking a derivative of Eq.(2.2.7) with

respect to So, one obtains

From (2.2.6)

1 aTi aT
aso iTs0 T aso

aT
=

aTk aTk
Tk = k

737S0 aso

Combining (2.4.6) and (2.4.7), one obtains

ao, 1 aTk
=

T
(6 -0 (1)k)

aso aso

Substituting Eq.(2.4.5) into (2.4.8), obtains

achi k) (171 j e F o (1 + E)-2 Fpok W alk)
aso T

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

k = 1,2,...,N

It should be noted, however, that not all 0, are independent because of constraint

(2.2.8).

To obtain a governing equation for the fundamental variable T, Substitute

Eq.(2.4.5) into (2.4.7)

a T
,7= 0k g (1+07 FDOk VV u)k k

1%
K)k

k = 1,2,...,N

(2.4.10)
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Use this equation to replace one of Eqs.(2.4.9) since the 0, are not independent. Also,

one should note that potential singularities,i.e. T=0, are present in Eqs.(2.4.9) only,

but not in Eqs.(2.4.2) or (2.4.10)

2.5 Boundary Conditions

In N dimensional space Eqs.(2.4.9),(2.4.12) and (2.4.10) constitute 2N

dynamic ordinary differential equations of the second order for the 2N unknowns of

N coordinates X N-1 direction cosines Oi and one tension magnitude T. The

independent variables are the unstretched cable arc length coordinate So and time t.

Thus, 2N boundary conditions at the two ends need to be specified at all times.

The boundary conditions for the problem may be generalized as two types: 1)

kinematic boundary conditions, 2) force boundary conditions.

2.5.1 Kinematic Boundary Conditions

The kinematic boundary conditions can be expressed by either specified

velocity functions or specified coordinate functions at boundary ends of the system.

These functions may be defined as zero values, discretized time-history functions or

sinusoid functions.

For the specified velocity function, the boundary condition may be expressed

by

i(t) = )is(t)

where denotes specified velocity component at boundary at time t.

(2.5.1)
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If the coordinate function is specified, The specified coordinates X,s(t) may be

converted to the specified velocities according to the following finite difference

approximation

XSr
axis X' x,P .

= Tx!'at ant (2.5.2)

Here "p" denotes specified value at previous time step. The parameters a and y are

constants (a =0.5, 7=1.0). See Section 2.6.1 for elaboration.

Hinged or Moving Boundary Conditions

If)((t) 0 or Xis(t)=constant, Eqs.(2.5.1) express a hinged boundary

condition. Otherwise they define a moving boundary condition.

Payout Boundary Conditions

There are two types of payout operations: passively controlled payout and

actively controlled payout. For passively controlled payout, the cable tension

magnitude T is constant at the particle detaching from the shipboard canister or reel

with the cable velocity at the payout point undetermined. For actively controlled

payout, which is assumed for the AOR project, the payout rate relative to the moving

ship is specified rather than the tension magnitude. The cable velocity vector at the

payout point is

(2.5.3)Xs(t) = V, + V r
where V and VI, are the ship speed vector and the cable payout rate relative to the

moving ship, respectively, and T is the unit tangent vector (with unknown direction)

of the cable at the payout point. The cable velocity components at the payout point can



then be written as

Xis(t) = V + V 0,

where Vs, is the ith component of the ship speed, V, is the payout rate relative to the
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(2.5.4)

moving ship and 0, is the unknown ith direction cosine of the cable at the payout

point.

Compatibility Conditions at Intermediate Bodies

In order to continue the numerical integration across an intermediate body, the

following kinematic compatibility conditions are required

(Xi)cable = (,)body
(2.5.5)

2.5.2 Force Boundary Conditions

The force boundary conditions include intermediate and boundary body

boundary conditions, the free end boundary conditions and cable/ocean-bottom contact

boundary conditions.

Intermediate and Boundary Body Boundary Conditions

By assumption 9) the intermediate bodies are small. Therefore, the Morison

equation can be used to calculate hydrodynamic forces. Fig 2.3 shows a isolated free

body diagram for an intermediate body. The external forces acting on the free body

are buoyant weight -1,Y of body, drag and added inertia forces I due to relative

motion through fluid, constant and time-dependent concentrated loads, -Po and 7) (t),

and spring reaction force These external forces are balanced by the change in the

tensions b7 and dj at connection points and by the d'Alembert force 7 due to body
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acceleration. The equilibrium equations of dynamic forces in N dimension on the free

body corresponding to N translational degrees-of-freedom can be written as

-(M+p CA V) + (CA + 1) p V + q qi + Pp) + Pot
+ Woi, -k (Xi X6,,) bc/) ibT +a( t la = 0 (2.5.6)

i = 1,2,...,N

= mass of the intermediate body.

= buoyant weight of the intermediate body,

V = volume of the intermediate body,

CA = added mass coefficient,

= ith component of relative velocity,

q = magnitude of relative velocity

0.5pA0C,,,

A0 = drag area of the intermediate body,

CD = drag coefficient of the intermediate body,

k = stiffness constant of the spring attached to the body,

Xo, = reference coordinates where the spring is unstretched,

P,(t) = time-dependent concentrated load,

P., = constant concentrated load,

= the direction cosines at the connection points "before" and

"after" the body,

bT,aT = the tension at the connection points "before" and "after" the

body.

where
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In Eq. (2.5.6) rotational degrees of freedom and corresponding restoring moments have

been ignored.

The equilibrium equations for a boundary body are identical to those for an

intermediate body except that there is only one cable tension force acting on the body.

Thus, similar equilibrium equations to Eq.(2.5.6) can be derived for a boundary body

(M+ p CA V) gi + (CA+1) pV + q
+ Pi(t) + P01+ W b11- k (Xi-X0) ± OiT = 0

(2.5.7)

i = 1,2,...,N

The selection of the sign for the last term of (2.5.7) depends up on where the

boundary body is located. The positive sign should be chosen for the body located at

the starting end of the spatial integration, the negative sign for the body located at

the terminal end of the spatial integration.

Free End Boundary Conditions

At a free end of a cable a singularity, i.e. T=0, exists at the free end. In order

to avoid the singularity, one may consider the boundary condition to be applied at

point P, a short distance A from the free end. Assuming the cable segment from the

free end to the point P is a straight-line (which implies zero curvature ao,/aso=o) and

integrating the dynamic equilibrium equation for tension magnitude (2.4.6), one may

obtain

3T.
T = A

aso
i=1,2,...N

(2.5.8)

Substituting Eq.(2.4.5) into (2.5.8), one obtains a simplified dynamic equilibrium
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equations of this short cable segment in the component form as

1 (2.5.9)
(-m X + F,a + (1+E)7 FDa + WBoli) A 4, T = 0

i=1,2,...,N

where m is the mass density per unit unstretched cable length, X. the ith component

of the average acceleration of cable segment, Fio, and Froi, the ith component of the

average hydrodynamic inertia and drag force per unit unstretched cable length

respectively, WB the buoyant weight per unit unstretched cable length, A the distance

from free end to the point P, 0, the direction cosines of the short cable segment and

T the tension magnitude at the point P.

Slack-Cable/Ocean-Bottom Contact Boundary Conditions

The boundary conditions at the touchdown point may depend upon the different

payout operation conditions. If the payout rate is less than the ship speed, the cable

will tend to be dragged along the ocean bottom. The frictional resistance between the

ocean floor and the cable laying on the bottom produce a non-zero tension magnitude

within the cable at the touchdown point. Thus, the cable segment at the touchdown

point may be expected to be tangent to the ocean floor. However, in a the realistic

cable deployment operation using actively controlled payout, a payout rate greater than

the ship speed is usually specified in order to place more cable between the two points

on the bottom than the straight-line distance between those two points. This generates

a slack cable deposited on the bottom which is desirable because of smaller tensions

in the installed cable, no dragging, less chance of snags and smaller suspensions over

irregular ocean bottoms. Because the cable is not dragged along and can not penetrate



through the ocean floor, one may write the boundary conditions as

= 0 i=1,2,...,N

where .g is the cable velocity component at the touchdown point.

This is subject to the constraint

Xi(Su) =D (2.5.11)

where XI(Su) is the XI coordinate of the touchdown point at an undetermined

unstretched cable length of Su and D is the depth to the ocean floor.

Since the tension magnitude at the touchdown point is zero, the cable at the

touchdown point may be regarded as a free end. Thus, one obtains the boundary

condition at the point P, a short distance from the touchdown point, in the same form

as the free end boundary conditions (2.5.9) except that the velocity at the free end is

zero and is subject to the constraint (2.5.11). With such a boundary condition

specified, a kink rather than a tangent cable segment may be expected at the

touchdown point.
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(2.5.10)

2.6 The Quasi static Governing Equations and Boundary Conditions

The kinematic equations (2.4.2) and the dynamic equilibrium equations (2.4.9)

and (2.4.10) of cable segments, with boundary conditions detailed in Section 2.5,

constitute a combined boundary-value and initial-value problem because of the time

evolution.
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2.6.1 Implicit Integration Scheme

In order to convert from a combined initial-value and boundary-value problem

to a discrete two-point boundary-value problem at each time, a stable implicit

integration scheme based on a Newmark-like formula is introduced (Leonard,1988).

The dynamic problem may then be treated as an equivalent static problem at each time

instant t.

Assume the solution at time tP is known. Let At be the time step to the later

unknown solution at time t = tP + At, The time derivatives of the dependent variables

may be approximated by

a,
aX,

ya,
at a At

cbi-of!
= =at ant

t aT T-TP= 7Pat ant

. ax x -x,P .

x, = = z -yP
at ant

(2.6.1a)

(2.6.1b)

(2.6.1c)

(2.6.1d)

where the superscript, "p", indicates known values at a prior time step. The

parameters a and y are integration constants. The parameter -y can be related to a by

-y =(1-a)/a. If a =1, and y =0, Eqs. (2.6.1) reduce to the backward difference

formulae used in KBLDYN (Chiou, 1989). If a =0.5 and y =1.0, (2.6.1) represent

an implicit average acceleration method which is a special case of Newmark's method
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(Clough and Penzien,1975).

From (2.6.1d), one obtain the expression for coordinates

= X,P + ant (Xi+7X1') (2.6.2)

The above implicit integration scheme will be stable for time steps much larger

than those permitted by an explicit method. Moreover, the numerical damping to the

solution will be greatly reduced. This feature will be examined in the first example

problem of Chapter 4.

2.6.2 Transformation of Kinematic Equations to Phase Space

In order to balance the accuracy of the kinematic and dynamic equations when

discretized in time, the kinematic equations need to be transformed into phase space

and an auxiliary variable of cable velocity introduced. Taking the time derivative of

Eq.(2.4.2), interchanging the order of differentiation and using the chain rule of

differentiation, one obtains kinematic compatibility equations in the form

thus

Or

a x,ax, a [a)
at aso aso at aso

q5.
aso at at

aX. a4)i a aT
seiaso 1 ) at aT at

(2.6.3)

(2.6.4)

(2.6.5)
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i = 1,2,...,N

where Xt is the ith velocity component of the cable at point E the strain of cable at

point 4, the direction cosines of cable at point t and T the tension magnitude at

point

2.6.3 Quasi-Static Governing Equations

Replacing time derivative terms of the dependent variables g and T in Eqs.

(2.6.5), (2.4.9) and (2.4.10) by Eqs. (2.6.1a) through (2.6.1d), one obtains the quasi-

static governing equations of a cable segment as

= (1+0 n.
8

0. = fi(0k ,7)
dso

Ch;bi I
(6 0j0k) vnak-Flok-(1+E)7 F Dok W A k) = k, 7)

dSo

(2.6.6a)

(2.6.6b)

dT
dSo

=

1

'(niak
-F

10k(1 +41 F DokW Bo ik) = 11(k ,(1)k ,7)
(2.6.6c)

k = 1,2,...,N; j E J

where fgi,h denote functions on the right hand of Eqs. (2.6.6a) through (2.6.6c)

respectively. The dependent variables are

{Y} =

i=1,2,...,N; j E J

(2.6.6d)



subject to the constraint

oe = ± (1 -4)Jo)7 j E J
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(2.6.6e)

where (Pe is the direction cosine to be eliminated from the set of dependent variables.

The term J denote the set of numbers from 1 to N exclusive of e and may be

expressed as

J={1,2,...,N \ (2.6.6f)

2.6.4 Quasi-static Force Boundary Conditions

Replacing the acceleration term g in Eqs.(2.5.6),(2.5.7) and (2.5.9) for

intermediate body, boundary body and cable free end boundary conditions by the finite

difference expression (2.6.1a), one obtains the quasi-static force boundary conditions

as follows:

Intermediate Boundary Conditions

(M+pCAV)ai+ (CA+1)pViii+ On+ Pi(t) + Poi

+ woli- k(Xi-X0i) -1'0T+a(1)7T = 0

i = 1,2,...,N

Boundary Body Boundary Conditions

(2.6.7)

(MtpCAV)ai+ (CA+1)pViii+ )3qqi+ Pi(t)+ Poi

+ Woli- k(Xi-X01) ± q5iT = li(kk,01,7) = 0 (2.6.8)

i = 1,2,...,N



Cable Free End Boundary Conditions

(--m ai + Fla + (147 F + W Bo A T = L1(kk,01,7) = 0
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(2.6.9)

i=1,2,...,N

In this chapter, 2N governing equations and corresponding boundary conditions

for the dynamic problem of a cable/lumped-body system have been derived and

specified. In the next chapter, a solution algorithm will be presented to solve the

problem at discrete times At apart.
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3.0 NUMERICAL METHODS

The implicit time integration method described in section 2.6 allows the

treatment of a dynamic problem as an equivalent static problem at each time instant.

Thus the nonlinear dynamic problem presented in Chapter 2 poses a two-point

boundary-value problem in the spatial coordinate at each time. The traditional shooting

method (Press et al. ,1986) for solving this problem is not to be successful because of

the nonlinearities and discontinuities at the intermediate bodies (Ablow and

Schechter,1983).

The adopted computational scheme is to first transform the nonlinear two-point

boundary value problem into a quasi-linearized two-point boundary value problem to

be solved iteratively. The quasi-linearized two-point boundary value problem is then

further decomposed into a set of quasi-linear initial-value problems in the spatial

coordinate so the numerical integration can be performed along the cable from one

end to the other. In solving initial-value problems difficulties may arise during the

direct numerical integration of partial solutions. Since the solutions are of the

exponential type, the extraneous growth of the solution profiles (partial solutions) over

the long integration path may lead to illconditioned terminal boundary conditions and

result in larger and larger errors in the sequence of linear two-point boundary-value

problems. To overcome this problem the suppression technique (Carter et al. ,1969;

Leonard,1969) may be applied. The suppression method consists of recombining the

independent initial value problems (partial solutions) when necessary as the integration
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proceeds. They are recombined in such a way that the components of the erroneous

growing solutions at the point in question are eliminated. With this technique, the

solutions are all of comparable magnitude when the integration process arrives at the

terminal end of the cable. Whenever the partial solutions have become large compared

with initial condition or previous solutions, the suppression is accomplished by

requiring that linear combinations of the unsuppressed partial solutions satisfy the

fictitious conditions. The fictitious conditions to be satisfied must be arbitrary,

independent conditions which have small magnitudes compared with the partial

solutions.

3.1 Newton-Raphson Quasi-Linearization

Assume a set of 2N nonlinear first-order differential equations

{dY,

dS
= Yj)}

i,j =1,2,...,2N

with N nonlinear boundary conditions at boundary S =0

{IVY)} = {0}

k = 1 ,N

and N nonlinear boundary conditions at boundary S = Lo

(3.1.1)

(3. 1 .2a)



(hk(121 = {0}
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(3.1.2b)

k=1,2,...,N

where S is the independent variable (eg. cable arc length), {Y} are the 2N dependent

variables (e.g. velocity components, direction cosines and tension magnitude), {f(s,

Y.)} are nonlinear functions of {Y }, and {1.7
k j(y)) and 1-1;k(f)} are nonlinear functions

of {T7j) at S=0 and of {Y} at S =L0, respectively.

Let { } denote a trial solution vector in the neighborhood of the true solution

vector { 17) . The /y and 07;1 are corresponding boundary values of /i7; at

S =0, and S =L0 respectively. In the following, asterisks will be used to indicate

functions calculated from a trial solution. Expanding the nonlinear functions { fxs, y)} ,

{hk(Vi)} , and {r/4(7)} in a truncated Taylor series up through first-order terms about

*1 , {T7i"} and Eqs.(3.1.1),(3.1.2a) and (3.1.2b) may be written in the form

(Chiou,1989).



{ }di" = [ay.] 0;1 + 0:1ds

with boundary conditions at S=0

[c,;] 111,1 + {d,:} = {0}

and boundary conditions at S =L0

where
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(3.1.3)

ij =1,2,...,2N

(3.1.4a)

k=1,2,..., N

[P:j] + {c/;} = {0} (3.1.4b)

Ibi* = tf. (s, 1'; )1

{d: = {hk(rj*)} {y;

[ez] [113]

k=1,2,...,N

(3.1.5a)

(3.1.5b)

(3.1.5c)

(3.1.5d)

(3.1.5e)



{(1:1 = {h:(1';)} [.1 ) ] {P;}
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(3.1.50

In Eqs. (3.1.5), J `j , [J and [f Zi are the Jacobian matrices of governing

equations, initial boundary conditions and terminal boundary conditions, respectively.

Equation (3.1.3) with boundary conditions (3.1.4) and coefficients defined by Eqs.

(3.1.5) constitutes a linearized boundary-value problem for {Yi}.

An iterative procedure can be applied to solve Eq.(3.1.3) for {Y,} in terms of

S and {Y,*}. Starting with a set of trial solutions, further improved solutions are

obtained by successive iterations in Eqs. (3.1.5) with {Y;} , and 07 }

replaced by IYil, {17: and { )7; } generated by the previous iteration. The

iteration process continues until the difference between {Y,} and {Yil is less than a

stipulated error tolerance. A relative error at each integration point is calculated by

e= E Y`

2

i=1,2,..., 2N

(3.1.6)



45

3.2 Decomposition of Quasi-Linearized Boundary-Value Problem

A linear two-point boundary-value problem such as that posed by Eqs. (3.1.3)

and (3.1.4) can be solved by first decomposing the problem into a set of initial-value

problems and then recombining the solutions to each initial-value problem to satisfy

all boundary conditions (Lee,1966; Leonard, 1979; Chiou and Leonard, 1990).

In general, the solution to each one of a linear set of 2N first-order differential

equations can be considered as a linear combination of the solutions of (N+1) initial-

value problems, hereafter called partial solutions. Assume the solutions to Eq (3.1.3)

can be written as

= fel + [17,k] {tc}
(3.2.1)

i=1,2,...,2N; k=1,2,...,N

where {-1,} are undetermined parameters and {Y,0} and [Y,d are partial solutions

associated with particular and homogeneous solutions, respectively, of Eq. (3.1.3).

Substituting Eq. (3.2.1) into Eq. (3.1.3), one obtains a particular differential equation

for { and N homogeneous differential equations for [y as

Id
ds

and

= [at/1 { Y.,9} + (3.2.2a)
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as
(3.2.2b)

j=1, 2,..., 2N; k=1,2,...,N

To solve the decomposed linear boundary-value problem by a spatial

integration along the independent variable, a set of initial values to Eqs (3.2.2a) and

(3.2.2b) is required such that partial solutions can be obtained by numerical

integration. Since the original problem is a boundary-value problem, the unknown

values of dependent variables are located at both boundaries. Rather than use a set of

blindly guessed initial values as in the shooting method (Press et al., 1986),it is

always possible to obtain a set of initial values that satisfy the known boundary values.

To obtain the initial values for the partial solutions, let [. 47] and { T7} in Eq. (3.1.4a)

be partitioned as

{Y,

r,_ c ,,_]
ki cb,

lY

y y({ rytl 4- 11
r

n)
un

(3.2.3a)

(3.2.3b)

j=1,2,...,2N; k,m,n=1,2,...,N

where left superscripts, I and II, represent partition I and partition II, respectively.

Both fi71 and rc; I are rearranged and partitioned such that 37n} represents the

known initial values to the boundary-value problem posed by Eq. (3.1.3). The
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unknown initial values of the partial solutions, { "y°} and y , to the initial-value

problem posed by Eqs. (3.2.2a) and (3.2.2b) may then be determined by substituting

Eqs. (3.2.3) into Eq. (3.1.8a) as

and

1 -1II-0 -0
{ = [I/C:2] ['CL1 { 'Yn [11-chl {d: }

[Ilynnti =
[ n11-4-

1

[1-17 m

(3.2.4a)

(3.2.4b)

Having defined (N+ 1) linearly independent initial-value problems, each of

which satisfies the actual boundary conditions at the starting end, numerical

integration may be performed to obtain the partial solutions at the terminal end. These

partial solutions at the terminal end are then used to determine the appropriate

coefficients, {M, in Eq.(3.2.1) for the linear combination of partial solutions. The

boundary conditions expressed by Eq. (3.1.4b) at the terminal end can be expressed

in terms of partial solutions as

[c(3.2.5);.9] {WA + [Yjm] {m}} + {d } =

j = 1,

{0}

2,..., 2N; k, m=1, 2,..., 2N

where {k--} and {p.m} are the partial solutions at the terminal end. The product of



[j-Z] and [y m] is a square NxN matrix and thus {.W may be determined by

{,} = [ci;
-1

Vnud{ )7}
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(3.2.6)

j=1, 2,..., 2N; k, 1, m=1,2,...,N

With {-#,} determined, a final integration of Eq.(3.1.3) can be performed with

determined initial values

{i;} = lic°1

j=1, 2,..., 2N

k=1, N

(3.2.7)

3.3 Suppression Method

For a linear system of order 2N, N quantities are assumed at the starting end

and N boundary conditions are satisfied at the terminal end. The correct solution

corresponds to some combination of initial values at the starting end that produce

boundary quantities satisfying the terminal boundary conditions. Partial solutions for

one particular solution and N homogeneous solutions are integrated simultaneously

along the cable scope by assuming N initial values which satisfy the N boundary

conditions at the starting end. The growth of extraneous erroneous solutions is

controlled by selecting suppression points at locations along the scope where

magnitudes of the dependent variables exceed a prescribed limit. At each suppression
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point artificial boundary conditions are then satisfied and a set of coefficients required

for recombination of solutions at prior points are determined. The suppression is then

performed for the partial solutions at the present and all previous suppression points.

The resulting suppressed partial solutions at all suppression points are stored in order

to restart the integration process within the space between successive suppression

points. The integration then continues until another suppression point is required. This

process is repeated until the terminal point at the far end of the cable is reached where

the terminal boundary conditions are satisfied. The coefficients for recombination so

as to satisfy the terminal boundary conditions are then used to determine the final

partial solutions at all previous suppression points. The final combined solution is

obtained by performing direct integration between all the suppression points starting

with final particular partial solutions at each suppression point. The detailed

mathematical treatment of the suppression process for a quasi-linearized two-point

boundary value problem of order 2N is outlined in the following.

Let the partial solution vectors at a suppression point be represented by { yik} ,

i = 1,2,...,2N; k=0,1,2,...,N. Where the superscript k= 0 represents a particular

solution and k=1,2,...,N represent N homogeneous solutions. Whenever some

quantities in the partial solution have become large compared with the prescribed

criteria, suppression is accomplished by requiring that the partial solutions satisfy a

set of independent artificial boundary conditions. It should be noted that for a system

of order 2N, only N boundary conditions can be satisfied at terminal or suppression

points. In other words, out of 2N quantities in the partial solutions only N quantities
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can be chosen to be suppressed. The choice of these N quantities is arbitrary but must

be independent.

Once the N quantities have been be chosen, the unsuppressed partial solutions

of these N quantities are represented by {h , j=1,2,...,N; k=0,1,2,...,N. Again,

k =0 designates a particular solution and k=1,2,...,N correspond to N homogeneous

solutions. The homogeneous partial solutions of these N quantities are collected in

matrix form as

= [11111 {h12} OA (3.3.1)

j,1=1,2,...,N

The artificial boundary values are represented by the vectors {p } for the

particular and homogeneous partial solutions with the element RI, specified.

(j=1,2,...,N; k=0,1,2,...,N).

{piO}

P10

,{p;' }=

PNO

Pll

0

0

0

Pll

0 PNN

(3.3.2)

In order to suppress these N quantities, the following artificial boundary

conditions on all partial solutions, particular plus homogeneous, are required to be



satisfied at the suppression point

PA{} {hk}

where
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({pi/ 3.3.3)

j, 1=1, 2,..., N; k=0, 1, N

= homogeneous partial solution matrix of the N quantities to be

suppressed,

= suppression coefficients vector for the kth partial solution of the N

quantities,

unsuppressed kth partial solution vector of the N quantities

{pk} = specified artificial boundary values vector for the kth partial solution

of the N quantities.

The vector of suppression coefficients for the kth partial solution of N

quantities can then be determined as

{ } = [ ({p,k} {hik})

(3.3.4)

j,1=1,2,...,N; k=0,1,2,...N

The suppressed partial solution vectors at the present and all previous

suppression points can then be obtained by:

{17,} = {Yik} + [Y1] fel (3.3.5)

i=1, 2,..., 2N; k=0,1,2,...,N;

1=1,2,...,N
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where { y,} and { yik} are the suppressed and unsuppressed kth partial solution vectors

at suppression point, respectively, and [ya] is the unsuppressed homogeneous partial

solution matrix of order 2N x N at the subject suppression point.

Note that at the mth suppression point the suppression coefficients obtained are

used to suppress not only the solution at the mth suppression point, but also the

solutions at all the previous suppression points from initial point to the current

suppression point.

This marching process is continued until the terminal point is reached. The

terminal point is a special suppression point at which only the particular solution needs

to be suppressed to the terminal boundary conditions, with the suppression, or

combination, coefficients vector determined by the terminal boundary conditions as

in Eqs.(3.2.6). Again, one must note that the suppression coefficients vector obtained

at the terminal end should be used to suppress the particular partial solutions of all

the previous suppression points.

3.4 Application to Cable Problem

The general description of the numerical methods, including Newton-Raphson

quasi-linearization, decomposition technique of linear two-point boundary-value

problem and suppression method have been presented in the previous sections. It is

now possible to apply these methods to the dynamic simulation algorithm for the

cable/lumped-body system.
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3.4.1 Quasi-linearization of the Governing Equations

In terms of estimates of the dependent variables )(' , (4; and T., the

governing equations (2.5.6a) through (2.5.6c) for cable segment can be expanded in

Taylor series.

d
dso

where

af* afi afi
(3).(k aT

ag;* ak 3,g1.

aT

ah ah ah*

axk a(1)1
aT

3

f = (1 +E ) ni + E n an (T')n-1
n=1

h'

i,k=1,2,...,N

j,1E{1,2...,N \

g1 = (6, 4):) (ma: (1 +E F. WB6ii)
T* jk

h* = irt); (mak* F1 (1+6)7 Fjok WB61k)

(3.4.1)

(3.4.2a)

(3.4.2b)

(3.4.2c)
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= 0
aXk (3.4.2d)

11 .4- 6* 1 (1-1) al (T V-21
(tht 1=2

of 3

EaT 1=1

a g 1

aX T -11

(T V-1

0,)

ak
= (A,(4.;

.34), T.

Ail

(«A-i i.)
3

E n (n-1) an (T )n-2 q5i*
n =2

m aF1; aFDoi

crAt ak akk

j1(1) k (ma: (1+6)4b FDO. WBbik)

(aFL aFD.oki
+ (i+E*)

ags,

gj* 1
(a Ok.) (ma: (1 + 6 )7

I

FI;Ok wBolk)aT 7.2*

1
3

0j* Ok. E n an (T`)' FDOk

2 T (1+)7 n -1

ah m
.

axk ctilt

ah
aq1.),

+E)4

axk akk

= Okl (mak F, (I 4- FD*Ok WB61k)

,[a6,
+ (1 +E *)7

I FD*Ok

a4),

(3.4.2e)

(3.4.20

(3.4.2g)

(3.4.2h)

(3.4.2i)

(3.4.2j)

(3.4.2k)
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(3.4.21)

In Eqs.(2.3.2), the time derivatives of the dependent variables, a,',77,* and may be

approximated by Eqs.(2.5.1a) through (2.5.1c). The hydrodynamic inertia and drag

forces, Fmk and Fix'', can be calculated by Eqs.(2.3.4) and (2.3.7). The derivatives of

Fmk and Fmk with respect to the dependent variables are found to be

a FD*i

o'ck

aFF*0i

agk

= Oke)-24-1
ciAt

n II

-a1 qn °a-
a19i

qn

qk
. + (al qn*- az q") 4r Ok*

q,
1 1

qm q,al
q

2 I

-(Ail + AkAi ) (a3a ce4ak*)

(3.4.2m)

(3.4.2n)

(3.4.2o)

aFna +qt.' (a n ) (ALIO: Aktr:,7

a(i), (3.4.2p)
n n

qi qmal a
2

qn

1 t'

q, qm

qt.

The constants al, a2, a3 a4, the ith components of the relative velocity tangent and

normal to the cable, q,` and q,n, respectively, and the magnitude of the relative

velocities tangent and normal to the cable, qt and q", respectively, can also be found

in Eqs.(2.3.4) and (2.3.7)
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The (5;i and Aij are defined as

0 ij
1 i=j (3.4.2q)

0

1 i=j

i=e

(3.4.2r)

where 0, is the eliminated direction cosine.

One should note that the potential singularity term, i.e. 1/T*, is only present

in Eqs.(3.4.2g) through (3.2.2i).

3.4.2 Quasi-linearization of Force Boundary Conditions

Intermediate Body Boundary Conditions

The governing equations of the intermediate body are treated as internal

boundary conditions. In order to deal with the discontinuities when the integration

comes to the intermediate bodies, we need to express the unknown dependent

variables "after" the body, act.) and aT, in terms of the known dependent variables

"before" the body,b(/), and bT using the governing equation (2.6.7).

{ ch

"T

a

aT'

(3.4.3a)

m,k=1,2,...N; j,IEJ; n=1, 2,..., 2N



where

aTi* = -(M+p CAV)ai + (cA+1)pV + 13q* + Pi(t) + Poi
+ Wolf k(Xi-X0i) -bc6i*

aT = (aT aT

aT

and [J.] is the Jacobian matrix of order Nx2N.

in which

37
akk

=

aao:
boi

aao:
abT

a ao., a a(1) a ao.,

aZ, abo, a" T

aaT" a aT * a aT

a)k a ab T

=b T. (

aT \

1

(b. ao b
aT

[. (M + p CA V)
°A

+a
a At

aaT bT.
b
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(3.4.3b)

(3.4.3c)

(3.4.3d)

(3.4.3e)

01

q, qk

q

(3.4.30

(3.4.3g)

(3.4.3h)

(3.4.3i)
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a°T. b a
= 01 o,

abT (3.4.3j)

b
1 i=j

i -e

Boundary BodyBody Boundary Conditions

Eqs.(2.6.7) may be written in quasi-linearized form as

where

{').(k

-`3,1

.1A,(I)T) = [1;1 01-(b:

T-T.

i,k=1,2,...,N; j=1,2,...,2N;

1E {1,2,...,n \

= --(111+pCAV)a, + (CA+1)pViii. + f3 q q,

+ PP) + P + Wo K(X,-X0)-Egi*

K.]
[alt' al: al:
7k apt aT

[(m+pc,v)

aXk aft o :
ll,+

qi*q 11

q

alt . Ott

aft -T III

if body located at So=0

if body located at S0 =L0

(3.4.3k)

(3.4.4a)

(3.4.4b)

(3.4.4c)

(3.4.4d)

(3.4.4e)
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(3.4.40

Free End Boundary Conditions

The quasi-linearized form of the dynamic equilibrium equations (2.6.9) for the

free end of cable may be written as

where

3L;' )1( )'"
01 of

{
+ Li

akk ac, aT
T T

ai + F1; +(l+f)7 FDoi + WRSJ A 0:7

aL,*

a-kk
ei At

m (1+e
axk

aFD'oi. 1 A

aXk

act), acb,,

aLi aF,);
(1,-.>7

aFt;i1

aol
T(*

81.
aT

A

2(1 +E?

3

FDoi E nan(T)n -1
n =1

(3.4.5a)

(3.4.5b)

(3.4.5c)

(3.4.5d)

(3.4.5e)

In which FElo: and F/0,. can be calculated by Eqs.(2.3.4) and (2.3.7) and aF7a.kk and

aF,730, may be found in Eqs.(3.4.2m) through (3.4.2p).

3.4.3 Application of Decomposition Technique

The quasi-linearized two-point boundary-value problem derived in the previous
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section will be further decomposed into a set of initial-value problem in this section

according to the solution scheme presented in Section 3.2. The following will

summarize the initial-value problems and their corresponding initial partial solutions.

The determination of the combination coefficients for the partial solution will also be

presented accordingly.

Initial-value Problems

Equation (3.4.1) may be further decomposed into the following set of initial-

value problems.

d
dS0

and

d
dS0

af* af' af'-
gc aT

agi*

aT

an. ah an.
ak aT

f

To T h

af' af' af'
aXk air aT

ag;* agi*

aT

ah ah ah
akk ail aT

i,k =l, N; j,l= {1,2,...,N \ e}

(3.4.6a)

(3.4.6b)



where

{Y °} =

61

(2.4.7)

are the particular solution and homogeneous solutions, respectively. For convenience,

the particular and homogenous partial solutions for direction cosines and tension may

be written hereafter as

{(g}
{4)1} =

To " ={T} (2.4.8)

Initial Partial Solutions

The following initial partial solutions which satisfy the boundary conditions at

a starting point are specified to initiate the numerical integration of the initial-cable

problem posed by Eqs.(3.4.6).

1) Kinematic Boundary Conditions:

(3.4.9a)

(3.4.9b)

(3.4.9c)
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0.01 0 0
(3.4.9d)

[4),1 = 0 0.01 0

0 0 T'

k=1, N; jE{1,2,...,N \

where fril is the known velocity vector at the starting end. If {)(} Eqs. (4.3.9)

specify a hinged (stationary) boundary condition as a special case of the kinematic

boundary conditions.

2) Force Boundary Conditions:

WI = {0}

[xii] = [ [

Rik] = ]

(3.4.10a)

(3.4.10b)

(3.4.10c)

(3.4.10d)

where [I] is an identity matrix; I; and ar l3Xk can be found in Eqs.(3.4.4b) and

(3.4.4d),respectively. [Cul is an NxN matrix written in the form

[cn = [01; al;
aT (3.4.10e)
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[Cn = + C3 0 C2
Oe °I (3.4.101)

0 Cl +C2 C3

CI +C3 0 C1

[Co] = C3 C2 if (Pe = (1)2 (3.4.10g)
0 Cl +C2 C3

C2 +C3 0

[C)* = 0 CI +C3 C2 Oe = 4)3
(3.4.10h)

1
C2 C3

In Eqs.(3.4.10f) through (3.4.10h) C1= 01'(1) 1', C2 = 02'4)2* and C3 = 03.03.*

For a two-dimensional problem

[Cin =
C2 C1

C1 C2 (3.4.10i)

Intermediate Partial Solutions

In order to continue the numerical integration across an intermediate body, the

partial solutions have to be updated according to the following continuity and

equilibrium relations.

{a .O}
b)10}

aJ[ = [bkj

{ ac13I = { 6.4):

(3.4.11a)

(3.4.11b)

(3.4.11c)
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[ b(1);Al
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(3.4.11d)

k=1,..., N

j=1, 2,..., 2N

where left superscripts, "b" and "a", respectively, represent the partial solutions

"before" and "after" the intermediate body if one follows the direction of spatial

integration. The Jacobian matrix [Jul can be found in Eqs.(3.4.3)

Determination of Linear Combination Coefficients

Let Eq.(3.2.6) be written in a simplified form as [A,,Wk1={Bi}, the

coefficients of [A,Ij and {13,} may be determined as follows according to the

boundary conditions at the terminal end. Then, { can be readily determined.

1) Kinematic Boundary Conditions:

[A ai = [X 41

=

(3.4.12a)

(3.4.12b)

where {xsi} is the specified velocity vector at the terminal end. If {xsi} = 0,

Eqs.(3.4.12) determines the combination coefficients {-k} for the hinged (stationary)

boundary condition, as a special case of the kinematic boundary condition.

2) Force Boundary Conditions

At the terminal end, the linearized force boundary conditions Eq.(3.4.4a) may

be written as



IA, + 1,0= o

Upon substitution of Eq.(3.2.1) into (3.4.13),

or

Therefore

[J;

{_ki+

43°,± [43/J{k} -43;

=

! {[5(
] }

[A ;k] = [J i'

j
] .1k

[4)kJ

{B; }= [J,,*]

X1 xi
1:

cf/* C

I:

k, 1=1, 1,..., N; j =1, 2,..., 2N

where [fin and 7: may be found in Eqs. (3.4.4).
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(3.4.13)

( 3.4.14a)

(3.4.14b)
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For the free end boundary conditions, the equivalent expression can be derived

by replacing 7: and [,/ ;] in Eqs.(3.4.14) by L,' and the corresponding Jacobian

matrix specified by Eqs.(3.4.5).

3.4.4 Application of Suppression Scheme

A general description of the suppression method has been given in Section 3.3.

In the following, the implementation of the suppression scheme is summarized.

1) Out of the 2N dependent variables, only N can be chosen to be suppressed.

The choice of these N dependent variables is arbitrary. In the present study,

the direction cosines and tension magnitude are selected.

2) The artificial boundary values in Eq.(3.3.5) are given as: p,o= (1)*; p; =0.01,

(i=1,2,...N-1) and p,,,N=T*.

3) Whenever a direction cosine in a vector of the partial solution exceed 0.9,

the suppression is performed on that vector for the present and all previous

suppression points.

3.4.5 Solution Algorithms

The algorithms implementated in the computer code KBL92 is given below:

1) Input the required data and nondimensionlize all the variables.

2) Input initial configuration {XI direction cosines and tension {(1),}. Input or

generate initial velocity components {).0 and acceleration {Jo, For restart
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or time decremental problem,input cable strain {E} and time derivative of

direction cosines and tension, {8 ok} and ovatl.

3) Initialize the payout flag and cable/bottom contact flag. IPAYOT=0, and

IST ATE =0.

4) Proceed one time step t=tP+At.

5) Check payout state. If time is greater than or equal to the start time of

payout and the payout rate is greater than zero, IPAYOT=1.

6) Initialize the guessed solutions {X,*}, {X} and {(1)*}, and the previous

solution {X,P}, WI and {(1)P} for all integration points. If IPAYOT=1,

extrapolate the guessed and previous solutions for the new points being paid-

out.

7) Generate initial partial solutions at the starting end according to

Eqs.(3.4.9) or (3.4.10).

8) Integrate quasi-linearized Eqs.(3.4.6) with the initial partial solutions

specified in step 7) along the cable scope using Runge-Kutta-Gill method.

If necessary, suppression may be accomplished. The suppressed partial

solutions at all suppression points are stored for obtaining combined

solution.

9) Calculate [A,k] and {A} by Eqs.(3.4.12) or (3.4.14) and solve for

combination coefficients vector {M. The particular partial solutions at all

previous suppression points are then suppressed using the coefficients {k}

in order to satisfy the terminal boundary conditions.
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10) Integrate the particular partial solutions between all suppression points to

obtain a new solution for {X} and {(1);}.

11) Update the guessed solutions with the present solutions {X} and {43} for

the next iteration.

12) Compute coordinates {X,} by numerical integration of Eq.(2.4.2).

13) If X1 coordinate of the terminal end is greater than water depth,

cable/bottom contact occurs, ISTATE=1.

14) Check the convergence criteria by Eq.(3.1.6). Repeat steps 6) through 13)

until the stipulated convergence criteria is met.

15) If in cable/bottom contact state, change the integration scope of the last

cable segment in order to meet the constraint (2.5.11) on water depth.

Repeat 6) through 15) until the constraint is met.

16) Evaluate time derivative of {X} and {43,} by the Newmark-like implicit

integration formulas (2.6.1).

17) Terminate the process if the solution has reached the steady state.

18) Print at selected time step the convergent solutions of {X,}, vo and {(1),}.

19) Repeat steps 4) through 18) until the prescribed number of integration time

steps are finished.
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4.0 SAMPLE PROBLEMS

In this chapter sample problems to validate and demonstrate the capabilities of the

solution algorithms developed in the previous chapters are presented. There are five

sample problems.

Problem 1 investigates a pendulum oscillating in air and in water. It is selected

to validate the solution algorithm by comparing the numerical and analytical solutions.

This problem examines the effects of hydrodynamic damping and of numerical damping

introduced by the integration scheme. A decremental results is also presented.

Problem 2 considers the dynamic response of a moored surface buoy subject to

regular and irregular waves. High quality experimental data is available for comparisons

from experiments recently conducted by the U.S. Naval Academy Hydromechanics

Laboratory under the sponsorship of the Naval Civil Engineering Laboratory.

Problem 3 shows the transient response of a towed cable/object. The results of

a similar case with three cable segments, each having different properties, is also given

to demonstrate the program capability of dealing with material discontinuities.

Problem 4 is a towed cable with a free end. In order to avoid the singularity, i.e.

T=0, at the free end of the cable, the special boundary condition developed in Section

2.5.2 is applied.

Problem 5 consists of three cable segments and two intermediate bodies being

paid-out from a moving vessel and deposited onto the ocean floor. This example

demonstrates the ability of the present solution algorithm to deal with payout boundary
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conditions and slack-cable/ocean-bottom contact boundary conditions.

4.1 Problem 1: Pendulum Oscillating Air and in Water.

A definition sketch of the pendulum problem is shown in Fig.4.1. This example

is intended to show the validity of the present solution algorithm by comparing the

numerical solution to the analytical solution and to examine the numerical damping effect

that may be introduced by an inappropriate integration scheme. To accomplish this, a

displaced initial configuration with small initial angle (00=5.732 degree) is obtained by

applying a horizontal force of 98.1 N at the body. The body is then released at time t =0

and allowed to oscillate.

The cable and body properties are summarized in the following:

Gravitational constant = 9.81 m/s2

Mass density of water = 1020.0 kg/m3

Cable:

Unstretched length = 5.0 m

Diameter = 0.01 m

Mass per unit length = 0.00001 kg/m

Material = inextensible

Normal Drag coefficient = 1.2

Tangential drag coefficient = 0.02

Added mass coefficient = 1.0
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D

Figure 4.1 Pendulum Oscillating in Air and in Water
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Spherical body:

Radius = 0.2 m

Mass = 103.48 kg

Drag coefficient = 1.0

Added mass coefficient = 0.5

For the undamped (in air) small amplitude free oscillation, the analytical solution

is readily available for comparison.

Oscillation period:

T = 2ir = 4.4875 seconds

Maximum velocity at lowest point:

ginax = 2gh = 0.70036 m/s

Numerical simulation of the time history of the motion and of the velocity in the

X2 direction are plotted in Figs.4.2 and 4.3, respectively. Numerical damping effects

(amplitude decay and period elongation) are observed for the case of a =1.0 which

corresponds to the backward difference formula adopted in KBLDYN. On the other

hand, almost no amplitude decay (numerical damping) can be observed for the case of

a =0.5, corresponding to the Newmark-like (Eq. (2.6.1)) implicit integration scheme. The

numerically undamped solutions (a =0.5) for the period and the maximum velocity of the
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body are 4.5 seconds and 0.7 m/s, respectively, which are in close agreement (99.7%,

100.1%) with those of the theoretical solution.

Incremental solutions for horizontal and vertical coordinates of the body in water

damped oscillation are plotted along with the decremental solutions in Fig.4.4. The

decremented results were obtained by using the "final" state solution, achieved by an

incremental run, as the "initial" condition and integrating backward by setting a negative

time step and "initial" time > 0. This so called "Time Decrement Method" was shown to

be analytically sound and easy to implement and may have advantages over the "Time

Increment Method" when incorporating the dynamic simulation program into an

optimization and control program for designing and monitoring installation procedures

of the cable/lumped-body system (Leonard,1989). It can be seen that the decremented

solution reproduces the incremented solution very well over the majority of the time

history. A small deviation can be detected only near the beginning of the time history.

However, it was found that the decremental scheme is more sensitive than the

incremental method regarding its numerical stability. When trying to obtain decremental

solutions for some other examples, divergence may happens during the numerical

integration.
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4.2 Problem 2: Wave Loads on Moored Buoy

The Naval Civil Engineering Laboratory (NCEL) and the United States Naval

Academy (USNA) conducted scale model buoy tests at the USNA. Hydromechanics

Laboratory in September 1989. Those tests were designed to provide experimental data

for validating cable /buoy computer programs. Tethered buoys were tested in both regular

and random tow-dimensional seas. Buoy responses (pitch,heave,and surge) were

measured using advanced high speed video/computer system techniques. The data

collected are high quality and suitable for the purpose of validating numerical simulation

models of cable/buoy systems (Harris and Shields,1990)

A definition sketch is shown in Fig. 4.5 for a spherical buoy. Details of the

experimental setup are given by Harris and Shields (1990). A 4-inch diameter spherical

buoy floating on the water surface was moored with 17.33 feet of slack line in 16 feet

deep water. Prior to data collection, waves were produced and the buoy was allowed to

move to an offset position. The buoy response motions (heave, surge, pitch) and tensions

at top and bottom of the mooring line were then recorded. The mooring line and buoy

parameters are summarized as follows:

Gravitational constant = 32.2 ft /s2

Mass density of water = 1.99 slugs /ft3

Cable:

Unstretched length = 17.33 ft.

Diameter = 0.013 ft.

Mass per unit length = 0.0004503 slugs/ft.
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Figure 4.5 Definition Sketch of Naval Academy Experiment



Buoyant weight per unit length = 0.006 lb/ft.

Modulus of elasticity = 14,000 psi.

Normal Drag coefficient = 1.2

Tangential drag coefficient = 0.03

Added mass coefficient = 1.0

Buoy:
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Radius = 0.16667 ft.

Mass = 0.0158385 slugs

Drag coefficient = 0.5

Added mass coefficient = 0.5

To numerically simulate the experiment, the surface buoy was first statically

displaced to an initial offset equilibrium position by applying a horizontal force at the

buoy. The dynamic analysis of the mooring system was then conducted. The fictitious

horizontal force was gradually removed so as to reproduce the real experimental

condition.

Two typical test cases were chosen to make comparisons between numerical

predictions and experimental measurements.

Sphere Regular Wave Test SRH30A: ( wave height=1.333 ft, wave period =3.333

seconds)

The numerical integration along the cable was conducted in 61 spatial steps from

the anchor to the buoy. The run was made for a total of 600 time steps with time step

size of 0.4 second which is approximately 1/9 of the period of incident waves. A
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nondimensional error tolerance of 0.05 was selected for the convergence criteria in the

iteration process. The Newton-Raphson process typically converged in about 2 to 4

iterations.

As shown in Figs.4.6 and 4.7, the time histories of buoy heave and surge

obtained by the present numerical model compare favorably with the experimental

measurements. However, the present simulation seems to underestimate the buoy heave

motion by 10 percent and the surge by 16 percent. This may be attributed to the buoy-

water-air interaction and the buoy rotation effects. The tension history at the top of the

mooring line and at the anchor are given in Fig.4.8. Unfortunately, the measured tension

history can not be used for comparison because the tension was not accurately recorded

in the experiment due to sensitivity problems associated with the tension gage.

Sphere Irregular Wave Test SIH3OB: (Bretschneider spectrum: significant wave

height =1.333 ft., peak frequency =0.3 second.)

The predicted random response of buoy heave and surge are shown in Fig.4.9 and

Fig.4.10. In order to compare them with the experimental records, it is convenient to

chose a coordinate system such that the mean value for each time history of the response

is zero. The Root Mean Square value (RMS) for the numerical results and experimental

records were then calculated by

RMS = dt1 Td

T

where h(t) is time history of the response, Td is the duration of the time history.
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The RMS values for the buoy heave and surge motions of both numerical

prediction and experimental records are compared in Table 4.1.

Table 4.1 Comparison of RMS Values of Buoy Random

Heave and Surge Motions (unit: inch)

Numerical results Experimental data

Heave 3.3415 3.9028

Surge 3.1582 5.3256

The comparison of the RMS values between predicted and measured random

heave response gives acceptable 14 percent relative error. However, for random surge

response the relative error of RMS value is as large as 40.7 percent. Again, this may

have resulted from the buoy-water-air interaction and buoy rotational effects. The random

response of the tension at the top of the mooring line is given in Fig.4.11. Again, the

experimental data collected could not be used reliably for comparison.
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4.3 Problem 3: Towed Cable/Object

The example depicted in Fig.4.12 is used to demonstrate the program capability

of dealing with a 2-D towing problem. At time t=0, the tow vessel is in a standstill

condition and the cable is in a vertical straight line configuration. The vessel then

undergoes constant acceleration of 0.025 m/see until it reaches a steady towing speed

of 1.5 m/s. The input data for the cable and towed object are summarized as follows:

Cable:

Mass density of water = 1020.0 kg/m3

Unstretched length = 20.0 m

Diameter = 0.04064 m

Mass per unit length = 1.338021 kg/m

Buoyant weight per unit length = 0.14594 N/m

Modulus of elasticity = inextensible

Normal Drag coefficient = 1.2

Tangential drag coefficient = 0.015

Added mass coefficient = 1.0

Object:

Radius = 0.5 m

Buoyant weight = 58.17 N

Drag coefficient = 0.5

Added mass coefficient = 0.5
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Figure 4.12 Definition Sketch of Towed Cable/Object
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The tow process was simulated for a total of 100 seconds with a time step size

of 1.0 second. A relative tolerance of 0.05 was selected and convergence was achieved

typically in 2 to 3 iterations. Fig. 4.13 shows the deployed cable configurations at

various times as the tow speed increases. The results of a similar towing problem with

three cable segments,each having different material properties summarized in Table 4.2,

is given in Fig.4.14 to illustrate the program capability of dealing with material

discontinuity.

Table 4.2 Material Properties for Different Cable Segments

Cable seg. No.

Property I II III

cable diameter (m) 0.04064 0.07938 0.0254

segment length (m) 20.0 10.0 10.0

buoyant weight (n/m) 1.14594 0.0 0.03557

mass (kg/m) 1.33802 5.04726 0.52046
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4.4 Problem 4: Towed Cable with Free End

This is an illustrative example for testing the free end boundary conditions

developed in the Section 2.5.2. As shown in the definition sketch, Fig.4.15, a 40 m long

cable with a free end was towed from an initial vertical straight configuration in the

absence of surface waves and subsurface currents. The ship velocity was varied linearly

from 0.15 m/sec to 1.5 m/sec. The towed cable parameters were selected from the

realistic towed array system supplied by Rispin (1980) of the David W. Taylor Naval

Ship Research and Development Center (Ablow and Schechter,1983).

The input data are summarized in the following:

Gravitational constant = 9.81 m/s'

Mass density of water = 1020.0 kg/m3

Unstretched cable length = 40.0 m

Diameter = 0.04064 m

Mass per unit length = 1.561166 kg/m

Buoyant weight per unit length = 2.3350 N/m

Modulus of elasticity = inextensible

Normal Drag coefficient = 1.2

Tangential drag coefficient = 0.015

Added mass coefficient = 1.0

To avoid the singularity at the free end, a point P was specified at 1.6 m from

the free end. The free end boundary condition were then applied at the point P. From the
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point P to the free end, the cable is assumed to be a straight line. The velocity

components at the free end were calculated by extrapolation. The dynamic simulation was

conducted with time step size of 1.0 second. The solution typically converged to 0.05

relative error tolerance in about 3 to 4 iterations. The deployed cable configurations at

10 seconds intervals from 0 to 100 sec. are shown in Fig.4.16.
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4.5 Problem 5: Cable/Lumped-Body Payout with Bottom Contact

This example is used to demonstrate the capability of the present solution

algorithms to deal with payout boundary conditions and slack-cable/ocean-bottom contact

boundary conditions. The example, as depicted in Fig.4.17, is composed of three cable

segments and two intermediate bodies. The cable is paid out at a constant payout rate

relative to the moving vessel and deposited onto the ocean floor. The same cable

parameters as those used in problem 4 were selected. For the first 60 seconds, the system

is towed from an initial vertical straight configuration with tow speed varying linearly

from 0.15 m/sec to 0.5 m/sec. The payout operation is then started with a constant

payout rate of 0.6 m/sec. Because the payout rate is greater than the vessel speed, slack-

cable/bottom-contact is expected at the sea floor located at 48 m below the payout point.

No surface waves or subsurface currents were considered for this problem.

The input data are summarized in the following:

Gravitational constant = 9.81 m/s'

Mass density of water = 1020.0 kg/m'

Vessel tow speed (ramped) = 0.15 to 0.5 m/sec.

Start time of payout = 60.0 sec.

Payout rate =0.6 m/sec

Water depth = 48.0 m
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Figure 4.17 Cable/Lumped-Body Payout with Bottom Contact
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Cable:

Initial length of each segment = 7.5, 10.0, 30.0 m

Diameter = 0.04064 m

Mass per unit length = 1.561166 kg/m

Buoyant weight per unit length = 2.3350 N/m

Modulus of elasticity = inextensible

Normal Drag coefficient = 1.2

Tangential drag coefficient = 0.015

Added mass coefficient = 1.0

Spherical bodies:

Radius = 0.1 m

Mass = 6.2726 kg.

Drag coefficient = 0.5

Added mass coefficient = 0.5

The numerical integration was performed using a time step size of 2.5 seconds.

Convergence was achieved typically in 4 to 8 iterations for the specified 0.01 relative

tolerance. Fig.4.18 shows the deployed configuration of cable/lumped-body system at

intervals of 5 seconds from 30 to 125 seconds. The system is towed without deployment

from 0 to 60 seconds. The bottom contact occurs at time of 70 seconds. The total payout

length of the cable is 39 m at a time of 125 seconds (initial length =7.5 m). Curvature

changes can be observed when the cable crosses a body. The velocity components profile
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and tension magnitude profile at 100 seconds are given in Fig.4.19 and Fig.4.20. The

velocity and tension magnitude at the touch-down point are zero because of the

assumption that the cable is not dragged along and slack cable is deposited on the ocean

bottom. Sudden drops in tension magnitude are shown across the bodies as would be

expected.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

An improved numerical algorithm for the time-domain simulation of the

nonlinear response of a cable/lumped-body system subject to hydrodynamic loadings

is developed based on the direct integration method with suppression of extraneous

erroneous solution. The main contributions of present study can be summarized as

follows:

1) The governing equations of the system are set up from the dynamic

equilibrium conditions and kinematic conditions with dependent variables of cable

velocity components, direction cosines and tension magnitude such that the potential

singularities. i.e.T =0, are only present in the equations for the direction cosines. The

equations written in such a form provide benefit when dealing with some particular

boundary conditions where singularities exist.

2) The numerical damping that exists in KBLDYN is eliminated by introducing

a stable Newmark-like implicit integration scheme. The previous integration scheme

based on a backward finite difference formula is a special case (a = 0.0) of the present

scheme.

3) The suppression method is used in conjunction with the Newton-Raphson

quasi-linearization and decomposition technique for the solution of the quasi-static

nonlinear two-point boundary-value problem. The suppression method is shown to be

a conceptually simple but efficient numerical technique in controlling the growth of
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extraneous erroneous solutions during the direct integration of the partial solutions.

4) The treatment of some special boundary conditions that may be encountered

during cable/body installation procedures were investigated. a) The simplified free end

boundary conditions are obtained by integrating the cable dynamic equilibrium

equation for tension magnitude from the free end to a point P, a short distance from

the free end, in order to avoid the singularity at the free end. b) The payout boundary

conditions and slack-cable/ocean-bottom contact boundary conditions are included in

the present solution algorithm.

5) The "time decremental method" is examined by a numerical example.

6) The validity and capability of the present theoretical formulation and

solution algorithm have been shown by examining a set of sample problems and

comparing the numerical solutions with available analytical or experimental results.

5.2 Discussion

1) The present formulation based on the dependent variables of velocity

components, direction cosines and tension magnitude provide potential benefit in

dealing with some particular boundary conditions that may be encountered in the cable

deployment problem. However, the direction cosine to be eliminated ybe must be

different from zero because it appears in the denominator of Eq.(3.4.2r). It should be

chosen such that it does not have zero value within the cable scope at a time step.

Therefore, the present solution algorithm fails if the zero values exist within the cable

scope for all the direction cosines. For two-dimensional problems, this happens when
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both vertical and horizontal cable points exist simultaneously within the cable scope.

Fortunately, this situation seldom happens for realistic cable deployment problems.

2) For a system of order 2N, only N dependent variables can be chosen to be

suppressed. The choice of these N quantities is arbitrary. Since the direction cosines

and tension magnitude are chosen in the present study, there is no direct control of

velocity components. The growth of extraneous erroneous velocity components may

still be leading to cause instability of the direct integration of partial solutions.

3) By comparing the numerical prediction with the experimental measurements

in Example :2, the current numerical model seems to underestimate the buoy motion

in general especially for buoy surge motion. This may be attributable to the buoy-

water-air interface and buoy rotational effects.

5.3 Future Research Possibilities

Following is a list of important areas where further research is needed.

1). Further investigation is needed regarding the suppression scheme on the

direct control of the growth of extraneous erroneous velocity components.

2) The numerical simulation of actively controlled cable deployment should be

further modified to include the simulation of the body being paid out from the moving

vessel or deposited onto the inclined ocean floor. In such a case, not only the cable

integration scope and the water depth are variable but also the problem definition

changes as the payout operation proceeds.

3) In the simulation of the cable installation problems, it is the values at a
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future "desired" status that are most important, rather than the history of how they

were obtained. Therefore, it is highly desirable to successfully implement the "time

decremental method" (Leonard,1989) in the present numerical model for the

cable/lumped-body systems. Further investigation is required regarding its numerical

stability.

4) It is necessary to combine the present study with that made to enhance the

treatment of buoy rotational effects to provide a more accurate computer simulation

program of moored buoy response.
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