Af ABSTRACT UF ThE THESIS UF
SALEH HASSAN IBRAHIN for the degree of Naster of Science in Nuclear Engineering presented on uctober 28, 1987. Title:_COMPUTER CONTROL OF THE AUTOMATIC GANMA WELL COUNTING SYSTEM
Abstract Approved: Redacted for Privacy
STEPHEN E. BINKEY

This project implements the control of an AUTUMATIC GAMMA WELL counting system with an AIM-65 microcomputer. All states and control signals to and from the Alll-65 are obtâined via three VIAs (Versatile Interface Adaptors). Motor controls were implemented using triacs, operational amplifiers and TL logic devices while the RTC (Real Time Clock) utilizes a 32.768 kHz quartz precision crystal and battery backup.

The radiation detection system can handle solid or liquid phase gamma ray emitting samples. Samples may be prepared in $15 \mathrm{~mm} \times 110 \mathrm{~mm}$ bottles or in $15 \mathrm{~min} \times 125 \mathrm{mil}$ test tubes and placed in receptacles on the conveyor belt of the sample changer. Under software control, selected samples can be lowered into the well of the detector and counted. A hardcopy of the parameters used in setting up the experiment as well as the results may be obtained on a teletype.

Computer Control of the AUTOMATIC GAMMA WELL counting System by

SALEH HASSAN IBRAHIM

```
                        A. THESIS
        submitted to
        Oregon State University
```

 in partial fulfillment of
 the requirements for the
 degree of
 Master of Science
 Completed Uctober 28. 1987
 Comnencement June 1988

Redacted for Privacy

Professor of Nuclear Engtneering in charge of major

Redacted for Privacy

Head of Lepartment of Nuclear Engineering

Redacted for Privacy

Date thesis is presented
October 28. 1987
Typed by SALEH HASSAN IBRAHIM for SALEH HASSAN IBKAHIM
table uf cuntents
UHAPTER I. INTROUUCTIUN 1
1.1 Purpose of equipment 1
1.2 Description of units 2
1.3 Specifications 5
1.4 Principles of operation 8
CHAPTER II. MICROCOMPUTER SELECTIUN 10
2.1 HP-IL interface 11
2.2 HP87/HP-IB interface 13
2. 3 Intel 8748 microcomputer based design 14
2.4 AIM-65 microcomputer 16
2.56522 VIA 19
CHAPTER 111. POWER SUPPLY aND PERIPGERALS SELECTIUN 20
3.1 Power supply ana triac 22
3.2 Keal time clock (RTC) 28
3.3 Ouad counter/tinier 33
3.4 Drive motors 34
3.5 Contact switches 35
CHAPTER IV. COMPUTER INTERFACE dESIGN
FUR PERIPHERALS 36
4.1 Interfacing the real time clock (RTC) 36
4.2 Interfacing the UKTEC 874 timer/counter 42
4.3 Interfacing the motors and contact switches 53
4.4 Light emitting diodes (LED) 54
4.5 Hardware assembly and testing 60
CHAPTER V. SOFTWARE 62
5.1 Uverview of 6502 assembler and the basic-E/65 62
5.2 Assembier routines 63
5.3 Basic programs and subroutines 65
CHAPTER VI. BIBLIOGRAPHY 67
APPENDICES
A. User's manual 69
B. Componerts layout and CAtLEs 82
C. Program listings 92

LIST UF FIGURES

Figure Page
2.1 The mos technology 650 microprocessor 18
3.1 System power transformer 23
3.2 Triac/low voltage power supply 24
3.3 Auxilliary power supply 25
3.4 Triac pellet structure, circuit symbol and ac volt-ampere characteristics 27
3.5 Block diagram and pin out specifications of the National Semiconductor min58167A real time clock 30
3.6 Block aiagram and pin out specifications of the National Semiconductor MM5yl74A real time clock 31
4.1 Real time clock interface circuit with the VIA2 (9F80-9F8F) 37
4.2 urtec timer/counter interface circuit with a UART 43
4.3 LEU interface and baud rate selector (A000-A00F) 47
4.4 urtec timer/counter interface circuit with a software UART 50
4.5 Down-motor ariver 54
4.6 Up-motor driver 57
4.7 Sample changer-motor ariver 58
B.l Component layout on interface card 82
B. 2 Component layout description 83
B. 3 Detailed layout of resistors, transistor and aiode 84
B. 4 Connections of CABLE A to VIA (AUUO-hOUF) 85
B. 5 Connections of CABLES t ana C to V1A. 2 and VIA. 3 repectively 86
B. 6 Connections of Cable u to the LEUS daud rate stiector 87
b. 7 Signals on interface card ana auxilliary power supply card connectors 88
B. 8 Wire wrap plugboard edge connector 89
b. 9 Solder plugdoara eage connector 90
B.lU Amphenol connector for 20 mA loop 91
C. 1 NISC.PRN listing 92
C. 2 PROJ. BAS listing 100
C. 3 PKUJZ. bas listing 130

LIST UF TABLES

Table Page
1.1 Efficiency and Average background Neasurement 7
2.1 I/U location summary and ports of the VIA 20
4.1 Uecoding logic for the real time clock (RTC) 39
4.' Baud rate selection for the urtec 874 48

COMPUTER CONTROL OF THE AUTOMATIC GAMMA WELL COUNTING SYSTEM CHAPTER I

INTROUUCTIOR

1.1 PURPOSE OF EQUIPMENT

The Automatic Gamma Well counting systems as built by Nuclear Chicago are transistorized radiation detection systems for solid or liquid phase gamma ray emitting samples. The systems have the capability of counting up to 100 individual solid and/or liquid gamma emitting samples in a well-type scintillation detector chamber. The models produced range from 4216 through 4223. The modeis were classified into single-channel counting systems (4216 through 4219) and duai-channel counting systems (4220 through 4223). Some were further designed for 60 Hz power operation (4216.4218.4220 and 4222) and others for $50 \mathrm{~Hz}(4217.4219 .4221$ and 4223). Each of these models basically comprises an automatic sample changer, heavily shielded well-type scintillation detector, analyzer. scaler or combination analyzer/scaler. printing lister, logic assembly and the
necessary low voltage and high voltage power supplies. Even though the scalers, analyzers, listers and logic assemblies have long since become obsolete, the heavy shielding and nearly 4-pi detection geometry provide excellent sensitivity ana resolution. Auxiliary power receptacles are also provided on the modules for connection to external equipment (1).

$$
\text { 1. } 2 \text { UESCRIPTION OF UNITS }
$$

An older Gamma Well counting system at the Oregon State University kadiation Center has been upgraded (by the exclusion of some units that are now obsolete and the inclusion of modern electronic devices) into a nore state of the art controlled system.

Unly the units that are retained for this project will be described as most of the electronics that came with the system have been discarded in favor of the more modern NIM BIN-compatible electronic devices. The units that have been retained are the sample changer, detector assembly and the low and high voltage power supply. The automatic well changer available is the 1085 model while the scintillation well cetector is of the type 972 and the counting system model is 4218.

1.2.1 SARPLE CHANGEE

The sample changer is comprised of a mechanically driven conveyor belt and eievator mechanism. The conveyor linked belt is readily accessible for the ease of loading and maintainance. The sample elevator mechanism "bottoms" all bottles (indexed at the elevator) in the crystal well regardiess of the bottle length.

Samples may be prepared in the $15 \mathrm{~mm} \times 110 \mathrm{~mm}$ botties provided or in $15 \mathrm{~mm} \times 125 \mathrm{~mm}$ test tubes. The bottles and the test tubes may be intermixed if desired. An adapter is provided for holding the various bottle sizes or the test tube size in the conveyor belt. Receptacles on the conveyor belt are numbered consecutively from 0 through 99, where 0 is equivalent to the 100 th sample. The sample changer unit is equipped with seven contact switches for "sensing" various states of the system to effect complete controllability (1).

1.2.2 DETECTOR ASSEMBLY

The detector assembly consists of a preamplifier circuit, photomultiplier tude, and scintiliation crystal. The thallium-activated sodium iodide $[\mathrm{NaI}(\mathrm{Tl})]$ crystal provides high sensitivity and resolution with nearly 4-pi detection geometry for small volume samples. It is
optically coupled to the photo-catnode face of the photomultiplier tube and except for the polished photo-cathode surface is enclosed by a lignt reflecting shield on all sides. The photomultiplier tude is shielded by extensive mu-metal magnetic shielding. The shielding is of steppea, interlocking construction for ease of assembly and for maintaining shield integrity. Additional steel shielding is also employed vetween the detector assembly and the samples in the changer conveyor belt (1).

> 1.2.3 TRIAC/LOW VOLTAGE POWER SUPPLY

About the only piece of electronics that has been retained from the old system is the triac and low voltage power supply card. This card carries the triacs that are used for driving the three motors and also performs a full wave voltage rectification to provide the d.c. operating voltages of $-15 v,+15 v$ anc other transistorized derivatives $(-3 v,+6 v)$. The 1 atter will not be used in this project. The full details are given in chapter IV.

1.3 SPECIFICATIONS

1.3.1 SAMPLE CHANGEK

SAMPLE CAPACITY - 100
SAMPLE SILE - 5 cubic centimeter recommended. $15 \mathrm{~mm} \times$ 110 mm bottles or $15 \mathrm{~mm} \times 125 \mathrm{~mm}$ test tubes.

SAMPLE ELEVATOR - positive rack-ana-pinion.
DRIVE mECHANISN - heavy duty motors with reduction trains.

1.3.2 DETECTUR

CRYSTAL - Sodium iodide, thallium activated [NaI(Tl)]. Hermetically sealed 7.62 centimeter diameter $\times 7.62$ centimeter thick.

Multiplier phototube - 10 stage with mu-metal and iead shields.

VULTAGE PLATEAU - 150 volts long, with 5% slope per $1 \cup 0$ volts (witn Co-60).

SHIELDING - 8.89 to 12.7 centimeters of lead around siaes of detector, 25.4 centimeters of lead above crystal, combination of steel and several centimeters of lead below crystal. Steel shielding between detector assembly ard samples in conveyor delt.

RESULUTION - APDROximately 8% for cesium-137.

EFFICIENCY AND BACKGROUNU - The efficiencies and average background measurements of the aetector for Cesium-137 and Cobalt-6u standards are given in Table 1.1.

TABLE 1.1 UETECTOR EFFICIENCY AND AVERAGE BACKGROUNL

Standard	Cesium-137			Cobalt-6u					
Energy range	$\times 4$	$\times 5$	$\times 1$	X ${ }^{\circ}$	Ko		$\times 7$	$\times 3$	$x 2$
Efficiency \%	-	-	22	39		-	-	18	50
Average									
Background cpm	-	-	30	360		-	-	20	360
Backgrouna									
variation									
(cpm/microcurie)	4(-4)	. 14	-	-		.016	. 5	-	-
$\left(+/-20^{\circ}\right) \quad(+/-15$									

$X 1=200 \mathrm{keV}$ window at lesium-137 photopeak
$X 2=100 \mathrm{keV}$ to infinity
$x 3=500$ kev window at Cobalt-60 photopeak
$X 4=611$ to 711 keV
$x 5=x 2$
$X 6=1.1$ MeV to 1.3 MeV
$x 7=208$ kev to infinity

HIGH VOLTAGE - +400 V to 2600 V .

1.4 PRINCIPLES UF OPERATIUN

Gamma ray emitting isotopes emit electromagnetic rays with an energy spectrum particular to that isotope. Hence eacn different isotope can be detected by its energy spectrum, dy making use of a detector with a response proportional to the energy of these inciaent electromagnetic rays. Gamma rays produce scintillations through linear reactions in a thallium activated sodium iodide crystal. These reactions are Compton scattering, photoelectric effect ana pair production. Any combination of these reactions which results in absorption of energy of the gamma rays will proauce scintillations or "light fiashes" in the crystal. The total magnitude of these scintillations is proportional to the gamma ray energy lost in the crystal. Tne scintillations are aetected by a photomultiplier tube optically coupled to the crystal, and then converted to current pulses with amplitudes proportional to the energy of the incident gamma rays. The voltage pulses produced by the detector are amplified by the pre-amplifier and amplifier and are coupled to the single channel analyzer (SCA). The SCA aiscriminates pulses to be counteo
against undesired puises.

CHAPTEK II

MICRUCUMPUTEK SELECTIUN

In this age of computer revolution, there is a move to more dependence on automated and computer controlled systems. Considerabie programmable instrumentation meeting these trends is being put on the market today. In keeping with these trends, engineers and scientists alike are adopting a philosophy of "designed-in expandability and modification" in their instrumentation and data acquisition systems. This inevitably means that most of the instrumentation used for research and development today has at its core a microcomputer system or a microprocessor based controller. Microcomputers certainly offer an excellent opportunity for expandability as additional interfaces can easily be a daed to the bus and software modified to meet additional requirements.

In the light of these developments, it is of paramount importance for the system engineer to carefully select a microcomputer or microprocessor-based system that will best suit his or her requirements. In addition certain universal characteristics such as high reliadility, low power dissipation, small size, easy
serviceability and low cost are desirable in any system (3). In this project iterations of selection and evaluation of microcomputers were necessary before a final computer system was adopted.

2.1 HP-IL INTERFACE

The first system considered was an HP-41CV type controller. The main idea benind this was to reconfigure the HP-4ICV calculator as the main controller and interface it to the sample changer using the her-IL loop. HP-IL, the Hewlett-Packard Interface Loop, is a digitai communication system designed primarily for portable devices (4). Devices are connected in a circular loop structure with aigital messages traveling from one device to the next around the loop in one direction only. HP-1L is a master/slave system. Une of the devices on the loop is designated the loop controller and this device has the responsibility of transmitting all commands to the other devices on the loop. The HP 4l-C(V.X) can act as an HP-IL controller when it is equipped with the appropriate plug-in module.

Much like the IEEE 488-Bus structure, each device on the HP-IL loop nas an adaress and is designated as eitner a controller, talker or iistener. A device may nave one of the three capabilities or may include some
combinations of the capabilities. Talkers often have listener capabilities and controllers almost always have both talker and listener capabilities as well.

Functionally the HP-IL may be considered as a bit-serial version of the HP-IB (Hewlett-Packard's implementation of IEEE-488) (5).

Message on the loop is sent as a sequence of eleven bits. The electrical connection between one device and the next is a differential, voltage-mode, two-wire balanced line. Both wires float with respect to buth devices ground connections. une wire is reference and the voltage on the other wire is measured with respect to the reference. In this case devices' grounds need not be at the same potential. Bits are encoded using a three level, or bipolar code (5). The voltage difference between the two wires may be nominally $-1.5 v$, ov, or 1.5v. A logic one is encoaed as a high pulse (+1.5 v) followed by a low puise $(-1.5 v)$. A logic zero is a low followed by a nigh. The nominal pulse width is one microsecond and each bit sequence is always followed dy a minimum delay time (UV) of about two microseconds.

Eacn device on the HP-IL loop must completely implement all the HP-IL protocols (talker, listener or controllerl for which it has deen configured. This implies a separate hf-il plug-in module for each device an expensive undertaking. This together with the smail
memory capability of the HP 41C (without going to cassette tape or disc drives) made the HP-IL loop unsuitable for the project.

2.2 HP87/HP-IB INTEKFACE

Kecently the Uregon State University (OSU) Department of Nuciear Engineering acquired some HPo7 microcomputers that were donated by Hewlett-Packarc. It was therefore natural to consider the HP87 next as a possible choice for the microcontroller. The HP-Ib interface connects the HP\&7 microcomputer to the Hewlett-Packard interface bus which conforms to the IEEE standard 488-1978. This is a parallel bus structure that allows the transfer of data and command messages over short distances (6). All devices on the bus must fully implement the IEEE 488 bus protocols. A preliminary design performed for this project accomplished this by using an 8748 singie chip microcomputer to handle all local I/O and by using the 8291 GPIB (General Purpose Interface Bus) talker/listener and the 8293 GPIB transceiver to sit on the bus. The 8291 GPIB talker/listener is primarily designed to interface microcomputers to an IEEE 488 digital interface dus and it implements all the standard's interface except for the controller. The 8293 GPIE tranceiver is a high current.
non-inverting buffer cnip designed to interface the 8291 GPIB talker/listener or the 829° GPIB controller to the IEEE standard 488-1978 instrumentation interface bus. Each GPIB interface would contain two 8293 bus transceivers (7).

In order to make the HP87 functional as a bus controller, it would require an $1 / 0$ ROM plug-in module, in addition to a plotter/printer ROl and disc drives. Due to buaget limitations, this option had to be dropped.

2.3 INTEL 8748 MICROCOMPUTER BASEL UESIGN

Since it appeared that cost limitation was a primary problem, it was decided that designing and building a system from scratch was the only way out. This of course involves an extensive design and construction task. This method, however. allows the greatest versatility in microcomputer function selection as it can be completely tailored to the specific project at hand, with expandability in mind. An extensive review of microprocessors was conducted with emphasis on those for which development systems are available in the OSU Department of Electrical and Computer Engineering. The search was narrowed down to the following: 6802. 6502, 8085, 8086 and the MCS-48 family (8). From these the

8748 was selected.
The 8748 is a single chip 8 -bit parallel
microcomputer that contains $1 K \times 8$ UV-erasable, user-programmable memory, a 64×8 RAly data memory. 27 1/0 lines, and an 8-bit timer/counter in addition to on-boaro oscillator and clock circuits. The 8748 can be expanded using standard memories and mCS-80/MCS-85 peripherals (20). It is designed to be an efficient controller as weil as an arithmetic processor. It exhibits extensive bit nanding capabilities as well as facilities for both binary and ECD aritnmetic.

The system was completely designed around the 8748 with 2716's as additional program memories and 8243 1/0 expanders for handing the sample changer and elevator motor drive hardware. The 8155 256x8 KAN complete with timers was added. Two 8251 A USARTs (Universal Synchronous. Asynchronous Receiver, Transmitter) were used for handling serial i/0. The first USART interfaces the ORTEC 874 Quad timer/counter via a TILll1 photoisolator which runs on tne 20 ma current loop (21). The second interfaces a teletype that uses either the 20ma current loop or the KS232 serial loop. SN75152 dual line receivers and SN74150 aual line drivers were incorporated to meet the EIA standard RS232-C for seriai communication (24). Baud rate generators were designed for the transmit anc receive clocks of the two UShRTS
using 74LS393, 74LS11 and CD-4U24BE 7-stage counters (9.22.23). The baud rates are selectable on LIP switches from as low as 110 to 9600 baud with an error of 0.16%, which is well within the $6:{ }_{6}$ timing variation standard required for the RS 232 intertace (9). The primary clock for the baud rate generators is derived from the $T 0$ output of the 8748 (TU=X7AL/3). For a 6 MHz crystal. $\mathrm{TO}=2 \mathrm{MHz}$.

An MM58167A National Semiconductor real time clock (RTC) chip was also included in the design (2). The complete software for the system was written in 8748 assembler language, and part of it had already been installed on the HP64000 aevelopment system. At this stage an AIM-65 computer complete with disc drives, monitor and six parallel ports became available. Thus the designs and software aeveloped to date were dropped and a fresh start was made with the AIM-65 system.

2.4 THE AIM-65 MICROCUMPUTER

The Rockwell R6500 Advanced Interactive microcomputer (AIM-65) is a general purpose microcomputer that can serve as a central processor or controller/monitor. The heart of the AIM-65 is an R6502 central processing unit (CPU) that operates at 1 MHz to provide a minimumi instruction execution time of two
microseconds (10). The 6502 microprocessor architecture is shown in Figure 2.1.

A brief overview of the 6502 CPU is now presented. Most operations such as add, subtract and compare are done in the accumulator with the result usually remaining there. The X and Y index registers may be used as temporary data storage or to aid calculation of addresses via indexing or for counting (11). The program counter (PC) is used for nolaing the address of the next instruction to be executed while the stack pointer holas the low byte of the address in the next available cell in stack memory. The arithmetic logic unit (ALU) performs logical operations dictated by the content of the instruction latch and the data latch holds incoming/outgoing data values froin/to the datâ bus at appropriate times.

Apart from the keyboara/display and the 6522 VIA (discussed later), the Forethought Products' (now Versa Logic) version of the $A \operatorname{IM}-65$ microcomputer also comes equipped with floppy disk interface, video display generator and à memory mate expansion board. The STD FGI-1 is a versatile full function floppy disk interface board for the STD bus (12). It features the Motorola NC6843 floppy aisk controller designea with MOS (N-channel, silicon gate) technology. It is $51 / 4^{\prime \prime}$ and 8" disk drive compatible; however, it comes equipped witn

a $51 / 4^{\prime \prime}$ disk drive. The VID $64 / 80$ is a memory-mapped video display board for the STO Dus (13). It has a flexible screen format. programable character size, alphanumeric and graphic characters and a $2 K$ on-board RAM. It utilizes the Motorola's MC6845 CRT controlier (CRTC). The memory-mate expansion board has additional RAM, on-Doard $1 / 0$ ports, PRUM sockets and a tone generator (14).

$$
2.56522 \mathrm{VIA}
$$

Most of the interface for this project utilizes the spare 6522 VIA (Versatile Interface Aapptors) on the AIM-65 and the two on the memory-mate expansion board. These are programmabie $1 / 0$ chips with 16 -bit registers. The AIM-65 VIA occupies a 16 byte block of adaresses from A000 through AOOF. The memory-mate's first VIA (labeled IC57) occupies locations 9 F 80 through 9 F 8 F while the second (IC58) sits at locations 9F90 through gF9F. The VIA is partitioned into two 8-bit ports (port A, port B) with associated handshake lines for each port and two timers. The I/O location summary for the ports are given in Table 2.i.

TABLE 2.1 VIA 1/U LOCATION SUMMARY

ADURESS	FUNCTIUN
AOUU-AOUF	6522 AIM-65's VIA
A 000	port $\mathrm{B}^{\text {data }}$ register
AOO1	port A data register
A00'	UUKB-aata direction register B
A003	DUKA-data direction register A
A004	Tll-for timer 1
A005	TlCh-for timer 1
A006	Tlll-for timer 1
A 007	TILH-for timer 1
A008	TCL-for timer 2
A009	T2CH-for timer 2
AOOA	SR-shift register
AOOB	ACR-auxiliary control register
AOOC	PCR-peripheral control register
AOOD	IFR-interrupt fiag register
A00E	IEk-interrupt enable register
AOOF	port A data register (no handshake effect)

Exactly the same functions apply to IC57 (9F80-9F8F) and IC58 (9F90-9F9F). For the organization, processor interface, and peripheral interface of the VIA refer to reference (11).

CHAPTEK III

POWER SUPPLY ANU PERIPHERALS SELECTION

3.1 POWER SUPPLY ANL TRIAC

The sample changer came equipped with its own transformer (Figure 3.1) and Triac/low voltage power supply card (Figure 3.2). Fullwave rectification is performed using four EM500 diodes and two offboard 1500 mf 50yDC capacitors. The system initially designed for $+/$ $15 v \mathrm{dc}$ was found to give $+/-18 v$ dc unloaded. A 1 A fuse is used on the Triac/lv card for overioad protection on the -15 V dc line. Also incorporated on the Triac card are CDC $2 N 3638$ PNP and CDG10050 CDC PNP transistors to provide smaller voltages of $-3 v$ and $+6 v$ respectively. However, these voltages are not utilized in this project.

An auxiliary power supply card utilizing stanaard voltage regulators was designed to interface with the Triac/iv card (Figure 3.3). This parallel arrangement provides up to 3.5 amperes at $-15 v,-12 v,+15 v$ and $+5 v$ for the $\mathrm{T} T \mathrm{~L}$ logics. keal Time Clock, UART, OP AMP (operational ampiifiers). LEus (light emitting diodes)

Figure 3.1 system power trallsformer

Figure 3.2 Triac/low voltage power supply

Figure 3.3 Auxillialy purir supiply
and other circuitry to interface the peripherals completely to the AIM-65 microcomputer.

40430 RCA CTRO4 TRIACS are used for controlling the
sample motors. Triacs are Di-directional triode
thyristors with two main terminals and a gate (Figure 3.4). The main terminal 1 (MT1) is the reference point and the voltage at MT'c is reckoned either positive or negative with respect to MT1 (15). The four triggering modes for the TKIAC are:

1) MT2+, gate + ; I+ ; First quadrant. positive gate current and voltage,
2) MTí+, gate - ; I- ; First quadrant, negative gate current and voltage,
3) MT2-, gate + ; IIt ; Thira quadrant, positive gate current and voltage,
4) MT2-, gate - ; III- ; Thira quadrant, negative gate current and voltage.

Triac sensitivity is greatest in It and III- modes.
slightly lower in the $1-$ mode and much less in the IIt mode. The design made by Nuclear Chicago (no documentation provided) utilizes negative gate current and voltage firing in the I- and III- modes.

3.1.1 GATE FIRINE

the thiac; (a) simplified pellet structure, (n) cincuit symbol

ac volismetere characteristic of the triac

Figure 3.4 Triac pellet structure. circuit symbol and ac volt-anpere cnaracteristics

NPN transistors must be turned on (Figure 3.2). As an illustration, consider the gating control for the Down motor Triac. The emitter of $Q 5$ is at -11 volts. To turn off $Q 5$ and hence the gate, the base voltage at $Q 5$ should be -11 volts. The current through R13 is IR13 $=(-11-(-17.5)) / 6.8 K=0.96 \mathrm{~mA}$. The voltage drop across R14 is VR14 $=1.8 \mathrm{~K} * 0.96=1.72$ volts. The voltage at point x is $v x=-11+1.72=-9.28$ volts. Allowing for 0.6v across D7, input voltage to 07 is $\operatorname{Vin}=-9.28+0.6=$ -8.68 volts. Hence for Vin $<-\underline{g}$ volts the Triac Tl is turned off. It will be triggered for voltages appreciably higher than -9V, e.g., 0 volts. The same applies to the other TRIACS.

3.2 REAL TIME CLOCK (RTC)

A real time clock is a hardware circuit or hardware/software combination that accurately records time with respect to an external observer (16). This is a very handy peripheral in a control applications environment where a microcomputer monitors a number of physical parameters and triggers a series of sequentially timed control outputs in response to certain changes in the parameters. This is of course in addition to making available timed and dated copies of datà and parametric settings for data acquisition experiments. Sucn a real
time clock is superior to software timing and heartbeat-interrupt with regards to ease, accuracy and nonvolatility. In these latter examples, the time of the day is kept in software and the clock works only when the computer is powered. It is therefore impossible to keep the clock running all the time without keeping power applied to the processor and part of the program memory, which can be an expensive undertaking. Hence the easiest solution is a separate nardware time-of-day real time clock interfaced to the processor but running independently. Such a clock should keep track of the time of the day to a resolution of milliseconds and should, with Dattery backup, never need to be restt. Additional features of such an RTC should include variable-rate processor interrupts and alarm clock interrupts.

These features have been made available by National Semiconductor Corporation's two CMOS (compiementary metal-oxide semiconductor) LSI (large scale integrated circuits) devices, the MM58167A and MM58174A (2). These two devices are designed for direct connection to the control and data buses of most microprocessors. Figure 3.5 and Figure 3.6 show the biock diagram of the MM58167A and the MM58174A, respectively.

Fige: : 3.b bluck Giayram ana plll out specitications ot the watiunal bemiconductur hibolu/A real

Connection Diagram

reference $<\bar{c}$

figure j.b bluck aidgrali alla pin uut speciticatiuns et
the vationd scinicunductor mibisi/4A redi
tims cluck

3.2.1 RTC MM58167A

The $\operatorname{Mm} 58167 \mathrm{~A}$ is packaged in a 24-pin DIP
(dual-in-line package) and contains a 48-bit (14-digit) counter chain clocked from a $32,768 \mathrm{~Hz}$ crystal-reference oscillator. The MM58167A can track and communicate to the processor the time in any increments from $1 / 10.000$ seconds to months. It has 56 bits of on-chip RAM (random access read/write memory) that can be used to store any desired quantity of time or data while the system is powered-down provided it is supplied with backup power from a battery. It can therefore be used in the alarm clock mode to store a value to be compared to the real time counter (either in its entirety or against individual digits in the counter). When a match occurs between the storage latch and the counters a maskable inter rupt line called the standby interrupt is set active 10w.

Another line called the interrupt output provides the heartbeat interrupt aescribed earlier. This may be programmed to provide clock ticks at seven regular intervals (ten times per second $(10 H z)$, once per second (1 Hz), once a minute, once an hour, once a day, once a week, and once a month) and when a comparison match occurs between the storage latch and the real-time counter.

The Mri58174A which is a 16-pin integrated circuit is less versatile than the Mi58167A. It derives its timing from a $32,768 \mathrm{~Hz}$ oscillator like the MM58167A, but only counts time intervals from $1 / 16$ seconas through months. It also does not have a comparison match interrupt but does have a tick interrupt programmable for intervals of $1 / 2$ second, 5 seconds or 60 seconds. For this design project the more versatile MM58167A was adopted.

3.3 QUAD COUNTER/TIMER

In an automatic counting system it is a necessity to have modern and reliable counters that are not only NIM-standard (for compatibility to other nuclear instrumentation), but also have the capability of being computer programmable for remote data acquisition. The EG\&G ORTEC 874 is one such general purpose counter. It provides three 8 -decade counters and one 8 -decade presettable counter with internal time base. The presettable counter portion may be used as a counter or as a timer for the other three counters (17).

The 874 comes in a double-width NIM module with remote control capabilities via the IEEE 488 bus or the 20 mA current 100 p interface. For the purposes of this project, it was decided to use the serial 20 mA current loop communucation standard for controling the 874 from
the AIM-65 microcomputer. The communications card of the 874 is built around the 8085 microprocessor that utilizes its SID (serial input data) and SOD (serial output data) pins at selectable baud rates for communicating over the 20 mA current loop. The 874 is designated active as it supplies the 20 mA current for the loop. The communications rate for this mode are 110, 300,1200 and 2400 baud and are DIP seiectable on switch S2. The use of a serial device with the 874 for remote data acquisition allows for control of individual or grouped counter functions from the keyboard. This may also provide a hard-copy of the printout of results (as in the case of a teletypel or parameters used in setting up the various functions of the instrument.

The serial mode of communication is good for up to several hundred feet at high baud rate or up to several thousand feet at lower baud rates.

3.4 DRIVE MOTURS

The sample changer system came equipped with three motors: one for driving the conveyor belt, and two for the elevator mechanism (one up and the other down). As there is virtually no documentation on these, it is presumed that they are induction type motors as they run from an ac power supply. The motors are controlled dy

Triacs, the gates of which may be fired at the instance inauction is desired. The triggering system for the gate circuits can be interfaced to a computer for remote and software control.

3.5 CONTACT SWITCHES

There are seven contact switches (CTS) mounted on the sample changer for sensing the various states of the system. CTSI is used for group plug detection. CTS2 and CTS3 sense when the elevator is at the bottom (in the detector) and at the top (out of detector), respectively. CTS4 senses the vial position indexed at the elevator while CTS5 indicates when nonstandard vial detection data (NSV datà) are valid. CTS6 is used for reset: it senses the \#l vial under the elevator wher the conveyor belt is running. CTS7 is used for NSV detection.

These contact switches can be wired to procuce TTL logic signals for each of the states that are sensed.

The design of the control and interface circuits for these peripherals is presented in Chapter IV.

CHAPTER IV

COMPUTEK INTERFACE DESIGN FOR PERIPHERALS

In this chapter design considerations for the computer interface circuitry to the selected peripheral devices are presented. All the interfaces to the AIM-65 are done via the VIAs (versatile interface adapters) located at addresses A000 through AOUOF, $9 F 80$ through $9 F 8 F$, and 9F90 through 9F9F.

4.1 INTERFACING THE REAL TIME CLOCK (RTC)

The application notes for the National Semiconductor's MM58167A microprocessor Real Time Clock are given in references $(2,16)$. The RTC is interfaced to the AIM-65 via the VIA2 located at addresses 9F80 through $9 F 9 F$ (Figure 4.1). The data lines of the RTC (DO through 07) are connected to port A of the VIA2 (PAO through PA7) while the port B lines (PEO through PB4) are connected to the five address lines AO through A4 of the RTC. To read any register in the clock, interface circuitry must place signals on the $R D$ and $C S$ lines while the proper address appears on the address lines; similarly, to write data into the clock registers, the WK
all stgnal module ports refer to via. 2
AT ALDRESS 9F8O-9F8F ON THE AIH 65

Figure 4.1 Keal time clock interface circuit with the V1A2 (与F8U-9F8F)
and CS lines must de enabled while the address appears on the address lines. The data bus provides the path for data in and out of the counters and the latches. The five address lines may be used to activate any of the 24 counter and memory functions of the RTC.

An SN74ALS139 (IC17) dual 2-1ine to 4-1ine decoder/demultiplexer is used to decode PB5 and PB6 to provide the RE, WR and $C S$ signals and two unused tri-state lines for the RTC. This is illustrated in Table 4.1.

TABLE 4.1: DECOUING LOGIC FOR THE RTC

PB5 PB6 CS RD WR

$$
\begin{aligned}
& \underline{C S}=\text { Chip select (active low) } \\
& \underline{R D}=\text { Read data (active low) } \\
& \underline{W R}=\text { Write aata (active low) }
\end{aligned}
$$

PB5 is connected to the CS line so that the RTC is enabled whenever a logic 0 is placed on PB5 by the AIM-65. Similarly the RTC is disabled or tri-stated whenever PB5 is strobed to a logic 1 state. Whenever the RTC is enabled and PB6 is strobed low, the RD function is enabled while the $\underline{W R}$ is enabled for $P B G$ held high. The Ready signal appears on RUY which is connected to the CAI input of the VIA. This is an open drain output which will pull low and remain low at the start of each read or write cycle until valid data from a chip read appears on the bus or data on the bus is latched-in during a write.

By referring to the read and write cycle timing diagrams in the reference (2, 16), a typical read/write protocol may be formulated as follows:

READ CYCLE

1) Send valid address on PBO through PB4
2) Send RD. CS low
3) Wait for RUY iow-high transition
4) Read data

WRITE CYCLE

1) Send valid address
2) Put out dàta on port A
3) Wait for RDY low-high transition
4) Data latched

In these protocols, it should be noted that the RDY iine is used for handshaking and the port A of the VIA is configured either as an input or an output depending on whether we are reading/writing data from/to the RTC. The MM58167A has the ability to operate from battery power when the main power system is down. It will keep track of real time when supplied with power at voltages down to 2.2 volts. In this mode only 20 microamperes of current is required, dissipating 44 microwatts of power which may be supplied from two standard 1.5 volt batteries. Figure 4.1 shows the circuitry for operating the RTC on battery power when the computer and main power supply are turned off. The transistors $Q 1$ and $Q 2$ are used as voltage sensitive switches. When the system power is on at +5 volts, the $.6 v$ at the anode of the $3 v$-zener diode D2 turns on Q2 which forces $Q 1$ into conduction and power is supplied to the RTC. The diode D1 blocks any large current flow into the batteries although it receives a trickle through the $4.7 k$ resistor R37. In this mode of operation, the RTC requires about 12 mA of current. When the power is off and the $+5 v$ line drop to $0 v, Q 2$ is off and $Q 1$ opens to prevent the battery from sourcing current onto the system's power bus. Current flows from the battery through DI into the RTC and the PWRDN (power down, pin 23) input senses the low
voltage condition of the power bus and causes the clock to enter the powered-down operating mode. In the powered-down mode, the RTC's three-state I/O ines enter the high-impedance mode, effectively disconnected from the computer, and the current drawn from the power source is reduced from 12 mA to 20 microamperes.

The power down circuitry, crystal and capacitors for the RTC are mounted on the system's regulated power supply card. R23 and R24 are 1 K pull-up resistors that ensure that these lines float-high when the AIM-65 power is turned off to prevent spurious data from being written to the RTC.

4.2 INTERFACING THE ORTEC 874 TIMER/COUNTER

The 874 quad counter/timer is interfaced to the AIM-65 via the VIA located at addresses 9F90 through 9F9F on the memory mate expansion board. Initially the interfacing was performed with a UART and two TIL 111 optical isolators (Figure 4.2). Refer to reference (18) for the UART application notes. The UART converts parallel data to/from the computer to TTL serial, and the TIL 111 devices provide optical isolation between the computer/controller and the 874 counter/timer to take into account different instrument grounds.

The received data (pins 5 to 12) of the UART are

Figure $4.2 \underset{a}{ } \begin{gathered}\text { Ortec } \\ \text { a }\end{gathered}$
a UART
connected to port A (PAO through PA7) and the transmit data (pins 26 through 33) are connected to port B (PBO through PB7) of the VIA. The PMOS version of the UART (AY-S-1013) which was used in this design requires two power supplies: $a+5 v a t$ pin 1 , and $-12 v a t$ pin 2. Complete data handshake between the UART and the VIA was implemented via the control lines CA1, CA2, CB1, CB2 of the VIA and the received data available (pin 19), reset data available (pin 18), transmitter buffer empty (pin 22) and data strobe (pin 23) of the UART.

4.2.1 RECEIVER HANDSHAKE PRUTOCOL

The received data available flag goes to a logic 1 when an entire character has been received by the UART and transferred to the receiver holding register. This causes the CAl flag in the interrupt flag register of the VIA to be set. When a software polling is conducted by the computer, the CAl flag is sensed high. CAl is then cleared, the received data (which is placed on the output lines pins 5 through 12 of the UART by holding the received data available pin 4 low) are then read on port A of the VIA. The read operation on port A also sends a one cycle low output pulse (1 microsecond) on the CA2 output line. This causes the reset data available line (pin 18) to go to a logic 0 momentarily which resets the
received data available flag at pin 19. This completes the read operation on the UART.

4.2.' TRANSNIITTER HANUSHAKE PROTOCOL

This is configured similar to the receiver protocol described above. In this case the transmitter buffer empty flag at pin 22 goes to a logic 1 state when the UART is ready to receive data from the computer for transmission. If the buffer is full, the flag is held at a logic 0 (TBMT flag=0). A low data strobe at pin 23 will initiate transmission of a full ASCII character. So the computer senses TBMT flag=1 on CB1, writes data through the port B to the UART and initiates data transmission by the UART by sending a low strobe on CB2 with the write.

It should be noted that the peripheral control register of the VIA is software configured for the selected modes of operation of the control lines CAl, CA2, CB1 and CB2.

4.2.3 CLOCKS FOR THE UART

The receiver and transmitter clock lines for the UART (at pins 17 and 40, respectively) were tied and driven from PB7 of 9F9X (i.e. the VIA located at
addresses $9 F 90$ through $9 F 9 F)$. The baud rate is selected on $s 1$ and 52 of the $D I P$ connected to PA3 and PA4 of AOOX (Figure 4.3). The possible baud rates are indicated in Table 4.2 .

TABLE 4.2: BAUD RATE SELECTION

S'2 S1 BAUD	CLOCK=16 X	PERIOD	PULSE WIDTH	$\%$ ERROR		
	RATE	BAUD RATE	MICRO SEC	$=1 / 2$ PERIOU		
0	0	110	1760	568	284	.032
0	1	300	4800	208	104	.16
1	0	1200	19200	52	26	.16
1	1	2400	38400	26	13	.16

Following a power-on reset, the computer reads SISC to determine the user selected baud rate and loads the timer 1 counter and latch with indicated pulse widths minus the overhead count of 2. The auxiliary control register of the $9 F 8 X$ VIA was software configured to set timer 1 in the free running mode with output on Pb7 enabled. In this mode, the interrupt flag is set and the signal on $P B 7$ is inverted each time the counter reaches zero. The timer then automatically transfers the contents of the latch into the counter and the cycle starts again. The result is a continuous series of square waves on PB7 whose frequency is not affected by variations in the processor interrupt response time.

4.2.4 SOFTWARE UART

Due to the $1 / 0$ pin limitations encountered on the VIAs, the hardware UART was replaced by a software implementation. The details of these are given in Chapter V. Figure 4.4 shows the current interface circuitry for the URTEC 874. The same character length as for the hardware UART was maintained (7 bit ASCII, no parity). The TTL serial output from the AIli-65 comes from PB5 and is sent to the 874 via the TIL isolator IC16. The output from the 874 goes to the AIM-65 via PB6. Figure 4.4 also shows the interfacing of the

Figure $4.4 \begin{aligned} & \text { ortec timer/counter interface circuit with } \\ & \text { a software UART }\end{aligned}$
a software UART
counter overflow signals from the 874 to the AIM-65 via CB1, CB2 and CA1 of the gF9X VIA. These overflow signals are pulses of 500 nsec duration that have to be latched into the interrupt flag registers until the AIM-65 is ready to service them.

$$
4.2 .5 \text { OPTICAL ISOLATION/2UmA LOUP }
$$

The serial output of the $9 F 9 X$ VIA at PB5 (Figure 4.4) is buffered by a 7414 Schmidt inverter (IC6) and connected to pin 2 of the TIL 111 (IC16). When the serial output goes hign (logic 1), the 7414 output goes low. A forward current of about 32 mA is sourced through the photo-diode, and the photo-transistor is turned on. The photo-transistor is connected to $Q 3$ in a darlington configuration; hence 43 is forced into saturation (maximum conduction) and the 874 counter/timer sinks 20 mA of current through the collector and emitter of 43 to ground. When a logic zero appears on the serial output PB5, however, the output of IC6 is held high, hence the photo-diode, photo-transistor and 43 are all turned off and no current flows from the 874. In this manner TTL logics 1 and 0 are translated into a current flow of 20 mA and no current, respectively. The 874 then translates these current flows back to TTL logic levels and they are fed into the serial input data pin of the 8085
microprocessor on board the 874 communications carc.
Next consider the sequence of events that occur when the 874 is sending rather than receiving data. As usual the 874 first translates the TTL output of its SOD pin into current. When the 8085 of the 874 sends a logic 1 , 20 mA of current is applied to TIL 111 (IC15) which turns on the photo-transistor. Current is then sourced through R21 to ground, the voltage input to the 7414 (IC6) arops to a logic 0 , and its output goes to a logic 1 which is then applied to the serial input PB6 of the VIA. When a logic zero is sent from the 8085 , no current flows from the 874, the photo-transistor is off and the input to the 7414 (IC6) is high while its output is at logic 0.

The planar diode D3 connected to TIL 111 (IC15) is used for reverse polarity protection.

4.2.6 INTERVAL TIMING

Since the serial poll status byte of the ORTEC 874 is only available from the $I E E E 488$ bus, a rear panel BNC connector is hooked-up to the interval line to provide a positive level signal (interval timing) through the auration of each counting session. This signal is interfaced to the AIM-65 through CE'2 of the AOOX VIA (Figure 4.3).

4.3 INTERFACING THE MOTURS AND CONTACT SWITCHES

Interfacing the motors involved designing circuits that can be used to fire the gates of the triacs as discussed in Section 3.1 .1 under control of the AIM-65. It should be noted that the computer system can only provide TTL level signals; hence buffering and current amplification is required before these can be used to fire the gates of the triacs. The contact switches have to be debounced and their positions translated into TTL signals for input to the computer interfacing ports.

Most of the interfacing of the sample changer system is done with the VIA located at addresses AOUO through AOOF (Figure 4.3). This VIA is highly loaded as both inputs and outputs are mixed on port A which should normally be configured only as inputs.

First consider Figure 4.5. CTS2 (contact switch number 2) is debounced using IC2 (a 7474 U-type flip-flop) with its override/highest priority inputs (presets and clear) which are active low. When pin $B 2 M$ of CTS2 is open, a logic 1 vor. . . Eriled to the preset input $\dot{i} i C 2$ at pin 4 , and pin $U 17 M$ is grounded. Hence the clear input at pin 1 is active and the output Q is cleared to a logic 0 while \mathbb{Q} is set to a logic 1. The \underline{Q} output also called CII (computer input 1) is connected to PAO (Figure 4.3). This indicates to the

figure 4.5 vown-motor driver
computer that the elevator is out of the detector and the down-motor may be enabled if desired. If a sample is to be lowered into the detector (under software control), the motor control line CA2 (of $9 F 8 X$) is held high, and CO1 (computer output 1) is held low. COl is inverted using IC7 and the two high signals are ANDed using IC19 and its output is further ANDed with CII at ICIO. The high output is inverted using IC7 and applied to the inverting input of the operational amplifier (OP AMP, IC13). The op amp is set up to have a gain of $K 6 / R 5=4.7$ but since the input is zero, the output is very close to zero except for the offset $(25,26)$. As discussed in Section 3.1.1, a voltage level appreciably above $-9 v$ will fire the triac. Hence $Q 5$ is turned on (Figure 3.2) and T1 is fired. The down-motor is then activated and continues to run until the sample is lowered completely into the detector at which time terminal B2M of CTS2 is closed, the preset input is active, Q goes high and \underline{Q} goes low. When $\underline{Q} / C I 1$ goes low, the output of IC10 is low, output of IC7 is high (close to $5 v$) and the output of IC13 is about -14v. This turns off $Q 5$ and T1 (Figure 3.2) and the motor stops. R3 and R4 (Figure 4.3) limit the current sunk to ground CTS2 while R29 is a pull-up resistor which guarantees that $C O 1$ floats high when the computer is turned off. R29 together with IC7 and IC19 form the crash-protect circuitry of the motor drive
mechanism.

The operation of the up-motor circuit (Figure 4.6) is identical to the one discussed for the down-motor. In this case CTS 3 is used for sensing the states of the elevator rod position. The sample changer motor drive circuitry shown in Figure 4.7 is similar to those of Figures 4.5 and 4.6 except that no contact switch is used directly to effect hardware control of the motor drive mechanism. In this case the first input of ICll is permanently enabled-high.

Five contact switches: CTS1, CTS4, CTS5, CTS6 and CTS7 are used for control, reset, indexing and state detection of the vials on the conveyor as the sample changer motor is running. The positions of these switches are basically translated into TTL signals that are fed directly into the VIA inputs for software manipulation and control. CTS1 is used for group plug detection. A group plug is a unique plug used for indicating the beginning or end of a group of samples on the conveyor belt. A fixed set of parameters is used for analyzing samples in such a group. When a group plug is indexed at the elevator, the CTS 1 prime terminal xaUCL is grounded and the output of IC6 (7474 Schmidt invert) CI5 goes to a logic 1. This transition sets the CA2 flag of the VIA. A CI3 low to high transition sets the flag of the CAl input ine to reflect the position of CTS4. This

Figure 4.6 up-motor driver

Figure 4.7 Sample changer-motor driver
is used for counting the number of vials indexed under the elevator. The CTS5/CI7 combination at $9 F 8 X$ CB1 is used as an advanced warning signal to poll for the state of the next vial to be indexed at the elevator. CTS6/CI4 is used for reset. When vial position 1 is about to be indexed at the elevator, the CI4 input goes to a logic 1 . This may be used in conjunction with CI3 to reset on vial position 1. The state detection software employs CTS7/CI6 as its hardware sensor. After the advance warning by CTS5/CI7, CI6 may be polled following a suitable delay to determine whether a standard vial or a nonstandard vial will be indexed at the elevator. Usually a nonstandard vial is signalled by CI6=0, in which case CI5 is utilized at index-time to determine whether the nonstandard vial is a group plug (CI5=1) or an empty vial position (CI5=0).

4.4 LIGHT EMITTING UIOUES (LED)

The LEUs are interfaced on port B and also on PA5, PAG and PA7 of port A (Figure 4.3). IC8 and ICI2 (7407 open collector hex buffers) are utilized for driving the LEDS.

The LEDS are turned on by writing a logic 0 to the appropriate output lines on ports A and B. When the ACTIVE LED is turned on, MANUAL, GRUUP and SINGLE are
also enabled (but not turned on). These may then be turned on by writing a low to the corresponding output lines. The LEUs are powered by the $+5 v$ line via 270 ohm, 1 watt resistors R41, R42 and R43 and are expected to sink about 20 mA of current when turned on. Three such resistors are used for the 9 LEDS; the resistors are soldered on the voltage regulator card. The pull-up resistors R33 through R36 are used to ensure that the LEUS are off when the computer power system is down. A power-on LED is also included; this is active whenever the power switch is toggled on.

4.5 HARDWARE ASSENBLY AND TESTING

Many problems were encountered with the power supply primarily because a worst case analysis was not performed at the beginning of the design, and as a result the power requirement of the system was vastly underestimated. Poor and insufficient ground terminations also presented problems. The LEUs were overdriven and it took quite some time and component replacements before the puzzle of "the blinking LED" could be solved. Some of the computer port terminations on the three $U B 25$ type sockets supplied with the AIM-65 were sheared and new terminations had to be made and each pin of all the six ports had to be checked individually with an oscilloscope (a tedious and
lengthy procedure).
A 10 centimeter long solder type plug board was used for the voltage regulators and an 11 centimeter long wire-wrap board was utilized for the interface. A very high density package resulted with the wire-wrap board carrying one 40-pin DIP, six 24-pin DIPs, twelve 14-pin DIPs, one $16-\mathrm{pin}$ DIP, six $8-\mathrm{pin}$ DIPs and two 6-pin DIPs (appendix B).

CHAPTER V

SOFTWARE

This chapter presents the software capabilities and limitations of the AIM-65 microcomputer, its adoption for controlling the external hardware systems and the dedicated assembler and basic codes written for a complete data acquisition system.

$$
5.1 \text { OVERVIEW OF } 6502 \text { ASSEMBLER AND THE BASIC-E/65 }
$$

A complete listing of the 650% microprocessor assembler mnemonics and opcodes is given in reference (19). It contains 56 legal opcodes with 6 additional directives available through the $00 S / 65$ system. The assembler is compatible with the mOS Technology standards with respect to the operands, opcodes, labels and comments, but it does not furnish the same set of assembler directives as defined in either the cross assembler or the microcomputer family KIM assembler manual.

The Basic-E/65 is the Naval Postgraduate School Basic language (Basic-E) which is modified and
implemented for the 6502 operating system (DOS/65). It is made of two subsystems: the compiler (COMPILE.CUM) and the run-time interpreter (RUN.COM). The basic-E/65 may be used interactively or with a printing terminal. It implements most features of the proposed ANSI standard BASIC with extensive string manipulation and file input/output capabilities. The $D 0 S / 65$ is used to nandle all input/output and disk file management. The source file is an ASCII text which is created and edited with the DOS/65 editor EDIT.COM

5.2 ASSEMBLER ROUTINES

The assembler subroutines are written to execute at a beginning address of $\$$ DOOO (hexadecimal) in memory. The assembler source file MISC.ASM is assembled by the DOS/65 assembler (ASM.COM) to a hexadecimal code file MISC.KIM. The MISC.KIM file is a normal ASCII text file that may be edited using the UOS/65 editor (EDIT.COM). MISC.KIM is loaded into memory at run time from BASIC. The assembler also creates a listing file MISC.PRN showing the source code and the object code. MISC.PRN is listed in appendix C.

The assembler subroutines implement those tasks that cannot be done (or only done poorly) in BASIC. Among these are interrupts and critical timing, software UART
and fast data access, and the alarm and beeper routines.
The interrupt vectoring routine located at $\$ 0032$ points to the interrupt service routine by saving its low address byte $\$ 43$ in $\$ 4400$ and the high address byte $\$ 00$ in $\$ 4401$. The current vial position is also reset to 1 (CVIAL=1). When the system is operating and samples are indexed at the elevator, interrupts are generated which vector the computer to the service routine located at \$0043. The current vial position is incremented, appropriate flags are set or cleared and the computer resumes normal operation where it stopped on the interrupt. BASIC-E/65 has no interrupt handing capability and is about 500 times slower than the assembler.

The beeper and alarm routines are located from $\$ 0069$ to $\$$ DOEA. These routines give beeps of different tones and pitch and also raise an alarm when called from BASIC. They are used for signaling different error conditions during system operation. If the teletype is used as the sole input/ouput device the $B E L L$ command may be used instead.

Subroutines RSTATE (at SUUEU) and NSTATE (at \$DOF4) are used for critical timing on reset by saving the state of the vial and returning the information in the accumulator to BASIC. RUART (at \$D111) and TUART (at \$0147) implement a software UART for communicating with
the ORTEC 874 quad counter/timer. The correct delay times for the baud rate are determined in BASIC and poked into T1LS (low byte) and TlHS (high byte). The receiver subroutine RUART returns a character received from the ORTEC 874 in the accumulator to BASIC; while the transmit routine TUART sends to the ORTEC 874 a character from BASIC poked into the TRANS storage. The selected baud rate is used for determining the time spent in the delay subroutines UELAY (at \$D194) and DEHALF (at \$D1A8). All characters transmitted or received are formatted in standard 7 bit ASCII with no parity.

Finally the routine KCOUNT (at $\$ D 1 B D$) is used for fast data access of the ORTEC 874 counters. The number of counters to be accessed is poked from BASIC into RBUFF and the data read from the selected counters are stored as contiguous bytes in memory beginning at location RBUFF+2. Up to 32 bytes can be read and stored corresponding to the 4 counters in the 874 , each counter providing 8 bytes of data (8 decades). The data stored are then read in BASIC and stored on disk for further analysis.

$$
5.3 \text { BASIC PROGRAMS AND SUBROUTINES }
$$

Two BASIC programs PROJ.BAS and PROJ2.BAS implement the I/O data acquisition protocol and analysis. The $1 / 0$
protocols handled include setting up the ports for the RTC, ORTEC 874, and motor controls, while the analysis primarily consists of obtaining the count rates for each of the selected counters in the desired energy range.

The two prograns are rather easy to use as they are menu driven. First, PROJ is run to initiate the data acquisition for either the single or group plug mode. This program also allows the interrogation of the KTC which is essential for reading/setting time ana date. After an exit is made from PKOJ, PROJ2 should be run immediately to analyze the raw data and obtain a hardcopy of the output. PROJ2 is actually an extension of PROJ (the latter uses the $I / 0$ format setup by the former). The two were separated due to memory limitations. Detailed instructions for running these programs are given in appendix A. The listings of PROJ.BAS and PROJ2. BAS are given in appendix C.

VI. BIBLIOGRAPHY

1. "Uperation and installation instructions for Automatic Gamma Well counting systems". Publication no. 713600 , Nuclear-Chicago Corporation.
2. CMOS UATABOOK. National Semiconductor Corporation, 1984, p. 3-11-3-25.
3. Bruce A. Artwick. Microcomputer Interfacing, Prentice-hall, 1980 .
4. The HP-IL Interface Kit Technical Guide. HP 82166C, Hewlett-Packard, May 1983.
5. The HP-IL Interface Specification. 82166-90017. Hewlett-Packard, November 1982.
6. HP-IB Interface, Owner's Manual. 82937-90017, Hewlett-Packard, January 1982.
7. Intel Components Data Catalog, January 1982.
8. MCS-48 Family of Single Chip Microcomputers, User's Manual. Intel Corporation, September 1981.
9. Robert E. Turner. "Low-cost generator delivers all standard bit rates". Electronic Magazine: Designer's Casebook Number 5, MC Graw-HiTl Publications Co. 1982, P. 166-167
10. AIM 65 Microcomputer User's Guide. Rockwell International, Uecember 1979.
11. R6500 Microcomputer System hardware Manual. Rockwell International, August 1978.
12. Model STU FDI-1 Floppy Disk Interface for the STD Bus, Reference Manual. Forethought Products, 1982.
13. Model STD-VID $64 / 80$ Video visplay Generator for the STO Bus. Forethought Products, 1982.
14. Memory-Mate Expansion Board for the AIM-65 Computer, Operating Manual. Foretnought Products, 1981.
15. SCR Manual, Fifth Edition. General Electric, 197\%.
16. Steven A. Ciarcia. "Every one can know the real time," Eyte Magazine, May 1982, p. 34-58.
17. Model 874 Quad Counter/Timer, Uperating and Service Manual. EG\&G URTEC, June 1984.
18. Uavid G. Larsen and Peter R. Kony. "The Bugbook IIA, Interfacing \& Scientific Uata Communications Experiments using the Universal Asynchronous Receiver/Transmitter (UART) and 20 mA Current Loops", E \& L Instruments Inc., 1975.
19. AIM-NATE UOS Operating Manual. Forethought Products, 1982.
20. MCS-80 User's Manual. Intel Corporation, October 1977.
21. OPTOELECTRONICS UATA BOOK. Texas Instruments Incorporated, 1983-84.
22. The TTL DATA BOOK. Texas Instruments Incorporated, Volume 1, 1984.
23. The TTL DATA BOOK. Texas Instruments Incorporated, Volume 3, 1984.
24. The Line Driver and Line Keceiver DATA BOOK for Design Engineers. Texas Instruments Incorporated, 1981 .
25. Linear Circuits DATA BOOK. Texas Instruments Incorporated, 1984.
26. Howard V. Malmstadt, Christie G. Enke and Stanley R. Crouch. Electronics and Instrumentation for Scientists, The Benjamin/Cummings Publishing Company, Inc., 1981.

APPENUICES

APPENDIX A

USER'S MANUAL

This appendix gives a brief overview of the integration of the system hardware and software, and a demonstration of system operation.

A. 1 USER ENVIRONMENT

The three programs required to run the system are MISC, PROJ and PROJ2 and these are placed on the same floppy disk and may be run from drive A via either the $A I M$ keyboard and display or from the teletype for a hardcopy of the output. It is preferred to run the programs from the teletype. The only problem with this is that there is no totally clean way to switch from the AIM keyboard to the TTY. The following procedure may be used to achieve an AIM 65 to TTY keyboard transfer.

A. 2 AIM 65 TO TTY KEYBOARD TRANSFER

A - Power-up the AIM, disk drives, video monitor and the

TTY
B - Position the TTY control switch to local
C - Position the KB/TTY switch to TIY
D - Depress the AIM 65 RESET button
E - Type RUBOUT on the TTY (do not hit RETURN)
F - Position the TTY control switch to LINE and hit the RETURN key

The AIM 65 will respond by entering the monitor and printing

ROCKWELL AIM 65
$<$
The next keyboard entry should be made from the TTY keyboard.

A. 3 BOOTING THE SYSTEM

Insert the AIM-MATE UOS diskette into drive A with the label on the diskette facing to the right. Load the boot routine beginning at the location $\$ 9800$ by typing * $=9800$

This would appear as
$\langle *\rangle=9800$
Then type in the go command:
G
The drive should be active for $10-20$ seconds and the
question
HOW MANY URIVES?
appears; then type 2
The system then indicates the default drive as A : A)

The system can now be used to run the programs. But as a precaution, if you have not already done so, make a backup copy of the AIM-MATE DOS diskette which also contains MISC, PROJ and PROJ2. First, format a 5 1/4" disk by typing:

MINI-FMT <RET>
and respond to the prompts in the program. Next, insert the formatted disk into drive B, the AIM-MATE DOS disk into drive A and type:

COPY ALL
This should make a backup copy of the diskette.

$$
\text { A. } 4 \text { RUNNING PROJ }
$$

Once the system has been booted as described in section A.3, the TTY line printer should be adjusted to the top of a new page, the NIM-BIN power supply, detector HV power supply, and interface power supply should all be turned on. All these units may also be powered at the same instance as the AIM computer. Then type:

RUN PROJ

The program then prints the program title, date and time and comes up with the question:

PERFORM RESET WITH BATTERY CHANGE
$\operatorname{RESET}(Y / N)$?
Reset should only be performed when the battery for the RTC on the interface is changed or when a system malfunction has occurred. If Y is typed in, the system will reset the current vial position indexed at the elevator to 1 . Whichever response was selected the system will finally display:
vial position $=x x$
NSV $=a$
vial state $=b$
where $x x=$ current vial position indexed at the elevator
$a=0, b=0 \Rightarrow a$ sample vial is indexed
$a=1, b=1 \Rightarrow a$ Group plug is indexed
$a=1, b=2 \Rightarrow$ an empty vial is indexed
(NSV=nonstandard vial)
The following prompts then appears:
S(tandby A(ctive Q(uit ?
Entering S will enable you to interrogate the RTC for setting/reading time and aate. This is always necessary when there is a battery change or a system malfunction. Typing A will enter you into the main program and the system will respond by displaying:

G(roup S(ingle Mianual Q(uit ?

A.4.1 GROUP

This mode allows the handing of groups of vials to be run with the same parameters sucn as preset time/preset count, time base and counters to be used for the group. Up to 3 groups may be specified.

To use this mode first arrange the samples on the belt with a group plug to depict the beginning of a group and an empty vial or another group plug to signify its end. Up to 98 samples may be handled per group.

Type G to enter the group operating mode; the system will display:
enter number of groups $<=3$ or Q(uit.
Type in the desired number of groups.
The program then initiates a loop to accept the group parameters by displaying:

GROUP \# PARAMETERS
\# is the current group whose parameters are to be input. The following series of options are then displayed:

PC(preset.count PT(preset.time Q(uit.
This gives you the option of timing for a preset count (PC) or counting for a preset time (PT). Just enter the
desired option.
time base S(sec M(min Elext Q(uit. Typing S will select a 0.1 sec time base in which case the $0 r$ tec 874 timer will count pulses derived from the internal, crystal-controlled, precision time base at 0.1 second intervals. When M is selected, the timer counts pulses at 1 minute intervals. External (E) should be selected for preset count (PC) measurements.

SELECT COUNTERS $1,2,3,4$, select=1 ?
For preset time measurements counter 1 is used as a timer for the other 3 counters and should not be selected. For this mode counters may be selected by typing:
$0,1,1,1$
This selects counters 2, 3 , and 4. Make sure that the selected counters are properly hooked up to the SCA, amplifier and pre-amp outputs. Note that a 1 in the counter position selects that counter; anything else disselects it. For preset count all 4 counters may be selected.

SELECT COUNTER WHOSE DATA IS TO BE DISPLAYEU
COUNTEK DISPLAY (1-4) ?
This option allows the display of a selected counter on the ORTEC 874 auring counting. The next 2 options are
only applicable for PC measurements.

MAX PRESETS: COUNTER $1=9 E+07 ; 2,3,4=1 E+38$
ENTER PRESETS FOR SELECTEU COUNTERS
This options allow input of the desired preset counts for the selected counters with the preset for each counter for a separate line.

M (1 to 9$), N(0$ to 6$)$ or $Q(u i t$?
N and N determine the preset time period as $M \times 10 * * N$ in seconds or minutes depending on time base selection. The desired input is M,N.

After all the group parameters have been selected, the system initiates the counting process and indexes the vials for the selected number of groups into the detector one after the other. The data collected from the counters is stored on the disk file SCRATCH.BAS. After the data acquisition process is complete the system will respond:

G(roup S(ingle M(anual Q(uit ?
The usual response here is to type Q to exit. G or S may initiate another counting sequence and destroy all the data saved in SCRATCH.BAS. The system then displays:

S(tandby Alctive Q(uit?

Type Q to exit. The system then exits PROJ by displaying:

BYEBYE.

A.4.2 SINGLE

If the initial response had been S (single operating mode) instead of G, the system will still invoke the same subroutine and request the same parameters as in Group, but instead of looking for a group plug, the vial position of the sample to be run will be requested:
sample number (1-100) or Q(uit ?
Normal data acquisition procedures will then be implemented for this sample and at completion the following prompt will be displayed:
repeat for another sample Y(es N(o Q(uit ? If the response here is Y, we will be asked whether we want to use the same parameters or enter a different set. If however the answer is N, the following will be displayed:

G(roup S(ingle M(anual Q(uit ?
enter Q

S(tandby Alctive Q(uit ?
enter Q
ByEBYE

A.4.3 MANUAL

If M is the initial response instead of either G or S, the manual mode would have been enabled. In this mode it is possible to index the next vial under the elevator and move the vial into and out of the detector but the control of the URTEC 874 must be set to manual so that the front panel push buttons can be used to select the desired functions.

A. 5 RUNNING PROU2

At this stage all data collected from the counting system has been stored in SCRATCH.BAS, so all that is left is to run PROJ2 to perform the analysis and obtain a hardcopy of the results.

First position the line printer at the top of a new page and type:

RUN PROJ2
The following prompt will be displayed:

```
INPUT PROJECT NAME < 70 CHAR
```

?

Enter the name you wish to assign to this project and hit <RET>. Finally the output will be printed. Two sample runs for the group and single modes are given in the next section.

A. 6 SAMPLE RUN

FUN FROJ

EASIC-E/65 INTEFFRETER - UEFSION 1.0-S
FFROJ.BAS FRIIAY,OCTOEEF 2,1987 8:1:13

```
FERFORM fESET WITH EATTERY CHANGE
RESET (Y/N)? N
vial position = 55
NSU=1
UIAL STATE =2
Sctandby Alctive Q(uit? A
    G(rouf S(insle M(anual Q(uit? S
PC(preset.count PT(preset.time Q(uit? F'T
    time base S(sec M(min E(ext Q<uit? S
SELECT COUNTEFS 1,2,3,4,SELECT=1? 0,1,0,0
SELECT COUNTER WHOSE IIATA IS TO BE IISPLAYED
COUNTER IISFLAY (1-4)? 2
    M (1 to 9) N N ( 0 T0 6 ) or Q(uit? 6,1
sample number(1-100) or Q(uit? 59
repeat for another samfle Y(es N(o Q(uit? Y
with same farameters Y(es N(o? Y
sample number(1-100) or Q(uit? 60
repeat for another sample Y(es N(o Q(uit? Y
with same sarameters Y(es N(o? Y
sample number(1-100) or Q(uit? 61
EFFOR*** iridexed vial position 6l is empty
sample number(1-100) or Q(uit? a
    G(rouf S(insle M(arual Q<uit? Q
S(tandby Alctive G(uit? 口
    HYERYE
```

A)

```
        RUN FROJ2
    BASIC-E/65 INTERFFRETER - UERSION 1.0-S
    INFUT PROJECT NAME < 70 CHAR
? SINGLE SAMPLE RUN
```

SINGLE SAmple run fage 1

fyERYE
A)

FUEOUT:
 KOCKWELL AIM 65

```
*>=9800
G%
FOFETHOUGHT 33K [IOS/65 U1.2
AIM-MATE VERS. FEV 1.0
HOW MANY LFIIUES?Z
A`
    FUN FRROJ
EASIC-E/65 INTERFRETER - UERSION 1.0-S
```

FR'OJ, EAS THURSIAY,OCTOEER $1,1988 \quad 12: 24: 7$

```
FEFFOFM FESET WITH EATTERY CHANGE
RESET (Y/N)?N
vial Fosition = 37
NSV=1
UIAL STATE =2
S(tandby A(ctive Q(ujt? S
ST(set.time SIIset.date FT(read+time RD(read.date Q(uit? SII
S<et date Q<uit? S
    enter YEAF'? 1987
    enter MONTH (1-12)? 10
    enter day of the morith (1-31)? 1
    enter das of the week (1-7)? 5
THE ILATE IS THURSIIAY,OCTOBER 1 %1987
ST<set.time SICset.date FTCread.time FIM(read.date Q(uit? Q
S(tanobus Alctive Q(uit? A
    G(rour S(insle M(ariual Q(ijit? G
enter rumber of sroups s= 3 or Q(uit? 2
GROUF'1 F'AFAMETEFS
FC<freset.courit FT(freset.time Qurit? FT
    time base S(sec M(mir) E(ext Q<uit? S
SELECT COUNTEFS 1,2,3,4 ,SELECT=1? 0,1,0,0
SELECT COUNTEF WHOSE IIATA IS TO BE IISFLAYEI
COUNTEF IISFLAY (1-4)? 2
    M ( 1 to 9) ,N ( O TO 6 ) or Q(uit? 6,1
GFOUF' 2 F'AFAMETERS
FC(freset.counit F'T(freset.time Q(uit? F'T
    time base S(sec M(mirl E(ext Q(uit? S
SELECT COUNTEFS 1,2,3,4 ,SELECT=1? 0,1,0,0
SELECT COUNTER WHOSE IIATA IS TO BE IIISFLAYEI
COUNTEF IISFLAY (1-4)? 2
    M (1 to 9) ,N ( O TO 6 ) or Q(uit? 6,1
    G(rouf S(insle M(anual Q<uit? Q
S(tandby Alctive R(uit? Q
    EYEEYE
```

```
FUN FFROJ2
EASIC-E/6S INTERFRETER - UERSION 1.0-S
INFUT FFROJECT NAME < }70\mathrm{ CHAR
? GROUF' SAMFLLE RUN
```

GFOUF SAMF:LE RUN FAGE 1

EYEBYE
A.)

```
AHPENDIX E. COMPUNENTS LAYOUT ANL CABLES
```

$36 \mathrm{C2} 5$ 4.5* LONG CARD
COMPONENT SIDE

Figure b. Z Component layout description

Figure B. 3 Detailed layout of resistors. transistor and diode

Figure B. 4 Connections of LAbLE A to VIA (AOUO-AUUF)

Figure B. 5 Connections of CABLEs B and C to VIA. 2 and VIA. 3 repectively

Figure 3.6 Connections of CABLE U to the LEDS

INTERFACE CAPC CONNECTOR

x

AUXILLIAPY PGNER SUPPLY CAPD

Figure B. 7 Signals on interface card and auxilliary
power supply card connectors

Figure 3.8 Wire wrap plughoardedge connector

Figure B. 9 Solder pluyboardedge connector

Figure B. 10 Amphenol connector for 20 mA 100 H

```
APPENDIX C. PROGRAM LISTINGS
```


[^0]| IIOA1
 IIOA1 | | | | ; | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | ; | | | | |
| IIOA1 | A2 | 00 | | 上eepd | LIXX | \$ $\$ 00$ | | |
| IIOA3 | CA | | | A9 | LIEX | | | |
| IIOA4 | I10 | FII | | | ENE | A9 | | |
| IIOAE | 81. | EII | 9F | | STA | SFKR beerot 1 | | ; tosgle sfeaker
 ; lower fitch |
| iloas | CE | A2 | 110 | | HEC | | | |
| IIOAC | 4C | A1 | L10 | | JMF' | beerd | | |
| IIOAF | | | | ; | | | | |
| IIOAF | | | | ; | try arid iric instruction (ee) ify clace of dec | | | |
| IIOAF | | | | ; | for differerit tories | | | |
| IIOAF | | | | ; | | | | |
| IIOAF | | | | ; | | | | |
| IIOAF | | | | ; | this is the alarm routirie tsent to set someories | | | |
| IIOAF | | | | ; | atterition. it contimues to make roise urijtl | | | |
| IIOAF | | | | ; | the keyboard is fressed aris key | | | |
| IIOAF | | | | ; | | | | |
| IIOAF | | | | ; | | | | |
| IIOAF | | | | , | | | | |
| IIOAF | | | | ; | | | | |
| IIOAF | 20 | E3 | 110 | alarm | JSFi | alarma | | ; do arı alarm |
| IOEE? | 60 | | | | FTS | | | ;returri |
| IOES3 | A9 | 03 | | 31\%rma | LIIfi | * $\mathbf{W}_{0} \mathbf{3}$ | | ;torie leristin |
| IIOES | 8I! | 02 | I10 | | STA | EEEF'1 | | |
| IIOB8 | 811 | 03 | IO | | STA | EEEF? | | |
| IIOEE | 20 | EF | EC | | JSF | KEYCK゙ | | ; kes fressed? |
| IIOEE | 98 | | | | TYA | | | |
| IIOEF | FO | 01 | | | EEQ | A10 | ; FOINT | TO INTEFIFUFT |
| IIOC 1 | 60 | | | | FTS | | | ; returri |
| IIOC2 | CE | 02 | 110 | A10 | IIEC | EEEF 1 | | |
| H0C5 | IIO | 1 A | | | ENE | torie | | |
| noc7 | CE | 03 | 110 | | IIEC | EEEF'2. | | |
| IIOCA | [10 | 15 | | | ENE | torie | | |
| IIOCC | A9 | 24 | | | LIIA | *\$24 | | ;hi fitch |
| IIOCE | CI | 04 | I10 | | CMF' | frear | | |
| I'OL1 | FO | 06 | | | EEQ | A11 | | |
| [1013 | 8II | 04 | IIO | | STA | frear | | |
| IIOI'6 | 4C | E3 | I1O | | JMF' | alarma | | |
| IOLI9 | A9 | 2E | | A11 | LILA | *\$2F | | ;low fitch |
| LIOLIE | 8II | 04 | 110 | | STA | freas | | |
| IOOTIE | 4C | E3 | I1O | | JMF: | alarma | | ; do it |
| LIOE: | AE | 04 | I10) | torie | LIIX | frear | | sset tone frea |
| IIOE4 | CA | | | A12 | IIEX | | | |
| LOEE | 110 | FI | | | ENE | A12 | | |
| [IOE7 | BI: | EI | 9F | | STA | SPKF: | | |
| LIOEA | 4C | C2 | IIO | | JMF' | A10 | | |
| LIOEI | | | | ; | | | | |

Figure C. 1 MISC.PKN (continuec.)

Figure C. 1 MISC.PKli (continuea.)

[1113	A^{2}	07			LIIX	\$4.07	;	SET UF FOF 0 EIT COUNT	
[1115	8E	09	[10		STX	RESS	;		
[1118	2 C	90	9F	FiU1	EIT	FOFTE3	;	A^{-M}, FEG6-9 V	
[118	70	FE			FUS	RU1	;	WAIT FOF STAFT EIT	
L111	20	94	[11		JSK	IUELAY	-	DELAY 1 EIT'	
[1120	20	A8	I1		JSK	LEHALF	,	LIELAY $1 / 2$ EIT TIME	
$[1123$	AII	90	9F	KU2	LIIA	FOFTE3	;	GET 8 EITS	
[126	29	40			ANI	\#\$40	;	MASK OFF OTHER EITG; ONLY	FEG
[1128	4E	09	I10		LSF	RESS	;	SHIFT RIGHT CHAFACTEF:	
[12 12	OLI	09	[10		OFA	FESS	;		
[12E	8II	09	IO		STA	RESS	;		
[131	20	94	[11		JSE	IIELAY	;	IIELAY 1 EIT	
[1134	CA				IEX		;		
[1135	[10	EC			FNE	FiU2	;	GET NEXT BIT	
[1137	20	94	I11		JSFi	IIELAY	;	LIO NOT CAFEE FOF F'AFIITY	
[13A	20	A8	II1		JSR	IIEHALF	;	UNTIL WE GET EACEE TO DNE.	AGAIN
[131	68				FLA		;	FiESTOKE X	
[13E	AA				TAX		;		
[13F	AO	00			LIIY	\# 00	;	CLEAR Y	
[1141	ALI	09	I10		LIIA	FESS	;		
1144	29	7F			ANII	\# ${ }^{\text {\% }}$ 7F		CLEAF FAFITY BJT	
I1146	60				FTS		;	BACK゙ TO magic	
[1147				;					
$[1147$;					
[1147				;					
1147	48			TUAFT	F'HA		;	SAVE ACCUMULATOK	
I1148	8A				TXA		;	save X	
[1149	48				F'HA		;		
H14A	20	94	111		JSK	IIELAY	;	STOF EIT FROM LAST CHAF	
[1141	ALI	90	9F		LIIA	FORTE3	;		
1150	29	IF			ANI	\# ${ }^{\text {P I }}$ F	;		
[152	8L1	90	9F		STA	FORTE3	;	START EIT FES=0	
1155	8II	OA	IIO		STA	TEUFF	;	save this fattekn	
1158	20	94	[11		JSR	IIELAY	;		
1158	A2	08			LIIX	*\$08	;	8 EITS	
[15 5	2E	08	I10		FOL	TKANS	;	GET FIRST LSE INTO EIT 5	
$\underline{1160}$	2E	08	I10		F:OL	TKANS	;		
1163	2E	08	IO		FOL	TFANS	;		
$[1166$	2E	08	I10		FOL	TFANS	;		
1169	2E	08	[10		FOL	TRANS	;		
[1660	2E	08	I10		FOL	TFANS	;		
116F	6E	08	Ho	TU1	FOF	TRANS	;		
1172	AII	08	[10		LIIG	TEANS			
I175	29	20			ANII	*\$20	;	GET ONLY EIT 5 FOR FPES	
[1177	OII	OA	[10		OFA	TBUFF	;	FUT EJT INTO FATTEFN	
[17A	8II	90	9F		STA	FORTE3	;	NOW TO ORTEC 874	

Figure C. 1 MISC.PRN (continuta.)

IIETI	A^{2}	01		F.COUNT	LIIX	\$01	;	INIEX MEMOFY FOR STOFAGE
IIPF	A9	08		FCI	LIIA	*08	;	* EYTES FEF COUNTEK
IIC1	BI	OL	I1O		STA	FESUFF+1	;	SAVE HEFE
IIC4	EB			FiC?	INX		;	VECTOK MEMORY
IIC5	20		II 1		JSFi	FUAFT	;	FEAI BYTE
I1C8	91	OB	H0		STA	FBUFF, \times	;	STORE IN MEMORY
IICE	CE	OC	IOO		IIEC	FRUFF+1	;	* BYTES UNFEAI FEF COUNTEF:
I1CE	10	F4			BNE	RCP	;	FEAII ALL HYTES
II 1.0	CE	OF	110		IIEC	FiEUFF	;	FOINT TO NEXT COUNTEF
[1113	FO	06			BEQ	RC3	;	QUIT IF IIONE
I115	20	11	I11		JSF	RUAFT	;	FETCH COMMA
D110	4C	BF	[11		JMF	RC1	;	FEFFEAT FOF: NEXT COUNTEF:
IILIE	60			FiC3	F:TS		;	EACK TO BASIC
IIIIC				;				
II 1 IIC				;				
IIILIC				;				
I1 ITC								

A10	L10:2	A11	[10 [19	A12	LIOE. 4	A6	L1095
A8	11093	A ${ }^{\text {a }}$	LIOA3	ALAFIM	IIOAF	ALAFIMA	L1OE3
EEEF'	I1001	EEEF'1	I1002	GEEF?	1003	EEEF'A	11069
HEEF'E	I108E	EEEFC	I106F	HEEFII	[1OA1	CA1	[1005
CI7	LIOFE	CUIALF	I1000	LIE 1	I19 [1	IIES	[IJAO
IIEHALF	IIAB	IIELAY	I1194	IION	I/O8I	FRECOS	11004
IFF	AOOLI	IFFi?	9F811	KEYCK	ECEF	L1	[1108
NSTATE	DOF 4	FOFTA	A001	FOFTE2	9F80	FORTE3	9790
QUIT	11063	REUFF	I. 100 E	FiC1	II 1 BF	FCL	IIC4
Fic3	II1118	RCOUNT	[18 ${ }^{\text {I }}$	FESS	51009	FSTATE	LIOEI
FU1	[118	FU?	I123	FUAFIT	I1111	SEFV	11043
SIRQ	1032	SFKR	9 FBII	STAFT	1000	T1H	9785
T1HS	11007	T1L	$9 F 84$	T1LS	11006	TEUFF	[100A
TONE	DOE1	TFANS	[1008	TUI	I1 16 F	TUAFIT	11147
WAIT	I107A						

```
    TYFE FROJ.J. BAS
FEMAFK THIS FFNOGRAM IS CALLEII FROJ.EAS
REM
FEMAFKK VEFSION I.1 8/16/86
FEM
REMAFKK CHAKACTEF INITIALIZATION
    CFI =CHF$(13) FEM CAFFJAGE FETUKN
    LF$ =CHF゙क(10) FEH LINE FEEI
    EEEF'$=CHF$(7) REM WAFNING FELL
FEM SETTING UF REGISTERS ANI IAATA FORTS
    FOFTE=40960 F'EM $AOOO
    FOFTA=FOFTE+1 FEM FORT A ILATA FEG
    IIDFH=FORTEHE FEN F IIATA IIIRECTION REG
    IIFA=FOFTE+3 FEM A IAATA IIFECTION REG
    TIMEL 1=FORTH+4 FEM TIMEF 1 WRITE LATCH LOW
    TIMEH1=FOFTB+5 REM TIMEF 1 REAI COUNTEF: LOW
    TIML11=FOFTB+6 FIEM
    TIMH11=FOFTB+7 REM
    TIMEL 2=FOFTH+8 FEM
    TIMEH2=FOFTTR+9 FIEM
    SF: =FOFTE+10 FEM SHIFT FIEGISTEF:
    ACK =FOFTE+11 FEM AUXILIAF'O CONTFOL REGISTEF
    FCF: =FOFTE+12 FEM FERTFWERAL CONTFOL REGIETER
    IFR =FOFTE+13 FEM INTEFRUFT FLAG FEGISTEN
    IEF =FORTE+14 RENI INTEFFIUFT ENAELF REGISTEF
    OFA =FOFTE+15 KEM FOFTA WITHOUT HANLISHAKE
    FOFTB2=40832 FEM $9F80
    FORTA2=FORTE2+1 FEM FORT A IIATA FEG
    IIFB2=FORTB2+2 FEM F IIATA IIFECTION REO
    IINA2=FORTB2+3 KEM A IIATA IUIRECTION FEG
    TIMEL12=FORTE2+4 FEM TIMEF 1 WFITE LATCH LOW
    TIMEH12=FORTE2+5 FEM TIMEF 1 FEAII COUNTER LOW
    TIML112=FORTH2+6 FEM
    TIMH112=FORTE2+7 REM
    TIMEL22=FORTE2+8 FEM
    TIMEH22=FORTE2+9 FEM
    SF2 =FORTE2+10 FEM SHIFT FEGISTEF
    ACF? =FOFTE2+11 FEM AUXILIAF?Y CONTROL REGISTEF
    FCR2 =FORTH2+12 FEM FEFIFHEFAL CONTROL FEGISTER
    IFF? =FORTE2+13 FEM INTEFFUFT FLAG FEGISTEF:
    IEF2 =FOFTE2+14 FEM INTERFUFT ENAFLE FEGISTEF
    OFAS FFOFTE2+15 REM FORTA WITHOUT HANIISHAKE
    FOFTE3=40848 FEM $9F90
    FORTA3=FORTB3+1 FEM FORTT A IIGTA FEG
    IIIFE3=FDFTE3+2 FEM E IIATA IIRECTION FEG
    IIIRAS=FDFTES+3 FEM A IDATA IIIFECTIDIN FEG
```

Figure C. 2 PROJ.bAS listing

[^1]```
FOKEE FORITA,224 FEM $EO TUFNN OFF ALL LEIHS
FOKE IINRE,2S5 FEM $FF SETUF FORT E AS OUTFUTG
FOKE FOFITE,25S REM $FF GATE OFF ALL. MOTORS
FOL゙E FCF,53 FEM $35 SET CA1,CA2,CE1 AS FOSITIUE
 FEM EIIGE TFIIGGEFEII INFUTS FOF CIS,
 REM CIS,CIG.FLAGS CLEAREI BY FEEK
 REM OF FOFITA
 FEM ALSO SET CE2 AS NEGATIVE EIIGE
 FEM TRIGGEREII INPUT FOF ORTEC INTEFUAL
 REM COUNTER.CLEAREII EHY WRITING A 1 INTC
 FEM EIT 3 OF IFR i.E. O8
FOKNE FORTE,223 FEM $IF TUFN ON EUSY LEII , WFITE
 FEM HI TO COI,CO2,COS
FEM
REM
FEM SETTING UF CLOCN OUTFUT FOF THE UART
FOKE IIDRA, 224 FEM $EO SETTUF EITS O-4 AS INFUTS
data=F'EEK゙(F'ORTA)
S1.52.FA3.F'A4=』ata ANII 24 FEM $18 GET IIFF SWITCH
 REM S1G2 FOF FAUII FATE
 KEM CONTROL
IF S1.S2.F'A3.F'A4=0 THEN feriod.low=119
IF S1.S2.F'A3.FA4=0 THEN Feriod.hish=35
 REM S2S1=$00,T=9091
IF S1.52.F'A3.F'A4=8 THEN feriod.low=249
IF S1.S2.F'A3.F'A4=8 THEN Feriod.hish=12
 REM 52S1=$01,T=3333
IF S1.52. F'A3.F'A4=16 THEN Feriod.low=53
IF S1.S2.F'A3.F'A4=16 THEN Feriod.hish=3
 REM S2S1=$10,T=833
IF S1.S2.F'A3.F'A4=24 THEN feriod.low=149
IF S1.S2.F'A3.F'A4=24 THEN Feriod.hish=1
 REM S2S1=$11,T=417
FEM AN OUERHEAII COUNT OF 12 HAS BEEN SUBTRACTEII FROM
REM THE FERIOIIS IN MICROSECONIIS.
FOKE ACR2,O FEM $00 SET TIMEF T1 FQF ONE SHOT
 FEM MOIE WITH OUTFUT
 REM ON FET.2 IISAELEI:
FEM
REM
REM
FEM CONFIGURING UIA.2 FOF INTERFACING THE REAL TIME
FEM CLOCK RTC
FOKE IIIRA2,255 REM $FF SETUF FORT A2 AS OUTFUTS FOR NOW
FOKE IIURE2,25S FEM $FF SETTUF FORT E2 AS OUTFUTS
FOKE FCR2,63 REM $JF SET CA1,CEI AS FOSITIUE EIGE TRIGGEREI;
```

```
Figure C.2 PRUJ.BAS (continuea.)
```

```
Figure C.2 PRUJ.BAS (continuea.)
```

```
 FEM INFUTS FOF FIIY,CA1,CIT.CE1
 FEM ANL CA2 OUTFUTT HIGH MOLE TO
 REM ENAFLE MOTOF IIFIUES,CE% NEGATIUE EIIGE TRIGGEREL
 REM INFUT FOF STE.INT
 FOKE FOFTES,96 REM $60 TRI-STATE THE RTC
 FEM
 FEM
 REM
 REM CONFIGURE UIA , 3 FOF SOFTWAKE THE UAFT,
 REM THE UAFT IG SETUP FOF A 7 EIT ASCII COIE WITH
 REM NO FARITY i.E. 1 STAFT IIIT,1 STOF EIT,7 [IATA EITS
REM O FARITY EITT.
FOKE LIHFB3,191 REM $EF EIT 5 IS OUTFUT:TFANSMIT IIATA
 FEM EIT 6 IS INFUT:FECEIUEII IIATA
FOKE FCFIT32 FEM $20 CA1,CB1,CE2 NEGATIUE ELIGE TFIIGGEREII INFUITS,
 FEM CLEAR CE1 EY WRITING 1 INTO EITZ OF IFRI
FEM
REM
GOTO 21
FEM SUBFOUTINE RESET
FEM FESET UF/HOWN MOTOFS ANI UIAL FOSITION
REM
REM
LEN`=2コ3 KEN $LF EUSY LEN ON CODE
GOSUR 30 REM ELEVATOR OUT OF IETECTOR
NSU=0 REM INITIALIZE CURFENT
FEM UIAL STATE TO STANIIARII UIAL
FOKE FOFTE,215 REM $D7 ENEFGIZE CO3, STAFT SAMFLE
FEM CHANGEF MOTOR,BUSY LEII ON
data1=CALL(RSTATE) REM FETCH FESET STATE
FRINT "3"
data=datal
GOTO 20
data=F'EEK(IFF)
CI3.CAI=data ANII 2 REM GET 5TATE OF CI3
IF CI3.CAI=0 THEN 15 REM WAIT FOR CI3=1
FOKE FORTE,2`3 FEM $IFF STOF SAMFLE CHANGER MOTOK
REM IF CIZ IS HIGH i+e. UIAL
REM FOSITION RESET TO ONE
FOKE IFF,? REM CLEAF CA1 FLAG
GOSUF 5280 FEM UFIIATE CURFENT UIAL STATE
FOKE CAI,1 FEM SET CA1 FLAG
GOSUF 5310 FEM DETEFMINES GROUF FLUG INDEX
FRINT *NSU= *NSU:
FETURN
FEM
```

Figure C. 2 PRUJ.BAS (continued.)

```
FEM
REM
FEM CONTINUE
FEM OFEN A ELOCKEEI SCRATCH FAII FILE ON IIISK WITH
FEM 2O FYTES FEF FECORII
E$ =*SCFATCH.EAS"
FILE H$(20)
FEM
FEM NOW STOFE STRING IIATA ON FFILE
FFINNT #1,1962;"SUNLIAY"
FRINT #1,1963;"MONLIAY"
FRINT #1;1964;"TUESIIAY"
FRINT *1,1965;"WEINESTIAY*
F'RINT *1.1966;"THUFSLAY"
FFINT *1,1967;'FFIIAY'
FRINT *1,1968;"SATURIAY"
FFIINT 非1,1969;'JANUAFIY'
FFFINT #1,1970; 'FEBFUUAFY"
FRINT 非,1971;"MAFCH"
FFINT #1,1972;"AFRIL"
FFIINT #1,1973;"MAY"
FFIINT *1.1974;"JUNE"
FFINT #1,1975;"JULY"
FFFINT #1,1976;"AUGUST"
FRINT #1,1977;'SEFTEMEEF''
FRINT *1,1978;"OCTOBEF"
FRINT #1,1979;"NOUEMEEF"
FRINT *1,1980;" IECEMEEF"
FRINT *1*1985%"EOF.FFOTECT"
FEM
FEM
REM
REM ASSEMBLY LANGUAGE FROGRAMS ARE EEING LOALIEII
FEM HEFE WITH STARTING AIIIRESSES AT IIOOO HEXAIIECIMAL
REM
REM
IIIM HEX(70)
FOF }X=0\mathrm{ TO 15
 FEALI I
 HEX(I)=X
NEXT X
IATA 48,49,50,51,52,53,54y55,556,57,65,66,67,68,69,70
 A$=*MISC,N゙IH"
 FILE A$
 IF ENII *2 THEN 26
FEAI #2;REC$
```

```
Figure C.z PROJ.bAS (continued.)
```

```
 INIIX=2
 GOSUE 24
 LENGTH=HYTE
 GOSUE 24
 ALIIR=EYTE*256
 GOSUE 24
 ALILK=ALINR+BYTE
FOK K=AILFR TO ADINR+LENGTH-1
 GOSUE 24
 FOKE K,EYYTE
NEXT K゙
 GOTO 22
kEm reail tiata cone
 EYTE=HEX(ASC(MILI$(REC#%INTXX,1)))*16
 GYTE=HEX(ASC(MIL$(REC&yINLIX+1,1)))+EYTE
 INDX=INLIX+2
RETUFN
REH ENI OF IIATA INFUT
 close 2
HEEF'A=53353 REM $11069 IIDES A HEEF
EEEFC=53359 FEM $LIO6F IEEF UNTIL KEY IS FRESSEI
HEEFII=53409 FEM $IOADI CHANGE FFEGUUENCY WITH FACH
REM CYCLE . STOF WJTH RESE
ALAFMM=53423 REM $IOAF ALAFM UNTIL KEY IS FRESSEI
vector.irit=53298 KEM $LHO32 SETUF INTEFRUFT ALINEESS
CUIALF=53248 KEM $10000
T1LS=CUIALF'+6
T1HS=CUIALF+7
TKANS=CUIALF'+8
FBUFF=CUIALF'+11
F:COUNT=53693 REM $11FII
FUART=53521 REM $[1111
TUART=53575 REM $11147
CA1=53253 _- _- KEM $10005
RSTATE=53485 FEM $DOEII RESET STATE
NSTATE=53492 REM $NOF4 NEXT STATE
X=CALL(vEctor.irit) REM RESET UIAL COUNTEF,SET INTERFUFT UECTORS
FOKE TILS,FERIOD.lOW REM SAVE COUNTER LOW LATCH
FOKE TIHSpferiod.hish FEM SAUE HIGH LATCH
GCTO 29
REM
REM
FEM
REM SURROUTINE FOWER-UF FETRIEVAL
FEM RETFIEUE CURRENT UIAL STATE ANI FOSITION FROM RTC RAM
FOKE HIDRA2,O FEM SETTUF FORTAS AS INFUT
Figure C.'Z Prud.bas (continued.)
```



```
FFINT "vial fosition = ";data
FFINT *NSU=";NSU
FFINT "UIAL STATE =*isstate.vial
GOTO 60
FEM
REM
FEM
FEM ELEVATOR OUT OF LETECTOF SUBFOUTINE (EOOI)
data=FEEK(FORTA)
IF data ANI 2 THEN GOTO 40 ELSE GOTO 50
FOKE FORTE,219 ANI LEN2 FEM $HB STAFT UF-MOTOF WHEN CI2 IS HI
GOTO 30
FOKE FORTH,223 ANII LEII2 REM &IIF IIEENEFGIZE CO2.STOF UF-MOTOF
 FEM WHEN CI2 LOW
FETURN
FEM
FEM
FEM
REM YEAF UFIIATE COIIE
FOKE IIIFA2,O FOM FOM SETTUP FORTA2 AS
 REM SETTUP FOFTA2 AS INPUTS
 FEM SENI CSORIL LOW
 FEM FEAI F'FOTOCOL
 FEM CONUERT TO HEX
GOSUR 5650
GOSUF 8030 REM FEAI MONTH
GOSUE 5650
 REM CONUEFT TO HEX
HE2=HEX.NUM
HEI'=IIECIMAL.NUM
IF HE2 <> 1 THEN GOTO 62 ELSE GOTO 66
IF HE2 <> HE1 THEN GOTO 64 ELSE GOTO 68
FOKE IIDFA2,255 REM SETTUF FORTA2 AS OUTFUTS
FOKE FORTA2,HEII FEM LIATA OUT TO FIAM
FOKE POFTEP,RFM+64 REM SELECT IIAY OF MONTH FAM
 REM SENII CS,WF LOW
GOSUE 7210
IF HE1 = 1 THEN 68
FOKE IIIFA2,255
 FEM SETTUP FORTA? AS OUTFUTS
FOKE FORTAS,1
FOKE FORTE2,FFFM+64 REM SELECT MONTH FIAM
GOSUE 7210
 REM SENI CS,WF LOW
GOSUF 8040
GOSUF 8050 REM REAI YEAF.LOW
GOSUE 5650 FEM CONUEFT TO HEX
YEAF, LOW=HEX, NUM
Figure C.2 pruc.baS (continued.)
```

```
```

    YEAF=YEAF.HIGH*100 + YEAR.LOW
    ```
```

    YEAF=YEAF.HIGH*100 + YEAR.LOW
    YF:=YEAF+1
    YF:=YEAF+1
                            FEM INCFEMENT YEAR
                            FEM INCFEMENT YEAR
    YEAFi.HIGH=INT (YF/100)
YEAFi.HIGH=INT (YF/100)
YEAFi.LOW=YF-(YEAF,HIGH*100)
YEAFi.LOW=YF-(YEAF,HIGH*100)
HEX.NUM=YEAF.HIGH
HEX.NUM=YEAF.HIGH
GOSUE 5660 REM ENCOIIE IN IIECIMAL
GOSUE 5660 REM ENCOIIE IN IIECIMAL
YEAF.HIGH=LIECIMAL . NUM
YEAF.HIGH=LIECIMAL . NUM
HEX. NUM=YEAF.LOW
HEX. NUM=YEAF.LOW
GOSUE S6,60 FEM ENCODE IN IIECIMAL
GOSUE S6,60 FEM ENCODE IN IIECIMAL
YEAR . LOW=IIEC IMAL . NUMM
YEAR . LOW=IIEC IMAL . NUMM
FOKE IINRA2,255
FOKE IINRA2,255
FOKE FOFTA2,YEAF.HIGH
FOKE FOFTA2,YEAF.HIGH
FOKE FOKTE2,FKMIN+64 REM SELECT YEAK.HIGH STOFAGE FAM
FOKE FOKTE2,FKMIN+64 REM SELECT YEAK.HIGH STOFAGE FAM
FEM SENII CS,WF LOW
FEM SENII CS,WF LOW
GOSUK 7210
GOSUK 7210
F'OKE FOFTAこ,YEAF.LOW
F'OKE FOFTAこ,YEAF.LOW
FOKE FORTD2,FRTTS+64
FOKE FORTD2,FRTTS+64
FEM SELECT YEAF.LOW FAM
FEM SELECT YEAF.LOW FAM
FIEM SENII CS,WK LOW

```
FIEM SENII CS,WK LOW
```

```
FEM WRITE FFOTOCOL
```

FEM WRITE FFOTOCOL
GOSUF 7210
GOSUF 7210
FEM CONTINUE
FEM CONTINUE
FEM
FEM
REM
REM
REM
REM
REM FRINT MENU
REM FRINT MENU
FOKKE FOFTE,191 FEM \$BF LITE IIILE LEII
FOKKE FOFTE,191 FEM $BF LITE IIILE LEII
INF'UT 'S(taridby A(ctive Q(uit'istate$
INF'UT 'S(taridby A(ctive Q(uit'istate\$
IF state$="s" THEN GOSUE 1000 ELSE GOTO 70
IF state$="s" THEN GOSUE 1000 ELSE GOTO 70
GOTO 68
GOTO 68
IF state$=*A" THEN GOSUB 5000 ELSE GOTO 80
IF state$=*A" THEN GOSUB 5000 ELSE GOTO 80
GOTO 68
GOTO 68
IF state$=*Q* THEN GOTO 10000 ELSE GOTO 100
IF state$=*Q* THEN GOTO 10000 ELSE GOTO 100
X=CALL(EEEF'A) FEM BEEF FOF ILLEGAL INFUT
X=CALL(EEEF'A) FEM BEEF FOF ILLEGAL INFUT
GOTO 68 FEM WAIT FOF CORFECT INFUT
GOTO 68 FEM WAIT FOF CORFECT INFUT
FEM
FEM
FEM
FEM
FEM

```
FEM
```



```
FEM SUBFIOUTINE STANDEY INTEFIOGATES RTC
```

FEM SUBFIOUTINE STANDEY INTEFIOGATES RTC
REM REAII ANII SETS : TIME ANII IIATE
REM REAII ANII SETS : TIME ANII IIATE
FOKE FOFITA,191 REM \$EF LITE STANLIEY LEII
FOKE FOFITA,191 REM \$EF LITE STANLIEY LEII
FOKE FORTB,191 KEM \$RF LITE IILLE LEII
FOKE FORTB,191 KEM \$RF LITE IILLE LEII
INFUT ST<set.time SH(set.date FT\read.time FIMrearj.date R<uit*istate\#
INFUT ST<set.time SH(set.date FT\read.time FIMrearj.date R<uit*istate\#
FOKE FORTE,22J REH \$HF LITE BUSY LEI
FOKE FORTE,22J REH $HF LITE BUSY LEI
IF state$="Q* THEN GOTO 1020 ELSE GOTO 1030
IF state$="Q* THEN GOTO 1020 ELSE GOTO 1030
quit.flas=1
quit.flas=1
GOTO 1120 REM RETURN
GOTO 1120 REM RETURN
IF state$="ST" THEN GOTO 1040 ELSE GOTO 1050

```
IF state$="ST" THEN GOTO 1040 ELSE GOTO 1050
```

Figure C.c PROJ.BAS (continuea.)

```
1040 GOSUF 7080 KEM SET TIME
 IF quit,flag=1 THEN 1120 FEM FETUFIN
 GOTO 1010
 IF state$=*SI" THEN GOTO 1060 ELSE GOTO 1070
 GOSUF 8070 REM SET LIATE
 IF auit+flas=1 THEN 1120 FEM FETUFN
 GOTO 1010
 IF state$="RT" THEN GOTO 1080 ELSE GOTO 1090
 GOSUE 7000 REM REAII TIME
 FRINT "THE TIME IS ";HOURS;":"#MINUTES;":";SECONIS
 GOTO 1010
 IF states="RD" THEN GOTO 1100 ELSE GOTO 1110
 GOSUE 8000
 IIW=IIAY , OF & WEEK
 FEAL #1,1962+IMW;IIIAY$
 REAII #1.1969+MONTH;SMUNTH$
 FRINT "THE IIATE IS ";IIIAY$;",";SMONTH$;" ";LIAY;",";YEAAF
 GOTD 1010
 X=CALL(EEEF'A) FEM BEEF FDF ILLEGAL. INFUT
 GOTO 1010
1120
 REM CONTINUE
 FOKE FORTA,255 FEM $FF TUFN UFF STANLIEY LEII
 FOKE FORTE,191 FEEH कEF: LITE IILE LEI
 RETURN
 REM
 FEM
 FEM SURFOUTINE ACTIUE CONTFOLS ALL FUNCTIONS
 FOKE FORTA,127 REM $7F LITE ACTIUE LEI
 FOKE FORTE,191 FEM $EF LITE EUSY LEII
5010 INFUT G(rouF S(irisle M(anual R(uit i;stateq
 FOKE FORTE,223 REM $NF LITE EUSY LEII
 IF state$="G" THEN GOSUF 5050 ELSE GOTO 5020
 GOSUF 9400 REM FESET ORTEC 874 TO IIEFAULT STATES
 GOTO 5010
 IF state$="S" THEN GOSUE 6000 ELSE GOTO 5025
 GOSUF 9400 REM FESET ORTEC 874 TO DEFAULT STATES
 SFLAG=1
 IGFOUF=0 : GN=0
 GOTO 5010
 IF state$="M" THEN GOSUF 6500 ELSE GOTO 5030
 GOTO 5010
 IF states="Q" THEN 5040
 X=CALL(EEEF'A) REM FEEF FOR ILLEGAL INF'UT
 GOTO 5010
5 0 4 0
5 0 2 0
5025
5 0 3 0
```



```
Figure C.2 PKUJ.BAS (continuea.)
```

```
 FOKE FORTE,191 FEM $FF LITE IGILE LEI
 FETURN
 REM
 FEM
 FEM
FEM \$FF LITE IRLE LEI FETURN
FEM
FEM
```

CONTROLS THE GROUF FLUG
FEM OFEFATING MOLE
$S F L A G=0$
FOKE FORTF, 175 FEM $\$$ AF LITE GFIOUF, IILE LEI
asit.flas=0
INFUT enter rumber of srouss s= 3 or $Q$ (uit" is souf.rismberd
FOKE FORTE,207
FEM \$CF LITE GROUF, BUSY LEE
IF srouF. riumber $\$={ }^{*} \mathbf{Q}^{*}$ THEN 5080
GN=VAL (stroisf. rismber\$)
IF GN < 1 OF GN > 3 THEN $X=C A L L(E E E F A) E L S E$ GOTO 5070
FEM BEEF FQF ILLEGAL INFUT
GOTO 5060
FEM CONTINUE
FEINT \#1,1983:GN
FOF IG=0 TII GN-1
FFINT \#1,1913+IG90 FEM SAMFLE.IN.GROUF
FFINT $1,1916+I G 90$ FEM FEGIN.GROUF.SAMFLE
NEXT IG
FOR IGROUF $=0$ TO GN-1

LEII $=190$ FEM $\$$ FE GFOUF, IILE LEI LITE COIE
LEI2 $=222$ FEM $\$$ IIE GROUF, BUSY LEI LITE COIIE
GOSUF 5090 FEM OFEFATING SYSTEM
IF auit.flas=1 THEN 5080
NEXT IGFOUF'
FOF IGROUF $=0$ TO GN-1
BFANCH=0
REAII 1 1, 1904+IGROUF; Freset $\$$
IF Freset $\$=$ "FT" THEN GOSUB 9030 ELSE GOSUB 9020
REM LOAII COUNTER COMMANIIS
GOSUE 5420
NEXT IGROUF
cuit.flas=0
REM CONTINUE
FOKE FOKTE,223 FEM \$IF LITE EUSY LEI
FETURN
REM
FEM
FEM
REM SUEROUTINE OFERATING SYSTEM
FEM DETERMINES FRESET COUNT OF FRESET TIME MOIES

FEM OF OFEFATION ANI ACCEFTS TIME FASE FAKAMETERS
FEM M ANI N
FEM GATV
FFINT \#1,1.928;1
FFINT \#1,1929:2
FRINT \#1,1930;4
PFINT \#1,1931;8
FOKE FOFTE,LEII FEM $\$ *$ LITE MOIE, IILE LEI
INFUT •FC(freset, count FT(rreset.time Q (uit•ifreset $\$$ PFINT \#1,1904+IGROUF;Freset
FOKE FOFTE,LEII? REM $\$ \#$ LITE MOLE, FUSY LEI
IF Freset $\$$ " "Q" THEN GOTO 5120 ELSE COTO 5110
quit.flas=1
GOTO 5270
5120 IF Freset $\$=" F T$ " THEN GOSUE 5480 ELSE GOTO 5130 GOTO 5140
IF freset $\$=$ "FC" THEN GOSUF 5560 ELSE GOTO 5150 GOTO 5265
5140 IF quit.flas=1 THEN GOTO 5270 ELSE GOTO 5160
$5150 \quad X=C A L L(E E E F A) \quad$ KEM EEEF FOR ILLEGAL INFUT
GOTO 5100
5160 INFUT GELECT COUNTEFS 1.E:3.4 SELECT=1":CCO:
CC1,CC2,CC3
FFIINT *1.1950+IGFOUF \& CCO
FFINT \#1.1953+IGROUF;CC1
FRINT \#1.1956+IGROUF;CC2
FFINT \#1.1959+IGROUFiCC3
FFIINT © SELECT COUNTEF WHOSE IAATA IS TO EE HISFLAYEI!
IF IFF < 1 OR IIF > 4 THEN X=CALL (EEEFA) ELSE GOTO 5167
GOTO 5163
FFINT \#1,1922+IGROUF' \& IF
FOKE POFTE,LEII FEM $\$ * *$ LITE MODE, IILE LEI
INFUT "M ( 1 to 9 ) , N ( 0 TO 6 ) or G(山it*iMS\$,NS\$
FOKE FOFTE,LED2 REM $\$ * * L I T E$ MODE, FUSY LEII
IF MS\$ $\left\langle\right.$ " $\mathrm{Q}^{\circ}$ THEN GOTO 5190 ELSE GOTO 5180
quit.flas=1
GOTO 5270 REM RETURN
$M=$ VAL (MS ) FEM CONUERT TO INTEGEF
FFINT \#1.1910+IGFOUF'M
IF $M<1$ OF $M>9$ THEN GOTO 5200 ELSE GOTO 5210
$X=$ CALL (BEEF'A) FEM EEEF FOF ILLEGAL INFUT
GOTO 5170
5210 FEM COMTINUE
IF NS $\$$ " $\mathrm{Q}^{*}$ THEN GOTO 5240 ELSE GOTO 5230
5230 Ruit,flas=1
Figure c.í pkuJ.bAS (continucio.)

	GOTO 5270
5240	N=UAL (NS $\ddagger$ ) REM CONUERT TO INTEGEF
	IF $N$ < O OFE $N$ > 6 THEN GOTO 5250 ELSE GOTO 5260
5250	$X=C A L L(E E E F A)$ GOTO 5170
5260	FEM CONTINUE
	$N=N+1$
	FFINT $\ddagger 1.1907+$ IGROUFiN
5265	GOSUE 9000 REM LIETERMINES MASK EIT SEQUENCE FOR
	Quit.flas=0
5270	REM CONTINUE
	FOKE FORTE, LEH1 REM $\$ \geqslant ⿻$ Lite MOIE, IDLE LEI RETURN
	REM
	REM
	REM
5280	REM SUEFIOUTINE NONSTAMSIARII.UIAL (NSU)
	REM IETECTS EITHEF AN EMFTY UIAL FOSITIDN
	REM DR A GROUF Flug
	REM AN EMFTY UIAL FOSITION IS USEII AS AN ENII
	KEM OF GROUF INDICATOF
	CIG.CE1 =datai ANI 16 FEM GET STATE OF CIG
	IF CIG.CE1 $=0$ THEN NSU=1 EL.SE NSU=0
	FOKE IFF, 16 RETURN   REM CLEAR CE1 FLAG
	REM
	FEM
	REM
5290	REM SUFROUTINE NEXT
	FEM FETCH NEXT SAMFLE
5300	CI3.CA1=FEEK(CA1)
	IF CI3.CA1 $=0$ THEN 5300
	FOKE FORTE,LEI? REM S\#\# LITE MODE, EUSY LEII
	REM WRITE CO3 HI, STOP
	REm Sample changer motok
	REETURN
	REM
	REM
	REM
5310	REM SUERROUTINE GROUF. Index
	REM DETERMINES WHETHEF A GROUF FLUG IS INDEXEL
	FEM AT THE ELEUATOF:
	EOGF=0 FEM INITIALIZE EEGINNING OF
	FEM GROUF FLUG FLAG TO O
	EOGF $=0 \quad$ REM INITIALIZE ENI OF GROUF



$$
\text { Figure C. } 2 \text { Prou.bAS listing }
$$

```
 FEM LOWEFS A SAMFLE INTO THE IIETECTOFI
 FOKE FORTE,LEIII REM $*# LITE MOLE,FUSY LEI,COI LOW
 FEM LOWEF SAMFLE INTO IETECTOF
 data=F'EEK゙(F'ORTA)
 CI1. F'AO=|ata ANL 1
 IF CI1.F'AO =1 THEN 5410
 FOKE FORTE,LED2 REM $क: LITE MOIE, EIUSY LEI,,CO1 HI
 REM STOF LOWN.MOTOF:
 RETURN
 FEEM
 REM
 FEM
5 4 2 0 ~ R E M ~ S U B R O U T I N E ~ M O T O R . L I R I V E ~
 REM HANILLES ALL THE MOTOE LKIVE FROTOCOLS FOF THE
 REH GROUF FLUG MOIE OF OFEFIATION
 GOSUE 8000 REM FEALI IIATE
 IF EFANCH=? THEN 5430
 BRANCH=1
 LE[I2=22.
 GOSUF 30 REM ELEUATOF OUT OF IETECTOF
 LEI=214 REM $IO LJTE GFOUF,GUSY LEIIPCO3 LOW COHE
 GOSUE 5320 FEM GROUF FLUG TNIEXEI AT ELEUATOK
 LEII=214 FEM CO3 LOW CODE
 LED2=222 FEM CO3 HI COINE
 GOSUE 5370 FEM INIEX UIAL AFTEF GROUF FLUG
 IF BOGF=1 OF EOGF=1 THEN 5470
 FEAII #1,1913+IGROUF;SAMFLE.IN.GROUF'
 SAMF'LE.IN.GROUF=SAMF'LE.IN.GROUF+1
 FRINT *1,1913+IGROUF;SAMFLE.IN.GROUF
 IF BRANCH=1 THEN GOTO 5440 ELSE GOTO 5450
 REM THESE STATEMENTS AFE TO EE EXECUTEII ONLY ONCE FER
 FEM GFOUF
 BEGIN.GROUF.SAMPLE=FEEK(CUIALF)
 PRINT *1,1916+IGFIDUF;EEGIN.GROUF.SAMF'LE
 BRANCH=?
 REM CONTINUE
 LEII=220 REM $NC LITE GROUF, EUSY LEII COI HI COLE
 LEH2=222 REM LITE GROUF,FUSY LED CO1 LOW COIE
 GOSUE 5410 REM LOWEF SAMFLE INTO IETECTOR
 GOSUF 9250 REM STAFT COUINTEFI
 GOSUF 7000 REM REAI START TIME
 FOKE FOFTA:95 REM $5F LITE ACTIUE,COUNT LEII
 FEM SAUE START TIME IN ARRAYS
 REAI *1,1913+IGFOUF;SAMFLE.IN.GROUF
 JINDEX=SAMF'LE.IN,GROUF-1
 SEC=HOURS*3600+MINUTES*GO+SECONIIS
 Figure c.̌ rк@j.ís (continueg.)
```

```
```

    FFIINT *1,1201+200*IGROUF'HIINLEX:GEC
    ```
```

    FFIINT *1,1201+200*IGROUF'HIINLEX:GEC
    X=100*IGFIOUF'\JINIIEX
    X=100*IGFIOUF'\JINIIEX
    FOF K=0 TO 3
    FOF K=0 TO 3
    XX=X+300*N゙
    XX=X+300*N゙
    FFINT *1,XX+1:0
    FFINT *1,XX+1:0
    NEXT K゙
    NEXT K゙
    FEAI #1,1904+IGROUF'&Freset.$
    FEAI #1,1904+IGROUF'&Freset.$
    IF freset$="F'T" THEN GOSUE 9260 ELSE GOSUF 9170
    IF freset$="F'T" THEN GOSUE 9260 ELSE GOSUF 9170
    FEM OFTEC COUNTEF TIME-OUT
    FEM OFTEC COUNTEF TIME-OUT
    FOKE FOFTA,127 FEM $7F LITE ACTIUE LEI
    FOKE FOFTA,127 FEM $7F LITE ACTIUE LEI
    FEALI *1,1904+IGROUF;Freset$
    FEALI *1,1904+IGROUF;Freset$
    IF freset$="FC" THEN 5465
    IF freset$="FC" THEN 5465
    GOSUR 7000 REM REAII STOF TIME
    GOSUR 7000 REM REAII STOF TIME
    FEM SAVE STOF TIME IN ARFIAYS
    FEM SAVE STOF TIME IN ARFIAYS
    SEC=HOURS*3600+MINUTES*6O+SECONDS
    SEC=HOURS*3600+MINUTES*6O+SECONDS
    FRINT *1,1301+200*IGROUF+JINIEX;SEC
    FRINT *1,1301+200*IGROUF+JINIEX;SEC
    FEM REAI COUNTERS
    FEM REAI COUNTERS
    GOSUE 9290 FEM REAII COUNTERS
    GOSUE 9290 FEM REAII COUNTERS
    FEM CONTINUE
    FEM CONTINUE
        RETUFN
        RETUFN
        REM
        REM
        FEM
        FEM
    FEM
    FEM
    ```
 SEC=HOURS*3600tMINUTES*GOHSLCONNS
```

    SEC=HOURS*3600tMINUTES*GOHSLCONNS
    REM CONTINUE
    REM CONTINUE
    GOSUE 30
    GOSUE 30
    GOTO 5430
    GOTO 5430
    FEM ELEUATOF OUT OF HETECTOF
    FEM ELEUATOF OUT OF HETECTOF
    REM LOOF HEFE UNTIL EOGF=1
    REM LOOF HEFE UNTIL EOGF=1
    REM SUBFOUTINE FRESET,TIME
    REM SUBFOUTINE FRESET,TIME
    FEM ACCEFTS THE FFESET TIME EASE FOF THE SYSTEM
    FEM ACCEFTS THE FFESET TIME EASE FOF THE SYSTEM
    FEM EITHEF , 1 SEC , . }1\mathrm{ MIN , OF EXTEFNAL
    FEM EITHEF , 1 SEC , . }1\mathrm{ MIN , OF EXTEFNAL
    FEM PRESET TIME FEFIOI = M * 10 N N * TIME EASE SELECTION
    FEM PRESET TIME FEFIOI = M * 10 N N * TIME EASE SELECTION
    INFUT " time base S(sec M(min E(ext Q(uit";time,baseq
    INFUT " time base S(sec M(min E(ext Q(uit";time,baseq
    FRINT #1,1901+IGFOUF'ttime,base$
    FRINT #1,1901+IGFOUF'ttime,base$
    IF time.base$ <> "Q" THEN GOTO 5510 ELSE GOTO 5500
    IF time.base$ <> "Q" THEN GOTO 5510 ELSE GOTO 5500
    quit,flas=1
    quit,flas=1
    GOTO 5540
    GOTO 5540
    IF time,base$ <> "S" ANI time.base$ <> "M" \
    IF time,base$ <> "S" ANI time.base$ <> "M" \
    AND time,base$ 人े "E* THEN GOTO 5520 ELSE GOTO 5530
    AND time,base$ 人े "E* THEN GOTO 5520 ELSE GOTO 5530
    X=CALL(BEEF'A) FEM BEEF FOF ILLEGAL INFUT
    X=CALL(BEEF'A) FEM BEEF FOF ILLEGAL INFUT
    GOTO 5490
    GOTO 5490
    quit.flas=0
    quit.flas=0
    RETURN
    RETURN
    FIEM
    FIEM
    FEM
    FEM
    FEM
    FEM
    FEM SUEFOUTINE F'RESET.COUNT
    FEM SUEFOUTINE F'RESET.COUNT
    time,base$="E" FEM EXTEFNAL TIME GASE SELECTEI
    time,base$="E" FEM EXTEFNAL TIME GASE SELECTEI
    Fisure C.< DK:u.Bt: (continued.)

```
```

            REM FOR F'RESET COUNT
    FFINT #1,1901+IGFOUF;'time.base%
    INFUT "SELECT COUNTEFS 1,2,3,4 ,SELECT=1";CCO,1
            CC1,CC2,CC3
    FRINT *1,1950+IGROUF;CCO
    FRINT *1,1953+IGROUF;CC1
    FRINT #1,1956+IGROUF;CC2
    FRINT #1,1959+IGROUF;CCS
    FRINT "SELECT COUNTEF WHOSE IIATA IS TO EE IIISFLAYEII"
    INFUT "COUNTEF IIISFLAY(1-4)";IIF:
        IF IFF < 1 OF IF > 4 THEN X=CALL(FEEF'A) ELSE GOTO 5567
        GOTO 5563
        FRINT #1,1922+IGROUF;IIF
        FRINT "MAX F'RESETS : COUNTEF 1=9 E+07;2,3,4=1 E+38"
        FRINT "ENTER FRESETS FOR SELECTEI COUNTEFS" :
        FOF ICOUNT=0 TO 3
        fEM continue
        FEAII 11,1950+3*ICOUNT+IGFOUF;:CC
        IF CC=1 THEN INFUT FCNT
        FRINT #1,1938+4*IGROUF+ICOUNT;FCNT
        FEAII $1,1938+4*IGROUF;FCNTO
        IF FCNT & O OR FCCNT \
            > 1E+38 OK FCNTO > 9E+O7 THEN 5E880
        GOTO 5590
        X=CALL (EEEFA)
        GOTO 5570
        REM CONTINUE
        NEXT ICOUNT
        Ruit.flas=0
        RETUFN
        REM
        FEM
        REM
        REM SURROUTINE IEEIMAL.TO.HEX
        REM ASSIGN WEIGHTS
        W1=65535
        W2=4096
        W3=256
        W4=16
        A=INT (TECIMAL.NUM/W1)
        NUM.NEW= IECIMAL .NUM-(W1*A)
        F=INT(NUPI +NEW/W2)
        NUM.NEW=NUM.NEW-(W2*B)
        C=INT (NUM.NEW/W3)
        NUM.NEW=NUM.NEW-(W3*C)
        II=INT (NUM.NEW/W4)
        Figure C.2 PROJ.BAS (continuea.)
    ```
```

    E=NUM, NEW-(W4*II)
    HEX+NUM=A*(10^4)+B*(10^3)+C*(10^2)+[1*10+E
    FETUFN
    FEM
    REM
    REM
    FEM SUEFOOUTINE HEX.TO. IECIMAL
    U=INT (HEX.NUM/(10-4))
    NUM, NEW=HEX, NUM-(U*(10"4))
    W=INT (NUM.NEW/(10`.3))
    NUM.NEW=NUM.NEW-(W*(10^3))
    X=INT (NUM.NEW/(10~2))
    NUM.NEW=NUM.NEW-(X*(10-2))
    Y=INT (NUM,NEW/10)
    Z=NUM.NEW-(Y*10)
    IIECIMAL.NUM=U*65535+W*4096+X*256+Y*16+Z
    RETURN
    REM
    FEM
    REM
    REM SUFFROUTINE UF'IIATE.CURFENT
    FEM UFIAATE STGTE OF CURFIENT UIAL INIEXELI
    IF NSU=0 THEN GOTO 5780 ELSE GOTO 5790
    state,vial=0 FEM SET STANIAFRII UIAL STATE
    GOTO 5820
    IF HOGF=1 THEN GOTO 5800 ELSE GOTO 5810
    state,vial=1 FEM SET GFOUF FLUG STATE
    GOTO 5820
    state.vial=2 FEM SET EMFTY UIAL STATE
    RETURN
    REM
    REM
    REM
    REM SURKOUTINE ERROF
    REM FINGS ALARM ANI FRINTS ERROR MESSAGE IF A
    REM NON STANDIARII VIAL IS INDEXEII AT THE ELEVATOR
    REM IN THE SINGLE STEF MOLIE
    IF state.vial=1 THEN GOTO 5840 ELSE GOTD 5850
    FOR J=0 TO 2
    X=CALL(EEEPA)
    NEXT J
    PRINT "ERROK*** ındexed vial fasition';" ";SNi\
    'contairis a stouf Flus"
    EKKOF=1
    GOTO 5880 FEM FETUFN
    IF state,vial=2 THEN GOTO 5860 ELSE GOTO 5870
    ```
 rigure C.'́ PKUU.BhS (continued.)
```

5860
5870
5880
870
FOR J=0 TO ?
X=CALL(BEEFA)
NEXT J
FKINT "EFFOR*** indexed vial position";" ';SN;
"is emfty"
EFFOF:=1
GOTO 5880 FEM RETUFN
EFFROF:=0
RETURN
REM
FEM
FEM
FEM SUBFOUTINE SINGLE CONTFOLS THE SINGLE STEF*
REM OFEFATING MOIIE
FOKE FORTE,2コ2 FEM \$IIE LITE SINGLEyEUSY'LEII
IGFOUF=0 : GN=1 : SFLAG=1
FRINT \#1,1983\#GN
JSINGLE=0
LEII=190
LEII2=222 FEM \$FE LITE SINGLE,IILE LEI COIIE
cult.flas=0 REM $IE SINGLE,BUSY LEI COLE
        GOSUE 5090
        IF Ruit.flas=1 THEN 6190
        FEAI *1,1904;ereset$
IF Freset%="FT" THEN GOSUF 9030 ELSE GOSUE 9020
REM LOAII COUNTEF COMMANIS
IF quit,fles=1 THEN 6190
REM CONTINUE.
FOKE FORTE,190 FEM \$EE LITE SINGLE,IIILE LEII
INFUT "samFle rumber(1-100) or Q(uit";samele.riumbers
FOKE FOFTE,222 REM $DE LITE SINGLE,EUSY LED
    IF semFle, riumber$=*Q" THEN GOTO 6030 ELSE GOTO 6040
quit.flag=1
GOTO 6190
FEM RETURN
SN=VAL(samFle rimmber\$)
IF SN<< 1 OK SN > 100 THEN GOTO 6050 ELSE GOTO 6060
X=CALL(EEEF'A) REM EEEF FOF ILLEGAL INF'UT
GOTO 6020
UIALF'=FEEK(CUIALF) REM OETAIN CURRENT UIAL FOSITION
IF SN=UIALF THEN GOTO 6100 ELSE GOTO 6070
GOSUE 30 FEM ELEVATOF: OUT OF IETECTOF
IF SN % UIALF THEN GOTO 6090 ELSE GOTO 6080
FOF J=UIALF TO 99+5N
LEI1=214
REM \$IIG SINGLE,BUSY CO3 LOW COINE
LED2=222
REM \$IIE SINGLE,BUSY COZ HI COIE
GOSUE 5370
REM INDEX NEXT UIAL
Figure C.E rRUJ.BAS (continued.)

```
```

        NEXT J
        GOTO 6110
    FOF I=UIALF TO SN-1
    LELII=214 REM $IIG SINGLE,FUSY CO3 LOW CONE
    LEII2=222 REM $IE SINGLE,HUSY COZ HI COLIE
    GOSUN 5370
    NEXT I
    FEM CONTINUE
    GOSUK 5830 FEEM TFAF NON STANIIARII UIALS
    IF EFROR=1 THEN 6020
    GOSUE 8000 FIEM FEAII IIATE
    LEH1=220 FEM $LIC SINGLE,BUSY LEI, CO1 LOW CONE
    LE[2=222 REM $DE SINGLE,FUSY LEI, COI HI COLE
    GOSUR 5410 REM LOWER SAMFLE INTO THE IIETECTOR
    JSINGLE=JSINGLE+1
    FOF K=0 T0 3
    FRINT *1,JSINGLE+300*K;0
    NEXT K
    FRINT #1,1801+JSINGLE-1;SN
    GOSUE 9250 FEM START COUNTER
    GOSUE 7000 REM FEAII START TIME
    FOKE FORTA,95 REM $5F LITE ACTIUE, COONT LEIH
    REM SAVE START TIME ON SCRATCH FILE
    SEC=HOURS*3600+MINUTES*60+SECONLIS
    F'RINT *1,1201+JSINGLE-1;SEC
    REALI #1,1904;Freset%
    IF freset$="FT" THEN GOSUB 9260 ELSE GOSUB 9170
        REM COUNTER TIME-OUT
                        REM $7F LITE ACTIVE LELI,
    POKE POFTA,127 REM $7F LITE ACTI
    IF Freset$="FC" THEN 6115
    GOSUF 7000 REM REAII STOF TIME
    REM SAUE STOF TIME IN ARFAYS
    SEC=HOURS*3600+MINUTES*6O+SECONIIS
    FRINT #1,1301+JSINGLE-1;SEC
    REM REAII COUNTERS
    GOSUF 9290
                                    REM REALI COUNTEFIS
    6115
REM ELEVATOR OUT OF IIETECTOR
INFUT "refeat for ariother samrle Y(es N(o Q(uit"istate\&
IF state$="Q" THEN GOTO 6130 ELSE GOTO 6140
6130 Quit.f1es=1
    GOTO 6190
    REM RETUFN
6140 IF state$="Y" THEN GOTO 6150 ELSE GOTO 6160
6150 INFUT "with same Farameters Y(es N(o";Fara\$
IF Faras="Y" THEN 6020

```
 Figure C .2 pRUJ.BAS (continued.)

Figure C. 2 PkUd.BAS (continuea.)
```

    GOTO 6510
    6570
6580

```
```

GOTO 6510		
FEM CONTINUE		
LEI2 $=95$		
GOSUE 30		
LEI $=87$	FEM \$57 CO3 LOW COIE	
GOSUE 5320	REM INIEXES A GROUF F'LUG	
LEI1 $1=87$	FEM \$57 COS LOW CIME:	
LED2=95	REM \$5F CO3 HI COIIE	
GOSUE 5370	FEM INIEXES UIAL AFTEF GFOOUF	PLUG
SN=FEEK゙ (CUIALF) .		
GOSUF 5830	FEM TKAF NON STANLIAFLI UIALS	
GOTO 6510		
IF state\$='Q'	THEN GOTO 6610 ELSE GOTO 6600	
$X=C A L L$GOTO 6510	REM EEEF FOF ILLEGAL INFUT	
FEM CONTINUE		
FOKE FOFTE,223	REM $\ddagger$ LIF LITE IILE LEII	
FEETUFN		
FEM FEEAI TIME		
FEM REAIIS HOURS , MINUTES , SECONIIS		
GOSUF 7020	FEM FEAII HOUR	
GOSUE 5650HOUFS $=$ HEX. NUM	REM CONUERT TO HEX	
	HOUFS $=$ HEX. NUM	
GOSUE 7030	REM REAII MINUTES	
IIE $1=$ DEC I MAL , NUM		
GOSUE 7030	REM FEAII MINUTES AGAIN	
IF IECIMAL.NUM $>=$ IIE1 THEN 7015		
GOTO 7010		
GOSUK 5650 REM CONUERT TO HEX MINUTES=HEX. NUM		
GOSUE 7040 REM FEAI SECONDS		
IE $1=$ DECIMAL. NUM		
GOSUF 7040 REM REAI SECONLIS AGAIN		
IF IIECIMAL. NUM $>=$ IIE 1 THEN 7017		
GOTO 7010		
GOSUF 5650 REM CONVERT TO HEX		
SECONLIS $=$ HEX * NUM		
FEETURN		
FiEM		
REM		
REM		
REM SUEROUTINE RE	FEAI HOUF:	

```
 FOOKE FOFTE2,F:CHF: FEM SELECT HF COUIITEF CS,FIII LOW
 FEETUFN
 FEM
 REM
 REM
 FEM SUFFOUTTINE FE&I; MINUTES
 FOKE FOFTE2,FICMIN FEM SELECT MINUTE COUNTEF SENII
 FEM CS,FIT LOW
 GOSUE 7050 FEM REAI FROTOCOL
 RETURN
 FEM
 REM
 FEM
 FEM SUFROUTINE REMII SECONISS
 FOKE FOFTE2,FCSEL FEM SELECT SECONII COUNTEF SENII
 FEM CSIFRI LOW
 GOSUR 7050 FEM FEAIF FROTUCOL
 FETUFN
 REM
 FEM
 REM
7050 REM SUFIROUTINE RE:- FFEOTOCOL
 FOKE IIIFA2,O FEA SETTUF FORTAZ AS INFUTS
7060 data=FEEK(IFFi2)
 RIIY,CA1=data ANII = REM GET STATE OF RIY
 IF RIIY.CA1 =0 THEN 7060 FIEM WAIT FOR RIY -
 IIECIMAL.NUM=FEEK(FOFTAZ) FEM FEAII INATA CLEAK CA1 FLAG
 FOKE FORTE2,96 FEM $60 TRI-STATE THE FTTC
 FETURN
 REM
 REM
 REM
 REM
 REM
 REM
7080 FEM SUEROUTINE SE TIME
7090 INPUT "S(et timft Q(uit";stateq
 IF state&="a* THE:: SOTG >100 ELSE GOTO 7110
7100 vuit.flas=1
 GOTO 7200 FIEM FETUNN
710 IF state$="S* THE: r.0TO 7130 ELSE GOTO 7120
7120 X=CALL(EEEPA) FEM EEEF FOF ILLEGAL INFUT
 GOTO 7090
7130 REM CONTINUE
 FOKE DLRAE,2S5 FER SETTUF FORTA2 AS OUTFUITS
 Fig.t= C.C Prud.BAS (=ontinued.)
```

```
 FOKE FOFTA2,28 FEM $10 FESET TTME COUNTEF COLIE
FOKE FOFTE2,RCF+64 FEM SELECT THE COLINTER FESET REGISTEF
 FEM SENII CS,WF LOW
GOSUB 7210 FEEM WRITE FFOTOCOL
INFUT " eriter HOURS *iHH
IF HH< < OF HH }24 THEN GOTO 7140 ELSE GOTO 715
X=CALL(EEEF'A) FEM EEEF FOF ILLEGAL INFUT
GOTO 7130
INFUT " eriter MINUTES * ;MM
IF MM < O OK MM > 5% THEN GOTO 7160 ELSE GOTO 7170
X=CALL(EEEF'A) FEM BEEF FOF ILLEGAL INFUT
GOTO 7150
INFUT " eriter SECDNIIS *iSS
IF SS < O OF SS > 59 THEN GOTO 7180 ELSE GOTO 7190
X=CALL(BEEF'A)
GOTO 7170
FEM ENCOIEE IN IECIMAL
HEX , NUM=HH
GOSUE 5660 FEM HEX TO IIECIMAL FOUTINE
HH=[IECIMAL . NIJM
HEX. NUM=MM
GOSUE 5660
MM=LIECIMAL , NUM
HEX.NUM=SS
GOSUB 5660
SS=[IE CIMAL * NUM
FEM WFITE TO GO REGISTEF FOF FRECISE STARTING OF CLOCK
REM IAATA WRITTEN IS IGNOKEII
FOKE FORTA2:O REM IIUMMY IAATA IGNOFEI
POKE FORTE2,RGC+64 REM SELECT GO FEGISTEF,SENII
REM CS,WF LOW
GOSUE 7210 REM WRITE FROTOCOL
FOKE PORTA2,SS FEM IIATA OUT TO SECONIIS REGISTEF
POKE FORTR2,FICSEC+64 REM SELECT SECONDS COUNTEF'
 REM SENI CS,WR LOW
GOSUF 7210 REM WRITE PFOTOCOL
FOKE FORTA2,MM FEM IIATA OUT TO MINUTES FEGISTEF
FOKE FOFTE2,RCMIN+64 REM SELECT MINUTES COUNTEK
 FEM SENII CS,WF LOW
GOSUE 7210 REM WRITE FFOTOCOL
FOKE FORTA2,HH FEM IIATA OUT TO HOUFS REGISTER
FOKE FORTE?,RCHR+64 FEH SELECT HOUR COUNTER
 REM SENII CS,WF LOW
GOSUH 7210 REM WRITE FFOTOCOL
GOSUE 7000 REM REAII TIME
FRINT "THE TIME IS ";HOURS;":";MINUTES;":";SECONLIS
```

Figure C. 2 PRUJ.baS (continuea.)

```
 quit.flas=0
FETURN
REM
REM
REM
REM SUEFOUTINE RTC WRITE FROTOCOL
7210
7220
data=FEEK(IFR2)
FIDY.CA1=data ANII 2 REM GET STATE OF FIIY
IF FIIY.CA1 =O THEN 7220 FEM WAIT FOF RIIY M
FOKE IFFI2,? REM CLEAR CA1 FLAG
FOKE FORTE2,96 REM TRI-STATE THE FTC
FETURN
FEM
FEM
REM
FEM REAI: IAATE
REM REAIIS IIAY OF THE WEEK,IIAY,MONTH ANII YEAFI
FOKE IHIFA2,O FEEM SETTUF FORTA2 AS INPLUTS
8010
GOSUF 8060
IIE1=IEECIMAL.NUM
GOSUR BO60 FEM FEAII IIAY OF THE WEEK AGAIN
IF IIECIMAL,NUM }=\mathrm{ IIEI THEN 8015
GOTO }801
8015 IIAY.OF.WEEK=IIECIMAL.NUM-1
GOSUE 8020 FEM REAII IIAY OF THE MONTH
GOSUE 5650 FEM CONVERT TO HEX
LIAY=HEX.NUM
GOSUF 8030 FEM FEAII MONTH
GOSUF 5650 REM CONUEFT TO HEX
MONTH=HEX . NUM-1
GOSUE 8040 REM READ YEAF.HIGH
GOSUE 8050 FEM REAII YEAF.LOW
GOSUE 5650 REM CONVERT TO HEX
YEAR.LOW=HEX.NUM
YEAK=(YEAF.HIGH*100)+YEAR.LOW
RETURN
REM
REM
REM
REM SUBROUTINE REAII IAAY OF MONTH
FOKE FOFTE2,RCHOM
GOSUR 7050
 FEM SELECT NAY OF MONTH COUNTEF
 REM SENII CSOFII LOW
FETURN
FEM
REM
```

Figure C. $\quad$ PRUu. Brs (continued.)

```
 REM
```

```
FEM
```

REM SUFFIOUTINE FEAII MONTH
FOKE FORTE2,FICM FIEM SELECT MONTH COUNTER
FEM SENLI CS,RII LOW
GOSUE 7050 REM FEAI FFOTOCOL
RETURN
FEM
FEM
REM
FIEM SUBFOUTINE FEEAII YEAF:HIGH
YEAF • HI GH=19
FETUFN
FEM
REM
FEM
FEM SUEFOUTINE REAI YEAFI.LOW
FOKE FOFTEZ,FFTS FEM SELECT YEAR.LOW FAMM
REM SENH CS,FII LOW
GOSUE 7050 FEM FEEAI FFROTOCOL
FETUFN
FEM
REM
FEM
FEM SUBFOIJTINE FEAI IIAY OF THE WEEK
FOKE FORTE?,FICIOW FEM SELECT IIAY OF WEEK COUłTEF
FEM SENII CS,FII LOW

REM REAII FKOTOCOL
GOSUE 7050
FETUKN
FEM
REM
REM
REM SUBFOUTINE SET IIATE
INPUT *S(et date $\quad$ (uit*istate
IF state $\$={ }^{\circ} \mathrm{Q}^{\circ}$ THEN GOTO 8090 ELSE GOTO 8100
Ruit.flas=1
GOTO 8210 FEM FETURN
IF states="s" THEN GOTO 8120 ELSE GOTO 8110
$X=$ CALL (BEEF'A) REM BEEF'FOF ILLEGAL INFUT
GOTO 8080
REM CONTINUE
FOKE ILRA2, 255 REM SETTUF FORTA? AS DUTFUTS
FOKE FOFTA2,10 FEM \$OA FESET YEAF FAM COLE
POKE FOFTB2,FFFF+64 FEM SELECT FAM FESET FEGISTER
GOSUE 7210 REM SENII CS,WR LOW
INFUT " eriter YEAF ";YF

IF YFi \& 1986 OR YF $>5999$ THEN GOTO 8130 ELSE GOTO 8140 $X=C A L L$ ( $\mathrm{HEEF} \mathrm{A}^{\prime}$ ) GOTO 8120
INFUT eriter MONTH (1-12) * mM
IF MM \& 1 OF MM 212 THEN GOTO 8150 ELSE GOTO 8160
$X=C A L L(B E E F \cdot A) \quad F E M$ EEEF FOF ILLEGAL INFUT
GOTO 8140
INFUT enter day of the monith (1-31) einin
IF III 1 OF III 31 THEN GOTO 8170 ELSE GOTD 8180
$X=C A L L(F E E F \cdot A)$ FEM BEEF FOF ILLEGAL INFUT
GOTO 8160
INFUT eriter day of the week (1-7) "; [W
IF IW < 1 OF IIW $>7$ THEN GOTO 8190 ELSE GOTO 8200
$X=C A L L$ (EEEFA) FEM HEEF FOF ILLEGAL INFUT
GOTO 8180
FEM ENCOIE IIATA IN IIECIMAL
HEX. NUM= 1 H
GOSUB 5660 FEM CONVEFT TO IIECIMAL
$I I I=D E C I M A L$. NUM
HEX. NUM=MM
GOSUF 5660
MM= IIECIMAL , NUM
YEAF.HIGH=INT (YFi/100)
YEAK, LOW=YK-(YEAF, HIGHX:JOO)
HEX. NUM=YEAR. LOW
GOSUB 5660
YEAF . LIIW = IIECI MAL . NUM
FOKE FORTAZ, IIW FEM IIAY OF WEEK OUT TO COUNTEF
FOKE FORTE2, RCCIOW+64 REM SENII CS,WK LOW
REM SELECT IIAY OF WEEK COUNTEF
GOSUF 7210
FOKE FOFTA2, III
FOKE FORTE2, FCCIOM+64 REM SELECT IIAY OF MONTH COUNTEF
GOSUR 7210
FOKE FORTAZ, MM
POKE PORTE2, KCM 64
GOSUF 7210
FOKE FORTA2, YEAR. LOW
FOKE FORTE2,FRTS+6A
GOSUE 7210
GOSUE 8000
$L I W=I I A Y, O F, W E E K$
REAII $1.1962+$ IIW; IIDAY $\$$
REM WRITE PROTOCOL
REM SENI CS,WR LOW
REM WRITE FFOTOCOL
REM MONTHS OUT TO COUNTEF
REM SELECT MONTH COUNTEK
REM SENI CS,WF LOW
REM WRITE FROTOCOL
REM TENTHS YEAF OUT TO RAM
REM SELECT TENTHS YEAK RAM
FEM SENI CS,WF LOW
REM WRITE FROTOCOL
REM REAL IIATE
Figure C. 2 PROJ.BAS (continued.)

```
 FEAII #1.1969+MONTH;SMCNNTH$
 FFINT "THE IIATE IS ";IIIAYq;"*";
 SMONTH&;* ";IIAY;";";YEAFi
 auit.flas=0
FEAI \(11,1969+\mathrm{MDNTH} 5 \mathrm{SMONTH}\)
FRINT＂THE IIATE IS＂；IIIAYq；＂，＂i
SMONTHE；＂；IAY；＂；＂；YEAF
FETUKN
REM
FEM
FEEM
FEM ORTEC COUNTER OFERATIONS
FEM THIS FOUTINE IETEFMINES THE MASK EIT SEQUENCE REM FOF COUNTEFS TO EE MASKEII
FOR IG＝0 TO GN－1
FFIINT \(\# 1,1932+I G R O U F ; 0\) REM MASK
FRINT 1 1，1925＋IGROUF；0 FEM COUNTEFS
NEXT IG
FOR ICOUNT \(=0\) TO 3
FEAI \(\# 1,1950+3 *\) ICOUNT＋IGFOUF ；CC
IF CC＝1 THEN GOTO 9005 ELSE GOTO 9007
FEAI＊1．1932＋IGFOUF ；MASK
FEAI \(41,1925+I G F O U F ; C O U N T E F S\)
FEAI \(+1,1.928+\) ICOUNT 9 GATU
MASK゙＝MASK゙＋GATU
COUNTEFS＝COUNTERS +1
FRINT 1 1，1932＋IGFOUF \％MASK゙
FFINT \(\# 1,1925+\) IGFOUUF；COUNTEFIS
NTOF＝NTOF＋1
NEXT ICOUNT
FEAI \(\neq 1,1932+I G R O U F ;\) MASK
IF MASK \(<=9\) THEN MASK．EIT \(\$=\) CHF \(\$(M A S K+48)\)
IF MASK＞ 9 THEN MASK゙，EIT \(\$=C H K \$(M A S K ゙+55)\)
PRINT \(11.1919+I G F O U F ; M A S K\) ．EIT\＄
RETURN
REM
REM
FEM
REM SUBROUTINE＂FC＂LOAII COUNTEF
PRINT \(\# 1\) ；1910＋IGROUF；9
FFINT 11,1907 IGROUF；7
GOSUE 9030
FETUFN
REM
FEM
FEM
REM SURROUTINE LOAII COUNTEF
FEM LOAIIS ALL EIT SERUENCES REQUIFEII FOF COUNTEF： REM OFEFATION，ALL LATA INFUTS ARE TEFMINATEII EY
Figure C .2 PKOJ．BAS（continued．）
```

```
 FEM A CAFRIAGE RETURN (CR) ANII LINEFEEII (LF)
 FOF J=1 TO 2
 GOSUF 9210 FEM 5ENII 'L'
 FOKE TFANS,ASC("M")
 X=CALL (TUARIT)
 FEAI #1,1910+IGFOUF; %M
 FOKE TFANS,ASC(CHF$(M+4日)) FEM FORMULA
 X=CALL (TUART)
 GOSUE 9160 FEM SENII CFI,LF
 NEXT J
 GOSUB 9210 FEM SENII 'L"
 FOKE TRANS,ASC("N")
 x=CALL(TUAFT)
 FEAII #1,1907+IGFOUF' iN
 FOKE TFANS,ASC(CHF$(N+4B)) FEEM FOFMULA
 X=CALL(TUAFT)
 GOSUF 9160 FEM SENII CFI,LF
 FEM SELECT COUNTEF WHOSE LIATA IS TO IE LIISFLAYEI
 GOSUE 9230 FEM SENH "LII"
 FEAII *1,1922+IGFOUF;DF
 FOKEE TFANS,ASC(CHF$(IF+48)) REM IIISFLAY COUNTEF IIATA
X=CALL (TUART)
GOSUE 9160 FEM SENII CF,LF
GOSUE 9040 FEM FESET F.MASK
GOTO 9060
FEM
REM
FEM
9040 REM SUEROUTINE RESET F.MASK
 GOSUE 9210 FEN SENI 'L'
 GOSUE 9245 REM SENI 'R"
 READ *1,1919+IGROUF;MASK.EIT$
 FOKE TFANS,ASC(MASK, BIT$) FEM WITH EIT
 REM SEQUENCES FOF COUNTEFS TO FE MASKEII
 X=CALL(TUAFT)
GOSUE 9160 REM SENI CF,LF
FETURN
FEM
REM
REM
9050 FEEM SUBFOUTINE SET R.MASKK
GOSUE 9210 REM SENII "L"
GOSUE 9245 REM SENII PR"
FOKE TFANS,ASC(CHR$(48)) REN MASK ALL COUNTEFS
X=CALL (TUAFT)
GOSUE 9160 REM SENII CR,LF
Figure C.Z PROJ.bhS (continuea.)
```

```
 RETUFiN
 FEM
 FEM
 REM
FOKEE TKANS,ASC(CHF$(50))
9153 X=CALL(TUART)
X=CALL (TUA
FEM CONTINUE
RETURN
REM
FEM
REM
REM SUBFOUTINE EXECUTE COMMANIIS
FOKEE TFANS,ASC(CF&)
X=CALL (TUART)
FOKEE TFANS,ASC(LF$) FEM SENII CAFRIAGE FETUFN,LINE
 REM FEEII FAIF ANII EXECUTE COMMANIIS
X=CALL (TUAFT)
RETUFN
REM
REM
REM
9170 FEEM SUFROUTINE "FC" TIMEOUT
REM FEAI ALL COUNTEFS NOT MASKEII
GOSUE 9290 FEM FEAII ALL COUNTEFSS
Figure C.< PKUJ.bAS (continlicu.)
```

```
 FOF ICOUNT =0 TO 3
 REAII #1,1950+3*ICOUNT+IGROUF;CC
 REAI *1,1928+ICOUNT;GATV
 IF CC=1 THEN GOTO 9180 ELSE GOTO 9190
9 1 8 0
 90
8200
9210
9215
9220
9230
 OFGATE=GATV
 IF SFLAG=0 THEN JSI=JINIEX+1 ELSE JSI=JGINGLE
 GOSUE 9360 FEM CHECK FOF COUNTEF GUEFFLOW
 X=300*ICOUNT+100*IGFOLFF+JSI
 FEAII #1,X;COLINTEF:.VALUES
 FEAII #1,1938+4*IGFOUF+ICOUNT ;FCCNT
 IF COUNTEFi. VALUES }>= FCNT THEN \
 COTO 9185 ELSE GOTO 9190
 GOSUY 9350 FEM GATE-DFF COUNTEF
 GOSUE 7000 FEM FEAII STOF TIME
 SEC=HOUFS*3600+MINUTES*60+5ECONLIS
 FFFINT #1,1301+200*IGFOUF+ICOUNT;SEC
 NSTOF=NSTOF+1
 IF NETOH=NTOF THEN GOTO 9200 ELSE GOTO 9170
 NEXT ICOUNT
 RETUFN
 EEM
 VEH
 FEM
 REM SUBROUTINE SENI "L"
 FOKE TFiANS,ASC("L")
 X=CALL (TUART)
 RETUKN
 REM
 FEM
 FEM
 FEM SUBROUTINE SENI "G"
 FOKE TKANS,ASC(*G")
 X=CALL (TUART)
 FETUFiN
 REM
 FEM
FEM
FEEM SUBROUTINE SENI "H"
FOKEE TFANS,ASC("H*)
X=CALL (TUART)
FETURIN
FEM
FEEM
FEM
FEM SUBROUTINE SENI LII
FOK゙E TKANS.ASC("L")
```

```
figure C.< PRUJ.BKS (continued.)
```

9245

```
```

    X=CALL(TUART)
    ```
```

    X=CALL(TUART)
    FOKKE TKANS,ASC('I'')
    FOKKE TKANS,ASC('I'')
    x=CALL(TUART)
    x=CALL(TUART)
    FETUFN
    FETUFN
    FiEM
    FiEM
    FIEM
    FIEM
    REM
    REM
    FEM SUFROUTINE SENII 'C"
    FEM SUFROUTINE SENII 'C"
    FOKE TRANS,ASC('C')
    FOKE TRANS,ASC('C')
    X=CALL(TUART)
    X=CALL(TUART)
    FETIJFIN
    FETIJFIN
    FEM
    FEM
    REM
    REM
    REM
    REM
    ```
 FEM SUEROUTINE SENII 'Fi'
```

    FEM SUEROUTINE SENII 'Fi'
    FOKE TFIANS,ASC('F'S
    FOKE TFIANS,ASC('F'S
    X=CALL (TUART)
    X=CALL (TUART)
    FIETUFN
    FIETUFN
    FEM
    FEM
    FEM
    FEM
    FEM
    FEM
    FEM SUEFROUTINE STAFT COUNTEFI
    FEM SUEFROUTINE STAFT COUNTEFI
    GOSUF 9240 FEM SENH 'C"
    GOSUF 9240 FEM SENH 'C"
    GOSUE 9220 FiEM SENII 'H" COUNTEF HALT
    GOSUE 9220 FiEM SENII 'H" COUNTEF HALT
    GOSUE 9160 FEM SENII CF,LF
    GOSUE 9160 FEM SENII CF,LF
    FOKE IFK,8 - FEM CLEAF CH2 FLAG
    FOKE IFK,8 - FEM CLEAF CH2 FLAG
    GOSUE 9040 - FEM FESET F..MASK
    GOSUE 9040 - FEM FESET F..MASK
    GOSUE 9240 FEM SENII 'C'
    GOSUE 9240 FEM SENII 'C'
    GOSUE 9240 FEM SENII "C"
    GOSUE 9240 FEM SENII "C"
    GOSUF 9160 REM SENL CF,LF
    GOSUF 9160 REM SENL CF,LF
    GOSUF 9050 FEM SET F.MASK
    GOSUF 9050 FEM SET F.MASK
    GOSUE 9240 FEM SENII "C"
    GOSUE 9240 FEM SENII "C"
    FOKE TFANS,ASC("S") FEM SENII "CS" COUNTER START
    FOKE TFANS,ASC("S") FEM SENII "CS" COUNTER START
    X=CALL (TUART)
    X=CALL (TUART)
    GOSUE }9160\mathrm{ REM SENII LF,CF EXECUTE COMMANIIS
    GOSUE }9160\mathrm{ REM SENII LF,CF EXECUTE COMMANIIS
        RETUKN
        RETUKN
        REM
        REM
        REM
        REM
        FEM
        FEM
        REM SUFFOUTINE COUNTEF TIME-OUT
        REM SUFFOUTINE COUNTEF TIME-OUT
        FEM LOOF HERE UNTIL COUNTING IS STOFFEII
        FEM LOOF HERE UNTIL COUNTING IS STOFFEII
        data=F'EEK゙(IFF)
        data=F'EEK゙(IFF)
        INTEFUAL, CE2=data ANLI B
        INTEFUAL, CE2=data ANLI B
    GOSUF 9360 FEM OUSFFLOW HETECTION
GOSUF 9360 FEM OUSFFLOW HETECTION
IF INTEFVAL.CE2 =0 THEN 9270 FEM LOOF HEFE UNTIL
IF INTEFVAL.CE2 =0 THEN 9270 FEM LOOF HEFE UNTIL
REM COUNTING ENIIS
REM COUNTING ENIIS
Fiyure C.Z PKOJ.BAS (continued.)

```
```

    GOSUR 9240 FEM SENT "C"
    GOSUB 9220 FEM SENH *H*
    GOSUF 9160 REM SENI CFI,LF
    FOKE IFF,8 FEM CLEAF: CFS FLAG BY WFITING LOGIC
    FETUFiN
    FEM
    FEM
    FiEM
    REM SUFFOUTINE FEATI COUNTEF
    REM FEALI 8 LIECAIIES OF COLNTEF VALUES
    CUALUE=0
    X=FEUFF+2+8*(バー1)
    FOF: I=0 TO 7
    XX=X+I
    data=FEEK゙(XX) FEM FETCH ASCII I!ATA
    Data=UAL(CHF$(sata)) FEM CONUEFT TO IIECIMAL
    CUALUE=CUALUE+data*(10-(7-I))
    NEXT I
    RETUFN
    FEM
    FIEM
    FEM
    FEEM SUEFOUTINE FEAI ALL COUNTERS
GOSUE 9050 REM MASK ALL COUNTEFS TO FREUENT RESET
FEEAII *1,1925+IGFOUF;COUNTEFS
FOKE FRUFF,4
GOSUE 9240 REM SENLI "C"
GOSUE 9245 FEM SENI "F" : "CF"
GOSUF 9160 FEM SENI CFIRLF EXECUTE COMMANII
XX=CALL (FCOUNT)
FOF K=1 TO 4
GOSUE 9280 FEEM FETCH COUNTEF IIATA
REAII \#1,1950+3*ICOUNT +IGROUF;CC
ICOUNT=K゙ー1
IF SFLAG=0 THEN GOTO 9294 ELSE GOTO 9297
X1=300*ICOUNT +100*IGFOUF'IJINIIEX+1
GOTO 9298
X1=300*ICOUNT +100*IGROUFF JSINGLE
FEM CONTINUE
IF CC=1 THEN GOTO 9300 ELSE GOTO 9320
FRINT *1,`1;CUALLUE
FEM CONTINUE
NEXT K
RETUFN
FEM
Figure C．s Pkuj．gas（continuea．）

```
```

    FEM
    FE:M
    950 FEM SUFNOUTINE GATEOFF
FEM INHIEITS COUNTING IN A COUNTEFI SELECTEI EY
REM THE GATE OFF FARAMETEF OFGATE
FEALI \#1,1932+IGROUF;MASK
MASKKG=MASK゙-OFGATE
IF MASKG <゙ 9 THEN GATEM$=CHF$(MASK゙G+48)
IF MASK゙G % 9 THEN GATEM$=CHF$(MASKG+55)
GOSUE 9210 FEM SENI 'L'
GOSUE S215 FEEM SEBII G.
GOSUH S21E
X=CALL (TUAFT)
GOSUF 9160 FEM EXECUTE "LG" COMMANI
FETUFIN
FEEM
REM
FEM
9360 FEM SUBROUTINE OUEFFLOW
FEM IIETECTS OUEFFLOW FLAGS FROM ORTEC COUNTEFS 2,3 \& 4
FEM ANII UFIIATES THE COUNTEF: STOFAGE RESFECTIUELY
FEM OUFL
FRINT 11.1.935;16
PFINT \#1,1936;8
FFIINT \#1,1937i2
FEM SET MASK゙S FOR OUFL2.CE1,OUFL3.CE2,\& OUFL4.CA1 RESFECTIUELY
FOF JCONT=1 TO 3
FEEAI \#1,1950+3*JCONT + IGROUF'CC
IF CC=1 THEN GOTO 9370 ELSE GOTO 9380
9370 IF SFLAG=0 THEN JSI=JINIIEX ELSE JSI=JSINGLE
OUF=F'EEK゙(IFRZ)
REM FETCH STATE
KEAII \#1,1935+JCONT-1;OUFL
OUF=OUF ANI OUFL FEM MASK FOF THIS OUERFLOW
IF OUF=1 THEN GOTO 9375 ELSE GOTO }938
9375
9380
*
REAII \#1,X;COUNTER.VALUES
COUNTEF. VALUES=COUNTER. UALUES+99999999
FRINT *1,X;COUNTEF,VALUES
FEAII \#1,1535+JCONT-1;OUFL
FOKE IFF:3,OUFL FEM CLEAR OUEFFLOW FLAG
FEEM CONTINUE
NEXT JEONT
FEETUFIN
FEM
REM
RENT
figure C.z Prod.bas (continued.)

```
```

9400
GOSUF 9240 FEM SENI 'C'
GOSUE 9220 FEM SENII 'H' :COUNTEF HALT
GOSUE 9160 KEM SENI CF,LF
GOSUE 9040 REM FESET F.MASK
GOSUE 9210 REM SENI 'L'
GOSUL 9245 FEM SENII 'F'
FOKE TRANS,ASC('F')
X=CALL (TUAKT)
GOSUE 9160 REM SENI CF,LF
GOSUE 9240 REM SENI 'C'
GOSUF 9240 REM SENII 'C' : 'CC'=COUNTEF CLEAR
GOSUE 9160 FEM SENI CR,LF
FOF I=1 TO 2
GOSUE g210 FEM SENI 'L'
FOKE TRANS,ASC("M")
X=CALL (TUART)
FOKE TKANS,ASC(CHFS(48);
X=CALL(TUAKT)
GOSUI 9160 FEM SENI CF,LF
NEXT I
GOSUE 9210 KEM SENI 'L'
FOKE TFAANS,ASC('N')
X=CALL(TUAFT)
FOKE TKANS,ASC(CHF$(48))
    X=CALL (TUART)
    GOSUF 9160 REM SENI CR,LF
    GOSUF 9230 REM SENI "LI"
    FOKE TFANS,ASC(CHF$(49))
X=CALL(TUART)
GOSUF 9160 REM SENII CF,LF
GOSUE 9210 REM SENI 'L'
FOKE TRANS,ASC('T")
X=CALL (TUART)
FOKE TFANS,ASC(CHF\$(48))
X=CALL (TUAFT)
GOSUE 9160 REM SENI CR,LF
RETUFN
REM
REM
REM
:0000 FEEM CONTINUE
FFINT \#1,1981;SFLAG
FFINT \#1,1982;LINE
FEM FERFORM FOWER-IOWN STOFAGE
data=FEEK゙(CUIALF) REM FETCH UIAL FOSITION

```
 Figure C. 2 PRUJ.BAS (continuec.)
```

FHHIGH== INT(data/10)
FLLOW=data-FHIGH*10
FOKE IHRAS,255
HEX.NUM=state.vial*10 t
GOSUE 5660
FOKEE FORTA2.IIECIMAL.NUM
FOKE FORTE2,FKNOM+64
GOSUE 7210
HEX . NUM=FHIGH*10
GOSUE 5660
FDKE FORTA`, IIECIMAL.NUM
FOOKE FOFTE2,FKTHS+64
GOSUE 7210
FEM
FOKEE FOKTA,こ24
FOKE FORTE,255
FOK゙E FCFF2,29
CLOSE 1
FEINT * EYEHYE *
STOF.
EMI:

```
```

    TYFE FROJこ.GAS
        FEMAFKK THIS FROGRAM IS CALLE[I FFOJ2.BAS
        REM UERSION I.1 1/16/87
        FEM
        CF$ =CHF$(13) FEM CARFIAGE FETURN
        LF$ =CHF$(10) FEM LINE FEEI
        GOTO 2070
        FEM
        EEM
    5 0 5 ~ F E M ~ S U B F R O U T I N E ~ S E T T U F
LINE=4 : F'AGE=0
BEEF'A=53353 FEM $1089 [IOES A BEEF
510 FFINT "INFUT FFOJECT NAME < 70 CHAR" : GOSUB 3416
    INFOUT FNAME$ : gOSUB 3416
IF LEN(FNAME$) > 70 THEN GOTO 520 ELSE GOTO 530
        X=CALL(EEEF'A) REM EEEF FOF ILLEGAL INF'UT
        GOTO 510
5 3 0 ~ F E M ~ C O N T I N U E ~
    FETURN
    FEM
    REM
    FEM
    FEM
    FEM
    FEM SUFROUTINE COMPUTE IIELTA T
    FEAII #1,1910+J;M
    FEAII#1,1907+J;N
    N=N-1
    FEALI #1,1904;Freset$
FEAII \#1,1901+J;time.base\$
IF freset$="FT" THEN GOTO 2010 ELSE GOTO 2020
2010 FEM FFESET TIME ANALYSIS
    GOSUB 2060 REM COMPUTE TIME
    IELTA.TIME=M* 10-(N)
    IF tine.base$="M" THEN IIELTA.TIME=IIELTA.TIME*60
GOTO 2030
FEM FFESET COUNT ANALYSIS
GOSUF 2060 FEM COMFUUTE TIME
FETURN
FEM
FEM
FEM
2040 FEM SUBFOUTINE COMFUTE COUNTS FEF SECONI
GOSUE 2000 REM COMFUTE IELTA T
FEM SCFIATCH F'AII FILE VECTOF

```
Figure C.j PKOJ2.bAS listing
```

    x=100*J+ドI
    FiEAII $1,1+X;COUNTEF.VALUES
    CF.SO=COUNTEFF.VALUES/IIELTA.TIME
    FEAII #1,301+X;COUNTER.VALUES
    CF'S1=COLINTEFF.VALUES/IIELTA.T IME
    FEAII *1,601+X;COUNTEF.VALUES
    CF.S2=COUNTEF:.VALUES/LIELTA.TIME
    KEAII #1.901+X;COUNTER.VALUES
    CFS3=COUNTEK.VALUES/LELTA.TIME
    FEETUFEN
    FEM
    FiEM
    FEM
    FEM SUBFOUTINE COMFUTE TIME
    FEAI! \&1,XA\SEC
Hi:=INT( SEC/3600)
MINI=SEC-HF**3600
MIN=INT ( MIN1 /60 )
SECS=MIN1-MIN*60
FETURN
FEM
REM
FEM
TOGO FEM SURROUTINE IIEL.T
GOSUE 2050
SEC1=5EC
XA=XA+100
GOSUB 2050
IELLTA.TIME=SEC-SEC1
FETUFN
REM
FEM
REM
REM MAIN FROGFAM STARTS HERE
F$= "SCFATCH.EAS"
FILE F$(20)
FEAI *1,1981;SFLAG
FEAII \&1,1983;GN
IF SFLAG=1 THEN READ *1,1913;JSINGLE
GOSUE 505 REM SETTUF I/O FARAMETEFS
FEM STRING NAME IEFINITIONS
CC\$ ="CHANNEL COUNTS"
CF'S\$ = COUNTS FEF SECONI"
GS\$ ="GF-FOS**
IF SFLAG=1 THEN GS$="SG-FOS**
ST$ ="STAFT TIME"
rigure C.3 PRUUZ.bAS (continuea.)

```
```

IIT\$ ="IIELTA T,SEC"
IIASH\$ =-MSH
3215 FEM FFINTER OUTFUT
FOF J=1 TO 5
FRINT LF\$
NEXT J : FAGE=1 REM FEFFORM FORM FEEI
LINE=LINE+5
FFIINT F'NAME$;" ";"F'AGE";" ";F'AGE : GOSUF 3416
FOR J=1 TO 3
FFINT LF$ : GOSUE 3416 REM SKNFF 3 LINES
NEXT J
FFRINT TAF(48);CC\$ : GOSUF 3416
FFINT TAE(2);GS$;TAK(12);ST$;TAB(24);IIT$;TAB(40);\
"CH1";TAE(51);"CH2";TAK(62);"CH3";TAB(73);\
"CHA" : GOSUH 3416
FRINT LIASH$ : GOSUB 3416
FOF J=0 TO GN-1
IF SFLAG=6 THEN GOTO 3360 ELSE GOTO 3370
FEM SAMFLLE.IN.GROUF
FEAII \#1,1913+JIIMAX
FEM FEGIN.GFOULF.SAMFLE
FEAD \1.1916+J;K
JF'1=J+1
GOTO 3380
IMAX=JSINGLE
K=0:JF'1=0
KEM CONTINUE
FOF: I =0 TO IMAX-1
KFI=K+I: KI=KFI
IF KFI=100 THEN KPI=0
IF SFLAG=1 THEN FEAL *1,1801+KFI;SINGLE.FOSITION
IF SFLAG=0 THEN KI=I
X=100*J+K゙I
REALI *1, 1+X;XO
FEALI *1,301+X;X1
KEALI \#1,601+X;X2
KEALI \#1,901+X;X3
IF SFLAG=1 THEN KFI=SINGLE.FOSITION
XA=1201+200*J+K゙I FEM START TIME VECTOF
GOSUF 2000 FEM COMFUUTE IEELTA T
XA= XA-100
GOSUH 2050

TIME$=STF$(HF)+":"+STF\$$(MIN)+":" +STF*$(SECS)
GS1$=STF$(JF1)+" - "+STF$(KFI)
FFINT TAH(2);GS1$;TAE(12);
Figure C. }3\mathrm{ PrOJz.BAS (continutd.)
``` ```
TIME\#;TAH(24);IIEL.TA.TIME;TAF(36);XO;\
TAH(47);X1;TAH(58);
X2;TAR(69);
X3 : GGSUF 3416
GOTO 3517
FEM
FEM
FEM
FEM SUBFOUTINE FAGING
LINE=LINE+1
IF LINE }>=63\mathrm{ THEN GOTO 3430 ELSE GOTO 3440
FEM CONTINUE
FOR JJ=1 TO 4
FKINT LF\$
NEXT JJ
LINE=1:F'AGE=F\cdotAGE+1
FRINT FNAME$;" ";"FAGE";" ";F'AGE
 FOR JJ=1 TO 3
 FRINT LF$: LINE=LINE+1
NEXT JJ
3440 FEM CONTINUE
RETUFIN
FEM
REM
REM
FEM CONTINUE
NEXT I
NEXT J
FFINT LF\$: GOSUE 3416
PFINT TAB(46);CPS\$: GOSUB 3416
FRINT TAB(2);GS$;TAB(40);"CH1";TAB(51);"CH2";
 TAB(62);"CH3";TAE(73);"CH4" : GOSUK 3416
 PRINT IIASH$: GOSUE 3416
FOR J=0 TO GN-1
IF SFLAG=0 THEN GOTO 3690 ELSE GOTO 3700
REM SAMFLLE.IN.GFOUF
FEAI'*1,1913+J;IMAX
FEM REGIN,GFOUF', SAMFLE
READ *1,1916+J;K
JF'1=J+1 : GOTO 3710
IMAX=JSINGLE
K=0 : JF'1=0
REM CONTINUE
FOF I=0 TO IMAX-1
KFI:=K+I : KI=KFI
IF KKFI=100 THEN KFI=0
Figure C.3 PROJZ.BAS (continued.)
``` ```
IF SFLAG=1 THEN REAI $1,1801+KFI;SINGLE.FOSITION
IF SFLAG=1 THEN KFI=SINGLE.FOSITION
IF SFLAG=0 THEN KI=I
XA=1201+200*J+KI FEM START TIME VECTOR
GOSUB 2040 FEM COMFUTE COUNTS FER SECONIS
GS1$=STF$(JF1)+" - "+STF$(KFI)
FFIINT TAB(2);GS19;TAE(36);\
CFSO;TAE(47);CFS1;TAE(58);CFSS;TAB(65);CF'S3
gosuse 3416
NEXT I
NEXT J
FFINT LF\$ : GOSUE 3416
J=GN-1 : I=IMAX-1 : KI=K+I
IF SFLAG=0 THEN KI=I
XA=1301+200*J+KI FEM STOF TIME VECTOR
gOSUE 2050
REM REALI TIME
HOUFSS=HF : MINUTES=MIN : SECONIS=SECS
FRIINT HOURS;":';MINUTES;':";SECONDS : GOSUE 3416
FDF:JJ=1 ro E
FFINT LFF\$
NEXT JJ
REM CONTINUE
CLOSE 1
fRINT "byEEYE"
STOF'
ENII
A)
Figure C. 3 PKUJ2.BAS (continuea.)
```


[^0]: Figure C.l MISC.PKN (continuto.)

[^1]: Figure C. 2 PRCJ.BAS (continued.)

