
AN ABSTRACT OF THE THESIS OF

SALEH HASSAN IBRAHIM for the degree of Master of Science

in Nuclear Engineering presented on October 28, 1987.

Title: COMPUTER CONTROL OF THE AUTOMATIC GAMMA WELL

COUNTING SYSTEM

Abstract Approved: Redacted for Privacy
' STEPHEN E. BLVEY

This project implements the control of an AUTOMATIC GAMMA

WELL counting system with an AIM-65 microcomputer. All

states and control signals to and from the AIN-65 are

obtained via three VIAs (Versatile Interface Adaptors).

Motor controls were implemented using triacs, operational

amplifiers and TTL logic devices while the RTC (Real Time

Clock) utilizes a 32.768 kHz quartz precision crystal and

battery backup.

The radiation detection system can handle solid or

liquid phase gamma ray emitting samples. Samples may be

prepared in 15mm X 110mm bottles or in 15mm X 125mm test

tubes and placed in receptacles on the conveyor belt of

the sample changer. Under software control, selected

samples can be lowered into the well of the detector and

counted. A hardcopy of the parameters used in setting up

the experiment as well as the results may be obtained on

a teletype.

Computer Control of the AUTOMATIC GAMMA WELL counting

System

by

SALEM HASSAN IBRAHIM

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed October 28, 1987

Commencement June 1988

APPROVED:

Redacted for Privacy

Professor of Nuclear Engf(e:ring in charge of major

Redacted for Privacy

head of Department of Nuclear Engineering

Redacted for Privacy

Dean of Gra ui e School(1_

Date thesis is presented October 28, 1987

Typed by SALEH HASSAN IBRAHIM for SALEH HASSAN IBRAHIM

TABLE OF CONTENTS

CHAPTER

CHAPTER

I.

II.

INTRODUCTION
1.1 Purpose of equipment
1.2 Description of units
1.3 Specifications
1.4 Principles of operation

MICROCOMPUTER SELECTION

1

1

2

5

8

10
2.1 HP-1L interface 11
2.2 HP87 /HP -IB interface 13
2.3 Intel 8748 microcomputer based

design 14
2.4 AIM-65 microcomputer 16
2.5 6522 VIA 19

CHAPTER III. POWER SUPPLY AND PERIPHERALS
SELECTION 22
3.1 Power supply and triac 22
3.2 Real time clock (RTC) 28
3.3 Quad counter /tinier 33
3.4 Drive motors 34
3.5 Contact switches 35

CHAPTER IV. COMPUTER INTERFACE DESIGN
FOR PERIPHERALS 36
4.1 Interfacing the real time

clock (RTC) 36
4.2 Interfacing the ORTEC 874

timer/counter 42
4.3 Interfacing the motors and contact

switches 53
4.4 Light emitting diodes (LED) 59
4.5 hardware assembly and testing 60

CHAPTER V. SOFTWARE 62
5.1 Overview of 6502 assembler and

the basic-E/65 62
5.2 Assembler routines 63
5.3 basic programs and subroutines 65

CHAPTER VI. BIBLIOGRAPHY 67

APPENDICES
A. User's manual 69
B. Components layout and CABLEs 82
C. Program listings 92

LIST OF FIGURES

Figure Page

2.1 The mos technology 6502 microprocessor 18

3.1 System power transformer a3

3.2 Triac/low voltage power supply 24

3.3 Auxilliary power supply 25

3.4 Triac pellet structure, circuit symbol
and ac volt-ampere characteristics 27

3.5 block diagram and pin out specifications of
the National Semiconductor NM56167A real time
clock

3.6 Block diagram and pin out specifications of
the National Semiconductor MM56174A real time
clock

3u

4.1 Real time clock interface circuit with the VIA2
(9F80-9F8F) 37

4.2 Urtec timer/counter interface circuit with
a UART 43

4.3 LED interface and baud rate selector
(A000-A00F) 47

4.4 Ortec timer/counter interface circuit with
a software UART 50

4.5 Down-motor driver 54

4.6 Up-motor driver 57

4.7 Sample changer-motor driver 56

8.1 Component layout on interface card 82

8.2 Component layout description 83

8.3 Detailed layout of resistors, transistor
and diode 84

8.4 Connections of CABLE A to VIA (A000 -AOUF) 85

B.5 Connections of CAbLEs b and L to V1A.2
and V1A.3 repectively

8.6 Connections of CAbLL D to the LEDs
baud rate selector

86

87

b.7 Signals on interface card ana auxilliary
power supply card connectors 88

B.8 Wire wrap pluyboard edge connector 89

b.9 Solder plugboard edge connector 90

8.10 Amphenol connector for 20 mA loop 91

C.1 MISC.PRN listing 92

C.2 PROJ.BAS listing IOU

C.3 Pk0J2.8AS listing 136

LIST OF TAbLES

Table Page

1.1 Efficiency and Average background measurement 7

2.1 I/O location summary and ports of the VIA 20

4.1 Decoding logic for the real time clock (RTC) 39

4.2 baud rate selection for the Urtec b74 48

COMPUTER CONTROL OF THE AUTOMATIC GAMMA WELL COUNTING SYSTEM

CHAPTER I

INTRODUCTION

1.1 PURPOSE OF EQUIPMENT

The Automatic Gamma Well counting systems as built

by Nuclear Chicago are transistorized radiation detection

systems for solid or liquid phase gamma ray emitting

samples. The systems have the capability of counting up

to 100 individual solid and/or liquid gamma emitting

samples in a well-type scintillation detector chamber.

The models produced range from 4216 through 4223. The

models were classified into single-channel counting

systems (4216 through 4219) and dual-channel counting

systems (4220 through 4223). Some were further designed

for 60 Hz power operation (4216.421b.4220 and 4222) and

others for 50 Hz (4217.4219.4221 and 4223). Each of

these models basically comprises an automatic sample

changer, heavily shielded well-type scintillation

detector, analyzer, scaler or combination

analyzer/scaler, printing lister, logic assembly and the

2

necessary low voltage and high voltage power supplies.

Even though the scalers, analyzers, listers and logic

assemblies have long since become obsolete, the heavy

shielding and nearly 4-pi detection geometry provide

excellent sensitivity and resolution. Auxiliary power

receptacles are also provided on the modules for

connection to external equipment (1).

1.2 DESCRIPTION OF UNITS

An older Gamma Well counting system at the Oregon

State University kadiation Center has been upgraded (by

the exclusion of some units that are now obsolete and the

inclusion of modern electronic devices) into a amre state

of the art controlled system.

Only the units that are retained for this project

will be described as most of the electronics that came

with the system have been discarded in favor of the more

modern NIM BIN-compatible electronic devices. The units

that have been retained are the sample changer, detector

assembly and the low and high voltage power supply. The

automatic well changer available is the 1085 model while

the scintillation well detector is of the type 972 and

the counting system model is 4218.

3

1.2.1 SAhPLE CHANGER

The sample changer is comprised of a mechanically

driven conveyor belt and elevator mechanism. The

conveyor linked belt is readily accessible for the ease

of loading and maintainance. The sample elevator

mechanism "bottoms" all bottles (indexed at the elevator)

in the crystal well regardless of the bottle length.

Samples may be prepared in the 15mm x 110mm bottles

provided or in 15mm x 125mm test tubes. The bottles and

the test tubes may be intermixed if desired. An adapter

is provided for holding the various bottle sizes or the

test tube size in the conveyor belt. Receptacles on the

conveyor belt are numbered consecutively from 0 through

99, where 0 is equivalent to the 100th sample. The

sample changer unit is equipped with seven contact

switches for "sensing" various states of the system to

effect complete controllability (1).

1.2.2 DETECTOR ASSEMBLY

The detector assembly consists of a preamplifier

circuit, photomultiplier tube, and scintillation crystal.

The thallium-activated sodium iodide Nal(T1)] crystal

provides high sensitivity and resolution with nearly 4-pi

detection geometry for small volume samples. It is

4

optically coupled to the photo-cathoae face of the

photomultiplier tube and except for the polished

photo-cathode surface is enclosed by a light reflecting

shield on all sides. The photomultiplier tube is

shielded by extensive mu-metal magnetic shielding. The

shielding is of stepped, interlocking construction for

ease of assembly and for maintaining shield integrity.

Additional steel shielding is also employed between the

detector assembly and the samples in the changer conveyor

belt (1).

1.2.3 TRIAC/LOW VOLTAGE POWER SUPPLY

About the only piece of electronics that has been

retained from the old system is tne triac and low voltage

power supply card. This card carries the triacs that are

used for driving the three motors and also performs a

full wave voltage rectification to provide the d.c.

operating voltages of -15v, +15v and other transistorized

derivatives (-3v, +6v). The latter will not be used in

this project. The full details are given in Chapter IV.

5

1.3 SPECIFICATIONS

1.3.1 SAMPLE CHANGER

SAMPLE CAPACITY - 10O

SAMPLE SIZE - 5 cubic centimeter recommended. 15mm x

110mm bottles or 15mm x 125mm test tubes.

SAMPLE ELEVATOR - positive rack-and-pinion.

DRIVE MECHANISM - heavy duty motors with reduction

trains.

1.3.2 DETECTOR

CRYSTAL - Sodium iodide, thallium activated
L. NaI(T1) J.

Hermetically sealed 7.62 centimeter diameter x 7.62

centimeter thick.

Multiplier phototube - 10 stage with mu-metal and lead

shields .

VOLTAGE PLATEAU - 150 volts long, with 5% slope per 1O0

volts (with Co-60).

SHIELDING - 8.89 to 12.7 centimeters of lead around siaes

of detector, 25.4 centimeters of lead above crystal,

combination of steel and several centimeters of lead

below crystal. Steel shielding between detector assembly

and samples in conveyor belt.

RESOLUTION - Approximately 8% for cesium-137.

6

EFFICIENCY AND BACKGROUND - The efficiencies and average

background measurements of tne detector for Cesium-137

and Cobalt -6U standards are given in Table 1.1.

7

TABLE 1.1 DETECTOR EFFICIENCY AND AVERAGE BACKGROUND

Standard Cesium-137 Cobalt-60

Energy range X4 X5 X1 X2 Xb X7 X3 X2

Efficiency % 22 39 18 50

Average

background cpm 30 360 20 360

Background

variation

(cpm/microcurie) 4(-4)

(+/-

.14 .016 .5 -

20%)
('/- 15%)

X1 = 200 keV window at Cesium-137 photopeak

X2 = 100 keV to infinity

X3 = 500 keV window at Cobalt-60 photopeak

X4 = 611 to 711 keV

X5 = X2

X6 = 1.1 MeV to 1.3 NeV

X7 = 208 key to infinity

8

HIGH VOLTAGE - +400 V to 2600 V .

1.4 PRINCIPLES OF OPERATION

Gamma ray emitting isotopes emit electromagnetic

rays with an energy spectrum particular to that isotope.

hence each different isotope can be detected by its

energy spectrum, by making use of a detector with a

response proportional to the energy of these incident

electromagnetic rays. Gamma rays produce scintillations

through linear reactions in a thallium activated sodium

iodide crystal. These reactions are Compton scattering,

photoelectric effect and pair production. Any

combination of these reactions which results in

absorption of energy of the gamma rays will produce

scintillations or "light flashes" in the crystal. The

total magnitude of these scintillations is proportional

to the gamma ray energy lost in the crystal. Tne

scintillations are detected by a photomultiplier tube

optically coupled to the crystal, and then converted to

current pulses with amplitudes proportional to the energy

of the incident gamma rays. The voltage pulses produced

by the detector are amplified by the pre-amplifier and

amplifier and are coupled to the single channel analyzer

(SCA). The SCA discriminates pulses to be counted

9

against undesired pulses.

10

CHAPTER II

MICROCOMPUTER SELECTION

In this age of computer revolution, there is a move

to more dependence on automated and computer controlled

systems. Considerable programmable instrumentation

meeting these trends is being put on the market today.

In keeping with these trends, engineers and scientists

alike are adopting a philosophy of "designed-in

expandability and modification" in their instrumentation

and data acquisition systems. Tnis inevitably means that

most of the instrumentation used for research and

development today has at its core a microcomputer system

or a microprocessor based controller. Microcomputers

certainly offer an excellent opportunity for

expandability as additional interfaces can easily be

added to the bus and software modified to meet

additional requirements.

In the light of these developments, it is of

paramount importance for the system engineer to carefully

select a microcomputer or microprocessor-based system

that will best suit his or her requirements. In addition

certain universal characteristics such as high

reliability, low power dissipation, small size, easy

11

serviceability and low cost are desirable in any system

(3). In this project iterations of selection and

evaluation of microcomputers were necessary before a

final computer system was adopted.

2.1 HP-IL INTERFACE

The first system considered was an HP-41CV type

controller. The main idea behind this was to reconfigure

the HP-41CV calculator as the main controller and

interface it to the sample changer using the HP-IL loop.

HP-IL, the Hewlett-Packard Interface Loop, is a digital

communication system designed primarily for portable

devices (4). Devices are connected in a circular loop

structure with digital messages traveling from one device

to the next around the loop in one direction only. HP-1L

is a master/slave system. One of the devices on the loop

is designated the loop controller and this device has the

responsibility of transmitting all commands to the other

devices on the loop. The HP 41-C(V.X) can act as an

HP-IL controller when it is equipped with the appropriate

plug-in module.

Much like the IEEE 488-Bus structure, each device on

the HP-IL loop has an address and is designated as either

a controller, talker or listener. A device may have one

of the three capabilities or may include some

12

combinations of the capabilities. Talkers often have

listener capabilities and controllers almost always have

both talker and listener capabilities as well.

Functionally the HP -IL may be considered as a bit-serial

version of the HP-IB (Hewlett-Packard's implementation of

IEEE-488) (5).

Message on the loop is sent as a sequence of eleven

bits. The electrical connection between one device and

the next is a differential, voltage-mode, two-wire

balanced line. Both wires float with respect to both

devices' ground connections. one wire is reference and

the voltage on the other wire is measured with respect to

the reference. In this case devices' grounds need not be

at the same potential. Bits are encoded using a three

level, or bipolar code (5). The voltage difference

between the two wires may be nominally -1.5v, Ov, or

1.5v. A logic one is encoded as a high pulse (+1.5v)

followed by a low pulse (-1.5v). A logic zero is a low

followed by a high. The nominal pulse width is one

microsecond and each bit sequence is always followed by a

minimum delay time (0v) of about two microseconds.

Each device on the HP-IL loop must completely

implement all the HP-IL protocols (talker, listener or

controller) for which it has been configured. This

implies a separate HP-IL plug-in module for each device -

an expensive undertaking. This together with the small

13

memory capability of the HP 41C (without going to

cassette tape or disc drives) made the HP-IL loop

unsuitable for the project.

2.2 HP87/HP-IB INTERFACE

Recently the Oregon State University (USU)

Department of Nuclear Engineering acquired some HP87

microcomputers that were donated by Hewlett-Packaru. It

was therefore natural to consider the HP87 next as a

possible choice for the microcontroller. The HP-Ib

interface connects the HP87 microcomputer to the

Hewlett-Packard interface bus which conforms to the IEEE

standard 488-1978. This is a parallel bus structure that

allows the transfer of data and command messages over

short distances (6). All devices on the bus must fully

implement the IEEE 488 bus protocols. A preliminary

design performed for this project accomplished this by

using an 8748 single chip microcomputer to handle all

local I/O and by using the 8291 GPIB (General Purpose

Interface Bus) talker/listener and the 8293 GPIB

transceiver to sit on the bus. The 8291 GPIB

talker/listener is primarily designed to interface

microcomputers to an IEEE 488 digital interface bus and

it implements all the standard's interface except for the

controller. The 8293 GPIEs tranceiver is a high current;

14

non-inverting buffer chip designed to interface the 8291

GPIB talker/listener or the 8292 GPIB controller to the

IEEE standard 488-1978 instrumentation interface bus.

Each GPIB interface would contain two 8293 bus

transceivers (7).

In order to make the HP87 functional as a bus

controller, it would require an I/O ROM plug-in module,

in addition to a plotter/printer ROM and disc drives.

Due to budget limitations, this option had to be

dropped.

2.3 INTEL 8748 MICROCOMPUTER BASED DESIGN

Since it appeared that cost limitation was a primary

problem, it was decided that designing and building a

system from scratch was the only way out. This of course

involves an extensive design and construction task. This

method, however, allows the greatest versatility in

microcomputer function selection as it can be completely

tailored to the specific project at hand, with

expandability in mind. An extensive review of

microprocessors was conducted with emphasis on those for

which development systems are available in the OSU

Department of Electrical and Computer Engineering. The

search was narrowed down to the following: 6802, 6502,

8085, 8066 and the MCS-46 family (8). From these the

15

8748 was selected.

The 8748 is a single chip 8-bit parallel

microcomputer that contains 1K x 8 UV-erasable,

user-programmable memory, a 64x8 RAFT data memory, 27 I/O

lines, and an 8-bit timer/counter in addition to on -board

oscillator and clock circuits. The 8748 can be expanded

using standard memories and NCS-80/NCS-85 peripherals

(20). It is designed to be an efficient controller as

well as an arithmetic processor. It exhibits extensive

bit handling capabilities as well as facilities for both

binary and 800 arithmetic.

The system was completely designed around the 8748

with 2716's as additional program memories and 8243 I/O

expanders for handling the sample changer and elevator

motor drive hardware. The 8155 256x8 RAN complete with

timers was added. Two 8251A USAKTs (Universal

Synchronous, Asynchronous Receiver, Transmitter) were

used for handling serial I/O. The first USART interfaces

the URTEC 874 Quad timer/counter via a TIL111

photoisolator which runs on tne 2Uma current loop (21).

The second interfaces a teletype that uses either the

20ma current loop or the RS232 serial loop. SN75152 dual

line receivers and SN74150 dual line drivers were

incorporated to meet the EIA standard RS232-C for serial

communication (24). baud rate generators were designed

for the transmit and receive clocks of the two USARTS

16

using 74LS393, 74LS11 and CD-4u24BE 7-stage counters

(9,22,23). The baud rates are selectable on DIP switches

from as low as 110 to 9600 baud with an error of 0.16%,

which is well within the 6% timing variation standard

required for the RS 232 interface (9). The primary clock

for the baud rate generators is derived from the TO

output of the 8748 (TO=X1AL/3). For a 6MHz crystal,

TO=2MHz.

An MM58167A National Semiconductor real time clock

(RTC) chip was also included in the design (2). The

complete software for the system was written in 8748

assembler language, and part of it had already been

installed on the HP64000 aevelopment system. At this

stage an AIM-65 computer complete with disc drives,

monitor and six parallel ports became available. Thus the

designs and software aeveloped to date were dropped ana a

fresh start was made with the AIM-65 system.

2.4 THE AIM-65 MICROCOMPUTER

The Rockwell R6500 Advanced Interactive

microcomputer (AIM-65) is a general purpose microcomputer

that can serve as a central processor or

controller/monitor. The heart of the AIM-65 is an R6502

central processing unit (CPU) that operates at 1MHz to

provide a minimum instruction execution time of two

17

microseconds (10). The 6502 microprocessor architecture

is shown in Figure 2.1.

A brief overview of the 65U2 CPU is now presented.

Most operations such as add, subtract and compare are

done in the accumulator with the result usually remaining

there. The X and Y index registers may be used as

temporary data storage or to aid calculation of addresses

via indexing or for counting (11). The program counter

(PC) is used for holding the address of the next

instruction to be executed while the stack pointer holds

the low byte of the address in the next available cell in

stack memory. The arithmetic logic unit (ALU) performs

logical operations dictated by the content of the

instruction latch and the data latch holds

incoming/outgoing data values from/to the data bus at

appropriate times.

Apart from the keyboard /display and the 6522 VIA

(discussed later), the Forethought Products' (now Versa

Logic) version of the AIM-65 microcomputer also comes

equipped with floppy disk interface, video display

generator and a memory mate expansion board. The STD

FDI-1 is a versatile full function floppy disk interface

board for the STD bus (12). It features the Motorola

MC6843 floppy disk controller designed with MOS

(N-channel, silicon gate) technology. It is 5 1/4" and

8" disk drive compatible; however, it comes equipped with

1111.11,1111. WI

111'11.1'...1 R

rai
0

,lTOR HE
----I

ii

Lit.011,

ft.1111,4

1,414 ! 1,11.to t
11.11..1.11,,

165011

a
lit

ii
a

rr

to

to
0

L

1 "

W °
H ci L- 14

-1 C

NOTE I CLOCK GENERATOR IS SOT INCLUDED OV

2 ADDRESSING C SPBILI TV AND CONTROL
LATH Of THE EIESSOX PROOLCTS

MCS 6502 8-Bit Microprocessor

Programmer'sManufacturer MOS Technology
Device Technology NMOS

EIC56501

OPTIONS VAR

Eye

V .1 T

View

8 bitsData woro width 8 oits Accumulator A

Addressing range 65.536 words 8 bits Index register X
Instruction width 8 bits 8 bits Incex register Y
instruction count 56 16 bits Program counter PC
Clock freauency 20 kHz-2 MHz :.-c:nterE
PacKage
Power requirements

40-pin DIP
5 V at 140 mA Stz:,S register

Lol....ULMCUP P3 11CnOt Whi

0
LC3

=3,

0

to
0
E

a)

0

0)

18

19

a 5 1/4h disk drive. The VlD 64/80 is a memory-mapped

video display board for the ST0 bus (13). It has a

flexible screen format, programmable character size,

alphanumeric and graphic characters and a 2K on-board

RAM. It utilizes the Motorola's MC6845 CRT controller

(CRTC). The memory-mate expansion board has additional

RAM, on-board I/O ports, PROM sockets and a tone

generator (14).

2.5 6522 VIA

Most of the interface for this project utilizes the

spare 6522 VIA (Versatile Interface Adaptors) on the

AIM-65 and the two on the memory-mate expansion board.

These are programmable I/O chips with 16 8-bit registers.

The AIM-65 VIA occupies a 16 byte block of adaresses from

A000 through AOOF. The memory-mate's first VIA (labeled

IC57) occupies locations 9F80 through 9F8F while the

second (IC58) sits at locations 9F90 through 9F9F. The

VIA is partitioned into two 8-bit ports (port A, port B)

with associated handshake lines for each port and two

timers. The I/O location summary for the ports are given

in Table 2.1.

20

TABLE 2.1 VIA I/0 LOCATION SUMMARY

ADDRESS FUNCTION

ACM-A(10F 6522 AIM-65's VIA

A000 port B data register

A001 port A data register

A002 DDRB-data direction register B

A003 DUkA-data direction register A

A004 T1L -tor timer 1

A005 T1Ch-for timer 1

A006 TILL -for timer 1

A007 T1LH-for timer 1

A008 T2L-for timer 2

A009 T2CH-for timer 2

AUOA SR-shift register

AO0B ACR-auxiliary control register

AOOC PCR- peripheral control register

AOOD IFR-interrupt flag register-

AODE IER-interrupt enable register

AOOF port A data register (no handshake effect)

21

Exactly the same functions apply to IC57 (9F80-9FbF) and

IC58 (9F90-9F9F). For the organization, processor

interface, and peripheral interface of the VIA refer to

reference (11).

22

CHAPTER III

POWER SUPPLY AND PERIPHERALS SELECTION

3.1 POWER SUPPLY AND TRIAC

The sample changer cane equipped with its own

transformer (Figure 3.1) and Triac/low voltage power

supply card (Figure 3.2). Fullwave rectification is

performed using four EM506 diodes and two offboard 150Umf

50VDC capacitors. The system initially designed for +/-

15v dc was found to give +/- 18v dc unloaded. A 1A fuse

is used on the Triac/lv card for overload protection on

the -15v dc line. Also incorporated on the Triac card

are CDC 2N3638 PNP and CDO10050 CDC PNP transistors to

provide smaller voltages of -3v and +6v respectively.

However, these voltages are not utilized in this

project.

An auxiliary power supply card utilizing standard

voltage regulators was designed to interface with the

Triac/lv card (Figure 3.3). This parallel arrangement

provides up to 3.5 amperes at -15v, -12v. +15v and +5v

for the TTL logics. Real Time Clock, UART, OP AMP

(operational amplifiers), LEDs (light emitting diodes)

<1

<14

2 AMP LO PLO

2 AMP 510 BLO
___1

Mtn

12111.1.10R101.

UP MOTOR DOWN MOT OR
SAMPLE CHAhnER

MOT OR

MS the el. c' H. I SALEM
Title

POWER TRANSFORMER AND MOTORS
Si Number

A Fle.ure 3.1
Date: September 6, 19B7/Sheet

Figure 3.1 System power transformer

FE17
OT

1 cf 1

C20

R7

1.2k
1

RS

100

01
N 3638

CS R10 P6
300 3.3k

I K P9
100

T 1

Pze

_ C21
1500 mf

RS

270

R4

910

C2
.01

S60

3

/02

R2
3.3K

P24

1 K

Cl R1

Cl 470

R23
12

AL I

1

C7 R31

01 470

P22

1 K.

CD.a 100SOCDC

04

203904
/ 03

P12
22

CDC 20367F

P15 180
EN/s/...1

OS
1 2112904

.01

D7 P14

1.8 K.

F, 11 6.8 k

--T. LS leo

ri^1V
g3904

jr.D8 i
CC

.01

C9 R21

01

P30

19) 08
}1 2H3904

D121ME _,C/0 1111 P20 P19

1.8 K 6.8 I<t4 r 013 R27 R25

C11 R29 Unless othervise indicat.A assume:

1.8 K 6.8 K
1 K

All resistors in ohms
All capacitors in micrnfarads

.01 470

D9 P17 P16

P25 K 6.8
"V` ^,",^

1611/ 07
y 202904

D101
C8_

-r .01

MS tkes1a! H. I. SALEN
ittle

F19ure 3.2 TrIac/lou volla9e pouer supply
Size ,ocument Number EV
A Fioure 3.2 01

Date November 17, 19071Sheet 1 of

Figure 3.2 Triac/low voltage power supply

VI G VO

VI VO

MC75L1SC

VI G V

MC781_15C

VI

MC78LOSC

17:TS-77'.

I VO

HC78L05C

VI VO

mc7eLosc

I VO

MC751...120

MC7PLI2C

Y >

1 12

MS tt-oirsis: H. I. SALEH

it 1e

AUXILLIARY POWER SUPPLY
Number REV

A Figure 3.3 01
Date: September 6, 1967!Sheet 1 of 1

Figure 3.3 Auxil 1 tot.y 1:u,iLr supply

26

and other circuitry to interface the peripherals

completely to the AIM-65 mic-rocomputer.

40430 RCA CTR04 TRIACS are used for controlling the

sample motors. Triacs are bi-directional triode

thyristors with two main terminals and a gate (Figure

3.4). The main terminal 1 (MT1) is the reference point

and the voltage at MT2 is reckoned either positive or

negative with respect to MT1 (15). The four triggering

modes for the Tk1AC are:

1) MT2+, gate + ; I+ ; First quadrant, positive gate

current and voltage,

2) MT2+, gate - ; I- ; First quadrant, negative date

current and voltage,

3) MT2-, gate + ; III+ ; Third quadrant, positive gate

current and voltage,

4) MT2-, gate - ; III- ; Third quadrant, negative gate

current and voltage.

Triac sensitivity is greatest in 1+ and III- modes,

slightly lower in the 1- moue and much less in the III+

mode. The design made by Nuclear Chicago (no

documentation provided) utilizes negative gate current

and voltage firing in the I- and III- modes.

3.1.1 GATE FIRING

To fire the gates and trigger the Triads, the 2N3904

el

TERMINAL MT2
AT SINK

I

MT2

Glut' TERMINAL MT'
Peri

THE TRIAL; (A) SIMPLIFIED PELLET STRUCTURE, (0) CIRCUIT SYMBOL

THE TRIAL

:

rose IVE I

_V,__,

QUADRANT I

"1201

QUADRANT
fIA Tz NEGATI VE

1

AC YOLT.AMPERE CHARACTERISTIC OF THE TRIAC

MS thesis! H. I. SALEM
Title

TRI AC STRUCTURE SYMBOL AND CHARACTERISTICS
Sire ,acumen Number RE;

A Figure 3.4 01
Date: September B, 1917 'Sheet 1 of 1

Figure 3.4 Triac pellet structure, circuit symbol
and ac volt-ampere characteristics

28

NPN transistors must be turned on (Figure 3.2). As an

illustration, consider the gating control for the Down

motor Triac. The emitter of Q5 is at -11 volts. To turn

off Q5 and hence the gate, the base voltage at Q5 should

be -11 volts. The current through R13 is

IR13=(-11-(-17.5))/6.8K = 0.96mA. The voltage drop

across R14 is VR14=1.8K * 0.96=1.72 volts. The voltage

at point x is VX= -11+1.72 = -9.28 volts. Allowing for

0.6v across D7, input voltage to D7 is Vin=-9.28+0.6 =

-8.68 volts. Hence for Vin < -9 volts the Triac T1 is

turned off. It will be triggered for voltages

appreciably higher than -9V, e.g., 0 volts. The same

applies to the other TRIACS.

3.2 REAL TIME CLOCK (RTC)

A real time clock is a hardware circuit or

hardware/software combination that accurately records

time with respect to an external observer (16). This is

a very handy peripheral in a control applications

environment where a microcomputer monitors a number of

physical parameters and triggers a series of sequentially

timed control outputs in response to certain changes in

the parameters. This is of course in addition to making

available timed and Gated copies of data and parametric

settings for data acquisition experiments. Such a real

29

time clock is superior to software timing and

heartbeat-interrupt with regards to ease, accuracy and

nonvolatility. In these latter examples, the time of the

day is kept in software and the clock works only when the

computer is powered. It is therefore impossible to keep

the clock running all the time without keeping power

applied to the processor and part of the program memory,

which can be an expensive undertaking. Hence the easiest

solution is a separate hardware time-of-day real time

clock interfaced to the processor but running

independently. Such a clock should keep track of the

time of the day to a resolution of milliseconds and

should, with battery backup, never need to be reset.

Additional features of such an RTC should include

variable-rate processor interrupts and alarm clock

interrupts.

These features have been made available by National

Semiconductor Corporation's two CMOS (complementary

metal-oxide semiconductor) LSI (large scale integrated

circuits) devices, the MM58167A and MM58174A (2). These

two devices are designed for direct connection to the

control and data buses of most microprocessors. Figure

3.5 and Figure 3.6 show the block diagram of the MM58167A

and the *lb8174A, respectively.

CS

40 I4-1
01

Ci

roue
00.

.010.
MOM*

mmummMMIS,
11.1:M.(00M..

401104,1
Ow 11,1Ornm
100.04 Me 4000

011n 01

Novo
0.1 I P.M

P,111k 10mMII. 10011,1.4k

0

MMOOM

HS tl.wslic: H. I. SALEM

BLOTCH DIAGRAM AND PIN OBI OF 11MS/3167A
Ze > cumerlt Number

Figure 3.5
G ate SrLterml,rr U, 198715heet I o

Fiji.:: 3.5 block Oogram dnu pin out specilicdtions of
the National Semiconductor hil5diu/A redl
time clock co

O

6
AD

we

D17

0b0

b55

VDD

CRYSTAL IN

C115141001

INT(AAuP1

ADD

P. AD,
AD?

CONTAIN.
IUD

ADDRESS
IOW WMM

1,11 WM

WW1 AE AD

ADORES!
0 CODE

1141

DATA IUD

Mfg

SU 1211

11010415

JOINS

-1771

READ MeN11/111111

MIC RA/ OILSS

10
WIIR

refErencc (2,

Connection Diagram

16

15

3

4 13

12

10

1

Top Vie

MS tl.esis: H. I. SALEH
IitlE

BLOCK GIAGRAN AND PIN OUT OF NI-158174A
Number

A Fooure 3.6
J.;te:--N,:era.er 17, 1907EiTec I

Flynre j.b block uiagrum dIld inn out speciricutiuns ct
the national Semiconductor mHboi14A real

cluck

32

3.2.1 RTC Mm58167A

Tne hM58167A is packaged in a 24-pin DIP

(dual-in-line package) and contains a 48-bit (14-digit)

counter chain clocked from a 32.768Hz crystal-reference

oscillator. The MM58167A can track and communicate to

the processor the time in any increments from 1/10.000

seconds to months. It has 56 bits of on-chip RAM (random

access read/write memory) that can be used to store any

desired quantity of time or data while the system is

powered-down provided it is supplied with backup power

from a battery. It can therefore be used in the alarm

clock mode to store a value to be compared to the real

time counter (either in its entirety or against

individual digits in the counter). When a match occurs

between the storage latch and the counters a maskable

interrupt line called the standby interrupt is set active

low.

Another line called the interrupt output provides

the heartbeat interrupt described earlier. This may be

programmed to provide clock ticks at seven regular

intervals (ten times per second (10Hz), once per second

(1Hz), once a minute, once an hour, once a day, once a

week, and once a month) and when a comparison match

occurs between the storage latch and the real-time

counter.

33

The MH58174A which is a 16-pin integrated circuit is

less versatile than the MM58167A. It derives its timing

from a 32.768Hz oscillator like the MM58167A, but only

counts time intervals from 1/16 seconas through months.

It also does not have a comparison match interrupt but

does have a tick interrupt programmmable for intervals of

1/2 second, 5 seconds or 60 seconds. For this design

project the more versatile MM58167A was adopted.

3.3 QUAD COUNTER/TIMER

In an automatic counting system it is a necessity to

have modern and reliable counters that are not only

NIM-standard (for compatibility to other nuclear

instrumentation), but also have the capability of being

computer programmable for remote data acquisition. The

EG&G ORTEC 874 is one such general purpose counter. It

provides three 8- decade counters and one 8-decade

presettable counter with internal time base. The

presettable counter portion may be used as a counter or

as a timer for the other three counters (17).

The 874 comes in a double-width NIm module with

remote control capabilities via the IEEE 488 bus or the

20mA current loop interface. For the purposes of this

project, it was decided to use the serial 20mA current

loop communucation standard for controlling the 874 from

34

the AIN-65 microcomputer. Tne communications card of the

874 is built around the 8085 microprocessor that utilizes

its SID (serial input data) and SOD (serial output data)

pins at selectable baud rates for communicating over the

20mA current loop. The 874 is designated active as it

supplies the 20mA current for the loop. The

communications rate for this mode are 110, 300, 1200 and

2400 baud and are DIP selectable on switch S2. The use

of a serial device with the 874 for remote data

acquisition allows for control of individual or grouped

counter functions from the keyboard. This may also

provide a hard-copy of the printout of results (as in the

case of a teletype) or parameters used in setting up the

various functions of the instrument.

The serial mode of communication is good for up to

several hundred feet at high baud rate or up to several

thousand feet at lower baud rates.

3.4 DRIVE MOTORS

The sample changer system came equipped with three

motors: one for driving the conveyor belt, and two for

the elevator mechanism (one up and the other down). As

there is virtually no documentation on these, it is

presumed that they are induction type motors as they run

from an ac power supply. The motors are controlled by

35

Triacs, the gates of which may be fired at the instance

induction is desired. The triggering system for the gate

circuits can be interfaced to a computer for remote and

software control.

3.5 CONTACT SWITCHES

There are seven contact switches (CTS) mounted on the

sample changer for sensing the various states of the

system. CTS1 is used for group plug detection. CTS2 and

CTS3 sense when the elevator is at the bottom (in the

detector) and at the top (out of detector), respectively.

CTS4 senses the vial position indexed at the elevator

while CTS5 indicates when nonstandard vial detection data

(NSV data) are valid. CTS6 is used for reset: it senses

the #1 vial under the elevator when the conveyor belt is

running. CTS7 is used for NSV detection.

These contact switches can be wired to produce TTL

logic signals for each of the states that are sensed.

The design of the control and interface circuits for

these peripherals is presented in Chapter IV.

36

CHAPTER IV

COMPUTER INTERFACE DESIGN FOR PERIPHERALS

In this chapter design considerations for the

computer interface circuitry to the selected peripheral

devices are presented. All the interfaces to the AIM-65

are done via the VIAs (versatile interface adapters)

located at addresses A000 through A000F. 9F80 through

9F8F, and 9F90 through 9F9F.

4.1 INTERFACING THE REAL TIME CLOCK (RTC)

The application notes for the National

Semiconductor's MM58167A microprocessor Real Time Clock

are given in references (2, 16). The RTC is interfaced

to the AIM-65 via the VIA2 located at addresses 9F80

through 9F9F (Figure 4.1). The data lines of the RTC (DO

through D7) are connected to port A of the VIA2 (PAO

through PA7) while the port B lines (PEJO through PB4) are

connected to the five address lines AO through A4 of the

RTC. To read any register in the clock, interface

circuitry must place signals on the RD and CS lines while

the proper address appears on the address lines;

similarly, to write data into the clock registers, the WR

ALL SIGNAL MODULE PORTS REFER TO VIA.2

AT ADDRESS 9F130-9FEIF ON THE AIM 65

CHM

0":15

odm:

OM`A7 22

1

R26
22K

0

2
3
4
5
6
7

IC1
KTAL AO

XTAL 11

/NT

C2

_L 20 pf
32.768 RUT
CRYSTAL C3

STE INT
4 0

J
P24

1K

IMM58167A
2
3
4

12
R
S
IUD

13

14 C132

22K

20

PWR

R2S SOK

IC17A
A
B Y1

Y2
R2S --k G Y3
1K 741_513

R37 DI
4.7K
/N4148

EAT
3V

91
2N

R38
1K D2

IN4728

pf

R39 _ Cl
1.8k 10

02

2N222

P40
1K

11111F13410210".

MS thesis! H. 1. SALEM

Real time clock interface circuit
Number

A Figure 4.1 01
Date September 11, 19871Sheet 1 of 1

Figure 4.1 keal time clock interface circuit with the
V1A2 (9F8U-9F8F)

38

and CS lines must be enabled while the address appears on

the address lines. The data bus provides the path for

data in and out of the counters and the latches. The

five address lines may be used to activate any of the 24

counter and memory functions of the RTC.

An SW74ALS139 (1C17) dual 2-line to 4-line

decoder/demultiplexer is used to decode PB5 and PB6 to

provide the RD, WR and CS signals and two unused

tri-state lines for the RTC. This is illustrated in

Table 4.1.

39

TABLE 4.1: DECODING LOGIC FOR THE RTC

PB5 PB6 CS RD WR

CS=PB5 (0 0 0 0 1

(0 1 0 1 0

1 0 1 1 1) IULE/TRI-STATES

IDLE=PB5 1 1 1 1 1)

CS = Chip select (active low)

RD = Read data (active low)

WR = Write aata (active low)

4U

PB5 is connected to the CS line so that the RTC is

enabled whenever a logic U is placed on PB5 by the

AIM-65. Similarly the RTC is disabled or tri-stated

whenever PB5 is strobed to a logic 1 state. Whenever the

RTC is enabled and PB6 is strobed low, the RD function is

enabled while the WR is enabled for PB6 held high. The

Ready signal appears on RDY which is connected to the CAl

input of the VIA. This is an open drain output which

will pull low and remain low at the start of each read or

write cycle until valid data from a chip read appears on

the bus or data on the bus is latched-in during a write.

By referring to the read and write cycle timing

diagrams in the reference (2, 16), a typical read/write

protocol may be formulated as follows:

READ CYCLE

1) Send valid address on P60 through PB4

2) Send RD, CS low

3) Wait for ROY low-high transition

4) Read data

WRITE CYCLE

1) Send valid address

2) Put out data on port A

3) Wait for RDY low-high transition

4) Data latched

41

In these protocols, it should be noted that the RDY line

is used for handshaking and the port A of the VIA is

configured either as an input or an output depending on

whether we are reading/writing data from/to the RTC.
The I* 58167A has the ability to operate from battery

power when the main power system is down. It will keep

track of real time when supplied with power at voltages

down to 2.2volts. In this mode only 20 microamperes of

current is required, dissipating 44 microwatts of power

which may be supplied from two standard 1.5volt

batteries. Figure 4.1 shows the circuitry for operating

the RTC on battery power when the computer and main power

supply are turned off. The transistors Q1 and Q2 are

used as voltage sensitive switches. When the system

power is on at +5volts, the .6v at the anode of the

3v-zener diode D2 turns on Q2 which forces Q1 into

conduction and power is supplied to the RTC. The diode

D1 blocks any large current flow into the batteries

although it receives a trickle through the 4.7k resistor

R37. In this mode of operation, the RTC requires about

12mA of current. When the power is off and the +5v line

drop to Ov. Q2 is off and 01 opens to prevent the battery

from sourcing current onto the system's power bus.

Current flows from the battery through D1 into the RTC

and the PWRDN (power down, pin 23) input senses the low

42

voltage condition of the power bus and causes the clock

to enter the powered-down operating mode. In the

powered-down mode, the RTC's three-state I/O lines enter

the high-impedance mode, effectively disconnected from

the computer, and the current drawn from the power source

is reduced from 12mA to 20 microamperes.

The power down circuitry, crystal and capacitors for

the RTC are mounted on the system's regulated power

supply card. R23 and R24 are 1K pull-up resistors that

ensure that these lines float-high when the AIM-65 power

is turned off to prevent spurious data from being written

to the RTC.

4.2 INTERFACING THE ORTEC 874 TIMER/COUNTER

The 874 quad counter/timer is interfaced to the

AIM-65 via the VIA located at addresses 9F90 through 9F9F

on the memory mate expansion board. Initially the

interfacing was performed with a UART and two TIL 111

optical isolators (Figure 4.2). Refer to reference (18)

for the UART application notes. The UART converts

parallel data to/from the computer to TTL serial, and the

TIL 111 devices provide optical isolation between the

computer/controller and the 874 counter/timer to take

into account different instrument grounds.

The received data (pins 5 to 12) of the UART are

VIA.3 ADDRESS IS 9F90-9F9F ON THE AIM 65

VIA.2 ADDRESS IS 9F80-9F8F ON THE AIM 65

Ausimmuna

NW-WI :
1

IC6E

7414

IC6D

7414

R22

ti

100

R21
S.114

ORTEC 874 20 mA CURRENT LOOP

OPTO ISOLATOR-A [)03

MPS 6521

ICI5
y- OPTO ISOLATOR-A

D3

UART

ND

SB

RECEIVER DATA

Se-

VERUN

16X CLOCK
DR
R
I

16x CLOCK
PS

O N 1
O N 2

STOP BITS
NO PARITY

CS
MSB

TRANSMITTER INPUT

LSB
SO

EOT
DS
BE

RESET

PR rn 71

AY-S-1013

arraMM:100-101:121110

-053EEE9

HS THESIS! H I SALEH

itte

ortec timer/counter interface circuit
Size

A

ocument Number
figure 4.2

ate! September 11, 1987/Sbeet 1 of

Figure 4.2 Ortec timer/counter interface circuit with
a DART

44

connected to port A (PAO through PA7) and the transmit

data (pins 26 through 33) are connected to port B (PBO

through PB7) of the VIA. The PMOS version of the UART

(AY-S-1013) which was used in this design requires two

power supplies: a +5v at pin 1, and -12v at pin 2.

Complete data handshake between the UART and the VIA was

implemented via the control lines CA1, CA2, CB1, eb2 of

the VIA and the received data available (pin 19), reset

data available (pin 18), transmitter buffer empty (pin

22) and data strobe (pin 23) of the DART.

4.2.1 RECEIVER HANDSHAKE PROTOCOL

The received data available flag goes to a logic 1

when an entire character has been received by the DART

and transferred to the receiver holding register. This

causes the CA1 flag in the interrupt flag register of the

VIA to be set. When a software polling is conducted by

the computer, the CAI flag is sensed high. CA1 is then

cleared, the received data (which is placed on the output

lines pins 5 through 12 of the DART by holding the

received data available pin 4 low) are then read on port

A of the VIA. The read operation on port A also sends a

one cycle low output pulse (1 microsecond) on the CA2

output line. This causes the reset data available line

(pin 18) to go to a logic 0 momentarily which resets the

45

received data available flag at pin 19. This completes

the read operation on the UART.

4.2.2 TRANSMITTER HANDSHAKE PROTOCOL

This is configured similar to the receiver protocol

described above. In this case the transmitter buffer

empty flag at pin 22 goes to a logic 1 state when the

DART is ready to receive data from the computer for

transmission. If the buffer is full, the flag is held at

a logic 0 (TBMT flag=0). A low data strobe at pin 23

will initiate transmission of a full ASCII character. So

the computer senses TBMT flag=1 on CB1, writes data

through the port B to the UART and initiates data

transmission by the DART by sending a low strobe on CB2

with the write.

It should be noted that the peripheral control

register of the VIA is software configured for the

selected modes of operation of the control lines CA1,

CA2, CB1 and CB2.

4.2.3 CLOCKS FOR THE DART

The receiver and transmitter clock lines for the

UART (at pins 17 and 40, respectively) were tied and

driven from PB7 of 9F9X (i.e. the VIA located at

46

addresses 9F90 through 9F9F). The baud rate is selected

on sl and s2 of the DIP connected to PA3 and PA4 of AOOX

(Figure 4.3). The possible baud rates are indicated in

Table 4.2.

taki_Vie.>

07111371D,

11112:01E>

ICI2L D20

6 "s"

POWERON 100 R33
7407 1K IC38

7407

R34
ix icec

5

IC7E
-7-407

IC7C
7404 ICSB ICSD

7404 7407

ICSD ICCE

10

D21

4

STANDBY

7404

ICSC

tuutm>-11

7404
7404

ICSF
ICSE

7404
7404

R36

1K

R3S
1K

7407

ICSF

7407

IC12A

7407

D22
P41

ACTIVE 270

D23

,44
MANUAL

024

GROUP

028

°\..\14

SINGLE

026

BUSY

P42

270

R32
1K

IC128

7407

ICSA D28

COUNT
7407

D27

IDLE

P43

270

DIP FOR BAUD

RATE SELECTION

SI

MS U,vicIs: H SALEM

Title
LED interface and baud rate selector

Number PEN
A Figure 4.3 01

Date: September 11, 1907 beet 1 of 1

Figure 4.3 LED interface and baud rate selector
(AUUO-A0OF)

48

TABLE 4.2: BAUD RATE SELECTION

S2 S1 BAUD CLOCK=16 X PERIOD PULSE WIDTH % ERROR

RATE BAUD RATE MICRO SEC =1/2 PERIOU

0 0 110 1760 568 284 .032

0 1 300 4800 208 104 .16

1 0 1200 19200 52 26 .16

1 1 2400 38400 26 13 .16

49

Following a power-on reset, the computer reads S1S2

to determine the user selected baud rate and loads the

timer 1 counter and latch with indicated pulse widths

minus the overhead count of 2. The auxiliary control

register of the 9F8X VIA was software configured to set

timer 1 in the free running mode with output on P87

enabled. In this mode, the interrupt flag is set and the

signal on PB7 is inverted each time the counter reaches

zero. The timer then automatically transfers the

contents of the latch into the counter and the cycle

starts again. The result is a continuous series of

square waves on PB7 whose frequency is not affected by

variations in the processor interrupt response time.

4.2.4 SOFTWARE UART

Due to the I/O pin limitations encountered on the

VIAs, the hardware UART was replaced by a software

implementation. The details of these are given in

Chapter V. Figure 4.4 shows the current interface

circuitry for the ORTEC 874. The same character length

as for the hardware UART was maintained (7 bit ASCII, no

parity). The TTL serial output from the AIM-65 comes

from PB5 and is sent to the 874 via the TIL isolator

IC16. The output from the 874 goes to the AIM-65 via

PB6. Figure 4.4 also shows the interfacing of the

VIA.7 ADDRESS IS 9r90-9F9F ON THE AIM IES

IC.SE

<EU311.19....

P22
100

1.1C1610PTO ISOLATOR-A

7414 R21
S.IK

IC6D

7414

ICIeD

KEEUE111`''''
7414

IC18E

<3212:21i11]-1

7414

"
117_!!!! Es4.,HDAL.2

ORTEC 874 20 mA CURRENT LOOP

<EZETIEED:HEI:=

ICIS
OPTO ISOLATOR-A

DI

--..12ziPsuEtLs.sI2 L.21

11

E521:=1:

tclec

-<KAC211=-60
MS tV.esist H. I. SALEH

7 tle
ortec timer/counter interface circuit7414

Size ocument Number ,EV
A Figure 4.4 01

Date: September 11, 19871Sheet 1 of

Figure 4.4 Ortec timer/counter interface circuit with
a software DART

51

counter overflow signals from the 874 to the AIM -65 via

CB1, CB2 and CA1 of the 9F9X VIA. These overflow signals

are pulses of 500 nsec duration that have to be latched

into the interrupt flag registers until the AIM-65 is

ready to service them.

4.2.5 OPTICAL ISOLATION/2UmA LOOP

The serial output of the 9F9X VIA at PB5 (Figure

4.4) is buffered by a 7414 Schmidt inverter (IC6) and

connected to pin 2 of the T1L 111 (1C16). When the

serial output goes high (logic 1), the 7414 output goes

low. A forward current of about 32mA is sourced through

the photo-diode, and the photo-transistor is turned on.

The photo-transistor is connected to Q3 in a Darlington

configuration; hence Q3 is forced into saturation

(maximum conduction) and the 874 counter/timer sinks 20mA

of current through the collector and emitter of Q3 to

ground. When a logic zero appears on the serial output

PB5, however, the output of 106 is held high, hence the

photo-diode, photo-transistor and Q3 are all turned off

and no current flows from the 874. In this manner TTL

logics 1 and 0 are translated into a current flow of 20mA

and no current, respectively. The 874 then translates

these current flows back to TTL logic levels and they are

fed into the serial input data pin of the 8085

52

microprocessor on board the 874 communications cara.

Next consider the sequence of events that occur when

the 874 is sending rather than receiving data. As usual

the 874 first translates the TTL output of its SOD pin

into current. When the 8085 of the 874 sends a logic 1,

2OmA of current is applied to TIL 111 (IC15) which turns

on the photo-transistor. Current is then sourced through

R21 to ground, the voltage input to the 7414 (IC6) drops

to a logic 0, and its output goes to a logic 1 which is

then applied to the serial input Pb6 of the VIA. When a

logic zero is sent from the 8085, no current flows from

the 874, the photo-transistor is off and the input to the

7414 (IC6) is high while its output is at logic O.

The planar diode D3 connected to TIL 111 (IC15) is

used for reverse polarity protection.

4.2.6 INTERVAL TIMING

Since the serial poll status byte of the ORTEC 874

is only available from the IEEE 486 bus, a rear panel BNC

connector is hooked-up to the interval line to provide a

positive level signal (interval timing) through the

duration of each counting session. This signal is

interfaced to the AIM-65 through Cb2 of the AOOX VIA

(Figure 4.3).

53

4.3 INTERFACING THE MOTORS AND CONTACT SWITCHES

Interfacing the motors involved uesigning circuits

that can be used to fire the gates of the triacs as

discussed in Section 3.1.1 under control of the AIM-65.

It should be noted that the computer system can only

provide TTL level signals; hence buffering and current

amplification is required before these can be used to

fire the gates of the triacs. The contact switches have

to be debounced and their positions translated into TTL

signals for input to the computer interfacing ports.

Most of the interfacing of the sample changer system

is done with the VIA located at addresses A000 through

AOOF (Figure 4.3). This VIA is highly loaded as both

inputs and outputs are mixed on port A which should

normally be configured only as inputs.

First consider Figure 4.5. CTS2 (contact switch

number 2) is debounced using 1C2 (a 7474 U-type

flip-flop) with its override/highest priority inputs

(presets and clear) which are active low. When pin B2M

of CTS2 is open, a logic 1 vol' to

the preset input iC2 at pin 4, and pin U17M is

grounded. Hence the clear input at pin 1 is active and

the output Q is cleared to a logic 0 while Q is set to a

logic 1. The Q output also called CU (computer input 1)

is connected to PAU (Figure 4.3). This indicates to the

11521V.D17.72:--

MS thesis! H. I. SOLEH

DONNMOTOR DRIVER
,are ocument umber
A F1pure 4.5 01rite; November O AUT heet 1 of

Figure 4.5 Uown -motor driver

55

computer that the elevator is out of the detector and the

down-motor may be enabled if desired. If a sample is to

be lowered into the detector (under software control),

the motor control line CA2 (of 9F8X) is held high, and

CO1 (computer output 1) is held low. CO1 is inverted

using IC7 and the two high signals are ANDed using IC19

and its output is further ANUed with C11 at IC10. The

high output is inverted using 1C7 and applied to the

inverting input of the operational amplifier (OP AMP,

IC13). The op amp is set up to have a gain of k6/R5=4.7

but since the input is zero, the output is very close to

zero except for the offset (25,26). As discussed in

Section 3.1.1, a voltage level appreciably above -9v will

fire the triac. Hence Q5 is turned on (Figure 3.2) and

Ti is fired. The down-motor is then activated and

continues to run until the sample is lowered completely

into the detector at which time terminal B2M of CTS2 is

closed, the preset input is active, Q goes high and Q

goes low. When Q/LI1 goes low, the output of IC10 is

low, output of 107 is high (close to 5v) and the output

of IC13 is about -14v. This turns off Q5 and T1 (Figure

3.2) and the motor stops. R3 and R4 (Figure 4.3) limit

the current sunk to ground CTS2 while R29 is a pull-up

resistor which guarantees that CO1 floats high when the

computer is turned off. R29 together with IC7 and IC19

form the crash-protect circuitry of the motor drive

56

mechanism.

The operation of the up-motor circuit (Figure 4.6)

is identical to the one discussed for the down-motor. In

this case CTS3 is used for sensing the states of the

elevator rod position. The sample changer motor drive

circuitry shown in Figure 4.7 is similar to those of

Figures 4.5 and 4.6 except that no contact switch is used

directly to effect hardware control of the motor drive

mechanism. In this case the first input of IC11 is

permanently enabled-high.

Five contact switches: CTS1, CTS4, CTS5, CTS6 and

CTS7 are used for control, reset, indexing and state

detection of the vials on the conveyor as the sample

changer motor is running. The positions of these

switches are basically translated into TTL signals that

are fed directly into the VIA inputs for software

manipulation and control. CTS1 is used for group plug

detection. A group plug is a unique plug used for

indicating the beginning or end of a group of samples on

the conveyor belt. A fixed set of parameters is used for

analyzing samples in such a group. When a group plug is

indexed at the elevator, the CTS1 prime terminal X2UCL is

grounded and the output of IC6 (7474 Schmidt invert) CI5

goes to a logic 1. This transition sets the CA2 flag of

the VIA. A CI3 low to high transition sets the flag of

the CA1 input line to reflect the position of CTS4. This

</C=1153-
?J --

eTer-Ey

F6M 6

R14M S

R8
"N"^
1.51,

CTS3

R
OTRr

E a-

IC2B

9_

8

P9
^.".^

1.51,

7474

P30
1R ICSA

r0=2-7E 1

7404

P10
3

2

1001;

4

IC14

R12

1k
L,1741

15
R11

IC78

3 3 4

7408 7404

n

6

M5 thesis: H. I. SAIEH
Sire

A

Document Number
Floure 4.6 01

Figure 4.6 Up-motur driver

ate. Novenber10,11TELISheet I of

4131MMANTO

NI2C H ICSA

N O
C1S6

7414
P13
I.5K

X2OCL 9

NO 0/0 3

CIS'

IC6B

7414
P14
1.5K

0
IC6C

P19

1 .SK

X2OM
C154 n

...0,,0N9 _2- v p 0

Off ---..-0cLK
LioM ,i c

L Q

R20

1.5K

1

IC3A

5
6

1.SK
515CL j

C/S5

7474

P3I

ICI8A

2 10

7404 IC60

<M=Yiake
7414

9

tclie
I 19C /C188 __A_

)
e 3 > 5

7408
7408 7404

IC6F

<-11-aRTIMEE=1
7414

P16

100K

IC:38
9

7414
P15
I.5K

7474

1.5K P28

7 IC9

RIB

IK
1M741

41S
P17

CZ=

M5 tkasis! H. I. SPLE14

litIc
SAMPLE CHANGER-MOTOR DRIVE

Si.
A

ocument Number
Figure 4.7

Ett
01

September 12, 1907rheet i of 1

Figure 4.7 Sample changer-motor driver

59

is used for counting the number of vials indexed under

the elevator. The CTS5 /C17 combination at 9F8X CBI is

used as an advanced warning signal to poll for the state

of the next vial to be indexed at the elevator. CTS6/CI4

is used for reset. When vial position 1 is about to be

indexed at the elevator, the CI4 input goes to a logic 1.

This may be used in conjunction with CI3 to reset on vial

position 1. The state detection software employs

CTS7/CI6 as its hardware sensor. After the advance

warning by CTS5/CI7, CI6 may be polled following a

suitable delay to determine whether a standard vial or a

nonstandard vial will be indexed at the elevator.

Usually a nonstandard vial is signalled by CI6=0, in

which case CI5 is utilized at index-time to determine

whether the nonstandard vial is a group plug (CI5=1) or

an empty vial position (CI5=0).

4.4 LIGHT EMITTING DIODES (LED)

The LEDs are interfaced on port B and also on PA5,

PA6 and PA7 of port A (Figure 4.3). IC8 and IC12 (7407

open collector hex buffers) are utilized for driving the

LEDs.

The LEDs are turned on by writing a logic 0 to the

appropriate output lines on ports A and B. When the

ACTIVE LED is turned on, MANUAL, GROUP and SINGLE are

60

also enabled (but not turned on). These may then be

turned on by writing a low to the corresponding output

lines. The LEDs are powered by the +5v line via 270 ohm,

1 watt resistors R41, R42 and R43 and are expected to

sink about 20mA of current when turned on. Three such

resistors are used for the 9 LEDs; the resistors are

soldered on the voltage regulator card. The pull-up

resistors R33 through R36 are used to ensure that the

LEDs are off when the computer power system is down. A

power-on LED is also included; this is active whenever

the power switch is toggled on.

4.5 HARDWARE ASSEMBLY AND TESTING

Many problems were encountered with the power supply

primarily because a worst case analysis was not performed

at the beginning of the design, and as a result the power

requirement of the system was vastly underestimated.

Poor and insufficient ground terminations also presented

problems. The LEDs were overdriven and it took quite

some time and component replacements before the puzzle of

"the blinking LED" could be solved. Some of the computer

port terminations on the three DB25 type sockets supplied

with the AIM-65 were sheared and new terminations had to

be made and each pin of all the six ports had to be

checked individually with an oscilloscope (a tedious and

61

lengthy procedure).

A 10 centimeter long solder type plug board was used

for the voltage regulators and an 11 centimeter long

wire-wrap board was utilized for the interface. A very

high density package resulted with the wire-wrap board

carrying one 40-pin DIP, six 24-pin DIPs, twelve 14-pin

DIPs, one 16-pin DIP, six 8-pin DIPs and two 6-pin DIPs

(appendix B).

62

CHAPTER V

SOFTWARE

This chapter presents the software capabilities and

limitations of the AIM-65 microcomputer, its adoption for

controlling the external hardware systems and the

dedicated assembler and basic codes written for a

complete data acquisition system.

5.1 OVERVIEW OF 6502 ASSEMBLER AND THE BASIC-E/65

A complete listing of the 6502 microprocessor

assembler mnemonics and opcodes is given in reference

(19). It contains 56 legal opcodes with 6 additional

directives available through the DOS/65 system. The

assembler is compatible with the NOS Technology standards

with respect to the operands, opcodes, labels and

comments, but it does not furnish the same set of

assembler directives as defined in either the cross

assembler or the microcomputer family KIM assembler

manual.

The Basic -E/65 is the Naval Postgraduate School

Basic language (Basic-E) which is modified and

63

implemented for the 6502 operating system (DOS/65). It

is made of two subsystems: the compiler (COMPILE.COM)

and the run-time interpreter (RUN.COM). The basic -E/65

may be used interactively or with a printing terminal.

It implements most features of the proposed ANSI standard

BASIC with extensive string manipulation and file

input/output capabilities. The DOS/65 is used to handle

all input/output and disk file management. The source

file is an ASCII text which is created and edited with

the DOS/65 editor EDIT.COM

5.2 ASSEMBLER ROUTINES

The assembler subroutines are written to execute at

a beginning address of $D000 (hexadecimal) in memory.

The assembler source file MISC.ASM is assembled by the

DOS/65 assembler (ASM.COM) to a hexadecimal code file

MISC.KIM. The MISC.KIM file is a normal ASCII text file

that may be edited using the DOS/65 editor (EDIT.COM).

MISC.KIM is loaded into memory at run time from BASIC.

The assembler also creates a listing file MISC.PRN

showing the source code and the object code. MISC.PRN is

listed in appendix C.

The assembler subroutines implement those tasks that

cannot be done (or only done poorly) in BASIC. Among

these are interrupts and critical timing, software DART

64

and fast data access, and the alarm and beeper routines.

The interrupt vectoring routine located at $0032

points to the interrupt service routine by saving its low

address byte $43 in $A400 and the high address byte $00

in $A401. The current vial position is also reset to 1

(CVIAL=1). When the system is operating and samples are

indexed at the elevator, interrupts are generated which

vector the computer to the service routine located at

$0043. The current vial position is incremented,

appropriate flags are set or cleared and the computer

resumes normal operation where it stopped on the

interrupt. BASIC-E/65 has no interrupt handling

capability and is about 500 times slower than the

assembler.

The beeper and alarm routines are located from $0069

to $DOEA. These routines give beeps of different tones

and pitch and also raise an alarm when called from BASIC.

They are used for signaling different error conditions

during system operation. If the teletype is used as the

sole input/ouput device the BELL command may be used

instead.

Subroutines RSTATE (at $DOEU) and NSTATE (at $DOF4)

are used for critical timing on reset by saving the state

of the vial and returning the information in the

accumulator to BASIC. RUART (at $D111) and TUART (at

$0147) implement a software UART for communicating with

65

the ORTEC 874 quad counter/timer. The correct delay

times for the baud rate are determined in BASIC and poked

into T1LS (low byte) and TINS (high byte). The receiver

subroutine RUART returns a character received from the

ORTEC 874 in the accumulator to BASIC; while the transmit

routine TUART sends to the ORTEC 874 a character from

BASIC poked into the TRANS storage. The selected baud

rate is used for determining the time spent in the delay

subroutines DELAY (at $D194) and DEHALF (at $D1A8). All

characters transmitted or received are formatted in

standard 7 bit ASCII with no parity.

Finally the routine kCOUNT (at $D1BD) is used for

fast data access of the ORTEC 874 counters. The number

of counters to be accessed is poked from BASIC into RBUFF

and the data read from the selected counters are stored

as contiguous bytes in memory beginning at location

RBUFF+2. Up to 32 bytes can be read and stored

corresponding to the 4 counters in the 874, each counter

providing 8 bytes of data (8 decades). The data stored

are then read in BASIC and stored on disk for further

analysis.

5.3 BASIC PROGRAMS AND SUBROUTINES

Two BASIC programs PROJ.BAS and PROJ2.BAS implement

the I/O data acquisition protocol and analysis. The I/O

66

protocols handled include setting up the ports for the

RTC, ORTEC 874, and motor controls, while the analysis

primarily consists of obtaining the count rates for each

of the selected counters in the desired energy range.

The two programs are rather easy to use as they are

menu driven. First, PROJ is run to initiate the data

acquisition for either the single or group plug mode.

This program also allows the interrogation of the kTC

which is essential for reading/setting time and date.

After an exit is made from PROJ, PROJ2 should be run

immediately to analyze the raw data and obtain a hardcopy

of the output. PROJ2 is actually an extension of PROJ

(the latter uses the I/O format setup by the former).

The two were separated due to memory limitations.

Detailed instructions for running these programs are

given in appendix A. The listings of PROJ.BAS and

PROJ2.BAS are given in appendix C.

67

VI. BIBLIOGRAPHY

1. "Operation and installation instructions for
Automatic Gamma Well counting systems". Publication
no. 713600, Nuclear-Chicago Corporation.

2. CMOS DATABOOK. National Semiconductor Corporation,
1984, p. 3-11 - 3-25.

3. Bruce A. Artwick. Microcomputer Interfacing,
Prentice-hall, 1980.

4. The HP-IL Interface Kit Technical Guide. HP 82166C,
Hewlett-Packard, May 1983.

5. The HP-IL Interface Specification. 82166-90017,
Hewlett-Packard, November 1982.

6. HP-Ib Interface, Owner's Manual. 82937-90017,
Hewlett-Packard, January 1982.

7. Intel Components Data Catalog, January 1982.

8. MCS-48 Family of Single Chip Microcomputers, User's
Manual. Intel Corporation, September 1981.

9. Robert E. Turner. "Low-cost generator delivers all
standard bit rates". Electronic Magazine:
Designer's Casebook Number 5, Mc Graw -Hill
Publications Co. 1982, p. 166-167

10. AIM 65 Microcomputer User's Guide. Rockwell
International, December 1979.

11. R6500 Microcomputer System hardware Manual.
Rockwell International, August 1978.

12. Model STD FDI-1 Floppy Disk Interface for the STD
bus, Reference Manual. Forethought Products,
1982.

13. Model STD-VID 64/80 Video Display Generator for the
STD Bus. Forethought Products, 1982.

14. Memory-Mate Expansion board for the AIM-65
Computer, Operating Manual. Foretnought Products,
1981.

68

15. SCR Manual, Fifth Edition. General Electric,
1972.

16. Steven A. Ciarcia. "Every one can know the real
time," Byte Magazine, May 1982, p. 34-58.

17. Model 874 Quad Counter/Timer, Operating and Service
Manual. EG&G ORTEC, June 1984.

18. David G. Larsen and Peter R. kony. "The Bugbook
IIA, Interfacing & Scientific Data Communications
Experiments using the Universal Asynchronous
Receiver/Transmitter (UART) and 20mA Current
Loops", E & L Instruments Inc., 1975.

19. AIM-MATE DOS Operating Manual. Forethought
Products, 1982.

20. MCS-80 User's Manual. Intel Corporation, October
1977.

21. OPTOELECTRUNICS DATA BOOK. Texas Instruments
Incorporated, 1983-84.

22. The TTL DATA BOOK. Texas Instruments Incorporated,
Volume 1, 1984.

23. The TTL DATA BOOK. Texas Instruments Incorporated,
Volume 3, 1984.

24. The Line Driver and Line Receiver DATA BOOK for
Design Engineers. Texas Instruments Incorporated,
1981.

25. Linear Circuits DATA BOOK. Texas Instruments
Incorporated, 1984.

26. Howard V. Malmstadt, Christie G. Enke and Stanley
R. Crouch. Electronics and Instrumentation for
Scientists, The Benjamin/Cummings Publishing
Company, Inc., 1981.

APPENDICES

69

APPENDIX A

USER'S MANUAL

This appendix gives a brief overview of the integration

of the system hardware and software, and a demonstration

of system operation.

A.1 USER ENVIRONMENT

The three programs required to run the system are MISC,

PROJ and PROJ2 and these are placed on the same floppy

disk and may be run from drive A via either the AIM

keyboard and display or from the teletype for a hardcopy

of the output. It is preferred to run the programs from

the teletype. The only problem with this is that there

is no totally clean way to switch from the AIM keyboard

to the TTY. The following procedure may be used to

achieve an AIM 65 to TTY keyboard transfer.

A.2 AIM 65 TO TTY KEYBOARD TRANSFER

A - Power-up the AIM, disk drives, video monitor and the

70

TTY

B - Position the TTY control switch to local

C - Position the KB/TTY switch to TTY

D - Depress the AIM 65 RESET button

E - Type RUBOUT on the TTY (do not hit RETURN)

F - Position the TTY control switch to LINE and hit the

RETURN key

The AIM 65 will respond by entering the monitor and

printing

ROCKWELL AIM 65

The next keyboard entry should be made from the TTY

keyboard.

A.3 BOOTING THE SYSTEM

Insert the AIM-MATE DOS diskette into drive A with the

label on the diskette facing to the right. Load the boot

routine beginning at the location $9800 by typing

*=9800

This would appear as

<*>=9800

Then type in the go command:

G

The drive should be active for 10-20 seconds and the

71

question

HOW MANY DRIVES?

appears; then type 2

The system then indicates the default drive as A:

A>

The system can now be used to run the programs. But as a

precaution, if you have not already done so, make a

backup copy of the AIM-MATE DOS diskette which also

contains MISC, PROJ and PROJ2. First, format a 5 1/4 "

disk by typing:

MINI-FMT <RET>

and respond to the prompts in the program. Next, insert

the formatted disk into drive B, the AIM-MATE DOS disk

into drive A and type:

COPY ALL

This should make a backup copy of the diskette.

A.4 RUNNING PROJ

Once the system has been booted as described in section

A.3, the TTY line printer should be adjusted to the top

of a new page, the NIM-BIN power supply, detector NV

power supply, and interface power supply should all be

turned on. All these units may also be powered at the

same instance as the AIM computer. Then type:

RUN PROJ

72

The program then prints the program title, date and time

and comes up with the question:

PERFORM RESET WITH BATTERY CHANGE

RESET(Y/N)?

Reset should only be performed when the battery for the

RTC on the interface is changed or when a system

malfunction has occurred. If Y is typed in, the system

will reset the current vial position indexed at the

elevator to 1. Whichever response was selected the

system will finally display:

vial position = xx

NSV = a

vial state = b

where xx = current vial position indexed at the

elevator

a=0, b=0 => a sample vial is indexed

a=1, b=1 => a Group plug is indexed

a=1, b=2 => an empty vial is indexed

(NSV=nonstandard vial)

The following prompts then appears:

S(tandby A(ctive Q(uit ?

Entering S will enable you to interrogate the RTC for

setting/reading time and date. This is always necessary

when there is a battery change or a system malfunction.

Typing A will enter you into the main program and the

system will respond by displaying:

73

G(roup S(ingle M(anual Q(uit ?

A.4.1 GROUP

This mode allows the handling of groups of vials to be

run with the same parameters sucn as preset time/preset

count, time base and counters to be used for the group.

Up to 3 groups may be specified.

To use this mode first arrange the samples on the

belt with a group plug to depict the beginning of a group

and an empty vial or another group plug to signify its

end. Up to 98 samples may be handled per group.

Type G to enter the group operating mode; the system will

display:

enter number of groups < = 3 or Quit.

Type in the desired number of groups.

The program then initiates a loop to accept the group

parameters by displaying:

GROUP # PARAMETERS

is the current group whose parameters are to be input.

The following series of options are then displayed:

PC(preset.count PT(preset.time Q(uit.

This gives you the option of timing for a preset count

(PC) or counting for a preset time (PT). Just enter the

74

desired option.

time base S(sec M(min E(ext Quit.

Typing S will select a 0.1 sec time base in which case

the Ortec 874 timer will count pulses derived from the

internal, crystal-controlled, precision time base at 0.1

second intervals. When M is selected, the timer counts

pulses at 1 minute intervals. External (E) should be

selected for preset count (PC) measurements.

SELECT COUNTERS 1, 2, 3, 4, select=1 ?

For preset time measurements counter 1 is used as a timer

for the other 3 counters and should not be selected. For

this mode counters may be selected by typing:

0, 1, 1, 1

This selects counters 2, 3, and 4. Make sure that the

selected counters are properly hooked up to the SCA,

amplifier and pre-amp outputs. Note that a 1 in the

counter position selects that counter; anything else

disselects it. For preset count all 4 counters may be

selected.

SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED

COUNTER DISPLAY (1-4) ?

This option allows the display of a selected counter on

the ORTEC 874 curing counting. The next 2 options are

75

only applicable for PC measurements.

MAX PRESETS: COUNTER 1=9E+07; 2, 3, 4=1E+38

ENTER PRESETS FOR SELECTED COUNTERS

This options allow input of the desired preset counts for

the selected counters with the preset for each counter

for a separate line.

M (1 to 9) , N (0 to 6) or Quit ?

M and N determine the preset time period as M x 10**N in

seconds or minutes depending on time base selection. The

desired input is M,N.

After all the group parameters have been selected,

the system initiates the counting process and indexes the

vials for the selected number of groups into the detector

one after the other. The data collected from the

counters is stored on the disk file SCRATCH.BAS. After

the data acquisition process is complete the system will

respond:

G(roup S(ingle Manual Q(uit ?

The usual response here is to type Q to exit. G or S may

initiate another counting sequence and destroy all the

data saved in SCRATCH.BAS. The system then displays:

S(tandby A(ctive Q(uit ?

Type Q to exit. The system then exits PROJ by

displaying:

BYEBYE.

A.4.2 SINGLE

76

If the initial response had been S (single operating

mode) instead of G, the system will still invoke the same

subroutine and request the same parameters as in Group,

but instead of looking for a group plug, the vial

position of the sample to be run will be requested:

sample number (1-100) or Q(uit ?

Normal data acquisition procedures will then be

implemented for this sample and at completion the

following prompt will be displayed:

repeat for another sample Y(es N(o Q(uit ?

If the response here is Y, we will be asked whether we

want to use the same parameters or enter a different set.

If however the answer is N, the following will be

displayed:

G(roup S(ingle Manual Q(uit ?

enter Q

S(tandby A(ctive Q(uit ?

enter Q

BYEBYE

77

A.4.3 MANUAL

If M is the initial response instead of either G or S,

the manual mode would have been enabled. In this mode it

is possible to index the next vial under the elevator and

move the vial into and out of the detector but the

control of the URTEC 874 must be set to manual so that

the front panel push buttons can be used to select the

desired functions.

A.5 RUNNING PROJ2

At this stage all data collected from the counting system

has been stored in SCRATCH.BAS, so all that is left is to

run PROJ2 to perform the analysis and obtain a hardcopy

of the results.

First position the line printer at the top of a new

page and type:

RUN PROJ2

The following prompt will be displayed:

78

INPUT PROJECT NAME < 70 CHAR

Enter the name you wish to assign to this project and hit

<RET>. Finally the output will be printed. Two sample

runs for the group and single modes are given in the next

section.

A.6 SAMPLE RUN

RUN PROJ
BASIC-E/65 INTERPRETER - VERSION 1.0-S

PROJ.BAS FRIDAYrOCTOBER 2 ,1987 8 :1 :13

PERFORM RESET WITH BATTERY CHANGE
RESET (Y/N)? N
vial position = 55
NSV=1
VIAL STATE =2
S(tandbw A(ctive O(uit? A
Group S(ingle Manual O(uit? S
PC(ereset.count PT(preset.time O(uit? PT
time base S(sec Mmin E(ext O(uit? S

SELECT COUNTERS 1,2,3,4 rSELECT =1? 0,1,00
SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED
COUNTER DISPLAY (1-4)? 2
M (1 to 9) IN (0 TO 6) or O(uit? 6,1

sample number(1-100) or Quit? 59
repeat for another sample Y(es N(o Q(uit? Y
with same parameters Y(es N(o? Y
sample number(! -100) or O(uit? 60
repeat for another sample Y(es N(o O(uit? Y
with same parameters Yles N(o? Y
sample number(1-100) or O(uit? 61
ERROR*** indexed vial position 61 is empty
sample number(1-100) or O(uit? Q
Group S(insle Manual O(uit? 0

S(tandbw A(ctive Quit? 0
BYEBYE

14

79RUN PROJ2
BASIC-E/65 INTERPRETER - VERSION 1.0-S

INPUT PROJECT NAME < 70 CHAR
7 SINGLE SAMPLE RUN

SINGLE SAMPLE RUN PAGE 1

SO-POS# START TIME DELTA TrSEC CH1
CHANNEL COUNTS

CH2 CH3 CH4
0 - 59 8 :2 :30 60 0 87
0 - 60 8 :4 :24 60 0 73

COUNTS PER SECONDSG-POS# CH1 CH2 CH3 CH4
0 - 59 0 1.45
0 - 60 0 1.21667 0

8 :5 :24

DYEBYE

A>

80

RUBOUT.
ROCKWELL AIM 65

<*>=9800

FORETHOUGHT 33K DOS/65 V1.2
AIM-MATE VERS. REV 1.0
HOW MANY DRIVEST2
A>

RUN PROJ
BASIC-E/65 INTERPRETER - VERSION 1.0-S

PROJ.BAS THURSDAYrOCTOBER 1 ,1988 12 :24 :7

PERFORM RESET WITH BATTERY CHANGE
RESET (Y/N)? N
vial position = 37
NSV=1
VIAL STATE =2
S(tandb A(ctive Q(uit? S
ST(set.time SD(set.date RT(read.time RD(read.date Quit? SD
S(et date Quit? S
enter YEAR? 1987
enter MONTH (1-12)? 10
enter day of the month (1-31)? 1
enter day of the week (1-7)? 5
THE DATE IS THURSDAY,OCTOBER 1 p1987
ST(set.time SD(set.date RT(read.time RD(read.date Q(uit?
S(tandb A(ctive Q(uit? A
Group Single M(anual Quit? G
enter number of grouPs <= 3 or Q(uit? 2
GROUP 1 PARAMETERS
PC(preset.count PT(Preset.time Q(uit? PT
time base S(sec M(min E(ext Q(uit? S
SELECT COUNTERS 1,2,3,4 ,SELECT =1? 0,1,00
SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED
COUNTER DISPLAY (1-4)? 2
M (1 to 9) ,N (0 TO 6) or Q(uit? 6,1

GROUP 2 PARAMETERS
PC(Preset.count PT(Preset.time Q(uit? PT
time base S(sec M(min E(ext Q(uit? S

SELECT COUNTERS 1.2.3.4 ,SELECT =1? 0,1,0,0
SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED
COUNTER DISPLAY (1 -4)? 2
M (1 to 9) ,N (0 TO 6) or Q(uit? 6,1
0(rouP Single M(anual Quit?

S(tandb A(ctive Q(uit?
BYEBYE

81RUN PROJ2
BASIC-E/65 INTERPRETER - VERSION 1.0-S

INPUT PROJECT NAME < 70 CHAR
7 GROUP SAMPLE RUN

GROUP SAMPLE RUN PAGE 1

GP-POS4 START TIME DELTA TrSEC CHI
CHANNEL COUNTS

CH2 CH3 CH4
1 - 42 12 :27 111 60 0 93 0 01 - 43 12 :28 :48 60 0 89 0 01 - 44 12 230 :21 60 0 78 0 02 - 46 12 :32 :o 60 0 85 0 02 - 47 12 233 :33 60 0 104 0 02 - 48 12 :35 213 60 0 75 0 02 - 49 12 :36 :42 60 0 80 0 0

COUNTS PER SECONDGP-POSt
CHI CH2 CH3 CH4

1 - 42 0 1.55 0 01 - 43 0 1.48333 0 0I - 44 0 1.3 0 02 -, - 46 0 1.41667 0 02 - 47 0 1.73333 0 02 - 48 0 1.25 0 02 - 49 0 1.33333 0 0

12 :37 :42

bYEBYE

A>

APPENDIX E. CuMPONENTS LAOuT AND CABLES

F

3652 5 4.5 LONG CARD

COMPONENT SIDE

. . . .

C

H

11 52

r--
1C7 C ---

.
V5177.

IL 171 7.7.
IL, 13S. 1..Cf,

l Inc

iv.l. . ,...1", ',
.1....

11.-
. 4. .. - A....." LEJ :."-:. %.

0,....,:r D 0 ...,::,!:-e : 41 4-1-;-, ."0" "CI .;.;I: ..i"D" "0 . .3Li-:.1'"' O i,C'.:.4 0. ?;?] i3; 0' 0 (,L,C1.: i''0. 'fr.:. 1-1

if rt[trtrfrififa ! , 1 - :1 t F .

S 1 WWI C.0.11CI On gyltr ...10111. W. GPO, 11 ,
1113 Is aC,T.11 User, 1ftt COuIC tnc

.10 00arg, 1,11.1 IC .414x.rniZt 1 r, 15
11,S Vv.*, %VW Itt 0.0 IWO 1. //01,1

2Gee 0'Wst ft5,0.6*Itn05051+1, uP 10 200 0.11 0443 0. 300 UC
.00v 0.0/. ,,ane elDC11.1, O. 41,11 conne,r, ConlC L., 01,001.,leSatlf r

0.-CS

V .4,40-La rf>es.or D
e Pottl.on D.Ps

Psc.2 D,0

2.e. 4.13.C.stc..
r - ., ne X .2

ono, Dositinn o
. 0. lepon

C0

0

C,
C
0

0

1..

82

A VIA pin-out A000 -AOOF
C VIA.2 p1n-out 9F80-9F8F
B V/A.3 p1n-out 9F90-9F9F
D LEDs. 20 mA loop, Baud rate DIP
E REAL TIME CLOCK CRTC) IC1
F 7474 D flip-flop IC2
G UART /C4 Cnov removed)
H RESISTORS
I RESISTORS
J 7404 HEX INVERT ICS
V. 7414 SCHMIDT INVERT /C6
L 7404 HEX INVERT IC7
H 7407 HEX BUFFER OPEN COLLECTOR ICS
N 7474 C. flip-flop IC3
O OPERATIONAL AMPLIFIER IC9
P 7408 AND GATES ICIO
O 7408 AND GATES /C11
R 7407 HEX BUFFER OPEN COLLECTOR IC12
5 OPERATIONAL AMPLIFIER IC13
T OPERATIONAL AMPLIFIER IC14
U tIL111 IC1S

TIL111 IC16
N 74139 DECODER IC17
X DIP CONNECTOR
Y 7404 HEX INVERT IC18
Z 7408 AND GATE IC19

AA RESISTORS
AU RESISTORS
AC CONNECTOR

MS thesis: M. I. SALEM
Title

COMPONENT LAYOUT CESCP/PTION
,pc,um,mt Number

A Figure B.2 01
te. September 12, 19E17/Sheet 1 of

Figure b.2 Component layout description

: Resistors
on

at coordinates
interface card

(25.35) -> (25,29) I : Resistors,
(25.28)

diode and
-> (25,22)

transistor at coordinates
on interface card

D3RI = 1K
R2 = 1K H4R3 = 1.5K R21= 5.1KR4 = 1.5K R22= 100RS = 100K R23= 1KR6 = 4?0K R24= 1KR7 = IX
88 = 1r5K
R9 = 1.5K !O3Ri0= 100K
R11= 470K
R12= 1K CR13= 1.5K
R14. 1.5K R25= 10KR15= 1r5K R26= 22KR16= 100K R27= 1.5KF217= 470K R28= 1.5kRL8= IV.

R19= 1.SK
R20= 1.5K

AA
on

:

interface
(14,4) -> 614,13 C3 :

on interface
Resistors at coordinates

card
(7,4) -> (7.1)Resistors at coordinates

card

R33= 1KR29. IK R34= 1KR30= 1K R35= IKR31= 1K R36= 1KR32= 1K

MS tkesis : H. I SALEM
Title

COMPONENTS LAYOUT ON INTERFACE CARD
Number PEV

A Figure 8.3 01
Date: Sertember 12, 1982jSbeet 1 of

Figure B.3 Detailed layout of resistors. transistor
and diode

12

24 pin DIP

11 24

ONNECIOR DB25

DIP pinout DB2SP SIGNAL

1 24 CAI
2 22 CBI
3 20 PAO
4 18 PEI
5 16 PAS
6 14 PA3
7 12 unused
8 10 CB2
9 8 PB7

10 S PBO
11 3 PA4
12 6 PB2
13 2 PA2
14 4 PA6
IS 7 PB4
16 9 P86
17 11 CA2
18 13 unused
19 15 PA1
20 17 PA7
21 19 P83
22 21 PBS
23 23 unused
24 25 unused

85 tkesis : H I Snl_EH

It 1 e

CABLE
Number

Flours 8.4 DI

etc September 12 1887 heet 1 of 1

Figure B.4 Connections of LAbLE A to VIA (A0U0-AOUF)

12 1

24 pin DIP

13 24

CONNECTOR DB25

DIP rinmat DP2SP SIGNAL

1 24 PB3
2 22 PB7
3 20 CB2
4 18 CA2
S 16 PAS
6 14 PA1
7
ta

12
10

PB2
PB6

9 8 CND
10 5 CND
11 3 PA4
12 1 PAO
13 2 PA2
14 4 PAS
15 7 CND/.-5V16 9 CND
17 11 PB4
18 13 P8019 15 PA3
20 17 PAZ
21 19 CAS22 21 C81
23 23 PBS
24 25 PB1

MS tkasis H. I. SALEM
Title

CABLES B AND C
Size ocument Number EV

A Figure B.5 01
TDeote. September 12 _19BiJSheet 1 or 1

Figure B.5 Connections of LABLEs B and C to VIA.2
and VIA.3 repectively

111
:::
mmon
MM.7

SW D P-4

DIP PIN-OUT CONNECTED TO FUNCTION
1 SW DIP-4 7

1
2 SW DIP-4 S BAUD RATE SELECTION
3 SW DIP-4 3
4 SW DIP-4 I
S AMPHENOL L SERIAL INPUT DATA
6 AMPHENOL B SERIAL OUTPUT DATA
7 unused
B unused
9 CATHODE D28 COUNT

10 CATHODE 021 STANDBY
11 CATHODE D22 ACTIVE
12 CATHODE D23 MANUAL
13 CATHODE D20 POWER-ON
14 ALL ANODES +SV
15 CATHODE D2S SINGLE
16 CATHODE D24 GROUP
17 CATHODE D26 BUST
19 CATHODE D27 IDLE
19 AMPHENOL 0 GROUND (SIGNAL)
20 AMPHENOL H GROUND (SIGNAL)
21 SW DIP-4 2
22 SW DIP-4 4

1
BAUD RATE SELECTION

23 SW DIP-4 6
24 SW DIP-4 8

MS thesis: H. I. SALEH
Tit I F

CABLE D
Sizepocument Number

A F19ure 8.6 01
Date September 12, 19871Sheet 1 of

Figure B.6 Connections of CAbLE U to the LEDs
baud rate selector

X

INTERFACE CARD CONNECTORS

AC
LED current 1 14 LED current RED
LED current 2 1 3 LED current RED
LED current 3 12 LED current OVFL2 1 14

CND
GND

4
S

11
10

unused
LED current

OVFL3 2
3

13
12

GND 6 9 LED current 4 11 unused
INTERVAL 7 8 LED current S lo

unused 6 9
7

AUXILLIAPY POWER SUPPLY CARD

LED current 1 14 LED current RED
LED current
LED current

2
a

13
12

LED current
LED current

GND
GNU

4
S

11
10

unused
LED current OVFL2 1 14

CND 6 9 LED current OVFL3 2 13
INTERVAL 7 8 LED current OVF14 3 12

4 11 unused
S 10

unused t_ 6 9

RED
7

MS t6esis! H SALEM

Title
CONNECTOR PINOUT

Size F.ocument Number E.k/

A Figure B.7 01

Date: Septemb=j17LLMigSkeet

Figure B.7 Signals on interface card and auxilliary
power supply card connectors

1 of

PIN NAME I/O

1 CRYSTAL INPUT
2 CRYSTAL INPUT
3 PWR INPUT
4 X2OCL 9 NO INPUT
5 ESC/ NO INPUT
6 X2OT OUTPUT TO TRIAC
7 U17M 8 NC INPUT
9 B2M 7 NO INPUT
9 R141 OUTPUT

10 R14M 5 NC INPUT
11 F6M 6 NO INPUT
12 U17T OUTPUT
13 N12CL II NC INPUT
14 LION J NC INPUT
15 X20M i NO INPUT
16 INTERVAL INPUT
17 CTS5 pin 3 C NC INPUT
19 +15V INPUT
19 GROUND I/O
20 +5V INPUT
21 -12V INPUT
22 -15V INPUT

MS thesis: H. I. SALEM

Title
WIRE WRAP PLUGBOARD EDGE CONNECTOR

S Number rE,

A Figure B.E.
D ate! September 12, 1980Sheet

Figure B.8 Wire wrap plognoard edge connector

01

1 of

PIN NAME I/O

1 A1T C-15V) INPUT
2 N12T GROUND INPUT
3
4 F6T C+15V) INPUT5 CRYSTAL OUTPUT
6 CRYSTAL OUTPUT
7 BATTERY + INPUT8 BATTERY INPUT9 PWR OU1TAa10

11 SISCL g NO INPUT12 OVFL2 OUTPUT
13 OVFL3 OUTPUT14 OVFL4 OUTPUT15
16
17 +12V OUTPUT
18 +15V OUTPUT
19 GROUND OUTPUT20 +5V OUTPUT21 12V OUTPUT22 15v ouTrut

MS tkesis! H. I. SALEM
it 1e

SOLDER PLUGBOARD EDGE CONNECTOR
51 e ocument Number Eb
A Flour, B.9 01

Date! September 12, 190, heet I or

Fiyure B.9 Solder pluyboard ,dye connector

AMPHENOL CONNECTOR

PIN MIRE COLOR

A BLACK + WHITE
B BROWN
O RED
E LIGHT ORANGE
L GREEN
H BLUE
N PINK <VIOLET)
P GRAY.
K YELLOW

20 mA LOOP CONNECTION

AMPHENOL PIN 0B9 PIN DESCRIPTION

CONNECTOR DB9

B 1 SERIAL DATA OUTPUT
2 GROUND (SIGNAL)

L 3 SERIAL INPUT DATA
4 GROUND (SIGNAL)

MS tl..csIs! H. I. SALEM

I IA 1 e

ANPHENOL CONNECTOR FOR 20 mA LOOP
Number EJ

A Figure 8.10
Date: September 12, 1987 beet I of 1

Figure B.10 Amphenol connector for 20 mA loop

TYPE MISC.PRN
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
D032
D032
D032
D032 AO 43 SIRO
D034 8C 00 A4
D037 A9 DO
D039 8D 01 A4
DO3C A9 01
D03E 8D 00 DO
D041 58
D042 60

APPENDIX C. PROGRAM LISTINGS

THIS PROGRAM IS CALLED MISC.ASM
VERSION 1.1 Y 8/16/86

DOS ASSEMBLY PROGRAMS FOR INTERRUPT SERVICE
AND BEEPER ROUTINES

STARTING ADDRESS FOR ASSEMBLY LANGUAGE PROGRAMS
IS AT D000

INITIALIZATION OF MAINTAINANCE REGISTERS

START =$D000

CVIALF' =START

BEEP =START+1
BEEP1 =START+2
BEEP2 =START+3
FRE00 =START+4
CA1 =START+5
T1LS =START+6
TINS =START+7
TRANS =START+8
RESS =START+9
TBUFF =START+10
RBUFF =START+11

LDY
STY
LDA
STA
LDA
STA
CLI
RTS

=START+50

#$43
$A400
t$D0
$A401
401
CVIALP

92

; STORAGE FOR CURRENT VIAL
; POSITION
; BEEPER STORAGE
; BEEPER STORAGE
; BEEPER STORAGE
; BEEPER FREQUENCY REGISTER
; CA1 FLAG STORAGE
; TIMER 1 LOW LATCH STORAGE
; TIMER 1 HIGH LATCH STORAGE
; TRANSMITTER STORAGE
; RECEIVER STORAGE
; TRANSMIT BUFFER
; COUNTER STORAGE

; POINT TO INTERRUPT
; SERVICE ROUTINE

; INITIALIZE VIAL POSITION
; ENABLE INTERRUPTS
; RETURN TO BASIC

Figure C.1 M1SC.PkN listing

D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043
D043 48
D044 8A
D045 48
D046 98
D047 40
D048 A9 01
D04A BD 05 DO
DO4D A9 02
D04F 8D OD AO
D052
D052 AE 00 DO
D055 EB
D056 BE 00 DO
D059 BA
DO5A C9 65
DO5C DO 05
DOSE A9 01
D060 BD 00 DO
D063 68
D064 A8
D065 68
D066 AA
D067 68
D068 40
D069
D069
D069
D069

SERV

auit

93

INTERRUPT SERVICE ROUTINE
; BEGINS HERE

THIS ROUTINE IS USED TO UPDATE THE CURRENT VIAL.
POSITION AS THE SAMPLE CHANGER MOTOR MOVES AND
INDEXES A VIAL AT THE ELEVATOR.

PC AND W ARE AUTOMATICALLY SAVED ON STACK AND
INTERRUPTS DISABLED BY AN IRO VECTORING
PC AND W WILL BE RESTORED AND INTERRUPTS
REENABLED WITH AN RT1.

BUT THE REGISTERS NEED TO BE SAVED .

PHA
TXA
PHA
TYA
PHA
LDA 401
STA CA1
LDA #02
STA $1400D

LDX CVIALF
INX
STX CVIALF
TXA
CMP #101
BNE Quit
LDA *01
STA CVIALF
PLA
TAY
PLA
TAX
PLA
RTI

; SAVE ACCUMULATOR ON STACK

; SAVE X INDEX REGISTER

; SAVE Y INDEX REGISTER

; SAVE CA1 FLAG

; CLEAR CA1 INTERRUPT
; FLAG IN IFR
; FETCH VIAL. POSITION
; UPDATE VIAL POSITION
; SAVE VIAL POSITION
TRANSFER POSITION TO ACCUMU.

; 101TH POSITION REACHED T
; IF NO QUIT

; IF YES RESET VIAL POSITION
; RESTORE Y INDEX REGISTER

RESTORE X INDEX REGISTER

; RESTORE ACCUMULATOR
RESTORE PC P PSW AND ENABLE

; INTERRUPTS ,RETURN TO BASIC

Fiyr, C.1 hISL..PKN (continued.)

94

D069 SPKR ----49FDP
D069 KEYCK =$ECEF
D069 i

D069 ;

D069 ; this sub is for end of line beep or continual
D069 ; beep until operator presses keyboard (beev2)
D069 ;

D069 ;

D069 20 SE DO beePa JSR beepb ;do a beep
DO6C 4C 8D DO JMP don ;leave
DO6F ;

DO6F ; this sub beeps until someone presses a key
DO6F ;

DO6F 20 SE DO beePc JSR beech ido a beep
D072 A9 03 LDA #$03 ;length of beeps
D074 8D 02 DO STA KEPI
D077 8D 03 DO STA BEEP2
D07A 20 EF EC wait JSR KEYCK ;key Pressed ?
D07D 98 TYA
D07E DO OD FINE don
D080 CE 02 DO DEC BEEP1
D083 DO F5 FINE wait
D085 CE 03 DO DEC BEEP2
D080 DO FO ME wait
DOBA 4C 6F DO JMF' beepc ;do another beep
DOSD 60 don RTS ;return
DOSE ;

DOSE ;

DOSE ; the actual beeper routine is called for single
DOSE ; tone, pitch can be changed is desired
DOGE ;

DOSE ;

DOGE A9 FF beech LDA #$FF ;tone length
D090 SD 02 DO STA BEEP1
D093 A2 2C A8 LDX 422C ;pitch value
D095 CA A6 DEX
D096 DO FD FINE A6
DO98 8D BD 9F STA SPKR ;toggle speaker
D098 CE 02 DO DEC BEEP1
D09E DO F3 FINE A8
DOAO 60 RTS ;return
DOA1 ;

DOA1 ;

DOA1 ; for interestins effects try beepd
DOA1 ; changes freouency with each cycle
DOA1 ; press reset button to stop

Figure C.1 M1SC.PRN (continued.)

95

DOAI ;

DOA1 ;

DOA1 A2 00 heepd LUX t$00
D0A3 CA A9 DEX
DOA4 DO FD BNE A9
D0A6 BD BD 9F STA SPKR ;toggle speaker
DOA9 CE A2 DO DEC beePd+1 ;lower pitch
BOAC 4C Al DO JMF' beepd
DOAF ;

DOAF ; try and inc instruction (ee) in place of dec
DOAF ; for different tones
DOAF ;

DOAF ;

DOAF ; this is the alarm routine used to get someones
DOAF ; attention. it continues to make noise unitl
DOAF ; the kesboard is pressed any key
DOAF ;

DOAF ;

DOAF
DOAF ;

DOAF 20 B3 DO alarm JSR alarms ;do an alarm
DOB2 60 RTS ;return
DOB3 A9 03 alarms LDA 4'103 ;tone length
DOB5 BD 02 DO STA BEEPI
DORS 8D 03 DO STA BEEP2
DOBB 20 EF EC JSR KEYCK ;key pressed ?
DOBE 98 TYA
DOBF FO 01 EEO A10 ; POINT TO INTERRUPT
DOC1 60 RTS ;return
D0C2 CE 02 DO A10 DEC BEEP1
D005 DO 1A BNE tone
DOC7 CE 03 DO DEC BEEP2
BOCA DO 15 BNE tone
DOCC A9 24 LDA #$24 ;hi pitch
DOCE CD 04 DO CMF' fress
DOD1 FO 06 BE0 All
D0D3 8D 04 DO STA frees
DOD6 4C B3 DO JMF' alarms
D0D9 A9 2B All LDA #$2B ;low pitch
DOUR BD 04 DO STA frees
BODE 4C B3 DO JMP alarms ;do it
DOEI AE 04 DO tone LUX frees ;set tone fres
DOE4 CA Al2 DEX
DOE_ DO FD BNE Al2
DOE7 8D BD 9F STA SPKR
DOEA 4C C2 DO JMF' A10
DOED ;

Figure C.1 M1SC.PkW (continues.)

96

DOED
DOED
DOED

THIS SUBROUTINE SAVES THE RESET VIAL STATEDOED IMMEDIATELY BEFORE RESET AND RETURNS THE INFORMATIONDOED BACK TO BASIC.THE LOW BYTE OF THE STATE IE RETURNEDDOED IN THE ACCUMULATOR AND THE HIGH BYTE M THE Y INDEXDOED
REGISTER.NOTE THAT THE HIGH BYTE IS ALWAYS ZERO.DOED

DOED
DOED IFR2 =$9F8D
DOED IFR =$A0011
DOED PORTA =$A001
DOED ;

DOED A9 04 RSTATE LDA *04 ; FETCH DATADOEF 2C 01 AO BIT PORTA ; MASK FETCH BIT 2DOF2 FO F9 BED ESTATE ; WAIT HERE UNTIL C14.PA2=1DOF4 A9 FF NSTATE LDA *$FF
DOF6 8D OD AO STA IFR
DOF9 8D 8D 9F STA IFR2
DOFC A9 10 LDA
DOFE 2C 8D 9F CI7 BIT IFR2 ; FETCH CI7.CB1D101 FO FB BED CI7 ; LOOP HERE UNTIL CI7.CB1=1D103 8D 8D 9F STA IFR2 CLEAR FLAGSD106 A2 30 LUX tt;30
D108 CA Ll DEX

; DELAY LOOPD109 DO FD BNE L1
D1OB AD OD AO LDA IFR ; FETCH STATEDlOE AO 00 LDY *00 ; CLEAR HIGH BYTE OF STATE TO 0D110 60 RTS

; RETURN TO BASICD111
D111
D111
D111 THESE SUBROUTINES IMPLEMENT A SOFTWARE UART TO COMMUNICATED111 WITH THE ORTEC 874 QUAD TIMER/COUNTER.THE CORRECT DELAYD111 TIMES FOR THE BAUD RATE ARE DETERMINED IN BASIC AND POKEDD111 INTO T1LS AND TINS.
D111

THE RECEIVER SUBROUTINE RUART RETURNSTHE CHARACTERD111 IN THE ACCUMULATOR TO BASIC;WHILE THE TRANSMIT SUBROUTINED111 TUART SENDS TO THE 874 A CHARACTER FROM BASIC STROBEDD111 INTO THE TRANS STORAGE.
D111
D111
D111 FORTB3 =$9F90
D111
D111
p112

8A
48

RUART TXA
; SAVE X

PHA

Figure C.1 MISL.PkN (continued.)

97

D113 A2 07 LUX 4$07 ; SET UP FOR 0 BIT COUNT
D115 8E 09 DO STX RESS ;

D118 2C 90 9F RU1 BIT PORTB3 ; AM Y PB6 > V
D11B 70 FB BVS RU1 ; WAIT FOR START BIT
D11D 20 94 D1 JSR DELAY ; DELAY 1 BIT
D120 20 A8 D1 JSR DEHALF ; DELAY 1/2 BIT TIME
D123 AD 90 9F RU2 LDA PORTB3 ; GET 0 BITS
D126 29 40 AND 4$40 ; MASK OFF OTHER BITS,ONLY PB6
D128 4E 09 DO LSR RESS ; SHIFT RIGHT CHARACTER
D12B OD 09 DO ORA RESS ;

D12E 8D 09 DO STA RESS ;

D131 20 94 D1 JSR DELAY ; DELAY 1 BIT
D134 CA DEX ;

D135 DO EC BNE RU2 ; GET NEXT BIT
D137 20 94 D1 JSR DELAY ; DO NOT CARE FOR PARITY
D13A 20 A8 D1 JSR DEHALF ; UNTIL WE GET BACK TO ONE AGAIN
D13D 68 PLA ; RESTORE X
D13E AA TAX ;

D13F AO 00 LDY 400 ; CLEAR Y
D141 AD 09 DO LDA RESS
D144 29 7F AND *$7F ; CLEAR PARITY BIT
D146 60 RTS ; BACK TO BASIC
D147 ;

D147 ;

D147 ;

D147 48 TUART FHA ; SAVE ACCUMULATOR
D148 8A TXA ; SAVE X
D149 48 PHA ;

D14A 20 94 D1 JSR DELAY ;STOP BIT FROM LAST CHAR
D14D AD 90 9F LDA PORTB3 ;

0150 29 DF AND *$DF ;

D152 80 90 9F STA PORTB3 ; START BIT PB5.0
D155 BD OA DO STA MUFF ; SAVE THIS PATTERN
D158 20 94 D1 JSR DELAY ;

015B A2 08 LDX t$08 ; 8 BITS
D15D 2E 08 DO ROL TRANS ; GET FIRST LSB INTO BIT 5
0160 2E 08 DO ROL TRANS ;

D163 2E 08 DO ROL TRANS ;

D166 2E 08 DO ROL TRANS ;

D169 2E 08 DO ROL TRANS ;

D16C 2E 08 DO ROL TRANS ;

1116F 6E 08 DO TU1 ROR TRANS ;

D172 AD 08 DO LDA TRANS
D175 29 20 AND $120 ; GET ONLY BIT 5 FOR PB5
D177 OD OA DO ORA TBUFF ; PUT BIT INTO PATTERN
D17A 80 90 9F STA PORTB3 ; NOW TO ORTEC 874

Figure G.1 M1SC.PRN (continued.)

98

D17D
D17E
D181
D182
D183
D185
D187
D18A
D18D
D190
D191
D192
D193

08
20
28
CA
DO
A9
OD
8D
20
68
AA
68
60

94

EA
20
OA
90
94

DI

DO
9F
D1

PHP
JSR
PLP
DEX
BNE
LDA
ORA
STA
JSR
PLA
TAX
PLA
RTS

DELAY

TU1
*$20
TBUFF
PORTB3
DELAY

; PRESERVE CARRY FOR ROTATE
;

; RESTORE CARRY
;

;

; STOP BIT
;

;

; STOP BIT
; RESTORE X
;

; RESTORE ACCUMULATOR
; BACK TO BASIC

D194 ;

D194 ;

D194 ; DELAY 1 BIT TIMES AS GIVEN BY BAUD RATE
D194 PORTB2 =$9F80
D194 T1L =PORTB2+4
D194 T1H =PORTB2+5
D194 AD 06 DO DELAY LDA T1LS ; START TIMER Ti
D197 8D 84 9F STA T1L ;

D19A AD 07 DO LDA TINS ;

D19D 8D 85 9F DE1 STA TIH ;

MAO AD 81D 9F DE2 LDA IFR2 ; GET INT FLAG FOR T1
D1A3 29 40 AND *$40 ;

D1A5 FO F9 BEG DE2 ; TIME OUT
DIA7 60 RTS
D1A8 ;

D1A8
D1A8 ;

D1A8 ; DELAY HALF BIT TIME
D1A8 ; TOTAL TIME DIVIDED BY 2
D1A8 AD 07 DO DEHALF LDA T1HS ;

D1AB 4A LSR A ; LSB TO CARRY
DlAC AD 06 DO LDA T1LS ;

D1AF 6A ROR A ; SHIFT WITH CARRY
DIN) 8D 84 9F STA T1L ;

D1B3 AD 07 DO LDA TINS
D1B6 4A LSR A ;

D1B7 8D 85 9F STA T1H ;

D1BA 4C AO DI JMP DE2 ;

D1BD ;

Din ;

D1BD ;

D1BD ; THIS SUBROUTINE READS ORTEC COUNTERS AND STORES
D1BD ; THE VALUES AS 32 CONTIGUOUS BYTES IN MEMORY
D1BD ;

Figure C.1 mISC.Pkti (continued.)

D1BD A2 01 RCOUNT LDX #01 ; INDEX MEMORY FOR STORAGE
D1BF A9 08 RC1 LDA #08 ; # BYTES PER COUNTER
D1C1 8D OC DO STA RBUFF+1 ; SAVE HERE
D1C4 E8 RC2 INX ; VECTOR MEMORY
D1C5 20 11 D1 JSR RUART ; READ BYTE
D1C8 9D OB DO STA RBUFF,X ; STORE IN MEMORY
D1CB CE OC DO DEC RBUFF+1 ; # BYTES UNREAD PER COUNTER
DICE DO F4 FINE RC2 ; READ ALL BYTES
D100 CE OB DO DEC RBUFF ; POINT TO NEXT COUNTER
D1D3 FO 06 BEO RC3 ; QUIT IF DONE
D105 20 11 D1 JSR RUART ; FETCH COMMA
PIUS 4C BF D1 JMP RC1 ; REPEAT FOR NEXT COUNTER
D1DB 60 RC3 RTS ; BACK TO BASIL.
D1DC ;

D1DC
D1DC ;

D1DC

A10 D0C2 All DOD9 Al2 DOE4 A6 D095
AS D093 A9 D0A3 ALARM DOAF ALARMA D0B3
BEEP 0001 BEEP1 0002 BEEF'2 D003 BEEPA D069
BEEPS DOSE BEEPC DO6F BEEPD DOA1 CA1 0005
CI7 DOFE CVIALP D000 DE1 D19D DE2 01A0
BEHALF DIAS DELAY 0194 DON D08D FREW) 0004
IFR AOOD IFR2 9F8D KEYCK ECEF Ll 0108
NSTATE DOF4 PORTA A001 PORTB2 9F80 PORTB3 9F90
QUIT 0063 RBUFF BOOB RC1 D1BF RC2 D1C4
RC3 D1DB RCOUNT 01BD RESS 0009 RSTATE DOER
RU1 0118 RU2 0123 RUART 0111 SERV 0043
SIR0 D032 SPKR 9FBD START D000 T1H 9F85
TINS D007 T1L 9FB4 T1LS D006 TBUFF DOOA
TONE DOE1 TRANS 0008 TU1 D16F TUART D147
WAIT DO7A

A>

Figure C.1 M1SC.PkN (continued.)

99

100

TYPE PROJ.BAS
REMARK THIS PROGRAM IS CALLED PROJ.BAS
REM
REMARK VERSION I.1 8 /16 /86
REM
REMARK CHARACTER INITIALIZATION

CRi =CHR$(13) REM CARRIAGE RETURN
LF$ =CHR$(10) REM LINE FEED
BEEP$=CHR$(7) REM WARNING BELL.

REM SETTING UP REGISTERS AND DATA PORTS
PORTP=40960 REM $A000
PORTA=PORTB41 REM FORT A DATA REG
DDRB=PORTB+2 REM D DATA DIRECTION REG
DDRA=PORTB+3 REM A DATA DIRECTION REG
TIMEL1=PORTB+4- REM TIMER 1 WRITE LATCH LOW
TIMEH1=PORTB+5 REM TIMER 1 READ COUNTER LOW
TIML11=PORTB+6 REM
TIMH1I= PORTB +7 REM
TIMEL2=PORTB+C REM
TIMEH2=PORTB+9 REM
SR =PORTB+10 REM SHIFT REGISTER
ACR =PORTB+11 REM AUXILIARY CONTROL REGISTER
PCR =PORTB+12 REM PERIPHERAL CONTROL REGISTER
IFR =PORTB413 REM INTERRUPT FLAG REGISTER
IER =PORTB+14 REM INTERRUPT ENABLE REGISTER
ORA =PORTB+15 REM PORTA WITHOUT HANDSHAKE
PORTB2=40832 REM $9F80
PORTA2=PORTB2+1 REM FORT A DATA REG
DDRB2=PORTB2+2 REM B DATA DIRECTION REG
DDRA2=PORTB2+3 REM A DATA DIRECTION REG
TIMEL12=PORTB2+4 REM TIMER 1 WRITE LATCH LOW
TIMEH12=PORTB2+5 REM TIMER 1 READ COUNTER LOW
TIML112=PORTB2+6 REM
TIMH112=PORTB2+7 REM
TIMEL22=PORTB2+8 REM
TIMEH22= FORTB2 +9 REM
SR2 =PORTB2+10 REM SHIFT REGISTER
ACR2 =PORTB2+11 REM AUXILIAR2Y CONTROL REGISTER
PCR2 =PORTB2+12 REM PERIPHERAL CONTROL REGISTER
IFR2 = FORTB2 +13 REM INTERRUPT FLAG REGISTER
IER2 = FORTB2+14 REM INTERRUPT ENABLE REGISTER
ORA2 =PORTB2+15 REM PORTA WITHOUT HANDSHAKE
PORTB3=40848 REM $9F90
PORTA3= FORTB3 +1 REM PORT A DATA REG
DDRB3=PORTB3+2 REM B DATA DIRECTION REG
DDRA3= FORTB3+3 REM A DATA DIRECTION REG

Figure C.2 PRUj.bkS listing

101

TIMEL13=PORTD3+4 REM TIMER I WRITE LATCH LOW
TIMEHI3 =PORTB3 +5 REM TIMER 1 READ COUNTER LOW
TIML113=PORTD3+6 REM
TIMH113 =PORTB3 +7 REM
TIMEL23=PORTD3+8 REM
TIMEH23=PORTB34.9 REM
SR3 =PORTB34-10 REM SHIFT REGISTER
ACR3 =PORTB3+11 REM AUXILIARY CONTROL. REGISTER
PCR3 =PORTB34-12 REM PERIPHERAL CONTROL REGISTER
IFR3 =PORTB3+13 REM INTERRUPT FLAG REGISTER
IER3 =F'ORTB3 +14 REM INTERRUPT ENABLE REGISTER
ORA3 =PORTB3+15 REM PORTA WITHOUT HANDSHAKE
REM
REM
REM
REM REAL. TIME CLOCK ADDRESS CONFIGURATION ON PORT E2
RCTHS =0 REM COUNTER - TEN THOUSANDTH SECOND
RCTS =1 REM COUNTER - HUNDREDTH I TENTH SEC.
RCSEC =2 REM COUNTER - SECONDS
RCMIN =3 REM COUNTER - MINUTES
RCHR =4 REM COUNTER - HOURS
RCDOW =5 REM COUNTER - DAY OF THE WEEL
RCDOM =6 REM COUNTER - DAY OF THE MONTH
RCM =7 REM COUNTER - MONTHS
RRTHS =8 REM RAM TEN THOUSANDTH SECOND
RRTS =9 REM RAM - HUNDREDTH I TENTH SEC.
RRSEC =10 REM RAM - SECONDS
RRMIN =11 REM RAM - MINUTES
RRHR =12 REM RAM HOURS
RRDOW =13 REM RAM - DAY OF THE WEEK
RRDOM =14 REM RAM - DAY OF THE MONTH
RRM =15 REM RAM MONTHS
RISR =16 REM INTERRUPT STATUS REGISTER
RICR =17 REM INTERRUPT CONTROL REGISTER
RCR =18 REM COUNTER RESET REGISTER
RRR =19 REM RAM RESET REGISTER
RSB =20 REM STATUS BIT REGISTER
RGC =21 REM GO COMMAND REGISTER
RSTDI =22 REM STANDBY INTERRUPT REGISTER
RTM =31 REM TEST MODE REGISTER
REM
REM
REM
POKE PCR2,12 REM $0C HOLD CA2 LOW,DISABLE

REM MOTOR DRIVES
POKE DDRA,255 REM OFF SETTUP PORTA AS OUTPUT

Figure 0.2 PRUJ.BAS (continued.)

102

POKE PORTA,224 REM $E0 TURN OFF ALL LEDS
POKE DDRB,255 REM $FF SETUP PORT D AS OUTPUTS
POKE PORTB,255 REM $FF GATE OFF ALL. MOTORS
POKE PCR,53 REM $35 SET CA1,CA2,CB1 AS POSITIVE

REM EDGE TRIGGERED INPUTS FOR CI3,
REM CI5.CI6.FLAGS CLEARED BY PEEK
REM OF PORTA
REM ALSO SET CB2 AS NEGATIVE EDGE
REM TRIGGERED INPUT FOR ORTEC INTERVAL
REM COUNTER.CLEARED BY WRITING A 1 INTO
REM BIT 3 OF IFR i.e. OG

POKE FORTB,223 REM $DF TURN ON BUSY LED WRITE
REM HI TO C01,CO27CO3

REM
REM
REM SETTING UP CLOCK OUTPUT FOR THE UART
POKE DDRA,224 REM $E0 SETTUP BITS 0-4 AS INPUTS
date=PEEK(PORTA)
S1.62.PA3.PA4=date AND 24 REM $10 GET DIP SWITCH

REM 5162 FOR BAUD RATE
REM CONTROL

IF S1.S2.PA3.PA4=0 THEN Period.low=119
IF S1.S2.PA3.PA4=0 THEN Period.high=35

REM S2S1=$00,T=9091
IF Sl.S2.PA3.PA4=0 THEN Period.low=249
IF S1.62.PA3.PA4=8 THEN Period.high=12

REM 6201=$01,T=3333
IF Sl.S2.PA3.PA4=16 THEN Period.low=53
IF S1.62.PA3.PA4=16 THEN Period.high=3

REM S2S1=$10,T=833
IF S1.62.PA3.PA4=24 THEN Period.low=149
IF 61.62.PA3.PA4=24 THEN period.high=1

REM S2S1=$11,T=417
REM AN OVERHEAD COUNT OF 12 HAS BEEN SUBTRACTED FROM
REM THE PERIODS IN MICROSECONDS.
POKE ACR2,0 REM $00 SET TIMER T1 FOR ONE SHOT

REM MODE WITH OUTPUT
REM ON PB7.2 DISABLED

REM
REM
REM
REM CONFIGURING VIA.2 FOR INTERFACING THE REAL TIME
REM CLOCK FTC
POKE DDRA2,255 REM $FF SETUP PORT A2 AS OUTPUTS FOR NOW
POKE DDRB27255 REM $FF SETTUP FORT 02 AS OUTPUTS
POKE PCR2,63 REM $3F SET CA1pCB1 AS POSITIVE EDGE TRIGGERED

Figure C.2 PkU3.BAS (continues.)

103

REM INPUTS FOR RDY.CA1,CI7.CD1
REM AND CA2 OUTPUT HIGH MODE TO
REM ENABLE MOTOR DRIVESrCD2 NEGATIVE EDGE TRIGGERED
REM INPUT FOR STE.INT

POKE FORTB2,96 REM $60 TRI-STATE THE RTC
REM
REM
REM
REM CONFIGURE VIA.3 FOR SOFTWARE THE UART.
REM THE UART IS SETUP FOR A 7 BIT ASCII CODE WITH
REM NO PARITY 1.e. 1 START DITrl STOP FIT'? DATA BITS
REM 0 PARITY BIT.
POKE DDRB3,191 REM $BF BIT 5 IS OUTPUT:TRANSMIT DATA

REM BIT 6 IS INPUT:RECEIVED DATA
POKE PCR3r32 REM $20 CA1PCB1rCB2 NEGATIVE EDGE TRIGGERED INPUTS.

REM CLEAR CB1 BY WRITING 1 INTO BIT3 OF TFR3
REM
REM
GOTO 21

5 REM SUBROUTINE RESET
REM RESET UP/DOWN MOTORS AND VIAL POSITION
REM
REM
LED' -223 kEM $DF BUSY LED ON CODE
GOSUB 30 REM ELEVATOR OUT OF DETECTOR
NSV=0 REM INITIALIZE CURRENT

REM VIAL STATE TO STANDARD VIAL
POKE FOR-1E0215 REM $D7 ENERGIZE CO3 ,START SAMPLE

REM CHANGER MOTOR,BUSY LED ON
datal=CALL(RSTATE) REM FETCH RESET STATE
PRINT '3'
data=data1
GOTO 20

15 data=PEEK(IFR)
20 CI3.CA1=data AND 2 REM GET STATE OF CI3

IF CI3.CA1=0 THEN 15 REM WAIT FOR CI3=1
POKE PORTB,223 REM $DF STOP SAMPLE CHANGER MOTOR

REM IF CI3 IS HIGH i.e. VIAL
REM POSITION RESET TO ONE

POKE IFR,2 REM CLEAR CA1 FLAG
GOSUB 5280 REM UPDATE CURRENT VIAL STATE
POKE CA1,1 REM SET CAS FLAG
GOSUB 5310 REM DETERMINES GROUP PLUG INDEX
PRINT 'NSV= ';NSV :

RETURN
REM

Figure C.2 PRCJJ.BAS (continued.)

104

REM
REM

21 REM CONTINUE
REM OPEN A BLOCKED SCRATCH PAD FILE ON DISK WITH
REM 20 BYTES PER RECORD
B$ ='SCRATCH.BAS'
FILE B$(20)
REM
REM NOW STORE STRING DATA ON FILE
PRINT #1,1962i'SUNDAY'
PRINT #1,1963i*MONDAY'
PRINT #1,1964i'TUESDAY'
PRINT #1v1965;'WEDNESDAY"
PRINT #1,1966 ;'THURSDAY'
PRINT #1r1967;"FRIDAY'
PRINT #1,1968i'SATURDAY'
PRINT #1,1969i'JANUARY"
PRINT #1,1970i'FEBRUARY'
PRINT #1,1971i'MARCH*
PRINT #1,1972;"APRIL"
PRINT t1,1973i'MAY'
PRINT 41.1,1974i'JUNE'
PRINT 41,1975i*JULY"
PRINT #1,1976i'AUGUST'
PRINT #1,1977i'SEFTEMBER'
PRINT #1,197EWOCTOBER"
PRINT #1,1979;'NOVEMBER'
PRINT #1,1980;"DECEMBER'
PRINT #1,1985;"EOF.PROTECT*
REM
REM
REM
REM ASSEMBLY LANGUAGE PROGRAMS ARE BEING LOADED
REM HERE WITH STARTING ADDRESSES AT D000 HEXADECIMAL
REM
REM
DIM HEX(70)
FOR X=0 TO 15

READ I
HEX(I)=X

NEXT X
DATA 48,49,50,51,52,53y54v55y56,57v65,66,67,66,69+70

A$='MISC.KIM'
FILE A$
IF END *2 THEN 26

22 READ #2;REC$

Figure C.2 PRUJ.bAS (continued.)

105

INDX=2
GOSUB 24
LENGTH=BYTE
GOSUB 24
ADDR=BYTE*256
GOSUB 24
ADDR=ADDR4BYTE

FOR K=ADDR TO ADDR+LENOTH-1
GOSUB 24
POKE KyBYTE

NEXT K
GOTO 22

24 REM READ DATA CODE
BYTE=HEX(ASC(M1WREC$,INDX.1)))*16
BYTE=HEX(ASC(MID$(REC$yINDX+1.1)))+BYTE
INDX=INDX+2

RETURN
26 REM END OF DATA INPUT

CLOSE 2
BEEPA=53353 REM $D069 DOES A BEEP
BEEPC=53359 REM $D06F DEEP UNTIL KEY IS PRESSED
BEEPD=53409 REM $D0A1 CHANGE FREQUENCY WITH FACH

REM CYCLE . STOP WITH RESET
ALARM=53423 REM $DOAF ALARM UNTIL KEY IS PRESSED
vector.int=53298
CVIALP=53248
T1LS=CVIALP+6
T1HS=CVIALP+7
TRANS=CVIALP+8
RBUFF=CVIALP+11
RCOUNT=53693
RUART=53521
TUART=53575
CA1=53253
RSTATE=53485
NSTATE=53492
X=CALL(vector.int)
POKE T1LSpeeriod.low
POKE T1HSrperiod.hiell
GOTO 29
REM
REM
REM

28 REM SUBROUTINE POWER-UP RETRIEVAL
REM RETRIEVE CURRENT VIAL STATE AND POSITION FROM RTC RAM
POKE DDRA240 REM SETTUP PORTA2 AS INPUT

REM $D032 SETUP INTERRUPT ADDRESS
REM $D000

REM $D1BD
REM $D111
REM $D147
REM51100,5,
REM $DOED RESET STATE
REM $D0F4 NEXT STATE
REM RESET VIAL COUNTER,SET INTERRUPT VECTORS
REM SAVE COUNTER LOW LATCH
REM SAVE HIGH LATCH

Figure C.2 PRUJ.BMS (Continued.)

106

POKE PORTB2.RRDOM REM SELECT STORAGE RAM FOR VIAL
REM STATE AND UNIT POSITION

GOSUB 7050 REM READ PROTOCOL
GOSUB 5650 REM CONVERT DATA TO HEX
state.via1=INT(HEX.NUM/10)
IF state.vial >= 1 THEN NSV=1
PLOW=HEX.NUM-state.vial*10
POKE PORTB2FRRTHS REM SELECT STORAGE RAM FOR TENTHS

REM POSITION
GOSUB 7050 REM READ PROTOCOL
GOSUB 5650 REM CONVERT DATA TO HEX
PHIGH=HEX.NUM
PVIAL=PLOW+PHIGH REM FORM VIAL POSITION
POKE CVIALP.PVIAL REM SAVE IN POWER-UP STORAGE
RETURN
REM
REM
REM

29 REM CONTINUE
LINE=0
GOSUP 8000 REM READ DATE
DW=DAY.OF.WEEK
GOSUB 7000 REM READ TIME
READ #1,19462+DWiDDAY$
READ #1,1969+MONTHiSMONTH$
PRINT PROJ.BAS'i";DDAYS;".'iSMONTH$;\

'iDAY;'.';YEAR;' ';HOURS; ,MINUTES;\
':';SECONDS

PRINT LFE;LFS4LFS;CR$
PRINT 'PERFORM RESET WITH BATTERY CHANGE'

200 INPUT 'RESET (Y/N)";state$
IF state$="Y' THEN GOSUB 5 ELSE GOTO 300
X=1
GOTO 500

300 IF stateS='N* THEN GOSUB 28 ELSE GOTO 400
X=0
GOTO 500

400 XX=CALL(BEEPA) REM BEEF FOR ILLEGAL INPUT
GOTO 200

500 IF X=0 THEN 600
GOSUB 5770 REM UPDATE CURRENT VIAL STATE

600 REM CONTINUE
POKE CA1.0 REM CLEARS CA1 FLAG
POKE IER,130 REM $82 ENABLE INTERRUPT ON ACTIVE

REM TRANSITION OF CA1 FLAG
data=PEEK(CVIALP)

Figure C.2 PkOJ.BAS (continued.)

107

PRINT 'vial Position = ";data
PRINT "NSV=';NSV
PRINT "VIAL STATE ='istate.vial
GOTO 60
REM
REM
REM

30 REM ELEVATOR OUT OF DETECTOR SUBROUTINE (EOOD)
data=PEEK(PORTA)
IF data AND 2 THEN GOTO 40 ELSE GOTO 50

40 POKE PORTBr219 AND LED2 REM $DB START UP-MOTOR WHEN Cl2 IS HI
GOTO 30

50 POKE PORTBr223 AND LED2 REM $DF DEENERGIn CO2rSTOP UP-MOTOR
REM WHEN Cl2 LOW

RETURN
REM
REM
REM

60 REM YEAR UPDATE CODE
POKE DDRA2r0 REM SETTUP PORTA2 AS INPUTS
POKE PORTB2yRRM REM SELECT MONTH RAM

REM SEND CS,RD LOW
GOSUB 7050 REM READ PROTOCOL
GOSUB 5650 REM CONVERT TO HEX
HE1=HEX.NUM
GOSUB 8030 REM READ MONTH
GOSUB 5650 REM CONVERT TO HEX
HE2=HEX.NUM
HED=DECIMAL.NUM
IF HE2 <> 1 THEN GOTO 62 ELSE GOTO 66

62 IF HE2 <> HE1 THEN GOTO 64 ELSE GOTO 68
64 POKE DDRA2,255 REM SETTUP PORTA2 AS OUTPUTS

POKE PORTA2,HED REM DATA OUT TO RAM
POKE PORTB2,RRM+64 REM SELECT DAY OF MONTH RAM

REM SEND CS,WR LOW
GOSUB 7210 REM WRITE PROTOCOL

66 IF HE1 = 1 THEN 68
POKE DDRA2.255 REM SETTUP PORTA2 AS OUTPUTS
POKE PORTA211
POKE PORTB2rRRM4-64 REM SELECT MONTH RAM

REM SEND CS,WR LOW
GOSUB 7210 REM WRITE PROTOCOL
GOSUB 8040 REM READ YEAR.HIGH
GOSUB 8050 REM READ YEAR.LOW
GOSUP 5650 REM CONVERT TO HEX
YEAR.LOW=HEX.NUM

Figure C.2 PI,(U.BAS (continued.)

108

YEAR=YEAR.HIGH*100 YEAR.LOW
YR=YEAR+1 REM INCREMENT YEAR
YEAR.HIGH=INT(YR/100)
YEAR.LOW=YR-(YEAR.HIGH*100)
HEX.NUM=YEAR.HIGH
GOSUB 5660
YEAR.HIGH=DECIMAL.NUM
HEX.NUM=YEAR.LOW
GOSUB 5660
YEAR.LOW=DECIMAL.NUM
POKE DDRA2,255
POKE PORTA2,YEAR.HIGH
POKE PORTB2rRRMIN+64

GOSUB 7210
POKE PORTA2rYEAR.LOW
POKE PORTD2rRRTS+64 REM SELECT YEAR.LOW RAM

REM SEND CS,WR LOW

REM ENCODE IN DECIMAL

REM ENCODE IN DECIMAL

REM SETTUP PORTA2 AS OUTPUTS

REM SELECT YEAR.HIGH STORAGE RAM
REM SEND CSrWR LOW
REM WRITE PROTOCOL

GOSUB 7210
68 REM CONTINUE

REM
REM
REM
REM PRINT MENU
POKE PORTBr191 REM $BF LITE IDLE LED
INPUT 'S(tandbv A(ctive Muit'istate$
IF state$="S" THEN GOSUI: 1000 ELSE GOTO 70
GOTO 68 _ . --

70 IF state$='A' THEN GOSUB 5000 ELSE GOTO 80
GOTO 68

80 IF stateW0' THEN GOTO 10000 ELSE GOTO 100
100 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT

GOTO 68 REM WAIT FOR CORRECT INPUT
REM
REM
REM

1000 REM SUBROUTINE STANDBY INTEROGATES RTC
REM READ AND SETS : TIME AND DATE
POKE PORTAr191 REM $BF LITE STANDBY LED
POKE PORTB,191 REM $BF LITE IDLE LED

1010 INPUT ST(set.time SII(set.date RT(read.time RD(read.date 0(uit';statei,
POKE PORTB,223 REM $DF LITE BUSY LED
IF state$=.0' THEN GOTO 1020 ELSE GOTO 1030

1020 nuit.f1a5 =1
GOTO 1120 REM RETURN

1030 IF stateWST' THEN GOTO 1040 ELSE GOTO 1050

Figure C.2 PRUJ.BMS (continues.)

109

1040 GOSUD 7080 REM SET TIME
IF ouit.flag=1 THEN 1120 REM RETURN
GOTO 1010

1050 IF state$='SD' THEN GOTO 1060 ELSE GOTO 1070
1060 GOSUD 8070 REM SET DATE

IF ouit.fla5 =1 THEN 1120 REM RETURN
GOTO 1010

1070 IF state$='RT' THEN GOTO 1080 ELSE GOTO 1090
1080 GOSUB 7000 REM READ TIME

PRINT THE TIME IS ';HOURS, 'MINUTES; " " ;SECONDS
GOTO 1010

1090 IF state$=RD' THEN GOTO 1100 ELSE GOTO 1110
1100 GOSUB 8000 REM READ DATE

DW=DAY.OF.WEEK
READ #1,1962+DW;DDAYS
READ #1,1969+MONTH;SMONTHS
PRINT THE DATE IS ';DDAY$;',";SMONTH$;";DAY;',";YEAR
GOTO 1010

1110 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 1010

1120 REM CONTINUE
POKE PORTA,255 REM $FF TURN OFF STANDBY LED
POKE FORTB,191 REM $BF LITE IDLE LED
RETURN
REM
REM

5000 REM SUBROUTINE ACTIVE CONTROLS ALL FUNCTIONS
POKE PORTA,127 REM $7F LITE ACTIVE LED
POKE PORTB,191 REM $BF LITE BUSY LED

5010 INPUT G(rou' S(ingle Manual Quit ';state$
POKE PORTB,223 REM $DF LITE BUSY LED
IF state$="0' THEN GOSUB 5050 ELSE GOTO 5020
GOSUB 9400 REM RESET ORTEC 874 TO DEFAULT STATES
GOTO 5010

5020 IF state$='S' THEN GOSUB 6000 ELSE GOTO 5025
GOSUB 9400 REM RESET ORTEC 874 TO DEFAULT STATES
SFLAG=1
IGROUP=0 I GN=0
GOTO 5010

5025 IF state$="M' THEN GOSUB 6500 ELSE GOTO 5030
GOTO 5010

5030 IF state$="0' THEN 5040
X=CALL(BEEPA) REM BEEF' FOR ILLEGAL INPUT
GOTO 5010

5040 REM CONTINUE
POKE PORTA,255 REM $FF TURN OFF ACTIVE LED

Figure C.2 PkUJ.bAS (continues.)

110

POKE PORTBr191 REM $BF LITE IDLE LED
RETURN
REM
REM
REM

5050 REM SUBROUTINE GROUP CONTROLS THE GROUP PLUG
REM OPERATING MODE
SFLAG =O
POKE PORTBr175 REM $AF LITE GROUPrIDLE LED
auit.f1a5 =0

5060 INPUT 'enter number of groups <= 3 or Otuit';group.numbert
POKE PORTBF207 REM $CF LITE GROUP,BUSY LED
IF group.number$="0' THEN 5080
GN=VAL(group.number$)
IF GN < 1 OR GN > 3 THEN X=CALL(BEEPA) ELSE GOTO 5070

REM BEEP FOR ILLEGAL INPUT
GOTO 5060

5070 REM CONTINUE
PRINT 41,1903;GN
FOR IG=0 TO GN-1
PRINT t1,19134-10;0 REM SAMPLE.IN.GROUP
PRINT #10916+19;0 REM l'EGIN.GROUP.SAMPLE
NEXT IG
FOR IGROUP = 0 TO ON-1
PRINT 'GROUP';' ";IOROUP+1;"i'PARAMETERS'
LED1=190 REM $BE GROUPrIDLE LED LITE CODE
LED2=222 REM $DE GROUF,BUSY LED LITE CODE
GOSUB 5090 REM OPERATING SYSTEM
IF auit.f1a5 =1 THEN 5080
NEXT IGROUP
FOR IGROUP =O TO GN-1
BRANCH=0
READ #1,1904+IGROUP;preset$
IF preset$=PT' THEN GOSUB 9030 ELSE GOSUB 9020
REM LOAD COUNTER COMMANDS
GOSUB 5420 REM MOTOR DRIVE
NEXT IGROUP
auit.f1a5 =0

5080 REM CONTINUE
POKE FORTB,223 REM $DF LITE BUSY LED
RETURN
REM
REM
REM

5090 REM SUBROUTINE OPERATING SYSTEM
REM DETERMINES PRESET COUNT OR PRESET TIME MODES

Figure C.2 PKOJ.BAS (continues.)

111

REM OF OPERATION AND ACCEPTS TIME BASE PARAMETERS
REM M AND N
REM GATV
PRINT #1,1928;1
PRINT #1,1929;2
PRINT #1,1930;4
PRINT #1,1931;8
POKE PORTB,LED1 REM $## LITE MODE,IDLE LED

5100 INPUT 'PC(Preset.count PT(Preset.time 0(uit';Preset$
PRINT #1,1904+IGROUP;Preset$
POKE PORTB,LED2 REM $tt LITE MODE,BUSY LED
IF preset$ <> '0' THEN GOTO 5120 ELSE GOTO 5110

5110 ouit.flag=1
GOTO 5270

5120 IF preset$='PT' THEN GOSUB 5480 ELSE GOTO 5130
GOTO 5140

5130 IF preset$='PC' THEN GOSUB 5560 ELSE GOTO 5150
GOTO 5265

5140 IF auit.flwA=1 THEN GOTO 5270 ELSE GOTO 5160
5150 X=CALL(BEEPA) REM BEEF FOR ILLEGAL INPUT

GOTO 5100
5160 'SELECT COUNTERS ySFIF(71-.1';rrO,l

CC1,CC2,CC3
PRINT 41,1950+IGROUP;CCO
PRINT #1,1953+IGROUP;CC1
PRINT #1,19564-IGROUP;CC2
PRINT #1,1959+IGROUP;CC3
PRINT 'SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED"

5163 INPUT 'COUNTER DISPLAY (1-4)';DP :

IF DP < 1 OR DP > 4 THEN X= CALL(BEEFA) ELSE GOTO 5167
GOTO 5163

5167 PRINT 41,1922+IGROUP:DP
5170 POKE PORTB,LED1 REM $## LITE MODE,IDLE LED

INPUT ' M (1 to 9) ,N (0 TO 6) or Oluit'iMSS,NS$
POKE PORTB,LED2 REM $## LITE MODE,BUSY LED
IF MSS <> '0' THEN GOTO 5190 ELSE GOTO 5180

5180 ouit.flas=1
GOTO 5270 REM RETURN

5190 M=VAL(MS$) REM CONVERT TO INTEGER
PRINT #1,1910tIGROUP;M
IF M < 1 OR M > 9 THEN GOTO 5200 ELSE GOTO 5210

5200 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 5170

5210 REM CONTINUE
IF NS$ < '0" THEN GOTO 5240 ELSE GOTO 5230

5230 ouit.flag=1

Figure C.2 PkUJ.E$AS (continu,o.)

112

GOTO 5270
5240 N=VAL(NS$) REM CONVERT TO INTEGER

IF N < 0 OR N > 6 THEN GOTO 5250 ELSE GOTO 5260
5250 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT

GOTO 5170
5260 REM CONTINUE

N=N+1
PRINT 41,1907+IGROUFIN

5265 GOSUB 9000 REM DETERMINES MASK BIT SEQUENCE FOR
REM COUNTERS TO BE MASKED

ouit.fla0=0
5270 REM CONTINUE

POKE PORTB,LED1 REM $*1 LITE MODE,IDLE LED
RETURN
REM
REM
REM

5280 REM SUBROUTINE NONSTANDARD.VIAL (NSV)
REM DETECTS EITHER AN EMPTY VIAL POSITION
REM OR A GROUP PLUG
REM AN EMPTY VIAL POSITION IS USED AS AN END
REM OF GROUP INDICATOR
CI6.CB1=data1 AND 16 REM GET STATE OF CI6
IF CI6.CB1 =0 THEN NSV=1 ELSE NSV=0
POKE IFR,16 REM CLEAR CB1 FLAG
RETURN
REM
REM
REM

5290 REM SUBROUTINE NEXT
REM FETCH NEXT SAMPLE

5300 CI3.CA1=PEEK(CA1)
IF CI3.CA1 =0 THEN 5300
POKE PORTB,LED2 REM $#4 LITE MODE,BUSY LED

REM WRITE CO3 HI,STOP
REM SAMPLE CHANGER MOTOR

RETURN
REM
REM
REM

5310 REM SUBROUTINE GROUP.INDEX
REM DETERMINES WHETHER A GROUP PLUG IS INDEXED
REM AT THE ELEVATOR
BOGP=0 REM INITIALIZE BEGINNING OF

REM GROUP PLUG FLAG TO 0
EOGP=0 REM INITIALIZE END OF GROUP

Figure C.2 PROJ.15AS (continuec.)

113

REM FLAG TO 0
IF NSV=0 THEN 5317

5315 data=PEEK(CA1) REM FETCH FLAG CAI
IF data=0 THEN 5315 REM WAIT UNTIL CA1=1
data=PEEK(IFR>
CI5.CA2=data AND 1 REM GET STATE OF CI5
IF CI5.CA2 =1 THEN BOGP=1 ELSE EOGF =1
POKE IFR.1 REM CLEAR CA2 FLAG

5317 RETURN
REM
REM
REM

5320 REM SUBROUTINE BEGIN.GROUP
REM INDEXES THE FIRST GROUP PLUG AT THE ELEVATOR
IF BOGP=1 THEN 5360
POKE PORTB,LED REM $#t LITE MODE,BUSY LED,CO3 LOW

REM START SAMPLE MOTOR
5340 datal=CALL(NSTATE)

POKE CA1,0 REM CLEAR CA1 FLAG
GOSUB 5280 REM DETECT NON STANDARD VIAL
GOSUB 5310 REM CHECK GROUP PLUG INDEX
IF BOOP=0 THEN 5340

5360 REM CONTINUE
POKE CA1,0 REM CLEAR CA1 FLAG
GOSUB 5770 REM UPDATE CURRENT VIAL STATE
RETURN
REM
REM
REM

5370 REM SUBROUTINE INDEX
REM INDEXES A SAMPLE AT THE ELEVATOR
POKE PORTB,LED1 REM $#* LITE MODE,BUSY LED,CO3 HI

REM RUN SAMPLE CHANGER MOTOR
data1=CALL(NSTATE)
GOSUB 5280 REM NON.STANDARD VIAL DETECTION5390 GOSUB 5290 REM FETCH NEXT SAMPLE
GOSUB 5310 REM CHECKS TO SEE IF A GROUP PLUG

REM IS ALREADY INDEXED
5400 REM CONTINUE

POKE CA1,0 REM CLEAR CA1 FLAG
GOSUB 5770 REM UPDATE CURRENT VIAL STATERETURN
REM
REM
REM

5410 REM SUBROUTINE LOWER.SAMPLE

Figure C.2 Pk0J.tiAS listing

114

REM LOWERS A SAMPLE INTO THE DETECTOR
POKE PORTBrLED1 REM $## LITE MODErBUSY LED,C01 LOW

REM LOWER SAMPLE INTO DETECTOR
data=PEEK(PORTA)
CI1.PA0 =data AND 1
IF CI1.PA0 =1 THEN 5410
POKE PORTB,LED2 REM $44 LITE MODErBUSY LED,C01 HI

REM STOP DOWN.MOTOR
RETURN
REM
REM
REM

5420 REM SUBROUTINE MOTOR.DRIVE
REM HANDLES ALL THE MOTOR DRIVE PROTOCOLS FOR THE
REM GROUP PLUG MODE OF OPERATION
GOSUB 8000 REM READ DATE
IF BRANCH=2 THEN 5430
BRANCH=1
LED2=222
GOSUB 30 REM ELEVATOR OUT OF DETECTOR
LED=214 REM $06 LITE GROUPrBUSY LED,CO3 LOW CODE
GOSUB 5320 REM GROUP PLUG INDEXED AT ELEVATOR

5430 LED1=214 REM CO3 LOW CODE
LED2=222 REM CO3 HI CODE
GOSUB 5370 REM INDEX VIAL AFTER GROUP PLUG
IF BOGP=1 OR EOGP=1 THEN 5470
READ #1,1913+IGROUP;SAMPLE.IN.GROUP
SAMPLE.IN.GROUP=SAMPLE.IN.GROUP+1
PRINT #1.1913+IGROUPiSAMPLE.IN.GROUP
IF BRANCH=1 THEN GOTO 5440 ELSE GOTO 5450
REM THESE STATEMENTS ARE TO BE EXECUTED ONLY ONCE PER
REM GROUP

5440 BEGIN.GROUP.SAMPLE=PEEK(CVIALP)
PRINT #1.1916+IGROUP;BEGIN.GROUP.SAMPLE
BRANCH=2

5450 REM CONTINUE
LED1=220 REM $DC LITE GROUP.BUSY LED CO1 HI CODE
LED2=222 REM LITE GROUPrBUSY LED CO1 LOW CODE

5460 GOSUB 5410 REM LOWER SAMPLE INTO DETECTOR
GOSUB 9250 REM START COUNTER
GOSUB 7000 REM READ START TIME
POKE PORTAr95 REM $5F LITE ACTIVErCOUNT LED
REM SAVE START TIME IN ARRAYS
READ #1,1913+IGROUP;SAMPLE.IN.GROUP
JINDEX=SAMPLE.IN.GROUP-1
SEC=HOURS*3600+MINUTES*60+SECONDS

Figure L.2 i-k0J.EihS (continued.)

115

PRINT #1,1201+200*IGROUP+JINDEXiSEC
X=100*IGROUP+JINDEX
FOR K=0 TO 3
XX=X+300*K
PRINT t1,XX+190
NEXT K
READ #1,1904+IGROUP;preset$
IF Preset$='PT" THEN GOSUB 9260 ELSE GOSUB 9170
REM DRTEC COUNTER TIME-OUT
POKE PORTA,127 REM $7F LITE ACTIVE LED
READ 41,1904+IGROUP;Preset$
IF preset8='PC' THEN 5465
GOSUB 7000 REM READ STOP TIME
REM SAVE STOP TIME IN ARRAYS
SEC=HOURS*3600+MINUTES*60+SECONDS
PRINT #1,1301+200*IGROUP+JINDEX;SEC
REM READ COUNTERS
GOSUB 9290 REM READ COUNTERS

5465 REM CONTINUE
GOSUB 30 REM ELEVATOR OUT OF DETECTOR
GOTO 5430 REM LOOP HERE UNTIL EOGP=1

5470 REM CONTINUE
RETURN
REM
REM
REM

5480 REM SUBROUTINE PRESET.TIME
REM ACCEPTS THE PRESET TIME BASE FOR THE SYSTEM
REM EITHER .1 SEC .1 MIN OR EXTERNAL
REM PRESET TIME PERIOD = M * 10 - N * TIME BASE SELECTION

5490 INPUT ' time base S(sec M(min E(ext Muit'itime.base$
PRINT #1,1901+IGROUP;time.base$
IF time.base$ <> '0' THEN GOTO 5510 ELSE GOTO 5500

5500 ouit.flag=1
GOTO 5540

5510 IF time.base$ <> 'S' AND time.base$ <> 'M' \
AND time.base$ <> 'E' THEN GOTO 5520 ELSE GOTO 5530

5520 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 5490

5530 euit.fla5 =0
5540 RETURN

REM
REM
REM

5560 REM SUBROUTINE PRESET.COUNT
time.base$='E" REM EXTERNAL TIME. BASE SELECTED

Figure C.2 Pk,2,;.E0, (continued.)

116

REM FOR PRESET COUNT
PRINT #1,1901+IGROUPitime.base$
INPUT 'SELECT COUNTERS 1,2,3.4 rSELECT=1';CCO.\

CC1,CC2,CC3
PRINT #1,1950+IGROUP;CCO
PRINT $1.1953+IGROUFICC1
PRINT #1,1956+IGROUP;CC2
PRINT #1,1959+IGROUP;CC3
PRINT 'SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED'

5563 INPUT 'COUNTER DISPLAY(1-4)';DP:
IF DP < 1 OR DP > 4 THEN X= CALL(BEEFA) ELSE GOTO 5567
GOTO 5563

5567 PRINT #1.1922+IGROUP;DP
PRINT 'MAX PRESETS : COUNTER 1=9 E+07;2.3.4=1 E+30'
PRINT 'ENTER PRESETS FOR SELECTED COUNTERS' :

FOR ICOUNT=0 TO 3
5570 REM CONTINUE

READ #1,1950+3*ICOUNT+IOROUP;CC
IF CC=1 THEN INPUT PCNT
PRINT i1.1938+4*IGROUP+ICOUNT;PCNT
READ #1,1938+4*IGROUP;PCNTO
IF PCNT < 0 OR PCNT \

> 1E+38 OR PCNTO > 9E+07 THEN 5580
GOTO 5590

5580 X=CALL(BEEPA)
GOTO 5570

5590 REM CONTINUE
NEXT ICOUNT
owit.f1a5 =0
RETURN
REM
REM
REM

5650 REM SUBROUTINE DECIMAL.TO.HEX
REM ASSIGN WEIGHTS
W1=65535
W2=4096
W3=256
W4=16
A=INT(DECIMAL.NUM/W1)
NUM.NEW=DECIMAL.NUM-(Wl*A)
B=INT(NUM.NEW/W2>
NUM.NEW=NUM.NEW-(W2*B)
C=INT(NUM.NEW/W3)
NUM.NEW=NUM.NEW-(W3*C)
D=INT(NUM.NEW/W4)

Figure C.2 PROJ.bAS (continueo.)

117

E=NUM.NEW-(W4*D)
HEX.NUM=A*(10-4)+8*(10-3)+C*(10-2)+D*10+E
RETURN
REM
REM
REM

5660 REM SUBROUTINE HEX.TO.DECIMAL
V=INT(HEX.NUM/(10-4))
NUM.NEW=HEX.NUM-(V*(10-4))
W=INT(NUMANEW/(10-.3))
NUM.NEW=NUM.NEW-(W*(10-3))
X=INT(NUM.NEW/(10-2))
NUM.NEW=NUM.NEW-(X*(10-2))
Y=INT(NUM.NEW/10)
Z=NUM.NEW-(Y*10)
DECIMAL.NUMV*655354-W*4096+X*256+Y*164-Z
RETURN
REM
REM
REM

5770 REM SUBROUTINE UPDATE.CURRENT
REM UPDATE S1ATE OF CURRENT VIAL INDEXED
IF NSV=0 THEN GOTO 5780 ELSE GOTO 5790

5780 state.vial=0 REM SET STANDARD VIAL. STATE
GOTO 5820

5790 IF BOGP=1 THEN GOTO 5800 ELSE GOTO 5810
5800 state.vial=1 REM SET GROUP PLUG STATE

GOTO 5820
5810 state.vial=2 REM SET EMPTY VIAL STATE
5820 RETURN

REM
REM
REM

5830 REM SUBROUTINE ERROR
REM RINGS ALARM AND PRINTS ERROR MESSAGE IF A
REM NON STANDARD VIAL IS INDEXED AT THE ELEVATOR
REM IN THE SINGLE STEP MODE
IF state.vial=1 THEN GOTO 5840 ELSE GOTO 5850

5840 FOR J=0 TO 2
X=CALL(BEEPA)
NEXT J
PRINT 'ERROR*** indexed vial Position';' ;SNi\
'contains a group plug'
ERROR=1
GOTO 5880 REM RETURN

585Q IF state.vial=2 THEN GOTO 5860 ELSE GOTO 5870

rigure C.2 PRUJBAS (continued.)

118

5860 FOR J=0 TO 2
X=CALL(BEEPA)
NEXT J
PRINT 'ERROR*** indexed vial posit ion';'
is empty'

ERROR=1
GOTO 5880 REM RETURN

5870 ERROR=0
5880 RETURN

REM
REM
REM

6000 REM SUBROUTINE SINGLE CONTROLS THE SINGLE STEP
REM OPERATING MODE
POKE PORTB/222 REM $DE LITE SINGLE/BUSY LED
IGROUP=0 : GN=1 SFLAG=1
PRINT #1,1983fGN
JSINGLE=0

6010 LED1=190 REM $BE LITE SINGLE/IDLE LED CODE
LED2=222 REM $DE SINGLE/BUSY LED CODE
nuit.f1a5 =0
GOSUB 5090 REM CALL OPERATING SYSTEM
IF nuit.flas=1 THEN 6190 REM RETURN
READ #1,1904ipreset$
IF Preset$='PT' THEN GOSUB 9030 ELSE GOSUB 9020
REM LOAD COUNTER COMMANDS
IF auit.flaS=1 THEN 6190 REM RETURN

6020 REM CONTINUE.
POKE PORTB1190 REM $BE LITE SINGLE/IDLE LED
INPUT 'sample number(1-100) or 0(uit';samPle.mumber$
POKE PORTB/222 REM $DE LITE SINGLE/BUSY LED
IF sample.mumber$='0' THEN GOTO 6030 ELSE GOTO 6040

6030 nuit.flas=1
GOTO 6190 REM RETURN

6040 SN=VAL(sample.mumber$)
IF SN < 1 OR SN > 100 THEN GOTO 6050 ELSE GOTO 6060

6050 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 6020

6060 VIALP=PEEK(CVIALP) REM OBTAIN CURRENT VIAL POSITION
IF SN=VIALP THEN GOTO 6100 ELSE COTO 6070

6070 GOSUB 30 REM ELEVATOR OUT OF DETECTOR
IF SN > VIALP THEN GOTO 6090 ELSE GOTO 6080

6080 FOR J= VIALF' TO 99+SN
LED1=214 REM $D6 SINGLE/BUSY CO3 LOW CODE
LED2=222 REM $DE SINGLE/BUSY CO3 HI CODE
GOSUB 5370 REM INDEX NEXT VIAL

Figure C.2 FRW.BAS (continued.)

119

NEXT J
GOTO 6110

6090 FOR I=VIALP TO SN-1
LED1=214 REM $06 SINGLE,BUSY CO3 LOW CODE
LED2=222 REM $DE SINGLEOUSY CO3 HI CODE
GOSUB 5370 REM INDEX NEXT VIAL.
NEXT I

6100 REM CONTINUE
6110 GOSUB 5830 REM TRAP NON STANDARD VIALS

IF ERROR=1 THEN 6020
GOSUB 8000 REM READ DATE
LED1=220 REM $DC SINGLE,BUSY LED ,C01 LOW CODE
LED2=222 REM $DE SINGLEFBUSY LED ,C01 HI CODE
GOSUB 5410 REM LOWER SAMPLE INTO THE DETECTOR
JSINGLE=JSINGLE+1
FOR K=0 TO 3
PRINT #1,JSINGLE+300*K;0
NEXT K
PRINT 41,1801+JSINGLE-1iSN
GOSUB 9250 REM START COUNTER
GOSUB 7000 REM READ START TIME
POKE PORTA,95 REM $5F LITE ACTIVE , COUNT LED
REM SAVE START TIME ON SCRATCH FILE
SEC=HOURS*3600+MINUTES*60+SECONDS
PRINT 41,1201+JSINGLE-1iSEC
READ #1,1904;preset$
IF preset$='PT' THEN GOSUB 9260 ELSE GOSUB 9170

REM COUNTER TIME-OUT
POKE PORTA,127 REM $7F LITE ACTIVE LED,

REM OFF COUNT LED
IF preset$='PC' THEN 6115
GOSUB 7000 REM READ STOP TIME
REM SAVE STOP TIME IN ARRAYS
SEC=HOURS*3600+MINUTES*60+SECONDS
PRINT #1,1301+JSINGLE-1iSEC
REM READ COUNTERS
GOSUB 9290 REM READ COUNTERS

6115 REM CONTINUE
GOSUB 30 REM ELEVATOR OUT OF DETECTOR

6120 INPUT 'repeat for another sample Ytes N(o 0(uit';state$
IF state$="0' THEN GOTT 6130 ELSE GOTO 6140

6130 ouit.flas4=1
GOTO 6190 REM RETURN

6140 IF state$='Y' THEN GOTO 6150 ELSE GOTO 6160
6150 INPUT with same parameters Y(es N(o'iPara$

IF para$='Y' THEN 6020

Figure C.2 PRUJ.BAS (continued.)

120

IF para$='N' THEN 6010
X=CALL(BEEPA) REM BEEP FOR ILLEGAL.. INPUT
GOTO 6150

6160_ IF stataWN' _THEN GOTO 6180 ELSE GOTO 6170
6170 X=CALL(BEEPA> REM BEEP FOR ILLEGAL INPUT

GOTO 6120
6180 ouit.fia0=0
6190 REM CONTINUE

PRINT 41.1913;JSINGLE
POKE PORTB.223 REM $DF LITE IDLE LED
RETURN
REM
REM
REM
REM

6500 REM SUBROUTINE MANUAL
REM ALL ORTEC TIMER/COUNTER COMMANDS ARE ENTERED
REM BY THE OPERATOR VIA FRONT PANEL BUTTONS.
REM THIS SUBROUTINE ALLOWS UP/DOWN CONTROL. OF THE
REM ELEVATOR MOTORS AND VIAL INDEXING,
PRINT '874 ORTEC TIMER/COUNTER MUST BE IN LOCAL. MODE'

6510 POKE PORTB.63 REM $3F LITE MANUAL.IDLE LED
INPUT'U(p motor Down motor N(ext sample G(rou ;' 0(uit';state$
POKE PORTB.95 REM $5F LITE MANUAL.BUSY LED
IF state$='U' THEN GOTO 6520 ELSE GOTO 6530

6520 LED2=95
GOSUB 30 REM ELEVATOR OUT OF DETECTOR
GOTO 6510

6530 IF state$='D' THEN GOTO 6540 ELSE GOTO 6550
6540 REM CONTINUE

SN=PEEK(CVIALP) REM FETCH CURRENT INDEXED POSITION
GOSUB 5830 REM TRAP NON STANDARD VIALS
IF state.vial <> 0 THEN 6510
LED1=93 REM $5D LITE MANUAL.BUSY LED CO1 LOW CODE
LED2=95 REM $5F LITE MANUAL.BUSY LED CO1 HI CODE
GOSUB 5410 REM LOWER SAMPLE INTO DETECTOR
GOTO 6510

6550 IF state$='N' THEN GOTO 6560 ELSE GOTO 6570
6560 REM CONTINUE

LED2=95
GOSUB 30
LED1=87 REM $57 LITE MANUAL.BUSY LED CO3 LOW CODE
LED2=95 REM $5F CO3 HI
GOSUB 5370 REM INDEX NEXT SAMPLE
SN=PEEK(CVIALP)
GOSUB 5830 REM TRAP NON STANDARD VIALS

Figure L.2 PkUJ.BAS (continuea.)

121

GOTO 6510
6570 IF state$='G' THEN GOTO 6580 ELSE GOTO 6590
6580 REM CONTINUE

LED2=95
GOSUB 30
LED=87 REM $57 CO3 LOW CODE
GOSUB 5320 REM INDEXES A GROUP PLUG
LED1=87 REM $57 CO3 LOW GIDE
LED2=95 REM $5F CO3 HI CODE
GOSUB 5370 REM INDEXES VIAL AFTER GROUP PLUG
SN=PEEK(CVIALP)
GOSUB 5830 REM TRAP NON STANDARD VIALS
GOTO 6510

6590 IF state$='0' THEN GOTO 6610 ELSE GOTO 6600
6600 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT

GOTO 6510
6610 REM CONTINUE

POKE PORTB,223 REM $DF LITE IDLE LED
RETURN
REM
REM
REM

7000 REM READ TIME
REM READS HOURS , MINUTES , SECONDS

7010 GOSUB 7020 REM READ HOUR
GOSUB 5650 REM CONVERT TO HEX
HOURS=HEX.NUM
GOSUB 7030 REM READ MINUTES
DE1=DECIMAL.NUM
GOSUB 7030 REM READ MINUTES AGAIN
IF DECIMAL.NUM >= DES THEN 7015
COTO 7010

7015 GOSUB 5650 REM CONVERT TO HEX
MINUTES=HEX.NUM
GOSUB 7040 REM READ SECONDS
DE1=DECIMAL.NUM
GOSUB 7040 REM READ SECONDS AGAIN
IF DECIMAL.NUM >= DES THEN 7017
GOTO 7010

7017 GOSUB 5650 REM CONVERT TO HEX
SECONDS=HEX.NUM
RETURN
REM
REM
REM

7020 REM SUBROUTINE READ HOUR

Figure C.2 PKUj.bo-o (continues.)

122

POKE PORTD2rRCHR REM SELECT HR COUNTER CS,RD LOW
GOSUB 7050 REM READ PROTOCOL
RETURN
REM
REM
REM

7030 REM SUBROUTINE RE,.D MINUTES
POKE PORTB2rRCMD\ REM SELECT MINUTE COUNTER SEND

REM CS,RD LOW
GOSUB 7050 REM READ PROTOCOL
RETURN
REM
REM
REM

7040 REM SUBROUTINE READ SECONDS
POKE PORTD2rRCSEC REM SELECT SECOND COUNTER SEND

REM CS,RD LOW
GOSUB 7050 REM READ PROTOCOL
RETURN
REM
REM
REM

7050 REM SUBROUTINE PROTOCOL
POKE DDRA2r0 FEt% SETTUP PORTA2 AS INPUTS

7060 data=PEEK(IFR2)
RDY.CA1=data AND REM GET STATE OF RDY
IF RDY.CA1 =0 THEN 7060 REM WAIT FOR RDY
DECIMAL.NUM=PEEK(ORTA2) REM READ DATA CLEAR CA1 FLAG
POKE PORTB2r96 REM $60 TRI-STATE THE RTC
RETURN
REM
REM
REM
REM
REM
REM

7080 REM SUBROUTINE SE" TIME
7090 INPUT ' S(et tint 0(uit';state$

IF state$="0' THE = :311TO 7100 ELSE GOTO 7110
7100 euit.fla5 =1

GOTO 7200 REM RETURN
7110 IF state$=S' THE nOTO 7130 ELSE GOTO 7120
7120 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT

GOTO 7090
7130 REM CONTINUE

POKE DDRA2r255 FEr: SETTUP PORTA2 AS OUTPUTS

C.2 PKUJ.BAS (continued.)

123

POKE PORTA2r28 REM $1C RESET TIME COUNTER CODE
POKE PORTB2rRCR-1-64 REM SELECT THE COUNTER RESET REGISTER

REM SEND CSrWR LOW
GOSUB 7210 REM WRITE PROTOCOL
INPUT ' enter HOURS ';HH
IF HH < 0 OR HH > 24 THEN GOTO 7140 ELSE GOTO 7150

7140 X=CALL(BEEPA) REM BEEF FOR ILLEGAL INPUT
GOTO 7130

7150 INPUT ' enter MINUTES ' ;MM
IF MM < 0 OR MM > 59 THEN GOTO 7160 ELSE GOTO 7170

7160 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 7150

7170 INPUT ' enter SECONDS 'iSS
IF SS < 0 OR SS > 59 THEN GOTO 7180 ELSE GOTO 7190

7180 X=CALL(BEEPA)
GOTO 7170

7190 REM ENCODE IN DECIMAL
HEX.NUM=HH
GOSUB 5660 REM HEX TO DECIMAL ROUTINE
HH=DECIMAL.NUM
HEX.NUM=MM
GOSUB 5660
MM=DECIMAL.NUM
HEX.NUM=SS
GOSUB 5660
SS=DECIMAL.NUM
REM WRITE TO GO REGISTER FOR PRECISE STARTING OF CLOCK
REM DATA WRITTEN IS IGNORED
POKE PORTA2r0 REM DUMMY DATA IGNORED
POKE PORTB2rRGC-1-64 REM SELECT GO REGISTER,SEND

REM CS,WR LOW
GOSUB 7210 REM WRITE PROTOCOL
POKE PORTA2,SS REM DATA OUT TO SECONDS REGISTER
POKE PORTB2rRCSEC+64 REM SELECT SECONDS COUNTER

REM SEND CSrWR LOW
GOSUB 7210 REM WRITE PROTOCOL
POKE PORTA2rMM REM DATA OUT TO MINUTES REGISTER
POKE PORTB2pRCMIN4-64 REM SELECT MINUTES COUNTER

REM SEND CSrWR LOW
GOSUB 7210 REM WRITE PROTOCOL
POKE PORTA2vHH REM DATA OUT TO HOURS REGISTER
POKE PORTB2rRCHR+64 REM SELECT HOUR COUNTER

REM SEND CSrWR LOW
GOSUB 7210 REM WRITE PROTOCOL
GOSUB 7000 REM READ TIME
PRINT THE TIME IS ';HOURS; . 'MINUTES' . 'SECONDS

Figure C.2 PROJ.bAS (continues.)

124

puit.flaa=0
7200 RETURN

REM
REM
REM

7210 REM SUBROUTINE RTC WRITE PROTOCOL
7220 date=PEEK(IFR2>

RDY.CAl=data AND 2 REM GET STATE OF RDY

IF RDY.CA1 =0 THEN 7220 REM WAIT FOR RDY

POKE IFR2.2 REM CLEAR CA1 FLAG
POKE PORTB2.96 REM TRI-STATE THE RTC

RETURN
REM
REM
REM

8000 REM READ DATE
REM READS DAY OF THE WEEKrDAY,MONTH AND YEAR

POKE DDRA2.0 REM SETTUP PORTA2 AS INPUTS

8010 GOSUB 8060 REM READ DAY OF THE WEEK

DE1=DECIMAL.NUM
GOSUB 8060 REM READ DAY OF THE WEEK AGAIN
IF DECIMAL.NUM >= DE1 THEN 8015
GOTO 8010

8015 DAY.OF.WEEK=DECIMAL.NUM-1
GOSUB 8020 REM READ DAY OF THE MONTH

GOSUB 5650 REM CONVERT TO HEX
DAY=HEX.NUM
GOSUB 8030 REM READ MONTH
GOSUB 5650 REM CONVERT TO HEX
MONTH=HEX.NUM-1
GOSUB 8040 REM READ YEAR.HIGH
GOSUB 8050 REM READ YEAR.LOW
GOSUB 5650 REM CONVERT TO HEX
YEAR.LOW=HEX.NUM
YEAR=(YEAR.HIGH*100)+YEAR.LOW
RETURN
REM
REM
REM

8020 REM SUBROUTINE READ DAY OF MONTH
POKE PORTB2,RCDOM REM SELECT DAY OF MONTH COUNTER

REM SEND CS,RD LOW
GOSUB 7050 REM IMPLEMENT REAL' PROTOCOL

RETURN
REM
REM

Figure C.2 PROJ.BAS (continued.)

125

REM
8030 REM SUBROUTINE READ MONTH

POKE FORTB2,RCM REM SELECT MONTH COUNTER
REM SEND CS,RD LOW

GOSUB 7050 REM READ PROTOCOL
RETURN
REM
REM
REM

8040 REM SUBROUTINE READ YEAR.HIGH
YEAR.HIGH=19
RETURN
REM
REM
REM

8050 REM SUBROUTINE READ YEAR.LOW
POKE PORTB2,RRTS REM SELECT YEAR.LOW RAM

REM SEND CS,RD LOW
GOSUB 7050 REM READ PROTOCOL
RETURN
REM
REM
REM

8060 REM SUBROUTINE READ DAY OF THE WEEK
POKE PORTB2,RCD0W REM SELECT DAY OF WEEK COUNTER

REM SEND CS,RD LOW
GOSUB 7050 REM READ PROTOCOL
RETURN
REM
REM
REM

8070 REM SUBROUTINE SET DATE
8080 INPUT 'S(et date 0(uit';state$

IF state$='0' THEN GOTO 8090 ELSE GOTO 8100
8090 nuit.f1a5 =1

GOTO 8210 REM RETURN
8100 IF state$='S' THEN GOTO 8120 ELSE GOTO 8110
8110 X=CALL(BEEPA) REM BEEPFOR ILLEGAL INPUT

GOTO 8080
8120 REM CONTINUE

POKE DDRA2,255 REM SETTUP PORTA2 AS OUTPUTS
POKE PORTA2,10 REM $0A RESET YEAR RAM CODE
POKE PORTB2PRRR+64 REM SELECT RAk'RESET REGISTER

REM SEND CS,WR LOW
GOSUB 7210 REM WRITE PROTOCOL
INPUT ' enter YEAR ';YR

Figure C.2 PKUJ.BAS (continued.)

126

IF YR < 1986 OR YR > 5999 THEN GOTO 8130 ELSE GOTO 81408130 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 8120

8140 INPUT ' enter MONTH (1-12) 'iMM
IF MM < 1 OR MM > 12 THEN GOTO 8150 ELSE GOTO 8160

8150 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 8140

8160 INPUT ' enter day of the month (1-31) 'iDD
IF DD 1 OR DD > 31 THEN GOTO 8170 ELSE GOTO 8180

8170 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 8160

8180 INPUT ' enter day of the week (1-7) 'iDW
IF DW < 1 OR DW) 7 THEN GOTO 8190 ELSE GOTO 8200

8190 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 8180

8200 REM ENCODE DATA IN DECIMAL
HEX.NUM=DD
GOSUB 5660 REM CONVERT TO DECIMAL
DD=DECIMAL.NUM
HEX.NUM=MM
GOSUB 5660
MM=DECIMAL.NUM
YEAR.HIGH=INT(YR/100)
YEAR.LOW=YR-(YEAR.HIGI-4.100)
HEX.NUM=YEAR.LOW
GOSUB 5660
YEAR.LOW=DECIMAL.NUM
POKE PORTA2rDW REM DAY OF WEEK OUT TO COUNTER
POKE PORTB2pRCDOW+64 REM SEND CS,WR LOW

REM SELECT DAY OF WEEK COUNTER
REM WRITE PROTOCOLGOSUB 7210

POKE PORTA2FDD
POKE PORTB2,RCDOM+64

GOSUB 7210
POKE PORTA2,MM
POKE PORTB2rRCM1-64

GOSUB 7210
POKE PORTA2rYEAR.LOW
POKE PORTB2,RRTS+64

GOSUB 7210
GOSUB 8000
DW=DAY.OF.WEEK
READ #1,1962+DW;DDAY$

REM SELECT DAY OF MONTH COUNTER
REM SEND CS,WR LOW
REM WRITE PROTOCOL
REM MONTHS OUT TO COUNTER
REM SELECT MONTH COUNTER
REM SEND CS,WR LOW
REM WRITE PROTOCOL
REM TENTHS YEAR OUT TO RAM
REM SELECT TENTHS YEAR RAM
REM SEND CS,WR LOW
REM WRITE PROTOCOL
REM READ DATE

Figure C. PROJ.bAS (continued.)

127

READ #1,1969+MONTH;SMONTHS
PRINT 'THE DATE IS "iDDAYS;".";\
SMONTHSi' ';DAY;',';YEAR
ouit.fla5 =0

8210 RETURN
REM
REM
REM

9000 REM ORTEC COUNTER OPERATIONS
REM THIS ROUTINE DETERMINES THE MASK BIT SEQUENCE
REM FOR COUNTERS TO BE MASKED
FOR IG=0 TO GN-1
PRINT #1,19324-IGROUP;0 REM MASK
PRINT #1,1925-FIGROUP;0 REM COUNTERS
NEXT IG
FOR ICOUNT=0 TO 3
READ #1,1950+3*ICOUNT+IGROUP;CC
IF CC=1 THEN GOTO 9005 ELSE GOTO 9007

9005 READ #1,193244GROUP;MASK
READ #1,1925+IGROUP;COUNTERS
READ #1,192844COUNT;GATV
MASK=MASK+GATU
COUNTERS=COUNTERS+1
PRINT #1,1932+IGROUP;MASK
PRINT #1,1925+IGROUP;COUNTERS
NTOP=NTOP+1

9007 NEXT ICOUNT
READ #1,19324-IGROUP;MASK
IF MASK <= 9 THEN MASK.BITS=CHRS(MASK+48)
IF MASK > 9 THEN MASK.BITS=CHRUMASK+55)
PRINT #1,1919+IGROUP:MASK.DIT$
RETURN
REM
REM
REM

9020 REM SUBROUTINE 'PC' LOAD COUNTER
PRINT #1,191041GROUP;9
PRINT #1.19074-IGROUP;7
GOSUB 9030
RETURN
REM
REM
REM

9030 REM SUBROUTINE LOAD COUNTER
REM LOADS ALL BIT SEQUENCES REQUIRED FOR COUNTER
REM OPERATION.ALL DATA INPUTS ARE TERMINATED BY

Figure L.2 PRUJ.bMS (continued.)

128

REM A CARRIAGE RETURN (CR) AND LINEFEED (LE)
FOR J=1 TO 2
GOSUB 9210 REM SEND 'L'
POKE TRANS,ASC(W)
X=CALL(TUART)
READ #1,19104-IGROUPiM
POKE TRANSPASC(CHRS(M+48)) REM FORMULA
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
NEXT J
GOSUB 9210 REM SEND 'L'
POKE TRANS,ASC('N")
X=CALL(TUART)
READ #1,1907+IGROUP;N
POKE TRANSFASC(CHRS(N+40)) REM FORMULA
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
REM SELECT COUNTER WHOSE DATA IS TO BE DISPLAYED
GOSUB 9230 REM SEND 'LD'
READ #1,192241GROUP;DP
POKE TRANS,ASC(CHRS(DP+48)) REM DISPLAY COUNTER DATA
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
GOSUB 9040 REM RESET R.MASK
GOTO 9060
REM
REM
REM

9040 REM SUBROUTINE RESET R.MASK
GOSUB 9210 REM SEND 'L'
GOSUB 9245 REM SEND "R'
READ #10919-FIGROUP;MASK.BIT$
POKE TRANS,ASC(MASK.BITS) REM WITH BIT

REM SEQUENCES FOR COUNTERS TO BE MASKED
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
RETURN
REM
REM
REM

9050 REM SUBROUTINE SET R.MASK
GOSUB 9210 REM SEND 'L'
GOSUB 9245 REM SEND 'R°
POKE TRANS,ASC(CHR$(48))
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF

REM MASK ALL COUNTERS

Figure C.2 FROj.likS (continues.)

129

RETURN
REM
REM
REM

9060 REM CONTINUE
GOSUB 9210 REM SEND 'L'
GOSUB 9215 REM SEND 'G'

REM LOAD THE GATE MASK REGISTER
REM WITH BIT SEQUENCES FOR
REM COUNTERS TO BE MASKED.

READ 41,19191-IGROUP;MASK.BIT$
POKE TRANS,ASC(MASK.BITS)
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
GOSUB 9210 REM SEND "L'
POKE TRANS,ASC('T') REM SELECT TIME BASE 0=.1SEC
X=CALL(TUART)
REM 1 = MINUTES 2 = EXTERNAL
READ #1,1901+IGROUPrtime.base$
IF timerbase$='S' THEN GOTO 9120 ELSE GOTO 9130

9120 POKE TRANSrASC(CHR$(48))
GOTO 9153

9130 IF timerbase$="M" THEN GOTO 9140 ELSE GOTO 915C
9140 POKE TRANSrASC(CHR$(49))

GOTO 9153
9150 POKE TRANS,ASC(CHR$(50))
9153 X=CALL(TUART)

GOSUB 9160 REM SEND LFrCR EXECUTE COMMANDS
9155 REM CONTINUE

RETURN
REM
REM
REM

9160 REM SUBROUTINE EXECUTE COMMANDS
POKE TRANS,ASC(CR$)
X=CALL(TUART)
POKE TRANSrASC(LFS) REM SEND CARRIAGE RETURN,LINE

REM FEED PAIR AND EXECUTE COMMANDS
X=CALL(TUART)
RETURN
REM
REM
REM

9170 REM SUBROUTINE 'PC' TIMEOUT
REM READ ALL COUNTERS NOT MASKED
GOSUB 9290 REM READ ALL COUNTERS

Figure C. PRUJ.bAS (continuLu.)

130

FOR ICOUNT=0 TO 3
READ #1,1950+3*ICOUNT+IGROUP;CC
READ #1,1928+ICOUNTiGATV
IF CC=1 THEN GOTO 9180 ELSE GOTO 9190

9180 OFGATE=GATV
IF SFLAG=0 THEN JSI= JINLEX +1 ELSE JSI=JSINGLE
GOSUB 9360 REM CHECK FOR COUNTER OVERFLOW
X=300*ICOUNT+100*IGROUF+JSI
READ tirX;COUNTER.VALUES
READ t1,1930+4*IGROUP+ICOUNT;PCNT
IF COUNTER.VALUES >= PCNT THEN \
GOTO 9185 ELSE GOTO 9190

9105 GOSUB 9350 REM GATEOFF COUNTER
GOSUB 7000 REM READ STOP TIME
SEC=HOURS*3600+MINUTES*60+SECONDS
PRINT #1,1301+200*IGROUP+ICOUNT;SEC
NSTOP=NSTOP+1
IF NSTOP=NTOP THEN GOTO 9200 ELSE GOTO 9170

9190 NEXT ICOUNT
9200 RETURN

REM
REM
REM

9210 REM SUBROUTINE SEND 'L'
POKE TRANSFASC('L")
X=CALL(TUART)
RETURN
REM
REM
REM

9215 REM SUBROUTINE SEND 'G'
POKE TRANSFASC('G')
X=CALL(TUART)
RETURN
REM
REM
REM

9220 REM SUBROUTINE SEND 'H'
POKE TRANSFASC('H')
X=CALL(TUART)
RETURN
REM
REM
REM

9230 REM SUBROUTINE SEND LD
POKE TRANSFASC('L')

;figure C.2 PROJ.BAS (continued.)

131

X=CALL(TUART)
POKE TRANS,ASC('D')
X=CALL(TUART)
RETURN
REM
REM
REM

9240 REM SUBROUTINE SEND 'C'
POKE TRANSrASC('C')
X=CALL(TUART)
RETURN
REM
REM
REM

9245 REM SUBROUTINE SEND 'R'
POKE TRANS,ASC('R')
X=CALL(TUART)
RETURN
REM
REM
REM

9250 REM SUBROUTINE START COUNTER
GOSUB 9240 REM SEND 'C'
GOSUB 9220 REM SEND 'H' COUNTER HALT
GOSUB 9160 REM SEND CR,LF
_POKE IFR,S REM CLEAR CB2 FLAG
GOSUB 9040 REM RESET R.MASK
GOSUB 9240 REM SEND 'C'
GOSUB 9240 REM SEND 'C*
GOSUB 9160 REM SEND CR,LF
GOSUB 9050 REM SET R.MASK
GOSUB 9240 REM SEND 'C'
POKE TRANS,ASC('S') REM SEND 'CS' COUNTER START
X=CALL(TUART)
GOSUB 9160 REM SEND LF,CR EXECUTE COMMANDSRETURN
REM
REM
REM

9260 REM SUBROUTINE COUNTER TIME-OUT
REM LOOP HERE UNTIL COUNTING IS STOPPED9270 data=PEEN(IFR)
INTERVAL.CD2=data AND
GOSUB 9360 REM OVERFLOW DETECTIONIF INTERVAL.CB2 =0 THEN 9270 REM LOOP HERE UNTIL

REM COUNTING ENDS

Figure L.2 PkOJ.BAS (continues.)

GOSUB 9240
GOSUB 9220
GOSUD 9160
POKE IFRr8

132

REM SEND 'C'
REM SEND "H'
REM SEND CR,L.F
REM CLEAR CB2 FLAG BY WRITING LOGIC
REM 1 TO CB2 BIT IN THE IFR

RETURN
REM
REM
REM

9280 REM SUBROUTINE READ COUNTER
REM READ 8 DECADES OF COUNTER VALUES
CVALUE=0
X=RBUFF+24-8*(K-1)
FOR I=0 TO 7
XX=X+I
data=PEEK(XX) REM FETCH ASCII DATA
data=VAL(CHRS(data)) REM CONVERT TO DECIMAL
CVALUE=CVALUE+data*(10-(7-I))
NEXT I
RETURN
REM
REM
REM

9290 REM SUBROUTINE READ ALL COUNTERS
GOSUB 9050 REM MASK ALL COUNTERS TO PREVENT RESET
READ #1,19254-IGROUP:COUNTERS
POKE RBUFF,4
GOSUB 9240 REM SEND 'C'
GOSUD 9245 REM SEND 'R' : 'CR'
GOSUB 9160 REM SEND CRtLF EXECUTE COMMAND
XX=CALL(RCOUNT)
FOR K=1 TO 4
GOSUB 9280 REM FETCH COUNTER DATA
READ #1,1950+3*ICOUNT+IGROUPCC
ICOUNT=K-1
IF SFLAG=0 THEN GOTO 9294 ELSE GOTO 9297

9294 X1=300*ICOUNT+100*IGROUP+JINDEX+1
GOTO 9298

9297 X1=300*ICOUNT+100*IGROUP+JSINGLE
9298 REM CONTINUE

IF CC=1 THEN GOTO 9300 ELSE GOTO 9320
9300 PRINT 41,X1:CVALUE
9320 REM CONTINUE
9340 NEXT K

RETURN
REM

Figure C.2 PkW.BAS (continuea.)

133

REM
REM

9350 REM SUBROUTINE GATEOFF
REM INHIBITS COUNTING IN A COUNTER SELECTED BY
REM THE GATE OFF PARAMETER OFGATE
READ #1,19324-IGROUP;MASK
MASKG=MASKOFGATE
IF MASKG < 9 THEN GATEM$= CHR$(MASKG+48)
IF MASKG > 9 THEN GATEMS=CHRS(MASKG+55)
GOSUB 9210 REM SEND 'L'
GOSUB 9215 REM SEBD 'G'
POKE TRANSrASC(GATEMS)
X=CALL(TUART)
GOSUB 9160 REM EXECUTE 'LG' COMMAND
RETURN
REM
REM
REM

9360 REM SUBROUTINE OVERFLOW
REM DETECTS OVERFLOW FLAGS FROM ORTEC COUNTERS 2,3 I 4
REM AND UPDATES THE COUNTER STORAGE RESPECTIVELY
REM OVFL
PRINT 11,1935;16
PRINT *1,1936;8
PRINT #1,1937;2
REM SET MASKS FOR OVFL2.CB1rOVFL3.C82,8 OVFL4.CA1 RESPECTIVELY
FOR JCONT=1 TO 3
READ #1,19504-3*JCONT+IGROUP;CC
IF CC=1 THEN GOTO 9370 ELSE GOTO 9380

9370 IF SFLAG=0 THEN JSI=JINDEX ELSE JSI=JSINGLE
OVF=PEEK(IFR3) REM FETCH STATE
READ #1,1935+JCONT-1;OVEL
OVF=OVF AND OVFL REM MASK FOR THIS OVERFLOW
IF OVF=1 THEN GOTO 9375 ELSE GOTO 9380

9375 X=300*JCONT-1-100*IGROUP+JSI
READ #1,X;COUNTER.VALUES
COUNTER.VALUES=COUNTER.VALUES+99999999
PRINT #10(iCOUNTER.VALUES
READ #1,19351-JCONT-1;OVFL
POKE IFR3,0VFL REM CLEAR OVERFLOW FLAG

9380 REM CONTINUE
NEXT JCONT
RETURN
REM
REM
REM

figure L.2 PROJ.BAS (continued.)

134

9400 REM SUBROUTINE ORTEC 874 DEFAULT STATE
GOSUD 9240 REM SEND 'C'
GOSUD 9220 REM SEND 'H' :COUNTER HALT
GOSUB 9160 REM SEND CRrLF
GOSUB 9040 REM RESET R.MASK
GOSUB 9210 REM SEND 'L'
GOSUB 9245 REM SEND 'R'
POKE TRANSrASC('F')
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
GOSUB 9240 REM SEND "C'
GOSUB 9240 REM SEND "C' 'CC'=COUNTER CLEAR
GOSUB 9160 REM SEND CRrLF
FOR I=1 TO 2
GOSUB 9210 REM SEND 'L'
POKE TRANSrASC(W)
X=CALL(TUART)
POKE TRANSrASC(CHR$(48))
X=CALL(TUART)
GOSUD 9160 REM SEND CRrLF
NEXT I
GOSUB 9210 REM SEND 'L'
POKE TRANSrASC('N')
X=CALL(TUART)
POKE TRANSrASC(CHR$(48))
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
GOSUB 9230 REM SEND "LP'
POKE TRANSrASC(CHR$(49))
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
GOSUB 9210 REM SEND 'L'
POKE TRANSrASC("T')
X=CALL(TUART)
POKE TRANSFASC(CHR$(48))
X=CALL(TUART)
GOSUB 9160 REM SEND CR,LF
RETURN
REM
REM
REM

10000 REM CONTINUE
PRINT #111981;SFLAG
PRINT t1,1982;LINE
REM PERFORM POWER-DOWN STORAGE
data=PEEK(CVIALP) REM FETCH VIAL POSITION

Figure C.2 PRW.BAS (continued.)

135

PHIOH=INT(data/10)
PLOW=data-PHIGH*10
POKE DDRA2,255 REM SETTUF' F'ORTA2 AS OUTPUT
HEX.NUM=state.vial*10 + PLOW
GOSUB 5660 REM ENCODE IN DECIMAL
POKE PORTA2rDECIMAL.NUM
POKE PORTD2rRRDOM+64 REM SELECT STORAGE RAM

REM SEND CS,WR LOW
GOSUB 7210 REM WRITE PROTOCOL
HEX.NUM=PHIGH*10
GOSUB 5660 REM DECIMAL ENCODE
POKE PORTA2rDECIMAL.NUM
POKE PORTD2rRRTHS+64 REM SELECT STORAGE RAM

REM SEND CS,WR LOW
GOSUB 7210 REM WRITE PROTOCOL
REM
POKE PORTA,224 REM TURN OFF ALL LEDS
POKE PORTD,255 REM AND MOTORS
POKE F'CR2,29 REM $1D DISABLE MOTOR DRIVES
CLOSE 1
PRINT BYEDYE '

STOP
END

Figure C.2 PROJ.BAS (continuea.)

136

TYPE PROJ2.BAS
REMARK THIS PROGRAM IS CALLED PROJ2.BAS
REM VERSION I.1 1/16/87
REM
CR$ =CHR$(13) REM CARRIAGE RETURN
LF$ =CHR$(10) REM LINE FEED
GOTO 2070
REM
REM

505 REM SUBROUTINE SETTUP
LINE=4 S PAGE=0
BEEPA=53353 REM $D069 DOES A BEEF

510 PRINT 'INPUT PROJECT NAME < 70 CHAR' : GOSUB 3416
INPUT PNAME$ S GOSUB 3416
IF LEN(PNAME$) > 70 THEN GOTO 520 ELSE GOTO 530

520 X=CALL(BEEPA) REM BEEP FOR ILLEGAL INPUT
GOTO 510

530 REM CONTINUE
RETURN
REM
REM
REM
REM
REM

2000 REM SUBROUTINE COMPUTE DELTA T
READ 41,19104-JiM
READ #1,19074-J;N
N=N-1
READ #1,1904ipreset$
READ #1,1901+Jitime.base$
IF presetWPT THEN GOTO 2010 ELSE GOTO 2020

2010 REM PRESET TIME ANALYSIS
GOSUP 2060 REM COMPUTE TIME
DELTA.TIME=M * 10 (N)

IF time.basef="M THEN DELTA.TIME=DELTA.TIME*60
GOTO 2030

2020 REM PRESET COUNT ANALYSIS
GOSUB 2060 REM COMPUTE TIME

2030 RETURN
REM
REM
REM

2040 REM SUBROUTINE COMPUTE COUNTS PER SECOND
GOSUB 2000 REM COMPUTE DELTA I
REM SCRATCH FAD FILE VECTOR

Figure C.:, Pk0J2.bAS listing

137

X=100*J+KI
READ t1,10(iCOUNTER.VALUES
CPSO=COUNTER.VALUES/DELTA.TIME
READ t1,301+XiCOUNTER.VALUES
CPS1=COUNTER.VALUES/DELTA.TIME
READ #1,6014.X;COUNTER.VALUES
CPS2=COUNTER.VALUES/DELTA.TIME
READ #1,901+XiCOUNTER.VALUES
CPS3=COUNTER.VALUES/DELTA.TIME
RETURN
REM
REM
REM

2050 REM SUBROUTINE COMPUTE TIME
READ #1.XA;SEC
HR=INT(SEC/3600)

MIN1=SEC-HR*3600
MIN=INT (MINI /60)

SECS=MIN1-MIN*60
RETURN
REM
REM
REM

2o60 REM SUBROUTINE DEL.T
GOSUB 2050
SEC1=SEC
XA=XA4-100
GOSUB 2050
DELTA.TIME=SEC-SEC1
RETURN
REM
REM
REM

2070 REM MAIN PROGRAM STARTS HERE
B$= 'SCRATCH.BAS'
FILE B$(20)
READ 41,1981;SFLAG
READ t171983iGN
IF SFLAG=1 THEN READ #1.1913;JSINGLE
GOSUB 505 REM SETTUF I/O PARAMETERS
REM STRING NAME DEFINITIONS
CC$ =*CHANNEL COUNTS'
CPS$ ='COUNTS PER SECOND'
GS$ ='GP-POSS'
IF SFLAG=1 THEN GSWSG-POSt'
ETt ='START TIME'

rigure C.3 PRUJ2.BAS (continues.)

138

DT$ ='DELTA TvSEC'
DASH$ ='

DASH$ =DASH$4-DASH$
3215 REM PRINTER OUTPUT

FOR J=1 TO 5
PRINT LF$
NEXT J : PAGE=1 REM PERFORM FORM FEED
LINE=LINE+5
PRINT PNAME$:"i'PAGE';' ' ;PAGE GOSUB 3416
FOR J=1 TO 3
PRINT LF$ GOSUB 3416 REM SKIP 3 LINES
NEXT J
PRINT TAB(48);CC$ GOSUB 3416
PRINT TAB(2);GS$;TAB(12);ST$:TAB(24);DTWAB(40);\

'CH1';TAB(51);'CH2';TAB(62);'CH3'iTAB(73);\
'CH4' : GOSUB 3416

PRINT DASH$ GOSUB 3416
FOR J=0 TO GN-1
IF SFLAG=0 THEN GOTO 3360 ELSE GOTO 3370

3360 REM SAMPLE.IN.GROUP
REAP #1,1913+J:IMAX
REM BEOIN.GROUP.SAMPLE
READ 11y1916+J;K
JP1=J+1
GOTO 3380

3370 IMAX=JSINGLE
K=0 : JP1=0

3380 REM CONTINUE
FOR I=0 TO IMAX-1
KPI=K+I KI=KPI
IF KPI=100 THEN KPI =O
IF SFLAG=1 THEN READ #1,1801+KPI:SINGLE.POSITION
IF SFLAG=0 THEN KI=I
X=100*J+KI
READ #1.11-XiX0
READ #1,301+X;X1
READ #1,6011-X;X2
READ *1.901+X;X3
IF SFLAG=1 THEN KPI=SINGLE.POSITION
XA=12014-200*J+KI REM START TIME VECTOR
GOSUB 2000 REM COMPUTE DELTA T
XA=XA-100
GOSUB 2050
TIMES=STR$CHRW:'-f-STR$(MIN) +':'4-STR$(SECS)
GS1$=STRCJP1)4' '4.STRI,(KPI)
PRINT TAB(2):GS18:TAB(12);\

Figure C.3 PROJZ.E.AS (continued.)

139

TIMEMAD(24);DELTA.TIMEiTAB(36);X0;\
TAB(47);X1iTAB(58);\
X2;TAB(69);\
X3 : GOSUB 3416
GOTO 3517
REM
REM
REM

3416 REM SUBROUTINE PAGING
LINE=LINE+1
IF LINE := 63 THEN GOTO 3430 ELSE GOTO 3440

3430 REM CONTINUE
FOR JJ=1 TO 4
PRINT LF$
NEXT JJ
LINE=1 PAGE=PAGE+1
PRINT PNAMEW '; "PAGE';" ;PAGE
FOR JJ=1 TO 3
PRINT LF$: LINE=LINE+1
NEXT JJ

3440 REM CONTINUE
RETURN
REM
REM
REM

3517 REM CONTINUE
NEXT I
NEXT J
PRINT LF$: GOSUB 3416
PRINT TAB(46);CPS$ GOSUB 3416
PRINT TAB(2);GS$;TAB(40);'CH1'iTAB(51);'CH2';\

TAB(62);'CH3';TAB(73);'CH4' GOSUB 3416
PRINT DASH$: GOSUB 3416
FOR J=0 TO GN-1
IF SFLAG=0 THEN GOTO 3690 ELSE GOTO 3700

3690 REM SAMPLE.IN.GROUP
READ #1,1913+JiIMAX
REM BEGIN.GROUP.SAMPLE
READ #1,1916+JiK
JP1=J+1 GOTO 3710

3700 IMAX=JSINGLE
K=0 : JP1=0

3710 REM CONTINUE
FOR I=0 TO IMAX-1
KPI=K-KI : KI=KPI
IF KPI=100 THEN KPI=0

Figure C.3 PROU'L.BAS (continued.)

IF SFLA0=1 THEN READ #1,1801+KPI;SINGLE.POSITION
IF SFLAG=1 THEN KPI=SINGLE.POSITION
IF SFLAG =O THEN KI=I
XA=1201+200*J+KI REM START TIME VECTOR
GOSUB 2040 REM COMPUTE COUNTS PER SECONDS
GS1$=STRCJP1)+' '4-STR$(KPI)
PRINT TAB(2);GS1$;TAB(36);\

CPSO;TAB(47);CPS1;TAB(58);CP52;TAB(69);CPS3
GOSUB 3416
NEXT I
NEXT J
PRINT LF$ GOSUB 3416
J=GN-1 I=IMAX-1 K1=K+I
IF SFLAG =O THEN K1=I
XA=13014-200*J+KI REM STOP TIME VECTOR
GOSUB 2050 REM READ TIME
HOURS=HR MINUTES=MIN SECONDS=SECS
PRINT HOURS, +MINUTES; . +SECONDS GOSUB 3416
FOR JJ=1 TO 5
FRINT LF$
NEXT JJ

4000 REM CONTINUE
CLOSE 1
PRINT "BYEBYE'
STOP
END

A>

Fi9ure C.3 PROJ2.BAS (continued.)

140

