Earthquake and Tsunami Pre-Disaster Mitigation: Preliminary Recommendations

Prepared for:

Oregon State University
Marine Hatfield Science Center
Newport, Oregon

Prepared by:

Chris Heathman and Yumei Wang
Oregon Department of Geology and Mineral Industries

March 18, 2005
Introduction

This is a summary report of preliminary recommendations for the Oregon State University: Hatfield Marine Science Center, located in Newport, Lincoln County, Oregon as this institution prepares to embark on the development of an earthquake and tsunami pre-disaster mitigation plan. This report describes our preliminary recommendations, lessons from the past, benefits of a plan, discusses FEMA’s four planning phases and includes attached appendix information.

We recommend that Hatfield develop plans in accordance with Federal Emergency Management Agency (FEMA)’s Disaster Resistant Universities (DRU) and the National Oceanic and Atmospheric Administration (NOAA)’s TsunamiReady communities. Furthermore, this summary report may also be used in conjunction with the recent evaluations for OSU-Hatfield in the report completed by Howard Pierpont titled “Oregon State University: Hatfield Marine Science Center, Newport, Oregon”, herein referred to as the Pierpont report. A copy of this report, which includes an OSU-Hatfield site location map, is included in Appendix A.

The four major phases that FEMA DRU recommends for the development of a pre-disaster mitigation plan for universities are:

- **Phase 1:** Getting Organized
- **Phase 2:** Identify Hazards and Assess Risk
- **Phase 3:** Develop the Mitigation Plan
- **Phase 4:** Implement and Monitor Progress

OSU-Hatfield may choose to obtain and follow the FEMA Disaster Resistant Universities Manual (access at: http://www.fema.gov/fima/dru.shtm) developed in 2003, as well as the FEMA 386 Mitigation Planning “How-To” Series (http://www.fema.gov/fima/planhowto.shtm) developed in 2002 for a complete guide to pre-disaster mitigation planning (Federal Emergency Management Agency, 2002). These manuals include all the details on how to complete the four phases listed above. NOAA’s TsunamiReady information can be accessed at: http://www.prh.noaa.gov/ptwc/tsunamiready/tsunamiready.htm

Oregon leaders recognized the importance of achieving life safety status for all public school buildings (see Oregon Revised Statute 455.400). In 2002, voters passed ballot measures that allow the legislature to secure state funding for seismic retrofits of school buildings determined to be seismically deficient. The Department of Geology and Mineral Industries (DOGAMI) would like to commend OSU-Hatfield for their concern and awareness regarding the importance of being properly prepared for earthquakes and tsunamis.
Learning from the Past

One recent example of an earthquake that destroyed a facility similar to OSU-Hatfield is the California State University Moss Landing Marine Laboratories located in Moss Landing, California. In 1989, the Loma Prieta, CA earthquake caused about 10 billion dollars of damage to the Northern California, including complete destruction of the Moss Landing Marine Laboratories. Similar to OSU-Hatfield, this facility is located on highly liquefiable soil expected to perform poorly during an earthquake. It took over 10 years to rebuild this facility in a different nearby location.

The Moss Landing Marine Laboratories damage included severed utility lines, damaged access roads, foundation damage, destroyed tide gates, and more. Figure 1 shows the type of damage that occurred at Moss Landing during the Loma Prieta event. It is likely that this same level of damage can be expected at OSU-Hatfield during a large magnitude earthquake. Furthermore, due to the proximity of OSU-Hatfield to the Cascadia Subduction Zone (CSZ), the possibility of tsunamis is an additional significant concern compared to facilities in California such as Moss Landing.

![Figure 1: Damage to Moss Landing access road during Loma Prieta Earthquake.](image)

Benefits of a Detailed Plan

Clearly all communities, schools, counties, and states have the option of developing a detailed plan for disaster mitigation. Development and implementation of a plan costs time and money, and some still choose to remain unprepared without a detailed plan.
Therefore, it is natural that we should ask ourselves why we should prepare. To answer this question, it is necessary to point out the direct and indirect benefits of that result from becoming better prepared.

There are various direct and indirect benefits that result from becoming better prepared for earthquakes. Communities that have a plan of detailed steps and measures that should be taken immediately following a disaster recover faster and more efficiently. Also, the overall damage can be minimized by identifying prior to the disaster. Of course, the most important reasons are to ensure life safety of the students and faculty, and the individuals at various other facilities located on the South Newport bay “peninsula” during the disaster. Another major benefit is the reduction of property damage that may have occurred otherwise.

In particular, schools and emergency facilities benefit significantly from being prepared for earthquakes. DOGAMI lists 10 reasons for schools to become better prepared for earthquakes. A summary of the 10 reasons is shown below in Table 1. Appendix B contains a more detailed description for each of these 10 reasons. Aside from protecting life safety, another reason for OSU-Hatfield to become better prepared is to provide some protection for all of the irreplaceable research and unique facilities located there.

Table 1: Ten reasons for schools to become better prepared for earthquakes

<table>
<thead>
<tr>
<th>Reason</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Life Safety of Staff and Students</td>
</tr>
<tr>
<td>2</td>
<td>Keep Schools Functional So they Can Operate</td>
</tr>
<tr>
<td>3</td>
<td>Ensure that Life Can Go On</td>
</tr>
<tr>
<td>4</td>
<td>Cheaper to Fix before Damage</td>
</tr>
<tr>
<td>5</td>
<td>Reduce Liability</td>
</tr>
<tr>
<td>6</td>
<td>Safer Community</td>
</tr>
<tr>
<td>7</td>
<td>Schools Sometimes Serve as Shelters</td>
</tr>
<tr>
<td>8</td>
<td>Loss of Valuable Research</td>
</tr>
<tr>
<td>9</td>
<td>Better Peace of Mind</td>
</tr>
<tr>
<td>10</td>
<td>Reduce Property Damage/Quicker Recovery</td>
</tr>
</tbody>
</table>

Phase 1: Organizing Resources

Getting Started

Earthquake pre-disaster mitigation is not a process or a program that OSU-Hatfield should go through alone. The city of Newport could form a committee of individuals who are concerned about the threat of earthquake hazards and their potential effects on the community. This committee could include local police, fire, emergency operations, concerned citizens, university employees and students, and many others.
Other facilities located on the same South Bay, Newport “peninsula” as OSU-Hatfield could be involved in the planning as well. OSU-Hatfield can be at the forefront of putting this type of committee together. If possible, it would benefit OSU-Hatfield to get individuals involved in this process from various departments including administration, planning, facilities, academia, visitor center, and others. This will ensure a balance of perspectives so that it is more likely that all the issues are addressed properly and nothing important is neglected.

Overcoming Obstacles

The development of a full pre-disaster mitigation plan is likely to be a lengthy process with some ups and downs. This is not the type of planning that will become fully developed overnight, and those who decide to get involved in the planning should be aware of this from the beginning. There will probably be disagreements between individuals involved in the planning on exactly what the best course of action should be for particular elements of the plan. There may even be times of frustration where it does not even seem worth it to continue. It is important during these times to remain positive and remember the ultimate benefits of developing such a plan.

Phase 2: Identify Hazards and Assess the Risk

The first major task to complete an assessment of risk is to identify and locate on a map all of the possible earthquake hazards that could result from a large magnitude earthquake. A variety of sources can be used as tools for this procedure including DOGAMI hazard maps and risk studies, FEMA, NOAA, United States Geological Survey (USGS) earthquake ground shaking maps (access at: http://eqhazmaps.usgs.gov/), Oregon Emergency Management, local government, the Geological Sciences department at Oregon State University, private consultants, archived newspaper articles, and many others. The identified hazards should be mapped so that areas of highest risk can be identified. OSU-Hatfield may also choose to determine the total risk by combining the risk due to each individual hazard.

We suggest also identifying, and including as part of the plan, other hazards that are not related to earthquakes and tsunamis. Coastal erosion, coastal storms, landslides, and flooding are some of the other hazards that OSU-Hatfield may wish to consider as part of this plan. The earthquake hazards that should most definitely be included are described briefly in the following sections. Also provided is a description of the nature and general risk for several of these hazards using the DOGAMI maps which are available. Other potential hazards are discussed in the Pierpont report (Appendix A).

Once the hazards have been identified, the next step is to assess the risk of each hazard, and subsequently assign a dollar value to each risk. This allows for quick and easy calculations of the benefit-cost ratio for various projects proposed in the future. For example, if a particular project could reduce the risk resulting from structural deficiencies, the cost of the project could be directly compared to the reduction in risk that would occur.
Ground Motions

Due to the proximity of OSU-Hatfield to the Cascadia Subduction Zone (CSZ), high levels of earthquake ground shaking are expected. OSU-Hatfield is located in a high ground motion region approximately 50 km (30 miles) from the CSZ. The USGS (2003) seismic design maps are used to estimate the probability of different acceleration types expressed as a percentage of standard earth gravity acceleration. Table 2 below shows the 2% and 10% probabilities of exceeding %g values in 50 years for several different ground acceleration for sites located on rock material.

Soft soil sites such as the OSU-Hatfield site would be expected to experience significant amplification of some of these spectral acceleration values. A site-specific analysis would be needed to evaluate ground shaking amplification and duration characteristics. The relative ground motion amplification map indicates that OSU-Hatfield is located in an area of highest amplification hazard (Madin and Wang, 1999).

<table>
<thead>
<tr>
<th>Acceleration</th>
<th>% g</th>
<th>Probability of Exceedance In 50 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>50-60</td>
<td>2%</td>
</tr>
<tr>
<td>Peak</td>
<td>20-25</td>
<td>10%</td>
</tr>
<tr>
<td>0.2 sec Spectral</td>
<td>120-160</td>
<td>2%</td>
</tr>
<tr>
<td>0.2 sec Spectral</td>
<td>50-60</td>
<td>10%</td>
</tr>
<tr>
<td>1.0 sec Spectral</td>
<td>60-80</td>
<td>2%</td>
</tr>
<tr>
<td>1.0 sec Spectral</td>
<td>20-25</td>
<td>10%</td>
</tr>
</tbody>
</table>

Liquefaction and Lateral Spreading

Liquefaction is a process that occurs during earthquakes in which certain soils have a tendency to transform and behave more like a liquid. This results in a quicksand type of effect in which the soil can no longer support foundation loadings and any overlying structure. This is a problem primarily in areas that contain loose, saturated, silty soils less than 15 meters below the ground surface. For example, a likely problem area for liquefaction would be a location located near a body of water, such as a river or bay, where there has been a history of land expansion using poorly compacted fine-grained fill. As discussed earlier, liquefaction was one of the primary causes of damage to infrastructure at Moss Landing during the 1989 Loma Prieta Earthquake.

The liquefaction hazard map indicates that OSU-Hatfield is located in an area of highest risk for problems associated with liquefiable soil (Madin and Wang, 1999). Therefore, OSU-Hatfield Marine Science Center is probably located on liquefiable soil, but the precise extent of the problem is uncertain. It may be beneficial to search the records of this facility and determine whether or not any state-of-practice studies on liquefaction potential were completed in the past. If such reports are found, they could be reviewed by
experts in liquefaction analysis to see if they are valid in light of recent advances in engineering techniques. Or, additional studies can be completed to assess the liquefaction and lateral spreading risks.

A site review could help identify the areas of most concern for susceptibility to liquefaction during a seismic event. If possible, the buildings, roads, paths, and tide control structures that are located on liquefiable soils should be identified. The development of an evacuation plan should then consider these structures unusable so that alternative plans can be made accordingly.

Lateral spreading is a hazard that involves the horizontal displacement of the soil resulting in the development of down gradient movement, oftentimes, large surface cracks. This hazard tends to be a problem in soils located near bodies of water such as the sloped ground adjacent to the coast, bays or large rivers. Lateral spreading was responsible for severe building and infrastructure damage at Moss Landing during the 1989 Loma Prieta Earthquake. A similar procedure to that of the liquefaction could be followed. The areas that are most susceptible to this problem could be identified. If possible, any structures located on soil susceptible to this problem could be identified. These structures could be considered unusable so that alternative plans can be made.

Earthquake-Induced Landslides

The earthquake-induced landslide hazard map indicates that OSU-Hatfield is located in an area of low risk for problems associated with earthquake-induced landslides (Madin and Wang, 1999). Other than the previously mentioned lateral spreading problem, earthquake-induced landslides will not be a problem for OSU-Hatfield during a seismic event due to its nearly flat topography. However, earthquake-triggered landslides could pose a threat along evacuation routes.

Inventory Vulnerability

Inventory vulnerabilities should be addressed early on because fixing these items can save many lives and is generally low cost. The first step to identifying inventory vulnerability and deficiencies is to accurately and completely log the type of items and estimate the value of these items. There are various methods available to accomplish this task. The Pierpont report (Appendix A) identifies several methods that are generally considered acceptable and widely used. The FEMA Disaster Resistant Universities document (Federal Emergency Management Agency, 2003) also includes a worksheet for logging inventory.

There are a large number of items that need to be secured such as bookshelves, computers, displays, tanks, and hanging fixtures as identified in the Pierpont report. These are problems that are common to all rooms in all buildings in the university, but each unique situation is different. Therefore, the best approach in this case is a “mass action” type of approach to take care of these items, instead of looking at this item-by-item in each room of the buildings. In other words, it is most beneficial to find a
treatment that will work to fix a common problem, which is also flexible enough to work for different types of situations in all the buildings.

For example, a common seismic problem at OSU-Hatfield library is the bookshelves that are not secured properly. One way to approach this is to look at bookshelves in each room to think of an individual solution for that particular bookshelf. However, a better approach would be to decide on a creative solution for bracing bookshelves that could be adaptable to suit every bookshelf. This type of approach would result in faster progress, and the ability to “mass produce” a solution to particular problems.

Structural and Non-Structural Deficiencies

The first step in identifying structural deficiencies is to identify which buildings may have a possible risk of failure during a large seismic event. This can be accomplished by conducting rapid visual survey (RVS) studies such as the FEMA 154, or a similar method. In 2004, the Oregon University System cosponsored a workshop to assist facilities staff how to properly evaluate buildings using the RVS method.

RVS forms have been completed for all major Hatfield buildings in 2004 (Appendix C). We suggest that all buildings with final scores below 2.0 be evaluated by a structural engineer for earthquake and tsunami deficiencies. The RVS method takes into consideration structural type, vertical irregularity, plan irregularity, soil type, as well as other factors. In general, RVS helps to identify the buildings that may have seismic deficiencies and thus require further detailed review by a licensed structural engineer. The scores are based on the performance statistics of buildings in previous earthquakes. A building that receives a score above 2.0 is not necessarily safe, and a building that receives a score below 2.0 is not necessarily unsafe.

OSU-Hatfield may consult with a licensed structural engineer who is experienced in earthquake and tsunami engineering evaluations. More than likely, the engineer will recommend performing detailed studies, such as using American Society of Civil Engineering 31 methods, on the buildings that resulted in poor scores during the rapid visual survey process. At this time, individuals at OSU-Hatfield may want to identify the buildings that are appropriate for other improvements such as deferred maintenance, energy efficiency, and general remodeling. If possible, these improvements may be combined with seismic retrofits.

Tsunami Hazard

A tsunami is a massive series of waves that can be generated following an offshore earthquake, such as a Cascadia Subduction Zone quake. Seismic activity is not the only cause of a tsunami. These can be caused by offshore landslides, meteorite impacts, slumps, or volcanic activity. The energy of a tsunami is constant, and is a function of its height and velocity. Therefore, as the tsunami approaches land and loses velocity, it can increase in height to 30 meters or more in order to maintain constant energy. These waves...
can inundate low-lying areas, such as the OSU-Hatfield site, about 20 minutes or so after a Cascadia earthquake.

For tsunamis originating in distant parts of the Pacific, the national tsunami warning system operated by NOAA will generally issue warnings soon enough to allow safe evacuation to higher ground. Many coastal communities have also installed local systems to warn citizens about approaching tsunamis. Unfortunately, there have been a number of false alarms, which has resulted in a trend where people tend to ignore the warning signals. The causes of these false alarms from the national warning system have been identified and fixed in recent years. It is therefore even more important now that all tsunami warnings be taken seriously.

For addressing this issue, TsunamiReady plan is appropriate for OSU-Hatfield. TsunamiReady (access at: http://www.prh.noaa.gov/ptwc/tsunamiready/tsunamiready.htm) is a well-established organization that has specialized in the mitigation of tsunami hazards. This organization has developed mitigation plans for all aspects of this problem including required inventory, administration, public awareness, and evacuation procedures. The institutions and communities that follow this plan have an exceptional reputation of being ready for this type of disaster. Also, it is likely that OSU-Hatfield already meets many of the inventory requirements for this program. These requirements are outlined in the TsunamiReady manual that is readily available online.

In addition, DOGAMI earthquake hazard maps of the Yaquina Bay area are available to assess the general nature of earthquake vulnerability. The Tsunami Hazard Map for the Yaquina Bay Area can be used to assess the tsunami hazard for OSU-Hatfield (Priest and others, 1997). Similar to the relative earthquake hazard maps, this map is not intended to replace site specific planning. It should be used as a general guide for emergency response planning. The tsunami hazard map shows areas directly adjacent to the coastline are likely to be impacted by tsunamis triggered by Cascadia subduction zone earthquakes. Specifically, this map indicates that the area, including the OSU-Hatfield campus, has a relatively high tsunami hazard risk. Evacuation brochures are also available (Jenks, 2003).

In addition, computer-animated tsunami inundation videos were created by the Oregon Graduate Institute of Science and Technology (now affiliated with Oregon Health Sciences University) and DOGAMI that show the likely effects of tsunami waves in the Yaquina Bay area. These videos can be used for tsunami risk assessment, planning and educational purposes.

Phase 3: Developing the Mitigation Plan

Further details regarding the development of a detailed mitigation plan are included in the Pierpont report (Appendix A), and the FEMA Disaster Resistant Universities document. The following sections contain general recommendations for various items that should be included in the mitigation plan.
Gathering Location

It should be determined ahead of time that the gathering location has sufficient space to be comfortable for an extended period of time (>24 hours). If other institutions are planning to use the same gathering location, then there should be enough room for everyone. If the gathering place is located on a someone else’s property, the owners should be notified ahead of time that OSU-Hatfield plans to use the location. If this is indeed the case, it might even possible that a partnership could be made to properly prepare the area for both parties with enough food and supplies.

If OSU-Hatfield decides to construct a tsunami structure (e.g., tower) for additional safety, then the tower should be a structure that can accommodate everyone. Evacuation drills may help determine potential occupancy and other problems ahead of time.

Site Evacuations for Tsunamis

Ideally, development of a site evacuation plan should take place after the hazards and risks have been identified. A site evacuation plan could take into consideration at least the following:

- Exits which are likely to be blocked during the earthquake.
- Roadways which are likely to be unusable.
- Gathering place is higher in elevation than expected tsunamis.
- Proper signage for evacuation.
- Electrical lines that are likely to be down after the earthquake
- Gas storage tanks and lines that are likely to be ruptured and burning.
- Hazardous liquid and gas sources.
- Sites for short term and longer-term evacuation (shelter, emergency supplies, food and potable water sources available).
- Specific evacuation plans for staff, the disabled or injured, and visitors, particularly children and the elderly.

Consideration should be given to development of a local community evacuation strategy by coordination with the City of Newport, the Aquarium, and other local businesses. Development of a long-term (week or more) evacuation shelter or shelters plus stockpiles of emergency supplies at an assembly areas would be much more feasible, if costs could be shared among stakeholders.

Proper Signage

The evacuation route should be properly identified with standard signage. OSU-Hatfield may consult with the Oregon Department of Transportation (ODOT) and Oregon Emergency Management. Building evacuation exit signs should have backup battery power to deal with possible darkness due to power failure. The local Fire and Building Departments could be consulted for recommendations on placement of all signage and exits inside of buildings.
Standard signs should be used for the portion of the evacuation route that is outdoors. OSU-Hatfield could consult the Oregon Department of Transportation (ODOT), local government agencies, and neighbors for recommendations on outdoor evacuation route signage. More than likely, it will be required that the signs meet specifications of the Manual of Uniform Traffic Control Devices (MUTCD). OSU-Hatfield may also choose to obtain a copy of Darienzo (2003) for a complete guide on proper signage for tsunami signs (access at: http://sarvis.dogami.state.or.us/earthquakes/Coastal/OFR0306Signs.pdf).

Choice of Route

If possible, any roadways or paths identified as unusable during the hazard identification process should not be considered as part of the evacuation route. The choice of route(s) could be relatively time efficient for making way to the chosen gathering place located at higher ground. Walking traffic should be able to easily accommodate the route without sufficient traffic delays. Evacuation drills will be beneficial to determine potential problems with the chosen route(s).

Figure 2 is the regional evacuation map developed by DOGAMI for the south portion on Newport, Oregon. This map and other information can be used as a guide for site evacuation planning (access at: http://www.oregongeology.com/earthquakes/Coastal/tsubrochures/NewportEvac.pdf or Jenks, 2003). However, a detailed site-specific study is needed because it may be determined that some of the roads, or access to the roads, are likely to be damaged during a large magnitude earthquake.
Phase 4: Implementing the Plan and Monitoring Progress

Once funding has been secured for implementation of any major improvement, it is important to follow through and using any gained momentum. The university and other officials responsible for approval of funding may leave or change positions, and the new officials may not wish to support the plans that have been developed. Therefore, it is important to act fast once funding is secured and move forward. Sometimes, this means moving forward with some portions of the plan before the entire plan is fully developed.

After portions of the plan are implemented, it is important to check progress regularly to make sure that they have resulted in a reduction of the risk. There are various ways to monitor progress. The Pierpont report, as well as the two FEMA documents described previously, provide additional details regarding how to complete this process. At a minimum, we recommend including the items described in the following sections.
Public Awareness

Public awareness is important for proper support and implementation of the plan. Any new information about the mitigation plan should be available to everyone as soon as it is ready to be released to the public.

There are various ways to communicate awareness to the public about all of the previously described hazards. OSU-Hatfield may choose to have a formal report written that contains general information about the geology of the area, seismic setting, and the potential seismic hazards. Various DOGAMI maps are available to access the general nature of the risk of hazards in the area. An electronic version of the report could then be put onto a public website for viewing.

The OSU-Hatfield visitors can gain awareness with permanent displays set up to describe all aspects of the potential hazards. There is already a tsunami display in the visitor center, but it does not contain detailed information, or what to do if there is an earthquake and tsunami threat. This type of information could be added to the display, and updated with new information as the mitigation plan starts to come together. The information could be conveyed at a level that the public can understand using simple posters, brochures, and videos. A similar display should be set up for other hazards such as inventory deficiencies, structural deficiencies, ground motions, and liquefaction.

Earthquake and Tsunami Drills

Earthquake and tsunami evacuation drills could be conducted regularly as portions of the plan become developed to identify problems ahead of time. The drills should be taken seriously, and should be made as realistic as possible. OSU-Hatfield should coordinate the drills with other institutions involved in the planning so that they can participate as well. It may also be helpful to vary the time and light conditions each time.

Acknowledgments

The authors thank the reviewers of this report, including Randy Walker at OSU-Hatfield, Howard Pierpont, Bob Simonton at the Oregon University System, George Priest and Ian Madin at DOGAMI and Jay Wilson at the Oregon Emergency Management Division.
References Cited

Priest, G.R., Myers, E., Bapista, R., Kamphaus, R., Peterson, C., and Darienzo, M., 1997, Tsunami Hazard Map of the Yaquina Bay Area, Lincoln County, Oregon: Interpretive Map Series IMS-2, Oregon Department of Geology and Mineral Industries

Appendix A

Oregon State University: Hatfield Marine Science Center
Newport, Oregon

Prepared by:
Howard Pierpont, CBM, CBCP

Prepared for:
Oregon State University
Hatfield Marine Science Center
Table of Contents

Background... 5
Disclaimer... 6
Report Design ... 6
Project Design ... 6
Inventory Method ... 7
About the Author ... 7
History of the Site from Hatfield Marine Website ... 8
Basic Fire, Life and Safety .. 9
 Incident Command System and Emergency Operations Center.................................. 9
 Fire, Life and Safety Signage .. 10
Hatfield Marine Science Visitors Center .. 11
 Evacuation ... 11
 Visitor Evacuation – Pre-notification .. 11
 Monitors and Displays .. 12
 Static Displays ... 13
 Tanks, Static Displays and Monitors .. 14
 Tanks .. 15
 Movable Fixtures .. 16
 Lighting .. 17
 Material Placement ... 18
Research and Library Facilities .. 19
 Current Activities .. 19
 Individual and Group Offices ... 20
 Research Areas .. 22
Library .. 24
Other Site Tenants ... 26
Examples of Restraints ... 27
Example of Photo Luminescent Exit Marking ... 27
Suggested references and reading.. 28
 Washington State Emergency Management Website Links 28
 Oregon State Emergency Management's Website Links ... 28
 USGS Website Link ... 28
 Other Sites of Interest .. 28
 Other Reading Material [hardcopy] ... 30
Background

I was invited to attend an employee meeting at the Oregon State University [OSU] Hatfield Marine Sciences [HMS] facility in Newport, Oregon on 05 October 2004. The meeting was a mandatory activity to review earthquake and tsunami characteristics, as well as prepare the population for a drill scheduled on 12 October.

Dr. George Priest presented a slide show on earthquakes and tsunamis, explaining in plain language the life threatening elements associated with these crises. He also pointed out that, with the exception of Spring/Summer 2004, this area has not experienced local earthquake activity in recent years. Therefore, the potential for increased activity is high.

The occurrence of a local earthquake may only allow a minimal time [0 – 20 minutes] to evacuate to higher ground. There is also a possibility that a quake could happen many miles away from the local quake area and form a tele-tsunami that would later [up to 4 hours or more depending on distance] impact the area surrounding the facility. There may or may not be time to warn inhabitants of the area that a tsunami is approaching. Proactive planning and awareness are the key factors in surviving a number of issues that may confront the area.

A gathering of Center Senior Staff, members of the OSU organization, other site tenants and community leaders occurred after the employee meeting. Attendees included:

- Randy Walker, Facilities Manager, HMSC, Newport OR
- Lowell A. Fausett, Project Cost Manager, OSU, Dept of Ag Admin, Corvallis OR
- Jim Lloyd, Vice Pres & Director of Facilities, OSU, Corvallis OR
- Steve LeBoeuf, Environmental Health and Safety Manager, OSU, Corvallis OR
- Patrick Clinton, GIS Analyst, EPA, Newport OR
- Faith Cole, Oceanographer, EPA, Newport OR
- Craig Toll, Admin Assistant, HMSC, Newport OR
- Howard Pierpont, Author, OCPA / Intel Corporation, Hillsboro, OR
- Rick Crook, Fire Chief, Newport OR
- Jim Hawley, County Disaster Planner, Newport OR
- Chris Heathman, DOGAMI, Portland OR

Topics included:

- A discussion regarding potential opportunities to work together across institutions, sites and disciplines to promote a safer environment.
- The possibility of using a portion of existing funds to mitigate ‘low hanging fruit’ in non-structural areas. Looking for “no cost” mitigation items represented by key learning from what other organizations have done to date. Opening dialogue to review areas where cross-organizational funds could be utilized to achieve common goals without producing duplicate effort.
• My commitment to produce and submit a report, detailing my personal observations and recommendations within two weeks. This document represents the completion of that commitment.

After a break for lunch, Randy Walker conducted a personal tour of the facility for Chris Heathman and me.

Disclaimer

The observations in this report represent information noted during my on-site visit, the employee and executive meetings, and facility tour. The content was created solely by the author as a community service without typical professional compensation. It is intended to provide feedback and recommendations related to the emergency planning and disaster recovery efforts of this organization. Industry “best known methods” [BKMs] and personal observations gleaned from similar situations during my years of professional experience form the basis of this report. This report is not a subset of my current employment and is offered as a service or guide to encourage further action.

This review does not include food service areas, data centers, major electrical components or closets, or heavy equipment areas. It is recommended that the complete complex be considered for a full-scale review.

Report Design

This report assesses safety issues noted at the site in addition to earthquake and tsunami awareness and preparation. Many of these items represent ‘building blocks’ that facilitate the potential survivability of the people at the facility during times of crisis and are in line with general safety planning. Higher cost items can be implemented post-inventory as finances, time and material become available.

Project Design

A decision to implement safety preparedness measures requires agreement and commitment from the top levels of the organization. Communication to the entire organization of the nature and scope of the changes, the proposed methodology, and the desired outcomes will facilitate greater cooperation and support. Training on new or updated processes and procedures should be incorporated into all implementation and sustaining plans. ‘Refresher’ sessions for existing staff can be added as needed to ensure that safety consciousness becomes an element of the organization’s culture.
Inventory Method

All facilities in the main complex should be rank ordered based on their criticality to the overall organization and to the survivability of the center. Each one should be inspected and inventoried starting with the most critical areas and then working through the remainder of the facility.

A number of standard inventory worksheets are widely available. The City of Seattle utilizes one that includes a double inventory method using a trained inventory person for the initial review with follow-up by a subject matter expert as needed.

See City of Seattle Project Impact
SCHOOl FACILITIES MANUAL
Nonstructural Protection Guide
SECTION B
INVENTORY FORMS AND INVENTORY PROCESS FOR NONSTRUCTURAL ELEMENTS
CLASSROOM SAFETY CHECKLIST

Multiple facilities may be inventoried simultaneously, but it is recommended that all results be charted on a single grid. This will assist the organization in capturing similar items that are low cost / no cost and “easy to fix”. Other areas will require additional funding, long term planning, and / or retrofit for the best remediation.

Tracking and reporting progress on a regular basis will keep the program moving and continue to raise project awareness.

About the Author

Howard Pierpont is a Certified Business Continuity Processional. He was awarded this credential from Disaster Recovery Institute International of Virginia. He was also been awarded the title of Certified Business Manager by the Association of Professional in Business Management, California. He holds two Bachelors of Arts Degrees from Lakeland University, Sheboygan Wisconsin, one in Business Administration and the other in Marketing. He is actively involved in Disaster Recovery organizations throughout the United States. He has worked in the high technology chip design and manufacturing arena for the past 25 years.
"The Hatfield Marine Science Center was established by Oregon State University with the cooperation of local, state and federal agencies. The Port of Newport furnished property and the Federal Economic Development Administration granted money for construction. The main building of the Center, a ship support service building, and a dock for oceanographic research vessels were completed in 1965. Additional construction provided modern teaching laboratories and research facilities and on-site housing. The Newport Aquaculture Laboratory and the Research Support Facility were built by the National Marine Fisheries Service in 1979 and 1981. In 1990, the Environmental Protection Agency completed a new laboratory. At the same time, federal funds were used to build a research library, which is operated by OSU. The Oregon Department of Fish and Wildlife Regional Marine office is also located on the campus. The United States Department of Fisheries and Wildlife completed an office and laboratory building for its Coastal Refuge Program in 1995." http://hmsc.oregonstate.edu/info/overview.html

Photo by H. Pierpont
Basic Fire, Life and Safety

A number of safety processes and procedures are currently known and utilized by key personnel on site. However, these should be clearly documented, modified to include dependencies on other agencies, communicated to relevant parties, and stored for easy access in the event of a crisis.

Incident Command System and Emergency Operations Center

The definition, creation and implementation of a site Incident Command System [ICS] should take precedence in the overall effort. The establishment of an Emergency Operations Center [EOC] for ISC use will facilitate timely incident response. The centers scope could range from something as simple as a sick person to more serious events such as: fires, chemical exposure [from within and outside the site], other man made acts, earthquakes and tsunamis.

The ICS provides a common response structure and the HMSC complex can benefit from earlier learning at other OSU campus locations. Additionally, the local community has expressed an interest in proactively participating in the EOC and notifying the EOC of events in the community that may impact the site.

The creation of the ICS and EOC structure can be used as a model for other remote OSU sites. This would allow for a level of consistency across the OSU community.
Fire, Life and Safety Signage

Evacuation signage inside the facilities needs to meet the minimum OSU specifications per appropriate local use code. Additionally, installation of luminescent exit signs near floor level may assist in timely evacuation during an event.

There are a number of locked offices in the research section of the facility. A procedure should be created to ascertain that these offices are empty or the occupants have departed during a crisis. A procedure for accounting for employees, visitors and other stakeholder should also be implemented.

One or more ‘rally points’ or ‘gathering locations’ should be designated and signs installed indicating the location(s). The determination of the placement of these sites should be coordinated with local officials to ensure that there will not be any space conflict during a time of need and that they provide a reasonable level of safety.

Occasionally, there may be a need to provide shelter in one or more buildings. This could be the result of undesirable weather conditions, chemical incidents, threatening local activity or other issues. A process for holding people in place or moving them to areas of less vulnerability should be considered. This process should be documented near the evacuation route maps posted inside the facility.

For tsunami evacuation, signs should be created showing the most expeditious exit routes. These signs should be visible in line of sight from sign to sign. There should be no uncertainty in the mind of the evacuating parties as to which direction to proceed. These signs should also indicate walking as the preferable method of transport, since vehicular traffic may induce other issues and incidents.
Hatfield Marine Science Visitors Center

This section will address issues specifically noted in the Visitors Center. Some of these situations may also be present in other parts of the facility and should be considered during the review of those areas. Photos in this section are representative of the issues documented. A full inventory and action plan should be created to address gaps.

Evacuation

There may be occasions when the people inside the Visitor Center need to evacuate during total darkness. Ensure that sufficient active emergency lights are installed to meet the needs of visitors and staff. These may need to be supplemented with low-level luminescent signs and/or floor markings indicating exit direction and location.

Visitor Evacuation – Pre-notification

The Visitor Center scheduling coordinator should ensure that all tour groups are notified of the evacuation procedures for fire, earthquake and tsunami. This should be reinforced with the contact person when the group arrives. When possible, transportation captains or the bus drivers should also be notified of these procedures. This could be accomplished through an e-mail or a hardcopy flyer mailed or delivered to the group contact by the Visitor Center staff.
Monitors and Displays

Monitors, televisions and other video display devices should be secured to their bases using straps. These should be of sufficient strength to ensure that falling items in the event of rough treatment by visitors, an earthquake or similar natural disaster will not injure visitors.
Static Displays

All static displays should be secured to prevent visitor injury regardless of event status. These items should be secured so that they cannot be moved or positioned in a manner that could potentially cause injury to staff or visitors.

Photo by H. Pierpont
Tanks, Static Displays and Monitors

In addition to the areas mentioned, certain areas have tanks, static displays and/or monitors in close proximity. An attempt should be made to secure these items so they will not cause or contribute to the failure of another item during an incident.
Tanks

All tanks containing liquids should be inspected to ensure that the plumbing is flexible enough to survive some amount of shaking. These tanks should also be secured in some manner. During a severe incident, the tanks and their contents will probably be rendered unusable. Provision should be made to mitigate possible loss of priority displays.

![Tanks](image)

Photo by H. Pierpont
Movable Fixtures

All rolling fixtures should have locking wheels or other adequate restraints in place. A procedure should be implemented to reduce the potential for these units to move during an incident. All other moveable fixtures should be secured to ensure they do not fall over if struck by a visitor or shaken during an event.

Photo by H. Pierpont
Lighting

Overhead track light fixtures are suspended by what appears to be a minimal cable at three points down their length. It is recommended that these cables be reviewed for strength and, if insufficient, enhanced to prevent or restrict the fixture from falling. A supplemental sling could be constructed to further reduce the possibility of falling. This sling should extend from a secure point on the ceiling, down and under the fixture and back to a second secure point on the ceiling.

Photo by H. Pierpont
Material Placement

Only items approved by the Facilities Department should be installed in the Visitors Center. This will decrease the number of potential hazards in public areas.

Photo by H. Pierpont
Research and Library Facilities

This section will address specific issues noted in the Research and Library Facilities. These include typical non-public areas. A number of these situations may also be present in other parts of the facility and should be considered during the review of those areas. Photos in this section are representative of the issues documented. A full inventory and action plan should be created to address gaps.

Current Activities

A number of safety precautions have been implemented on an ad hoc basis as part of the space retrofit and new construction. The Facilities Department is aware of additional mitigation measures needed and has included them wherever possible in their plan of work. In most cases, the additional cost does not materially change the total cost of the construction effort. This report is supplemental to the ongoing activities.
Individual and Group Offices

The following areas should be inspected and considered for remediation:

General Office
- When possible utilize office furniture that can be attached to the wall or floor
- Secure bookshelves to the wall
- Place front lip on open shelves to reduce the probability of contents free falling to floor
- Eliminate storage of items on top of bookshelves and cabinets
- Attach file cabinets together and to the wall
- Affix monitors and CPU boxes to surrounding bases for reduction of falling items
- Secure pictures to reduce falling impact [closed hook or multi-point restraining]
- Allow sufficient space under desks to support ‘duck and cover’ procedure

Group Offices
- Ensure that aisles and walkways are clear
- Items not needed for regular business should be properly stored [not on top of cabinets or bookshelves]

Individual Offices
- Keep floor space clear to allow for safe movement throughout the room
- Consider a ‘view window’ to allow locked rooms to be checked during emergencies. [Reduces time to open each office and determine status of occupant(s).]
Research Areas

Include all items indicated in the Individual and Group Offices section as well as the following:

Secured Research
- Where cabinets with doors have been retrofitted with lips on shelves, consider including a latching mechanism to reduce the possibility of the door opening.
- Implement a signage system to indicate if the room is currently occupied

Open Space
- Keep all aisles and walkways clear.
- Provide signage and maintain equipment to advise proper handling and disposal of hazardous materials
- Review all tanks for piping and coupling capabilities in the event of sudden movement

All Areas
- Eye Wash and Body Showers – Recommend the placement safety floor mats to reduce slipping and falling potential during activation of these devices.
- Bottled Gases – The University Purchasing organization in conjunction with vendors should implement fixtures and procedures to properly restrain and contain bottles and contents per local, state and federal regulations.
Library

While the library did not exhibit many of issues seen in other areas, there was still some margin for improvement. Most of the items noted are low/no cost fixes.

Bookshelves
The freestanding bookshelves are high compared to their width at floor level. There is an opportunity to secure these units at the top and create a larger, more resistant entity. The bookshelves can be fastened together in appropriate groups. Additionally, the lateral supports could be secured to overhead beams. This item will require further research. Where possible, a front restraining edge should be mounted. Many of the research documents are old and fragile. These will require special reclamation efforts in case of falling or water damage.

File Cabinets
File cabinets should be secured to reduce the possibility of toppling over during an earthquake or tsunami. Where possible, the cabinets should be attached to each other on top and affixed to the wall or floor.
Pictures and Computer Systems

These should be secured to reduce movement.

Television Monitors and Video Playback Devices on Carts

The television monitors and video playback devices should be secured to a cart that is designed to hold the weight of the equipment and reduce the possibility of tipping during regular movement. These carts should be equipped with wheel locks to reduce unanticipated or uncontrolled movement.

Photo by H. Pierpont
Other Site Tenants

Implementation of a world-class safety and loss reduction program provides HSMC the opportunity to set the bar for the rest of the site. It also opens a door for mutual collaboration with existing and future tenants. Current tenants include: the ship support service building and dock for oceanographic research vessels, The Newport Aquaculture Laboratory and the Research Support Facility for the National Marine Fisheries Service, Environmental Protection Agency laboratory, and the Department of Fish and Wildlife Regional Marine office. [See Map on Page 3]

Future partnerships and similar endeavors with the local community may help reduce operating costs and promote common safety efforts. Each of these organizations has their own charters and priorities, but the designation of a steering committee to facilitate these efforts could assist in smoothing out some of the implementation bumps.
Examples of Restraints

Video Monitor anchor

Wheel tether for static displays

Cart to wall straps

Gang plates

Sample restraints courtesy of Work Safe Technologies at http://www.worksafetech.com
These are examples only; some items may be fabricated or obtained locally.

Example of Photo Luminescent Exit Marking

Sample signage courtesy of Seaton Corporation at http://www.seton.com
Custom signs are available in luminous rigid plastic or luminous polyester.
Suggested references and reading

Washington State Emergency Management Website Links

http://emd.wa.gov/site-general/menu/pub-video-idx.htm

Oregon State Emergency Management’s Website Links

http://www.osp.state.or.us/oem/library/interesting%20reading/interesting_reading-new.htm#Earthquake/Tsunami:

http://www.osp.state.or.us/oem/library/interesting%20reading/Hazard%20Specific%20Information/earthquake%20&%20tsunami/tsuinor9.htm

USGS Website Link

http://walrus.wr.usgs.gov/tsunami/

Other Sites of Interest

www.tvfr.com/cs/ep/24_Non-Structural_Mitigation.pdf
Tualatin Valley Fire and Rescue, OR
Non-Structural Mitigation
“Reducing the risks of damage and injuries caused by earthquakes”

http://www.oas.org/usde/publications/Unit/oea54e/begin.htm
Disaster, Planning and Development: Managing Natural Hazards to Reduce Loss
Department of Regional Development and Environment Executive Secretariat for
Economic and Social Affairs Organization of American States
With support from the Office of Foreign Disaster Assistance United States Agency for
International Development
Washington, D.C.
December 1990
“A Contribution to the International Decade for Natural Disaster Reduction”
Earthquakes and School Safety
John Anderson
Director, Nevada Seismological Laboratory, University of Nevada, Reno
Presented to the Governors Conference on School Safety
Orleans Hotel and Casino, Las Vegas
November 26-28, 2001

www.co.pacific.wa.us/pcema/earthquake/
Pacific County Emergency Management Agency
Non-Structural Earthquake Mitigation
Projects for the Home and Workplace
Website project funded by State of Washington Military Department Emergency Management Division

http://emd.wa.gov/3-map/mit/success-cd/10-seattle-school.htm
Washington Military Department Emergency Management Division
Seattle School District: Non-structural Retrofit Program

http://www.fema.gov/fima/
The Mitigation Division manages the National Flood Insurance Program and oversees FEMA's mitigation programs. Includes a number of programs and activities to provide citizens Protection with flood insurance; Prevention through mitigation measures and Partnerships with communities throughout the country.

http://seattle.gov/projectimpact
The site is very good overall. Many links to additional sites developed by or through grants to Seattle, WA

http://seattle.gov/projectimpact/pages/publications/schools.htm
Will automatically link to the following chapter. All chapters are worth reading.

Contains Inventory forms and methods mention earlier.

http://www.crew.org/business/business.html
Cascadia Region Earthquake Group
Mitigation Information for Businesses

http://csc.uoregon.edu/PDR_website/
Partners for Disaster Resistance and Resilience
http://csc.uoregon.edu/PDR_website/projects/state/SNHMP_WEB/Index.htm
Oregon's State Natural Hazard Mitigation Plan

Oregon's State Natural Hazard Mitigation Plan Appendix 11

www.metrokc.gov/prepare/docs/HIVA_Earthquake.pdf
King County Hazard Mitigation Plan: HIVA [Draft]
Final page has a number of hyperlinks to additional information.

Other Reading Material [hardcopy]

The first two are in conjunction with Washington State Emergency Management
www.wa.gov/wswm

“Tsunami! Safety Tips for the Washington Coast!”
Evacuation information for Port Townsend and Vicinity
Foldout flyer with map of high ground and evacuation routes along with assembly points.
www.jcdem.co.jefferson.wa.us

“Tsunami! Safety Tips for the Washington Coast!”
Evacuation information for Grays Harbor and Pacific Counties
8.5 x 11 handout similar to the above.
www.co.grays-harbor.wa.us
www.willapabay.org/~pcema/

Tsunami Waves
Multi-international organizational including:
US Dept of Commerce, NOAA, NWS, UNESCO, International Tsunami Information Center, and Laboratoire de Geophysique, France
www.prh.noaa.gov/itic/
http://ioc.unesco.org/itsu

“Surviving a Tsunami – Lessons from Chile, Hawaii, and Japan”
USGS National Tsunami Hazard Mitigation Program –
Circular 1187 – Atwater
Appendix B

Quake-Safe Students:
Ten Reasons to Fix Vulnerable Schools

Prepared for:
Oregon State University
Hatfield Marine Science Center

by:
Oregon Department of Geology and Mineral Industries
Quake-Safe Students:
Ten Reasons to Fix Vulnerable Schools

1. Life Safety of Students and Staff

This is probably the most important reason to make schools seismically safe. Students and faculty spend about one third of the day inside school buildings. Safety and welfare of the public is a top priority. School buildings tend to be places where large numbers of people congregate, so the loss of life could be tremendous. Aside from the human tragedy aspect, loss of life is financially costly as well.

2. Keep Schools Functional

Education is compulsory for kids, and substantial delays could put students’ knowledge base at risk leaving them behind the rest of the country. Keep in mind that schools are often overcrowded right now. Suppose that after an earthquake, 25% or more of our schools need to be evacuated temporarily or permanently. What are we going to do with all of the students to continue their education without delays or extreme overcrowding?

3. Ensure that Every Day Life Can Go On

A large magnitude earthquake will cause fear and shock for many people in the community. Others may also be grieving over the loss of life or injury of a loved one. In order to eventually recover from the earthquake, it is important that at least some normal parts of life (such as school activities) can still continue so that people recover.

4. Cheaper to Fix before Damage

Scientific studies indicate that there is about a 10%-20% probability that we will experience a large Cascadia Subduction Zone earthquake in the next 50 years. As a result of this earthquake risk, experience (and benefit/cost ratios) indicate that it is going to be much cheaper to fix weak buildings now then wait until an earthquake occurs.

5. Reduce Liability

Lives are precious so many friends, parents, or other family members may possibly file lawsuits. Oregon Revised Statutes 455.400 clearly states that the State Board of Higher Education and the State Board of Education shall provide for seismic safety surveys of buildings that have a capacity of 250 or more persons and are routinely used for student activities by public institutions or departments under the control of the board.
6. Safer Communities

In 2002, voters decided that earthquake safety is vital for communities. Maintaining the safety of communities is certainly the backbone of civilized society, and there are also economic reasons to make sure that communities are safe. The safer that communities are, the more people will want to live there. If towns, cities, or states get a reputation that they are unsafe or unprepared for disasters, then economic growth could be negatively impacted.

7. Schools Serve as Shelters and Community Centers

After the earthquake occurs, many people are likely to be homeless and seek food and shelter. Schools can serve as shelters because they have large occupancies compared to other facilities. In addition, many school buildings have the proper facilities necessary such as gymnasiums with large open rooms for bedding and locker rooms for bathing.

8. Loss of Valuable Research and Projects

This is important for all schools, but especially college and university facilities. Valuable research is ongoing at all of these institutions. We would lose a vast amount of general knowledge and technology advancement if it were to be destroyed during an earthquake. This could also impact the economic viability and reputation of the institution.

9. Peace of Mind

Students, parents, and faculty have enough worries in everyday life as it is already. We don’t want earthquake safety to add to this list of worries. In addition, when people see or hear that an effort is being made to make things safer, they have more faith in the community, their employer and in local and state officials.

10. Education and Awareness

Seismic retrofits offer a good opportunity to increase earthquake awareness of the students, faculty, and public. This type of education can get people motivated to prepare for an earthquake so that damage is minimized when an earthquake occurs.
Appendix C

FEMA 154 Rapid Visual Survey Results

Prepared for:

Oregon State University
Hatfield Marine Science Center

by:

Oregon Department of Geology and Mineral Industries
Structural Scores and Modifiers

<table>
<thead>
<tr>
<th>BLDG TYPE</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>V11</th>
<th>V12</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Score</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>High Rise</td>
<td>N/A</td>
<td>-1.0</td>
<td>-0.5</td>
<td>N/A</td>
<td>-1.0</td>
<td>-0.5</td>
<td>N/A</td>
<td>-1.0</td>
<td>-0.5</td>
<td>N/A</td>
<td>-1.0</td>
<td>-0.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Poor Condition</td>
<td>-0.5</td>
</tr>
<tr>
<td>Vertical Irregularity</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-1.0</td>
</tr>
<tr>
<td>Soft Story</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>Tiltup</td>
<td>-1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Plan Irregularity</td>
<td>-1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>Founding</td>
<td>N/A</td>
</tr>
<tr>
<td>Large Heavy Cladding</td>
<td>N/A</td>
<td>2.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Short Column pylons</td>
<td>N/A</td>
</tr>
<tr>
<td>Post Benchmark Year</td>
<td>2.0</td>
</tr>
<tr>
<td>Size Egress Doors</td>
<td>2.0</td>
</tr>
<tr>
<td>Egress Staircase</td>
<td>2.0</td>
</tr>
<tr>
<td>Exit Spacing</td>
<td>2.0</td>
</tr>
<tr>
<td>Staircase Width</td>
<td>2.0</td>
</tr>
<tr>
<td>HAND on circle below</td>
<td></td>
</tr>
</tbody>
</table>

FEMA-154/HAZUS

Rapid Visual Screening Form

<table>
<thead>
<tr>
<th>HAZUS GBS OCCUPANCY</th>
<th>(circle one)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES1 of dwelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES2 mobile home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES3 multifamily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES4 hotel/motel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES5 dormitory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES6 nursing home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM1 retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM2 wholesale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM3 personal service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM4 office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM5 bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM6 hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM7* med clinic/office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM8 restaurant/bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM9 theater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM10 parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND1 heavy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND2 light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND3 food/drug/chem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND4 metals/mineral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND5 high tech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND6 construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRT agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL1 church</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOV1 general services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOV2* emerg response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU1* k12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU2* university/college</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essential Facilities

Facilities		
ESF5 hosp < 50 beds		
ESF150 hosp > 50 beds		
EFH1 hosp > 150 beds		
EFMC med clinic/blood		
EFFS fire station		
EFPS police station		
EEO emerg ops center		
EES1 k12		
EFS2 university/college		

Survey Number

| HMSC | | |

Facility Information

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>NUMBER OF OCCUPANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Building - F/W wings</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City/Zip Code</td>
<td></td>
</tr>
<tr>
<td>No. of Stories</td>
<td>1 + attic</td>
</tr>
<tr>
<td>Total Height</td>
<td></td>
</tr>
<tr>
<td>Year Built</td>
<td>1963 plans - no S.E.</td>
</tr>
<tr>
<td>Footprint Size</td>
<td></td>
</tr>
<tr>
<td>Total Floor Area</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
</tbody>
</table>

Other Information

<table>
<thead>
<tr>
<th>Non-structural falling hazard?</th>
<th>YES NO</th>
<th>Retrofit? YES NO Year</th>
<th>Special Seismic Construction?</th>
<th>YES NO</th>
<th>O IO LS CP Parapet DDK</th>
<th>Unbraced cripple walls?</th>
<th>YES NO</th>
<th>Poor or No Foundations?</th>
<th>YES NO</th>
<th>Site Slope > 10° or 18%?</th>
<th>YES NO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inspector by</th>
<th>CSJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>1/03/03</td>
</tr>
</tbody>
</table>

Note: No details for tilt panel corns. Spread flags.
Structural Scores and Modifiers

BLDG TYPE

<table>
<thead>
<tr>
<th>circle appropriate type(s) (do not use for mobile home)</th>
<th>W1 Light, S1 mild</th>
<th>S2 mild</th>
<th>S3 Light</th>
<th>S4 Conc sw</th>
<th>C1 mild</th>
<th>C2 sw</th>
<th>C3 Conc, S3 Conc</th>
<th>C4 Conc</th>
<th>S5 Conc</th>
<th>S6 Conc</th>
<th>S7 Conc</th>
<th>S8 Conc</th>
<th>S9 Conc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Score</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.5</td>
<td>2.0</td>
<td>3.5</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>High Rise</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>Poor Condition</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>Vertical Irregularity</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Soft Story</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Torsion</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Pounding</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Large Heavy Cladding</td>
<td>N/A</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>Short Columns</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Post Benchmark Year</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

HAZUS GRS Occupancy

<table>
<thead>
<tr>
<th>(circle one)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES1</td>
<td>sf dwelling</td>
</tr>
<tr>
<td>RES2</td>
<td>mobile home</td>
</tr>
<tr>
<td>RES3</td>
<td>multifamily</td>
</tr>
<tr>
<td>RES4</td>
<td>hotel/motel</td>
</tr>
<tr>
<td>RES5</td>
<td>dormitory</td>
</tr>
<tr>
<td>RES6</td>
<td>nursing home</td>
</tr>
<tr>
<td>COM1</td>
<td>retail</td>
</tr>
<tr>
<td>COM2</td>
<td>wholesale</td>
</tr>
<tr>
<td>COM3</td>
<td>personal/ service</td>
</tr>
<tr>
<td>COM4</td>
<td>office</td>
</tr>
<tr>
<td>COM5</td>
<td>bank</td>
</tr>
<tr>
<td>COM6</td>
<td>hospital</td>
</tr>
<tr>
<td>COM7*</td>
<td>medical facilities</td>
</tr>
<tr>
<td>COM8</td>
<td>restaurant/bar</td>
</tr>
<tr>
<td>COM9</td>
<td>theater</td>
</tr>
<tr>
<td>COM10</td>
<td>parking</td>
</tr>
<tr>
<td>IND1</td>
<td>heavy</td>
</tr>
<tr>
<td>IND2</td>
<td>light</td>
</tr>
<tr>
<td>IND3</td>
<td>food/drug/chem</td>
</tr>
<tr>
<td>IND4</td>
<td>metals/mineral</td>
</tr>
<tr>
<td>IND5</td>
<td>high tech</td>
</tr>
<tr>
<td>IND6</td>
<td>construction</td>
</tr>
<tr>
<td>AGR1</td>
<td>agriculture</td>
</tr>
<tr>
<td>REL1</td>
<td>church</td>
</tr>
<tr>
<td>GOV1</td>
<td>general service</td>
</tr>
<tr>
<td>GOV2*</td>
<td>emerg response</td>
</tr>
<tr>
<td>EDU1*</td>
<td>k12</td>
</tr>
<tr>
<td>EDU2*</td>
<td>university/college</td>
</tr>
</tbody>
</table>

Essential Facilities—circle below

- EFH: hosp < 50 beds
- EFHM: 150 > hosp > 50
- EFHL: hosp > 150 beds
- EFMC: med clinic/blood
- EFFS: fire station
- EFPS: police station
- EFO: emerg ops center
- ES1: k12
- EFS2: University/college

Facility Information

- **Facility Name:** Hatfield Library
- **Address:**
- **City/Zip Code:**
- **No. of Stories:** 2
- **Total height:**
- **Year Built:** 1926
- **Footprint Size:** 19,860 sq. ft.
- **Total floor area:**
- **Use:**
- **Data based on (circle all applicable):**
 - Sidewalk inspection
 - Tax assessor
 - Building dept
 - Framing inspection
 - Plan review

Other Information

- **Non structural falling hazard?** Yes No
- **Special Seismic Construction?** Yes No
- **Unbraced cripple walls?** Yes No
- **Vacant building?** Yes No
- **Site Slope > 10° or 18%?** Yes No

Inspector:

- **Date:** 1/31/03

Structural Scores and Modifiers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.0</td>
<td>4.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Basic Score</td>
<td>6.0</td>
<td>4.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>High Rise</td>
<td></td>
<td></td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Poor Condition</td>
<td></td>
<td>-1.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Vertical Irregularity</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Soft Story</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>2.0</td>
<td>0.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Transmi</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>2.0</td>
<td>0.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Plan Irregularity</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Hounding</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Large Heavy Cladding</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Short Columns</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Post Benchmark Year</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Final Score

Photo Space

Transverse direction interior - CMU walls below. Stud walls above, concrete walls only have shear walls with end walls only have solid concrete sections. North wall but s. wall in mostly solid concrete. Center section CMU walls called out as 4x8 concrete. Cracks in CMU walls in long direction.

Facility Information

<table>
<thead>
<tr>
<th>Facility Information</th>
<th>Number of Occupants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name</td>
<td>Educational Wiring</td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City/Zip Code</td>
<td>100-500</td>
</tr>
<tr>
<td>No. of Stories</td>
<td>2. (N/A)</td>
</tr>
<tr>
<td>Total height</td>
<td>500-2000</td>
</tr>
<tr>
<td>Year Built</td>
<td>1973 CWD</td>
</tr>
<tr>
<td>Footprint Size</td>
<td>1978 on plans</td>
</tr>
<tr>
<td>Total floor area</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>OTHER INFORMATION</td>
<td></td>
</tr>
<tr>
<td>Non-structural falling hazard?</td>
<td>YES</td>
</tr>
<tr>
<td>Special Seismic Construction?</td>
<td>YES</td>
</tr>
<tr>
<td>Unbraced cripple walls?</td>
<td>YES</td>
</tr>
<tr>
<td>Vacant building?</td>
<td>YES</td>
</tr>
</tbody>
</table>

Survey Number

HMSC

Inspector by: QSH

Date: 9/13/03

Notes:
- H14 panels are welded with welded rods
- H14 panels are not detailed in shop (Bob Walker)
Structural Scores and Modifiers

<table>
<thead>
<tr>
<th>BLDG TYPE</th>
<th>circle appropriate type(s) (do not use for mobile home)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Score</td>
<td>6.0</td>
</tr>
<tr>
<td>High Rise</td>
<td>N/A</td>
</tr>
<tr>
<td>Poor Condition</td>
<td>-0.5</td>
</tr>
<tr>
<td>Vertical Irregularity</td>
<td>-0.5</td>
</tr>
<tr>
<td>Soft Story</td>
<td>-1.0</td>
</tr>
<tr>
<td>Torsion</td>
<td>-1.0</td>
</tr>
<tr>
<td>Plan Irregularity</td>
<td>-1.0</td>
</tr>
<tr>
<td>Pounding</td>
<td>N/A</td>
</tr>
<tr>
<td>Large Heavy Cladding</td>
<td>N/A</td>
</tr>
<tr>
<td>Short Columns</td>
<td>N/A</td>
</tr>
<tr>
<td>Post Benchmark Year</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Final Score

Hazard Occupancy:
- RES1: sf dwelling
- RES2: mobile home
- RES3: multifamily
- RES4: hotel/motel
- RES5: dormitory
- RES6: nursing home

Facility Information

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Shopping Shop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City/Zip Code</td>
<td></td>
</tr>
<tr>
<td>No. of Stories</td>
<td></td>
</tr>
<tr>
<td>Total Height</td>
<td></td>
</tr>
<tr>
<td>Year Built</td>
<td></td>
</tr>
<tr>
<td>Footprint Size</td>
<td></td>
</tr>
<tr>
<td>Total floor area</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
</tbody>
</table>

Other Information

- Non-structural falling hazard: YES
- Retrofit: YES
- Special Seismic Construction: YES
- Framing Inspection: YES

Essential Facilities

- EFH: hosp < 50 beds
- EFHM: 150 > hosp > 50 beds
- EFHL: hosp > 150 beds
- EFMC: med clinic/blood
- EFFS: fire station
- EFP: police station
- EFO: emerg ops center
- EFS1: k12
- EFS2: university/college

Survey Number

Inspector

- date: 9/10/03

FEMA-154/HAZUS Rapid Visual Screening Form
STRUCTURAL SCORES AND MODIFIERS

<table>
<thead>
<tr>
<th>BLDG TYPE</th>
<th>C1</th>
<th>C2</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>conc. sw</th>
<th>W1</th>
<th>light</th>
<th>W2</th>
<th>>5000 sq ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Score</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.5</td>
<td>2.0</td>
<td>3.5</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>High Rise</td>
<td>N/A</td>
<td>-1.0</td>
<td>-0.5</td>
<td>N/A</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>N/A</td>
<td>0.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>Poor Condition</td>
<td>-0.5</td>
</tr>
<tr>
<td>Vertical Irregularity</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Soft Story</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Torsion</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Plan Irregularity</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Pounding</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Large Heavy Cladding</td>
<td>N/A</td>
<td>-2.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-1.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Short Columns</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-1.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Post Benchmark Year</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>N/A</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

HAZUS GBS OCCUPANCY

- RES1: sf dwelling
- RES2: mobile home
- RES3: multifamily
- RES4: nonresidential
- RES5: dormitory
- RES6: nursing home
- COM1: retail
- COM2: wholesale
- COM3: personal/service
- COM4: utility
- COM5: bank
- COM6: hospital
- COM7: med clinic/office
- COM8: restaurant/bar
- COM9: theater
- COM10: parking
- IND1: heavy
- IND2: light
- IND3: food/drug/chem
- IND4: metals/mineral
- IND5: high tech
- IND6: construction
- AGR1: agriculture
- REL1: church
- GOV1: general services
- GOV2: emergency services
- EDU1: k12
- EDU2: university/college

ESSENTIAL FACILITIES

- EFHS: hosp < 50 beds
- EFHM: 150 > hosp > 50
- EFHI: hosp > 150 beds
- EMFC: med clinic/blood
- EFF: fire station
- EFPS: police station
- EFO: emerg ops center
- EFS: k12
- EFS2: university/college

VERIFICATION

- SIDWALK inspection
- TAX assessor
- BUILDING dept.
- FRAMING inspection
- PLAN review

INSPECTOR

- NAME: HMSC
- DATE: 9/03/03
December 31, 2003

Mr. Robert Simonton
Director of Capital Construction, Planning and Budgeting
Office of the Chancellor
PO Box 3175
Eugene, OR 97403-0175
541.346.5728

RE: OSU Hatfield’s buildings with earthquake risk

Dear Bob:

Provided herein is a summary of the OSU Hatfield Marine Science Center’s buildings with respect to earthquake risk. HMSC has relatively new buildings; however, all of the buildings are located on a highly susceptible site for earthquake hazards. HMSC has two buildings that are highly vulnerable to earthquake damage due to their structural condition—(1) Main Building, both the east and west wings and (2) Hatfield Guin Library. These buildings both have FEMA 154 scores below 2.

All of the HMSC buildings are located on highly liquefiable fill soils, thus, the site soils are subject to experience permanent ground deformation. We have assigned the worst possible soil type in determining the FEMA score. Furthermore, HMSC is in close proximity to the Cascadia Subduction zone and associated tsunami hazards. These threats are real and, one day, likely to damage the entire HMSC. It is important to have a viable emergency action plan to improve life-safety.

On the following page, Table 1 shows the final FEMA 154 scores for the HMCS buildings.
Table 1. Properties of OUS buildings at Hatfield Marine Science Center.

<table>
<thead>
<tr>
<th>NAME OF BUILDING</th>
<th>Year Building Built</th>
<th>Area of Building in Square Feet</th>
<th>Structure Type per FEMA 154</th>
<th>Number of Stories</th>
<th>Building has a FEMA 178 evaluation report</th>
<th>Building to be phased out</th>
<th>Building contains hazardous material</th>
<th>Building is critical to emergency operations</th>
<th>Year Building Seismically Upgraded</th>
<th>NEW SCORE – Current FEMA scoring system, high seismic zone</th>
<th>OLD SCORE – FEMA 154 scoring system, moderate seismic zone</th>
<th>OLD SCORE – FEMA 154 scoring system, includes soil values</th>
<th>OLD SCORE – FEMA 154 scoring system, moderate seismic zone – includes soil values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Building - E/W wings</td>
<td>1963</td>
<td></td>
<td>PC1/ RM1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1 2.5</td>
<td>1.7 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education Wing (former library)</td>
<td>1975</td>
<td></td>
<td>PC1/ RM1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6 3.5</td>
<td>2.2 2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatfield Guin Library (new library)</td>
<td>1988</td>
<td></td>
<td>PC1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1 2.5</td>
<td>1.7 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormitories</td>
<td>*</td>
<td></td>
<td>W1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4 6</td>
<td>4.4 5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Office</td>
<td>*</td>
<td></td>
<td>PC1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6 3.5</td>
<td>2.2 2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Shop</td>
<td>*</td>
<td></td>
<td>PC1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6 3.5</td>
<td>2.2 2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dock Structure</td>
<td>*</td>
<td></td>
<td>W1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9 5</td>
<td>3.9 4.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* estimated building date as 1970

Explanation of the Table

The buildings listed in the table are located on the Hatfield Marine Science Center campus, and are currently in use by the Oregon University System. Names of the buildings are listed in the first column of the table. The second column shows the year that the building was built, or in the case of some of the buildings, the estimated year the building was built. The fourth column is the building structure type, which indicates the construction of the lateral force (i.e., earthquake and wind) resisting system of the building. Building structure types are key indicators of building performance, along with building age, geometry, condition, and adjacent soil profile. The building structure types are described in Table 2. The sixth column of the table is marked Y where a detailed structural evaluation has been prepared by a licensed professional engineer. The data in the evaluation reports was used to determine the building properties whenever a report was available. The remaining building properties were determined by plans inspections and on-site walk-throughs.

The last four columns of the table are the score that the building receives from two different FEMA 154 scoring systems. The Old Score columns refer to the building score obtained from the 1988 original version of FEMA 154 for buildings in an area of moderate seismicity (i.e., moderate earthquake threat). The New Score columns refer to the building score obtained from the 2002 updated FEMA 154 scoring system for buildings in an area of high seismicity. The idea behind the scoring systems was to identify buildings which, by virtue of their structure type, building age, geometry, condition, and adjacent soil profile, are likely to be at risk in an earthquake. A score of 2 or lower is recommended to indicate that the building is likely at risk and should be further evaluated. Each building is given scores with and without the soil modifiers. In the case of Hatfield Marine Science Center, the site soil type is assumed to be the worst possible.
Table 2. FEMA 154 Building Structure Type descriptions.

<table>
<thead>
<tr>
<th>FEMA 154 Structure Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Wood frame; W1 is light wood framing and W2 is heavy timber framing or a large sized building (>5000 s.f.) in the 2002 system</td>
</tr>
<tr>
<td>S1</td>
<td>Steel moment resisting frame</td>
</tr>
<tr>
<td>S2</td>
<td>Steel braced frame</td>
</tr>
<tr>
<td>S3</td>
<td>Light metal frame</td>
</tr>
<tr>
<td>S4</td>
<td>Steel gravity frame with concrete shear walls</td>
</tr>
<tr>
<td>C1</td>
<td>Reinforced concrete moment resisting frame</td>
</tr>
<tr>
<td>C2</td>
<td>Reinforced concrete shear walls</td>
</tr>
<tr>
<td>PC1</td>
<td>Precast concrete tilt-up</td>
</tr>
<tr>
<td>PC2</td>
<td>Precast concrete frame</td>
</tr>
<tr>
<td>RM</td>
<td>Reinforced masonry; RM1 has flexible floor framing and RM2 has rigid floor framing in the 2002 system</td>
</tr>
<tr>
<td>URM</td>
<td>Unreinforced masonry</td>
</tr>
<tr>
<td>C3/S5</td>
<td>Steel or concrete moment resisting frame with URM infill panels</td>
</tr>
</tbody>
</table>

This memo is based on a September 3 survey by Randy Walker, Carol Hasenberg (PSU) and me with the assistance of George Boehlert. We conducted visual inspections and plans review, when available, of each building. Please call Vicki McConnell or me with any questions or concerns at 503.731.4100.

Sincerely,

Yumei Wang

Cc: Randy Walker, HMSC
 George Boehlert, HMSC
 Vicki McConnell, DOGAMI
 Jim Lloyd, OSU
 Natalie Rogers, OUS
 Carol Hasenberg, PSU
Appendix D

FEMA Disaster Resistant University Guidelines

Prepared for:

Oregon State University
Hatfield Marine Science Center

by:

Oregon Department of Geology and Mineral Industries
BUILDING A DISASTER-RESISTANT UNIVERSITY

August 2003
Table of Contents

Forward .. iii

Introduction ... 1
 - Mitigation Approach .. 1
 - Who Should Participate? ... 2
 - How to Use this Guidebook .. 3

Phase 1 – Organize Resources .. 5
 - Make a Commitment .. 5
 - Identify Resources .. 5
 - Community Stakeholders .. 11
 - Form an Advisory Committee .. 16
 - Identify a Coordinator or Project Manager ... 17
 - Conclusion .. 19

Phase 2 – Hazard Identification and Risk Assessment .. 21
 - Identify Hazards .. 21
 - Profile Hazard Events ... 22
 - Inventory Your Assets .. 24
 - Estimate Losses ... 26
 - Conclusion .. 27

Phase 3 – Developing the Mitigation Plan .. 29
 - Prioritize Focus Areas ... 29
 - Determine Appropriate Mitigation Actions .. 30
 - Prioritize Mitigation Actions .. 32
 - Prepare an Implementation Strategy .. 32
 - Assemble the Plan ... 33
 - Conclusion .. 33

Phase 4 – Adoption and Implementation .. 35
 - Adoption ... 35
 - Implementation ... 38
 - Monitoring and Evaluation ... 40
 - Conclusion .. 42

Appendix A – Worksheets .. A-1

Appendix B – Library ... B-1

Appendix C – FEMA Regional Offices ... C-1
In the last decade, disasters have affected university and college campuses with disturbing frequency, sometimes causing death and injury, but always imposing monetary losses and disruption of the institution’s teaching, research, and public service. Damage to buildings and infrastructure and interruption to the institutional mission result in significant losses that can be measured by faculty and student departures, decreases in research funding, and increases in insurance premiums. These losses could have been substantially reduced or eliminated through comprehensive pre-disaster planning and mitigation actions.

September 11, 2001 reminded everyone of the importance of taking steps to mitigate the consequences of disasters. In the immediate aftermath of the attacks, many higher education institutions reviewed their disaster plans and began to reconsider issues of safety and security. Natural and man-made disasters represent a wide array of threats to the instructional, research, and public service missions of higher education institutions. This document provides planning guidance to these institutions as they prepare to identify their risks, assess their vulnerability to natural and man-made hazards, and develop a hazard mitigation plan. Its purposes are to encourage higher education institutions to take hazard mitigation seriously and to illustrate a course of action for implementing a mitigation program to permanently reduce vulnerability to future disasters.

This document is both a how-to guide and a distillation of the experiences of six universities and colleges across the country that have been working over the past several years to become more disaster-resistant. It complements the Federal Emergency Management Agency (FEMA) State and Local Mitigation Planning how-to guides that provide planning guidance for creating and implementing a hazard mitigation planning process. These how-to guides are excellent resources for higher education institutions and are referenced in this document whenever appropriate. This guide provides basic information designed for institutions just getting started as well as concrete ideas, suggestions, and practical experiences for institutions that have already begun to take steps to becoming more disaster-resistant. See Appendix B (Library) for a list of the mitigation planning how-to guides.

FEMA acknowledges the assistance provided by the following universities in the development of this document:

- Tulane University
- University of Alaska—Fairbanks
- University of California, Berkeley
- University of Miami
- University of North Carolina at Wilmington
- University of Washington

Recent Disasters and Universities

In June 2001, Tropical Storm Allison inundated the Houston Area and its universities and colleges with 10 to 24 inches of rain. The total losses are estimated to be $745 million. The University of Texas at Houston Medical School Building had 22 ft. of water in it, causing the hospital to close for the first time in its history and seriously disrupting its research efforts. Damage to the Medical School has been estimated at more than $205 million.

Resources

The Federal Emergency Management Agency (FEMA) has developed a series of "how-to" guides to assist states, communities, and tribes in enhancing their natural and man-made hazard mitigation planning activities. This document complements the series, addressing aspects of mitigation planning that are unique to institutions of higher education. The guides will be an essential resource for your planning effort and are available online at www.fema.gov/fima/planning.shtm. They can also be obtained free of charge from the FEMA publications warehouse by calling 1-800-480-2520.
Disaster-related losses in the United States continue to rise. At all levels, organizations and governments are adjusting their behavior and policies to reflect the importance of reducing damage caused by extreme events. Hazard mitigation is accepted as good practice and many government jurisdictions now require it. Higher education institutions have an interest on many levels to become more disaster-resistant. Administrators, faculty, and staff are realizing that improving their campus’ resistance to disaster will not only protect their own lives and those of their students, it will also safeguard the campus’ instruction, research, and public service.

Mitigation Approach

Over the past ten years, FEMA has awarded millions of dollars in disaster assistance to public and private universities and colleges in the United States. Private insurance carriers have paid out substantial sums to these institutions as well. Losses include measurable interruptions to their instruction and auxiliary services (such as hospitals) and immeasurable losses to research and the generation of knowledge.

Moreover, Federal, state, and local governments and private foundations have a substantial research investment in higher education institutions across the country. Every year, Federal research grants to U.S. universities total around $15 billion. Therefore, it is in the best interest of the institution and its sponsors to take stock of the hazards they face and to develop a plan for mitigating their potential consequences.

This document closely follows FEMA’s mitigation planning guidance for local communities. Higher education institutions are themselves communities in many ways, and they can draw on important lessons from the efforts of counties and municipalities to reduce disaster risks. Higher education institutions are engaged in and skilled at planning exercises for a wide range of issues; consequently, the addition or improvement of campus-based hazard mitigation planning will yield substantial benefits. Moreover, steps taken to become more disaster-resistant can complement the long-term sustainability of the campus and improve the overall quality of life.

Hazard mitigation planning is a systematic, four-phased process for identifying and implementing actions to reduce or eliminate loss of life, property, and function due to natural and man-made hazards. Each section of this guide focuses on a different phase in the disaster-resistant university planning and implementation process:

- **Phase 1 – Organize Resources** addresses the initial step of identifying the resources available and necessary to complete the effort. Interested and necessary parties are invited to form an advisory committee. An inventory of available planning documents is performed and existing

Background

The Disaster Mitigation Act of 2000. The incentive for states and local government to undertake natural hazard mitigation planning was given a boost on October 30, 2000, when the President signed the Disaster Mitigation Act of 2000 (Public Law 106-390). This law encourages and rewards local and state pre-disaster planning, promotes sustainability as a strategy for disaster resistance, and is intended to integrate State and local planning with the aim of strengthening statewide mitigation planning. The new approach facilitates cooperation between state and local authorities, prompting them to work together. This enhanced planning network enables local, tribal, and state governments to articulate accurate and specific needs for mitigation, resulting in faster allocation of funding and more effective risk reduction projects. Colleges and universities can plan for the reduction of hazard losses in concert with similar planning efforts within their host community and/or state.

Recent Disasters and Universities

The Northridge earthquake, which occurred in January 1994, damaged three universities in the Los Angeles area. California State University, Northridge suffered the most: nearly all of its buildings were damaged and the university was forced to close for one month. It was able to reopen to its 30,000 students with 450 temporary trailers serving as the only classrooms. Damages were estimated at $380 million.
plans and documents are collected. The committee develops a strategic plan with obtainable outcomes and completion dates. The FEMA how-to guide *Getting Started* (FEMA 386-1) provides potentially applicable guidance on this process for local and state governments.

- **Phase 2 – Hazard Identification and Risk Assessment** covers the identification of hazards that present risks to the campus and the assets that are vulnerable to those hazards. Higher education institutions must assess the risks and their vulnerability to the full complement of natural and man-made hazards. The FEMA how-to guide *Identifying Your Risks* (FEMA 386-2) provides potentially useful guidance on this process for state and local governments.

- **Phase 3 – Developing the Mitigation Plan** examines the development of the hazard mitigation plan document. Planning is an integral part of many higher educational institutions. The development of a comprehensive hazard mitigation plan should draw from and complement existing plans. It should be developed and integrated with local and state jurisdictions and reflect the unique mission and characteristics of the institution. The plan should be updated regularly and implemented across all levels of the institution. The FEMA how-to guide *Developing the Mitigation Plan* (FEMA 386-3) provides helpful guidance for state and local governments on this process and may assist a college or university in aligning their mitigation plan with those of their surrounding jurisdictions.

- **Phase 4 – Adoption and Implementation** follows the mitigation plan through the adoption and implementation stages. Once the plan has been written, the focus shifts to adoption by appropriate administrative and instructional units and the implementation of its objectives. Even the best plans are inadequate if they are not implemented with vigor and aligned with the campus strategic or master plan. Experience has shown that this can be difficult as institutions face the consequences of having to change their operations and make adjustments to their culture in an effort to become more disaster-resistant. Equally important is the need to establish mechanisms for maintaining and updating the plan to keep it relevant. The FEMA how-to guide *Bringing the Plan to Life* (FEMA 386-4) addresses these issues.

WHO SHOULD PARTICIPATE?

This guide is designed for all higher education institutions (community colleges to research institutions, public and private). Regardless of the institution’s mission or focus, hazard mitigation is a good investment. There are differences in the way that small versus large institutions, private versus public, and primarily research based or teaching institutions will plan and adopt the actions described herein. Wherever possible, care has been taken to provide a wide range of ways that the process can be adapted based on the particular characteristics of an institution.

Should You Do It Yourself?

How can you decide whether to do this yourself? Institutions of different types and sizes have successfully completed risk assessments and hazard mitigation plans. However, some universities and colleges have determined that it was in their best interest to hire a private
company to conduct all or part of the risk assessment and to help them identify and rank their vulnerabilities to various hazards. Many companies provide this service. Contact peer institutions; professional associations; and local, state, and regional emergency management offices to help you determine if a private consultant is appropriate. If your institution chooses to engage the services of a private consultant, this guide provides important background information on the process to allow you to prepare the contractual materials necessary to obtain a satisfactory product.

Integrative Approach

The responsibility for emergency management in the United States is shared across many levels of government and the public and nonprofit sectors. To be successful at its hazard mitigation planning activities, your institution must integrate its efforts with appropriate local, state, and Federal agencies and organizations. Higher education institutions must work collaboratively with first responders and emergency managers in their area. They also must coordinate with state and Federal emergency management organizations because response, recovery efforts, and mitigation actions are funded and supported in part by these entities.

This guide takes a multi-hazard approach, recognizing that institutions face a wide variety of potential man-made and natural disasters. Not every disaster can be avoided, but steps can be taken to reduce the consequences of many extreme events; however, these threats can only be identified and mitigated through systematic, comprehensive, pre-disaster planning that leads to the creation, adoption, and implementation of a hazard mitigation plan.

HOW TO USE THIS GUIDEBOOK

This book is not meant to be the last word on any of the subject matter covered. It is intended to provide an easy-to-understand set of guidelines, to be supplemented by more extensive technical information and the use of experts when necessary. As with states and communities, the planning process for your campus will be as individual as your institution. Therefore, the step-by-step information in this book should be considered only as guidance.

The framework for this book is based in large part on the mitigation planning guidance developed for state and local governments in the form of a series of how-to guides (mentioned above). Frequent references to these guides will be made throughout this book, and it is suggested that you review the guides before beginning campus mitigation planning efforts. The worksheets shown herein were adapted from these mitigation planning how-to guides produced for states and local jurisdictions. Blank worksheets are all presented in Appendix A.
MAKE A COMMITMENT

A disaster-resistant higher education institution recognizes the threats posed by natural and man-made hazards to its campus and mission. It formulates policies, programs, and practices to assess its risk and implements these across all of its teaching, research, and public service activities.

The leadership of a higher education institution understands the need to sustain the university’s teaching, research, and public service responsibilities in light of the damage, repair delays, and financial difficulty that disasters can bring to a community. The goal is to withstand the effects of probable hazard events without unacceptable losses or interruptions; in other words, to be resilient.

Resiliency is characterized by the institution’s ability to minimize the impact of probable hazards and limit their interruption to the mission of the university or college. This does not mean that there will be no damage from large events; indeed, damage from natural and technological disasters varies by the force and location of the event. However, a disaster-resistant university strives to mitigate this damage. Campuses vary in their definition of acceptable losses and interruption because these decisions depend on the community, the nature of the hazard, and the available resources.

Once the commitment to become has been made, the first step is to organize resources and develop a strategic plan for the process ahead. This means identifying resources on and off campus, identifying a campus leader, developing an advisory committee, and gathering information. The success of the disaster-resistant initiative depends on the extent of participation by on- and off-campus stakeholders. These stakeholders bring the commitment, knowledge, and enthusiasm needed to complete the planning process and adopt a mitigation plan.

IDENTIFY RESOURCES

On- and off-campus stakeholders are crucial to the success of any disaster-resistant initiative. The best place to begin is on campus. Higher education institutions are complex and varied organizations, but they all share a basic structure that serves as the foundation for the hazard mitigation planning process.

Start with a thorough inventory of all potential stakeholders across the three traditional divisions of academia—administration, faculty, and students. All of these groups should be involved from the very beginning of the disaster-resistant university initiative. While their stakes differ and their commitments are not likely to be equal, each will play an important role in the success of the initiative. The inventory will assist you in the next step of identifying an advisory group/committee.

University or College Administration

The active commitment and involvement of the institution’s chancellor or president and chief academic and business officers is crucial. An inventory of available resources is equally important as commitment, which is presumed to exist if the planning process is to move forward.
A complete inventory of the academic and business units at the campus should be completed during this stage. Examples of common stakeholders are listed below.

University, College, School, or Division Planning Entities. Planning organizations exist at many levels of the university, and it is important to identify all of the various planning committees that might share an interest or have jurisdiction in the area of hazard mitigation before the planning process gets too far. Begin at the top with institution-wide committees and work your way down to academic departments, if appropriate. Many institutions have planning councils or committees, physical facilities committees, a master plan committee, building and grounds committees, and other such groups. These may be replicated at the college level and even at the academic department level in some cases. The identification of these committees may begin with contacting the institution’s chief academic officer, meeting with college deans and department chairs, and researching accreditation documents. These committees are particularly important because they share a common focus on planning and many of their component jurisdictions will be involved in the mitigation actions once the plan is implemented. For example, an institution-wide campus master plan committee is likely to be a key player in the location of future capital improvements; since location of the built environment relative to potential hazards is a significant driver of hazard mitigation decisions, the committee’s commitment to this process is important. The mission statement, jurisdiction, and membership of each committee identified in this process should be collected.

Institutional Research. Many institutions have offices, divisions, or committees that collect and conduct institutional research. While their work is not likely to be hazard-specific, their involvement is important because they are often the repository of institutional plans and data important to the planning process. Furthermore, planners or individuals with long-range planning experience often staff them. Thus, their capability is an important resource. Locate the various campus offices that collect, analyze, and archive data and collect appropriate contact information.

Development. The Development Office is an important resource. These units are often involved in developing priorities for institutions and it is important to know where and how support for these priorities is obtained. The Development Office should be represented on the advisory committee. Individuals in this office have experience establishing public-private partnerships. Donations to the university are typically directed at projects the university has determined as priority. Although contributions to specific loss reduction projects are unlikely, capital contributions can be devoted to improving the disaster resistance of the project under consideration. Disaster resistance should be on your development office’s list of goals worth promoting.

Public Service and Outreach. In much the same way as the Development Office, a unit dealing with Public Service and Outreach can be an important resource. These units are likely to have extensive information about the surrounding community and can point to existing collaboration between your institution and local, state, and emergency management organizations. They also

Resources

The importance of planning across all aspects of higher education is emphasized by several organizations, including the Society for College and University Planning www.scup.org, American Association of Community Colleges www.aacc.nche.edu, and the National Association of College and University Business Officers www.nacubo.org. These organizations provide college and university planners with a wide range of resources through national and regional conferences and web-based materials, including links to many university and college disaster and emergency plans.
represent an important resource to the planning process because they often coordinate the public information aspect of the institution and can solicit and disseminate information through campus newspapers, departmental newsletters, and web pages. Public Service and Outreach can provide resources for developing press releases and can advise the planning committee on strategies for disseminating information on and off campus.

Auxiliary Enterprises. Institutions often conduct a wide range of auxiliary services, such as running a hospital, elementary school, housing and food services, parking, athletics, or related enterprises. These entities should already have an interest in hazard mitigation and should be incorporated in the overall campus planning process. While it may be necessary for these groups to go through the planning process on their own, the overall coordination of plans and the university’s responsibility for the safety of its clients and continuity of services is an integral part of the overall mitigation plan. In addition to the direct services these auxiliary units provide, they may also provide a substantial amount of financial support for the institution and an interruption may exacerbate the economic consequences of a disaster to the university or college. Existing emergency operations or disaster plans should be obtained from these units and key contact people should be identified so that their policies and plans are integrated into the campus-wide plan.

It is especially important to coordinate three particular administrative units that are important to the hazard mitigation planning process: Public Safety, Environmental Health and Safety, and Risk Management.

- **Public Safety.** Police, fire, and emergency medical services are involved in the initial response to virtually any natural or man-made disaster on campus. They are also an important bridge to local first responders and various emergency management agencies. Depending on the type of incident, they may also be called upon to engage in crowd control during a riot and/or to be responsible for investigating the potential cause of a man-made disaster. Campus police and fire services have emergency plans and standard operating procedures that should be incorporated into the hazard mitigation planning process. Identify appropriate individuals from these units to serve on your advisory committee.

- **Environmental Health and Safety.** Every institution has an environmental health and safety officer, or the equivalent, who is directly involved in a wide range of issues relating to the management of hazards. These individuals are a key resource for providing plans and information regarding the location of various hazards on campus. In many communities, the head of this unit or its designee may serve on the Local Emergency Planning Committee. These individuals are likely to be responsible for filing reports on campus storage and use of hazardous materials.
PHASE 1 – ORGANIZE RESOURCES

- **Risk Management.** Most institutions have an office that addresses issues of risk management. This office is an important resource for developing the mitigation plan because it has access to information that can be helpful in the planning process. Furthermore, individuals in this office are committed to the same goals you are—reducing the vulnerability of the institution to hazardous events. In particular, risk managers usually deal with insurance issues where benefit can be gained from comprehensive disaster planning.

- **Telecommunications and Information Systems.** The events of September 11, 2001, reminded us all of the importance of redundant communication systems and off-site backup locations for critical data. From the institutional level down to the individual faculty and staff members, data backup and storage is an important part of ensuring the integrity of the research enterprise and reducing interruptions caused by disaster. Cyber terrorism and other threats to the security of a communications network that higher education institutions depend on emphasize the importance of involving appropriate representatives of this administrative unit in mitigation planning. Their plans and interests should be identified and incorporated at the beginning of the process.

- **Physical Facilities and Project Design and Management.** The long-term goal of reducing the effect of natural and man-made disasters depends, in part, on the willingness of the institution to retrofit existing building stock and to incorporate disaster-resistant design and construction practices into new and renovated buildings. Thus, it is important to identify representatives in this area who shape the institution’s built environment.

- **Staff Resources.** In addition to senior administrators, many other staff members in the units described above, as well as in other areas of the campus, spend most of their time ensuring the continuous operation of the institution. In many cases, these people are among the most receptive to a message about risk management. They are, furthermore, typically involved with managing their individual buildings’ safety program and emergency preparedness efforts. Your

Resources

Environmental Health and Safety Officials have a professional association that is a resource for campus-based hazard mitigation planning. The group holds an annual conference where presentations are made about preparing for, responding to, recovering from, and mitigating natural and man-made disasters. The Campus Safety, Health and Environmental Management Association is a division of the National Safety Council and has web resources and contact information at www.cshema.org.

Risk management is an area where public and private institutions often differ, as private institutions are typically more concerned than public ones about insurance. This is because public institutions are generally self-insured. The University Risk Management & Insurance Association www.urmia.org conducts conferences and seminars for higher education risk managers.

Experience

Private universities that carry commercial disaster insurance can obtain extensive information on hazards and risks from the companies they do business with, or from insurance industry information groups. At some institutions, the cost of disaster insurance has become a driving force in the decision to pursue disaster resistance. Private institutions are facing staggering increases in the cost of insurance and the size of their deductibles. Comprehensive hazard mitigation planning and actions will reduce the damage to your institution and reduce reliance on insurance. The hazard mitigation planning effort at your institution should involve appropriate risk management officials.

Mitigation planning and related activities may reduce various types of insurance premiums, including flood insurance through the National Flood Insurance Program. Contact your insurance agent for more information on how mitigation actions might help manage premiums.

For an example of insurance industry efforts to promote hazard mitigation, consult the Web site of the Institute for Business and Home Safety at www.ibhs.org.
inventory should assess whether there are staff organizations that can be a resource to the hazard mitigation planning effort.

Academic Affairs

Many units in academic affairs have a substantial interest in hazard mitigation. Their interest ranges from teaching, and the importance of reducing interruption to the instructional mission of the institution, to the conduct of research and sponsored programs.

Instructional Continuity. Disasters regularly force universities and colleges to suspend their primary activity—the teaching of students. Such closures disrupt the continuity of instruction and limit the ability of the institution to deliver the services that students expect. In dramatic cases, a lengthy interruption can result in the cancellation of a semester and a refund of tuition. These interests are substantial enough that representatives of academic affairs should be contacted and information collected on the individuals who should be involved in the planning process. Since higher education institutions are often decentralized, the inventory should reflect the diversity of academic units at your institution. Prioritization of instructional needs may occur at the school, college, or even departmental level; therefore, several levels of contact may be necessary to ensure that appropriate parties are involved in this process.

Faculty Interests. The disaster mitigation plan requires adoption and implementation across a wide range of faculty interests. Unless the discipline of a faculty member makes him or her conscious of the impacts or environmental risks of disasters, professors are unlikely to be interested in these topics. And yet, they stand to lose a great deal if a disaster hits their university and destroys buildings, laboratories, computer systems, databases, books and papers, course notes, and specimen collections. An inventory of faculty members can help identify possible campus resources. Any number of academic units on campus may house faculty members who have teaching or research interests in the area of hazards or emergency management. Identifying these individuals early will allow you to determine the appropriateness of involving them in the planning process; it also provides potential sources of research and technical specialization for the next phases in the process, which include conducting a risk assessment and writing the plan.

In addition to individual faculty members, most institutions have a faculty governance structure that includes committees with jurisdiction relevant to the disaster mitigation planning process. Some duplication of membership on these administrative and faculty committees inevitably occurs. Indeed, your inventory of administrative units probably will generate the names of these committees and you may have already contacted most of them. It is important, however, to complete the circle by ensuring that all faculty-based committees are identified. On many campuses, issues relating to hazard mitigation are handled by a variety of committees, including an emergency or disaster management committee, a building or fire safety committee, an environmental health and safety committee, and a committee or office responsible for risk assessment. These units represent a good place to start an inventory of faculty resources available on your campus. Use a “snowball” approach and ask the faculty you contact about others they might know who conduct research or teach in this area. Ask those individuals about their work and that of others. In short order a comprehensive list of potentially helpful faculty will emerge.

Experience

Academic units that often house researchers or teachers with specialization in hazards or emergency planning issues include, but are not limited to: architecture, economics, emergency management, engineering, geography, geology, earth sciences, urban planning, public administration, sociology, and political science. These units represent a good place to start an inventory of faculty resources available on your campus. Use a “snowball” approach and ask the faculty you contact about others they might know who conduct research or teach in this area. Ask those individuals about their work and that of others. In short order a comprehensive list of potentially helpful faculty will emerge.

Recent Disasters and Universities

On January 19, 2000, a fire raced through an old residence hall at Seton Hall University in the middle of the night. Students leapt from windows, crawled out stairways, and a number were rescued by firefighters. The fire killed three students, and seriously injured 12 more. The residence hall did not have a sprinkler system.
to instruction may be determined exclusively by faculty committees; thus, they may become an important resource during the adoption and implementation phase of the plan.

Sponsored Programs and Research. In addition to protecting academic instruction, institutions must protect their investment in research and scholarship. A fundamental purpose of any disaster-resistant initiative is to protect the university’s research enterprise; therefore, the office at your institution that oversees the conduct of research and sponsored programs is an important resource. This office may have plans, policies, and staff that address the general issue of protecting and limiting the interruption to research at the university. Some institutions have started to recognize the value of disaster resistance and are allocating staff support to positions such as a hazard mitigation research officer.

Moreover, these offices are also under increasing pressure from sponsors of research to ensure the protection and reduction of potential damage to the work they support—including the effects of natural and man-made disasters. The loss of important scientific materials during Tropical Storm Allison in 2001 at the University of Texas Medical Center complex and in the lab fire at the University of California Santa Cruz in 2002 brought renewed attention to the importance of reducing the effects of disasters on the research enterprise.

Student Affairs

Students are often overlooked in the hazard mitigation planning process. However, the safety of students is of paramount concern to the institution and natural and man-made hazards present vexing issues for student safety. Dorm fires, food safety, and evacuation issues all present serious concerns for university and college disaster planners. It is important to identify student services and student-based resources that are important to the disaster mitigation planning process.

Student Services. The division of student affairs or services has various resources important to your effort. Since these units are commonly responsible for on- and sometimes off-campus living arrangements and for food delivery on campus, they have communication plans and building safety information that should be inventoried. When you get to the stage of communicating hazard mitigation information across campus, these units will be very important, and involving them early will facilitate their commitment later.

Student Organizations. Student organizations should be canvassed for potential stakeholders. Student committees often mirror the faculty governance structure and can be important sources of planning information. Students are by far the most difficult campus-based population to reach. While they do not necessarily affect critical campus decisions on risk reduction, they are the objects of it. If they are not aware of how to protect themselves in an emergency, there will be increased losses to life and property. While youth and optimism may make students less aware of risks, the same cannot be said of their parents. Educating students about risk reduction and assuring their parents are part of the disaster-resistant university effort. After September 11, many parents began to raise questions about issues of safety and disaster preparedness that could have been answered, in part, by pointing to the comprehensive planning involved in the disaster-resistant university process. The steps you take to reduce your

Recent Disasters and Universities

On September 24, 2001, a tornado extensively damaged several facilities at the University of Maryland. Instructional and student services space was damaged along with several trailers that were a temporary home to the Maryland Fire Institute. Two students were killed when their car was overturned and classes were canceled for one day.
vulnerability to natural and man-made hazards can reduce the uncertainty parents and students face about the consequences that disasters can have on their safety and investment in higher education.

Alumni. Former students also serve as a potential resource. Alumni may support the goals and program of the disaster-resistant university effort financially, politically, or directly through technical assistance. Work with your development office to identify alumni who may be able to assist you through fundraising and giving for retrofit and modernization projects and those in positions to influence government and nonprofit resource allocation. Alumni may also provide valuable technical resources in areas relevant to your planning efforts.

COMMUNITY STAKEHOLDERS

Off-campus stakeholders are important resources. Government, nonprofit, and private constituencies should be canvassed to identify appropriate resources for your effort. The level of disaster resistance of your institution is directly related to that of your community, region, and state. Collaboration reduces duplication of effort, often yields technical and/or financial assistance, and increases your likelihood of success. The actions of off-campus stakeholders can affect your disaster resistance. Likewise, the actions of your institution in preparing for, responding to, and recovering from an event can affect the disaster resistance and sustainability of the community in which it resides.

Government

All levels of government strive to protect public health, safety, and the well-being of its citizens. As such, governments at all levels manage hazards and contribute important resources to organizations that share this purpose. Government jurisdictions commonly overlap those of the institution, and they are among the first responders to any emergency. Collaboration can improve the disaster resistance of all parties and reduce duplication of effort.

Local Government. Local communities and universities are mutually dependent on each other to prepare for disasters and reduce potential losses. Communities are the first to feel the effects of disasters. Local governments are responsible for assembling teams to address natural and man-made threats within the community and to follow a sound planning process for identifying and selecting the best solution for the community. Local governments often have specific statutory authority over your institution. They may have funding resources available and can provide technical assistance to support mitigation efforts. Some specific local government groups to canvass include:

- Emergency Management. Depending on your location, the
county or city is primarily responsible for emergency management in your area. Emergency management is still a developing profession and your community may have a full- or part-time emergency manager. In either case, your initial efforts should include contacting this person because he or she is essential in providing resources about disaster preparedness in your area. The local government and the university or college should have a close working relationship since reduction in risk accomplished by one necessarily benefits the other.

Emergency managers are not the only local government entities that should be enlisted, however. Many jurisdictions are now hiring hazard mitigation planners who can be valuable resources and collaborators, and traditional public safety units and state and local planning divisions can also provide data and technical assistance such as mapping. In much the same way that the faculty was inventoried, the capabilities of local government can be assessed by starting with emergency management and working your way out to include others who may be able to assist your effort.

- **Planning.** Community planners have knowledge and skills that are vital to your mitigation planning effort. Planning departments maintain demographic, economic, and physical data on the community. Planners are also usually experienced at meeting facilitation and possess research skills and extensive contacts.

- **Special Districts.** Identify appropriate local schools, park districts, regional government associations, flood control districts, and fire suppression and vegetation management districts to identify potential resources and to engage in partnerships. Park districts may occupy lands near the university and their efforts at risk reduction will complement yours. Vegetation management, erosion control, mapping, and firefighting are obvious ways that the university and special districts can work together. Individuals and staff connected to these districts may possess scientific and technical capabilities that can provide hazard information, technical support, and post-disaster impact data.

Many metropolitan areas have regional government organizations that work on issues such as land use plans, transportation, and housing. Furthermore, regional planning organizations often perform the physical and economic planning functions for multi-county rural areas. These organizations gather data and sponsor planning initiatives to cope with risks; they can be of considerable assistance in providing hazard data to local governments and universities and in conducting sophisticated public information campaigns on risks and how to reduce them.

Infrastructure Providers. Three components of infrastructure warrant special attention in your efforts to identify off-campus resources.

- **Utilities.** Utility loss following a disaster creates serious problems for a community and every home and business in it, including educational institutions. The ability to respond to an
emergency is hampered by the loss of electricity, gas, water, sewers, or telephones, and recovery will be constrained as well until services can be restored.

An interruption to campus utilities may threaten research activities and materials that depend on temperature control, fluid flows, gas, or light. The history of disasters and higher education institutions includes many examples of the damage caused by utility interruptions. Even if the university owns and operates its own utilities, it may require outside assistance to make repairs and restore service. Representatives of these critical lifelines should be identified as resources and involved in your planning efforts because they have access to important information about the security of the utility connections and service at your campus.

- **Transportation.** Roads, bridges, and transit systems are critical to emergency response and business continuity. Extensive damage to transportation systems can leave a campus and its community paralyzed. Transportation specialists can provide important information and resources, particularly at institutions where evacuation is a concern. However, even at campuses where evacuation is not a prime concern, the repair and restoration of transportation systems on and off campus can determine the extent of interruption to the institution’s operations.

- **Housing.** Employees’ and students’ houses, residence halls and apartments may be damaged by a disaster. Losing even a small percentage of the available housing stock can put significant burdens on the university, including the need to shelter displaced employees and students as well as the difficulties that may arise from the need to instruct a student population whose attention and concentration may be diverted by housing concerns. Reducing risks in community housing—owned or rented—should be a high priority for a disaster-resistant university. Student-run cooperatives and Hellenic houses are also important providers of housing. As such, it is in the best interests of the institution to involve appropriate community housing agencies and experts in the process. These individuals may be key resources as the risk assessment is conducted and the mitigation plan is developed.

State Government. The state legislature and assorted agencies play a large role in making financial resources available for increasing disaster resistance, especially if the institution is a...
public one. In addition, if the campus is part of a larger statewide system, budget allocations may be controlled at that level. Your inventory should identify resources available from these groups and potential stakeholders.

For both public and private universities and colleges, extensive planning and technical assistance for risk reduction can come from state agencies such as the office of emergency management and departments such as planning, environmental agencies, geological services, water resources conservation, and forestry. There may also be hazard-specific offices such as a seismic safety commission or flood control commission that can assist your disaster-resistant university planning efforts. Additionally, states receive financial assistance from the Federal government to distribute to local entities (including higher education institutions) for hazard mitigation purposes; however, funds are often limited, requiring the state to prioritize their distribution. Thus, it is critical to establish and maintain relationships with state staff that administer these program funds.

States are required to uphold Federal regulations intended to reduce hazard losses, and their role in coordinating hazard mitigation planning has become even more important with the passage of the Disaster Mitigation Act of 2000. A good place to start is to contact your State Office of Emergency Management and State Hazard Mitigation Officer. Local emergency management officials can help you identify this person and may even serve as a liaison to this office. A network of State Hazard Mitigation Officers is maintained at www.hazmit.net.

Federal Government. The most important resource at the Federal level is the Federal Emergency Management Agency (FEMA) within the Department of Homeland Security. FEMA is the lead Federal agency responsible for providing technical assistance to other Federal agencies and to state and local governments for mitigation planning and project implementation. FEMA is leading the implementation of the Disaster Mitigation Act of 2000. FEMA’s mission is to reduce loss of life and property and to protect the public.

Background

Stafford Act/Disaster Mitigation Act of 2000. The Robert T. Stafford Disaster Relief and Emergency Assistance Act (Public Law 100-107) authorizes funding for the Federal disaster relief (including mitigation) programs in place today. The Disaster Mitigation Act (DMA) of 2000 (Public Law 106-390, as amended) is the primary authority for mitigation planning. The DMA amends the Stafford Act Section 409 and provides for a new and revitalized approach to mitigation planning. Section 322 of the Act emphasizes the need for state, local, and tribal entities to closely coordinate mitigation planning and implementation efforts. In addition, Section 322 creates incentives for increased coordination and integration of mitigation activities at the state level. Together, the Stafford Act and DMA 2000 provide an array of funding for planning projects and technical assistance to communities. Below is a partial list of programs authorized by these acts:

- The **Pre-Disaster Mitigation Program** (PDM) authorized by the DMA 2000, provides funding to states and communities for cost-effective hazard mitigation activities that complement a comprehensive mitigation program, and reduce injuries, loss of life, and damage and destruction of property before a disaster strikes.
- The **Hazard Mitigation Grant Program** (HMGP) authorized in Section 404 of the Stafford Act, provides grants to states and local governments to implement long-term hazard mitigation actions after a major disaster declaration.
- The **Individual and Family Grant Program** is authorized by Section 411 of the Stafford Act and authorizes grants after a disaster to cover serious unmet, disaster-related real property losses.
- The **Public Assistance Program** (PA) is authorized under Section 406 of the Stafford Act. The program provides funding after a disaster for the repair, restoration, or replacement of damaged facilities belonging to governments and private nonprofit entities, and for other associated expenses, including emergency protective actions and debris removal, in addition to funding mitigation actions related to repair of the existing damaged facility.

Both public and private universities and colleges have benefited from the Hazard Mitigation Grant Program and the Public Assistance Program. It is important to familiarize yourself with these programs, their regulatory framework, and the appropriate person in your state who oversees them.
nation’s critical infrastructure from all types of hazards through a comprehensive, risk-based emergency management program of mitigation, preparedness, response, and recovery. FEMA is organized into regions and your local or state emergency management officials can put you in contact with appropriate regional representatives who can share with you the resources that FEMA provides for hazard mitigation planning. Many FEMA documents are profiled in this guide; however, technical assistance is also available and should be considered an important resource for your work. Appendix C provides contact information for each FEMA Regional Office.

It is particularly important to become familiar with the variety of existing Federal Disaster Assistance Programs. These programs may provide funding for hazard mitigation actions and/or the repair, restoration, or replacement of facilities at your institution following a disaster.

In addition to FEMA, a wide range of other Federal agencies may be able to provide valuable resources for your work. The U.S. Geological Survey, National Weather Service, National Oceanic and Atmospheric Administration, and the Departments of Energy, Housing and Urban Development, Education, and Transportation, for example, are also potential additions to your inventory. Identify local, state, or regional offices of these agencies and determine the availability of individuals and resources. The FEMA CD, Mitigation Resources for Success (FEMA 372) provides reference information on other federal agency programs that may provide hazard mitigation resources.

Nonprofit Organizations

Emergency management in the United States has always relied heavily upon nonprofit organizations to engage in disaster mitigation, preparedness, response, and recovery. In particular, your inventory should include resources available from local units of the American Red Cross and Salvation Army. The American Red Cross provides extensive preparedness materials that can be leveraged in your efforts to prepare faculty, staff, and students for possible disasters. The American Red Cross typically runs emergency shelters, so if your campus has a public shelter or will be sheltering your students and employees, it would be wise to involve them in your hazard mitigation planning activities. Similarly, the Salvation Army is important during the disaster response and recovery phases and can provide important resources for temporary housing and feeding displaced students after a disaster. Since many students may live off campus, they are particularly susceptible to displacement by natural and man-made hazards. Nonprofit organizations may be able to assist you in preparing for such a situation. The National Voluntary Organizations Active in Disaster (NVOAD) can provide such information. Please see www.nvoad.org.

In addition to the American Red Cross and the Salvation Army, other local voluntary organizations such as the United Way can provide important resources for your efforts. Early contact ensures that you have the widest possible capability for your effort. These organizations may not provide assistance to the university directly, but those that provide food and clothing, shelter, housing, and medical care can help the community deal with its affected populations. The university should be familiar with local nonprofit organizations and their services and should enter into mutually supportive agreements where appropriate.

Resources

The Federal Emergency Management Agency web site www.fema.gov/fima/planning.shtm contains a great deal of information helpful to your planning effort.
Private Sector

The private sector can contribute important resources to the disaster-resistant planning initiative. As with the operations of the local government, business and industry practices in your area help determine the overall disaster resistance of the community, which in turn affects the disaster resistance of the university. This is a symbiotic relationship, as businesses that supply the university and/or serve the needs of students depend on the university being open and operating, and the university’s quick resumption of its operations following a disaster will have a favorable impact on businesses in the community. Thus, businesses that contribute to the overall well-being of the community may be willing to provide technical assistance, staff support, and even financial support to the disaster planning effort. Depending on the situation, this technical assistance may be paid for in full or be donated in-kind.

Worksheet #1 in Appendix A will assist you in identifying appropriate partners.

Experience

`Sample Advisory Committee Membership`
University of California, Berkeley:
- Vice Chancellor for Capital Projects
- Vice Chancellor for Resource Planning and Budget
- Assistant Vice Chancellor for Research
- A dean of Letters and Science
- Chair of the Academic Senate
- Two engineering professors
- One architecture professor
- Director of Business Services
- Director of Emergency Preparedness
- Director of Community Relations
- From the Office of the President, the Assistant Vice President for Facilities services

From the community, there are representatives of the City Manager and two businesses: a small property management company, and the Bayer Corporation. Berkeley was also fortunate to have the participation of its Bay Area neighbor, Stanford University; Stanford Vice Provost brings to the committee Stanford’s experience recovering from the 1989 Loma Prieta earthquake, and their ongoing risk management concerns.

FORM AN ADVISORY COMMITTEE

An advisory committee should be established once the inventory of available resources has been completed. The inventory produced a list of potential stakeholders from the institution and the community. Now it is time to begin the process of determining who will help make decisions about the process and who will serve primarily as a resource.

Decisions about how to deal with the effects of hazards on an institution impact all levels of the organization, and stakeholders from the groups described above should be considered for inclusion on the advisory committee. Hazard mitigation involves academic, administrative, and student leadership. Work with, and appoint professionals on the campus who are already involved in emergency preparedness, crisis response, or risk management, but make certain that the committee is made up of people whose views extend far beyond what is typically thought of as emergency services or environmental health and safety.

How large should the committee be? The answer lies, in part, with the size of your stakeholder inventory. If you uncovered a small number of stakeholders, a committee that includes all of them would be satisfactory. If, on the other hand, you

Experience

When choosing advisory committee members, look for people who:
- Possess the ability to command respect across the institution and in the community;
- Are visionary and open to new ideas;
- Have the desire, time, and commitment to support hazard mitigation issues;
- Have the ability to communicate planning and hazard concepts to colleagues and members of the community; and
- Understand, and are able to operate effectively within, the political and administrative environment at your institution.
ended up with a long list of resources, perhaps a two-level organizational structure involving subcommittees and/or workgroups is more appropriate, with the chair of each committee serving on a steering committee. Regardless of the structure that is chosen, the committee that makes the final decisions should be small enough so that members can actively participate and have a sense of ownership, yet large enough to include important points of view and key decision-makers. The committee must be able to build the relationships necessary to facilitate compromise and engender commitments to implement the disaster mitigation plan.

IDENTIFY A COORDINATOR OR PROJECT MANAGER

The project must have a manager, preferably someone with the time and authority to focus exclusively on the activities related to the disaster-resistant university. The project manager provides staff support to the advisory committee and may be housed in a variety of different units on campus. A full-time coordinator is preferable so that he or she can spend the time necessary to understand the full complexity of the situation facing the campus. A part-time coordinator would be less likely to develop and leverage partnerships with the community or to be able to carefully include the variety of campus units that need to be involved. Regardless of the unit the project manager is assigned to, he or she should have access to and support from a senior administrator.

The project manager may come from the campus or be hired from outside. It may be expedient to redirect the tasks of someone familiar with the campus’ operations, personalities, and culture. On the other hand, an off-campus specialist in loss reduction may be more effective in a shorter period of time. The ideal situation differs from campus to campus.

The project manager should become involved in the activities of any group on campus that is working on related issues. The projects of those charged with emergency preparedness, risk management, or crisis response are obvious cooperative opportunities, but look beyond them to other initiatives in resource planning, space management, instructional improvements, research facilities, and business operations. Collaborating with faculty, administrative staff, and students on various tasks will allow the manager to introduce the disaster-resistant university concept to others and help to establish a mutually supportive atmosphere.

Authorize the Coordinator and Advisory Committee

Once the membership of the advisory committee has been determined and a project manager identified, a formal endorsement of their composition and work must be obtained. While the chief administrative officer probably will have already announced the institution’s commitment to becoming disaster-resistant, it is nevertheless important for the committee members and project manager to get a firm statement of support and an appropriate charge.

The likelihood of success will be enhanced if multiple jurisdictions recognize the planned efforts of this group. In addition to a formal charge from the chief academic officer,
endorsement by the faculty senate, staff associations, and student government, as well as local
government jurisdictions, can go a long way toward energizing committee members and
providing a solid foundation for the next phase of the process.

Establish a Timeline

Once the advisory committee and project leadership is in place, a timeline should be established.
The primary phases of this process include Phase 1, Organize Resources; Phase 2, Hazard
Identification and Risk Assessment Study; Phase 3, Developing the Mitigation Plan; and Phase
4, Adoption and Implementation. The process must allow for sufficient time to complete these
tasks. Several issues should be addressed as the timeline is established:

- Will the work be done by a committee of the whole or in subcommittees? If subcommittees
 are used, more time is needed to allow them to organize and develop appropriate work plans.

- Will consultants be hired? Institutions of all types and sizes have successfully pursued
disaster resistance on their own, but the process may be slower than if consultants are
engaged.

- How many levels of planning will you engage in? Will departments, units, colleges, and
 divisions be involved in developing individual plans to integrate with the comprehensive
effort? The amount of time planned should take into
consideration the multiple levels of planning being
considered.

Regardless of the answers to these questions, the timeline
should expressly detail four events: 1) an informal kickoff, 2) the first formal meeting, 3) development of a mission statement,
and 4) development of a communication plan.

Informal Kickoff. The first meeting of the advisory group will
probably serve as the informal kickoff. This meeting should
generate a sense of teamwork and focus on an introduction of
the team members, the purpose of the meeting, and what the
team wants to accomplish. The committee’s charge should be
delivered at this meeting and reviewed regularly throughout the process. The kickoff meeting is
an ideal time to publicize the institution’s efforts both on and off campus. The inclusion of
community stakeholders should be explicitly recognized.

First Formal Meeting. The next important event on the initial
timeline is the first formal meeting. The project manager
should develop an agenda for the first meeting that includes a
review of the charge and how the advisory committee
members were selected. Prior to the first meeting, committee
members should be designated to fill three vital roles: the
chair, a facilitator, and someone to record all of the
information. The first meeting should include a brief
presentation on recent disasters that have affected the area.
The issue of inclusiveness should be addressed and potential
stakeholders who were not invited to join should be
identified.

Resources
During the first meeting and periodically thereafter, you may
want to watch a short video or conduct a “what if” exercise to
find out what campus locations or assets may be vulnerable to
hazards. You can obtain information on conducting
tabletop mitigation exercises and
a list of relevant videos on the
FEMA Web site or from the
FEMA publications warehouse 1-
800-480-2520.

Experience
The University of Washington
Disaster-resistant University Initiative
adopted the following mission
statement: “To fulfill the University’s
mission and commitments in the
event of a disaster, the University
strives to become disaster-resistant.
Disaster resistance is achieved
through recognition and analysis of the risks and analysis of natural and
man-made hazards, mitigation of the human and economic impact of
disasters, and comprehensive planning for resumption of University
functions.”
PHASE 1 – ORGANIZE RESOURCES

Develop a Mission Statement

Perhaps the most important objective of the first meeting is the development of a mission statement to help committee members understand what outcomes they want to achieve. This step can help build a common understanding of the mitigation plan’s purpose.

Develop a Communication Plan

It is important early on to decide how and when information *about* the planning process, and information gleaned *from* the process, are disseminated, and to whom. University administrators, faculty, students, parents, and community officials will all take an interest in both the planning progress and the result of the process itself. Knowing when and what type of information will emerge also builds support for the process.

CONCLUSION

Once the initial inventory of resources is complete and stakeholders have been identified, the advisory committee formed, project manager determined, and timeline established, you are ready to move onto the Phase 2—the completion of a comprehensive hazard identification and risk assessment. At this point, the effort transitions from planning to completing a thorough assessment of the hazards the campus faces, the risks they pose, and the institution’s vulnerability to those risks.
This section guides higher education institutions on how to conduct a hazard identification and “single-point” risk assessment. A risk assessment identifies the hazards that your campus faces and assesses your level of vulnerability to these potential events. The risk assessment is a crucial step in the hazard mitigation planning process, because this information will be used to identify and prioritize the mitigation actions in your hazard mitigation plan.

In a true comprehensive risk assessment, you would consider all possible hazard events, and determine mathematically the expected damages from the whole range of possible events. In the “single-point” method, you will select one hazard event and determine losses from that single event. While this latter approach is not as rigorous, it provides ample information to determine what should be done to reduce the effects of hazards on campus.

This section closely follows the guidance provided for local communities in the FEMA how-to guide—Understanding Your Risks: Identifying Hazards and Estimating Losses (FEMA 386-2). The information below is intended to supplement that document in an effort to provide specific suggestions for the unique situations of colleges and universities. The hazard identification and risk assessment study includes four stages: 1) identify hazards, 2) profile hazard events, 3) inventory assets, and 4) estimate losses.

The activities you perform in this phase will help you answer the questions on the vulnerability questionnaire shown on Worksheet #2 in Appendix A.

IDENTIFY HAZARDS

The first step in conducting a hazard identification and risk assessment is to identify the natural and man-made hazards that present risks to your college or university. Start by contacting your local emergency management office and asking them about the hazards your area faces. In addition to your local office of emergency management, the FEMA how-to guide, Understanding Your Risks: Identifying Hazards and Estimating Losses (FEMA 386-2) provides information on the most common natural hazards: earthquake, flood, hurricane, landslide, tornado, tsunami, and wildfire. The FEMA how-to guide Integrating Human-Caused Hazards Into Mitigation Planning (FEMA 386-7) provides information on the complement of terrorism and technological hazards that may face your institution. These documents should be reviewed thoroughly before beginning your risk assessment.

Possible resources for the hazard identification include: local publications and other historical archives; existing plans and reports; experts at your institution or in your community, state, or FEMA Regional office; and Internet Web sites.

Worksheet #3 (Appendix A) can help you organize this information.

Background

Natural versus man-made hazards: The hazard identification and risk assessment should include all potential hazards that face your institution, including natural and man-made threats. The FEMA how-to guide, Understanding Your Risks: Identifying Hazards and Estimating Losses (FEMA 386-2) provides information on the most common natural hazards: earthquake, flood, hurricane, landslide, tornado, tsunami, and wildfire. The FEMA how-to guide Integrating Human-Caused Hazards Into Mitigation Planning (FEMA 386-7) provides information on the complement of terrorism and technological hazards that may face your institution. These documents should be reviewed thoroughly before beginning your risk assessment.

Resources

For information about the hazards your area faces, consult www.hazardmaps.gov.
Prioritize Hazards

After you have developed a full list of potential hazards affecting your campus, prioritize them based on their likelihood of occurrence. This step should not downplay the possibly devastating consequences of a single unlikely event; however, with limited resources, and as a place to start, focus on the hazards most likely to affect your institution. The advisory committee or a subcommittee can be useful to engage in this prioritization. Local and state emergency management officials can also provide valuable assistance. If communities adjacent to your campus have undertaken this step, you should consider using all or part of the same prioritized list.

Profile Hazard Events

Detailed Hazard Profiles

After the initial list of potential hazards has been compiled and you have decided whether to address all or a subset of these events, the next step is to create detailed hazard profiles. This step addresses in specific terms the scope and extent of damage that a particular hazard event could cause to your institution. This is an important step, because determining the type of impact a hazard event will have on your campus can help identify the institution’s vulnerable assets.

Mapping

The creation of a campus base map upon which various hazard events can be profiled is the starting point for creating a detailed hazard profile. The FEMA how-to guide, Understanding Your Risks: Identifying Hazards and Estimating Losses (FEMA 386-2) explains this process in greater detail. It is important to point out, however, that your geography department or other academic unit with expertise in mapping may be able to create this map for you as a student project or with limited resources. If a member of the geography department is not on the steering committee, contact the department, explain your interests, and inquire about potential help.

Experience

 conducting a risk assessment requires a wide variety of experts and resources. In preparing for this step you should review the skills, knowledge and abilities of your advisory committee members and canvass other campus resources for possible contributors. Faculty members may already have answered some of your risk questions as part of their own teaching or research activities. Other campus units, such as Facilities, Planning, Environmental Health & Safety, and Risk Management, may possess relevant expertise as well as data that will help in the risk analysis. You should also look to the community and state for help. There, you may find specialists in the city or county government who will help you as part of their jobs, or scientists working for the state department of water or geology. Already established community working groups or committees may have some of the information you need, or they may agree to help you get it. If adequate capacity is not available, seriously consider hiring a consultant to complete the risk assessment.

Experience

A contractor hired by the University of Miami used information available for a potential flood event related to a hurricane to develop a map that displays the campus facilities that might be flooded or disrupted by road closings or power outages. This map subsequently allowed the university to target those structures for mitigation actions that will lessen the impact of a flood event.
The map should display as many features of your campus as possible. At a minimum, it should show classroom buildings, dormitories, communications and computer facilities, laboratories, offices, libraries, food service, historic and architecturally important structures, parking areas, and any other unique or institution-specific resources. It will also be important to map essential services such as fire, police, emergency communications, emergency operations centers, medical facilities, and shelters, as all of these would be needed during and immediately after a disaster. Locations of items such as hazardous materials and biological agent storage and use areas and animal research facilities should also be noted as this information is critical for local first responders. Finally, the map should illustrate campus lifelines and critical infrastructures such as roads and water, power, communication, and wastewater lines.

The base map should extend beyond the campus boundaries to include campus-related facilities such as residential areas, local fire stations, transportation facilities, and fraternity and sorority buildings. Coordinate this activity closely with surrounding local officials. Placing this map on a geographic information system (GIS) will make it more useful as the project progresses and the data become more complex. GIS can be used to store and access the mapping information, displaying the areas, systems, and functions that are at risk and graphically depicting potentially damaged areas and buildings, costs of repair, and concomitant threats to operations that will assist in setting mitigation priorities. Almost every college and university has GIS specialists within an academic department such as engineering or geography.

Regardless of whether you choose to address each of the hazards you have identified or to narrow your focus from the full range of potential hazards to a subset of the potential threats, the next step is to collect more detailed information. The goal is to identify information, maps, experts, and other resources helpful to beginning the step of

Recent Disasters and Universities

On January 11, 2002, a three-alarm fire broke out in the Sinsheimer Laboratories building on the campus of the University of California Santa Cruz. The fire completely destroyed several labs, including the research lab of Professor Manny Ares, who lost more than a decade of work on the Human Genome Project. Damage from the fire has been estimated at $4-5 million. The building was constructed in 1987, before fire codes required a sprinkler system.

Experience

Universities and colleges are especially concerned with protecting and retrieving documents. Your hazard profile will probably point to the importance of your library, archives, and research data. Over the past couple of decades, numerous library collections and much research have been lost to hazard events. At the same time, a great deal has been learned about how to protect and restore these important resources. Your inventory of hazards and relevant information could contain separate sections for these special or unique institutional assets.

Experience

Information sources at your institution helpful in creating your base map include:

- An accurate listing of all structures on the campus, as well as those that the institution may own on outlying properties, with as much detailed information about the buildings as possible. Typically, a facilities management department holds these data. Determine the amount of space in classrooms, laboratories, offices, libraries, and other facilities, such as convocation spaces. Most institutions have an office that manages the assignment of space to various departments or units. Note that residential and parking structures should be accounted for as well.
- Maps of the campus infrastructure—power, water, sewer lines, and voice and data communications systems. Typically, the managers of the physical plant or facilities management hold these maps.
- Previous assessments of facilities that may have been done for hazardous materials management, deferred maintenance, or for insurance purposes.
evaluating the potential threat of this hazard to your institutional mission. A good deal of attention should be focused on local, state, and Federal emergency management personnel who can assist in providing basic information on the consequences of all of the hazards that have been identified. Particular attention should be paid to resources that may show the impact of hazards on the unique assets of your institution or those of higher education institutions generally.

Use the hazard information and prioritization you generated earlier to create hazard event profiles, or maps. In the beginning, this will involve simple tasks such as delineating a fault zone, floodplain, or storm surge run up zone, but the complexity of your map will ultimately depend on the size of your institution and the hazards it faces. Your maps may later include more complex elements, such as a detailed earthquake shaking map or an analysis of peak flood elevations. When added to the base map, these hazard overlays will create a visual display of how the various hazards could affect your campus and facilities.

This effort will be successful only if the campus base map is complete and accurate. Be certain to record and archive all of the information you use to create the hazard event profiles; in addition to safeguarding your work in the event of a disaster, archives may be useful in developing the mitigation plan, and they will be essential to future updates of the risk assessment.

Worksheet #4 (Appendix A) can help you determine how to obtain and record hazard information.

INVENTORY YOUR ASSETS

The third stage of the hazard identification and risk assessment is to conduct an inventory of campus assets in the hazard areas to show how the hazard events you have identified could affect the physical components and operations of the institution. The campus base map and hazard event profiles helped determine where hazards can affect your institution; the asset inventory will help determine what can be affected.

The inventory should include information about all of the entities located in hazard areas. Your map already shows where these entities are located; now, they need to be described in sufficient detail so the hazard mitigation plan can be developed. The types of assets and hazards determine, in part, the type of information to be collected. Several

Resources

Community Vulnerability Assessment Tool (CVAT) CD-ROM. The CVAT provides guidance on conducting community-wide vulnerability assessments. It also provides a case study demonstrating the process for analyzing physical, social, economic, and environmental vulnerability to hazards at the community level. Some of its aspects could be modified for use by higher education institutions. For more information, visit the NOAA Web site at www.csc.noaa.gov/products.

Experience

Completing the asset inventory may be a substantial task and requires considerable time. The information you need may not be readily accessible, or even available. You may have to consult with numerous campus offices, personnel, experts, etc. and may even need to employ outside consultants on structural, geophysical and other issues. Nevertheless, the inventory is essential to calculating the potential losses and to prioritizing your mitigation actions in the hazard mitigation plan.
general categories of assets are listed below, along with the types of information about them that will be important for estimating potential losses. You may find additional assets at your institution, and the following guidelines should be modified accordingly.

In conducting this inventory, you may wish to place priority on identifying which facilities are essential or critical to campus operations on a daily basis, and after an emergency. Examples include medical care facilities, emergency services (police, fire, ambulance), information storage, communications, and utilities. Other priority inventory components include historic and cultural resources housed on campus.

Buildings

Describe each campus building in the hazard areas, detailing its size in square feet, type of construction, materials, age, occupancy, maintenance schedule, and replacement and content values. Try to calculate the type and value of activities, operations, and special contents (e.g., sponsored research, instruction, recreation, animals, special collections, and irreplaceable specimens) for each building, as well as any associated capital investments such as equipment. Pay particular attention to any laboratories that may be located in the buildings, describing the laboratory by its research focus, material and equipment contents, and replacement cost and noting the potential for loss or interruption of research and any lab income that could subsequently be lost. There will be certain aspects of the buildings’ construction that will be relevant for certain hazards. For example, if flooding is a possibility, pay particular attention to research investments and activities in the basements and ground floors of buildings. The following table outlines these considerations.

<table>
<thead>
<tr>
<th>Building Data Requirements by Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Characteristics</td>
</tr>
<tr>
<td>Building Type / Type of Foundation</td>
</tr>
<tr>
<td>Building Code Design Level / Date of Construction</td>
</tr>
<tr>
<td>Roof Material</td>
</tr>
<tr>
<td>Roof Construction</td>
</tr>
<tr>
<td>Vegetation</td>
</tr>
<tr>
<td>Topography</td>
</tr>
<tr>
<td>Distance from the Hazard Zone</td>
</tr>
</tbody>
</table>

Describe buildings according to use. Categories may include classrooms, administration, support, research laboratories, libraries and collections, housing and dining, special uses such as gyms and concert halls, parking, and police, fire, and emergency services. Also characterize the occupancy of each building in one of two ways: 1) estimated continuous occupancy (ECO), an annualized average; or 2) typical peak hour occupancy (i.e., an hour between 8 am and 5 pm).

Resources

Content Loss Model for Campus Library: Determine the replacement value of the collections vulnerable to a hazard event and multiply this figure by the expected damage from the event. For example, a library collection valued at $225,000 that is projected to suffer 10% damage from a 100-year flood would have an estimated loss value of $22,500.
Infrastructure

In addition to buildings, describe the conditions and vulnerabilities of utilities and communications systems. Electric, water, and gas systems are essential for campus activities and may be critical to maintaining many types of experiments, and the ability to move about the campus and to communicate via landline, radio, and Internet must be maintained if the campus is to remain fully operational. Additionally, assess the condition and vulnerabilities of all backup systems.

Finally, administrative systems (payroll, accounts payable, student records) are critical to continued operations. Find out where they are located and how vulnerable they are. Determine the vulnerability of your important data and associated functions and what type of backup plan is appropriate.

At this point you should have sufficient information on the hazard events that could impact your institution and on the assets and operations that could be affected. This will help you determine how to begin mitigating potential damage and will provide you with a complete understanding of the overall risk your institution faces from hazards. It is important to emphasize that for the steps just described, FEMA provides considerable information developed for communities that can be modified to fit your needs (see FEMA 386-2).

Worksheets #5 and #6 in Appendix A can help you determine the extent to which particular hazards would affect the various elements of your institution. Categories shown are simply examples of how you may wish to break out the different types of buildings on campus. Consider tailoring the worksheets to meet your situation.

Estimate Losses

The fourth step of the risk assessment is the estimation of the potential losses your institution could face from a specific hazard event. The purpose of this step is to describe how your institution’s assets will be affected by a hazard event. During this step, you create scenarios that estimate the impact of an event on people, buildings, and infrastructure. Some of these entities will be more vulnerable than others, and your estimates of losses will vary depending on factors such as the age of the building, type of construction, and time of the event. In many cases, it has been useful to develop a number of different scenarios that vary by hazard event and expected impact.

Communities typically express their expected losses in dollars, and representing risk in economic terms can make a compelling case to administrators and others responsible for hazard mitigation policy at your institution. However, while dollar estimates are often required for community, state, or Federal assistance, the nature of higher education institutions suggests that other descriptions of losses may be appropriate. Lost instructional time, research equipment, data, and subjects, along with unique historical artifacts and library collections, should not only be
quantified but also described in such a way as to communicate the potential human and social costs of failing to reduce risk before disaster strikes.

In a traditional loss estimation process, three types of potential losses are considered: life, property (structure and contents), and function. However, due to the unique characteristics of many institutions’ assets, you may also decide to develop separate loss function models for special equipment or research facilities that are particularly vulnerable. The basic formula for calculating loss to an asset is the replacement or interruption costs multiplied by the percent of the asset expected to be damaged from an event. The overall projected loss from a hazard event is expressed as the sum of the appropriate loss equations. Additional information on conducting loss estimates is available in the FEMA how-to guide *Understanding Your Risks: Identifying Hazards and Estimating Losses* (FEMA 386-2). You should be able to estimate structural, content, and functional use equations for each asset. Combined, these estimates provide a complete picture of the economic and financial vulnerability of your institution to various hazard events.

The asset inventory and hazard event profiles will provide the necessary information to develop detailed loss estimates for each structure and function at your institution. Ideally, all of this information should be collected in a common format and mapped using GIS. A composite loss map that combines the individual hazard event maps to determine the most vulnerable campus areas can then be created. While quantifying losses of information and operations may appear challenging, local, state, and Federal emergency management officials have been dealing with the complex issue of establishing loss estimates for years and they have a lot to offer as you work on loss estimates for your campus. You will probably discover that your institution has much in common with communities and that the general guidance FEMA provides to communities often is applicable to the needs of your own institution. Loss estimation tables for floods, earthquakes, and coastal storms, as well as guidance for estimating losses from other hazards, are available in the FEMA how-to guide referenced above.

You may also consider developing estimates of the impact that an interruption in your institution’s operations would have on your community and the surrounding region. The local economy is affected by your institution’s presence and spending, so capital costs (repair and replacement), student expenditures, faculty and staff salaries and benefits, and other measures of institutional economic activity should be highlighted in this calculation. Documenting this impact will demonstrate the degree to which the community is dependent on your institution, and it will help you in your efforts to mobilize the local community and to build support for your disaster mitigation effort.

Worksheet #7 (Appendix A) can help guide you in calculating the dollar value of losses to individual structures on campus. You can use a separate worksheet for each hazard you wish to evaluate.

CONCLUSION

Assessing your institution’s vulnerability to natural and man-made hazards can be a challenging exercise. Imprudent decisions that your institution may have made in the past most likely will be revealed. It will take real effort to keep...
everyone focused on the long-term goal, but this is essential if you plan to take hazard mitigation seriously. A thorough analysis of the hazards that affect your institution, a profile of potential events, an inventory of the institution’s assets, and an estimate of potential losses are necessary before a mitigation plan can be written and your needs can be prioritized. Even if mitigation actions are not immediately forthcoming, a risk assessment and vulnerability study will benefit your institution in many ways. By recognizing the hazards your institution faces and estimating potential losses from these events, your long-range planning efforts will improve and your institution will be more likely to make strategic choices that incorporate the principles of disaster mitigation.

Once the hazard identification and risk assessment are complete, you are ready to write your mitigation plan. The risk assessment will provide you with the information necessary to identify and prioritize mitigation actions based on the vulnerability of your institution; after determining and prioritizing appropriate mitigation actions, you can begin securing support and implementing the plan.
The third phase in the hazard mitigation planning process is writing the hazard mitigation plan itself. The plan should naturally flow from the hazard identification and risk assessment study completed in Phase 2 and should complement the related plans identified in Phase 1. The purpose of the hazard mitigation plan is to lay out in detail the proposed prioritized mitigation actions and to establish their appropriateness and expected utility. Once the plan is complete, it will have to be adopted and implemented by appropriate institutional representatives; therefore, as with the previous phases, it is very important to involve as many stakeholders as possible when writing the plan.

As with the previous steps, consult *Developing the Mitigation Plan: Identifying Mitigation Actions and Implementation Strategies* (FEMA 386-3) for general guidance on this topic. In addition, work closely with local, state, and Federal emergency management officials to ensure that your plan allows you to be fully eligible for all available pre- and post-disaster funding.

Prioritize Focus Areas

Before beginning to write the plan, conduct a careful review of the conclusions reached by the hazard identification and risk assessment study. Develop mitigation goals and objectives based upon your understanding of problems revealed through the risk assessment.

The mitigation plan should address all of the hazards you identified and should prioritize them based on your institution’s vulnerability to particular natural and man-made hazards. Prioritizing your mitigation focus areas involves comparing the institution’s mission with the results of the hazard identification and risk assessment to rank mitigation needs according to their associated risks. This process should be as inclusive as possible, with the involvement of all the appropriate stakeholders. Prioritizing the areas you will focus on should not be viewed as giving less attention to one particular hazard or area

Resources

The mitigation plan should:

- establish goals and objectives aimed at reducing or avoiding vulnerabilities to the identified hazards;
- identify actions that will help you accomplish the established goals;
- set forth strategies that detail how the mitigation actions will be implemented and administered;
- provide continuity to the planning process as it provides a link between determining what your community’s risks are and actually implementing mitigation actions; and
- establish a process for regular updates and review of the plan.

The FEMA how-to guide *Developing the Mitigation Plan: Identifying Mitigation Actions and Implementation Strategies* (FEMA 386-3) covers this process in detail and should be reviewed before you start to write your plan.

Background

Clear goals and objectives provide a framework for making decisions on funding and implementing mitigation actions.

Goals

Are general statements of what you want to achieve. They are usually long term and represent global visions, such as:

- Minimize interruption to the instructional mission of the university or college.
- Protect the research enterprise on campus.

Objectives

Define strategies or implementation steps to attain the identified goals. Unlike goals, objectives are specific and measurable, such as:

- Inform the campus community about potential hazards and appropriate loss reduction actions.
- Protect lab equipment valued at $5,000 or more.

Mitigation Actions

Are specific activities that will help you achieve your goals and objectives. For example:

- Sponsor a campus hazards segment in the administration newsletter.
- Retrofit lab equipment with appropriate protection.
- Develop a training session for new lab directors on hazard mitigation.
of the campus, but rather as a systematic effort to target resources toward reducing the greatest potential threats to the institution’s instructional, research, and public service operations.

DETERMINE APPROPRIATE MITIGATION ACTIONS

Once your focus areas have been determined, it is time to identify appropriate mitigation actions to protect your institution’s people, facilities, and research. These actions can range from simple and inexpensive, such as securing lab equipment, to complex and expensive, such as structural design improvements for new construction and the retrofitting or relocation of existing structures. The early stages of this process should include an investigation of the full range of appropriate actions, and the initial inventory of appropriate mitigation actions should be done without regard to cost and benefits.

This guide is not intended as a complete resource for mitigation actions appropriate to natural and man-made hazards. Consult the appropriate how-to guides and experts in this area for that information. This guide is, however, appropriate for considering examples of some basic mitigation actions for common hazards and for providing some details regarding their application to the unique situations of colleges and universities. Many mitigation actions that can reduce losses due to natural hazards can also help reduce the effects of man-made hazards; for example, strengthening windows to reduce wind hazards or strengthening buildings to resist seismic forces may also help mitigate blast forces.

Some common actions taken to reduce the damage from future earthquakes, high winds, fires, and flooding include:

- **Earthquakes**: installing steel moment frames, shear walls, and cross bracing; strengthening floor systems; reinforcing walls with shotcrete/fiber materials; reinforcing columns with fiber wraps/steel jackets; addition of tension/shear anchors and vibration dampers; bracing of bookshelves and other high mounted items; upgrading of utilities; and securing of expensive research equipment.

- **High Winds**: implementation of warning systems and safe rooms; reducing or eliminating openings; reinforcing window glass and frames; strengthening exterior elements to

Background

It is likely that funding for which your institution might be eligible through DMA 2000 will be granted in several small increments over time rather than in a single lump sum. Having your mitigation actions ranked in order of priority allows you to begin implementing the most important actions as funding becomes available.

Experience

Urge academic units to safeguard important research documents and specimens and to make duplicate copies of reports and store them separately from the originals.

Earthquake

- **Prevention** – Actions such as planning and zoning, open space preservation, soil erosion and sediment control.
- **Property Protection** – Actions such as relocation, storm shutters, flood barriers, flood insurance, and structural retrofits.
- **Public Education and Awareness** – Actions such as outreach projects, hazard information centers, and technical assistance.
- **Natural Resource Protection** – Actions such as erosion and sediment control, stream corridor protection, and wetlands preservation.
- **Emergency Services** – Actions such as hazard threat recognition, hazard warning, emergency response, and protection of critical facilities.
- **Structural Projects** – Actions such as revetments, high flow diversions, spillways, retaining walls, and storm sewers.
resist positive/negative air pressures and impact; improving roof-wall-foundation connections; improving roofing materials; adding/reinforcing shear walls; vegetation management; installation of shutters or window film.

- **Fire**: improvement of sprinkler systems; increased use of fireproofing and/or fire-resistant building materials; training of permanent and/or volunteer staff in firefighting techniques; ensuring adequate water supplies for fire protection; vegetation management; maintaining site setbacks.

- **Floods**: elevation or floodproofing of buildings; drainage improvements and structural works; moving critical uses (communications, library and other collections, offices) to higher locations; elevation of vulnerable equipment and research subjects, book collections, art, etc.

- **All Hazards**: Installation or improvement of backup systems (electric generators, computer databases, etc.); implementation of contingency procedures; maintenance of emergency plans (required by USDA for Federally funded research facilities using laboratory animals); informing campus personnel of risks and mitigation strategies; keeping detailed information current regarding hazardous chemicals, biological and radiological agents, laboratory animals, and critical works of art and cultural treasures.

The mitigation actions listed above are but a few of the actions that can be taken. Reviewing existing literature, asking experts, reviewing success stories, and brainstorming can identify more mitigation actions. Additionally, the FEMA how-to guide *Developing the Mitigation Plan* (FEMA 386-3) contains an extensive list of mitigation actions for natural hazards, and *Integrating Human-Caused Hazards Into Mitigation Planning* (FEMA 386-7) outlines mitigation actions for man-made threats. The advisory committee or subcommittee should collect information on all of the options available to reduce your institution’s vulnerability. As larger numbers of higher education institutions work toward disaster resistance, a body of knowledge and best practices will emerge about how universities and colleges have adapted and created mitigation actions to meet their unique requirements. This is still a very new area for many institutions and it will be helpful to document what you do and to share your experiences with others whenever possible. The professional associations listed throughout this guide, as well as FEMA, will be interested in assisting you as well as hearing about your efforts.

Resources

A compilation of mitigation resources and success stories is available from FEMA on a CD: *Mitigation Resources for Success* (FEMA 372).

Experience

Researchers at the University of California, Berkeley are developing equipment-specific, custom-designed retrofit actions for the equipment they have identified as vulnerable to an earthquake. The process includes consulting by engineering faculty, graduate students, physical facilities representatives, and appropriate construction sciences personnel to design and implement these actions. As a result, valuable equipment that is critical to the continuation of the research enterprise at the institution will suffer less damage in the next earthquake. Seismic Protection of Laboratory Contents can be read at www-iurd.ced.berkeley.edu/pub/WP-2003.pdf.

A recent drainage ditch improvement at the University of North Carolina at Wilmington will reduce the risk of ground floor flooding from a hurricane in a building that contains animal research subjects. The mitigation measure was identified after an assessment of previous flooding levels from hurricanes and of the vulnerability of the research that is conducted in the nearby buildings.
PRIORITIZE MITIGATION ACTIONS

As discussed previously, the hazard mitigation plan should identify mitigation focus areas and describe the prioritization of actions within each area. After using the hazard identification and risk assessment study to determine vulnerability and identifying appropriate mitigation actions, rank the actions needed and develop a timeline for implementation.

Possible criteria for ranking include life safety, operational criticality, time needed to complete the activity, effectiveness/lifespan, or other hazard-specific considerations. However, the most common basis for prioritization is benefit-cost analysis (BCA), which allows multiple projects to be compared across a range of hazards. The basic formula includes the following:

- The cost of the mitigation action;
- The dollar value of risk reduction (calculated from the potential loss of life, property, and function of the institution) each time the hazard occurs;
- The frequency with which the benefits of the action will be realized (frequency of hazard occurrence assumes that the action performs as expected); and
- The present value of aggregated future benefits (dollar value of risk reduction each time the hazard occurs multiplied by the probability of occurrence, multiplied by the life span of the action).

To prioritize mitigation actions, you may create a matrix using multiple criteria of your choosing or simply use benefit-cost analysis. Some institutions hire consultants to develop or apply a methodology for ranking mitigation actions and to assist them in comparing various mitigation actions across different hazard events. In addition to the campus-based experts you have identified, emergency management officials can also help you determine appropriate strategies for prioritization. Whichever method is selected, it is important for all campus stakeholders to understand the process that was followed to determine the rankings and to feel as if they had an opportunity to participate in the process, so be sure to provide adequate opportunity for input from the advisory committee and stakeholders.

Worksheet #8 (Appendix A) can be used to help you track various mitigation options and corresponding issues, as well as priority considerations.

PREPARE AN IMPLEMENTATION STRATEGY

In this step, you will determine how mitigation actions will be funded, who (as in which institutional department) will be responsible for overseeing the project(s), and how long the project(s) should take to complete. An example format for this information is shown in the previous box.
ASSEMBLE THE PLAN

Once the priorities have been established and the appropriate mitigation actions determined, it is time to assemble the plan. As pointed out earlier, review the FEMA how-to guide Developing the Mitigation Plan (FEMA 386-3) and share your plan with appropriate local, state, and Federal emergency management officials. The basic template provided in the adjacent sidebar can be modified to your institution’s needs.

CONCLUSION

The hazard mitigation plan documents the ways in which your institution will reduce its vulnerability to natural and man-made disasters. The plan details the purpose of the planning effort, the process that was followed, and the actions that need to be taken. Once the plan is finalized, the next step is to get it adopted and implemented. Plan adoption refers to getting the plan formally approved by the appropriate on- and off-campus entities, and implementation refers to the ongoing effort to perform the mitigation actions, tracking their progress, and measuring their impact. Adoption and implementation of the hazard mitigation plan are discussed in the next section.

Resources

HAZARD MITIGATION PLAN CONTENTS:
Executive Summary
 Purpose
 Process Followed
 Major Recommendations
Goals and Objectives
 Disaster Resistance and University Mission
Hazard Identification and Risk Assessment
 Hazard Background of Institution
 Asset Inventory
 Loss Estimation
Mitigation Strategy
 Identification of Mitigation Actions
 Description of Prioritization Methodology Used
 (e.g., Benefit-Cost Analysis)
 Prioritization of Actions
 Timeline
Implementation and Plan Maintenance
 Organization and Responsibility for Mitigation
 Integration with Local and State Hazard Mitigation Plans
 Maintenance of Plan and Update Schedule

Resources

As a result of the heightened level of interest in the vulnerability of American communities to terrorism following the attacks of September 11, 2001, your community is likely to be keenly interested in efforts to protect people, buildings, and operations from terrorism and technological disasters. This presents both benefits and challenges, because much of the same information that can be used to rally support for mitigation can also be of use to potential terrorists, saboteurs, or others with malevolent intent. For that reason, you must carefully maintain the security of any information that pertains to vulnerabilities, security measures, and response plans. Your institution’s legal counsel should be able to provide guidance on how best to protect such sensitive information within the provisions of applicable freedom of information laws.

For more information on information sensitivity, refer to the FEMA how-to guide Integrating Human-Caused Hazards Into Mitigation Planning (FEMA 386-7).

Resources

University of California, Berkeley’s risk management plan can be found at www-iurd.ced.berkeley.edu/pub/ WP-2000-03.pdf
The final phase in the disaster-resistant university process is the adoption and implementation of the mitigation plan. Adoption and implementation go hand in hand. They may happen simultaneously, but they are discussed separately here to emphasize the unique aspects of both steps. Adoption is a relatively short-term and straightforward process. Implementation, on the other hand, is a long-term and complex process that requires the consistent review, coordination, and completion of mitigation actions.

ADOPTION

On Campus

Once the plan has been completed, it should be presented to the chancellor or president of the university for review and formal adoption. To ensure success, disaster-resistance efforts require the support and endorsement of the institution’s chief operating officer. The president or chancellor must be a visible spokesperson for the effort. After the president or chancellor has endorsed the plan, the key stakeholders on campus identified in Phase 1- Organize Resources, some of whom have probably been on the advisory committee or involved in other ways in the process, should be consulted and asked to adopt the plan.

Institution-Wide Governance Body. After the chancellor or president has adopted the plan, it should be submitted to the appropriate institution-wide governance body. These bodies go by many names, such as Board of Trustees, Board of Overseers, Board of Visitors, etc. Your institution may have more than one such oversight organization. Identify the appropriate steps to have your plan endorsed at this level. These bodies have the final say over financial, personnel, and student matters at many institutions and therefore are very important to implementation. They should be kept informed of the status of disaster-resistance efforts on campus, informed of the plan’s completion, and asked to adopt it.

Administration. Administrative units identified in Phase 1: Organize Resources should be asked to endorse the plan. The advisory committee may consider developing a formal memorandum of agreement that reflects the commitment of each unit to the principles of disaster resistance and to the strategies detailed in the mitigation plan. The committee should focus on getting the chief business officer to emphasize to the various business affairs units the importance of adopting the plan. Adoption of the plan by all public safety divisions and environmental health and safety divisions is critical.

Additionally, risk management, auxiliary services, and even the admissions office will be important in the successful implementation of the plan and should be asked to formally endorse it.
The admissions office may not seem like the most obvious candidate for the adoption of mitigation actions, as there is not a lot they can do to make your institution more disaster-resistant. However, the admissions office does have a key stake in the adoption and implementation of a comprehensive plan—namely, the recruitment and retention of your institution’s primary customers. Students choose colleges and universities for many reasons, and there is little doubt that safety is now more important than ever. A formal statement of how your institution is working to become disaster-resistant can help the admissions office to promote these efforts to potential students.

Academic Affairs. The plan should be adopted and endorsed by the chief academic officer of the university. The various levels of approval in the area of academic affairs should have been identified in Phase 1. It is common for the academic affairs structure to be more complicated than business affairs. As such, depending on the structure of your institution, it may be appropriate to get plan approval by the individual schools, colleges, and departments. Some academic units will be more involved than others as you work to implement the plan; in particular, departments that use hazardous materials, conduct research in sensitive areas such as genetics or animal sciences, and those with unique physical security concerns should be involved in the plan and asked to endorse it.

Sponsored Programs or Research Administration. Protecting the institution’s research enterprise and knowledge generation resources is an important reason for becoming disaster-resistant. In *Phase 2: Hazard Identification and Risk Assessment*, threats to the research enterprise at your institution were identified. The office of sponsored programs or research administration is generally charged with oversight of sponsored research on campus. They can coordinate initiatives to ensure that research is done in an environment that is as resistant as possible to hazards, including training on hazard mitigation strategies for new principal investigators, lab management personnel, and others involved in research, data collection, or retrieval. As noted in Phase 1, sponsors are increasingly asking about appropriate protections to ensure the integrity and protection of the work they are supporting. Involving this unit and obtaining their formal endorsement will strengthen your efforts to demonstrate the importance of the initiative.

Student Affairs. The student services divisions and organizations identified in Phase 1 should be contacted and asked to endorse the plan. Recognizing that student safety is of paramount concern, several of the mitigation actions detailed in the plan will probably have an effect on students and the way they interface with the institution. Students and organizations that have influence over issues such as building and residence hall security, the handling of hazardous materials, and the evacuation of campus before or after a disaster should be involved in this process.
PHASE 4 – ADOPTION AND IMPLEMENTATION

The approval and endorsement of on-campus student governance organizations is particularly important. In addition to demonstrating that the vision of a disaster-resistant university is shared across the entire institution, student government organizations may have access to, or the ability to raise, funds that can be tapped to support the work detailed in the disaster mitigation plan. To the extent that retrofitting existing structures or the incorporation of disaster-resistant building technologies is required on buildings that are maintained or built with student fees, these organizations can provide critical support.

Off Campus

Off-campus stakeholders identified during Phase 1 are equally important to plan adoption and implementation. Regardless of whether they were involved in developing the plan, they should be sent a copy and asked to endorse its contents in a memorandum of agreement. This step reaffirms that your institution and community are inextricably linked when it comes to disaster mitigation. Several groups, in particular, should be sought out to endorse the plan.

Emergency Management/Hazard Mitigation Planning. It is particularly important to get the endorsement and support of your local office of emergency management and/or local hazard mitigation planner. In many jurisdictions, the local emergency management jurisdiction has never reviewed the campus emergency/disaster plan. Your committee already began to correct this important oversight when emergency management staff were invited to become an active participant in this process. The approval of and coordination with those responsible for emergency management and hazard mitigation for nearby jurisdictions is crucial, especially because funding for pre- and post-disaster mitigation is usually coordinated with the state through local jurisdictions. They cannot be expected to make informed requests to the state on your behalf if they are unaware of your vulnerabilities and your priority for mitigation actions.

Public Safety/First Responders. In much the same way that the local emergency management agency was consulted, first responders—police, fire/rescue, and emergency medical services—should also be asked to review and endorse the plan. Depending on your location, these organizations may not be directly involved in hazard mitigation, but they will be among the first on the scene should a disaster occur at your institution. Therefore, it is important for them to be informed of your plan and of any mitigation actions that may affect their ability to respond or that could change your institution’s response requirements.

Local Political Jurisdictions. It may be appropriate to ask local political jurisdictions to formally endorse your plan, depending on your institution’s relationship with them. A proclamation or other device to recognize your work and show support for disaster resistance can often accomplish this. If your community has a local hazard mitigation planning initiative underway, your efforts will demonstrate to the community your sincere contribution to sustainability. Political jurisdictions can reciprocate by giving enhanced credibility to the integration of college and university planning with local efforts to make the community safer. University faculty, staff, and students are citizens of the community.

Recent Disasters and Universities

In July 1999, a heat wave resulted in a sustained power outage in New York City. The electricity went out at Columbia University and was not completely restored for 2-3 days. In the intervening time, researchers at Columbia’s College of Physicians and Surgeons lost irreplaceable research materials—human tissue, enzymes and cells—because there were not sufficient back-up generators to keep freezers or incubators running. Damages to the $200 million research program were calculated at many millions of dollars.
PHASE 4 – ADOPTION AND IMPLEMENTATION

and disasters that affect them strain the entire community. Mitigation actions can reduce that burden.

Private Industry. It may be appropriate to ask some of the private industry representatives that were involved in the planning process to consider endorsing the final product. Having them formally recognize the plan has two advantages. It increases the likelihood that they might assist you with in-kind donations of goods necessary for some of your mitigation priorities—perhaps even funding or supporting your fundraising efforts for others. It also demonstrates to your institution’s leadership that the disaster mitigation effort has successfully involved many segments of the community. Some private industry stakeholders are more likely than others to be interested in joining forces with the university, but a good place to start is with those identified in Phase 1 and other appropriate industries with an interest in hazards or disasters.

IMPLEMENTATION

Once the plan has been written and adopted, it must be implemented. A disaster-resistant university is continuously striving to reduce the damage caused to its institutional mission by the next natural or man-made disaster. Putting the plan in place requires attention to coordinating the effort, identifying funding streams, and monitoring progress over the long term.

Coordinating the Effort

An advisory committee and coordinator were necessary to make the planning effort happen. Their responsibility now shifts to coordinating and overseeing the implementation of the plan. Implementation means achieving the identifiable, measurable outcomes described in the plan. This may require an adjustment to the membership of the committee, or a subcommittee may assume this responsibility. In either case, the membership of the committee must be re-assessed for appropriateness as the process moves to implementation.

The coordinator and committee should develop an implementation strategy. The implementation strategy lays out the mitigation actions and their priority, but it does not describe your plan for carrying out these actions. Thus, the focus now shifts to the steps necessary to bring about these mitigation actions. Questions the committee should address in preparing the strategy include:

- Which unit of the institution (e.g., physical plant, buildings and grounds, instruction, academic affairs, a particular college or department, etc.) will the actions affect?
- Who are the people in those units that will be responsible for implementing the actions?
- What resources are available to support implementation of the actions?
- Can implementation be accomplished with existing resources?

Experience

Not every mitigation action requires significant additional resources. The University of California, Berkeley, as part of its disaster-resistant University program, decided that lab resistance to seismic activity was an important mitigation goal. Reducing the vulnerability of research labs to earthquakes was one of its objectives. The planned mitigation action relied simply on proper storage and security of chemicals, the physical stability of expensive equipment, and the safety of lab personnel from overhead hazards. The mitigation strategy took advantage of graduate and undergraduate students to conduct a survey of lab vulnerability and to subsequently implement actions that will reduce the damage to people, equipment, and research during the next earthquake.

At the University of North Carolina at Wilmington, knowledge from a Cooperative Extension service agent who was a specialist in hurricane-resistant landscaping was incorporated into campus landscaping. Thus, without requiring any additional funds the institution’s tree and shrub stock will be less likely to be damaged during the next hurricane.
If not, what additional resources will be required?

What is the timetable to complete the actions?

How will the effectiveness of the activities be measured?

What is the timetable for periodic review of the actions’ efficacy?

Funding the Projects

Many mitigation actions can be completed with existing resources. However, the coordinator and advisory committee should work with senior administrators to identify sources of funding for projects if existing resources are insufficient. Those working to secure funding should think creatively, regardless of the size of the project. You have worked hard to establish hazard mitigation as a priority on campus and have justified mitigation in terms of economic and life safety, but you may still have to aggressively pursue funds.

Several sources of funding exist:

University or System. Identify whether university resources can be redirected from another area to meet your needs. Assistance from the business affairs office can help determine whether this is possible. If the advisory committee and coordinator have been effective at obtaining the support of the chancellor or president, disaster mitigation may be prioritized in such a way that when revisions are made to strategic plans, funds will be redirected to disaster mitigation. This may be politically divisive, but the conflict will be minimized if the entire university community has been kept apprised of your efforts and senior administrative officials are supportive. It is important to coordinate your efforts with other strategic and long-range planning efforts on campus. Institutional priorities are established in these plans, and you should be involved in the appropriate planning processes in order to secure funding. There should be some duplication of membership across the disaster-resistant university steering committee and other long-range planning initiatives on campus.

If your institution is located within a system, public or private, you also need to consider resources available at these levels. Depending on the mitigation action you are pursuing, the system may be more or less inclined to support your efforts. For example, the retrofit of existing structures and the incorporation of hazard-resistant building technologies are more likely to get support at the system level than something that is unique to a less enduring aspect of the institution, such as lab retrofits. It will be easier to obtain funds for your effort if your system is aware of and endorses your plan. However, it is worth noting that disaster resistance can only be achieved with some contribution by your own institution. Some financial commitment must be present if you hope to successfully leverage the additional funding streams detailed below.

Local Government. Local governments are an important place to begin your search for funding, because even if they do not become a source of funding, their support may be required to secure funding from other levels of government or private sources. Additionally, funding for mitigation
actions may be available at the local level, because although local governments are often required to “do more with less,” sometimes surplus funds do become available. You are more likely to be made aware of possible funding and to secure it when it becomes available if you have worked closely with local emergency management personnel on the development of your plan and securing their formal endorsement. When coordinating your mitigation priorities with those of your local jurisdiction, emphasize the fact that major mitigation actions contribute not only to the disaster resistance of your institution but also to the overall well-being of the community.

State Government. State government can be an important source of mitigation funding. For public institutions, state appropriations are an important part of new construction and renovation; while this will be less important for private institutions, working with your state hazard mitigation officials ensures that you are informed of funding available for mitigation. In addition, state officials are responsible for implementing the pre-disaster mitigation funding elements of the DMA 2000. States are the conduit through which most FEMA funds flow, including mitigation program funding, and they set the priorities for allocating those funds.

Federal Government. A close relationship with mitigation officials in your FEMA Regional Office will keep you informed of the availability of and steps to apply for Federal hazard mitigation funding. You should also involve your campus’ government affairs unit so that your institution can fully take advantage of mitigation funding opportunities created by Federal legislation and rule changes. A list of FEMA Regional Offices appears in Appendix C.

Private Organizations. Your search for mitigation funding should include a survey of local, regional, and national organizations in the private sector that may provide support for your mitigation priorities. The private sector stakeholders involved in your planning process may support or be aware of others that would support some of your disaster mitigation priorities. To the extent that mitigation on your campus minimizes your interruption from a disaster, and thus the impact of a disaster on the community at large, private organizations may be willing to provide some funding to implement portions of your plan.

Private foundations of all sizes represent a potential source of mitigation funding. Your office of sponsored programs or research administration can assist you in searching for foundation opportunities that might support mitigation. Foundations with a direct connection to the university or college are especially important. Many institutions have “friends of the university/college” foundations that provide support for all types of activities on campus. These foundations are excellent resources in your efforts to identify funding sources for disaster mitigation.

MONITORING AND EVALUATION

Being disaster-resistant does not end with the completion of the plan and formal adoption. Indeed, the final step in implementing the plan is to establish a process for regularly monitoring and evaluating your progress.
Plan Review and Modification

At least once annually, but perhaps even more frequently, the entire hazard mitigation plan should undergo a thorough review. Mitigation actions may have been completed, or the vulnerability of your institution to a particular hazard may have changed. Changes in organizational structure may necessitate different implementation strategies. A disaster that presents new challenges to your institution and community may have occurred. Furthermore, new stakeholders may have been identified. Regular updates to the plan will ensure that it is timely and that the data are current. Doing an abbreviated version of the risk assessment and updating the plan and implementation strategies accordingly may be sufficient for a comprehensive review of the plan.

The plan may require a new round of endorsements if it has changed substantially. A simple notice to the stakeholders of the whereabouts of the new plan and changes from the previous document may suffice if the changes are minimal. However, even if there have only been minor changes, senior administrators should be made aware of the review and apprised of the changes. Plan review and modification is also an opportunity to publicize the successes of mitigation actions taken and to reaffirm the continuing commitment to disaster mitigation.

Maintaining the Momentum

Key to implementing the plan is maintaining momentum. One of the greatest long-term challenges to disaster resistance is waning interest in hazard mitigation. Disasters fade into the past, and committed university and community leaders or supporters can change their priorities, their minds, or their jobs. Other, weightier problems may arise, and attention to them will take human and financial resources away from disaster resistance. It is imperative that you establish and cultivate relationships with campus leadership and acquire permanent authority to manage disaster resistance efforts.

One of the most effective ways to maintain momentum is to publicize successes. You may wish to designate a person or group to develop a publicity plan for your efforts; this campaign should include ways to keep the university’s disaster resistance efforts visible to the campus community and the nearby jurisdictions.

A reality of university life is that problems change, people change in response to associated pressures, organization charts change, and people take other positions and move away. These all operate to diminish your efforts. However, if the development of your mitigation plan has been collaborative and the process has engaged diverse stakeholders, your chances of success are good. The larger the planning group and the more inclusive the process, the more likely your hazard mitigation program is to retain its momentum and continue to reduce losses of life, property, and function from disasters long into the future.
CONCLUSION
The first plan that your college or university adopts establishes a baseline from which to measure progress. As you implement and evaluate actions, your knowledge of hazards and how to best reduce your vulnerabilities increases tremendously. In order to effectively monitor your progress, it is important to take advantage of the worksheets provided here and in the mitigation planning how-to series.

Over time, new partners will become involved in the planning process, providing additional reservoirs of experience and support. Since the political and social arenas, as well as the natural environment, are continually changing, you must periodically revisit and update your plan. As your plan evolves over time, you should see a corresponding improvement in your campus’s resilience to the damaging effects of disasters.
Worksheet #1: Build the Planning Team

Worksheet #2: Hazard Identification and Risk Assessment

Worksheet #3: Identify the Hazards

Worksheet #4: Profile Hazard Events

Worksheet #5: Inventory Assets

Worksheet #6: Assess Priority Assets

Worksheet #7: Estimate Losses

Worksheet #8: Identify Mitigation Actions
In establishing a planning team, you want to ensure that you have a broad range of backgrounds, responsibilities, and experiences represented. Below are some suggestions for institution organizations and departments to include in a planning team.

Use the checklist as a starting point for forming your team. Check the boxes beside any individuals or organizations that you have both on and off campus that you believe should be included on your planning team so you can follow up with them.

College/University Administration

- [] Chancellor/President
- [] Vice Chancellor (VC)/Vice President (VP) Planning and Facilities
- [] VC/VP Budget and Finance
- [] VC/VP Business
- [] Planning Entities
- [] Safety Units (Police, Fire, Environmental Health and Safety, Risk Management)
- [] Telecommunications/Electronic Communications
- [] Human Resources
- [] Development Office

Academic Departments

- [] Academic Senate Representatives
- [] Architecture/Planning
- [] Engineering/GIS
- [] Earth Sciences/Geology/Geography/Hydrology (depending on the major hazards)
- [] Sociology
- [] Public Administration

Student Representatives

- [] Student Council Representatives
- [] Student Life/Residence Life
- [] Students from relevant academic departments (vis-à-vis potential thesis topics)

Community/Off-Campus Representatives

- [] Local Emergency Manager
- [] Emergency Services (Fire/Police)
- [] Local Emergency Planning Committee Representative
- [] Local Community Planner
PHASE 4 – ADOPTION AND IMPLEMENTATION

<table>
<thead>
<tr>
<th>Local Economic Development Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Representatives</td>
</tr>
<tr>
<td>State Hazard Mitigation Officer</td>
</tr>
<tr>
<td>State University Liaison</td>
</tr>
<tr>
<td>State Emergency Manager</td>
</tr>
<tr>
<td>Local Utilities</td>
</tr>
<tr>
<td>Electric Utility</td>
</tr>
<tr>
<td>Gas Utility</td>
</tr>
<tr>
<td>Water Authority/Sewage Authority</td>
</tr>
<tr>
<td>Telephone Companies/Telecommunications</td>
</tr>
<tr>
<td>Internet/Fiber Optic System</td>
</tr>
<tr>
<td>Transit Authority</td>
</tr>
</tbody>
</table>
Vulnerability Questionnaire

1. What are the hazards in your locale?

2. Do you know the frequency and magnitude of possible future hazard events?

3. Has the university/college ever been affected by any hazard events? If so, how?

4. Are some parts of the campus particularly vulnerable to damages, or is the entire area vulnerable?

5. Are some buildings particularly vulnerable to damages? If so, how?

6. What are the uses and occupancies of the vulnerable buildings?

7. What will the expected damages do—threaten life safety? Ruin buildings? Destroy equipment and computers? Disrupt work?

8. Are your utilities vulnerable to damages? How?

9. What systems depend on either building functionality or utility functionality?

10. What could it cost to repair damages?
11. How long could it take?

12. How will teaching be affected?

13. How will research be affected?

14. How will students be affected on campus?

15. How will students be affected off campus?

16. Will employees who live in the area be able to get to work?

17. Will employees’ homes be affected by the hazard event(s)?

18. Could the university be closed down for a significant period of time because of possible disaster losses?
Worksheet 3
Identify the Hazards

Date:

What kinds of natural hazards can affect you?

1. List the hazards that may occur on campus.
 a. Research newspapers and other historical records. (Check campus archives in library.)
 b. Review existing university and community plans and reports.
 c. Talk to the experts on campus and in your community, state, or region.
 d. Gather information on Internet Web sites.

 In the hazard list below, put a check mark in the boxes on the left (Column I) beside all hazards that may occur on your campus.

 2. Focus on the most prevalent hazards in your community or state, and your campus.
 a. Go to hazard Web sites.
 b. Locate your campus on the Web site map.
 c. Determine whether you are in a high-risk area. Get more localized information if necessary.
 d. In the hazard list below, put a check mark in the boxes on the right (Column II) beside all hazards that pose a significant threat to your community and/or campus.

Use this space to record information you find for each of the hazards you will be researching. Attach additional pages as necessary.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalanche</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Coastal Erosion</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Coastal Storm</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Dam Failure</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Drought</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Earthquake</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Expansive Soils</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Extreme Heat</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Flood</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hailstorm</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hurricane</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Land Subsidence</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Landslide</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Severe Winter Storm</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Tornado</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Tsunami</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Volcano</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Wildfire</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Windstorm</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other________</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other________</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other________</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Hazard or Event Description:
(Type of hazard, date of event, number of injuries, cost and types of damage, etc.)

Source of Information

Map Available for This Hazard?

Scale of Map

Building a Disaster-Resistant University
Obtain or create a base map.

<table>
<thead>
<tr>
<th>You can use existing maps from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Campus facilities department</td>
</tr>
<tr>
<td>- Campus GIS maps</td>
</tr>
<tr>
<td>- USGS topographic maps or Digital Orthophoto Quarter Quads (DOQQ)</td>
</tr>
<tr>
<td>- Maps from your city and county</td>
</tr>
<tr>
<td>- Topographic and/or planimetric maps from other agencies</td>
</tr>
<tr>
<td>- Aerial topographic and/or planimetric maps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR you can create a base map using:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Field surveys</td>
</tr>
<tr>
<td>- GIS software</td>
</tr>
<tr>
<td>- CADD software</td>
</tr>
<tr>
<td>- Digitized paper maps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title of Map</th>
<th>Scale</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obtain Hazard Profile Information

Flood
- □ 1. Meet with your local floodplain administrator to review the Flood Insurance Study and mapping information.

Earthquake
- □ 1. Seek out specialists either on campus or in local or state emergency management offices to determine risk
- □ 2. Review state geological survey maps

Tsunami
- □ 1. Get a copy of your tsunami inundation zone map from your local or state Emergency Manager.

Tornado
- □ 1. Find your design wind speed.

Coastal Storm
- □ 1. Get a copy of your FIRM.
- □ 2. Verify that the FIRM is up to date and complete.
- □ 3. Determine the annual rate of coastal erosion.
- □ 4. Find your design wind speed.

Landslide
- □ 1. Map location of previous landslides.
- □ 2. Map the topography.
- □ 3. Map the geology.
- □ 4. Identify the high-hazard areas on your map.

Wildfire
- □ 1. Map the fuel models located within the urban/wildland interface areas.
- □ 2. Map the topography.
- □ 3. Determine your critical fire weather frequency.
- □ 4. Determine your fire hazard severity.

Other
- □ 1. Map the hazard.

Record Hazard Profile Information

Flood
- □ 1. Transfer the boundaries from your Flood Insurance Rate Map onto your base map (floodway, 100-yr flood, 500-yr flood).
- □ 2. Transfer the Base Flood Elevations onto your base map.

Earthquake
- □ 1. Record the probability, epicenter location(s), and shaking intensity of potential earthquakes.

Tsunami
- □ 1. Copy the boundary of your tsunami inundation zone onto your base map.

Tornado
- □ 1. Record your design wind speed:______
- □ 2. If you have more than one design wind speed, print, download, or copy your design wind speed zones onto your base map, then record the design wind speed zones on your base map.

Coastal Storm
- □ 1. Transfer the boundaries of your coastal storm hazard areas onto your base map.
- □ 2. Transfer the BFEs onto your base map.
- □ 3. Record the erosion rates on your base map:______
- □ 4. Record the design wind speed here and on your base map:______

Landslide
- □ 1. Mark the areas susceptible to landslides on your base map.

Wildfire
- □ 1. Draw the boundaries of your wildfire hazard areas onto your base map.

Other
- □ 1. Record hazard event info on your base map.
Imagine you are a disaster manager for a university. Your goal is to build a disaster-resistant university. To do this, you need to understand which parts of the university are most vulnerable to potential hazards. You will create an inventory of assets to help you make informed decisions about which areas need the most attention.

What will be affected by the hazard event?

Determine the proportion of buildings, the value of buildings, and the population on campus that are located in hazard areas.

<table>
<thead>
<tr>
<th>Type of Building</th>
<th>Number of Structures</th>
<th>Value of Structures</th>
<th>Number of People</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># on Campus</td>
<td># in Hazard Area</td>
<td>% in Hazard Area</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom Buildings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Libraries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Facilities/Auditoria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions

1. Do you know where the greatest damages may occur in your hazard areas? Y N
2. Do you know whether your critical facilities will be operational after a hazard event? Y N
3. Is there enough data to determine which assets are subject to the greatest potential damages? Y N
4. Is there enough data to determine whether significant elements of the campus are vulnerable to potential hazards? Y N
5. Is there enough data to determine whether certain areas of historic, environmental, political, or cultural significance are vulnerable to potential hazards? Y N
6. Is there concern about a particular hazard because of its severity, repetitiveness, or likelihood of occurrence? Y N
7. Is additional data needed to justify the expenditure of funds for mitigation initiatives? Y N
Date:

What will be affected by the hazard event?

Compile a detailed inventory of what can be damaged by a hazard event.

Inventory the assets that are of highest priority to your institution’s operations that can be damaged by a hazard event.

Hazard

<table>
<thead>
<tr>
<th>Name or Description of Asset</th>
<th>Sources of Information</th>
<th>Size of Building (sq ft)</th>
<th>Replace- ment Value ($)</th>
<th>Contents Value ($)</th>
<th>Function or Use Value ($)</th>
<th>Displace- ment Cost ($ per day)</th>
<th>Occupancy or Capacity (#)</th>
<th>Other Hazard-Specific Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergency Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communications Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How will the hazard events affect you?

Date: ____________________________

Hazard ____________________________

Structure Loss

<table>
<thead>
<tr>
<th>Name/Description of Structure</th>
<th>Structure Replacement Value ($)</th>
<th>Percent Damage (%)</th>
<th>Loss to Structure ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>=</td>
<td>x</td>
</tr>
</tbody>
</table>

Total Loss to Structure

Contents Loss

<table>
<thead>
<tr>
<th>Name/Description of Structure</th>
<th>Replacement Value of Contents ($)</th>
<th>Percent Damage (%)</th>
<th>Loss to Contents ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>=</td>
<td>x</td>
</tr>
</tbody>
</table>

Total Loss to Contents

Structure Use and Function Loss

<table>
<thead>
<tr>
<th>Name/Description of Structure</th>
<th>Average Daily Operating Budget</th>
<th>Functional Downtime (# of days)</th>
<th>Displacement Cost per Day ($)</th>
<th>Displacement Time ($)</th>
<th>Structure Use and Function Loss ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>=</td>
</tr>
</tbody>
</table>

Total Loss to Structure Use & Function

Note: Use FEMA 386-2 for assistance in completing this Worksheet.
Date:

Instructions: For each type of loss identified on previous worksheets, determine possible actions. Record information below.

Hazard

<table>
<thead>
<tr>
<th>Priority</th>
<th>Possible Actions (include location)</th>
<th>Sources of Information (include sources you consulted for future reference and documentation)</th>
<th>Comments (Note any initial issues you may want to discuss or research further)</th>
<th>Planning Reference (Determine into which pre-existing planning systems or activities the suggested projects can be integrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Publications:
FEMA, *Getting Started, Building Support for Mitigation Planning*, FEMA 386-1, FEMA 386-1CD.
FEMA, *Understanding Your Risks, Identifying Hazards and Estimating Losses*, FEMA 386-2, FEMA 386-2CD.
FEMA, *Developing the Mitigation Plan, Identifying Mitigation Actions and Implementation Strategies*, FEMA 386-3, FEMA 386-3CD.
FEMA, *Bringing the Plan to Life, Assuring the Success of the Hazard Mitigation Plan*, FEMA 386-4, FEMA 386-4CD.
Note: To order FEMA publications, please call the FEMA Publications Warehouse: 1-800-480-2520

Web Sites:
FEMA Mitigation Planning: www.fema.gov/fima/planning.shtm
American Association of Community Colleges: www.aacc.nche.edu
Campus Safety, Health, and Environmental Management Association: www.cshema.org
Institute for Business and Home Safety: www.ibhs.org
National Association of College and University Business Officers: www.nacubo.org
National Emergency Management Association: www.nema.org
National Voluntary Organizations Active in Disaster: www.nvoad.org
Society for College and University Planning: www.scup.org
State Hazard Mitigation Officers Network: www.hazmit.net
University Risk Management & Insurance Association: www.urmia.org
I. 442 J.W. Mc Cormack POCH
 Boston, Massachusetts 02109
 (617)223-9540
II. 26 Federal Plaza
 New York, New York 10278
 (212) 680-3600
III. 615 Chestnut Street
 Philadelphia, Pennsylvania 19106
 (215) 931-5608
IV. 3003 Chamblee-Tucker Rd.
 Atlanta, Georgia 30341
 (770) 220-5200
V. 536 South Clark St.
 Chicago, IL 60605
 (312) 408-5500
VI. Federal Regional Center
 800 N. Loop 288
 Denton, Texas 76209
 (940) 898-5399

VII. 2323 Grand Boulevard
 Suite 900
 Kansas City, MO 64108
 (816) 283-7061
VIII. Building 710, Box 25267
 Denver, CO 80225-0267
 (303) 235-4800
 (303) 235-4976 FAX
IX. 1111 Broadway, Suite 1200
 Oakland, CA 94607
 (510) 627-7100
X. 130 228th Street, SW
 Bothell, WA 98021
 (425) 487-4600
Appendix E

Presentation of Preliminary Recommendations
(Heathman and Wang)

Prepared for:

Oregon State University
Hatfield Marine Science Center

by:

Oregon Department of Geology and Mineral Industries
OSU-Hatfield Pre-Disaster Mitigation: Preliminary Recommendations

Presented to:
OSU Hatfield
March 18, 2005

Chris Heathman
and Yumei Wang

Department of Geology and Mineral Industries
Pre-Disaster Mitigation: DOGAMI Recommendations

- **FEMA:**
 - Building a Disaster Resistant University

- **NOAA:**
 - TsunamiReady

- Howard Pierpont CBM, CBCP
 - Preliminary Recommendations
OSU-Hatfield Mitigation Plan: Earthquake Risk and Goals

RISK:

• High Earthquake Risk
 - Cascadia Subduction Zone
 - Intraplate Earthquake Events
 - Crustal Fault Events

• High Tsunami Risk
 - Directly Adjacent to Coast
 - Flat, Low-lying Topography

GOALS:

Life Safety

Protect Property?
Protect Research?
Safer Community?
<table>
<thead>
<tr>
<th>Reason</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Life Safety of Staff and Students</td>
</tr>
<tr>
<td>2</td>
<td>Keep Schools Functional So they Can Operate</td>
</tr>
<tr>
<td>3</td>
<td>Ensure that Life Can Go On</td>
</tr>
<tr>
<td>4</td>
<td>Cheaper to Fix before Damage</td>
</tr>
<tr>
<td>5</td>
<td>Reduce Liability</td>
</tr>
<tr>
<td>6</td>
<td>Safer Community</td>
</tr>
<tr>
<td>7</td>
<td>Schools Sometimes Serve as Shelters</td>
</tr>
<tr>
<td>8</td>
<td>Loss of Valuable Research</td>
</tr>
<tr>
<td>9</td>
<td>Better Peace of Mind</td>
</tr>
<tr>
<td>10</td>
<td>Reduce Property Damage/Quicker Recovery</td>
</tr>
</tbody>
</table>
Disaster Resistant University (DRU)

- Phase 1: Organize Resources
- Phase 2: Hazard Identification and Risk Assessment
- Phase 3: Develop the Mitigation Plan
 - DOGAMI Preliminary Recommendations
 - NOAA TsunamiReady
 - Howard Pierpont, CBM, CBCP Recommendations
- Phase 4: Adoption and Implementation
DRU Phase 1: Organize Resources

- Interested and necessary parties should form an advisory committee
- The committee should collect and evaluate existing plans
- The committee develops a plan with obtainable outcomes and completion dates
Community Involvement
DRU Phase 2: Identify Hazards and Assess Risk

Available Resources:

- DOGAMI and USGS Hazard Map and Risk Studies
- FEMA DRU Guide
- NOAA TsunamiReady
- Private Sector (e.g. Howard Pierpont, etc)
- Oregon Emergency Management (OEM)
- Lincoln County Emergency Services Department
- Local Government
- Archived Newspaper Articles
- OSU Geology Department
Pre-Disaster Mitigation: Geological Hazards

- Ground Shaking:
 - Structural Deficiencies
 - Inventory Deficiencies
- Tsunamis
- Liquefaction and Lateral Spreading
- Other Hazards:
 - Coastal Erosion
 - Flooding
 - Landslides
 - Foundation Scouring
DRU Phase 3: Develop a Mitigation Plan

• Improve Life Safety of Structures and Inventory
• Prepare for Tsunami Possibility
 -TsunamiReady
• Identify Areas Susceptible to Liquefaction/Spreading
Expected Ground Shaking

Peak Accel. (%g) with 2% Probability of Exceedance in 50 Years
USGS Map, Oct. 2002

- Approximate OSU-Hatfield Location
Inventory Deficiencies
Structural Deficiencies: Rapid Visual Survey Methods

Structural Scores and Modifiers

| BLDG TYPE | Score modifiers | M1 | M2 | M2 > 500 ft | M3 | M4 | M5 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 |
|-----------|-----------------|----|----|-------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Basic Score | 6.0 | 4.0 | 3.0 | 6.0 | 4.0 | 3.0 | 3.5 | 2.0 | 3.5 | 2.6 | 3.5 | 2.0 |
| High Rise | N/A | -1.0 | -0.5 | N/A | -1.0 | -0.5 | -1.0 | N/A | 0.0 | -0.5 | -0.5 |
| Poor Condition | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 |
| Vertical Irregularity | -0.5 | -0.5 | -0.5 | -0.5 | -1.0 | -1.0 | -0.6 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 |
| Soft Story | -1.0 | -2.0 | -2.0 | -1.0 | -2.0 | -2.0 | -2.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2.0 | -1.0 | -1.0 |
| Tension | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 |
| Plan Irregularity | -1.0 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 |
| Pounding | N/A | -0.5 | -0.5 | N/A | -0.5 | -0.5 | N/A | N/A | N/A | -0.5 | -0.5 | N/A | N/A | N/A | N/A | N/A | N/A |
| Large Heavy Cladding | N/A | -2.0 | N/A | N/A | N/A | -1.0 | N/A | N/A | N/A | -1.0 | N/A |
| Short Columns | N/A | N/A | N/A | N/A | N/A | -1.0 | -1.0 | N/A | N/A | -1.0 | N/A |
| Post Benchmark Year | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | N/A | 2.0 | 2.0 | 2.0 | N/A | N/A | N/A | N/A | N/A | N/A |
| **Final Score** | 8.0 | 5.5 | 5.5 | 8.0 | 5.5 | 5.5 | 5.5 | 4.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
Tsunami Hazard

TsunamiReady Goals:

1) Create minimum standard guidelines for a community to follow for adequate tsunami readiness.

2) Encourage consistency in educational materials and response among communities and states.

3) Recognize communities that have adopted TsunamiReady guidelines.

4) Increase public awareness and understanding of the tsunami hazard.

5) Improve community pre-planning for tsunami disasters.
Currently there are ~5 TsunamiReady Communities in Oregon. More communities are currently in the review process.

Notice there is evidence of at least one university (UCSB) that is a TsunamiReady community.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>AK</td>
</tr>
<tr>
<td>Kodiak</td>
<td>AK</td>
</tr>
<tr>
<td>Seward</td>
<td>AK</td>
</tr>
<tr>
<td>Sitka</td>
<td>AK</td>
</tr>
<tr>
<td>Kauai County</td>
<td>HI</td>
</tr>
<tr>
<td>Maui County</td>
<td>HI</td>
</tr>
<tr>
<td>Crescent City</td>
<td>CA</td>
</tr>
<tr>
<td>University of California at Santa Barbara</td>
<td>CA</td>
</tr>
<tr>
<td>Cannon Beach</td>
<td>OR</td>
</tr>
<tr>
<td>Lincoln City</td>
<td>OR</td>
</tr>
<tr>
<td>Manzanita</td>
<td>OR</td>
</tr>
<tr>
<td>Nehalem</td>
<td>OR</td>
</tr>
<tr>
<td>Wheeler</td>
<td>OR</td>
</tr>
<tr>
<td>Long Beach</td>
<td>WA</td>
</tr>
<tr>
<td>Ocean Shores</td>
<td>WA</td>
</tr>
<tr>
<td>Quinault Indian Nation</td>
<td>WA</td>
</tr>
</tbody>
</table>
TsunamiReady Requirements

Some of the Criteria

To be recognized as TsunamiReady, here are some of the criteria that a community must meet:

- Establish a 24-hour warning point and emergency operations center
- Have more than one way to receive tsunami warnings and to alert the public
- Promote public readiness through community education and the distribution of information
- Develop a formal tsunami plan, which includes holding emergency exercises.
Liquefaction and Lateral Spreading

- Identify most susceptible areas
 - Previous Studies
 - Previous Geotechnical investigations
- Identify any travel paths (roadways, walkways, etc) in most susceptible areas
- Develop evacuation plans that consider these travel paths unusable
Liquefaction and Lateral Spreading (cont)
Liquefaction and Lateral Spreading (cont)
DRU Phase 4: Adoption and Implementation

- Permanent displays:
 - Structural and inventory hazards
 - Tsunami
 - Liquefaction and spreading
- Progress updates on the mitigation plan
- Information brochures available for visitors
- Regular earthquake and tsunami drills
- Community meetings
• Follow the FEMA DRU planning guide (which implements FEMA 386)
• Implement NOAA TsunamiReady
• Follow various other recommendations contained in recent reports:
 - OSU Hatfield Marine Science Center
 Newport, Oregon (Pierpont)
 - DOGAMI Preliminary Recommendations
 (Heathman and Wang)