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1 Introduction

Figure 1: Myxococcus xanthus feeding on an E. coli colony and forming fruiting
bodies (black spots) and ripples [1], with the earlier shapshot in the left. The large
circular region contains stationary E. Coli. To the left we have the region where the
Myxobacteria began.

Understanding collective behavior of cells imposes one of the greatest challenges in
biology, and an opportunity to apply physical and mathematical tools to describe com-
plex biological systems. In this paper, we are interested in the macroscopic clusters
formed by the common soil bacteria Myxococcus xanthus, referred to as myxobac-
teria. A myxobacteria colony forms two macroscopic stationary patterns: periodic
ripples as the colony grows outward, and then central fruiting bodies (or clusters)
once the colony has reached maximal extent; see figure 1 for snapshots from a video
of myxobacteria preying on E. coli within a petri dish [1]. Unlike the equations of
kinetic theory and fluid mechanics, there are no universally agreed upon first princi-
ples for models of the interactions and collective behavior of cell systems such as the
myxobacteria. Nevertheless, we propose the formation of clusters can be explained
by simple diffusion and run-and-tumble dynamics, only. The former is well-known
to capture brownian movement of particles. The latter refers to systems exhibiting
advection or transport (run) and change of the direction of transport (tumble). The
model we consider in this paper originates from [2, 3], where such a model was used
to describe the rippling behavior. With this minimalist mathematical model, we
demonstrate the existence and stability of localized clusters (along with profiles rep-
resenting local gaps in concentrations or interfaces between different concentrations)
by employing a combination of analysis and numerical experiments.

Before embarking on a technical mathematical discussion, it is worthwhile to un-
derstand the motivation of modeling cell behavior, and the challenges that arise.
Beyond just the myxobacteria, the ability for large populations of biological agents to
act collectively carries fundamental scientific importance with regards to the origins of
multicellular life or the social behavior of communities of organisms. Simultaneously,
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we can approach the problem of modeling cells by using well established mathemati-
cal and physical tools, namely cellular automata, differential equations, kinetic theory
and fluid mechanics. For instance, the ability of the slime mold Dictyostelium dis-
coideum to form tissue-like structures out of individual cells via chemical signaling has
been studied using a deformable ellipsoid model [4]. Another slime mold, Physarum
polycephalum has a remarkable ability to find optimal paths and navigate mazes (this
has been modeled in [5]). In fact, this ability of P. polycephalum has found application
in discovering a Tokyo rail network superior to the one existing today [5]. The strange
radial spiral patterns found in biofilms of the intestinal pathogen Proteus mirabilis
was found to be driven by chemical signaling and cell motility via an experimentally
verified model [6].

As with these examples, the ability for myxobacteria to form ripples and fruiting
bodies is not just important for purely aesthetic reasons. Rather, these structures
are an aspect of the life cycle of a myxobacteria colony: ripples form during periods
of active growth and predatory consumption, while fruiting bodies appear in the
absence of a food source [7]. Gene knockout experiments suggest that the biological
mechanism behind these patterns is a combination of cell motility and the C-signal
[8]. Each myxobacterium carries a surface protein called the C-factor—the C-signal
causes reversal in the direction of travel when one bacterium makes direct contact
with this protein. We call such collisions tumbling events.

These two mechanisms, self-propelled movement and collision, are well understood
in the context of physics and mathematical modeling. The model we base our study
on, originally proposed in [2], took the approach of considering the concentration
of left moving agents u and right moving agents v throughout space and time. To
simplify our model, we assume that a cell moves constantly at unit speed. Then, we
can use the well-known transport equations

∂u

∂t
=
∂u

∂x
,

∂v

∂t
= −∂v

∂x
, (1)

to ensure the two populations “run” in the desired direction. To model the reversal
of direction, we suppose the rate at which a left mover becomes a right mover is given
by the tumbling rate function r(u, v). A right moving agent is no different from a
left moving agent beyond the direction of movement, so the tumbling rate for the
right movers is that of the left movers, but with the concentrations exchanged, or
simply r(v, u). Then, the net exchange rate of left movers to right movers is given by
r(u, v)− r(v, u).

If we assume that tumbling events are uncorrelated and occur at a frequency µ, the
tumbling rate becomes r(u, v) = µu. This yields a total concentration ρ = u+ v that
adheres to a damped wave equation ∂2t ρ + 2µ∂tρ = ∂2xρ. This hyperbolic equation,
known as the Goldstein-Kac model or the telegrapher’s equation, has been shown to
be the continuous limit of a random walk where particles move at a constant speed ±1
and change direction at random times [9, 10]. While the myxobacteria may adhere to
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the Goldstein-Kac model in some limiting cases, this equation has neither scientific
accuracy (since we know tumbling events occur from local particle interactions), nor
mathematically interesting spatial dynamics (since damped wave equations exhibit
simple diffusive decay towards constant concentration profiles for large times). More-
over, we shall see later that even with nonlinear tumbling rates, the ODE describing
stationary solutions reduces to a single first order equation. However, cluster shaped
concentration profiles, which are shaped somewhat like a bell-curve, must have at least
one critical point. So, run-and-tumble dynamics alone are insufficient in describing
the formation of fruiting bodies.

To address this issue, we include diffusion of each population ε2∂2xu and ε2∂2xv
according to the rate ε in the respective equations of u and v. Diffusion terms of
this type have been shown to manifest from weak non-local interactions in particle
based models [11]. In contrast, diffusion due to tumbling originates from random or
local interactions. Alternatively, we can view this diffusive term as perturbation of
the otherwise constant speed of propagation. Combining running, tumbling, and now
diffusion, the full equation we consider is the reaction-transport-diffusion equation

∂u

∂t
= ε2

∂2u

∂x2
+
∂u

∂x
− r(u, v) + r(v, u),

∂v

∂t
= ε2

∂2v

∂x2
− ∂v

∂x
+ r(u, v)− r(v, u).

(2)

Predating work on myxobacteria, the first person to systematically study pattern for-
mation through reaction-diffusion equations was Alan Turing, perhaps better known
for his work in early computer science [12].

To then choose a tumbling rate, we assume that tumbling events are not triggered
by collisions between agents moving in the same direction. Then, the frequency at
which a left mover will change direction is given by g(v), and the tumbling rate
takes the form r(u, v) = u ·g(v). Such tumbling rates ignore all but head-on collisions
between the two populations—we use the term head-on sensing to refer to this class of
tumbling rates. If we were to only consider binary collisions, we would have g(v) = αv,
in which case r(u, v) = r(v, u), i.e. there is no net transfer between populations. Thus,
to model the desired behavior, we must make a more sophisticated choice of g.

To accomplish this, Scheel and Stevens proposed the simple monotone tumbling
frequency g(v) = µ+ vp/(1 + γvq) with positive parameters µ, γ, and p ≥ q [3]. Once
again, the parameter µ gives the rate of spontaneous reversals of the bacteria. The
nonlinear term should be thought of as an arbitrary power law vp for low concentra-
tions of v, and the power law vp−q when v reaches a saturation concentration

√
1/γ.

In the case when p = q, the parameter γ roughly corresponds to the extent that
collisions are uncorrelated, for large γ results in r(u, v) ≈ µu. Our primary results
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pertain to this tumbling rate of Scheel and Stevens where p = q = 2, i.e.

r(u, v) = u

(
µ+

v2

1 + γv2

)
. (3)

Now having specified all aspects of our model, we wish to answer the following two
questions:

Question 1. Can myxobacteria clusters like the ones viewed in experiments exist
within this model?

Question 2. If those clusters exist, are they dynamically as experiments suggest?

In section 2, we use the techniques of rigorous mathematical analysis to study the
properties and show the existence of clustering in this parameter regime. We show the
existence of two families of stationary solutions: localized peaks (clusters) and troughs
(gaps) for γ < (4µ + 8)−1 in an otherwise uniform background concentration. These
families are uniquely determined by the total concentration far away—the background
concentration. We establish these results analytically through a geometric analysis of
a three-dimensional ordinary differential equation. Our argument uses perturbation
theory to determine the local existence of these families near two critical solutions of
uniform concentration. From here, we exploit the spatial reversal symmetry of this
equation to get global existence. In addition, we consider solutions of two uniform
concentrations that meet at a localized interface, which we refer to as a front solution.
We found that if front solutions exist—and they do in certain parameter regimes—
then the two families of cluster and gap type solutions limit on a unique front solution.
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Family of cluster type solutions

Figure 2: A sample of the results of a numerical continuation experiment used to
compute a family of cluster type stationary solutions for γ = 1/16, with ρ denoting
the total concentration u + v and x denoting the spatial variable. By considering
these solutions on the half domain, we observe convergence to a front.
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We supplement this analysis with numerical solutions of cluster and gap type so-
lutions. We describe these methods in section 3, and present the results of these
computations with discussion is in section 4. First, we implement numerical continu-
ation code to find both families of solutions as a function of the background state. We
observe that as the background concentration of the peak solutions lowers, the peak
broadens to a plateau, and the width of these plateaus grows to infinity. See figure 2
for a sample of such a cluster computation. Our computations show convergence of
the cluster solution to a front solution reflected about an arbitrary point. We found
that the gaps converge to the same front type solution, albeit reflected in the opposite
way.

To understand the stability of the clusters, gaps and fronts, we implement code to
compute the spectrum of the PDE linearized about the numerical solutions from the
continuation code. Specifically, we linearize the PDE about a profile to get a second
order linear PDE with non-constant coefficients in x. Then, we look for solutions with
ansatz eλt(u(x), v(x)) to this linearized equation. This gives us an eigenvalue problem,
where eigenfunctions with Re(λ) > 0 correspond to unstable perturbations of the
profile of interest. Upon discretizing our domain, this infinite dimensional eigenvalue
problem becomes finite dimensional and amenable to computational methods. This
numerical work suggests that cluster, gap and front solutions are generally stable for
γ / 1/16. By combining this numerical and analytical work, we demonstrate how
this minimalist model exhibits clustering behavior.

2 Mathematical analysis

Our theoretical results are central to motivating and understanding the significance
of numerical results. We shall begin with three loosely stated result. These proofs
use the technical language of mathematics out of necessity. However, the primary
techniques are the analysis of ODE, perturbation, the use of upper bound estimates,
and symmetry in 3-space, which should all be fairly familiar to physicists. Our results,
stated informally, are:

Result 1. When γ is sufficiently small, the model has a family of stationary solutions
that represent spatially symmetric clusters of total bacterial concentration, as well as
a family of stationary solutions that represent spatially symmetric gaps in bacterial
concentration. In both cases, these solutions are uniquely determined (up to spatial
translation) by the concentration at infinity, or background concentration.

Result 2. These two families of solutions can be thought of as single family, con-
nected by a solution representing two different background concentrations meeting at
an interface where the concentration increases or decreases suddenly in x over a small
distance.

In the language of dynamical systems, the clusters and gaps are homoclinic. Ho-
moclinic solutions converge to a constant solution (i.e. equilibrium) in the limit
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|x| → ∞. The fronts are similar in that they limit on constant solutions for large
|x|, but these solutions are different between x = ∞ and x = −∞. Such solutions
are called heteroclinic. In other words, homoclinic solutions begin and end at a single
equilibrium solution, whereas heteroclinic solutions connect two different equilibria.
Thus, we could restate results 1 and 2 as follows: there are two families of homoclinic
solutions connected by a heteroclinic solution.

2.1 Observations for general tumbling rates

As noted in the introduction, our model adheres to a very strict symmetry by inter-
changing u with v and x with −x. Because this symmetry holds for general tumbling
rates, we shall only assume that r is a smooth function. In this section, we exploit
this symmetry to demonstrate that bounded stationary solutions to equation (2) must
come in one of three flavors: homoclinic, heteroclinic, or periodic.

This restriction especially manifests for stationary solutions. Setting m = u − v,
we can cast our problem in terms of the transformed coordinates (ρ,m) instead of
(u, v):

∂ρ

∂t
= ε2

∂2ρ

∂x2
+
∂m

∂x
,

∂m

∂t
= ε2

∂2m

∂x2
+
∂ρ

∂x
+mR(ρ,m).

(4)

where we have defined the

R(ρ,m) = (−2r(u, v) + 2r(v, u))/m. (5)

As an aside, observe that when spatial derivatives are small, we have

m(x, t) ∼ m(0, x) exp

(∫ t

0

R(ρ(x, t),m(x, t)) dt

)
. (6)

Hence, we can view R as a growth rate of the disparity between u and v. Since
states that favor one population strongly over the other (i.e. |m| � 0) feature net
movement of concentration, we expect that large and positive values of R should lead
to instabilities in stationary solutions, while negative R should favor stability.

Note that 0 = m = u − v solves r(u, v) − r(v, u) = 0, so as long as r is smooth
in each variable, we can smoothly extend the function R(ρ,m) = (−2r(u, v) +
2r(v, u))/m to values where m = 0. So, we assume that R is sufficiently smooth
everywhere on the plane (ρ,m) ∈ R2. Moreover, R is even in m, since exchange of u
and v manifests as a sign change in m.

We first restrict our analysis to stationary solutions ∂t(ρ,m) = 0. Then ρx +m is
equal to a constant, which we will call θ. Then, m = θ − ρx, so we can refactor our
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equation as a third-order ODE in ρ:

−ε4ρ′′′ + ρ′ + (θ − ε2ρ′)R(ρ, θ − ε2ρ′) = 0. (7)

where primes denote x derivatives. As mentioned in the introduction, we now see
how the absence of diffusion leaves us with trivial stationary solutions. In the case
ε = 0, our ODE becomes

ρ′ = −θR(ρ, θ). (8)

Such first order equations are only capable of having constant, strictly increasing,
or strictly decreasing solutions. This is in contradiction to the stationary clustering
behavior we wish to model.

Throughout the remainder of this report, we shall only consider the case of ε = 1
and θ = 0, giving the third order ODE

ρ′′′ = ρ′(1−R(ρ, ρ′)). (9)

Alternatively, we can regard this third order equation as a system of three first order
ODE by setting ρ′ = σ and ρ′′ = τ . This gives us the system

d

dx

ρσ
τ

 = F (

ρσ
τ

) =

0 1 0
0 0 1
0 0 0

ρσ
τ

+

 0
0

(1−R(ρ, σ))σ

 (10)

This equivalent form of the equation, though less convenient to write out, has two
major advantages: first, now we can reason about solutions to equation (9) as curves
or trajectories in 3d space. In decomposing this system into linear and nonlinear
parts, we already get a sense of how the system behaves when linearized about a
constant solution where σ = τ = 0.

Observe that if ρ(x) is a solution to equation (9), then ρ(−x) is also a solution.
This is a manifestation of the same symmetry outlined in the background, were we
exchange u and v and negate x. We can state this symmetry another way, in view
of the phase space of equation (10): define S : R3 → R3 by (x, y, z)T 7→ (x,−y, z)T .
Then denote the plane of fixed points of S by Fix(S) = {(x, 0, z)T |(x, z) ∈ R2}.
Then if Ψ = (ρ, σ, τ)T solves equation (10), we have that SΨ(−x) is also a solution.
In other words, ρ(x) is necessarily an even function about any critical point. Observe
that any function that is even about at least two distinct points must be periodic.
Thus, any ρ(x) is either periodic, even about exactly one point, or is strictly increasing
or decreasing. This gives us fairly strong information about the nature of bounded
solutions. We summarize this information with a rigorous proof in the following
Lemma.

Lemma 1. A non-constant solution Ψ = (ρ, ρ′, ρ′′)T = (ρ, σ, τ)T to equation (10)
cannot have more than two intersections in the fixed point subspace of S. The solution
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Ψ has two intersections if and only if it is periodic. If Ψ is bounded and not periodic,
then it has zero intersections if and only if it is heteroclinic, and one intersection if
and only if it is homoclinic.

Proof. Take Ψ to be any (possibly unbounded) non-equilibrium solution to equation
(10). Then denote Ψ̄ = (ρ̄, ρ̄′, ρ̄′′)T where Ψ̄(x) = SΨ(−x). Then if Ψ(x0) intersects
Fix(S)), it follows that Ψ(x0) = Ψ̄(−x0). By uniqueness of solutions, Ψ̄(x − x0) =
Ψ(x+ x0). Thus ρ(x0 − x) = ρ(x0 + x), i.e. ρ is even about x0.

First suppose that Ψ intersects Fix(S) at least twice. Then there exists x1 < x2
such that Ψ(x) ∈ Fix(S) when x ∈ {x1, x2} and Ψ(x) 6∈ Fix(S) for x ∈ (x1, x2). Since
ρ is even about x2, we have that (ρ(x1), ρ

′(x1), ρ
′′(x1))

T = (ρ(2x2 − x1),−ρ(2x2 −
x1), ρ

′′(2x2−x1))T ). Since ρ′(x1) = 0, it follows that Ψ(x+x1) = Ψ(x+ 2x2−x1) for
all x, thus showing periodicity. Furthermore, because ρ′(x) > 0 for all x ∈ (x1, x2), it
follows that 2(x2− x1) is the smallest possible period. The converse trivially follows.

We now consider the case of bounded Ψ with less than two intersections with
Fix(S). Equivalently, ρ only has two critical points. Therefore the limits ρ∞ =
limx→∞ ρ(x) and ρ−∞ = limx→−∞ ρ(x) exist, i.e. Ψ is either heteroclinic or homoclinic.

Consider the case of one intersection. Then ρ is even about some point, so ρ∞ =
ρ−∞. Conversely, if ρ∞ = ρ−∞ and ρ had no critical points, then ρ is constant.
Therefore, ρ must have one critical point.

When Ψ has zero intersections, ρ is strictly monotone in x. Thus ρ∞ = ρ−∞. The
converse follows from deduction.

Figure 3: Homoclinic trajectories in phase space (black), their projections onto the
ρ-ρ′ plane (red) and the region G in the ρ-ρ′ plane (blue) for γ = 1/16 and µ = 1.
The plane Fix(S) is shown in pink. See Section 4.1 for details on how these solutions
were found numerically.

2.2 Head-on sensing

We now limit our analysis to the tumbling rate described in the introduction, r(u, v) =
u(µ + v2/(1 + γv2)). If an explicit integral to equation (9) exists with this tumbling
rate, we do not know it. Despite this, the system still respects the symmetry outlined
in the previous section 2.1 and Lemma 1.
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We compute R explicitly with this tumbling rate

R(ρ,m) = −2µ+ 2
4(ρ2 −m2)− γ(ρ2 −m2)2

16 + 8γ(ρ2 +m2) + γ2(ρ2 −m2)2
. (11)

Now that we have a particular definition for R, we again consider the equation (9)
We use the coordinates (ρ, σ, τ)T when considering solutions as trajectories in phase
space. Equilibrium for equation (10) exist on the line (ρ, σ, τ)T ∈ span((1, 0, 0)T ).
Linearizing about such a constant equilibrium solution ρ(x) = ρ∞, the Jacobian
matrix is

J =

0 1 0
0 0 1
0 1−R(ρ∞, 0) 0

 (12)

For γ < γ∗ := (4 + 8µ)−1, R(ρ∞, 0) − 1 has only two positive roots ρ±. These are
given by the formula

ρ2± = 4
1− γ − 2γµ±

√
1− 4γ − 8γµ

2γ + γ2 + 2γ2µ
. (13)

Importantly, R(ρ, 0) is positive within (ρ−, ρ+), and negative for all other values of
ρ > 0. This amounts to J having eigenvalues 0, η, and −η where η is imaginary when
ρ ∈ (ρ−, ρ+) and real otherwise.

The special case of ρ = ρ± leaves us with a degenerate Jacobian with eigenvalue
0 repeated thrice. At these points, the we lose the existence of stable or unstable
manifolds and higher order nonlinear terms of the Taylor expansion of R become
significant in the context of perturbation. The leading order happens to be (ρ−ρ±)2σ,
for which we can compute explicit homoclinic solutions. To make analysis of this
Taylor expansion rigorous, we rescale ρ and x by powers of a constant ε in a way
that gives us only the leading order term when we set ε = 0. Then, by showing
that these homoclinic solutions persist for small ε > 0, we can undo the rescaling
and conclude that small homoclinic solutions for equilibria near ρ± exist. However,
generally perturbative arguments like these can only explain the behavior of the ODE
on small intervals, whereas a solution being homoclinic is a statement about the ODE
on the whole domain. To get the desired global result, we utilize the implicit function
Theorem (see Appendix), the reflective symmetry of the ODE, and a technical result
regarding the smoothness of stable manifolds in parameters due to Hale [13]. The
result, with its rigorous proof, is as follows:

Theorem 1. There exist two families of homoclinics for equation (9) when γ > 0 is
sufficiently small. Specifically, for δ > 0 small enough, the equilibrium (ρ, σ, τ)T =
(ρ± ± δ, 0, 0)T has a homoclinic orbit.

Proof. The proof for homoclinics near ρ− is nearly identical to that of ρ+. For this
reason, we omit the proof for ρ−.
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Since R is locally analytic everywhere in R3, we use its Taylor expansion about
(ρ, ρ′) = (ρ+, 0):

ρ′(R(ρ, ρ′)− 1) = α1,0(ρ− ρ+)ρ′ +
∑

j≥2,k≥0

αj,k(ρ− ρ+)j(ρ′)2k+1. (14)

We have omitted some terms, exploiting the fact that R is even in ρ′. Importantly,
α1,0 = ∂a(1 − R(a, 0)|a=ρ+ > 0 and so (ρ, ρ′, ρ′′)T = (ρ+ + δ, 0, 0)T gives a hyperbolic
equilibrium. We then set εψ(

√
εα1,0x) = ρ(x) − ρ+ for any ε > 0. We shall denote

our new spatial variable ξ =
√
εα1,0x. Under this change of variables, only the lowest

order term survives in the limit ε→ 0:

ε5/2α
3/2
1,0 ψ

′′′ = ε5/2α
3/2
1,0 ψψ

′ +
∑

j≥2,k≥0

αj,kε
j+3k+3/2α

k+1/2
0,1 ψj(ψ′)2k+1

⇔ ψ′′′ = ψψ′ +
∑

j≥2,k≥0

αj,kε
j+3k−1αk−10,1 ψ

j(ψ′)2k+1 = ψψ′ +O(ε)
(15)

Formally, we set ε = 0 to get a truncated equation ψ′′′ = ψψ′, for which unique
homoclinic orbits exist for each equilibrium along the line span(1, 0, 0)T in phase
space. These solutions have the explicit form

ψ(ξ) = ψ∞(1− 3sech2(ψ1/2
∞ ξ/2)) (16)

where lim|ξ|→∞ ψ(ξ) = ψ∞ > 0. We shall show that homoclinic orbits exist within
some neighborhood of ε = 0, so that our change of variables is well-defined.

Using the Stable Manifold Theorem, we have that (ψ∞, 0, 0)T has an unstable
manifold that varies smoothly (at least continuously differentiable) in ε [13]. We
regard this manifold W u(ε) as a curve c(ε, q) in R3, continuously differentiable both
in ε and a parameter q ∈ R. Define F ((q, r, s); ε) = c(q; ε) − (r, 0, s). We know
Wu(0) intersects the plane Fix(S) transversely. Hence there exists (q0, r0, s0) for
which F vanishes and has a nonsingular Jacobian. Then, by the implicit function
theorem, there exists a neighborhood of ε = 0 such that we write q = q(ε) where
c(ε, q(ε)) intersects Fix(S) transversely. By taking this neighborhood to a subset
neighborhood, we ensure that c(q; ε) does not intersect at the axis of equilibria. Thus,
trajectories in this branch of Wu(ε) shall not converge to another equilibrium, and
must pass transversely through Fix(S). As equation (15) respects the same symmetry
as equation (9), we have that lim|ξ|→∞Φ(q(ε), ξ) = (ψ∞, 0, 0)T .

Hereafter, we shall refer to the homoclinic solutions with a global minimum as
“gaps” and those with a global maximum as “clusters.” As shown in Section 2.1, the
symmetry (x, u, v) 7→ (−x, v, u) vastly restricts the complexity of spatial dynamics.
By considering the concavity of the homoclinics and the nature of the nonlinearity,
we deduce further restrictions. We define G = {(a, b)T | R(a, b) > 1, a > 0}. Then if
ρ > 0, we have that (ρ(x), ρ′(x)) ∈ G if and only if sgn(ρ′′′(x)) = −sgn(ρ′(x)). Then
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any local maximum of ρ′(x) must occur when Ψ(x) ∈ G× {0}. We present a cluster
and gap solution as a trajectory in phase space together with the region G in figure
3 for γ = 1/16 and µ = 1.

Lemma 2. Let 0 < γ < γ∗. Then the set of bump solutions with equilibria in [0, ρ−)
has bounded and continuous first, second and third derivatives (i.e. ρ ∈ C3(R))
independently of ρ∞.

Proof. Observe that −2µ− 2/γ ≤ R(a, b) ≤ −2µ + 1/γ for all a, b. We define M :=
2(µ+1/γ) to get the bound |1−R| ≤M . By computing ∂G = {(a, b)T | R(a, b) = 1},
the reader will also find that G is bounded.

Now, set ρ(x) to be a cluster solution to the equilibrium ρ∞. We first show that
ρ′ is bounded. Before ρ attains its maximum, it has an inflection point at xi < 0.
Then ρ′′′(xi) < 0, so (ρ, ρ′)T (xi) lies in the bounded open set . Take K > 0 such that
G ⊆ [−K,K]2. Since ρ′(xi) is the maximum value of ρ′, it follows that ρ′ ≤ K for all
ρ∞. The symmetry requires that maxx∈R ρ

′(x) = −(minx∈R ρ
′(x)), so ρ′ ≥ K. This

implies that |ρ′′′| < KM .
The bound |ρ′′(x)| ≤ M(ρ(x) − ρ∞) implies that if ρ(x) is bounded from above,

then ρ′′ is also bounded. To show ρ is bounded from above, we argue by contradiction:
suppose there was a homoclinic for which ρ exceeds any arbitrary N . In particular,
ρ(x) > N for all x in some ball B(0, xN). In the limit a → ∞ when b is bounded,
R(a, b) → −2µ − 2/γ. Hence, taking N to be large enough, we have that ρ′′′(x) >
(1+2µ+2/γ−1/2)ρ′(x) for all x ∈ (−xN , 0). Define Cγ = 1/2+2(µ+1/γ). We exploit
our assumption further to find solutions for which ρ(0) > αN and ρ(−xN) = N for any
α > 1. Then ρ′′(0)− ρ′′(−xN) > Cγ(α− 1)N . Moreover, ρ′′(−xN) > −M(N − ρ∞) >
−MN . Then ρ′′(0) > Cγ(α− 1)N −MN . Then, by taking α > (Cγ +M)/Cγ, we get
ρ′′(0) > 0, which is a contradiction. Thus ρ is bounded from above, which implies ρ′′

is bounded from below. In summary, ρ, ρ′, ρ′′ and ρ′′′ all have bounds independent
on ρ∞.

Theorem 2. Let S be the set of all equilibria in (0, ρ∞) with cluster solutions. Then
if ρ∗− ∈ (∂S) \ {ρ−}, there exist two positive heteroclinic solutions ρ∗(x) and ρ∗(−x)
connecting equilibria ρ∗− to ρ∗+ ∈ [ρ+,∞).

Proof. Since ρ∗− lies in (−ρ−, ρ−), it has an unstable manifold. Let ρ∗(x) be a solution
along the unstable manifold such that limx→−∞(ρ∗)′(x) > 0. Then, ρ∞ ∈ (ρ∗−, b) have
a cluster ρ(x) with ρ′(0) = 0. We have that the unstable subspaces for the linearization
about equilibria in (0, ρ−) vary smoothly in ρ∞ within a neighborhood of (ρ∗−, 0, 0)T

in phase space; we use this fact, along with smoothness on initial conditions, to get
the following continuity result: For any xf < 0 and ε > 0, there exists an x0 and
δ > 0 such that for all ρ∞ ∈ B(ρ∗−, δ), ‖ρ∗(x) − ρ(x − x0)‖C2(−∞,xf ] < ε. Thus, by
the preceding Theorem, it follows that ρ∗ is also bounded. But, ρ∗ is neither periodic
nor homoclinic, so it must be heteroclinic. Moreover, ρ∗(x) must have at least one
point of inflection. One can show that G ⊆ (ρ−,∞) × R. Thus ρ∗(x) > ρ− for all
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x large enough. Since limx→∞ ρ
∗(x) cannot be a elliptic equilibrium, we have that

limx→∞ ρ
∗(x) ≥ ρ+.

Loosely, this Theorem states that “homoclinics limit on heteroclinics as one varies
the background state ρ∞.” This observation forms the basis for the numerical contin-
uations of Section 4. This corollary also gives us a sufficient condition for the existence
of a heteroclinic: choose ρ∗− ≥ 0 such that ρ∞ has a cluster for all ρ∞ ∈ (ρ∗−, ρ−).
Then if we choose ρ∗− to be as small as possible, ρ∗− has heteroclinic solutions.

This corollary begs the question of the existence of heteroclinics. Showing their
existence for all 0 < γ < γ∗ will require a more delicate argument than presented
here, but we show their existence for γ bounded away from zero. To do this, it suffices
to show that the largest interval (ρ∗−, ρ−) for which all ρ∞ ∈ (ρ∗−, ρ−) is bounded away
from −ρ− (and ideally nonnegative in view ρ representing a concentration).

First, while this system has no obvious first integral, we do have what one might
call an approximate first integral. Take any function Q(ρ) such that Q(ρ) ≥ R(ρ, ρ′)
for all ρ, ρ′. Then if ρ(x) → ρ∞ as x → −∞ and ρ is strictly increasing on x ≤ xf ,
we have ρ′′ ≥

∫ ρ
ρ∞

1−Q(a)da for all x ∈ (−∞, xf ). Multiplying by ρ′ and integrating

in ρ once more, we get an explicit bound on ρ′:

ρ′ ≥

√
2

∫ ρ

ρ∞

∫ b

ρ∞

1−Q(a) da db =: q(ρ) (17)

Thus, if G ⊆ {(a, b)T | |b| ≤ q(ρ), a > ρ∞} =: B, then (ρ, ρ′)T never enters G and so
ρ′′′ > 0 for all x < xf . In such a case, ρ′′(xf ) is never zero. This implies ρ′′(x) > 0 for
all x where ρ is defined, and likewise for ρ′. Thus ρ(x)→∞ in finite or infinite x.

To get nonnegative solutions, we set ρ∞ = 0. The simplest nontrivial candidate
for an upper bound Q is

Q(ρ) = −2µ+ ρ2/(2 + γρ2). (18)

Although we can use more sophisticated bounds using local maxima of R, this ap-
proach affords no great advantage over the bound (18) once γ becomes small. The
full computation of q(ρ) is

q(ρ) =
1

γ

√
ρ2(2γ2µ+ γ2 − γ) + 2 log

(
2

γρ2 + 2

)
+ 2
√

2γρ arctan

(√
γ

2
ρ

)
. (19)

Meanwhile, m̄(ρ) := sup{m | (ρ,m) ∈ G} is given by

m̄(ρ) =

√
ρ2 −

4(2µ+ γ + 1)− 4
√

1− γ3(2µρ+ ρ)2 − 2γ2(2µ+ 1)ρ2

2γ2µ+ γ2 + 2γ
. (20)
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We show a sample of plots of the the regions G and B for a few values of γ and µ = 1,
Our plots suggest that B ⊆ G whenever γ ∈ (γ0, 1/12), where γ0 ∈ (1/18, 1/17).
For all smaller γ, we found that G 6⊆ E. This is not surprising: when γ = 0, G is
unbounded, yet B is bounded.
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Figure 4: Plot of the boundaries of B and G in the ρ-ρ′ plane for µ = 1.

To complement this graphical argument, we provide a more rigorous (but less
explicit or geometric) argument for the existence of heteroclinics when γ < γ∗ is in
a neighborhood of γ∗. Once again we prove the existence of unbounded increasing
solutions along the unstable manifolds of equilibria ρ∞ ∈ [0, ρ−). Take ρ(x) to be an
unstable solution to ρ∞ with ρ′ > 0 for all sufficiently negative x. This solution is
unique up to translation in x. As the region G is empty for γ ≥ γ∗, ρ(x) is necessarily
increasing and concave up for all x. Thus, for such γ, ρ is unbounded. Then take
γ1 ∈ (0, γ∗). Choose an equilibrium such that 0 ≥ ρ∞ < infγ1≤γ≤γ∗ ρ−. Next, set
ā = sup{a | (a, b) ∈ G, γ1 ≤ γ ≤ γ∗}, i.e. a right bound on G in the plane for all
γ ∈ (γ1, γ

∗). We have that ρ(x) > 2ā for all sufficiently large x. Since the flow is
continuous in γ, there exists a γ2 ∈ (γ1, γ

∗) such that (ρ, ρ′, ρ′′)T enters a compact
subset of (ā,∞)×R+×R+ for all γ ∈ (γ2, γ

∗). This implies that ρ has positive first,
second and third derivatives for all later x, giving unboundedness.

3 Numerical Methods

Although we found existence of families of cluster and gap solutions, as well as partial
existence of front solutions in Section 2.2, these purely theoretical results only paint
a vague picture of the geometry of these types of solutions. Moreover, we do not
report any results on stability of such solutions in the present paper. So, we use nu-
merical tools to analyze the homoclinic and heteroclinic solutions. We use numerical
continuation in two different contexts, as described in Section 3.1: first, to compute
families of clusters and gaps for fixed γ in the limit as the background concentration
ρ∞ approaches that of a front; second, to compute fronts in the limit γ → 0. In Sec-
tion 3.4, we describe how we solve the eigenvalue problem of determining stable and
unstable modes of equation 2 linearized about the concentration profile of interest.
In Section 3.5, we describe how we further demonstrate the stability of solutions by
applying small perturbations of the eigenmode with the largest growth rate.
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3.1 Numerical continuation

To find cluster solutions numerically, we use numerical continuation methods. In
short, numerical continuation is a method to solve the following problem: suppose we
have a function fc : Rn → Rn with the family of solutions Uc to the equation

fc(Uc) = 0. (21)

If we knew Uc for some c, we wish to find a Uc′ for c near c′, then a single iteration
of Newton’s method would give us a reasonable guess

Uc′ ≈ Uc − (Dfc′)
−1fc′(Uc). (22)

Then, to find solutions Uc for a range of c ∈ (a, b), we can use this method by starting
with a, and incrementing c a small amount iteratively through the interval (a, b),
computing Uc at each step using Newton’s method. Specifically, given a sequence
of parameter values ck = a + δk with δ small, we compute the Ucn iteratively by
Ucn+1 = Ucn − (Dfcn)−1fcn+1(Ucn). We use two different variations of this algorithm
in the continuations of homoclinic and heteroclinic solutions to the ODE.

3.2 Homoclinic continuation

We begin with a constant stationary solution ρ± given by equation (13). Using
equation (14), we see that if we assume ρ′ is small and ρ is sufficiently close to ρ±,
then this equation admits the approximation

ρ′′′ = ρ′(1−R(ρ, ρ′)) ≈ −α1,0(ρ− ρ±)ρ′. (23)

Hence, after translating ρ and rescaling x in the same way as in the proof of Theorem
1 (with ε = 1), we expect that ρ is approximated by (16) when ψ∞ is small. This
constant α1,0 can be easily estimated, since it is just the partial derivative ∂ρR(ρ, ρ′)
evaluated at (ρ, ρ′) = (ρ±, 0). This should give us a good initial guess for a member
of the family or cluster or gap solutions, that is, solutions near ρ+ gives us gap type
solutions, and solutions near ρ− give us cluster type solutions.

Using this explicit approximation for a homoclinic cluster or gap type solution,
we use a continuation method to compute solutions (ρ, σ, τ) of equation (10) with
the background concentration c = ρ∞ as our parameter. We compute the homoclinic
profiles on the spatial domain [0, L], where L is sufficiently large and the unique ex-
treme value of the homoclinic is located at x = 0. At x = L, we want the homoclinic
solution to behave like a solution close to the hyperbolic equilibrium (ρ∞, 0, 0). To
do this, we linearize equation (10) about (ρ∞, 0, 0) to get the Jacobian matrix of
equation (12). Then (in view of the Stable Manifold Theorem), (ρ− ρ∞, σ, τ) should
asymptotically approach the stable subspace of the ODE u′(x) = Ju(x) as x → ∞.
In practice, this means (ρ(x), σ(x), τ(x)) approaches (ρ∞, 0, 0) + e−λxuλ as x → ∞,
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where λ > 0 and uλ is some eigenvector satisfying Juλ = −λuλ. Then, the projection
of the normalized (ρ(x), σ(x), τ(x))− (ρ∞, 0, 0)T onto the orthogonal complement of
span(uλ) should be approximately 0. To ensure that our solution has this asymp-
totic property, we employ the (often neglected) linear algebra fact that the subspace
(span(uλ))

⊥ is generated by the left eigenvectors of J with eigenvalue not equal to λ.
Thus, after computing the two left eigenvectors v and w with eigenvalue not equal
to λ, we set our right boundary conditions

〈v, (ρ(L)− ρ∞, τ(L), σ(L))〉 = 0

〈w, (ρ(L)− ρ∞, τ(L), σ(L))〉 = 0.
(24)

As long as L is taken to be large, these three boundary conditions will admit solutions
that approach the equilibrium ρ∞ for large x. Since we know ρ is even about any
extreme value (in our case, ρ at x = 0), we easily extend (ρ, σ, τ) to values of x in
[−L, 0] to get a homoclinic solution.

Using a sufficiently small grid size δx = L/N , we approximate solutions (ρ, σ, τ)
on the grid {0, δx, 2δx, . . . , Nδx}. We shall use the vectors r = (r0, . . . , rN)T , s =
(s0, . . . , sN)T and t = (t0, . . . , tN)T , where rk, sk, tk approximate of ρ(kδx), σ(kδx)
and τ(kδx) respectively. We then define a function fc : R3(N+1) → R3(N+1) such that
our approximation Uc = (r, s, t)T is valid according to the differential equation (10)
and the boundary conditions described earlier.

We use the trapezoidal rule finite difference scheme. To do this, we define two
N × (N + 1) matrices M and D:

M =
1

2


1 1 0 0 . . . 0
0 1 1 0 . . . 0
...

. . .
...

0 . . . 0 0 1 1

 ;D =


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

. . .
...

0 . . . 0 0 −1 1

 . (25)

In other words, M gives you the mean of two adjacent elements of a vector, whereas
D gives you the difference. Then we define the first 3N components of fc by concate-
nating the three vectors

Ms− (δx)−1Dr,

Mt− (δx)−1Ds,

M(s0(1−R(r0, s0)), . . . , sN(1−R(rN , sN)))T − (δx)−1Dt.

(26)

The remaining three components of fc are functions that equal 0 when the bound-
ary conditions are satisfied. To ensure the first derivative of our approximation of ρ
is zero, we set one of these remaining components to f 3N+1

c = s0. After computing
the 3-vectors v,w, the left eigenvectors of J with nonnegative eigenvalue, the right
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boundary conditions are

f 3N+2
c = 〈v, (rN − c, sN , tN)T 〉,

f 3N+3
c = 〈w, (rN − c, sN , tN)T 〉.

(27)

where we recall that c = ρ∞ is the desired value of ρ at infinity. This completes our
definition of f 3N+3

c .
The most rudimentary form of continuation described at the beginning of this

section is insufficient for this problem. Specifically, Dfc quickly becomes singular
as c approaches the background equilibrium of a heteroclinic profile, meaning small
changes in c result in large changes of the solution Uc. To circumvent this issue, rather
than try to find curves parametrized by ρ∞, we instead try to find a parametrized
curve (c(s), U(s)) for which H(c(s), U(s)) := fc(s)(U(s)) = 0 at each point; now we
have a function H : RN+1 → RN which has full rank, and so H−1(0) should be a
regular curve. This way, the family of solutions U does not need to be in one-to-
one correspondence with the parameter c. The reader can find a description of this
algorithm, due to Herbert Keller [14], in the context of boundary value problems in
[15].

3.3 Heteroclinic continuation

Now, we take the limiting heteroclinic object of the family of homoclinic solutions
computed from the continuation of 3.3 on the half domain [0, L]. Now, we want to
compute these heteroclinics in the limit of γ → 0. To do this, we want to allow the
right and left boundary conditions to vary in γ as to preserve the heteroclinic struc-
ture. To do this, we define fγ : R3N+5 → R3N+5. This function takes as arguments
are the same (r, s, t) as in the previous section, plus two additional numbers ρ−∞ and
ρ∞ that define the two equilibria we want the heteroclinic solution to converge to on
the left and right respectively. The first 3N components of fγ are given by the finite
differences in equation (26). Now, we use the same finite difference scheme to define
the first 3N components of fγ. The next four components are defined by the projec-
tion boundary conditions described in the previous section. The final condition is the
phase condition that 〈sold, r− rold〉 = 0, where rold and sold are the values of r and s
from the previous computation, respectively. This condition constrains the degree of
freedom induced by the translational symmetry of the ordinary differential. In other
words, continuation will only change the shape of the front, and not translate it. For
this method, we apply the Newton-Euler method described in section 2 of [16]. We
choose values of γ that give

√
1/γ on a uniform grid.
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3.4 Linear stability eigenvalue problem

Having collected a variety of cluster, gap and front type solutions, we then use nu-
merics to determine their stability, or whether or not they will persist under small
perturbations. To determine the linear stability of the homoclinic and heteroclinic
profiles, we linearize equation (2) about such a stationary solution (u0(x), v0(x)) and
consider the effect of a small perturbation eλt(u(x), v(x)) that grows or decays expo-
nentially in time according to the rate λ. The linearized equation, after dividing out
eλt, is

λu =
∂2u

∂x2
+
∂u

∂x
− nu(x)u+ nv(x)v,

λv =
∂2v

∂x2
− ∂v

∂x
+ nu(x)u− nv(x)v

(28)

where we defined

nu =
∂

∂u
(r(u, v)− r(v, u)|(u,v)=(u0,v0) and nv =

∂

∂v
(r(v, u)− r(u, v)|(u,v)=(u0,v0). (29)

We use periodic boundary conditions on discretization of [−L,L] with L taken to
be sufficiently large. We use centered finite differences for first and second derivatives.
Then, equation (28) can becomes matrix eigenvalue equation A(u,v) = λ(u,v) where
A is a sparse matrix and u, v are the discretizations of u(x), v(x) respectively. Using
MATLAB’s eigs function, we compute the eigenvalues and eigenfunctions of this
problem for several points along the continuations of homoclinics and heteroclinics.

3.5 Direct simulation

Using the eigenvalue and eigenfunction data from stability computations, we further
analyze time stability through direct simulation in time. We reflect the homoclinic
or heteroclinic type solution about x = 0 to get an even stationary solution on the
domain [−L,L]. For our initial data, we apply a small perturbations to this profile
by its eigenfunction with largest Re(λ) from the linear stability computation. We use
MATLAB’s ode15s to perform numerical time integration of the original PDE (2) on
a discretized spatial domain to solve the initial value problem. We use upwind and
downwind finite differences for first spatial derivatives of v and u respectively, and
the centered finite difference for second spatial derivatives.

4 Numerical results & discussion

To summarize this study so far, in section 2, we developed the theoretical under-
standing of the run-and-tumble model as it pertains to the existence of stationary
clusters. We show the existence of these homoclinic positive bump solutions, which
we hypothesize correspond to the fruiting bodies formed by the myxobacteria. We
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also prove existence of gap and front type solutions. In section 3, we describe the
methods we use to find these solutions numerically, spanning continuation, solutions
to eigenvalue and eigenvector problems, and solving the initial value problem of the
PDE of interest. For all computations, we fix µ = 1. With the exception of the
continuation of heteroclinics in the limit γ → 0, we use the parameters γ = 1/16,
γ = 1/64 and γ = 1/256. For spatial plots of concentration profiles, we plot u in
blue, v in red and ρ in black.

In subsection 4.1, we provide the samples from the homoclinic continuation com-
putations, both as graphs of the concentrations u, v and ρ versus x, and as curves
(ρ(x), ρ′(x), ρ′′(x)) = (ρ(x), σ(x), τ(x)) existing in 3D space. In subsection 4.2, we
show the result of continuation of a front solution in the limit γ → 0. In subsection
4.3, we show the results of linear stability computations on cluster, gap and front
solutions found numerically from the continuations. Finally, in 4.4, we test this linear
stability with direct simulation by computing the time evolution of profiles perturbed
by eigenfunctions with largest growth rates. We discuss implications of numerical
results in subsection4.5

4.1 Homoclinic continuation

In figure 5, the reader will find samples of results from the continuation of homoclinic
solutions in the background concentration for the parameter values γ = 1/16, 1/64
and 1/256 respectively. Below the plots of ρ vs. x, the reader will find corresponding
plots of the trajectories of these solutions in the phase space of equation (10). We can
regard the collection of all these families as a parametrized surface in the variables
ρ∞ and x.

Taller and broader peaks correspond to solutions that had been computed later in
the continuation. The flat and broad peak most easily seen in the later computations
is characteristic of the front type solution. In later continuations, the background
concentration becomes fixed. Instead, we see the broadening of the gaps and troughs.

In the bottom four plots of figure 5, we observe convergence to front-like solutions,
with broad flat regions meeting at steep interface. In the phase plots, we see the corre-
sponding behavior. The final iterations of the continuation appear at the boundary of
the surface. Rather than having the geometry characteristic of homoclinic solutions,
i.e. a smooth closed loop that connects with itself at a single equilibrium, the later
iterations more closely resemble heteroclinic solutions, with open curves connecting
two different equilibria.

In figure 6, we use the continuation data to demonstrate convergence of both gaps
and clusters to front type solutions. Here, we see that the solutions begin at a pertur-
bation of a constant state. Over the course of the continuation, the clusters and gaps
converge to a state where the global maximums and global minimums coincide—these
global maxima and minima correspond to the equilibria connected by the heteroclinic
solution.
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γ = 1/16:

γ = 1/64:

γ = 1/256:

Figure 5: Spatial plots of cluster and gap solutions, with associated phase portraits
for γ = 1/16, 1/64, 1/256 with dx = 0.01, 0.025, 0.01 respectively. In the 2D plots, we
plot u in blue, v in red and ρ in black as functions of x. For the phase portraits, we
plot the trajectories (ρ(x), ρ′(x), ρ′′(x)) as black curves in 3D space. The collection
of these families form a surface in phase space, shown in rust red.
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Figure 6: Maxima of clusters and minima of gaps in the continuation, plotted against
the background state, for sample values of γ.

4.2 Heteroclinic continuation in the limit γ → 0

Now, we present the results of numerical continuation of the heteroclinic solutions in
the limit γ → 0. From Section 2.2, we know such solutions exist for 0 < γ∗ − γ �
1. In figure 7, we provide a selection of profiles from this numerical continuation,
accompanied by a plot illustrating the asymptotics of ρ under the limit γ → 0. If we
rescale ρ by ρ̃(x) =

√
γρ(x), we observe a simple asymptotic structure that appears

piecewise exponential—to illustrate this, we plot the logarithm of the rescaled profiles.
Within a 10−5 margin of error, the maximum of ρ

√
γ converges to

√
6. If we were to

formally set γ = 0, the resulting ODE for ρ̃ admits solutions of the form (ρ̃)2 = (ρ̃′)2.
Singular perturbation of this rescaled solution for small γ analysis may offer insight
into the asymptotics of this continuation in greater detail.
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Figure 7: Heteroclinic profiles are plotted as γ varies from γ = 1/13 to γ = 1/6639.
In the top two plots, we once again plot u in blue, v in red and ρ in black. The

plot of log
(
ρ
√
γ/6
)

exhibits the asymptotically simple structure of the heteroclinic.

Bottom left shows the actual computational domain with grid size dx = 0.088.

4.3 Linear stability of homoclinic and heteroclinic solutions

Utilizing the continuation data of the previous two sections, we compute eigenvalue
data using the method described in 3.4. In figure 8, we plot the 10 eigenvalues
with largest real part using the profiles shown in figure 5 against the background
concentration parameter ρ∞. Observe that the growth rates for γ = 1/64 and γ =
1/256 converge to nonpositive numbers, whereas positive growth rates persist in the
heteroclinic limit for γ = 1/16.

In figure 9, we provide the same eigenvalue plot, but for the heteroclinic contin-
uation on the left, with the fast convergence to a stable spectrum near γ ≈ 1/3.92

magnified. We complement this plot with another plot, shown to the right, where
we compare the two background concentrations of the front against the region where
constant solutions are linearly unstable. From [3], we have the explicit formula for
this region, given by the range

(

√
1− 2γ −

√
1− 8γ

2γ(1 + γ)
,

√
1− 2γ +

√
1− 8γ

2γ(1 + γ)
), (30)
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having set µ = 1. We observe that the the point where the fronts become stable
approximately coincides with the value of γ where the the front’s extreme values exit
the region of instability. We can reconcile this numerical observation with a loose
theoretical argument: at large spatial scales, we can approximate front solutions as

ρ(x) ≈

{
supx∈R ρ(x) for x < x0,

infx∈R ρ(x) for x > x0,
(31)

where x0 is an approximate location of the interface of the front solution. There-
fore, we expect that the stability of a front should coincide with the stability of the
solution’s extreme values.
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Figure 8: Spectra of clusters and gaps as functions of the background ρ∞, for various
values of γ. Note that eigenvalues with positive real parts exist for gaps and clusters
with large or small ρ∞, that is, near small-amplitude or heteroclinic limit, respectively.
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Figure 9: Left, we have the real part of the spectrum of the heteroclinics. Right, we
have the two background concentrations of the heteroclinics in black (numerically the
maximum and minimum of ρ(x), and the region where the corresponding constant
solutions are stable in pink. Computations here use grid size from the previous
heteroclinic continuation.

4.4 Direct simulation of perturbed stationary profiles

For the concluding section of the numerical results section, we provide several sam-
ples of simulations of equation (2) using cluster, gap and front profiles with small
perturbations in the direction of the most unstable eigenfunction. The first two sam-
ples, shown in figures 10 and 11, give examples of unstable cluster and gap profiles
for γ = 1/64. The modes, both with growth rate ∼ 1, appear as antisymmetric
and localized near the cluster or gap. These perturbations force the cluster or gap
to transition to diffusive traveling waves. In the case of the cluster (figure 10), the
bacterial population aligns its movement to the left, resulting in a diffusive traveling
wave. The gap (figure 11) exhibits similar behavior, although this time movement
aligns to the right, and the traveling wave broadens rather than shrinks. Contrary to
intuition, the traveling wave moves to the right despite the left moving u dominating
in the region where there is low concentration.
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Figure 10: Concentrations u, v and ρ are plotted in space and time (top), three
snapshots of the concentration profile with u, v and ρ plotted in blue, red and black
respectively (middle) and the normalized eigenfunction perturbation used (bottom).
Parameter values are γ = 1/64, and ρ∞ = 1.3115.
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Figure 11: Concentrations u, v and ρ are plotted in space and time (top), three
snapshots of the concentration profile with u, v and ρ plotted in blue, red and black
respectively (middle) and normalized eigenfunction perturbation (bottom). Again, we
plot u in blue, v red and ρ in black. Parameter values are γ = 1/64, and ρ∞ = 18.3805.

Following these two figures, we provide a similar set of plots in figure 12 for an
unstable heteroclinic solution at γ = 1/13.81. We reflect this solution about x = 0, to
get a broad cluster solution. Now, the perturbation is localized to the two interfaces of
the cluster. The perturbation to the right interface has significantly larger amplitude
than the left perturbation, indicating that the eigenvalue problem is degenerate and
the dynamics at the two interfaces are decoupled. This order of magnitude difference
has little effect on the growth of the instability over the course of the simulation, where
we see the two interfaces symmetrically transition into a state that favors either the
left or right moving population.
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Figure 12: Concentrations u, v and ρ are plotted in space and time (top), three
snapshots of the concentration profile with u, v and ρ plotted in blue, red and black
respectively (middle), and normalized eigenfunction perturbation (bottom). Again,
we plot u in blue, v red and ρ in black. Here, we use γ = 1/13.81.

In figure 13, we apply the same perturbation procedure to stable clusters. Again,
we use the eigenfunction with largest real part to perturb the profile. Showing the
time-evolution of the profile as we did for the unstable solutions is uninformative
here. So, we instead plot the logarithm of L2 (square integral norm) of (ut, vt),
demonstrating miniscule growth consistent with nearly zero eigenvalues. Observe that
in contrast to the antisymmetry of the unstable eigenfunctions, the eigenfunctions
here are symmetric. In figure 14, we give the same set of plots for the perturbation
of a stable front solution.
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function with largest growth rate (bottom) and decay of the growth of perturbation
by this eigenfunction as the logarithm of the L2 norm of (ut, vt) (top left). Again, we
plot u in blue, v red and ρ in black. Parameter values are γ = 1/64, ρ∞ = 1.3072.
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Figure 14: Top right is a plot of a reflected front solution with a stable spectrum
(top right), the eigenfunction with largest growth rate (bottom) and decay in time of
the growth of perturbation by this eigenfunction as the logarithm of the L2 norm of
(ut, vt) (top left). Again, we plot u in blue, v red and ρ in black. Here, γ = 1/21.41.
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4.5 Discussion

Our numerical results corroborate our theoretical observations. Beginning with the
continuations of clusters and gaps in Section 4.1, we verified that the families of
clusters and gaps begin with perturbations of constant solutions, and limit on a front
solution.

The remainder of our numerical results extend our analysis in two ways: first, we
have evidence for the existence of front solutions for small γ > 0 as in Section 4.2;
second, we have various simulations indicating the (in)stability of stationary solutions.
The eigenvalue computations of 4.3 suggest that the clusters, gaps and fronts generally
become stable for sufficiently small γ. Moreover, clusters and gaps appear to become
more stable as they approach the front limit (cf. figure 8). The subsequent direct
simulations of Section 3.5 provide some verification of the spectral computations,
with positive growth rates coinciding with instability, and nonpositive growth rates
coinciding with stability. The appearance of zero eigenvalues in the linear stability
eigenvalue problem indicates the potential for nonlinear instabilities. However, this is
not the case in the simulations we ran, with the growth of perturbations decaying over
long time intervals. Generally, it appears that instabilities arise from antisymmetric
modes that produce diffusive transport of concentration.

5 Conclusion

By only including diffusion and run-and-tumble dynamics to model the myxobacteria,
we demonstrate a minimalist picture of what drives the formation of fruiting bodies in
experiment. In section 2, we are able to establish the existence of stationary cluster,
front and gap type solutions by analyzing the spatial ODE of stationary solutions and
exploiting the symmetry inherent in the equation. We also see that these three types
of solutions belong to a larger family, in the sense that the cluster and gap solutions
both limit on a unique front solution. The numerical continuation experiments in
section 4 further demonstrate this phenomena. We also saw that the clusters and
gaps exist only below a critical value of γ. Seeing that nonlinearity of the tumbling
rate increases in significance as γ → 0, this serves as some verification that a nonlinear
tumbling rate is necessary in order to produce clustering.

Although our numerical and theoretical results are in accordance with our hopes
for this equation to model clustering, there are several questions that have not been
addressed here. Two of these pertain to analysis: first, we made no attempt at a
rigorous treatment of stability of these solutions. Second, although we have some
knowledge about the existence of fronts for γ less than and close to (8µ+ 4)−1, their
existence in the limit γ → 0 remains open.

From the perspective of modeling, this study may be unsatisfying in two ways.
First, our results are specific to a very particular tumbling rate. We have little reason
to believe that the tumbling rate takes on the form we prescribe here. Second, our
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model is hampered by being restricted to one spatial dimension, whereas the spatial
patterns of the myxobacteria clearly exist in (at least) two dimensions. The first of
these issues is largely superficial, as the perturbation and geometric techniques we
use here are general to a large class of turning rates. The second issue, on the other
hand, is far more imposing—even establishing a meaningful model in two-dimensions
is no easy task, since bacteria can move along any angle, rather than just left or right.
Nevertheless, our study provides confirmation that run-and-tumble dynamics coupled
with dampening via brownian motion are sufficient to produce structures resembling
the fruiting bodies shown in the introduction (figure 1). Given that these two features,
run-and-tumble and brownian motion, should manifest in more realistic models of M.
xanthus populations, we hypothesize that these mechanisms drive clustering of actual
cells.
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6 Appendix

Here, we provide two results that we use in Section 2.2. The first of these also
provides the theoretical basis for the continuation methods described in Section 3.1.
For a more general treatment of the same result, see [18].

Theorem (Implicit Function Theorem). Let Fc : Rn × R → Rn be a family of
functions that are continuously differentiable in the parameter c. Suppose there are
x0 ∈ Rn and c0 ∈ R such that Fc0(x0) = 0 and the Jacobian of Fc is invertible at x0.
Then there is a smooth curve x : I → Rn, where I is an interval neighborhood of c0,
such that x(c0) = x0 and Fc(x(c)) = 0 for all c ∈ I.

Next, we have the Unstable Manifold Theorem, adapted from Theorem 4.1 of [19].
We consider the ODE F (x(t)) = x′(t). We denote the Jacobian matrix of F at x by
DF (x). Loosely speaking, the Stable Manifold Theorem states that near an equilib-
rium point (which after translation, we fix to be the origin), the solution behaves like
a solution to the linear approximation of the ODE (given by DF (0)(x(t)) = x′(t)).
This Theorem provides the existence of the unstable manifold, or a set that converges
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asymptotically to the equilibrium solution in the limit t → −∞. In our application,
these manifolds are just a smooth curves in R3, as shown in figure 3.

Theorem (Unstable Manifold Theorem). Suppose the function F is a continuously
differentiable function from Rn to Rn and F (0) = 0. We then take x to be a solution
to the problem

F (x(t)) = x′(t) for all t ∈ R,
x(0) = x0,

where I is a neighborhood of t. We assume that, up to a change of basis, the Jacobian
matrix of F at 0 may be written in block diagonal form:

DF (0) =

(
S 0
0 T

)
where S is a k×k matrix and T is a l×l matrix (here, k+l = n). We suppose further
that there are constants a < b for which all eigenvalues of S have real part strictly
less than a, and eigenvalues of T have real part strictly larger than b. Finally, assume
that

∫
Rn ‖F (x)−DF (x0)x‖ dx is sufficiently small. Under these assumptions, there

exists a unique function α : Rk → Rl with bounded and continuous derivative Dα
with the following properties:

1. We have α(0) = 0, Dα(0) = 0. In other words, the tangent plane of α at 0
is given by the direct sum of eigenspaces of DF (0) whose eigenvalues have real
part less than a.

2. Suppose x0 is in the graph of α, i.e. x0 = (u0, α(u0)) for some u0 ∈ Rk. Then
x(t) is also in the graph of α for all t. Moreover, for all λ > a, there exists a
constant C such that

‖x(t)‖ ≤ C‖u0‖ exp(λt).

By replacing t with −t, we get the Stable Manifold Theorem, which provides the
same result but for solutions converging to 0 forward in time.
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