
WATER RESOURCES RESEARCH, VOL. 26, NO. 11, PAGES 2733-2740, NOVEMBER 1990 

Development and Testing of Single-Parameter 
Precipitation Distributions 

JOHN S. SELKER AND DOUGLAS A. HAITH 
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A general procedure was developed for calibrating multiparameter probability distributions of daily 
precipitation to single-parameter distributions. The approach uses monthly precipitation summaries 
and data from U.S. Weather Bureau Technical Paper 57 (Miller and Frederick, 1966). The three- 
parameter beta-P model of daily precipitation amount was calibrated for 33 sites east of the Rocky 
Mountains. The resulting single-parameter Weibull distribution and two other single-parameter 
precipitation distributions were compared with respect to their fit to Paper 57 summaries and historical 
daily precipitation records. The Weibull model was shown to yield significant improvement over the 
other models in reproducing precipitation probability distributions. 

INTRODUCTION 

Mathematical models of wet day precipitation amount are 
useful in a variety of water resource applications. When 
available, historical records of daily precipitation may be 
used to estimate parameters of appropriate probability dis- 
tributions. However, in many cases, these records are either 
inaccessible or nonexistent and information is limited to 

regional summaries of mean monthly precipitation and num- 
ber of wet days. In such situations, precipitation probability 
distributions based on a single parameter (mean wet day 
precipitation) are required [Haith, 1986; Richardson, 1985; 
Steenhuis et al., 1984]. 

The exponential distribution is probably the most widely 
used single-parameter distribution of daily precipitation 
amount [Todorovic and Woolhiser, 1974; Richardson, 1981; 
Pickering et al., 1988]. Although appealing for its simplicity, 
the exponential distribution has been recognized to under- 
predict extreme events, which is undesirable in many engi- 
neering applications [Skees and Sheriton, 1974; Pickering et 
al., 1988]. 

Single-parameter probability distributions can be derived 
by calibrating multiparameter distributions. For example, a 
special case of the beta-P distribution [Mielke and Johnson, 
1974] was calibrated to a single-parameter model by Picker- 
ing et al. [1988] based on 25 years of weather data available 
at three sites. This model was shown to provide consistently 
better results than the exponential distribution, particularly 
in the case of extreme event prediction for these sites. 

Calibration procedures based on historical records are of 
limited interest, since these same records would permit the 
direct use of the presumably more accurate multiparameter 
models. However, calibration from summarized precipita- 
tion data such as those contained in U.S. Weather Bureau 

Technical Paper 57 [Miller and Frederick, 1966] (subse- 
quently referred to as Paper 57) is also possible. This 
information was used in the present study to calibrate the 
three-parameter beta-P distribution to a one-parameter 
model which is a member of the Weibull family of distribu- 
tions. 

The research described in this paper had two major 
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objectives: (1) to illustrate the use of Paper 57 information to 
calibrate wet day precipitation probability distributions, and 
(2) to compare three single-parameter distributions, the 
exponential, Pickering et al. calibrated beta-P, and cali- 
brated Weibull. 

DERIVATION OF A WEIBULL DISTRIBUTION 

FOR DAILY PRECIPITATION 

Generalized Three-Parameter Beta-P Distribution 

A beta-P model has shown good potential as the basis of 
simple precipitation models. In addition to the useful prop- 
erties of having closed form expressions for the cumulative 
distribution and moments, it is invertible, and performs well 
in precipitation modeling [Mielke and Johnson, 1974; Pick- 
ering et al., 1988]. In its general form, the beta-P distribu- 
tion, which is also known as a Burr type XII distribution 
[Burr, 1942; Rodriguez, 1977; Tadikamalla, 1980], has three 
parameters, and is given by 

Fx(x) = 1 - [1 + (x/b)C] -a (1) 

for x -> 0. The moments of this distribution are 

E[X v] = abVl3[1 + v/c, a - v/c] (2) 

for -c < v < ac. Here, /3 represents the beta function 
[Abramowitz and Stegun, 1965]: 

r(r)r(s) 
/3(r, s)= (3) 

F(r + s) 

and F(.) is the gamma function. Thus the mean of the 
distribution is given by 

E[X] = abl3[1 + l/c, a - l/c] (4) 

For any values of a and c, and the mean daily precipitation 
[E(X)], the parameter b is given from (4) as 

b = E(X)/[al3(1 + l/c, a- l/c)] (5) 

Model Calibration 

Paper 57 provides the expected number of 24-hour pre- 
cipitation events exceeding 0.5, 1, 2, and 4 inches (1 inch - 
2.54 cm) in each month for the continental United States. 
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The primary source of data for Paper 57 was the records of 
648 weather stations, with records of over 18 years at 99% of 
these stations (most records were for the 30-year period 
1931-1960). Supplemental data were used from an additional 
556 stations. Thus the record includes one station per 6,500 
km 2 or an average distance between sites of about 80 km. 

The 24-hour event numbers in any month can be con- 
verted to daily numbers using the following regression 
equation from Paper 57: 

Nm(x) = Mm(x)/a (6) 

in which Nm(x ) and Mm(x ) are the expected numbers of 
daily and 24-hour events, respectively, exceeding x in month 
m and a = 1.2, 1.3, 1.4 for 0.5-, 1-, and 2-inch events, 
respectively. The 4-inch data were not used in this study, as 
the number of events of this size is only appreciable for the 
Gulf States. 

This information may be used to calibrate precipitation 
probability distributions. If Xm is precipitation amount on a 
wet day in month m, the probability of precipitation in 
excess of x is 

Pr{Xm > x} = 1 - Fxm(X ) (7) 

where Fxm(X) is the cumulative probability distribution for 
wet day precipitation amount. An estimate of the expected 
number of daily events exceeding x in month m, Nm(x)' , is 

Nm(x) '= nm[1 - FXm(X)] (8) 

in which n m is the mean number of wet days in month m. We 
have assumed that the distribution Fxm(X) is the same for 
each day in month m since weather summaries such as that 
of National Oceanic and Atmospheric Administration [ 1985] 
generally list only mean monthly data for n m and precipita- 
tion. The expected number of events of various sizes can be 
computed from (8) and compared directly with the values 
given in Paper 57. 

Paper 57 data were used to calibrate the beta-P model 
(equation (1)); 33 sites east of the Rocky Mountains were 
selected for this evaluation. These sites are listed in the 

appendix. The expected number of 24-hour events was read 
from the maps provided in Paper 57 and converted to 0.5-, 
1-, and 2-inch daily events using (6). 

The parameters a and c in (1) were calibrated by minimiz- 
ing two measures of fit: the mean squared difference between 
the model' s estimate and the reported number of storms, and 
a chi-squared measure of the error in fit. Model fit was 
studied for each storm size independently. The squared 
error, S(x), was calculated as 

1 

S(x) = 12(33• • [Nij(x) - Nij(x)'] 2 (9) ß . 

l,J 

in which No.(x) is the reported expected number of events of 
size x for site i and month j and Nij(x)' is the comparable 
estimated number of events as given by (8). By dividing each 
term of this sum by the expected number of storms, we 
obtain a chi-square measure: 

X2= 1 •[ [N•/(x)-Nij(x)']2] 12(33) i,j No(x) (10) 

The squared error criterion was selected to minimize large 
model errors. The chi-square measure has the advantage of 
normalizing the errors, so that sites with large expected 
storm counts do not dominate the sum. Also, for large 
sample sizes, the variances of minimum chi-square estimates 
converge to the Cramer-Rao lower bound [Bickel and Dok- 
sum, 1977]. Hence the chi-square estimator shares the 
asymptotic efficiency characteristics of maximum likelihood 
estimators [Moore, 1978]. 

Although not used in this study, a likelihood function can 
in principle be maximized to estimate the parameters a and 
c. Letting Tm be the total number of wet days over the period 
of record in month m at a site, and tm(X ) be the number of 
wet days in which precipitation exceeded x, the probability 
of the three observations tm(0.5), tm(1.0), and tm(2.0) is 

FXm(O.S)[rm- tm(O'5)][EXm (1.0) - Fx•(0.5)] [tm(0'5) - tin(1.0)] 

ß [Fx•(2.0 ) -- Fx•(1.O)][t•(1.0) -tin(2.0)][1 _ Fx•(2.0)]t•(2.0) 
(11) 

A likelihood function can be formed as the product of similar 
expressions for each site, month and precipitation threshold. 
The observation data Tm and tin(x) are not included in the 
Paper 57 summaries, but could be inferred from other 
sources. In general, it appears that maximum likelihood 
estimates would be most useful in calibrating distributions 
for specific months and sites using the raw observations of 
daily precipitation (rather than the Paper 57 summaries). 

Calculation of the modeled number of storms was carried 

out using equations (1), (5), and (8). Figures 1 and 2 show the 
squared error and chi-squared values with variation in 
parameter values, for 0.5-inch storms. Plots for other storm 
sizes have a similar structure, with minima following a 
well-defined path with increasing values of a. These results 
suggest that there is some best fitting asymptotic distribu- 
tion, as a approaches infinity. This limit was given by 
Rodriguez [1977] as 

Fx(x) = 1- exp {-[F(1 + 1/c)x/E(x)] c} (12) 

which is a member of the Weibull family of distributions. 
Although the Weibull distribution has often been dis- 

cussed in relationship to hydrometeorological data [Wong, 
1977; Mielke, 1979; Wilks, 1989], we are not aware of its 
previous use in modeling of daily precipitation. 

The parameter c affects the general shape of the distribu- 
tion as shown in Figure 3 for E(X) = 10 mm. Figure 4 shows 
the chi-squared and squared error for the Weibull distribu- 
tion for a range of c values. The two measures of error differ 
slightly in their minima. Regarding the chi-squared measure, 
it appears that a value of 0.78 gives a good fit to 1- and 2- inch 
events, with reasonable fit to the 0.5-inch events. In the case 
of squared error, a suitable value is c = 0.73. With c = 0.75 
the chi-squared and squared error measures are both nearly 
optimal for all three event sizes; thus this value was selected 
as the optimized value, resulting in the probability distribu- 
tion for wet day precipitation in month m given by 

Fx•(X) = 1 - exp [-(1.191x//xm•)m)m ø•75] (13) 

in which ].t m is the expected wet day precipitation in month 
m. 

in this calibration exercise a single value of the Weibull 
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Fig. 1. Squared error for 0.5-inch storms as functions of model coefficients for generalized beta-P distribution 
(equation (1)). 

Fig. 2. Chi-squared error for 0.5-inch storms as functions of model coefficients for generalized beta-P distribution 
(equation (1)). 



2736 SELKER AND HAITH.' SINGLE-PARAMETER DISTRIBUTIONS 

Probabil i t• CX <= x) 
1 

0.9. '• 

0.8 

o 
o lO 2o 3o 40 50 60 

.... c = 1.50 

-'-c= 1.L• 

--- c = 0.7• 

c = 0.•0 

7O 

Precipi tat ion Cram) 

Fig. 3. Weibull distribution as function of c parameter for E(X) = 10 ram. 

parameter c was optimized for all 12 months and 33 sites. 
However, the approach is sufficiently general for many other 
options. Separate values could be obtained for each month, 
and the sites could be grouped to produce regionalized 
estimates. Other multiparameter distributions could be sim- 
ilarly calibrated. 

COMPARISON OF SINGLE-PARAMETER 

DISTRIBUTIONS 

The calibrated single-parameter Weibull distribution 
(equation 13)) was compared with two other single- 
parameter models for daily precipitation: the calibrated 
beta-P distribution from Pickerin# et al. [1988] and the 
exponential distribution. The former is given by 

FXm(X ) = 1 -- [1 -Jr- X/(9tam)] -10 (14) 

and the exponential distribution is 

Fxm(X) = 1 - exp (-x/tam) (15) 

As indicated in Figure 3, the latter distribution is a special 
case of the Weibull distribution for c = 1. 

Comparisons for Selected Storms (Paper 57 Data) 

The 33 sites listed in the appendix were used for testing of 
the three model predictions against the historical values 
obtained from Paper 57 (as in the calibration procedure). We 
considered three measures of discrepancies between mod- 
eled and reported data. These include the relative error, 
which is the average of the predicted number of storms 
divided by the reported number of storms for each site and 
month. Here a value of one indicates perfect prediction, with 
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TABLE 1. Error Analysis Summary for Alternative 
Precipitation Models Based on Comparisons to 

Values Reported in Paper 57 

Relative Error a 

TABLE 2. Historical Precipitation Records Used for Model 
Validation 

Record Length, 
Site yr 

Event Coefficient Average 
Size, of Error, b Fraction 

Model in Mean Variation in Predicted c 

Exponential 1/2 0.97 0.47 +0.06 1.03 
Beta-P 1/2 0.95 0.46 -0.02 0.96 
Weibull 1/2 0.97 0.44 -0.08 0.96 

Exponential 1 0.64 0.61 -0.19 0.77 
Beta-P 1 0.79 0.65 -0.16 0.80 

Weibull 1 1.02 0.80 -0.03 0.97 

Exponential 2 0.27 1.44 -0.12 0.37 
Beta-P 2 0.59 1.41 -0.09 0.53 
Weibull 2 1.27 1.50 -0.02 0.90 

Albany, N.Y. 50 
Baltimore, Md. 39 
Burlington, Vt. 67 
Caribou, Me. 48 
Charleston, W. Va. 39 
East Wareham, Mass. 61 
Hartford, Conn. 67 
Ithaca, N.Y. 67 
Pittsburgh, Pa. 31 
Portland, Me. 67 
Rochester, N.Y. 61 

1 in = 2.54 cm. 

aPredicted number of storms divided by reported number of 
storms for all sites and months. 

bMean difference between predicted and reported events. 
CMean fraction of total events predicted. Paper 57 reports an 

average of 2.086 0.5-inch events, 0.8091 1-inch events, and 0.1908 
2-inch storms per year for these 33 sites. 

values less than one indicating underprediction of events, 
and values over one indicating overprediction in the number 
of events. The mean and coefficient of variation of the 

relative error are calculated for each event size category. 
Average error, which is the average of the differences 
between modeled and reported number of storms over all 
sites and months (a measure of the bias of the model), is also 
calculated. Finally, the mean fraction of storms predicted is 
calculated. This value is the 33-site average number of 
annually modeled events divided by reported values for each 
of the three event size categories. 

Each of these measures has limitations. Relative error, for 
instance, is bounded below by zero and thus tends to have a 
bias toward large values when averaged over many sites. 
Average error is weighted toward sites with large numbers of 

Une of [ 
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Fig. 5. Relative errors of exponential, beta-P and Weibull distri- 
butions for three storm sizes. 

events, where a small fractional error for a site with a 
relatively high number of expected events may contribute 
disproportionally to the overall average. These summary 
statistics are listed in Table 1. 

Table 1 indicates that the three models' performances in 
predicting 0.5-inch events are very similar. For 1-inch 
events, the exponential model underpredicts the number of 
events by about 35%, and the one-parameter beta-P by about 
20%, with the Weibull predicting close to the reported 
values. Considering 2-inch events, the exponential model 
underpredicts event counts by about 70%, the one- 
parameter beta-P underpredicts by about 55%, and the 
Weibull either overpredicts or underpredicts, depending on 
the measure employed (that is, the mean relative error 
indicates overprediction, while the average error and frac- 
tion predicted measures show slight underprediction). The 
models have very similar performance in the distribution of 
errors relative to the mean error, as indicated by values of 
the coefficient of variation. 

The distributions of relative errors are displayed in Figure 
5 as box plots. In these plots, the box shows the interval 
containing 75% of the data points and having equal number 
of points above and below the median value, while the 
whiskers define the region containing 90% of the data from 
the sample. From the box plots it is again evident that the 
performance of the models in predicting 0.5-inch storms is 
roughly equal, and the performance in 1- and 2-inch events 
shows deterioration in all three models. In these categories, 
the exponential model substantially underpredicts the num- 
ber of events. The Weibull appears to provide the most 
accurate predictions, although it shows a wider spread of 
error, which is confirmed in Table 1 by a larger coefficient of 
variation. Note that the median of the Weibull distribution is 

nearly 2.5 times as large as that for the exponential in storms 
which yield over 2 inches of precipitation. This difference 
can be expected to have a significant impact in systems 
which are dominated by the occurrence of extreme events. 

Validation With Historical Precipitation Data 

Since the Weibull distribution was calibrated to the 33 

sites using Paper 57 data, we might expect a better fit to 
these data than that provided by the exponential or one- 
parameter beta-P models. To explore the general validity of 
each distribution, we compared them to empirical frequency 
distributions determined from historical precipitation 
records from the 11 sites in the northeast United States listed 
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TABLE 3. Summary of Chi-Squared Test of Fit of Three Precipitation Models to Historical Records 

Site 

Exponential Beta-P Weibull 

Months Months Months 

Chi- p Value Passing Chi- p Value Passing Chi- p Value Passing 
Squared a Range b 5% c Squared a Range b 5% c Squared a Range b 5% c 

Albany, N.Y. 1713 <0.000 0 1294 <0.000 0 410 0.095-0.492 
Baltimore, Md. 1363 <0.000 0 1068 0.000-0.001 0 334 0.023-0.612 
Burlington, Vt. 2002 <0.000 0 1423 0.000-0.001 0 478 0.000-0.566 
Caribou, Me. 1558 <0.000 0 1148 <0.000 0 432 0.000-0.379 
Charleston, W.V. 1074 <0.000 0 822 0.000-0.002 0 376 0.001-0.796 
East Wareham, Mass. 2053 <0.000 0 1583 <0.000 0 775 0.000-0.008 
Hartford, Conn. 1996 <0.000 0 1508 <0.000 0 480 0.000-0.217 
Ithaca, N.Y. 2536 <0.000 0 1810 <0.000 0 592 0.000-0.345 
Pittsburgh, Pa. 958 0.000-0.001 0 707 0.000-0.003 0 318 0.002-0.881 
Portland, Me. 2711 <0.000 0 2042 <0.000 0 486 0.000-0.218 
Rochester, N.Y. 1852 <0.000 0 1286 <0.000 0 488 0.000-0.815 
Mean 1802 0 1336 0 469 

6 

10 

6 

7 

9 
0 

3 

4 
11 

5 

4 

6 

aAnnual X 2 test values based on sum of 12 monthly (X2276). 
bCalculated from monthly K2 p values (level of significance) from X223 critical values. 
CNumber of months with X•3 test value less than the 5% critical value (35.2). 

in Table 2. The historical data for this study were obtained 
from the Northeast Regional Climate Center, Cornell Uni- 
versity, Ithaca, New York. The shortest record used was 31 
years with an average length of record of 54 years. The 
parameters required to compute storm numbers for each 
distribution (mean monthly precipitation, and the mean 
monthly number of wet days) were calculated from the 
weather records. 

Since the precipitation record is recorded in increments of 
0.01 inches, the data are distributed across a discrete set of 
values. For such data, the chi-squared test can provide an 
approximate test of fit. The test is somewhat limited in that 
we must assume that precipitation amounts on different days 
are statistically independent, but it provides a reasonable 
means of comparing the three distributions. 

In order to obtain comparable data, a set number of 

observation cells was established for all sites and months. 

Cells were created by inverting the Weibull distribution to 
obtain cells with approximately equal expected cell count. 
All cells were multiples of 0.01 in length to avoid artificially 
high chi-squared values due to unequal coverage by the 
distribution functions. Twenty-five cells were used, with 
expected cell counts of 13 or greater. Table 3 summarizes the 
chi-squared test results. Here, annual values are presented, 
calculated from averaged monthly values. The quality of fit 
of the Weibull distribution is markedly superior to the other 
models. 

The chi-squared test does not give an indication of the 
type of errors which are occurring. In this regard it is useful 
to examine graphic evidence of the fit of these distributions. 
Figure 6 shows the empirical and three analytical distribu- 
tions for Pittsburgh, Pennsylvania for the month of January. 
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Fig. 6. Comparison of exponential, beta-P and Weibull distributions with empirical distribution for January at 
Pittsburgh, Pennsylvania. 
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Fig. 7. Comparison of probabilities of large precipitation events for Pittsburgh, Pennsylvania. 

The chi-squared values for the distributions are 120.6 for the 
exponential distribution, 85.9 for the beta-P, and 34.2 for the 
Weibull. Thus the fit is somewhat better than average for the 
first two, and somewhat worse than average for the Weibull 
for this month and site, compared to the full 11 sites. Even 
so, the errors in fit exhibited by the former distributions are 
quite evident. The beta-P and exponential models overpre- 
dict the probability of small events, and underpredict ex- 
treme events. 

In many applications, prediction of extreme large events is 
of primary importance. Figure 7 gives the plotting positions 
of the 10 largest precipitation events for each month in 
Pittsburgh. The y axis gives the probability for the event 
(logarithmic scale), and the x-axis records the ratio of event 
size to mean event size. The beta-P distribution overpredicts 
the return period of very large events, while the exponential 
overpredicts the return periods for the majority of historical 
events. The Weibull appears to fit the data quite well, 
without obvious systematic error. Note that for events 
which yield 8 times the average wet day precipitation the 
return period of the exponential is 13 times as long as that of 
the Weibull, while the beta-P is 2.5 times as long. Given that 
this event has a historical return period of about once in 300 
wet days, this discrepancy is potentially important for engi- 
neering applications. 

CONCLUSIONS 

Single-parameter probability distributions of daily precip- 
itation are useful in a variety of water resource applications. 
Although such distributions are not generally as accurate as 
multi-parameter distributions, they can be used in situations 
where weather data are limited to monthly summaries. This 
paper has developed a general procedure through which 
precipitation summaries given in U.S. Weather Bureau 
Technical Paper 57 can be exploited to calibrate multi- 
parameter distributions to single-parameter distributions. 
The approach was used to obtain a single-parameter Weibull 

distribution for 33 sites in the United States east of the 

Rocky Mountains. 
The summaries presented in Paper 57 are based on anal- 

yses of historical precipitation records at more than 1200 
locations. The procedures used in the present study demon- 
strate that this information provides a generally applicable 
and efficient means of calibrating and testing precipitation 
models, without requiring reference to daily weather 
records. 

The Weibull distribution was compared with exponential 
and beta-P distributions. Comparisons were based on Paper 
57 data and weather records from 11 sites in the northeast 

United States. The Weibull distribution displayed a signifi- 
cantly improved fit to the historical distribution of events. Of 
particular interest here, the Weibull model provided large 
precipitation event probabilities much closer to those found 
in the weather records. 

APPENDIX 

The following Paper 57 sites were used for calibration of 
the Weibull precipitation distribution: Abilene, Texas; Al- 
bany, New York; Amarillo, Texas; Apalachacola, Florida; 
Atlanta, Georgia; Austin, Texas; Baltimore, Maryland; Car- 
ibou, Maine; Charlotte, North Carolina; Columbia, South 
Carolina; Dallas, Texas; Dubuque, Iowa; Evansville, Indi- 
ana; Fargo, North Dakota; Goodland, Kansas; Grand Rap- 
ids, Michigan; Hartford, Connecticut; Houston, Texas; In- 
dianapolis, Indiana; Knoxville, Tennessee; Lexington, 
Kentucky; Lincoln, Nebraska; Macon, Georgia; Memphis, 
Tennessee; Mobile, Alabama; Parkersburg, West Virginia; 
St. Paul, Minnesota; Shreveport, Louisiana; Sioux City, 
Iowa; Springfield, Missouri; Tulsa, Oklahoma; Wichita, 
Kansas; Wilmington, North Carolina. 
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