AN ABSTRACT OF THE THESIS OF

Jonathan Mackey Hanson for the degree of Doctor of Philosophy

in Geophysics presented on November 1, 1977

Title: HEAT TRANSFER EFFEC IN FORCED GEOHEAT

RECOVERY SYSTE ” //7/7 N
s aperovet_R@d@acted for Privacy

Current investigations into forced geoheat recovery are based
on hydraulic fracturing of impermeable hot dry rock formations.
Forced recovery using naturally occurring fluid conductors, viz.,
fault zones, basaltic dikes, and open formation contacts, presents an
alternate approach that may circumvent some of the difficulties
associated with the hydraulic fracturing method. The latter type of
system is considered in terms of the system physical-economic
feasibility. The heat transfer surface area required for an economi-
cally viable forced recovery system for direct contact heating applica-
tions is estimated based on various geologic and economic parameters.
The heat transfer surface area reflects the required dimensions of the
subsurface system and therefore serves as an indicator of the feasi-
bility of the system.

Heat extraction from a hot rock formation based on sheet-like

flow involves a balance of the total heat transport of the heat extracting



fluid with the conductive heat transport within the rock. The heat
recovery efficiency is considered in terms of an idealized flow model
in order to estimate the required heat transfer surface area. Various
flow characteristics adverse to heat recovery efficiency are likely to
occur within the fluid conductors under consideration. These include
primarily non-uniform flow within the conductor and fluid losses due
to leakage from the conductor. The first order effects of these
adverse flow conditions are considered in terms of the» idealized flow
model using analytic and semi-analytic methods. Furthermore, a
significant change in fracture permeability can occur within the con-
ductor due to the thermoelastic response of the rock formation upon
cooling. This effect is estimated in terms of the idealized flow model
under various flow conditions within the conductor.

The results of this work indicate that, under current economic
conditions and regional geothermal gradients of 50°C /km or more, the
minimum heat transfer surface area per injection/production borehole
pair required for an economically viable direct-contact heating system
with a 10 to 20 year system lifetime is less than 1 kmz. Under the
same conditions, it is found that the minimum required heat transfer
surface area for electrical power production systems is 2 to 4 times

this figure.
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HEAT TRANSFER EFFECTS IN FORCED
GEOHEAT RECOVERY SYSTEMS

I. INTRODUCTION

During the formation and evolution of the Earth to its present
state, vast quantities of heat energy }.1ave been released by several
processes. Gravitational collapse of the original diffuse dust cloud,
decay of radioactive isotopes, core-mantle differentiation, and tidal
effects have contributed to the creation of a very large reservoir of
primitive heat. It has been estimated that, in the coterminous
United States alone, the outer 10 km of the Earth's crust contains
3.3 x 1025 J of thermal energy relative to the mean annual surface
temperature (White and Williams, 1975). From the point of view of
human energy consumption, this figure is enormous. For comparison
the entire energy consumption of the United States in 1968 amounted
to 6.3 x 1019 J (Stanford Research Institute, 1972). Most of the heat
is buried too deeply or spread too diffusely for commercial exploita-
tion. However, analogous to the case of petroleum and mineral
resources, the near-surface distribution of heat energy is not uniform
and there exist regions of sufficient heat concentration for economic
recovery.

Technological advancement and increasing demand for energy

during the last several decades have brought the worldwide geothermal



power generating capacity to over 1100 MWe (Kruger and Ramey,
1975). However, in spite of the advantages, development of geother-
mal energy in the United States has been slow. As Armstead (1973)
points out, the reluctance in the past to embark upon fairly costly
geothermal exploration projects is attributable, in part, to the 'risk
capital' associated with geothermal resource exploration. Not all
geothermal fields are necessarily amenable to economic development,
and in order to determine whether a field can be profitably put to use,
it is necessary to expend fairly large sums in carrying out explora-
tion. Thus, analogous with costs associated with petroleum explora-
tion. the costs of geothermal exploration may be regarded as risk
capital.

Assuming a successful geothermal field has been located and
developed, one market for the energy is electrical power production.
Electrical power, however, can be developed by conventional means
(0il and coal fired plants, hydroelectric plants) without the need to
extend risk capital.

The other possible market is non-electrical applications such as
space and district heating. District heating systems per se have not
been implemented to any significant degree in the United States. This
reflects the condition that consumers have in the past been able to
meet their space and hot water needs more cheaply with individual

heating systems than with district heating systems (Karkheck et al.,



1977). Furthermore, these systems are very capital intensive, and

though there exists a margin for profit, it is unlikely that extensive
development of district heating will occur without some involvement by
corporate or governmental bodies. The primary benefit of such sys-

| tems will be the conservation of scarce conventional energy resources.

Development of Non-Electrical Applications of
Geothermal Energy in the United States

The recent large increases in the cost of fossil fuels have made
district heating systems and other non-electrical applications much
more attractive and this trend will continue as conventional energy
supplies become scarcer. Demographic projections show the urbani-
zation trend continuing in the United States which will also favor a
change to district heating (Karkheck et al., 1977). Geothermal energy
used for non-electrical applications is a thermodynamically more
efficient use of the resource than is electricity production. This is
due to the fact that Carnot efficiency dominates power production but

is not involved in direct-contact heating. As a result, a lower grade
exploitation for non-electrical uses than for power production.

Geographic distribution and relative occurrence of lower grade

(lower temperature) resource is economically better suited for
resources in the United States are much greater than higher grade

resources suitable for power production (White and Williams, 1975).

O



It is commonly agreed that the geothermal resources that exist at a
low to medium temperature (< 150°C) are at least an order of magni-
tude larger than those which exist at temperatures high enough to be
economically used for electricity generation. As a consequence; the
risk associated with exploration for low to medium temperature
resources will be substantially less than for the higher grade
resources.

The potential for non-electrical application of geothermal energy
in the United States is large. Reistad (1975b) has estimated that 40%
of the total energy requirements of the United States could be satisfied
from geothermal resources within direct-contact heating at maximum
temperatures of 200°C. This estimate assumes that the resource is
available at each application site. The percentages for temperatures
of 150°C and 100°C are 30 and 20% respectively. Detailed summaries
of low-temperature applications of geoheat are presented by Reistad

(1975a, 1975b), Armstead (1973), and Lienau and Lund (1974).

Forced Geoheat Recovery

Geothermal energy extraction systems fall roughly intc three
types: (1) free flow, (2) partially forced, or stimulated, and
(3) forced recovery systems. The free flow technique is based on free
flowing boreholes in naturally occurring hydrothermal systems. The

driving force is thermoartesian pressure that results from density



differences due to thermal expansion and phase (liquid, gaseous, or a
Amixture) of the fluid within the conductor. The method is applicable
where the resulting pressure head is sufficient to maintain the
required borehole flow. The migration of meteoric water from the
surface to the reservoir replaces the fluid lost from the system. The
most notable examples of free flow systems are The Geysers,
California (dry steam); Larderello, Italy (dry steam); and Wairakei,
New Zealand (mixture). All three of these systems are exploited for
electrical power production.

The partially forced, or stimulated, system involves down-hole
pumping to compliment the natural pressure head of the system to
maintain or increase the borehole flow. The Reykjavik District Heat-
ing System, which now supplies energy for domestic heating for more
than 100, 000 people in the capital of Iceland, is a low temperature
operation where large scale resource stimulation by borehole pumping
is being applied. This system has been in operation for more than
three decades and represents one of the most successful commercial
applications of geoheat. As in the case of free convective systems,
the stimulated system relies on a natural fluid recharge to the system.

The third type of geoheat recovery, and the most recent to come
under investigation, is the forced geoheat production system. This
type of system relies on an artificial recharge of the heat extracting

fluid into the reservoir. Unlike the free and stimulated systems, in




which the fluid flows through natural flllli.d conducting openings, the
forced recovery system relies, at least partially, on artificial open-
ings created by hydraulic fracturing or other pressurizing operations.
As the forced recovery system does not rely on the occurrence of a
naturally convecting system, there exists the possibility of extracting
heat at suitable temperatures over much wider areas than has been
possible so far. The advantages of such a system are obvious when
one considers the low transportability. of thermal waters and steam.
Steam can be transported economically over distances on the order of
only a few kilometers. Thermal water can be transported at most a

few tens of kilometers.

The Hot Dry Rock Concept

The main investigation into forced geoheat recovery currently
being undertaken is the ""hot dry rock'' project at the Los Alamos
Scientific Laboratory (LASL) in New Mexico. The method is based on
drilling two holes into hot, relatively impermeable rock, connecting
them at depth through a large crack produced by hydraulic fracturing,
and then circulating pressurized water through this connected system
to recover heat from the rock. In 1971, a field investigation was
undertaken to determine a suitable drilling site. The chosen site, at
Fenton Hill, is situated just west of the Valles Caléera in northern

New Mexico. Drilling and hydraulic fracturing were completed at the



site, with a measurable flow connection between the two boreholes, in

1977. The boreholes are approximately 3000 m deep. A detailed
description of the engineering aspects of the experiment is given by
Blair et al. (1976). The LASL project is directed toward electrical
power production.

The economic viability of such a system, which remains to be
shown, depends on the feasibility of creating a sufficient fracture
permeability and fluid-rock contact area required to extract the total
heat energy necessary to amortize the initial capital investment and
to cover the recurring costs associated with operation and mainte-
nance. The viability of the process is highly dependent on the occur-
rence of thermal stress cracking at the fracture boundary fqr fracture
extension into the hot rock mass. Theoretical results (Harlow and
Pracht, 1972) indicate that thermal stress cracking will occur in this
type of system. Testing at the Fenton Hill site is in a very early
stage at the time of this writing, and as yet, it is uncertain whether

thermal stress cracking is occurring in this system.

An Alternate Approach to Forced Geoheat Recovery

The use of natural fluid conductors presents an alternate
approach to forced geoheat extraction that may circumvent some of the
difficulties associated with the hydraulic fracture method (Bodvarsson,

1976; Bodvarsson and Hanson, 1976, 1977). Four types of structures



are of primary interest, viz., quasi-vertical conductors such as

(1) fault zones and (2) basaltic dikes with longitudinal fluid conductiv-
ity and quasi-horizontal structures such as (3) open formation con-
tacts, mainly between basaltic lava beds and (4) permeable
sedimentary horizons. Extensive use of sedimentary horizons in
forced geoheat recovery for district heating is in progress in France
(DGRST, 1976; Coulbois and Herault, 1975).

The present work investigates the feasibility of using the fluid
conductors of the types (1) through (3) listed above in forced geoheat
recovery for low temperature, non-electrical applications. The
efficiency of heat extraction from the hot rock formation is considered
in terms of the heat transfer characteristics of a sheet-like flow sys-
tem. The efficiency of the system will determine the total thermal
energy produced over a given system lifetime. For such a system to
be economically viable, the revenues must cover the costs of the
system, which include capital costs (drilling, well head equipment,
piping, etc.) and recurring costs (interest on capital expenditure,
operation and maintenance, etc.). The purpose of this work is to
estimate the required heat transfer surface area (i. e. fluid-rock
contact area) for a forced recovery system based on various economic
and geologic parameters. The heat transfer surface area reflects the
required dimensions of the system and therefore serves as an indi-

cator to the feasibility of the system.



The work is directed in general toward potential use in the

western United States and specifically to the Pacific Northwest. This
geographic area is characterized by relatively large areas of above
normal crustal heat flow (Sass et al., 1971; White and Williams,
1975; Hull et al., 1977) and exhibits specific geologic conditions con-
sistent with the type of forced geoheat recovery system under investi-
gation.

The shaded region in Figure 1 represents the area of the
western United States exhibiting above normal crustal heat flow. The
world-wide average, or ''nmormal'', crustal heat flow for continental
areas is 61.5 mW/m2 (Lee, 1970) corresponding to a geothermal
temperature gradient of roughly 30°C /km.

Chapter II discusses the geologic characteristics of the natural
fluid conductors being considered. Attention is given primarily to the
observed permeability characteristics of these structures. In Chap-
ter III, the fundamental heat transport equations are developed. This
is followed by the introduction of the "first-order'' heat extraction
model which is used throughout the remainder of the work. The chap-
ter concludes with the derivation of the rock and fluid temperature
field equations for a sheet-like flow system based on this model.

Chapter IV discusses the effect of adverse flow characteristics
within the fluid conductor on the behavior of the temperature field of

the fluid. Non-uniform flow within the conductor and fluid loss due to
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Figure 1.

Map showing probable extent of above average crustal heat
flow (shaded region) in the western United States. Physio-
graphic provinces do not necessarily represent heat flow
provinces (from White and Williams, 1975).
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leakage from the conductor are considered in the analysis.

The ability of a forced recovery system based on sheet-like flow
to meet a constant or seasonal power demand by varying well head
flow rate is considered in Chapter V. Chapter VI derives the thermo-
elastic response of an ideal fracture to cooling and the resulting
effect on fracture permeability.

Heat recovery system design and economics, based on the
first-order model, are discussed in Chapter VII. The absolute lower
bound on the fluid-rock contact area required for an economically
viable system is computed as a function of system lifetime, economic
conditions, and geologic setting. This is followed by a discussion of

adverse flow effects with regard to system feasibility.
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II. NATURAL FLUID CONDUCTORS

Fault Zones

Many fault zones exhibit a substantial fluid conductivity. This
is demonstrated quite well in the Basin and Range Province where a
considerable number of geothermal convection systems appear to be
associated with or controlled by normal master faults of the region
(Hose and Taylor, 1974). Chemical and thermal alteration of the rock
adjacent to and within fault zones containing active or historically
active hydrothermal convection systems indicate that many systems
have lifetimes on the order of thousands to tens of thousands of years.
This observation suggests that the effective fluid-rock contact area
within such systems may be quite large.

There is evidence in southern Idaho that in the past, extensive
hot spring activity has occurred at the sites of a number of faults
which transect siliceous volcanic areas. Current hot spring activity
in this region is also associated with major fault zones (Warner,

1975; Williams et al., 1975).

Very little is known about the in situ permeability conditions of
fault zones. Undoubtedly, intergranular type percolation through fault
gouge or breccia and/or a fracture type percolation can occur depend-
ing on the characteristics of the fracture zone. There is some indica-

tion that normal faults contain gouge that consists of broken, crushed,
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and finely ground rock material that changes in character with depth.
In the shallow parts of large faults, the gouge is commonly several
centimeters to a few meters thick and consists of sheared plastic clay
and sheared breccia containing rolled pebble- and cobble-sized rock
fragments. Within deeper parts of the same faults, the gouge is com-
monly only a few centimeters thick and consists mainly of clay that is
hardened and brittle rather than plastic. There is little or no brec-
ciation of the adjacent rock but a crude foliation may result from
shearing (Proffett, 1977).

It is not known at what depth a fracture opening and/or fault
gouge becomes impermeable to fluid flow. It is reasonable to assume
that the increase in lithostatic pressure with depth and the regional
tectonic stress will play a dominant role. Field data based on bore-
hole pressure testing (Snow, 1968) supports the assumption that

fracture permeability decreases with depth due to overburden stress.

Dikes in Flood Basalt Areas

The most extensive swarms of Cenozoic basaltic dikes in the
United States occur in the adjoining parts of northeastern Oregon.
southeastern Washington, and western Idaho. From the number of
dikes that are visible in well exposed areas of pre-Tertiary rocks

within the swarms, it has been estimated that at least 20, 000 dikes

- occur at the level of the regional unconformity beneath the Columbia
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River Basalt. Trends in dike orientation suggest that the same
tectonic forces that prevailed throughout the Basin and Range Province
were also responsible for dike emplacement in this area (Taubeneck,
1969). Little is known about the hydrology of dikes in the United
States and there is no direct evidence that the mafic dikes of the
Columbia River Basalt host hydrothermal circulation systems.

There is considerable field evidence that many basaltic dikes in
north-central Iceland have a substantial fluid conductivity. Most of
the natural hot springs in this region are controlled by dikes and a
large number of boreholes have been drilled to extract thermal water
from the dikes (Bodvarsson, 1961). The geologic characteristics of
dikes associated with flood basalt areas in the United States appear to
be similar to those of dikes in the flood basalt regions of Iceland.
Thus, one may infer similarities in the permeability characteristics

of dikes in the two regions.

Formation Contacts

The Columbia River and Snake River flood basalts in Oregon,
Washington and Idaho consist of layered horizontal lava flows of
individual thicknesses ranging on the order of meters to tens of
meters. Contacts between individual lava beds quite frequently
exhibit a high degree of fluid conductivity through an interconnected

system of pipes and other related openings. This is evidenced in the
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Snake River Canyon in Idaho (Tolman, 1937). There is also consider-
able field evidence in Iceland that open contacts found at various
depths in flood basalt formations associated with geothermal systems
allow the thermal water to flow along the lava-bed contacts over very
great horizontal distances (Bodvarsson, 1961).

The lava sequence of quaternary basalts extruded on and near the
flanks of stratovolcanoes of the southern Cascade Range in Washington
form highly permeable strata. Individual flows range from 1 to 50
meters thick, the average being 2 meters in thickness. Contacts are

rarely exposed except in postglacially incised valleys (Hammond et al.,

1975).



III. FIRST-ORDER HEAT RECOVERY MODEL
FOR SHEET-LIKE FLOW

Heat extraction from hot subsurface formations, for the type of
system being considered, involves injection of water into suitable
fluid conductors at one location and extraction of the thermal water at
another location. Figure 2 shows two possible configurations. The
boreholes are drilled to intersect the conductor at a sufficient depth
and circulation is obtained by pumping. For the case of quasi-vertical
conductors, circulatién may be enhanced by buoyancy forces created
by density differences between the cooler injected water and the hotter

water within the conductor.

PRODUCTION

REINJECTION
PRODUCTION HOLE

HOLE HOLE

REINJECTION

HOLE —“1/1

-~ ——
1

\——’j—OPEN LAVA—BED CONTACT

DIKE OR FAULT ZONE

Figure 2. Two possible configurations for forced recovery using
natural fluid conductors.

I



The flow geometry within the conductor depends on several

factors and may be quite complex. These factors include the injection
and production borehole location, borehole spacing, and the permea-
bility characteristics of the fluid conductor. In addition, significant
time dependent effects on permeability due to thermoelastic response
of the fracture walls caused by temperature transients and/or chemi-
cal deposition or solution within the conductor openings are likely to
occur. Because of the uncertainty of the permeability characteristics
associated with natural fluid conductors, it is felt that an attempt at
the present time to model the complex convective processes within
such systems may be premature. Such an approach should be con-
sidered only after considerably more field data is available on these
specific parameters. It is expected that the permeability character-
istics will be, to some degree, site specific.

We have chosen instead to approach the problem of forced
geoheat recovery more from the standpoint of physical-economic sys-
tem feasibility. To cover capital and operational costs, a forced
recovery system must produce a sufficient amount of energy in the
form of thermal water during a prescribed system lifetime. The
total produced thermal energy depends primarily on the effective
fluid-rock contact area within the conductor. The effective contact
area required reflects the dimensions of the subsurface heat extrac-

tion system, and consequently, serves as an indicator of the
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feasibility of the operation. The physical-economic analysis presented
in this work is based on a simplified flow geometry within the con-
ductor. This leads to a useful approximate, or ''first-order', heat
extraction model for sheet-like flow.

The present chapter develops the equations governing heat
transport for the sheet-like fluid flow system which serves as our
first-order heat recovery model. The chapter concludes with the
derivation of the production temperature equations assuming an opti-
mal flow configuration. This particular model will maximize the
total heat production and therefore will yield the lower bound on the
required fluid-rock contact area necessary for the economic viability
of the system. Following chapters consider deviations from such
optimal flow conditions and the resulting effects on the system pro-

duction characteristics.

Basic Heat Transport Theory

In the theoretical development of this and following chapters,
we assume that the fluid conductor is quasi-flat and that the adjacent
rock formation is homogeneous and isotropic. The geologic structures
discussed in Chapter III, viz., fault zones, basaltic dikes and forma-
tion contacts, are generally found to have a planar geometry. Fur-
thermore, the fluid is assumed to remain in the liquid phase within

the conductor.

I



Heat Diffusion Equation

It is useful to highlight the derivation of the well known diffusion
equation that governs energy transport within the rock mass bounding
the fluid conductor. Assuming a stationary rock mass, the conserva-
tion of thermal energy in some arbitrary domain B bounded by the
surface Z requires that the rate of increase of enthalpy in B s
equal to the heat flow into B across 2 plus the rate of heat

production within B. In integral form

atS p o TdV = _gﬁ.ﬁdA +§ p SdV (3. 1)
B ) BT

where P is the rock density, o is the specific heat (at constant
—. » » »
pressure) of the rock, h 1is the heat flow per unit area, and S is
the specific source density per unit mass of the rock. The tempera-
ture field of the rock is given by T. The material constants P
and (rr are assumed to be independent of time.
Using Gauss' integral theorem the surface integral in equation

(3. 1) can be transformed to a volume integral, resulting in
g {p o 8 T+Vc'h'-p SHV =0 (3. 2)
B rrt r

Since the domain B is arbitrary the integrand must be identically
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zero, so that

po 8T+ VR - p.S=0 (3. 3)

Assuming the empirical Fourier heat conduction law, the heat flow

-. -
h can be expressed in terms of T, or

B = -k VT (3. 4)

where kr is the coefficient of thermal conductivity of the rock. In
general kr is a tensor. For an isotropic solid kr reduces to a
scalar.

Substituting expression (3. 4) into equation (3.3) results in the
second order partial differential equation governing the temperature

field in the rock.

- . = 3.
p o 8T v(krvT) p.S (3.5)

For a homogeneous isotropic solid in which there are no sources, the
above expression reduces to the standard homogeneous form of the

diffusion equation

—1—8T-V2T=O (3. 6)
ar t

where a_ is the thermal diffusivity of the rock defined by



Heat Transfer Boundary Condition

The energy transfer between a fluid flowing in a fracture, or a
similar structure, and the surrounding rock mass is governed by a
balance between conductive heat flow in the rock and the total heat
transport in the fluid.

The ratio of the convective to conductive transport in the fluid

is given by the characteristic Péclet number defined by

where o is the specific heat of the fluid, q is the mass flow per

unit length of fracture, and k, is the thermal conductivity of the

f
fluid. For fracture flow rates greater than 0.01 kg/(m. sec), the
Péclet number is greater than 70. Consequently, the convective
transport of the fluid dominates the conductive transport within the
fluid by a factor of almost 102. The conductive transport within the
fluid is therefore ignored for flow rates of this magnitude.

Figure 3 shows a small fluid element flowing within a fracture

opening of width w. The velocity of the fluid averaged over the

fracture width is V. To account for the effect of debris filling the



fracture spaces, we assume a constant volume porosity 6 within the
region between the fracture walls. Referring to this figure, the
balance of convective heat transport in the fluid with the conductive

transport in the rock, required by the conservation of energy, is

given by
- + _’0 = .
{pfaf6+pr0'r(l e)}at(wa) POV VZ(WTf) ZkrayT|yl0 (3.7)
where
v, = R0 +720
X Z

and Tf is the temperature of the fluid averaged across the fracture

width and p. is the density of the fluid. An open fracture, in which

f

there is no debris, corresponds to 6 = 1.

*Y

Figure 3. Fluid element within conductor, showing Cartesian coordi-
nate system.
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The right hand side of equation (3.7) is the conductive heat flow
per unit area from the rock to the fluid and implicitly assumes that the
rock temperature field is symmetric with respect to the plane of the
fluid conductor. The left hand side of this expression represents the
net rate of change of enthalpy per unit fracture wall area of the
volume element of fluid and debris. The second term on the left hand
side is the change in enthalpy associated with the mass transfer of the
fluid into or out of the element. The temperature of the solid debris
within the fracture spaces is assumed to be equal to the temperature
of the interstitial fluid.

We will limit the discussion to fracture widths on the order of
millimeters to tens of millimeters. The thermal relaxation time for
water then varies from several seconds to several minutes (see
Appendix D). Considering the fluid velocities involved for flow rates
on the order of 0.01 to 0.1 kg/(m. sec), these relaxation times cor-
respond to thermal relaxation distances of several centimeters to a
few meters. Thus, to good approximation, the temperature of the
fluid can be taken to be isothermal with respect to the y coordinate

and can be set equal to the temperature of the adjacent rock, or

Tf(x,z,t) = T(x,y,z,t)|ylo

With the simplification of a constant fracture width, equation (3.7)

becomes
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p o 2k

Ir T r

(1-6)}wd T + G v,T = 8T, ylo (3. 8)
£ t U'f y

+

{p,®

where the mass flow per unit length of fracture is defined by
?l' = wepf?/‘

The coordinate system shown in Figure 3 will be used in all

subsequent calculations.

l

First-Order Heat Recovery Model
Fluid flow within sheet-like conductors will be of a non-uniform

quasi-potential type. For the purpose of estimating the required

fluid-rock contact area, we simplify the flow geometry by assuming a

uni-directional flow between the injection and production ports. On

this model, fluid at a constant temperature is injected into the con-

ductor by a line source located at x = 0 and recovered at a line sink

located at some position x > 0. We will refer to the source and sink

as system ''ports'’. The fluid flow is in the positive x direction.

The initial rock formation temperature is assumed to be a function of

the x coordinate only. Therefore, this first-order model can be

represented mathematically by the following initial and boundary value

problem.
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1 2

—_— _ = , > .
— 8T -vT=0, y>0 (3.9)

r
prcr Zkr
{p.6 +—=(1-6)}wd. T + q(x,z,t)d_T = 3 T, ylo0 (3.10)
f o t X oy

Y Z = L11
T(x,y,z t)ltio £(x) (3.11)
b L b = 3- 2
T(OOzt)|t>0 T, (3.12)

The assumption of a constant injection temperature at the
injection port x = 0 ignores the thermal interaction of the vinjected
fluid with the rock mass through which the injection borehole passes.
The consequences of this assumption are discussed in some detail in
Appendix C. With the constraint on the flow rate,

q > 0.01 kg/(m.sec), the heat transport within the rock in the direc-

tion of flow is negligible and can be ignored (see Appendix B).

Optimum Flow Configuration for the First-Order Model

The remainder of the present chapter considers a stationary and
uniform fluid flow within the conductor--that is, q(x,z,t) = constant.
For a sheet-like flow heat recovery system, this is the optimum flow
configuration, in the sense of heat extraction efficiency. Therefore,
the model will yield the absolute lower bound on the required fluid-

rock contact area.
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Due to the symmetry of the flow there is no cqnductive heat
transport in the rock in the 2z direction. Thus the temperature
field within the rock formation is governed, to good approximation,

by the one-dimensional diffusion equation

1
— _ = s > .

r Yy

Furthermore, the heat transfer boundary condition (3.10) becomes,

for this case,

Bo.T +d T = aayT, y ¢ 0 (3. 14)
where
pr(rr
W
B={p0+ (1-0)} =
¢ q

and where the dimensionless parameter @ is defined by

For an open fracture, where © =1, P 1is simply the reciprocal of
the fluid velocity.
The two additional initial and boundary conditions required to

complete the statement of the problem are given by
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T(x,y,t)] £(x) (3.15)

£<0

T(0,0,t)| (3. 16)

T
t>0 i

The solution to the initial and boundary value problem repre-
sented by equations (3.13) through (3. 16) is obtained analytically
using integral transform methods. The Laplace transform operator

and its inverse are defined by (Abramowitz and Stegun, 1964)

00
Bls) = lLt[g(t)] =§ e'Stg(t)dt
0
-1 1 ¢ ctio ¢
glt) = ]LS [g(s)] = Py . e® g(s)ds
c-i%

where s is the transform variable corresponding to t.

Applying the Laplace transform to equations (3. 13) and (3. 14),

1{?f()} 5 T=0 >0 (3.17)
— 8T -f(x)s - =0, vy .
a_ yy

plsT-t()} + 0 T = aay%, y 4o (3. 18)

The general solution of equation (3. 17) that remains finite as y — ©

is

?(x,y,s)=2(x,s)exp(- /aiy)+f_(s§l, y >0 (3.19)
r
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Inserting expression (3. 19) into equation (3. 18), a first order differ-

A
ential equation for A(x,s) 1is obtained

A !
axA(x, s) + K(s)ﬁ(x, s) = - d Lx) (3.20)
where
K(s) =a [ +B
g)=a [7 s
r
and
1y = 9f
£(x) dx
The general solution of the above for g(x, s) 1is given by
X
N A 1 1 ' 1 '
A(x,s) = B(s)exp(-K(s)x) - " exp| -K(s)(x-x ) (x")dx (3.21)

0

N
where B(s) is a function yet to be determined.

Thus the Laplace transform of the rock temperature field is

?(x,y, s) = ’B\(s)exp(-K(s)x- ’a_s y)
r

ot [E1 f(
- L S\ exp[-K(s)(x-x')]f'(x')dx' +—)-(—) (3.22)
s 0 s

A
Evaluating T(x,y,s) at x =y =0 and using the Laplace trans-

forms of equations (3.15) and (3. 16), it is easily shown that



T, -£(0)

1

N
B(s) = (3.23)

Assuming a constant geothermal gradient in the upper few
kilometers of the Earth's crust, the initial formation temperature
f(x) for quasi-vertical structures (e.g. dikes, fault zones) is a linear
function of depth. For quasi-horizontal structures (e. g. formation
contacts), the initial formation temperature is, to good approximation,
constant. Thus, we consider the special case of the initial formation

temperature

f(x) = o + c, X | (3.24)

where c1 and <, are constants.

Substituting expression (3. 24) into equation (3. 22), the Laplace

transformed rock temperature field becomes

A (Ti_cl) S
T(x,y,s8) = — exp(-K(s)x- / — v)

S a

T
c, expl /i )
2 - y

ar c1+c2x
S

SK(3) {l-exp(-K(s)} +

(3.25)

To determine the temperature of the water within the conductor,
A
T(x,y,s) is to be evaluated at y = 0. Inverse Laplace transform-
ing the resulting equation (Abramowitz and Stegun, 1964; Carslaw and

Jaeger, 1959), the fluid temperature is found to be
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Tf(x,t) = (Ti—cl)erfc( Z‘QZr JU(E)
2¢ [ E 22 Pa 2
2 r a X r a x ax
* a vTexp(- 4af ) - 2a (14 Bar)erfc( 2 a_ )

Ba

r

Z b
t ax a
+ expl z Jerfel = + /a g£)] U(§)
2a BZar 2 /arE Bar r

ﬁ
2 2
<, art Bar . Bar ( A oxt (oz art o
T a T 2a 20 PV 2 erte Ba
B a
Tr -’
+ (c1+c2x) (3.26)

where €=t -PBx and U(f) 1is the unit step function defined by

01 gio

U(§) = 1, £>0

The complimentary error function is defined as (Abramowitz and

Stegun, 1964)

3 x_Z
erfc(x) =1 - erf(x) = 1 - /;S e 7 ay
0

The error function erf(x) is evaluated numerically using a raticnal
approximation (Abramowitz and Stegun, 1964) and is presented

in function subprogram form ERF(X) in Appendix E.
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At this point, it is useful to introduce the "zero fracture width "
approximation. The thermal inertia of the fluid and debris within
fracture openings on the order of millimeters wide is small and can
be neglected. We therefore set the fracture width w =0 but keep
the flow q finite. Hence, the zero fracture width approximation
for the case under consideration is equivalent to taking the limit of

equation (3.26) as B — 0. The limit is easily shown to be

T*(x,t) = lim T.,.(x,t)

£ oo
= (T.-c,-c,x)erfc( ﬂ—) (3.27)
T TiTT1IT 2 2/_ .
1 art
Zcz art aZXZ
R —_ _ e\ _ , >
+ > - exp( 4art )-11 + (c1+c2x) t >0

The above equation reduces to the solution obtained by Bodvarsson
(1969) for the case in which the initial formation temperature is
uniform (CZ = 0).

Some examples of the magnitude of the error due to the zero
fracture width approximation are shown in Figure 4. These examples
assume that water is injected at 30°C with a flow rate of
0. 05 kg/(m. sec) into a conductor with porosity © = 1. The value of

the flow rate is considered representative for a sheet-like flow

recovery system. We note that the volume specific heat of rock is




roughly the same as that of water. Thus, to first approximation,

p o

- rr W .
P =plor oo -0} T

W
- .2

fq (3

The results obtained will therefore be approximately valid for

porosities less than 1. The rock formation temperature is initially

150°C and the fracture width is 10 millimeters. The error AT

is calculated according to AT =-Tf-.TE". The values of the physical

parameters for the rock and fluid (water) used in this and later com-

putations are given in Appendix E.

8)
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Figure 4. Error in fluid temperature due to zero fracture width
approximation. Injection port is at x = 0 and the fluid
flow is in the positive x direction (note change of scale).
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It is evident from these examples that the error incurred by the
Zero 'fractur’e width approximation damps out rapidly with increasing
time and distance from the injection port. Since the characteristic
dimensions of a forced geoheat recovery system will be on the order
of a kilometer, the error in temperature at the production port is
negligible and the zero width approximatioh is quite good. The same
applies for initially non-uniform formation temperatures.

The two basic flow options for a quasi-vertical conductor are
shown in Figure 5. For the purpose of definition, the case in which
the fluid flows upward within the conductor is referred to as an
"upflow" system. For the case in which the fluid flow is downward,
the configuration is referred to as "downflow" (Bodvarsson, 1976;

Bodvarsson and Hanson, 1976, 1977).

DOWNFLOW SYSTEM

UPFLOW SYSTEM

Figure 5. Upflow and downflow system configurations for quasi-
vertical fluid conductors.



Figure 6 shows the time evolution of the water temperature

distribution within the fluid conductor based on equation (3. 27) for
three different initial formation temperature situations. The dotted
lines represent the initial formation temperatures and the curves are
labeled according to the length of time, measured in years, after
initiation of flow. All three cases assume that the water injected into
the fluid conductor has a constant temperature of 30°C at a constant
mass flow rate of 0.05 kg/(m. sec). The initial formation tempera-

tures are as follows:

175 - 50x °C (Case A) (3.29)
T(x, y,t)|t< o = f(®) = ¢ 125 + 50x °C (Case B) (3.30)
- 150 °C (Case C) (3.31)

Assuming a 25°C ambient surface temperature, Figure 6A
represents an ideal flow configuration within an upflow system in
which the injection port is at a depth of 3 km. Figure 6B represents a
downflow configuration where the injection port is at a depth of 2 km.
Figure 6C assumes fluid is injected into a quasi-horizontal conductor
embedded in a rock formation that has an initial uniform temperature
of 150°C. As time increases, it is seen that the temperature distri-
butions of the three cases considered approach the same value. This
reflects the fact that the initial average temperature of the rock in the

domain (0 < x <1)X (0 <y <®) is identical for all three cases.
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For the purpose of notational economy, the asterisk denoting
the zero width approximation will be dropped. Unless otherwise

stated, the remainder of this work will use this approximation.
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Figure 6. Fluid temperature distributions within the conductor for
upflow (A), downflow (B), and initial uniform formation
temperature (C) configurations. Individual curves labeled
according to time (years) after initiation of flow. All cases
assume q = 0.05 kg/(m.sec) and T; =30°C. Initial
formation temperature distributions are given by dotted
lines. '
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IV. EFFECTS OF NON-IDEAL FLOW ON
PRODUCTION TEMPERATURE

The flow geometry within an actual recovery system may deviate
substantially from the ideal case considered in the previous chapter.
Non-uniform flow within the fluid conductor as well as fluid losses
from the system due to leakage are likely to be the two main adverse
flow characteristics that will degrade the system heat extraction
efficiency. The present chapter considers these in terms of the first-
order heat extraction model and discusses the resulting effects on the

production temperature of the system.

Flow-Channelling

Non-uniform flow within a fluid conductor can arise as a result
of several processes. These include borehole location and spacing,
spatial variation of permeability prior to initiation of flow, and the
time dependent effects of thermoelastic, chemical and convective
processes on permeability. The present section estimates the effect
of non-uniform flow (which will be referred to as "flow-chanelling ")
on the fluid temperature within the conductor based on the first-order
heat extraction model.

The first part of the present section is concerned with estimating
the dependence of the fluid temperature on the flow-channel wave-

length. In the present context wavelength refers to the characteristic
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distance over which a significant change in flow rate occurs. A
parameter perturbation method is used in the analysis. The second
part of the section applies the Fourier-Galerkin variational approach
to generalize the solution to allow for arbitrarily severe flow-channel

configurations.

Perturbation Method

The first-order heat extraction model is based on a line source
and line sink connected by a uni-directional flow. Using this concept,
a stationary non-uniform flow between the injection and production
ports of the system, assuming no fluid losses, translates to a flow
configuration of the form ?1’ = q(z)Q. Thus, the mathematical prob-

lem can be stated, analogous to equations (3.9) through (3.12), as

i 9, T - any -8 _T=0, y>0 (4. 1)
ZkrayT = 0.q(z)d T, y o0 (4. 2)
T(x, Y’t)|t§_ 0" f(x) (4. 3)
’1"(0,0,1;)|1:>0:T,1 (4. 4)

The zero fracture width approximation in heat transfer boundary con-
dition (4. 2) has been made. Furthermore, conductive heat transport

in the rock in the direction transverse to the flow direction is included
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in equation (4. 1) to allow for thermal communication between the flow
channels.

The perturbation method is based on the idea of approximating a
given system by a simpler ideal system which deviates only slightly
from the system under consideration. The perturbation theory (for
linear operators) was originated by Rayleigh and Schrodinger
(Rayleigh, 1926; Schrodinger, 1928). Criteria have been given for
the validity of the perturbation method and the reader is referred to
Titchmarsh (1949, 1950) and Kato (1951, 1966).

The perturbation method used in the present analysis assumes
that the flow rate q(z) can be represented by a constant flow rate

perturbed by a small spatial flow variation, or

q(z) = q, * ve(z) (4. 5)
where
| elz) | < 1 (4. 6)
9o

and Vv is a dimensionless perturbation parameter. The introduction
of the parameter Vv allows one to group terms of comparable
degrees of approximation in a methodical and convenient fashion.

We look for a solution of the rock temperature field of the form

T(x,y,2,t) = Tl(x, y, z,t) + f(x) (4.7)
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where f(x) is the initial formation temperature. The deviation T1

from the initial configuration is represented by the perturbation series

(2)
1

(1)

1 (x,vy,2,t)

0 2
Tl(x,y,z,t) = T(1 )(x,y,t) +vT (x,y,z,t)+Vv T

(n)

n
.
+ VT1

(x,y,2,t) +... (4. 8)

Defining the operators H and V(z) as

d -2k 9

I_I:(rqux ry

Vi(z) = (rfe (z)t':)X

the heat transfer boundary condition (4.2) can be written as

[H+vV(z)]T1(x,y,z,t)lyl 0 -crfq(z)f'(x) (4. 9)

Inserting expression (4. 8) into equation (4. 9) and equating equal

powers of VvV, one obtains

(0 _

1
H 1 -crfqof (x) , vyio

HT(ll) + V(2)T

(10) = -0 (z)f'(x), vy} o0

(4. 10)

HT(IZ) + V(z)T(ll) =0, vy 40

(n-.l) _

(n) | V(z)T) 0, yilo0

HT1
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Furthermore, substituting expressions (4.7) and (4. 8) into equation

(4. 1), we find that the elements of the perturbation series must satisfy

—laT(O)-a T(O) =0, y>0
t 1 yyl

)

—l—aT(l)-a T(l)-a T(1)=O, y >0
a t 1 yy 1 zz 1
T : (4.11)
__l__aT(n)_a T(n)_a T(n)=0, y >0
I 1 yy 1 zz 1
The initial and boundary conditions on the elements T(ln) of the
perturbation series are easily shown to be
T(n)(xyzt)l =0, n=0,1,...
1 b ’ b t S- 0 ’ b b
(4.12)

(n)
T,(0,0,2,8)]

It is evident from this formulation that a solution for the nth term

of the perturbation series can, in principle, be built up from the

knowledge of the previous n-1 terms.

We simplify the present analysis by truncating the perturbation
series (4. 8) after the first two terms which results in a first order

perturbation approximation. The solution will be sufficiently valid as

long as constraint (4. 6) is met. A discussion of the range of validity
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of this approximation is given in the following section. Thus, we look

for a solution of T1 of the form

(0)
1

(1)

Tl(x, y,z,t) = T “(x,y,t) + T1 (x,v,2,t)

where

1 (0) (0)
A e DR A
r
0 1
nr\” = o g '), ye0
(4. 13)
0
Tg )(x’y’t)‘ti 0 =0
(0) =
%, O’t)lt>0 = T, - £(0)
and where
Ly D) (1) W
a, 8. Ty - anyl "1 7% ¥ 20
HT(ll) + V(z)T(10) = oo (), s
(4. 14)

1
T(1 )(x,y,t)ltio =

1
o

(1)
1

T, '(0,0,t)]

t>0

The solution of equations (4. 13) and (4. 14) is obtained by integral
transform techniques.
The initial rock formation temperature f(x) is again assumed

to be a linear function of x, or
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where c1 and CZ. are constants.

Laplace transforming equations (4. 13) with respect to time and

(0)

solving the resulting set of equations for T1 gives

(T.-c,)
A
T(lo)(x, y, 8) = ——Ls——l exp[- /;S; (aox+y)]

(- [=y)
c,expl- [Ty
Tr

S

- = [l—exp(—ao a_ x)] (4. 15)
a.s [— r

0 a

T
where

2k

a = L

0 O'fqo

As expected, the unperturbed solution for the fluid temperature,
£(0) o . , . .
T1 + f(x)/s, is identical to equation (3.25) in the limit of zero
fracture width, corresponding to the uniform component of flow -
Noting that the operators H and V(z) are time independent,
the Laplace transform (with respect to time) applied to the first two

equations of (4. 14) followed by an exponential Fourier transform (with

respect to z) gives

AN
P (22 e0, y>o (4.16)

8yy 1 a



and
~ 1
A 0 o€ (w)f'(x)
HT(l) + Viw )T( ) - e (4.17)
where the "A" indicates a Laplace followed by a Fourier transform
and the "~~" denotes the Fourier transform. The (exponential)

Fourier transfcrm and its inverse are defined, in symmetric form,

(Magnus and Oberhettinger, 1966)

0

~CY - __1 iwt
glw) = F 1:[g(t)] Ny Swe g(t)dt

-iwt.

g(w)dw

0
-1
gt) = F " [g()] ﬁgw

The solution of equation (4. 16) that remains finite as y —™ % is

éT\\(ll)(x, y,w, 8) = ﬁ(x, w, s)exp(- ’a._s +w2y) (4.
r

‘ Substitution of expression (4. 17) into equation (4. 18) yields a first

order differential equation for ﬁ(x, w,s)

s 2A T (w) A(0)
9 Ata /ar tw A= - qo{ T, | 10+f()} (4.

A(0
With the solution of T(1 ) given by equation (4. 15) and the homo-

>

geneous boundary conditions at x = 0 given in equations (4. 14), it

I

by

18)

19)
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can be shown that

(x,w, s) = i(—w')'R(x, s, w) (4. 20)

90

— "] oo
a S T) exp(-a = +w2 ) (- S )
0 a C B C2 P 0/ a X)-exp 0 Ja X
T r T
ozo —a +w -ozo _a
L N Tr N Tr

/ S
- - — +
, 1-exp( 010 S T x)
- = = (4.21)
S o s +w2
0/ a
T

- -

R
A

where

The analysis to this point has assumed, of course, that the Fourier
transform of ¢(z) exists.

Expressions (4.20) and (4. 21) will in general be quite difficult
to invert analytically. The problem is simplified by assuming that the
flow perturbation can be represented by a pure harmonic function with

amplitude g,

*

e(z) = q, cos(woz)

With this simplification the inverse Fourier transform is immediate,

and



A1)
Tl

(x,0,z,s) ﬁ(x, Z,s)

q

-1 cos(w_ z)R(x,w_, s) (4.22)
q 0 0

1

We are primarily concerned with the temperature variation in
the fluid due to the flow perturbation. To this end, we evaluate the
peak-to-peak temperature variation as a function of channel wave-
length using equation (4. 22), or

2
AT(x,t,\) = %m;l[R(x, ZT" , )] (4.23)
where M\ is the channel wavelength. The indicated inverse is done
numerically using a method described in Appendix A.

Figure 7 shows several examples of the peak-to-peak fluid
temperature variation due to a sinusoidal flow perturbation. The
examples assume a constant 30°C injection temperature and an initial
uniform formation temperature of 150°C. The magnitude of the
unperturbed flow 9, is 0.05 kg/(m.sec) and the flow perturbation
amplitude q, is 20% of this value, or 0.01 kg/(m.sec). Cases a, b
and c represent channel wavelengths of 100 m, 50 m, and 10 m
respectively. The dotted lines represent AT(x,t,\) based on equa-
tion (4.23). The solid lines assume that there is no conductive trans-
port in the rock in the 2z coordinate and are computed on the basis

of equation (3.27).

O




Figure 7.
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Peak-to-peak fluid temperature difference within the con-
ductor in the direction transverse to flow assuming a
sinusoidal spatial flow variation. Channel wavelengths are
100 m, 50 m, and 10 m for cases a, b, and c respectively.
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It is evident that the effect of non-uniform flow is most signifi-
cant for long wavelengths and damps out rapidly for shorter wave-
lengths. This is due to the greater thermal communication between
flow channels for the shorter wavelengths and the resulting "smearing
out" of the temperature differences in the transverse (z) coordinate.
For the case in which there is no thermal communication between
channels (solid lines) the maximum peak-to-peak temperature differ-
ence moves away from the injection port with ipcreasing time with no
change in amplitude.

The results of this simple perturbation model show that a sub-
stantial error in fluid temperature can occur by ignoring the conduc-
tive transport in the rock in the direction transverse to the flow under
non-uniform flow conditions. The consequences of ignoring this term
of the diffusion equation for wavelengths on the order of 100 m or less
can be quite severe in terms of heat extraction efficiency. For the
shorter wavelengths (A < 10 m) the temperature field of the fluid
approaches that obtained for the uniform flow case--that is, AT
becomes small. Therefore, the heat extraction efficiency, in the
limit of small flow channel wavelength, approaches the optimum
value. However, by ignoring transverse conduction, there is no

approach to this optimum.
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Fourier-Galerkin Method

The perturbation method is quite instructive in regard to the
overall effect of flow channelling. However, constraint (4. 6) severely
limits the range of applicability of the method. We therefore recast
the problem of flow channelling into an equivalent variational problem.'

The Galerkin variational method (Galerkin, 1915) is formulated
as follows. Assume that we are given an equation Bu - f =0, where
B is a linear operator defined on some Hilbert space. The Galerkin
method requires us to select the sequence of orthogonal elements
¢ €D (domain of B) and the sequence of orthogonal elements

n B

Lpn € DB and then to attempt to find an approximate solution, or

"trial" solution, of the form

n
Uy T Z 2 Px
k:

0

The coefficients ak are determined from the condition that

(Bun,Lpi) =0, i=0,1,...,n. This leads to the set of equations

n

z ak(quk,Lp.l) = (f, Lpi), i=0,1,...,n
k=0

from which the ak's and consequently u ~can be obtained. The

above formulation is Petrov's generalization of Galerkin's method. It
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is sometimes convenient to restrict the sets {qoi} and {Lp,l} to be
identical, which yields the Bubnov-Galerkin method (Mikhlin and
Smolitskiy, 1967). It is the latter method that will be used in the fol-
lowing analysis.

For the problem under consideration, we let the flow rate q(z)
be a given periodic function of 2z with period 2L. Furthermore,
q(z) >0 and is even on the interval -L <z < L. Thus, the dimen-
sionless parameter a can be expressed by the Fourier cosine

series

2k 2N .
| iz
a(z) = O’fq(z) Z ¢, cos T (4. 24)
£=0

The choice of the upper summation index will become apparent as the
analysis develops. A periodicity in flow implies a periodicity in the
temperature field, so we look for a solution for the temperature field

of the form

T(x,y,2,t) = T (x,y,2,t) + f(x) (4.25)
where
N
Tl(x’ y,2,t) = z an(x, y,t) cos Ez—z (4. 26)
n=0

and where f(x) 1is the initial formation temperature.
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The above equations can be thought of as the "trial solution”
that approximates the true temperature field. The set of coefficients
{an, n=0,1,..., N} are chosen using the method of Galerkin such that
expression (4.26) is the "best" solution (in the least squares sense)
for the true temperature field. Since the basis functions for the trial
solution are simply the set of trigonometric cosine functions, the
method is termed the Fourier-Galerkin method.

Laplace transforming equations (4. 1) and (4. 26) with respect to

time, we obtain

5T -8 T -5 T, =0 >0 4.27
a_ l-yyl_zzl_’y (4.27)
and
N
A A nmz
= .2
Tl(x, Y, %, s) Zan(x, y, 8) cos I (4. 28)
n=0
Substituting expression (4. 28) into equation (4. 27) and using the
orthogonality of the basis functions on the interval -L <z < L, one
obtains
2 2 (x,y.8) - (Z4p03 (x,y,8) =0, y >0 (4. 29)
a'n ok ) ar n nx’y’S ’ y )
n=0,1,...,N
nw
B =2
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The solution for 'a\n(x, y,s) that remains finite as y — ® s

A A 5 a2 -
an(x, y, s) = bn(x, s)exp(- ’ar +[3ny), n=0,1,...,N (4.30)

and therefore,

N

T )—Z%( Jexp(- | = +B%y) cos 2ZZ  (4.31)
(%7 z, 8 n x, s)exp(- ar oY cos = .
n=0

The heat transfer boundary condition is now recast in terms of
A
the set of coefficients {bn(x, s), n=0,1,...,N} by means of the
Fourier-Galerkin method. Laplace transforming the boundary condi-

tion (4.2) with respect to time and using expression (4. 25), one obtains

B[/T\l] =0 (4.32)

where the operator B is defined as

2k

_ r £'(x)
B[]-qu(z) ay[] -ax[]- - y {0 (4.33)

The Fourier Galerkin method requires that the coefficients

A
bn(x, s) be selected so that the N+1 algebraic equations

L
2 A
—S B[T,] cos mITIz dz=0, m=0,1,...,N (4.34)

L
0

be satisfied.
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For the purpose of notational economy, the multiple inner

product of the basis functions is defined as

L
o2 nz Anz muz jiTz
(n,l,m,...,J)—Lg cos =7 cos ~ cos — s+ . CO8 L dz

Using expressions (4.24), (4.31) and (4.34), it can be shown that the

8 ] . .
b 's satisfy the set of equations
n

N 2N

z Z (m,l,n)\/'ai +BI21c£?)n(x,s)
r

n=0 £=0

N

+ Z(m, n)d ,1‘) (x,s8) + (m,0) £(x)
X n

S

=0, (4.35)

n=0
With the use of a comraon trigonometric identity, it is evident that

(n, £, m) =%(1,m+n) +%(1,m-n)

Furthermore, the orthogonality of the basis functions on the interval

-L <z <L requires that

0,0 n¥im

m#70

(n, m) = 1, n
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Using these addition and orthogonality properties, the problem can be

reduced to solving the set of N+1 first order coupled ordinary dif-

ferential equations

N
A A A N
9 b (x,s)+ ZA (s)b (x,s) = -§ (x,s), (4.36)
X m mn n m
n=0
m=20,1, , N
where
— +ﬁ
_ 2 o (ntm, ntm) (m-n,m-n)
A (s)= c —_——c
mn 2 (m, m) m+n (m, m) |m—n|
(4.37)
and where
i
. f (sx)  m=0
£ (x,8)= (4. 38)
m
0, m >0
It is instructive to cast the above equations in matrix form.
~ ~ a
8 B(x, s) + Rls)b(x, s) = -E(x, s) (4.39)
where
P-'A - -~
bo(x, s) E'(x)/s
- /Bl(x, s) - 0
b(x, s) = E(x,s) =
0
bN(x, s) .
. _J 0 «—+4(N+1)th entry
. e
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and where

(— A A A
Aoo(s) AOL(S) AON(S)
A (s) (s)
?\.(s) - 1‘0 11
N
no'®) ANN(SL

It is not unexpected that there is a striking similarity between equa-
tions (4.39) and (3.20). The thermal coupling between the flow
channels and the temperature field is quite explicit in expression

(4. 36), where the matrix ?\(S‘.) couples the Fourier coefficients of
the temperature field with the Fourier coefficients of the flow con-
figuration. Furthermore, it is at this point evident from equation
(4.37) why 2N+l terms were retained in the expansion of a(z).
We note that in t-space, the coupling matrix ?\.(s) will be time
dependent. The final requirement for the solution of equations (4.36)
through (4. 38) is the value of /t‘)(x, s) at x = 0. This is easily

shown to be

"T_l-f(oﬂ
S
- 0
b(0, s) =
0
0 «—— (N+1)th entry
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Equation (4.39) is integrated numerically using the Backward

Difference Approximation (BDA) method (Varga, 1962). The BDA

method approximates the differential equation (4.39) with the finite
difference equation

—

-—-'
Bix 0

s)-b(x, , s) — —
k+1’ Kk’ AA A
Axk + A(s b(xk+1, s) = -E(x

s) (4. 40)

—

k+1’

where the real line x >0 has been partioned into the set of sub-

i Ax = - < <. .. . injecti
intervals X S X T ¥ where Xq < X The injection

port at x =0 corresponds to X Rewriting equation (4. 40) in

terms of a computational marching scheme, we obtain

— — —

Blx . s) = (I+ax A(s))'l{ﬁ(xk, s)-ax. Elx

K1’ K s)}, (4. 41)

k k+1’

k=0,1,2,...
where 1 is the identity matrix. The above method will yield

- —
Blx ,s), k>0 given the "starting" vector %(xo, s). The number of

k
matrix inversions required in the éomputational procedure is mini-
mized by letting the grid spacing Axk be constant. The matrix
inversion indicated above is carried out using the point Jacobi itera-
tive procedure (Varga, 1962). Having integrated the equation to the

A
desired value of x, the resulting set of N+1 coefficients b (x,s)
n

are numerically inverse Laplace transformed by a method described
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ir. Appendix A. The temperature of the fluid, T(x,0,z,t), is then
evaluated by expression (4.25). A computer program, CHFLO,
based on the above procedure is given in Appendix E.

An important question to be addressed at this point is the
existence of the above indicated matrix inverse under the Jacobi
iterative procedure. A necessary and sufficient condition for the
convergence of the sequence of elements in the iteration is that the
spectral radius of the Jacobi matrix M be less than 1, where the
spectral radius is defined as

p(M) = max | )\il

i

and the )\i are the eigenvalues of M. For the case under con-
sideration, the Jacobi matrix is given by M= D—l(UTM+LTM),
where D, UTM, and LTM are the diagonal, upper triangular
matrix, and lower triangular matrix of I + Axﬁ(s) respectivel}.
A closed form solution for the eigenvalues will in general be quite
difficult to obtain. However, if any norm " M" of the Jacobi
matrix can be shown to be less than 1, it follows that p(M) < 1,
since p(M) < ||M|| (Isaacson and Keiler, 1966). The matrix norm

used in the present analysis is
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where the dij's are the elements of I + Ax?\(s). The values of this
norm for the specific examples of the Fourier-Galerkin solution to be
considered are given in Appendix E. For all cases considered, the
spectral radius of the Jacobi matrix was less than one and therefore
the iteration sequence converged.

A flow channel configuration on the interval 0 <z < L of the

form

< z <
(qo ’ 0 _Z —ZL
(qo—ql) z . -2
q(z) =< — [1-cos( m)] + q;. 2z <z<z
<
\'ql ’ ZH _Z _L

is used in the analysis, where 9 90 Zp and z, are constants
and where 2z, >z . The "taper width" w is given by 2y - 2
The cosine taper function gives a very smooth q(z), which is
advantageous in minimizing the number of terms required in expan-
sion (4. 24).

Figure 8 shows three flow channel configurations of varying

degreés of severity considered in the present analysis and in later
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discussions of gon—uniform flow. All have a mean flow (averaged
over the interval 0 < z < L) of 0.05 kg/(m.sec). The choice of
these specific cc.)nfigurations‘ was arbitrary. The range of severity of
the channelling goes from the uniform flow case (gurve c) to a con-
figuration that varies by a factor of ten (curve a.).. It is felt that this
range of flow variations may be representative of the degree of flow
non-uniformity to be expected in an actual recovery system. The
periodicity of the channelling, 2L, is probably the most uncertain

parameter.

—

0.20 025

0.15

q (kg/m-sec.)

00 L

Figure 8. Flow channel configurations used in the Fourier-Galerkin
analysis. Channels have a periodicity of 2L and a mean
flow (averaged over the interval 0 <z <L) o
0. 05 kg /(m. sec). :
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For the purpose of example, we consider two initial rock

formation temperature distributions, corresponding to an upflow sys-
tem and an initial uniform temperature configuration. The formation
temperature distributions for these cases are given by equations
(3.29) and (3.31) respectively. Figure 9 shows the fluid temperature
distribution for the upflow configuration and Figure 10 for the initial
uniform temperature case. The flow configuration (a) in Figure 8 is
used in the computations, where L is assumed to be 10 m. The

temperature distributions are plotted at 100 m intervals from the

injection port (x = 0) of the system to a maximum distance of 1 km.
The curves on the left hand side of the figures correspond to the
Fourier-Galerkin solution ("coupled" model) and those on the right
hand side correspond to the case where conductive transport in the =z
coordinate is ignored ("uncoupled" model), i.e., equation (3.27) with
q replaced with q(z). The latter is given for comparison in order
to observe the degree of inter-channel communication. The injection
temperature assumed for both figures is 30°C.

It is evident from Figures 9 and 10 that, for early time
(t < 0.1 yr), there is little difference in the uncoupled and coupled
models. However, for later times, the difference becomes quite

significant. This observation is also substantiated by the simple

perturbation model discussed previously.
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Figure 10. Time development of fluid temperature distribution for the
case of an initial uniform rock formation temperature
under severely non-uniform flow. Curves on the left hand
side correspond to Fourier -Galerkin solution and those on
the right hand side correspond to uncoupled solution.
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At this juncture, it is of some interest to compare the Fourier-
Galerkin solution with the perturbation solution to determine at what
point the perturbation solution breaks down. That is, as the flow
perturbation amplitude 9, (see equation 4. 22) is increased, at
what point does the perturbation theory deviate "substantially" from
the Fourier-Galerkin solution. Since the perturbation method dis-
cussed in the previous section was developed specifically for a pure
harmonic flow variation (see equation 4.22), the Fourier-Galerkin
solution is computed on the basis of an identical flow geometry. This
is accomplished by setting z; = 0 and Zyp T L in the above
expression for q(z). Letting TP be the perturbation solution and
T be the Fourier-Galerkin solution, the rms error of the

F-G

perturbation solution is computed as

1 5 1/2

L
|TP'TF-G|rms L go (Tp-Tp g dz

1

where the indicated integration is accomplished numerically using
Simpson's Rule.

Figure 11 shows an example of the rms error of the perturba-
tion method as a function of distance from the injection port and time
based on a channel wavelength \ = 10 m. Two flow perturbations,
ql/q0 = 0.5 and 9 /qO = 0.75, were considered, where q, Wwas

taken to be 0. 05 kg/(m. sec). The injection temperature is 30°C and
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Error in the perturbation method as a function of distance

from the injection port and time. Error is calculated by

comparison with Fourier-Galerkin method.
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the initial formation temperature is 150°C. 1t is seen that, even for
these large perturbations, the first-order theory does a very good job
of approximating the true fluid temperature for the particular flow
geometry under consideration. It is furthermore noted that the shapes
of ihe error distributions in Figure 11 correspond roughly to the
shapes of the peak-to-peak temperature curves of Figure 7. This
reflects the condition that the magnitude of error in the perturbation
method is correlated strongly with the transverse temperature
gradient. For the most part, the true temperature field of the fluid
is a pure harmonic function of the z coordinate, as indicated by
the relatively small rms error shown in Figure 11. The maximum
deviations from a pure harmonic field occur in regions of the con-
ductor where the transverse temperature gradient is the largest.
Additional computations have been carried out that show that the error
associated with the perturbation method for X >10m is smaller
than that indicated in Figure 11 for X\ = 10 m.

The above analysis indicates that, for rather large flow
perturbations, solutions for an arbitrary uni-directional flow con-
figuration based on a linear combination of terms of the form indicated
by equation (4. 22) can serve as a good approximation to the true fluid

temperature field.
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Fluid Losses

Fluid losses due to leakage from a natural fluid conductor may
significantly reduce the total produced thermal energy of a recovery
system. As a rock cools, fracture openings will enlarge due to the
thermoelastic contraction of the adjacent formation. The increased
permeability combined with the preferential downward convective
penetration of cold water within the system may serve to channel the
injected water out of the heating zone. It is evident that a fluid can be
injected between the contact planes of a closed conductor only if the
fluid pressure exceeds the local contact préssure. The magnitude of
the lithostatic (overburden) and regional tectonic stresses may be
such that in order to obtain the required flow rate, an increased well
head pumping pressure may be necessary. It is likely that the
elevated pumping pressure required for conductors exhibiting very
small natural permeability will increase fluid losses from the system.

The present section describes the effects of a distributed fluid

loss within the conductor on the production temperature of the system.

Fluid Loss Model

We will investigate the case where the fluid flow is a function
only of the distance between the injection and production ports of the

system. Using the first-order heat extraction model, the problem can
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be stated mathematically, analogous to equations (3.9) through (3.12),

as
Lot .s T=0 >0 (4. 42)
a t yyo 7 ’
Tr
ZkrayT = (rfq(x)axT, y ¢ 0 (4. 43)
T(x, y, 1:)|tﬁ o = f(x) (4. 44)
T(O0, o,t)|t so° T, (4. 45)

The zero fracture width approximation has been used in the heat
transfer boundary condition (4. 43).

The solution to the above initial and boundary value problem is
obtained using integral transform methods in a manner similar to that
discussed in Chapter III. Applying the Laplace transform with respect

to time to equations (4.42) and (4. 43), we obtain

2k 8 T 5 T 6
kr y'T = crfq(x) xT, y& 0 (4. 46)
1 A A
— {sT-f(x)} -8 T =0, y>0 (4.47)
a_ yy

A
The general solution for T that remains finite as y ™ ®© is

A A 5
T(x,y,s) = Alx, s)exp(- [ — y) +—— (4. 48)
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Inserting expression (4.48) into equation (4.46), a first order differ-

A
ential equation for A(x,s) is obtained

) g(x,s)+a gl-—)A(x, s) = -lf'(x) (4. 49)
X 0 q(x) 8
where
2k
a = L
0 o.4q(0)

Using standard techniques for the solution of non-homogeneous differ-
ential equations with variable coefficients (Leighton, 1966), the gen-

A
eral solution for A(x,s) is

(4.50)
X x"
X g(s) - i‘S‘ f'(x")exp[:oto if 3((—07)')' dx'] dx”
0 J Yo ax)

A
where - B(s) 1is a function yet to be determined. Thus, the Laplace

transform of the rock temperature field can be written as

T(x y, 8) = exp ’ [ S‘ (x ) ]
(4.51)
X g(S) - i f (x")exp[: S S(_O_d ]dx" +£(SL)
0 A]
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A
Evaluating T at x =y =0 andusing the Laplace transforms of

equation (4. 44) and (4. 45),

For the present analysis, we choose the simplest distributed
fluid loss between the injection and production ports of the system--

namely, a uniform loss. Thus, the flow rate can be written as

alx) = q; t q,x (4.52)

where a; and q, are constants and a, < 0. The initial rock
formation temperature is again assumed to be a linear function of x,
or

f(x) = ¢y + c,x

where <y and c, are constants. With these requirements, equa-

tion (4.51) reduces to

a
A s 0
T(x,y,s) =exp| - [—|yt — In(l+yx)
a Y
T
(T.-c.) c a
i 1 2 1
x| 4—— - =] —— | (1+yx)exp U L e TRV I
s 8 S vy [a
y+ao —a r

r

+ (4.53)



To determine the temperature of the water within the fluid

Ay .
conductor, T(x,y,s) is evaluated at y = 0. Inverse Laplace trans-
forming the resulting equation (Abramowitz and Stegun, 1964; Carslaw

and Jaeger, 1959), the fluid temperature is found to be

-1,
T.(x,t) =L [T(x,0,s)]
f ]
2
T erte @, In(1+vyx) c2(1+yx) : exp(y art)erfc(y [art')
i1 2y fat [ )
i Y art Y az ozo
2
c, @, In(1+yx) yat
+— erfc( ———) - (ltyx)exp( ) (4.54)
2 f aZ
0
[y , @, In(1+yx)
X erfc + + (c,tc,x), t>0
@, Zy ,art' 1 72

It can be shown that the above solution for the fluid temperature
reduces to equation (3.27) in the limit of zero fluid loss within the
conductor (q1 = 0).

We define a fluid loss parameter & as

i q(0)-q(x )
q(0)
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where q(0) is the injection flow rate and q(xp) is the production
flow rate.

Figure 12 shows several examples of the effect of a distributed
fluid loss on the temperature of the fluid in the conductor based on
equation (4.54). These particular examples assume a constant injec-
tion temperature of 30°C and a constant production flow rate of
0.05 kg/(m. sec). The production port is 1 km from the injection port.
Three initial formation temperature situations, represented by the
dotted lines, are considered. As in Figure 5, these represent an
upflow (case A), downflow (case B) and initial uniform temperature
(case C) configuration. A 50°C /km geotemperature grandient has
been used for the calculation of cases A and B. The fluid temperature
distribution has been calculated for 1 year and 10 years after flow
start up and for 0%, 25%, and 50% fluid loss between the injection and
production ports. Therefore, the injection flow rates corresponding
to the 0%, 25%, and 50% losses are 0.05 kg/(m. sec), 0.067 kg /(m.sec),

and 0. 10 kg/(m. sec) respectively.
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Figure 12.

Fluid temperature distributions within the conductor for
0%, 25%, and 50% distributed fluid losses from the
conductor.
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V. VARIATION OF FLOW RATE TO MEET CONSTANT
AND SEASONAL POWER LOADS
The results of Chapters IIl and IV are based on the assumption
that the system flow is stationary in time. The effective power
P= crquT, where AT is the effective utilized temperature span,
will vary according to the variation in AT. In many commercial
applications of geoheat, there will be an interest in a specific power
variation--for example, a seasonally varying output in the case of
domestic heating. In order to meet these types of loads, the flow rate
q must be varied in time in some manner. The present chapter con-
siders two cases of power loads; (1) constant and (2) seasonally
varying. A parameter perturbation method is used to determine the
required flow rate to meet a constant power load. A numerical
approach is used to address the question of a seasonally varying power

demand.

Constant Power Demand

The present section investigates the effect of a small time
dependent flow rate perturbation on the power output of a forced
recovery system. The perturbation method is analogous to that dis-
cussed in Chapter IV. The analysis is based on the first-order heat
recovery model. Therefore, we consider a uniform and uni-

directional flow connecting the injection and production ports of the
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system. Referring to Figure 2, a flow rate of the form T = qt)R
is required.

The mathematical problem can be stated, corresponding to

equations (3.9) through (3. 12) as

Losr-9s T=0, y>o0 (5. 1)
a 't vy

r

ZkrayT =o0qt)d T, y { o (5.2)
T(x,y, )], <o (5.3)
T(o,o,t)lt>0 =T, (5. 4)

Again, the zero fracture width approximation has been used in the heat

transfer boundry condition (5. 2).
The perturbation method used in the present analysis assumes

that the flow rate q(t) can be represented by a constant flow rate

perturbed by a small temporal flow variation, or

qlt) = q4 + vel(t) (5. 5)
where
1«1, t>o0 (5. 6)
99

and where V is the perturbation parameter (see Chapter IV).
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We look for a solution of the rock temperature field of the form

T(x,y,t) = Tl(x, y, t) + £(x) (5.7)

where f(x) is the initial formation temperature and where T1 is

represented by the perturbation series

Tl(x,y,t) = Tgo)(x, y,t) + VTgl)(x, y,t) + Vzng)(x, y, t)

+ ... (5. 8)

Defining the operators H and VI(t) as

9 -2k O

| H=<rfqox oy

V(t) = o.€(t)d
f x

heat transfer boundary condition (5. 2) can be written as

[H+vV(t)]T1(x,y, t)lylo = -crfq(t)f'(x) (5. 9)

Inserting expression (5. 8) into equation (5. 9) and equating equal
powers of V, a set of equations analogous to equations (4. 10),
(4. 11), and (4.12) is obtained. As in Chapter IV, we simplify the
analysis by truncating the series (5. 8) after the first two terms.
Thus, the problem is reduced to solving the following initial and

boundary value problem.




and

(1)
1

T, (x,v,t)] =0

£< 0

T(ll)(O, 0,t)]

i
o

t>0

(0
The solution of equations (5.10) for the unperturbed solution T‘1 )

has been obtained previously. Using the unperturbed solution, equa-

(1)

tions (5. 11) are solved for the first-order perturbation solution T1

using integral transform techniques.
The flow rate perturbation ¢(t) is represented by a polynomial

in ¢, or

N
e(t) = Z(-l)nantn (5.12)
n=0 '
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where the an's are given numerical coefficients. The reason for
including the factor (-1)n will become apparent as the analysis
develops.

The diffusion equation in (5.11) is Laplace transformed with

A(1)

respect to time. The resulting solution for 'I’(1 that remains finite

as y " % is

A(l) A
'I’1 (x,vy,8) = Alx, s)exp(- y) (5. 13)

S

a
r

Using the relation (Abramowitz and Stegun, 1964)

4

dsn

LD F(©)] - F(s)

the heat transfer boundary condition in (5. 11) can be shown, following

the Laplace transformation in time, to be

N
q
A(1) n A(0) _ : n 2™
H'I‘1 + (rfax ZanasTl (x,y,s8) = —(rff (x) (-1) Wl (5. 14)
n=0 n=0 s

Inserting expression (5. 13) into equation (5. 14), we obtain a first

PAS
order differential equation for A(x, s).

A s A _ A
8XA(x, s) + ao /ar A(x,s) = -G(x, s) (5.15)



and where

N N
N 1 A ! !
G(x,s) =— 0 Za BnT(O)(x,y,s)I +f(x) Z(-l)na 4
q X ns 1 y40 q n ntl
0 0 = s
n=0 n=0

A
The general solution for A(x,s) that satisfies the homogene-

ous boundary condition at x = 0 is

A X S A
A(x, s) = - g exp{ao /'a—' (x-x")}G(x', s)dx' (5.16)
0 r

We now make the simplification that the flow perturbation «(t)
can be represented by a second order polynomial, i.e., N = 2.
Furthermore, the initial formation temperature f(x) is assumed to

have the form

f(x) =c, + c.x

A
where < and c, are constants. Using the solution for T(1
given by equation (3. 25) (in the limit of zero fracture width, where

B = 0) in the evaluation of expression (5. 16), followed by an inverse

transformation, and omitting considerable algebra, we obtain




T(ll)(x, 0,t) = L;I[A‘(x, s)]
ao a t a.t
= (c,-T)| — g (6)+— g,(§) g, (&) (5.17)
1 0 0 0 1 qO 2
a a,t a,t
boyx| 2 hg(E0 = b () —— b, (£)
9 9 R
where
-2 2
g(6) = = expl-£%)
g, (€) = 2€ ierfc(§) + §ZerfC(§)
gz(g) =12 ¢ i3erfc(§) + 6§Zizerfc(§) - g‘ §3ierfc(§)
h e +l fe(£) + erfel
O(§) SN ierfc(§) + erfc(§)
hl(g) = - % i3erfc(§) - 4'12erfc(§) - Eierfc(§) + 3g2ﬁ
2
§) ié' 15erfc(§) + 3Zi4erfc(§) + 10§i3erfc(§) + 4§ iZerfc(g)
3
T BENT
where
o t
_ 0
€= 2 [at

The repeated integral of the error function, inerfc(g),

given by (Abramowitz and Stegun, 1964)

is

82
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[+ o]

iPerfc(£) = g 2l pfe(t)at
£

and satisfies the recurrence relation

inerfc(§)= -'I% i 1e1‘1‘fc(§) + iin_zerfc(g)

where
-1 2
i “erfc(f) = NS eXP(—éz)

ioerfc(g) = erfc(§)

Recalling from Chapter IV that for a harmonic spatial flow of

the form
q(z) = q, + qzcos(woz)

we obtained a fluid temperature perturbation (in Laplace transform

space) of the form

A(l q
T( )(x,O,z,s) =—g-cos(w (4.22)
1 q 0

1

z)R(x, wo, s)

Taking the limit of the above

where R is given by equation (4.21).

—~ 0 we obtain an expression for the temperature

expression as wo

perturbation due to a small constant flow change, given by
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Vo qz qlA
lim T(l)(x, 0,z,s8) = (c,-T,) —/g\*(x, s) + ¢c,x — h¥(x, s)
1 1771 q, 8o 2% q. "0
w. ™0 1 0
0
where
a =2«
A 0 2 S
ga(x, s) = - exp(—ozO . x)

It is easily shown that the inverse Laplace transforms of QO and

?1(')‘ are precisely g and hO given in equation (5. 17). This
expected result serves as a partial check on expression (5. 17).

As an example of the effect of a small flow perturbation on a
forced recovery system, we consider the case of an initial uniform
formation temperature of 150°C. Water is injected at a constant
temperature of 30°C and recovered at a distance of 1.5 km from the
injection port. The power output is computed assuming that the
enthalpy is useable down to 40°C with an overall efficiency of 80%.
The power output history is varied in the model by adjusting the
perturbation coefficients ay, 2 and a,: Figure 13 shows the

thermal power history for a 10 year system lifetime with and without



o
A S-

E q- ................

gy

©

[

£

5 6 . 0 /l/' .

E o) (unperturbed)

O - :
a - L] Ll 1 1 :;

0.0 20 4.0 6.0 80 10.0

TIME (yrs)

00 20 40 60 80 10.0

TIME (yrs)

€=0 //

8_ (unperturbed)
0

T(°C)

Q0 20 40 60 80 100
TIME (yrs)

Figure 13. Variation of flow rate to meet constant power demand
based on a perturbation method.
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a flow variation. The unperturbed system corresponds to a constant
flow rate of 0.05 kg/(m. sec). By a trial and error procedure, it was

found that a flow perturbation of the form

3

- -4 -4 2
e(t) = -4.8 x 10 -2.0x10 t+2.0x 10 4t kg /(m.sec)

was sufficient to maintain a relatively constant effective power output
over the 10 year system lifetime. In the above expression for the

flow perturbation, the time t is given in years.

Seasonally Varying Power Demand

The validity of the perturbation theory will break down for the
case of a varying power demand with large peak loads. A numerical
"marching" approach is developed to address the question of the
ability of a forced recovery system to meet a seasonally varying

power demand. Equation (5.13) can be rewritten as

A exp(- /;S—y)
2/\
Tl(x,y,S) = {s Tl(x,y,S)Ile} SZ L (5.18)

A
Inverse Laplace transforming Tl(x, y,S), one obtains

t
2 2 y
T =2 -7)i
1(x, y,t) S;) 8TT1(x, v, T)|y¢0(t T)i erfc a, ) dr

(5.19)
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where the convolution theorem for the product of two Laplace trans-
forms has been used (Abramowitz and Stegun, 1964). Thus, the heat
flow at a given time and position within the conductor can be expressed

in terms of the temperature history of the fluid.

t
_ 2 2
ByTl(x, Y’t)|Yl0 N SO BTTl(x, v, T)|yl0'\/t-'r dr (5.20)

r

Using the above expression, the heat transfer boundary condition

(5.2) can be written as

4k t
L 8%T (x, v, NT-T dT + {0 T (x,v,t +'(x)} = 0
Wgo T1 X ¥ T)|yi0 TeT qu( ){ x 1 %y )|yl0 X)}(S.Zl)

Equation (5.21) is Laplace transformed with respect to x to obtain

4k t 2 A
= {222 iy, o NE ar
r 0 T y
(5.22)
A <5 _
+(rfq(t){rT1(r,y,t)|y‘0+ cy +T -Ti} =0

where r 1is the transform variable corresponding to x. We have
again assumed an initial formation temperature of the form

f(x) = ¢, +c.x, where ¢ and c, are constants. The above

1 2 1

expression is recast in a finite difference approximation given by
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n-1 A N A
4kr {E_l(r)-Tj(r)+Tj+1(r)}

= 2 nAt-jat At
j=0
A )
+ o qnat){rT (r)tc, + — -T.}=0, n=1,2,... (5. 23)
f n 1 r i
where
A ? l
= A
Tn(r) l(r, y,n t) y*o
and
A
Tl(r) =0
T (r)=0
O(r) =

A
Solving for Tn(r), we obtain

A A (r)
_ n
Tn(r) "B (1) (5. 24)
n
where
n-2
_ A A A Nn-i
A (r) = Z {Tj_l(r)-ZTJ.(rHTJ.H(r)} ——lAt
j=0

A A
\ (Tn_z(r)-ZTn_l(r)) \ arTr crfq(nAt) ( +_c:_2 .
At N At 4k “17 T T

r

and
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B (r) = L +r / x qu(nAt)
n At At 4kr

The marching scheme described above can easily be generalized
to allow for a time varying injection temperature. The temperature

of the fluid within the conductor at time nAt is given by

_1.A
Tf(x, nat) = L [T (r)] + £f(x)
r n

where the indicated Laplace inverse transform is done numerically
by a procedure described in Appendix A.

The thermal power output of the heat recovery system is

P(x, nat) = T](rfq(nAt){Tf(x, nAt)-Td}

where 1N is the overall heating system efficiency and Td is the
disposal temperature of the water. Assuming that the power demand
is a prescribed function of time, the required flow rate at time
(nt1)At can be estimated in a recursive manner from the power
demand at time (ntl)at and the production temperature at time

nAt. In schematic form, the recursive marching scheme is given by

Input . _ Pn+1 .
Pn+1 n+1 T]O'f(Tn-Td) ntl

n = ntl
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The numerical stability of the recursive marching scheme will
be difficult to determine and is beyond the scope of the present work.
However, results of the method compare favorably with the perturba-
tion method discussed in the previous section and this observation is
taken as an indicator of the stability of the method.

Figure 14 shows an example of a seasonally varying large
amplitude flow variation based on the recursive marching scheme
discussed above. As in the example given for the perturbation
method, the initial rock formation temperature is 150°C and the injec-
tion temperature is 30°C. The thermal water is recovered at a dis-
tance of 1.5 km from the inject’ion port. The power output is com-
puted assuming that the enthalpy is useable down to 40°C with an
overall efficiency of 80%.

It is seen from this example that»the production temperature for
a seasonally varying power demand is not degraded a significant
amount over the production temperature for a constant power demand

having the same time-averaged mean value (dotted line).
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Figure 14. Variation of flow rate to meet seasonally varying power
demand based on a numerical recursive marching method.
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VI. THERMOELASTIC EFFECTS

The fluid conductance of narrow open spaces such as fractures
or other type cracks is very sensitive to changes in their width.
Commercial exploitation of geoheat in significant amounts reduces the
temperature of large volumes of rock resulting in a substantial
volume strain due to thermal contraction. The resulting displacement
of the fracture walls due to the volume strain of the adjacent rock will
influence the subsurface flow pattern of the thermal fluid and may be
of great importance for the time development of a forced recovery
system.

The interaction between the thermal and hydrological phenomena
in geothermal systems is quite complex. Regional tectonic and litho-
static (overburden) stresses in the rock mass will play a significant

v
role in the behavior of the flow system. The problem is further com-
plicated if the flow system is composed of an interconnected net of
fractures. Since the states of flow connectivity and rock stress are
likely to be uncertain and difficult to measure, the problem is not
amenable to a meaningful theoretical analysis unless very complete
observational data are available.

In the pfesent chapter the emphasis is of a general and qualita-
tive nature. The situation is simplified by considering a single flat

fracture in the (x,z) plane embedded in a homogeneous isotropic
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entire space with Lame's constants X and W, Poisson's ratio
v = A/(2\+2p) and coefficient of linear thermal expansion S
Starting with an initially unstressed state, let the temperature field
in the rock be changed by an amount AT(P), where P = (x,y,2)
is a general field point. The temperature change is assumed to be
moderate so that no nonlinear or inelastic effects are induced and
that uncoupled thermoelastic theory can be applied.

The temperature decrease results in a contraction of the cooled
region which is described by the displacement vector field T Ina
homogeneous linear elastic (Hookean) solid, this vector is governed

by the differential equation (Parkus, 19 68)

1 - 1+v
T 2v vv-4q = ZaT(—l_v)VAT (6. 1)

2
v o+

Goodier (1937) has shown that the computation of the thermal
strain due to an arbitrarily prescribed temperature distribution in an
entire space reduces to the determination of the Newtonian potential
for a mass distribution whose density coincides with the given tem-

perature field. That is,

T = -Vo (6.2)

where the thermoelastic potential ¢ is given by
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AT(Q,t)dVv
- _T_ Q
e(P,t) = = ( )§ R(P. Q) (6.3)
and satisfies the Poisson equation
2
Veta (—"")AT 0 (6. 4)

T 1-v

The difference kernel in expression (6.3) is given by

_l(P,Q) = {(x—x')2+(y—y')2+(z—z')2}_1/2
where P = (x,y,z) is a general field point and Q= (x',y",z") isa
general source point.

For domains other than the entire space, Goodier's approach
merely supplies a particular solution of the thermoelastic equations
given by equation (6. 1) and still necessitates the solution of an
ordinary boundary value problem in the theory of elasticity.

Mindlin and Cheng (1950) have extended Goodier's method to the
problem of the half-space V1 in y >0 with a stress-free

boundary at y = 0. For a temperature change distribution in the

region V the displacement is given by

1,

T = -Vp, -V (6. 5)

2%2

where
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v, = (3-4v)v +‘2Vy3y - 4(1-v)§‘rv2y (6. 6)
and
o (Put) =0 (1 R(P, Q)
V1
(6.7)
e\t =\ R(P, Q)
VZ

V2 is the image volume of V1 in the plane y = 0.

In the present case, we are mainly interested in the displace-
ment of the fracture wall in the direction normal to the fracture plane.

It is easily shown that the above expression, for this case, yields

aw(S,t) = § - 4(1-v)ay<p1|

y}o {0

(6. 8)

i

ozT(1+v) S\ y'A'I‘(Q,t)dVQ

T v, R(s,Q)3

where

S, = s
R(S,Q) = R(P Q)|y¢0

and S = (x,z) is a general point on the fracture plane. Bodvarsson

(1975) has also obtained this result using a slightly different approach.
We will limit the present discussion to the plane thermal strain

case in which the temperature field is independent of the 2z coordi-

nate. Thus, the thermoelastic potential 2K given by equation (6.7),
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reduces to

3
o (% yit) = -Z—T;—r(%f—:)SAAT(x',y',t) In (r')aA" (6.9)
where
r'= {(x—X')ZﬁL(y-y')Z}1 /2
and

dA' = dx'dy'

The above logrithmic potential differs from expression (6.3) by an
infinite (ignorable) constant. The normal displacement of the fracture

wall for plane thermal strain and with a stress free boundary is thus

given by

2 1+
QT( V) y'AT(x',y",t)

2 2
A (x-x') +y'

Aw(x,t) = - dx'dy' (6. 10)

m™

Since Aw represents the displacement of one fracture wall, the

total change in fracture width is 2Aw.

We now take advantage of the convolution nature of the above
expression to recast the problem as a single integral in Fourier
transform space. To this end, we require that the temperature
change AT is absolutely integrable on the interval -® < x < ® and
is piecewise smooth on every finite subinterval. The Laplace trans-

form of Aw (with respectto t) followed by the exponential
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Fourier transform (with respect to x) can therefore be written as

A
Aw(w s) = -201 (1+V) |YAT((.o y', s)dy' (6.11)

where the "A" denotes the Laplace transform followed by the
Fourier transform.

In the present analysis for fracture flow, we assume that water
of constant temperature T,1 is injected into the fluid conductor at a
line source located at x = 0. The flow is uniform., stationary and

parallel to the x axis with the form

The rock formation is assumed to have an initial uniform temperature
T(x,y,0) = c,- With these requirements, the Laplace transform (with
respect to t) of the rock temperature field in y >0 is given by

(see Chapter III)

(T -C)

N\
T(x,y,s) = exp[ ’ (a|x|+y)] +— (6.12)

where the dimensionless constant o is given by
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The zero fracture width approximation has been made in the above
expression. This approximation has been previously shown to have
little effect on the rock temperature field and the error incurred
damps out rapidly with time. The change in temperature within the

rock due to cooling is given by

A (Ti_cl) S
AT(x,vy,s) =—;——exp[— ’a—-(a|x[+y)] (6.13)
r

and, upon applying the Fourier transform, one obtains

s
o | =
A (T.-c.) a
AT(w,y,s) = -12; ls 1 > & L > exp(- /f y) (6. 14)
(@ — 4w ) r

Therefore, the evaluation of the integral (6. 11) is elementary, and

A 2 (Ti-cy) = 1
Awl(lw,s8)= -2 [—a a0 — [—
T T s a 2. 2 s s
r (0w to —')(|w|+ —)
a a_

r

(6.15)

The inverse Fourier transform of the above equation is given by
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(T,-c,)
A?v(x,s) = -% ’ai aTa(1+v) —LSL
r
(6.16)
w »
9 g exp(-iwx)dw

_00 (w2+a2 = )(|w| + "a—s')
3y r

The integral in the above equation can be evaluated most easily by a
contour integration in the complex {-plane. The integrand has simple
poles at = in . Thus, upon calculating the residues associated
with these poles, 11‘:he integration is immediate. Figure 15 shows the
appropriate contour I in the upper half-plane that yields the solu-
tion for the half-line x < 0. A similar contour in the lower half-
pléﬁe generates the solution for x > 0. The resulting solution

defined on -%© < x < % is given by

2a (1+V)(T, -c,)
Aw(x,s) = exp(-a /i | %]) (6.17)
’ (1+a) ar

The evaluation of the inverse Laplace transform of Aw is straight
forward, and the final solution for the change in fracture half-width

is given by

T1+

a t 2 2
Aw(x,t) = ( )(T c)|? ’ % exp( :10;: )‘“|X|erfc(2—ajla]-)
r

(6.18)
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Figure 15. Contour in the complex §{-plane used in evaluation of the
thermoelastic fracture wall response due to cooling of
the rock mass.

An example of the change in fracture half-width Aw as a
function of time and distance from the injection port is given in Figure
16. The example assumes that water at a temperature of 30°C is
injected into the conductor at a constant flow rate q = 0.05 kg/(m.sec).
The initial formation temperature is 150°C. Figure 16 shows only the
x >0 part of the conductor. Since the flow is symmetric about x = 0,

the change in fracture half-width for x < 0 is just a reflection about

the plane x = 0.
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Figure 16. Fracture wall thermoelastic response assuming zero-stress boundary condition.
Spatial distribution of the change in half-width Aw as a function of time.
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Assuming laminar flow within the conductor, the mass flow

per unit length of conductor is given by (Lamb, 1932)

3
- _w_dp
q 12v, dx

where w is the total fracture width, Vf is the kinematic
viscosity of the fluid, and dp/dx is the pressure gradient in the
direction of flow. Therefore, the fluid conductivity per unit length

of the fracture is

The third power of w indicates the large sensitivity of C to

1o2

q

changes in the fracture width. Assuming that the kinematic viscosity

of the fluid is constant and that the initial fracture width is 1 milli-

meter, the above simple examples indicate that over a 10 to 15 year

system lifetime, the fluid conductance of the conductor can increase

by a factor of 104- 105 due to just thermal effects.

The Reynold's number for fracture flow is given by

Re=—g—
p.Vv
ff

Since the fracture walls are no doubt quite rough, the onset of
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turbulent flow within the fracture spaces will likely occur for
q X600 PeVe Taking the kinematic viscosity of water to be
0.3 x 10_6 mz/sec (at 100°C), the critical fracture flow rate for
turbulence is 0. 18 kg/(m. sec). Assuming that this flow rate is
exceeded within the system, the dependence of flow on fracture width
is given by the approximate relation (Lamb, 1932)
g w2}/
dx

Figure 17 shows the dependence of the fracture half-width Aw
on the flow rate q under the same physical situation as in the
previous figure. Flow rates between 0.001 kg/(m.sec) and © are
considered, the latter corresponding to an isothermal fracture wall
temperature of 30°C.

At this juncture, it is of some interest to compare the solution
given by equation (6. 17) for a fracture wall free of stress with the
solution obtained based solely on the entire space thermoelastic
potential given by equation (6.3). The latter makes no reference to
wall boundary conditions, an assumption that has been made in
numerical modeling of convection within a flat fracture because of its

computational ease (for example, Blair et al., 1976).
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Figure 17. Fracture wall thermoelastic response assuming zero-
stress boundary condition. Spatial distribution of the
change in half-width Aw as a function of fracture flow
rate q.

If the temperature distribution of the rock satisfies the Fourier

heat conduction equation, namely

2
'—l—BT—VT=0

then the particular solution of the thermoelastic equations may be
obtained with a simple integration (as opposed to the multiple integra-
tion indicated in 6.3) (Goodier, 1973; Boley and Weiner, 1960). To

accomplish this, we note that
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1+v
v at¢ + aT(l_V)atT =0
or
2 1+v _
v {8t"’+°’T( l_v)arT} =0

A particular solution of this equation may therefore be obtained by

setting

Therefore, the general solution is given by

t
o(P,t) = —aTar('i—f—:')S;) T(P, v)dT + Y(P) (6.19)
where
VEYP) = ~ar(T)T(P, 0) (6. 20)

For the case under consideration, the initial temperature configura-
tion of the rock mass is uniform and can be taken to be zero (Boley
and Weiner, 1960). Thus, a solution of expression (6.20) is (P) = 0.
Hence, the Laplace transform of the change in fracture half-width
based on the entire space thermoelastic potential can be written as

(1+v
Tar 1-v

AGHS,8) = -ar )29 r’r‘(p,s)|ylo (6. 21)

y

where the "*" indicates that the boundary conditions at the fracture
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wall have been ignored in the solution. Using the temperature model

(6.12), the above equation can be written as

T, -c
A _ 1+v e 3 5
aAw*(x, s) = aTar( l_v) SZ 2 exp(-a 2 lx]) (6.22)

Comparing equation (6.22) with equation (6. 17), we find that

2(1-v)
(1+a)

Aw(x,t) = Aw*(x, t) (6.23)

The difference between the two solutions Aw and Aw* can
be explained as follows. As the rock cools and contracts, tensile and
shear stresses are set up at the plane in the entire space coincident
with the plane of the fracture. By applying a "virtual" compressive
and shear stress to the wall that have an opposite sense, the stresses
are removed from the boundary to obtain the stress-free condition.

’
For large flow rates, for which a < 1, the shear stress setup in
the plane is much smaller than the compressive stress. This is most
evident‘for the case of q = %, in which the fracture wall is isother-
mal and therefore there are no shear stresses within the rock mass
due to thermal causes. Thus, for large flow rates, the applied
virtual stress required to eliminate the stress at the boundary is

primarily compressive and therefore Aw > Aw* as indicated by

equation (6.23). On the other hand, for very small flow rates, for
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which a > 1, the shear stress in the plane of the fracture dominates
the tensile stress. This is a result of the fact that the temperature
field (6. 13) does not account for conductive transport in the direction
of flow and consequently, large temperature gradients are set up in
the x coordinate by this model for small flow rates. The applied
virtual stress required to eliminate stress at the boundary is for this
case primarily a shear stress which will tend to decrease the fracture
width relative to the entire space solution. Thus, as indicated by
equation (6.23), Aw < Aw*.

By including conductive transport in the x coordinate in the
temperature model for the thermoelastic response, the relationship

between Aw and Aw¥*, analogous to equation (6.23), is given by

2.1/2 (1-v)

) l+a

Aw(x,t) = 2(1l+a AwX(x, t) (6.24)

where we have used the results obtained in Appendix B for the tem-
perature field in the rock mass. For this situation, Aw >Aw* for
all values of q > 0.

Fracture flow rates typical of a forced recovery system are on

the order of q >0.05 kg/(m.sec) or « < 0.02. Thus, to good

approximation,

3
Aw(x,t) = > Aw*(x,t)
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where we have let Vv = 0.25. Therefore, there is roughly a 30%
error incurred in estimating the change in fracture width by ignoring
the fracture wall boundary for the first-order heat extraction model
relative to the entire space solution.

The change in fracture half-width under a non-uniform flow
condition within the conductor has been calculated using the Fourier-
Galerkin method discussed in Chapter IV. The analysis ignores the
stress boundary condition at the fracture wall and consequently, based
on the previous discussion, will underestimate the wall response to
cooling. The computation is based on equation (6.21) and is contained
in program CHFLO given in Appendix E.

Figure 18 shows a particular example of the time development
of the change in fracture half-width under a severely non-uniform flow
condition. The stationary flow configuration corresponds to curve (a)
in Figure 8, where L = 10 m. The profiles are plotted at 100 m
intervals from the injection port (x = 0). The initial rock formation
temperature is 150°C and the injection temperature is 30°C. There-
fore, Figure 18 corresponds to the temperature history of the fluid
given in Figure 10. As in the case of Figures 9 and 10, the curves
on the right hand side correspond to the condition where conductive
transport in the 2z coordinate is ignored ("uncoupled model"); i.e.,

equation (6. 15) with q replaced with q(z).
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It is evident from Figure 18 that, by ignoring the transverse
conductive heat transport in the rock, the change in fracture width
under the condition of non-uniform flow is substantially altered. The
change in fracture width is enhanced in the vicinity of the flow chan-
nels over the case where transverse conduction is ignored, reflecting
the condition that conduction in two dimensions (y and z) is much
more efficient for heat extraction than conductive transport only in
the y coordinate. The differences between the two models pre-
sented here suggest that, when modeling convective processes of
sheet-like flow where non-uniform flow will be expected, some
attention must be given to the conductive transport model used for the
rock mass adjacent to the flow.

It should be noted here that the relative minima in Aw at
z=0 for x=100m and 200m are computational artifacts gen-
erated by using too few terms in the Fourier expansionof T. In
this particular example, 10 terms were retained. The relative
minima disappear, with no cbservable change elsewhere, when 15
terms are kept in the expansion. The maxima in Aw at z =0 and
at x ~300m for t=5 years and 10 years are real, corres-
ponding to the maximum transverse temperature gradient (and con-
sequently the maximum transverse heat flow) which occurs at this
location within the conductor (see discussion in Chapter IV). Since

we can no longer use the plane strain symmetry under conditions of
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non-uniform flow, an estimate of the change in fracture width under a
zero wall stress boundary condition is considerably more difficult.
The analysis for the thermoszlastic strain in this case is beyond the
scope of the present work and will not be considered.

The discussion given above of some thermoelastic effects on
fracture width has been limited to very simp1¢ flow configurations and
rather ideal wall stress boundary conditions. Furthermore, the effect
of overburden and tectonic stress on fracture width has been ignored.
We have assumed in this analysis that the rock mass is initially free
of stress. It is expected that, for the deeper regions of the heat
recovery system (for quasi-vertical structures) where the lithostatic
stress is greater, substantially more cooling of the rock mass will be
required for the negative thermal normal stress at the fracture wall
to exceed the normal lithostatic stress and therefore open the frac-
ture. This condition will tend to confine the convective regime to a
fixed region within the conductor. Furthermore, itis of interest to
note that for a recovery system in the upflow configuration, water
flowing from the deeper and hotter regions of the fluid conductor
transfers heat to the surrounding rock in the shallower and cooler
regions of the formation. Thus, rather than cooling, the rock in this
region increases in temperature. This effect is shown in Figure 5A.
This may result in a decrease in permeability of the conductor due to

the thermoelastic expansion of the material within the conductor and
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the adjacent rock mass. In order to maintain the required flow rate
in the system, increased puriping pressure may be necessary to
overcome this closure effect. Stearns and Friedman (1972) have
pointed out however that because fracture surfaces are rarely per-
fectly planar, a shear displacement of one wall relative to the other
can cause a "poorer" fit between adjacent sides of the fracture and
thus maintain or even increase the permeability by propping the open-
ings. This phenomenon may counteract the effect of closure due to
the thermoelastic response. In addition, if there is also fragmenta-
tion into chip-sized material along the fracture openings, these chips

may also prop the opening.
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VII. SYSTEM DESIGN AND ECONOMICS BASED ON THE
FIRST-ORDER MODEL

The economic feasibility of a forced geoheat recovery system is
determined by the requirement that total system revenues balance
capital and operational costs over a given system lifetime. The pre-
sent chapter considers fundamental system design and cost criteria to
estimate the minimum fluid-rock contact area required for an eco-
nomically viable forced recovery system under current and projected
economic conditions and various geotemperature environments. The
analysis is based on the first-order heat recovery model defined in

Chapter III.

Design Criteria and Load Characteristics

In the remainder of the present discussion, emphasis will be on
the use of quasi-vertical conductors such as fault zones and basaltic
dikes. Two basic flow options within the conductors, namely the
upflow and downflow configurations, can be considered. Assuming a
linear increase of geotemperatur e with depth, which is the usual
situation, the downflow system is more efficient with respect to pro-
duction temperature than the upflow system. This is easily shown by

considering the two initial rock formation temperature distributions
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X

_P
£,(x) = cp Fey( 57 - x)
fd(X) 1+c (X-';;‘)

where xp is the distance from the injection port to the production
port within the conductor. In the above expressions <, >0 and
0 <x< xp. Both cases have the same initial formation enthalpy in
the domain (0 < x < xp) X (0 < y < ), 'fu(x) is associated with an
upflow system and fd(x) is associated with a downflow system.

Using expression (3. 27) for the production temperature model,

it is easily shown that

T(x,t)-T(x,t)~cx erf(
p P ,.’
4c2 ’art QZXZ
—_l] - - >
* a T [1 exp( 4art )]—0

where Td(xp, t) and Tu(xp’ t) are the production temperatures

associated with the downflow and upflow systems respectively. Thus,
the downflow system will have a higher production temperature than
the upﬁow system, given the same initial average formation tempera-
ture. In the case of the downflow system, however, fluid is injected
at the top, and the flow pattern within the conductor will be more

likely to develop a "short-circuit"” channelling between injection and
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production ports due to convective and thermoelastic effects. The
upflow system, where the cold fluid enters from below, will likely be
more stable with regard to both short-circuiting and convective mix-
ing. Therefore, it is expected that the upflow system will exhibit a
greater flow uniformity than the downflow system. The present
economic model assumes that the system is in the upflow configura-
tion. Figure 19 shows a suggested multihole upflow system con-
figuration. In this figure. A = BL 1is the required contact area and

S = 2B is the borehole spacing-
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Figure 19. Multihole forced recovery system in the upflow
configuration.

A consumer heating system may have highly varying power
demand characteristics. For example, domestic heating will typi-

cally have a seasonal demand. Such load variations must be
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considered in the economic evaluation of a heating system. The
flexibility of a forced recovery system to meet a constant or varying
power demand has been discussed in Chapter V.

At this juncture, we simplify the picture by basing the economic
model on the time-averaged load characteristics of the system rather

than on peak load.

Cost Factors

The total construction cost per production unit, which is defined
here as a single injection/production borehole pair, consists of two
components: (1) the cost of boreholes and (2) the cost of surface
equipment such as pumps, pipelines and so on. For the present pur-
pose, we can assume that the cost of drilling per unit depth is a
linearly increasing function of depth. The surface equipment consti-
tutes a fixed cost per production unit. Thus, we will assume that the

total construction cost per production unit has the form

2. 2
C(D,,D ) =c,tc (D+D )+ c, (D, +D )
p 0 Tl Tp 271 p

where Di and Dp are the injection and production depths respec-
tively.
It is well known that borehole drilling costs vary greatly

depending on depth, region, and geology. Dagum and Heiss (1968)
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give a very comprehensive survey of drilling costs of oil and gas wells
in various regions of the United States. The data are given as cost
per unit depth as a function of depth, diameter and rock drillability or
hardness. Since the Cenozoic volcanics of the Pacific Northwest are
quite hard compared with most oil or gas field formations, cost data
obtained for drilling to depths of the order of 3 km in formations
which are referred to as being very hard are selected. Assuming
routine drilling operation and allowing for cost increases since 1968
including additional costs of greater depths and casing, Bodvarsson
and Reistad (1975) have arrived at the following estimates for the cost
parameters for a single production unit, where the borehole diam-

eters are from 250 to 300 millimeters.

¢, = $400, 000
c, = $60, 000 /km

2
c, = $50, 000 /km

An independent investigation of drilling costs based on existing
oil and gas well data has been done by Milora and Tester (1976). The
cost projection model assumes that the functional relationship of cost
with depth will be the same for geothermal wells as it is for oil and
gas wells. Again, the cost data are inflated to 1976 dollars to provide

a consistent basis for comparison. Figure 20 shows the drilling cost
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per unit depth as a function of depth for the results of Bodvarsson and
Reistad (solid curve) and Milora an-d Tester (shaded region). The
data are for a single hole. The economic model presented here
assumes drilling costs conform to the estimate by Bodvarsson and
Reistad.

Interest on capital is assumed to amount to 8% and is com-
pounded annually. Moreover, the total annual operational costs and
expenditures exclusive of electrical energy for pumping are estimated
at 5% of the invested capital. Total pumping pressure is assumed to
vary from 50 bar for systems with injection at 2 km to 100 bar for
injection at 4 km. The resulting pumping energy is 2 to 4 kWhr/netric
ton of water. At an energy cost of 3¢ /kWhr, the total pumping energy
cost will vary as 3 D_1 ¢/metric ton, where D_1 is the injection
depth in kilometers.

In an ideal forced recovery system, no water will be lost from
the system and the injected mass flow of fluid can be met simply by
reinjection of the produced fluid. In a non-ideal system,where fluid
loss due to leakage may occur, additional water for reinjection to
replace that lost must be obtained. The cost of the reinjected fluid is

assumed to be 1¢ /metric ton.
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Thermal Water Value and Network Distribution Costs

An estimate of distribution costs fo a district heating system
in the Pacific Northwest, based on a yearly average load density of
the assumed market of 6 MW /kmz, has been obtained by Bodvarsson
and Reistad (1975). The cost is estimated at $1.7/GJ (one GJ = 109 J)
and is based on an assumed 100°C effective temperature drop. In the
present analysis, a conservative value of $2/GJ has been used.

It is interesting to note that the production and distribution costs
in the Reykjavik Municiple District Heating System are now approxi-
mately $1.50/GJ (Zoega, 1974). The low production costs of the
Reykjavik system reflect the extremely favorable source conditions in
the low-temperature areas of southwestern Iceland.

Thermal water value is estimated on the basis of the value of
effective heat in the domestic, industrial and agricultural heating
market using fuel oil with an equivalent price of $0.39/gal of oil and
assuming an overall system (combustion-distribution) efficiency of

70%. This leads to a price of $4 /GJ effective heat.

Evaluation of Required Contact Area

The system production temperature is assumed to have the
analytic form T(Di’ Dp’ g,t,q), where D,1 and Dp are injection

and production depths respectively, g is regional geothermal
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gradient, t is time after flow start-up, and q is the flow rate.
The production temperature is constrained to have a minimum value
Tm over the given system lifetime SL and the value of Tm at
t = 0. Assuming an upflow system, this constraint fixes the produc-
tion borehole depth and flow rate to specific values, referred to as

Di"; and g%, for a given injection depth D,1 and gradient g-.

That is,
Tm-T
w2 8 (7. 1)
P g
and
T(D,, D *) - = 7.
(D, D% g SL.q¥) - T, =0 (7.2)

where TS is the average ambient surface temperature. The flow
rate q* is calculated numerically using an interative technique
applied to the functional (7.2). With this constraint, the production
temperature is reduced to dependence only on injection borehole
depth, time and gradient. The consequences of relaxing the con-
straint (7. 1) are discussed in a later section. Total revenues of the
system are based on the average of the production temperature over
the system lifetime. Thus, the fluid-rock contact area required to
amortize the capital investment can be considered as a function of the
two "physical system" variables, D. and g, and the set of

. n . . .
"economic model” variables discussed earlier.



123
The minimum required fluid-rock contact area, for a given
system lifetime, economic condition, and geologic environment, is

determined by the requirement that

9A _
3D_ (Di’g’alyaz"") - 0
1
and’
2
0 A
> (Di,g,al,az,...) >0
oD,

1

where A is the required fluid rock contact area and the a's are
the various economic variables. For the present purpose, we will
refer to the system configuration that meets the above requirements
as the "optimal" system.

A computer program, ECON, has been developed to evaluate the
minimum required fluid-rock contact area based on the above pro-
cedure, and is presented in Appendix E.

An example of the dependence of the required contact area on
injection depth and geothermal gradient for a forced recovery system
based on the production temperature model given by expression (3.27)
is presented in Figure 21. The minimum production temperature is
constrained to 100°C and the ambient surface temperature is assumed
to be 10°C. The injection temperature is 30°C and the thermal
power is calculated relative to a 40°C disposal temperature. The sys-

tem is assumed to have an overall heating system efficiency of 80%- -
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that is, the water enthalpy down to a temperature of 40°C can be
utilized with'an qverall efficiency of 80%. It is noted that the utiliza-
tion efficiency for district heating in the Namafjall area of Iceland is
about 80% (Ragnars et al., 1970). Furthermore, the fluid is assumed
to remain in the liquid phase. These parameter values will be used in
later discussions as well. The results displayed in Figure 21 assume

a system lifetime of 10 years.
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Figure 21. Dependence of required fluid-rock contact area per pro-
duction unit on injection borehole depth and geothermal
gradient. Based on a 10 year system lifetime and direct-
contact heating application.

As expected, there exist definite optimum injection borehole

depths that minimize the required fluid-rock contact area. For
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injection depths greater than the optimum, increased drilling and
pumping costs increase the required contact area. Furthermore, as
the geothermal gradient increases, the required contact area
decreases. This simply reflects the fact that, for higher geothermal
gradients, shallower holes are required to meet the constraint of a
minimum production temperature. Thus, a smaller fluid rock contact
area is needed to amortize the initial capital investment, which is
dominated by the drilling costs of the system. A final observation to
be made from Figure 21 concerns the nature of the minima. The size
of the initial capital investment may serve as a deterrent for the
development of geothermal energy by private industry because of the
inherent risk associated with exploitation of this resource. The
minima of the required contact area curves are quite flat, suggesting
that the injection depth may be decreased somewhat from the economic
optimum without increasing the required fluid-rock contact area
significantly. Since drilling costs are a rapidly increasing function of
depth, the capital costs of the system 'rnay' be reduced from the costs
associated with the absolute minima without increasing production
costs substantially. On the other hand, in cases where relatively high
temperatures are required and adequate fluid conductance is available,
the flat minima indicate deep drilling may be feasible. This observa-

tion has also been made by Bodvarsson and Reistad (1975).
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Tables 1 and 2 present data that correspond to minimum
required fluid-rock contact areas for systems with 10 and 20 year
lifetimes respectively, based on the production temperature model
(3.27). Price levels are expected to increase in the future due to
depletion of high grade energy resources. We have therefore investi-
gated the result of increasing the effective enexrgy value on the mini-
mum required contact area. Effective energy values of $4/GJ
$64/GJ, $8/GJ, and $10/GJ are considered in the analysis. It is
expected that, along with effective energy costs, distribution costs
will also increase. This will be primarily the result of inflationary
trends associated with increasing energy costs. Therefore, we have
included in the computations an inflated distribution cost scale of
$2/GJ, $2.33/GJ, $2.67/GJ, and $3 /GJ corresponding respectively
to the effective energy values listed above.

Under current economic conditions, corresponding roughly to the
$4 /GJ effective energy value figure, data in Tables 1 and 2 indicate
that the minimum contact areas for regional geotemperature gradients
of 50°C /km or more are of the order of 1 ka or less, depending on
system lifetime. A gradient of 50°C /km has been observed in fairly
extensive regions of moderately high crustal heat flow and is there-
fore not an uncommon situation. A comparison of Tables 1 and 2
indicates that an economically viable 20 year system requires a

slightly greater fluid-rock contact area than for a 10 year system.
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Legend for Tables 1 Through 9

geothermal gradient (°C /km)
production well depth (km)
injection well depth (km)

2
minimum required contact area (km ) per production
unit

"strip width" (km)
time averaged production temperature (°C)
flow rate per unit length of conductor (kg /m. sec)

time averaged minimum effective power (MW heat%)
per production unit

time averaged minimum total energy (MW-years) per
production unit

required minimum production well flow (kg /sec)
total initial capital costs (drilling and surface

equipment) in M$ per production unit

* = MW(e) for the case of Table 4



Table 1.

Optimal system parameters for a single production unit, based ona 10 year system

lifetime (direct-contact heating).

g D D, A B T q P E F C
P 1 av

$4/GJ
30 3.00 5.28 1. 83 0. 80 111.8 0.09 17.2 172.4 71.8 2. 74
40 2.25 4.53 1.05 0.46 115.1 0.10 12.1 120.5  47.9 2. 09
50 1. 80 4.23 0.72 0.29 119.2 0.13 10. 1 100.9 38.1 1. 82
60 1.50 3.93 0.53 0.22 122.0 0.15 8.7 86.6 31.5 1. 61
70 1.29 3.72 0.42 0.17 124.5  0.16 7.7 77.4  27.4 1.48
80 1.13 3.56 0.34 0. 14 126.8 0.17 7.1 71.1  24.5 1.38
90 1. 00 3.43 0.29 0.12 128.9  0.19 6.7 66.6 22.4 1.31
100 0. 90 3.33 0. 25 0.10 130.8 0.20 6.3 63.1 20.8 1. 25

$6/GJ
30 3.00 5.88 0. 80 0.28 114.5 0.13 8.9 88.6 35.5 3.11
40 2.25 5.13 0.49 0.17 118.3  0.15 6.6 66.0 25.1 2. 41
50 1. 80 4.68 0.34 0.12 121.8 0.17 5.5 54.6  20.0 2. 05
60 1.50 4.38 0.26 0. 09 124.8 0.19 4.8 48.0 16.9 1.83
70 1.29 4,17 0.20 0. 07 127.4  0.21 4,4 43.6 14.9 1. 68
80 1.13 3. 89 0.17 0. 06 129.0  0.21 3.9 39.1 13.1 1.52
90 1. 00 3.76 0.14 0. 05 131.2  0.23 3.7 36.9  12.1 1. 44
100 0.90 3. 66 0.12 0. 05 133.1  0.25 3.5 35.2 11.3 1. 38

8¢1



Table 1. Continued.
g Dp Di A B Tav q P E F C

$8/GJ
30 3.00 6.13 0.52 0.16 115.5 0.14 6.0 60.0 23.7 3.28
40 2.25 5.34 0.32 0.10 119.4 0. 17 4.5 45, 2 17.0 2.53
50 1. 80 4.74 0.22 0.08 122.1 0.18 3.6 36. 4 13.3 2. 08
60 1.50 4.44 0.17 0. 06 125.1 0.20 3.2 32.2 11.3 1. 86
70 1.29 4.23 0. 14 0. 05 127. 8 0.22 2.9 29. 4 10.0 1.71
80 1.13 4,07 0.11 0.04 130. 2 0. 24 2.7 27.4 9.1 1. 60
90 1. 00 3.94 0.10 0.03 132.3 0.26 2.6 26.0 8.4 1.52
100 0.90 3.84 0.08 0.03 134. 2 0.28 2.5 24.9 7.9 1. 46

$10/GJ
30 3.00 6. 36 0.38 0.11 116. 4 0.16 4.6 46. 3 18.1 3.43
40 2.25 5.46 0. 23 0. 07 120. 0 0.18 3.4 34. 4 12. 8 2.60
50 1. 80 4.92 0.17 0. 05 123.0 0.19 2.8 28.3 10. 2 2.17
60 1.50 4.44 0.13 0. 04 125.1 0.20 2.4 23.9 8.4 1. 85
70 1.29 4.22 0.10 0.03 127. 8 0.22 2.2 21.9 7.4 1.71
80 1.13 4. 06 0.08 0.03 130. 2 0.24 2.0 20.5 6.8 1. 60
90 1. 00 3.94 0.07 0.02 132.3 0. 26 1.9 19. 4 6.3 1.52
100 0.90 3.84 0. 06 0.02 134. 2 0.28 1.9 18. 6 5.9 1. 46

621




Table 2.

Optimal system parameters for a single production unit, based&on a 20 year system

lifetime (direct-contact heating).

g D D. A B T q P E F C
P 1 av

$4/GJ
30 3. 00 5.38 2.75 1. 16 112.2  0.07 18. 8 377.0 77.9 2. 80
40 2.25 4. 63 1.59 0. 67 115.7  0.08 13. 2 264.1 52.1 2.14
50 1.80 4.18 1. 08 0. 45 118.8 0.09 10. 6 211.1  40.0 1.79
60 1.50 4. 00 0. 80 0.32 122.4 0.11 9.4 188.4 34.1 1. 64
70 1.29 3.79 0. 63 0. 25 125.0 0.12 8.4 168.6 29.6 1.50
80 1.13 3. 63 0.52 0.21 127.3  0.13 7.8 155.0 26.5 1.41
90 1.00 3.50 0.44 0.17 129.4 0. 14 7.3 145.1 24.2 1. 33
100 0. 90 3.40 0.38 0.15 131.3  0.15 6.9 137.5  22.5 1.28

$6/GJ
30 3.00 5.90 1. 21 0. 42 114.6  0.09 9.5 189.6 38.0 3.13
40 2. 25 5.15 0.73 0. 25 118.5 0.11 7.1 141.3  26.9 2. 43
50 1. 80 4.70 0.51 0.18 121.9 . 0.12 5.9 117.1  21.4 2. 06
60 1.50 4.40 0.39 0.13 124.9 0. 14 5.1 102.9 18. 1 1.84
70 1.29 4.06 0.31 0.11 126.8 0.14 4.5 90.0 15.5 1. 63
80 1. 13 3.90 0. 25 0.09 129.1 0.15 4,2 83.6 14.0 1.53
90 1. 00 3.78 0.22 0.08 131.3  0.17 3.9 78.9 12.9 1. 45
100 0. 90 3. 68 0.19 0. 07 133.2 0.18 3.8 75.3 12.1 1.39

0¢€t



Table 2.

Continued.

g Dp D, A B T, q P E F C

$8/GJ
30 3. 00 6. 27 0.78 0.24 116.1 0.11 6.6 131.9 25.9  3.37
40 2.25 5.30 0.48 0.16 119.2 0.12 4.8 95. 2 18.0 2.51
50 1. 80 4.85 0.33 0.11 122.7 0.13 4.0 79.8 14. 4 2.14
60 1.50 4.55 0.25 0.08 125.7  0.15 3.5 70. 6 12.3 1.91
70 1.29 4.18 0.20 0.07 127.5 0.15 3.1 61.7 10.5 1. 68
80 1.13 4.02 0.17 0. 06 129.9  0.16 2.9 57.5 9.6 1.58
90 1.00 3.90 0. 14 0. 05 132.0 0.18 2.7 54.5 8.8 1.50
100 0. 90 3.80 0.13 0. 04 133.9 0.19 2.6 52. 1 8.3 1. 44

$10/GJT
30 3.00 6.50 0.57 0.16 117.0 0.12 5.1 101.5 19.7 3.53
40 2.25 5.49 0.35 0.11 120. 1 0.13 3.7 73.7 13.7 2.62
50 1.80 4. 86 0. 25 0. 08 122.7 0.13 3.0 59. 3 10.7 2.14
60 1.50 4.56 0.19 0. 06 125.8  0.15 2.6 52. 6 9.2 1.91
70 1. 29 4.34 0. 15 0. 05 128.5 0.16 2.4 48. 2 8.1 1.76
80 1.13 4.18 0.13 0. 04 130.9 0.18 2.3 45.1 7.4 1. 66
90 1. 00 4. 06 0.11 0. 04 133.0 0.20 2.1 42.8 6.9 1.58
100 0. 90 3.82 0.09 0. 03 135.1  0.20 2.0 39.3 6.2 1. 45

1¢1
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The minimum required borehole flow rates, however, are roughly the
same for the two system lifetimes.

The tabulated injection borehole depths in Tables 1 and 2 are
those that minimize the required fluid-rock contact area. It is empha-
sized that the required contact area is quite insensitive to injection
borehole depth in the vicinity of the "optimal" system configuration,
as indicated in Figure 21. It is therefore expected that, in practice,
the injection depths can be significantly shallower than those indicated
by the optimum depth without increasing production costs significantly.
Table 3 illustrates the consequences of constraining the injection bore-
hole depth to be 1 km deeper than the production borehole depth. The
data are calculated based on a 10 year system lifetime and a $4 /GJ
effective heat value. A comparison of Table 3 with Table 1 shows
that the required contact area for these cases is not significantly
elevated above the absolute minimum. Furthermore, there is a sub-
stantial reduction of initial capital cost reflecting the decreased
drilling costs for these systems.

At this juncture, it is of some interest to compare the required
fluid-rock contact areas for systems based on electrical power pro-
duction application with the above results for direct-contact heating
application. Since thermal energy is only partially convertible to
useful mechanical energy, enthalpy is not a convenient measure of the

mechanical work which can be derived from the heat content of a



Table 3.

System parameters for a single production unit, based on a 10 year system lifetime with

a constrained suboptimal injection borehole depth (direct-contact heating).

g D D, A B T q P E F C
P i av

$4/GJ
30 3. 00 4. 00 1.97 1.97 105.3  0.03 2.1 120.7 55. 2 2. 07
40 2.25 3.25 1.17 1.17 107.0 0.03 8. 1 81.4 36.3 1.51
50 1.80 2.80 0. 81 0.81 108.8 0.03 6.3 63.3 27.5 1. 23
60 1.50 2.50 0.61 0.61 110.4  0.04 5.3 53.3 22. 6 1.07
70 1.29 2.29 0. 49 0. 49 112.0  0.04 4.7 47.3 19. 6 0.96
80 1.13 2.13 0.41 0.41 113.5  0.04 4.2 42.3 17. 2 0. 88
90 1.00 2.00 0. 35 0. 35 115.0 0.05 4.0 39.7 15. 8 0. 85
100 0. 90 1.90 0.31 0.31 116.4  0.05 3.8 38. 1 14. 9 0.79

€el
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substance at a given initial and end temperature. The exergy, or
specific availability, of thermal water is the maximum amount of
mechanical work which can be derived from the enthalpy by cooling it,
at a constant pressure, from some initial temperature to a final
temperature. For a production temperature in the range
100°C < T < 300°C, Bodvarsson and Eggers (1972) have shown that
the exergy e(T) of thermal water can be represented to good

approximation by a second order polynomial

2
e(T) = a, + alT + aZT

where a_, a and a, are constants that depend on the disposal

0, 1,

temperature. For electrical power production, we have calculated
system revenues on the basis of total exergy produced and have
assumed that the overall mechanical to electrical conversion effi-
ciency is 65%. Revenues are computed on the basis of the time
averaged exergy produced over the system lifetime.

Table 4 presents the data that correspond to minimum required
contact areas for power production. A 10 year system lifetime has
been assumed in the model. Injection temperature, disposal tem-
per ature, ambient surface temperature, and the constraint on mini-
mum production temperature are the same as those used for the heat-

ing situation in Tables 1 and 2. Current buss-bar power costs fall



Table 4. Optimal system parameters for a single production unit, based on a 10 year system
lifetime (electrical power production).

g D D, A B T q P E F C
P 1 av

3¢ /kWhr
30 3.00 * * % * % % % * %
40 2.25 3. 86 8.38 5.22 111.1  0.06 6.2 62. 2 319.5 1.76
50 1. 80 4.16 3.90 1. 65 118.7 0.12 4.9 48. 6 204.1 1.79
60 1.50 4.13 2.33 0. 89 123.2  0.16 3.9 38.8 145.2 1.70
70 1.29 4. 17 1.59 0.55 127.4  0.21 3.4 34.3 115.7 1.68
80 1.13 4.18 1.17 0. 38 130.9  0.26 3.1 31.4 97.3 1. 66
90 1.00 4.18 0.91 0.29 133.7  0.30 2.9 29.2 84.5 1.63
100 0.90 4.08 0.73 0.23 135.6  0.32 2.7 26.7 73.6  1.57

4¢ /kWhr
30 3.00 4.88 9. 45 5. 04 109.8  0.07 6.4 63. 8 339.6  2.51
40 2.25 5.13 3.63 1.26 118.3  0.15 4.4 44.3 187.5  2.41
50 1. 80 5.01 2. 00 0. 62 123.5  0.20 3.4- 33.9 126.0  2.23
60 1.50 4. 88 1.30 0.39 127.5  0.25 2.8 28.4 95.5  2.08
70 1. 29 4.78 0.94 0. 27 130.9  0.29 2.5 25. 1 77.9  2.00
80 1. 13 4. 62 0.71 0.20 133.3  0.32 2.2 22.4 65.3 1.88
90 1.00 4.49 0. 57 0.16 135.4  0.35 2.0 20.5 56.7 1.79
100 0.90 4.52 0.47 0.13 138.0  0.40 2.0 19.9 51.7 1.79

e

* 2
Required contact area greater than 10 kmm .

—
W
(%)




136
within the range of 3¢ /k Whr to 4¢/kWhr. It is evident from this data
that the minimum required contact areas are elevated considerably
over the heating case, reflecting the inherent inefficiency of electrical
power production. This is a direct consequence of the low Carnot
efficiency associated with the relatively small temperature difference
between the thermal reservoir and the disposal temperature. It
should also be pointed out that the required minimum production well
flow rates are increased by a factor of three to four over the case for
heating application. The conductor must exhibit a significantly higher
permeability to meet these required flow rates. Figure 22 displays
graphically selected data from Tables 1 and 4 for direct-contact
heating systems and electrical power production systems.

We now consider the effect on the economic model of relaxing
the constraint (7.1) on the production well depth. Table 5 presents
data for a heat recovery system based on a 10 year system lifetime
with an effective energy value of $4 /GJ. The data corespond to a
geothermal gradient of 50°C /km and production well depths greater
than or equal to Dg. It is seen from this data that as Dp increases,
the injection well depth that minimizes the required contact area
decreases. This simply reflects the fact that, by relaxing the con-
straints on both the production and injection borehole depths, the
economic model will search for the configuration that minimizes the

sum of the drilling costs for both boreholes in the production unit
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Minimum required fluid-rock contact area and production

flow rate for electrical power production and direct-
Based on a 10 year system lifetime.

contact heating.

Buss-bar costs are given for the electrical power case

and effective heat costs are given for the direct-contact

heating case.
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while still meeting the constraint that the production temperature be
> Tm over the given system lifetime. The approach to this configu-
ration is seen in Table 5, where the "strip-width" B increases by
a factor of three. At this point, it is convenient to define a geometric
"aspect ratio" as the ratio B/L, where L is the distance between
the injection and production ports of the system. The aspect ratio for
the given example ranges between 0. 12 and 1. 6. An evaluation of a
realistic value for the aspect ratio is governed by the characteristics
of the convective processes within the fluid conductor and the bore-
hole location and spacing. Such an evaluation will require consider-
ably more field data on the permeability conditions of the conductor
and the regional stresses at the system site than is presently avail-
able. Furthermore, such an evaluation will require that the point
source /sink nature of the system ports be accounted for in the con-
vection model. The simple first-order heat extraction model used in
this work is not applicable to this problem. The estimation of
suitable or optimum aspect ratios is therefore beyond the scope of the
present analysis. We will take those values computed on the basis of
constraint (7. 1) as a conservative estimate of the minimum required

fluid-rock contact area. These values can be interpreted as a

"greatest" lower bound on the contact area.



Table 5. Optimal system parameters for a single production unit, based on a 10 year system
lifetime with unconstrained production borehole depth (direct-contact heating).

D D, A B T q P E F C
P i av

$4/GJ, g =50°C/km

i 1. 80 4.23 0. 72 0. 29 119.2  0.13 10.1 101.0 38. 1 1. 82
| 2. 00 3.95 0. 67 0.35 119.8 0.10 9.4 94. 0 35. 2 1.74
| 2.20 3.67 0. 63 0. 43 120.5 0.08 8.8 88. 2 32.7 1. 67
| 2.40 3.42 0. 60 0.59 121.5  0.05 8.4 84. 1 30. 8 1. 62
‘ 2.60 3.20 0.57  0.95  122.6  0.03 8.2 8l.6 29.5  1.60

6¢1
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Adverse Flow Effects

Flow Channelling

The effect of non-uniform flow within the fluid conductor on heat
recovery efficiency is investigated on the basis of the theoretical
development of Chapter IV. The thermal power output (averaged over
the interval 0 <z < L, where 2L is the channel period) is cal-

culated as a function of time:

g

P(x,t) = —

L
L S a(z{T(x, z, t)—Td}dz

0
where the fluid temperature T(x,z,t) is computed on the basis of
the Fourier-Galerkin solution given by expressions (4.31) and (4. 36)
and where Td is the disposal temperature. The integration indi-
cated above is calculated numerically using an algorithm based on
Simpson's Rule.

As an example of the effect of non-uniform flow in a forced
recovery system, Figures 23 and 24 present the thermal power output
history of a system with a flow channel half-period L of 10 m and
50 m respectively. The top set of curves (set ""a'') in both figures
corresponds to an initial formation temperature of 150°C. The lower
set of curves (set ''b'"') in both figures corresponds to an upflow sys-

tem where the regional geothermal gradient is 50°C/km. The
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computations for the latter case are based on the initial formation

temperature f(x) given by equation (3. 29). 1In all cases the produc-

tion port is 1 km from the injection port. The set of individual curves,

labeled (a), (b), (c), (d) and (e) correspond to the following situations:

(a)

(e)

"uncoupled'' model (equation 3.27) using flow configuration
(c) in Figure 8

Fourier-Galerkin solution ("coupled' model) using flow
configuration (b) in Figure 8

Fourier -Galerkin solution ("coupled'' model) using flow
configuration (a) in Figure 8

"uncoupled' model (equation 3. 27) using flow configuration
(b) in Figulre 8

"uncoupled'' model (equation 3. 27) using flow configuration

(a) in Figure 8.

It is evident from these specific examples that the heat extrac-

tion efficiency is not degraded a significant amount from the uniform

situation by a severely non-uniform flow within the conductor with

channel spacing on the order of tens of meters. This is a consequence

of the large thermal communication between channels for this magni-

tude of channel spacing (see Chapter IV). A substantially greater

degradation of power output will occur, however, for spacing on the

order of a hundred or so meters. The latter is of the same magnitude

as the expected borehole spacing for the system under consideration
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as indicated by Tables 1 and 2. With proper borehole placement, the

flow non-uniformity on this scale may possibly be reduced.

Fluid Losses

The minimum fluid-rock contact area required for an economi-
cally viable forced recovery system with fluid losses is calculated
according to the procedure discussed previously using expression
(4. 54) as the production temperature model.

Tables 6 and 7 present data based on a 10 year system lifetime
assuming a 25% and 50% fluid loss from the system respectively.
Tables 8 and 9 are based on a 20 year system lifetime with 25% and
50% fluid loss respectively. The economic and physical variables
used in the calculation of these data are the same as those used in the
calculations of Tables 1 and 2.

The reduction in heat recovery efficiency due to fluid loss is
evident in these data. The effect is particularly noticeable for the
lower values of the regional geothermal gradient. The required
fluid-rock contact area is increased by over a factor of two for the
case of a 20 year system lifetime and a 30°C /km gradient under cur-
rent economic conditions and a 50% fluid loss. This is an extreme
example, however, and it is noted that an increase in effective energy
value from $4/GJ to $6/GJ brings the required contact area down to

2
less than 1 km for gradients equal to or greater than 50°C /km




assuming the rather severe fluid loss of 50%.

Discussion and Conclusion

The previous analysis establishes a lower bound on the required
fluid-rock contact area necessary for an economically viable forced
recovery system based on a sheet-like flow for low-temperature non-
electrical application. The ability to approach these minimal require-
ments will depend strongly on the permeability characteristics of the
fluid conductor. Unfortunately, little work has been devoted to the
study of the natural fluid conductors waich have been considered in
this work. Hence, considerably more field data than that presently
available will be necessary to satisfactorily account for the interac-
tion of the elastic, thermoelastic, and chemical effects within these
types of conductors.

The values of the required fluid-rock contact area and produc-
tion well flow rates do not, however, appear unreasonable for the
case of direct-contact heating under the condition of a moderately high
crustal heat flow (g > 50°C/km). Furthermore, the analysis indicates
that, as the effective heat value increases, as will no doubt occur
under current economic trends, the required contact area will .
decrease substantially. It is evident that under these conditions, the
relative feasibility of the system will increase and the associated risk

involved in exploitation will correspondingly decrease.
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In view of the present trends in the national energy economy,
the results derived in this work appear sufficiently favorable to war-

rant further investigation into this type of forced recovery geoheat

recovery system.




Table 6.

Optimal system parameters for a single production unit, based on a 10 year system
lifetime with 25% distributed fluid loss (direct-contact heating).

g D D, A B T q P E F C
P 1 av

$4/GJ
30 3.00 4. 64 2. 64 1. 61 108.0 0.05 17. 2 171.9  175.5 2.39
40 2.25 4.12 1.47 0.78 111.9 0.06 12.2 122.1  50.7 1. 89
50 1.80 3. 85 0. 98 0.47 115.8 0.08 10.1 100.6  39.7 1. 65
60 1.50 3. 68 0.72 0.33 119.2 0.10 8.8 88.4 33.3 1. 50
70 1.29 3.47 0. 56 0.26 121.6 0.11 7.8 78.0 28.5 1.37
80 1.13 3.41 0.46 0.20 124.6 0.13 7.4 73.9 26.1 1.32
90 1. 00 3.29 0.38 0.17 126.7  0.14 6.9 68.7 23.7 1.25
100 0. 90 3.19 0.33 0. 14 128.5 0.15 6.5 64.7 21.8 1. 20

$6/GJ
30 3.00 5.66 1. 06 0. 40 112.7  0.09 9.2 92.0 37.8 2.97
40 2.25 4.91 0. 63 0. 24 116.3 0.11 6.7 66.9 26.2 2. 29
50 1. 80 4.46 0. 44 0. 16 119.5  0.13 5.5 54.6  20.5 1.93
60 1.50 4.16 0.33 0.12 122.3  0.14 4.7 47.5 17.2 1.72
70 1. 29 3.95 0.26 0.10 124.9  0.15 4.3 42.8 15.1 1.58
80 1.13 3.79 0. 22 0. 08 127.2  0.17 4.0 39.6 13.6 1.48
90 1. 00 3. 66 0.18 0. 07 129.3 0.18 3.7 37.3  12.5 1. 40
100 0.90 3.56 0.16 0. 06 131.2  0.20 3.5 35.5 11. 6 1.34




Table 6. Continued.
g D D, A B T q P E F C
P i av
$8/GJ
30 3.00 5. 89 0. 66 0.23 113. 6 0.11 6.0 60. 2 24.4 3.12
40 2.25 5.14 0.40 0. 14 117.4 0.13 4.5 45. 0 17.4 2.42
50 1.80 4. 69 0.28 0.10 120. 7 0. 14 3.7 37.4 13. 8 2.05
60 1.50 4.28 0.21 0. 08 123.1 0. 15 3.2 31.9 .11.5 1.78
70 1.29 4. 07 0.17 0. 06 125.7 0.17 2.9 29.0 10. 1 1.63
80 1.13 3.91 0. 14 0. 05 128.0 0.18 2.7 26.9 9.1 1.53
90 1. 00 3.78 0.12 0. 04 130.1 0.20 2.5 25.4 8.4 1.45
100 0.90 3.68 0.10 0. 04 132.0 0.21 2.4 24.3 7.9 1.39
$10/GJ
30 3.00 6.12 0.48 0.15 114. 5 0.12 4.6 45. 9 18.4 3.27
40 2.25 5.24 0.29 0.10 117.9 0.13 3.4 33.8 12.9 2.48
50 1. 80 4.79 0.21 0. 07 121.3 0. 15 2.8 28:.3 10. 4 2.11
60 1.50 4.39 0.16 0. 05 123.7 0.16 2.4 24. 2 8.6 1.83
70 1.29 4.12 0.13 0. 04 126.3 0.18 2.2 22.1 7.6 1. 68
80 1.13 4.01 0.10 0. 04 128. 7 0.19 2.1 20. 6 6.9 1.58
90 1. 00 3.89 0. 09 0. 03 130. 8 0.21 2.0 19. 5 6.4 1.50
100 0. 90 3.79 0. 08 0.03 132.7 0.23 1.9 18.7 6.0 1.44

8%1




Table 7. Optimal system parameters for a single production unit, based on a 10 year system
lifetime with 50% distributed fluid loss (direct-contact heating).
A B T P
g Dp D.1 av q E ¥
$4 /GJ
30 3.00 3.78 5.23 6.74 103.3 0.01 18. 8- 188. 0 88.7 1.97
40 2.25 3.42 2. 64 2.25 106. 8 0. 03 12. 8 128.3 57.3 1.58
50 1.80 3.19 1. 68 1.21 110.0 0. 04 10.1 101.1 43.1 1.37
60 1.50 3.10 1.20 0.75 113.5 0. 05 8.9 88.7 36.0 1.27
70 1.29 3.02 0.92 0.53 116. 6 0. 06 8.0 80.3 31.3 1.20
80 1.13 2. 86 0.74 0.43 118.5 0. 06 7.1 71.4 27. 2 1.11
90 1.00 2.91 0.61 0.32 121. 9 0.08 7.0 70.3 25.7 1.11
100 0.90 2. 81 0.52 0. 27 123.6 0. 09 6.5 65.4 23.4 1.06
$6 /GJ
30 3.00 4, 85 1.69 0.91 108.1 0. 04 9.0 89.6 39.3 2.50
40 2.25 4,28 0.97 0.48 111. 6 0. 06 6.5 64. 6 26.9 1.96
50 1. 80 3.95 0. 66 0.31 115.0 0. 07 5.3 53.0 21.1 1.69
60 1.50 3.77 0.49 0.22 118.2 0.08 4.7 46. 8 17.9 1.54
70 1.29 3.55 0.39 0.17 120. 6 0. 09 4.2 41. 6 15. 4 1.40
80 1.13 3.39 0.32 0.14 122. 8 0.10 3.8 38.1 13.7 1.31
90 1.00 3.39 0.27 0.11 125.7 0.12 3.7 37.1 12. 9 1.29
100 0.90 3.29 0. 23 0.10 127.5 0.13 3.5 35.1 12.0 1.23

6¥%1



Table 7. Continued.

g D D, A B T q P E F C
p i av

$8/GJ
30 3.00 5. 32 0.98 0. 42 110.1 0. 06 5.9 59. 4 25.3 2.77
40 2.25 4.57 0.59 0.25 113, 2 0. 07 4,3 42. 6 17. 4 2.11
50 1.80 4,27 0.41 0.16 116.9 0. 09 3.6 36.1 "14.0 1.84
60 1.50 3.97 0.31 0.12 119.5 0.10 3.1 31.2 11.7 1.63
70 1.29 3.56 0. 24 0.10 122.0 0.10 2.8 28.1 10. 2 1.49
80 1.13 3.71 0.20 0. 08 124.0 0.12 2.7 26.9 9.5 1. 44
90 1.00 3.58 0.17 0. 07 127.0 0.13 2.5 25.3 8.7 1.37
100 0.90 3.48 0.15 0. 06 128. 9 0. 14 2.4 24. 0 8.1 1.31

$10/GJ
30 3.00 5.61 0. 69 0.26 111.3 0. 07 4.5 44, 7 18.7 2.94
40 2.25 4. 86 0.42 0.16 114. 6 0.08 3.3 32.9 13.2 2.26
50 1. 80 4.41 0. 29 0.11 117. 7 0.08 2.7 27.1 10. 4 1.91
60 1.50 4,11 0. 22 0. 08 120. 4 0.10 2.4 23.6 8.8 1.70
70 1.29 3.90 0.18 0. 07 122.9 0.11 2.1 21.4 7.7 1. 55
80 1.13 3.74 0.15 0. 06 125.2 0.13 2.0 19. 8 7.0 1. 45
90 1.00 3.61 0.12 0. 05 127.2 0. 14 1.9 18. 7 6.4 1.28
100 0. 90 3.61 0.11 0. 04 129. 8 0.16 1.8 18. 4 6.1 1.37

0s1



‘Table 8. Optimal system parameters for a single production unit, based on a 20 year system
lifetime with 25% distributed fluid loss (direct-contact heating).

D D, A B T P
P i av
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Table 8. Continued.
A
g Dp D_1 B Tav q P E F C
$8/GJ
30 3.00 5. 85 0.99 0. 35 113. 4 0. 07 6.4 127.0 25. 8 3.09
40 2.25 5.10 0. 60 0.21 117. 2 0. 09 4.7 94. 8 18. 3 2.39
50 1.80 4. 65 0.42 0.15 120.5 0.10 3.9 78.6 14.6 2.03
60 1.50 4,35 0. 32 0.11 123. 4 0.11 3.5 69. 1 12. 4 1.81
70 1.29 4,13 0. 26 0. 09 126.0 0.12 3.1 62.8 10.9 1. 66
80 1.13 3.97 0.21 0. 07 128.4 0.13 2.9 58.5 9.9 1.56
90 1. 00 3.85 0.18 0. 06 130. 5 0. 14 2.8 55. 2 9.1 1.48
100 0. 90 3.756 0.16 0. 06 132. 4 0.16 2.6 52. 7 8.5 1.42
$10/GJ
30 3.00 6. 09 0.72 0.23 114. 4 0. 08 4.9 97.0 19.5 3.25
40 2.25 5.22 0.44 0.15 117.0 0. 09 3.6 71.5 13,7 2.46
50 1. 80 4,77 0.31 0.10 121.2 0.11 3.0 59. 8 11.0 2.09
60 1.50 4.47 0.24 0. 08 124.1 0.12 2.6 52.8 9.4 1. 87
70 1.29 4.26 0.19 0. 06 126. 8 0.13 2.4 48. 2 8.3 1.72
80 1.13 4.10 0.16 0. 05 129.2 0. 14 2.3 45. 0 7.5 1.61
90 1.00 3.83 0.13 0. 05 130. 4 0. 14 2.0 40. 8 6.7 1.47
100 0. 90 3.73 0.12 0. 04 132. 4 0.15 2.0 39.0 6.3 1.41
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Table 9.

Optimal system parameters for a single production unit, based on a 20 year system
lifetime with 50% distributed fluid loss (direct-contact heating).

g D D, A B T q P E F C
P 1 av
$4/GJ
30 3.00 3.74 7.88 0.70 103.1 0.01 19.7 393.1 93.0 1.95
40 2.25 3.42 3.97 3.40 106. 8 0.02 13. 6 272.4 61.0 1.58
50 1.80 3.19 2.52 1. 82 110.0 0. 03 10. 8 215. 4 45.9 1.37
60 1.50 3.08 1. 80 1. 14 113.4 0.03 9.4 187.7 38.2 1.26
70 1.29 3.01 1.38 0. 80 116. 6 0. 04 8.5 170.7 33.3 1.19
80 1.13 2.95 1.11 0.61 119.3 0. 05 7.9 158. 6 29,8 1.14
90 1.00 2. 83 0.92 0.50 121. 2 0. 05 7.2 144. 8 26. 6 1. 08
100 0. 90 2.86 0.78 0. 40 124.1 0. 06 7.1 142.5 25.3 1.08
$6/GJ

30 3.00 4. 84 2.54 1.38 108.0 0.03 9.5 190. 4 41. 8 2.49
40 2.25 4.28 1.46 0.72 111.6 0. 04 6.9 137. 4 28. 6 1.96
50 1. 80 3.96 0.99 0.46 115.1 0. 05 5.7 113.2 22.5 1.69
60 1.50 3. 66 0.74 0. 34 117.6 0. 05 4.8 96. 2 18.5 1.49
70 1.29 3.59 0.58 0.25 120.9 0. 07 4.5 89.9 16. 6 1.42
80 1.13 3.43 0.48 0.21 123.1 0.07 4.1 82.2 14. 8 1.33
90 1. 00 3.31 0.40 0.17 125. 0 0.08 3.8 76.7 13.5 1.26
100 0.90 3.33 0.35 0. 14 127. 8 0. 09 3.8 75. 8 12.9 1.25
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Table 9. Continued.

D
P

3 5.
2 4.
1 4.
1 4.
1 3.
1 3.
1 3.
0 3.
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APPENDIX A

The Numerical Laplace Inverse Transform Method

Considerable use of the numerical Laplace transform inversion
has been made in this work. Since the numerical method used is
based on a subsfantially different approach than the more ''classical'
numerical inversion techniques, a brief description of the method is
presented here with some examples of its application.

The Laplace transform of a function F(t) is given by the

integral

00
A -st
F(s) = e F(t)dt (A.1)
0
A
In determining a function F(t) from its Laplace transform F(s),
one applies an integration along some contour in the complex s-plane,

given by

ct+i%

1 A
Fit) =5~ StF(s)ds (A.2)
ml .
c-i%

One thus obtains F(t) in terms of the poles and residues and/or the
A

values of F(s) on a contour of the s-plane. Several numerical

approximation methods have been proposed for inverting equation

(A.2) based on the expansion of F(t) in a finite series of given
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functions qok(t). That is,

N
F(t) = C A.
(t) z K2k () (A.3)
k=0
The functions ¢, can be exponential, trigonometric, Legendre or
Laguerre functions where the expansion coefficients C are calcu-

k

lated based on the value of ?(s) at discrete values of s (Lanczos,
1956; Papoulis, 1957; Bellman et al., 1966; Piessens, 1969).

The method of numerical Laplace transform inversion used in
this work differs from the aforementioned procedure in that no pre-
sumption as to the form of F(t), such as is given by expression
(A.3), is made. The calculation method originates from Gaver (1966),
who considers the integral of F(t) with respect to a given weighting
function. The procedure is illustrated by the problem of evaluating

the integral

0

Rn(a) = So F(t)fn(a,t)dt (A. 4)

where Rn(a) can be considered the "expectation" of F(t) under
the weighting function fn(a, t). The particular weighting function con-

sidered by Gaver is

a(2n)!
n!(n-1)!

-at.n -nat

fn(a,t) = (l-e ") e , a>0 (A.5)
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Upon inserting expression (A.5) into equation (A.4), it is easily shown

that

R (a) = 222l Z( )(-1)'F([ntila) (a.6)
i=0

where the binomial expansion (Jolley, 1961)

n
(l+x)" = Z (r;)xJ
j=0

has been used in the calculation. Gaver has shown that, as n ™ %,

the asymptotic expansion of Rn(a) is given by

o o
2., %1 %2
R(a)"F(_—ln R ek R

Thus, by retaining a sufficient number of terms in the series (A. 6),
Rn(ln 2/t) will be a good approximation to the function F(t). This

approximation is given by

F(p = 22 {20l Z( (-1 ([n+] 22 (5. 7)

A
The above scheme requires nt+l discrete values of F for

the evaluation of F(t) at a specific value of t. Stehfest (1969) has

A
found that, for a given n+l values of F, a much better
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approximation to F(t) than that given by expression (A.7) is attain-

able. This is done by using a linear combination of the n+l values

Rj(ln 2/t), j=0,1,...,n. Stehfest's result is given by
n
2 A 2
Fit) = 24 ZV,F(Ln—i) (A. 8)
t i t
i=1
where
min(i,'Il) n
3+ 2 2
1
v, = (-1)2 Z . k (2k)!
DV e (e IV (G 1) ! _ay
1 (2 k)!'k!(k-1)!1(i-k)!(2k-i)!
k=(';_"’)

In comparing the inverses of 50 test functions using both the
above method as well as the inversion technique of Bellman et al.
(1966), where gok(t) = e_kt, Stehfest concludes that the above method
"generally produces better results". It is the generalization of
Stehfest given by expression (A. 8) that is used in this work.

The computer subprogram LINV, given in Appendix E, evaluates
the numerical inverse of the Laplace transform according to the above
scheme. Several examples of the application of this method are given
below. The function F(t) being considered along with its Laplace
transform %‘\(s) are given at the top of each table. The exact value
of F(t) is also given for comparison. All computations were done

using 18 significant figure (double precision) arithmetic and rounded

to 6 significant figures.
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Table 10. Examples of the numerical Laplace transform inversion method.

F(t) (LINV)
t F(t) (exact) N =5 N =7

F(t) = erfc(l/2N%); ?(s) = (1/s)exp(-Ns)

. 479500 .486963
.617075 . 621102
. 683091 . 686021
.723674 . 726073
.751830 .753913
. 772830 . 774701
. 789268 .790984
. 802587 . 804183
. 813664 . 815164
. 823063 . 824484

o

.479012
. 616621
. 682761
. 723423
. 751630
. 772664
. 789126
. 802463
. 813553 . 813665
. 822963 . 823064

N=7 N = N =

. 479500
. 617093
. 683104
. 723612
. 751835
. 772834
.789271
. 802589

[eNelNolNelNelNolNeNo o)
[eNeNeolNolNelNolNo oo o)
[« NeNeNolNeNoNo oo N
[N elollolNoloo oo ol

1.
2.
3.
4.
5.
6.
7.
8.
9.
0.

[N elNeNelNeNoNo oo/l

1

A
F(t) = exp(-t); F(s) = 1/(s+1)

.367879 .362884 .367784
. 135335 . 138335 . 135613
.497879 ) .566080 x 10 .502589
.183156 .239532 x 10 . 184358
. 673795 .988510 x 10 . 644480
.247875 .351690 x 10 . 197091
.911882 .569946 x 10 .387155
.335463 .776785 x 10 .917344
. 123410 . 134902 x 10 . 166031
. 454000 . 154009 x 10 .110112

(]

.367875
. 135343
.498002
. 182947
. 668800
.243243
. 892637
.347781
. 159392
. 932897

-1
g |
-2
)
x-V2
*-Y3
)
2

OO0 0NNV W
coooo0o000Oc«
OO0 O0OO0OO0OO0OOCO
E I
LT T T B B I
OCO0OO0OO0O0COO0OOO
EIE T I T T

(-




Table 10. Continued.

F(t) (LINV)
F(t) (exact) N =5 N=7

F(t) = (1 /NFH)exp(-1/4t); F(s) = (1 /N5 )exp(-V5)

.439391
.352065
. 299691
. 265004
.240008
. 220930
. 205762
. 193334
. 182911
. 174007

.425791
. 345335
. 295406
. 261848
. 237475
.218782
. 203875
. 191634
. 181351
. 172557

. 438596
. 352645
.300288
. 265503
. 240417
. 221269
. 206048
. 193579
. 183124
. 174195

.439558
.352051
. 299659
. 264976
.239987
.220914
.205750
. 193325
. 182904
. 174002

[N eNeoNoNoNoNolNolNolo)
e leNoNoNoNolloNololo)
el NoNeNoNolNolNoNoNol
ocoCoocoooO0COO
cCoO0o0OO0COoCOOOCO

1.
2.
3.
4.
5.
. 6.
7.
8.
9.
0.
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APPENDIX B
Justification for Ignoring Conductive Heat Transfer

within the Solid in the Coordinate Parallel to the
Direction of Fluid Flow

A common approximation made in both analytic and numerical
heat extraction models for sheet-like fluid flow within a rock mass is
that of ignoring conductive heat transfer in the rock in all directions
except that coordinate perpendicular to the fluid sheet (Bodvarsson,
1969; Harlow and Pracht, 1972; Grigarten et al., 1975; Blair et al.,
1976). If the fluid flow is quasi-uniform and "sufficiently large" the
approximation will be quite good. The error incurred by this
approximation when dealing with severely non-uniform flow can be
large and is discussed in some detail in Chapter IV. The purpose of
this investigation is to obtain a lower bound on the fluid flow rate
within the fracture below which this approximation breaks down.

That is, we will quantify what is meant by a "sufficiently large" flow
rate.

The basic heat extraction model under consideration assumes
that a flat fracture of infinitesimal width (see Chapter III for the "zero
fracture width" approximation) is embedded in the plane y =0 in an
infinite, homogeneous, and isotropic rock mass of thermal conductiv-
ity kr and thermal diffusivity a_. For t <0, the temperature

r

of the fluid in the fracture is equal to the initial rock formation



169
temperature ¢, where <y is a constant. For t >0, a stationary
fluid flow per unit length of fracture, ¢q, is injected into the frac-
ture at x = 0 with an injection temperature Ti. The fluid flow is
in the positive x direction. The fluid has specific heat o

The temperature field within the solid is governed by the heat
conduction equation
1
—9T-9 T-9 T=0, y>0 (B. 1)
a t XX yy
r
The heat transfer boundary condition at the fracture wall is given by

(see equation 3.10)

ZkrayT =090 T, yy 0 (B. 2)

The additional initial and boundary conditions required to complete the

statement of the problem are

T(x,y,t)] (B. 3)

t<o ©1

!
x|

T(0,0,t)lt (B.4)

>0 i

Equations (B. 1) through(B. 4), which correspond to equations
(3.9) through (3.12), are so'ved using two significantly different

methods.
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Method I
The first method requires a transformation of the set of

independent variables according to

T(x,y,t) =™ T'(x, p, t)

where

P= Zer + O'fqy

This transformation reduces the distributed Neumann boundary
equation (B. 2) to a homogeneous Neumann boundary condition. Equa-

tions (B. 1) through (B. 4), under the above transformation, take the

form
Loorr_pe T'=0 (B. 1)'
a t PP :
r
9 T'=0 (B.2)'
X
1 - '
T ("’P’t”tgo ¢, (B.3)
t = t
T (o,o,t)lt>0 T (B. 4)
where

2 2 2
[3—4kr+<rfq

Applying the Laplace transform with respect to time to (B. 1)’

through (B. 4)' and solving the resulting set of equations, one obtains
g
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(T.-c,) c
A 1
T'(x, p, 8) :1_5 expl(- /;g'ap) +—s'1- (B.5)
r

Inverting the above equations to t-space followed by a transformation
from the independent variable set (x,p,t) to (x,y,t), we obtain

the solution for the temperature field of the rock.

+
T(x,y,t) = (Ti-cl)erfC(za—an—t) te (B. 6)
N %
where
2k
__r
@ ==
4
and
a' = (1+012)a
r r

Thus we have the interesting result that including conductive
heat transport in the rock in the direction parallel to the fluid flow
does not, for the case considered, change the form of the solution
(see equation 3.27) but does introduce a flow-dependent "effective"
thermal diffusivity a; which is greater than the thermal diffusivity

of the rock.

Method II
The second method of solution is presented here primarily

because it demonstrates an alternative formulation based on the
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diffusion of isothermal surfaces. Such an approach gives consider-
able insight into this simple problem and may be useful in dealing with
other conductive heat transfer problems where the geometry of the
isothermal surfaces is known a priori to be simple and/or to be time
independent.

We note that the inverse transform (with respect to s) of
expression (3.25), in the limit of zero fracture width (B ™ 0) and

an initial uniform formation temperature (c2 = 0), reduces to

+
T(x,y,t) = (T, -c Jerfe(-==) + c
i 71 2 /art 1

For a given time t = t¥, an isothermal surface within the rock mass
is a plane, denoted by ax + y = const. This observation suggests
that we try, as a solution of (B.1), a rock temperature field of the

form

T(x,y,t) = A erfc{bfi—’it_i) }+B (B.7)

where A and B are constants and the functional
h(x, y) - const. =0 defines an isothermal surface within the rock.
Inserting (B.7) into equations (B. 1) through (B. 4), one obtains

1

4a
T

t
(o]

@ h)? + (3 h)* - (B. 8)
x y
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Zkrayh =0qd h, vy {0 (B.9)

A=T_1-c, B=c¢ (B.10)

1 1

If the geometry of the isothermal surfaces is allowed to be time

dependent, h(x,y,t) must also satisfy a diffusion equation given by

—Lah-a h-0 h=0, y >0
a t XX

r yy

Expression (B. 8) is called the Eikonal equation and appears often in
the context of wave propagation in solids (Officer, 1974).

It is obvious that the reformulation of the problem in terms of
diffusing isothermal surfaces has not simplified the mathematics for
the general case of an arbitrary field. However, if the "geometrical
structure” of the isotherms is known a priori to be time independent,
it may be that a solution of (B. 8) through (B. 10) is more easily
attained than (B. 1) through (B.4). For a case under investigation, we

consider a surface of the form

h(x, y) = dlx + dzy

where d1 and d2 are constants to be determined. Inserting the

above expression into equations (B. 3) and (B. 12), one obtains



174

2 2 1
+ T e—

d1 dZ 42
r
Zkrd2 = crfqd1

Thus, d1 and d2 are given by

where

2
a'= (l+a )a
r

1
r
and we again obtain the result (B. 6).

Based on typical values of the physical parameters of the sys-

tem (see Appendix E), the table given below displays the dependence

2.1/2
of (lta’) / on (.
2 1/2
q (kg /m. sec) a (1+ozz)
1x 10'4 102 10. 049876
1x 10‘3 10° 1.414213
1 x 10'2 10'Z 1. 000500
1 x 10'1 10'4 1. 000050

It is evident from these data that for fracture flow rates greater
than 0.0l kg/(m. sec) the error incurred by ignoring heat conduction
within the rock in the direction of fluid flow is negligible. That is,

the "true" rock diffusivity is very close to the value of the "effective"
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rock diffusivity. However, the approximation breaks down for flow

»

rates on the order of 0.001 kg/(m. sec) or less.
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APPENDIX C

Temperature Transients in Borehole Flow

Throughout this work, the temperature of the water injected into
the heat extraction system (e. g. fracture zone, sedimentary horizon,
etc. ) has generally been assumed constant. This approximation
ignores the thermal interaction that will occur between the fluid flow-
ing in the borehole and the hot rock formation through which the bore-
hole passes. As a result of this thermal interaction, the injection
temperature at the borehole-fluid conductor intersection will vary with
time. Numerical finite difference models (Lowell and Bodvarsson,
1975) and analytic models (Bodvarsson et al., 1974) have been con-
structed to investigate temperature transients of borehole flow under
the assumption that the rock formation temperature prior to the
initiation of flow is uniform and that the flow is constant. The purpose
of this investigation is to extend these models of borehole flow to
account for an initially non-uniform formation temperature.

The borehole flow model being considered assumes that a bore-

hole of radius r

0 is drilled vertically down through a homogeneous,

isotropic, and impermeable solid. At t < 0, the temperature of
the fluid in the borehole is equal to the temperature of the surrounding
rock, given by f(x) where x is the distance from the position of

fluid injection into the borehole. A constant mass flow F of a
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homogeneous liquid having a density Pe velocity v in the positive
x direction, and specific heat ({f enters the borehole at x = 0
for t >0. The injection temperature T,1 at x =0 1is assumed
constant. Moreover, the radius r0 of the borehole is assumed so
small that the temperature of the liquid is independent of r, where
r is the coordinate perpendicular to the borehole axis. Conductive
heat transfer within the rock mass parallel to the borehole axis is
ignored.

The temperature field within the solid is governed by the heat

conduction equation which, due to cylindrical symmetry, takes the

form

1 1
—_— - -9 = > .
BtT (ro T) 0, T r0 (C. 1)

The heat transfer boundary condition at the borehole wall is given by

2k
r

o

+ = .
pfcf{BtT vaxT} 8 T, r { T, (C.2)
The additional initial and boundary conditions required to complete
the statement of the problem are given by the following two expres-

sions.

T(x, r, t)] = f(x) (C.3)
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=T (C. 4)

T(O, rp, )l 5o = Ty

Laplace transforming equations (C. 1) and (C. 2) with respect to time,

A N A
s T+log .2 fx) (C. 5)
rr r r a a
r r
A N A 6
9 T = {88 T-vysT + vf C.
< | lro {8 LI-Y8 }rh‘o vi(x) ( )
where
= 2k TTg nd _PiTo
o F nd oy F

[

A A
T(x, r,s):A(x,s)Ko( "i‘r)+£%{l, r>r, (C.7)

where KO is the modified Bessel function defined according to the

\%

integral representation (Abramowitz and Stegun, 1964)

S Sﬁ_dt £ >0

t+1

Inserting expression (C. 7) into boundary condition (C. 6), we obtain

A
the following first order differential equation for Al(x, s).



axg(x, s) + By(s) /a_s_ 2(x, s) = - f (xs) (C. 8)
r sK ([— r.)

0/ a 0
r
r > Ty
where ((s) is defined by
s
Kl( a_ rO) va_ -
Y(s) = = + B . (C.9)
KO( ;; ro) r

and K1 is the modified Bessel function, defined according to the

integral representation (Abramowitz and Stegun, 1964)
00
-Et [ 2
K1(§)=§§ e 52 1 at
1

The general solution to equation (C. 8) is given by

0

A
Ax, s) = B(SS) exp(-Py(s) /a—s x)
KO( ’—' r.) T
ar

(C.10)
1 S

X
- - 51 exp{By(s) . (x-x")}H'(x")dx'
SKO( ’a—r' ro) 0 . r

Using expressions (C. 3) and (C. 4), it is easily shown that the function

A
B(s) in the above equation is given by
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A
Evaluating A(x,s) assuming an initial formation temperature of the

form f(x) = ¢y + X%, where ¢ and c are constants, and sub-

1 2

stituting the resulting expression into (C.7), we find that

(T.-c,)
A
T(x,ro, s) = —Ls—l exp(-Buy(s) /a—s x)
r
. ——A1- exp(-Bu(s) ’ x)} +
Buls)s /
r

(C.11)
(c +c x)

It is of some interest to note that the form of (C. 11) is identical
with (3.25) for the temperature of fluid flowing through a flat fracture.
The product PBuy(s) in (C.1l) represents a geometrical "form
factor", which takes the value a = Zkr /(qu) for the case of fracFure
flow. Unlike other analytic models of borehole flow (Bodvarsson
et al., 1975), the previous formulation has included the time deriva-
tive component of boundary condition (C. 2) and as a result, solution
(C. 11) includes the effect of a non-zero borehole radius (see discus-
sion of the zero fracture width approximation in Chapter III). As in
the case of fracture flow, this term becomes important for the very
early history of the borehole flow and its effect damps out rapidly for

increasing time.
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An analytic form for the inverse Laplace transform of expres-
sion (C. 11) will be very difficult to obtain due to the rather complex
nature of (s). An approximate inverse has been calculated using
the numerical Laplace transform inversion method discussed in
Appendix A. The modified Bessel functions KO and K1 are
evaluated using polynomial approximations (Abramowitz and Stegun,
1964) and are presented in function subprogram form, BESKO and
BESK]1, in Appendix E.

Assuming a borehole radius of Ty = 0.1 m and physical .
parameters given in Appendix E, some numerical results are dis-
played in the figures beloaw. Figure 25 represents the case for an
initial uniform (c2= 0) rock formation temperature of 150°C and a
constant fluid injection temperature T_l of 30°C. The temperature
of the fluid 1 km from the injection point is plotted as a function of
time for several borehole flow rates ranging from 1 kg/sec to
50 kg/sec. The results indicate, for this particular case, a very
short relaxation time for borehole flows greater than 10 kg/sec and
much longer relaxation times for borehole flows less than 2 or
3 kg/sec. Relaxation time, in the present context, is a measure of
the characteristic time required for the temperature of the fluid in the
borehole to fall to within a close margin of the asymptote T_l.

Figure 26 shows the effect of a non-uniform initial rock forma-

tion temperature on the fluid temperature within a flowing borehole.
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Figure 25.

1 L }

0?2 04 06 08 10
TIME (yrs)

Temperature transients in borehole flow for various flow
rates F. Assumes an initial uniform formation tem-
perature with outlet temperature T measured at 1 km
from injection port.
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Figure 26. Temperature transients in borehole flow under initially
non-uniform formation temperature conditions. Examples

given for a downflow (a), uniform (b), and upflow (c)
configuration.
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In this example, the injection temperature is assumed to be 30°C and
the borehole flow is 1 kg/sec. The temperature of the fluid 1 km
from the injection point is plotted as a function of time for upflow (c)
and downflow (a) configurations as well as the case of an initial uni-
form rock formation temperature (b) (see Chapter III for terminology).
A geothermal gradient of 50°C /km, representative of a moderately
high crustal heat flow, is assumed for both the upflow and downflow
configurations. The initial rock formation temperature distributions

are summarized as follows:

r125 + 50x°C (Case a)
f(x) =< 150 °C (Case b)

175 - 50x°C (Case c)

\

where x 1is in kilometers.

It is evident from this example that the borehole temperature
transients associated with a non-uniform rock formation temperature
have, as in the case of fracture flow, characteristic signatures
dependent on the geothermal gradient. However, because of the
geometry of the heat extraction surface, in this case the borehole
wall, the temperature transients are much shorter lived than for the
case of fracture flow. Curves (a) and (c) trend asymptotically to
curve (b) for increasing time, reflecting the fact that the three cases

under consideration have the same initial average formation
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temperatures. The short (10-3 yr) constant temperature section at
the beginning of curve (b) corresponds to the length of time for water
entering the borehole at the injection point to travel 1 km through the
borehole. The rather sharp break in this curve at 10_3 years shows
the ability of the numerical Laplace inversion method to represent a
step-like function quite weli.

Temperature logging in boreholes is usually performed by
lowering a temperature sensitive device, such as a thermistor, into
the hole and taking either discrete or continuous readings. At tem-
peratures less than 200°C, temperature measurements using a
thermistor device can attain a precision of 10_2°C. However, there
frequently are difficulties associated with installing down-hole
devices due to the elevated temperature and pressure of the downhole
environment. Monitoring temperature of a flowing borehole at the
top of the borehole is usually much more convenient.

The numerical results presented in Figure 26 suggest that, for
small borehole flows, monitoring wellhead fluid temperature as a
function of time shortly after (within days or weeks) the initiation of
flow will yield a measure of the initial down-hole rock formation
temperature distribution. An additional observation is that, assuming
the initial rock formation temperature is already known from well

logging, a measure of the down-hole in situ thermal conductivity of the

rock formation may be obtained using a curve matching procedure. A
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method similar to this has recently been used with good results to
determine the in situ thermal conductivity of granite at depth in a high
crustal heat flow area west of the Valles Caldera in northern New

Mexico (Blair et al., 1976).
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APPENDIX D

Thermal Relaxation Time of Fluid in a Fracture

The length of time for a mass of fluid within a fracture to
equilibrate with the surrounding rock can be estimated by the following
simple example. Consider a flat slab of fluid of thickness w and
initial uniform temperature TO. At t =0, the temperature of the
slab faces is instantaneously increased to the constant temperature
Tr. A measure of the thermal relaxation time of the fluid slab is that
length of time for the fluid temperature, averaged across the fracture
width, to increase to a factor 0.5 of the face temperature Tr.
Referring to the diagram below, the problem can be stated as

—l'atT-a T=0, 0<y<w

ar yy

T(y,t)=To, t<o0 (D. 1)

T(0,t) = T(w,t) = Tr, t>0

where a is the thermal diffusivity of the fluid and T(y,t) 1is the

temperature of the fluid.
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The solution for T is easily obtained using standard classical

techniques (Carslaw and Jaeger, 1959) and can be shown to be

00 2 2
4(T0-Tr) 1 af(2n+1) Tt
T(Y:t) = —,n,_— Z (2n+1) exp{" 2 }

n=0 w

2n+t+
sin[ (_ni)lv_] +T
W r

Averaging the above expression across the slab width, one obtains

<T(t)> = 5 expi- 3 }+T_ (D.2)

8(T -T ) i af(2n+1)21r2t
_ (Zn+l) w
n..

0

Since considerable use of the numerical Laplace transform
inversion (see Appendix A) is made in this work, it is of some
practical interest to recast the above simple problem so that the
numerical inversion can be applied and the results compared with
expression (D. 2) as an additional check dn the precision of the inver-
sion procedure. To this end, we Laplace transform equations (D. 1)
with respect to time and solve the resulting equations for the trans-

form of the fluid temperature, which is easily shown to be

(T_-T,) T
?(y, s) = r 0 {sinh[ /| = (w-y)] + sinh( y)} + 0
s sinh( / w) «/ f N s
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The average across the fracture width of the above expression is

given by

A 2(T_-T,) / '
<T(s)> = {cosh(\/'—— w)-1} + —_— (D. 3)

sSwW 81nh(

Figure 27 shows some examples of <T>/Tr plotted as a
function of time for several fracture widths ranging from 1 mm to
20 mm, where T0 is taken to be 0. Values of <T>/Tr com -
puted according to (D. 2) are denoted by circles and values computed
by applying the numerical inverse Laplace transform to expression
(D. 3) are denoted by the solid lines. The maximum series truncation
error imposed on expansion (D. 2) is 10_6 and 6 terms were retained
in the numerical Laplace transform inversion summation. It is quite
evident that the numerical inversion method does an acceptable job of
inverting (D.3) for what may be considered a relatively few number of
terms retained in the inversion expansion. The numerical results
presented here indicate that the relaxation time for fractures of widths

of a few millimeters to tens of millimeters varies from a few seconds

up to a minute or so, respectively.
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Figure 27. Thermal relaxation of water in a fracture for several
values of fracture width. Solid lines correspond to
numerical Laplace transform inversion and circles cor-
respond to exact solution.
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APPENDIX E

Notes on Numerical Computation and Computer
Program Listings

1. All calculations in this work were done on a NOVA 1200 computer
with a 32K 16-bit word memory.
2. The following values for the physical parameters were used in the
calculations:
k =2.1 watts/(m. °C)
- 2
a =1.0x10 6m /sec
3 3
p =2.7x10 kg/m™

c =7.8x 102 J/(kg. °C)

r
- -1
aT=0.6x10 5°C
kf = 0. 63 vatts/(m. °C)

- 2
a, =1.5x 10 " m /sec
Pe = 1.0 x 103 kg/m3
3 o
o, =4.2x 10 J/(kg.°C)
3. Unless otherwise stated all numerical Laplace transform inver-

sions retained 6 terms in the inversion summation (see equation

A.8). It was found that an increase in the number of terms
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retained resulted in an insignificant change in solution for these

cases.

Chapter IV

4,

In integrating the Fourier-Galerkin solution (equation 4. 36) using
the BDA method the integration step size used was Ax = 10 m.
Ten terms were retained in the Fourier expansion of the tempera-
ture field given by equation (4.28). Unless otherwise noted in the
text, no significant change in solution was observed upon decreas-
ing step size or increasing the number of terms retained in the
Fourier expansion.
The norm of the Jacobi matrix relevant to the BDA procedure for
the solutions based on the Fourier-Galerkin method were found
to be (referring to Figure 8):
L=10m
M| < 0.46 (curve a), 0.1 <s<10.0
IM|| < 0.40 (curve b), "

IM|| = 0.0 (curve c), "

-
i
U
o
3

||M|| < 0.24 (curve a), 0.1 <s<10.0
IM| <0.i9 (curve b), "

"M” = 0.0 (curve c), "

where s is the transform variable corresponding to t.
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6. The specific parameters defining the flow channel configurations

in Figure 8 are given by:

curve (a): z; =0.0

Zy = 0.3L |

q = 0.02 kg /(m. sec)
curve (b): z; = 0.3L

Zpy = 0.6L

"

0.02 kg /(m. sec)

7. Elements of the matrix inverse indicated in equation (4.41) were

-6

computed to a precision of 10

Chapter V

8. Fifteen terms were retained in the numerical Laplace inverse
(see equation A. 8) in the inversion of equation (5.24). The time

step size was At = 0.1 year.

Chapter VII

9. q* was calculated to a precision of 10-6 in the iterative solution
of the functional equation given by equation (7. 2).
10. Injection depths Di that minimize the required fluid-rock con-

tact area were calculat:d to a precision of 0. 1 km using Newton's

method of root location.
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SUBROUTINE BDACNUM, N, BX, R, F, B)
DIMENSION F(15),8C13),C(13),A(13,1D)

BDA SOLVES, USING THE IMPLICIT BACKUARD BIFFERENCE APPROX
INATION, THE SET OF COUPLED FIRST ORDER DIFFERENTIAL
EQUATIONS WHICH, IN MATRIX FORM, ARE.

(3/D%>8 + C.B = F

VHERE: F AND B ARE N-VECTORS
G IS AN NXN MATRIX

IN THE FOLLOVING SCHEME, A IS AN NXN MATRIX WHICH IS EQUAL
TO THE INVERSE OF:

(1 + DX. &)

"WHERE. I IS THE IDENTITY MATRIX

NUN = X-INDEX AT VHICH SOLUTION VECTOR IS RETURNED
BX = INTEGRATION STEP SIZE

KOUNT=}

D0 29 J=1,N

Sun=9. 8

SUn2=0.9

BO 18 K=1,N
SUN=SUN+ACJ, K> #B(K)
SUM2sSUN2+DXeACJ, K)*F (KD
CONTINUE

CCJ>asSUM+SUN2

CONTINUE

00 38 J=i.N

B(J>=CJ)

CONTINUE

KOUNT=KOUNT+1
IFC(KOUNT. EG. NUN) GOTO 30
GOTO S

RETURN

END
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1; FUNCTIGON BESKB(X)

2 Al=-.577215¢€¢6

3; R2=_42278429

4; A=, 23869756€

S Ad4=.28348859¢8

6 AS=.090262698

7 RE6=.800108759

8 A7= 00ceB0B748

9; B1=1.25331414

10; B2=-.87832338

11 83=.082189568

12 B4=-.01062446

13; BS=. 088587872

14; B6=-.8082515480

15 B7=.886953208

16:;C

17 IF(X.GT.2.8> GOTOD So

18 R=(Xs2 8)%%2

19, . F=R*(A2+R*(AT+R*(A4+R*(AS+R* (A6 +R*AT ) ) ))
20 BESKP=-ALOG(Xs2. B)«BESIB(X>+Aal+F
21, RETURN
22; 59 R=2.9/%
23, F=R*(B2+R*x(BI+R*(B4+R*x(BS+R*(B6+R*B7)))))
24; BESKB=EXP(~-X)*(B1+F)sSQART(X)
25 RETURN
26; END

1; FUNCTION BESIO(X)

2; A1=3.515€223

3; A2=3.8£99424

4; R3I=1.2867492

S Ad4=. 2659732

€; AS=.83¢08768

7 A6=.8845813

8., 81=.39£94228

9; £2=.81228592

19, £2=.89225319

11 B4=- 0BB1575€S

12, 85=.p8216281

13, BE&=-.D2B57786

14, £7=.82625537

15 BB=-.81647633

16 BS=.88792377

17, ¢

18, T=X,3.795

19 IF(X.GT.3.75> GOTO Se

28; R=TxT

21; FzR*(A1+R*(A2+R*(AI+R*(A4+Re(AS+R*A6)) )
22 BESI@=1. 689F

23 RETURN

24 S50 R=1 8,7

5 F=R*(B2+R*(EIJ+R*(B4+R*(BS+R*x(BE+R*x(B7+R*(BB+R*B33>))>))> )
26 BESIB=EXP (X *(Bl+F)>/SQRT(X)
27 RETURH

28, END
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FUNCTION BESK1(X)
Al=. 15443144
A2=-.67278579
A3=-.18156897
A4=-.81919482
A5=-.02110484
A6=-.090B0B4686
B1=1.25331414
82=.22498619
B3=-.982655620
B4=.015084268
8S5=-.08788353
B6=. 08325614
Br=~.0€068245

IF(X.GT.2.8> GOTO S0

R=(X/2.8)%x2
FaRe(A1+R*(A2Z+R*(AT+R*(A4+R* (AS+R*A6))1) )
BESKI=(1.@8+F+X*ALOG(X,/2. 8)*BESI1(X))/¥
RETURHN

R=2.8-X
FaR*(B2+R*(BI+R*(B4+R*(BS5S+R*(B6+R*B7)))))
BESK1=(B1+F)*EXP(-X)/SQRT(X)

RETURN

END

FUNCTIGH BESI1(X)
Al=_8782985%4
R2=.51428869
R3=.15084934
Ad4=.02¢58722
AS=.088201532
A6=.0B0232411
B1=.39g942282
62=-.0839880824
83=-.82362018
B4=.081628801
85=-.81831S5SS
B6=.82282967
B?7=-.82895312
BE=.081787654
69=-.8242080859

T=2X,3.7S

IFCX.GT.3.75) GOTO So

R=TsT

FzR*(A1+R*(A2+R*(AI*R*(A4+R* (RT+R*R6131>) )
BESI1=(B. S+F)=X

RETURN

R=1.08-17

F=R*(B2+R*(BI+R*(B4+R*(BS+R* (B6+R*(B7+R*(BB8+R*B9)> 1)) )
BESII=EXP(X ®(B1+F) /SART(X)>

RETURN

END
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FUNCTION CHANCGD,Q1,2L, 2H, 2)

CHAN GENERATES A FLOW CHANNEL CONFIGURATION OF THE
FORM:

C2> = 09 , BCZC2ZL
= Q1 , 2)ZH
= (A COSINE TAPERY , 2ZL<2<ZH

WHERE THE TAPER WIDTH IS DEFINED AS:

¥ = ZH-2L
PI=3. 14159
U=ZH-20
IF(Z.GE. 2L)> GOTO 29
CHAN=Q®R
RETURN
IF(Z.LT.2H> GOTO 30
CHAN=Q1
RETURN
CHAN=(Q@-Q1)>%(1.8-COSC(ZH-2)*PI/W¥)>)>/2. 8+01
RETURN

END
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PAGE 1
1;C PROGRAM CHFLO
2 CoMMON P2, 9)
3 DIMENSION XC19,15),8¢15),¥(15),DC15>.,B8C1S)
4; DIMENSION G(40), FC15).22¢49), TENP(40), WIDTH(48), B2(13)
S DIMENSION QC40), A2C15,15), X2¢10,15), AC1T, 15>, AINY(15,15)
6i CALL INITIALC6,100,11.8,11.0)
2iC
8,;C CHFLO CALCULATES THE TEMPERATURE DISTRIBUTION OF A
9:;C CHANNELLED FLOW WITHIN A QUASI-FLAT FRACTURE IN AN
18;C INITIALLY HOT FORMATION. THE FLUID FLOW IS ASSUMED UNI-
11;C DIRECTIONAL AND THE FLOW CHANNEL CONFIGURATION IS ASSUMED
12;C PERIODIC IN THE DIRECTION TRANSYERSE TO THE DIRECTION OF
13;C FLOY. CONDUCTIVE HEAT TRANSFER IN THE ROCK IS ASSUMED TO
14;C OCCUR IN THE COORDINATE PERPENDICULAR TO THE FRACTURE
15;C PLANE AS WELL AS IN THE COORDINATE TRANSVERSE TO THE DIR-
16;C ECTION OF FLOW. IN ADDITION, CHANGE IN FRACTURE WIDTH
17;¢C DUE TO0 THERMAL EXPANSION/CONTRACTION OF THE ROCK MASS
18;¢C 1S CALCULATED. THIS IS BASED ONLY ON THE THERMOELASTIC
19, C POTENTIAL WITHOUT REGARD TO STRESS BOUNDARY CONDITIONS
20;C AT THE FRACTURE WALLS. THE FOURIER-GALERKIN METHOD IS USED
21.C IN ALL CALCULATIONS. INITIAL FORMATION TEMPERATURE IS
22;C ASSUMED LINEAR IN THE DIRECTION OF FLOM.. I .E. TO=R1+R2=X.
23.C
24, PI=3. 14159
25;C INPUT ROCK AND FLUID PARAMETERS
26 ACCEPT "ROCK CONDUCTIVITY. . W/M.DEG “,COND
27 ACCEPYT “ROCK DIFFUSIVITY.. Me=2/SEC ", DIFF
28 ACCEPT “SPECIFIC HEAT OF FLUID...Js/KG.DEG “,SIGHA
29; ACCEPT “"INJECTION TEMP. *, TINJ
30, ACCEPT "DISPOSAL TENWMP. ", TD
3t ACCEPT "Rt = *",R1
32; ACCEPT *RZ2 = ",R2
33, ACCEPT *CHANNEL DOMAIN LENGTH (M> *, XL
34 DIFF=31. SIGEO6*DIFF
3s; ACCEPY "NO. Z-POINTS TO BE PLOTTED-INTEGRATED ", NUM
36.;C
37; S ACCEPT *NO. TERMS IN FOURIER EXPANSION ", N
38;C
39;C SET UP FOURIER COEFFS. FOR FLOW CHANNEL CONFIGURATION
40 ; CALL FOURIER(N,NUM, XL.SIGMA, COND, @0, 01, 2L, 2H.G., Q. 22
41 ¢ WIDTH)
42.C
43; ACCEPT "PLOT CHANNEL CONFIGURATION? (YES=1)>",IFLAG
44 ; IFCIFLAG.EQ. 1) CALL XPLOT(NUM,22.a2.,0.1,-2)
45, IFCIFLAG. EQ. 1) CALL XPLOT(NUM,2Z2.WIDTH, 1.1,8)
46:C
47; ACCEPT “SATISFACTORY CHANNEL? C(YES=1)> *“.IFLAG
48, IFCIFLAG.NE. 1) GOTO S
49.:C
50 ACCEPT *“N-FACTOR FOR LAPLACE INVERSE *“, NLAP
St1i;C
s2i ACCEPT "DO0 THERMOELASTIC COMPS. ?2(Y=1,N=28> *, ITHERMNM
53 IFCITHERM.NE. 1) GOTO ¢
S4; ACCEPT “POISSONS RATIO ",PR
SS ACCEPT "LINEAR EXPANSION COEF.CE-8S5)> ", EXPC
56 ACCEPT "INITIAL FRACTURE HALF-VIDTH (MM)> *, 40
5?3 WFAC=-1 0E-92¢+EXPC*DIFFe(1 .B8+PRY (1. 0-PR)
58.;C
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69,
61
62;C
63;C
64,
65;¢C
66;
67;C
68,
69
70;C
71;
72;
73,
74,
?S;
76;
77
78;
79;
80;
81,
82
83
84,
8S.;C
86;
87;
88;C
89
90
91
92;
93;¢C
94;
95;C
96.C
9?7
98
99
180
191,C
192,
183
104,
10S;
196;
197;
108,
109;
110;
111;
112;
113;C
114;C
11S5:¢C
116
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6 ACCEPT "DO ANY PLOTTING?(YES=1)> ", JKPL

10

28

30

49
50

ACCEPYT *CONYERGENCE PARAMETER FOR MAT INV ", EPS
D2=sXL/FLOAT(NUN-1)

CALCULATE V-ARRAY USED IN THE LAPLACE INVERSION
CALL LINV(NLAP,V)

IFLAG=8

DDX=9. 8
PDT=9. 0

ACCEPT “STEP ALONG TIME? (YES=1) ",HTYPE
IF(NTYPE-1)7,8,7

RCCEPT “"X-STEP SIZE (M) ", DBDX

ACCEPT "NAX. X (M) *, XSTOP

ACCEPT "NO. X GRID POINTS PER STEP ", NX
ACCEPT "TINME (YRS)> *, T

XMAX=DDX

NN¥=NX

GOTO0 1@

ACCEPT “TIME-STEP SIZE (YRS> *,BDT
ACCEPT "MAX. TIMECYRS> ", TSTOP

ACCEPT “DISCHARGE POSITION (M) ", XMAX
ACCEPT “BEGIN TIME (YRS)> ", 7T

ACCEPT "NO. X GRID POINTS *, NX

DX=XNAX/FLOAT (NX-1)
FX=R1+R2%XNANX/1008.

CO0=0.69314/7

DO 20 J=1,NLAP
S(J>=FLOATC(JO>*CO
CONTINUE

DO 120 KK=1,NLAP

SET UP COUPLING MATRIX

DO 30 J=1.HN
BB=FLOATCJU-1>ePI /XL
D(J)=SART(BB*BB+SCKK)>/DIFF)
CONTINUE

DO S0 Jsi, N

IF(J.EQ. 1) gB=2.0

IFCJ.NE. 1) BB=1.0

DO 49 Ksi, N

11=J4K-1

[2s1ABSCJ-K)+1
A2C¢J,KX=DCKISCGCILY4CCI2))/(2.0%BB)
ACI, K)=DXea2¢J, K)

IFCJ.EQ.KY ACJ/KI=ACJ, K)+1.8
CONT INUE

CONT INUE

CALCULATE INVERSE OF COUPLING MATRIX
CALL PJINYCEPS, N, A, AINY, ITER, IER)

2

199




117.C
118;
119;
120
i21.;
122;C
123;C
124;
128
126
127
128.¢C
129;C
138.C
131
132.C
133;C
134,;C
135;C
136;
137,
138,
139;
140;
141
142
143;
144;
145;
146.;C
i47:C
148, C
149;
156;
131,
152;
153;
154
135
156;
157,
138;
159.;C
160.;C
161.;C
162;¢C
163;
164;
165,
166;
167
168;
169,
170;
171
172;
173,
174;

69

108

1es5

110
120

140

1590

i7e

180

200
PaGE 3

DO 60 J=1.N

F(4>=0.0

CONTINUE
F(1)=2-R2/(S(KK)*(R1-TINJ)>#1008.0)

INITIALIZE SCALED SOLUTION VECTOR
B(1)=-1. 8/SKK)

DO 108 J=2, N

8(J)=0.80

CONTINUE

INTEGRATE COUPLED D.E.’'S VIA PADE BACKWARD DIFFERENCE
APPROXIMATION
CALL BDACNX, N, DX,ARINV,.F,B)

STORE SOLUTION VECTOR IN MASTER ARRAYS

XC , )... TEMPERATURE

X2¢ , )... FRACTURE MIDTH
DO 118 J=1., N

Sun=9.9

DO 185 L=1,N
SUN=SUR+A2(J, LI*B(L)
CONTINUE
SUR=SUNM/ S (KK

X2(KK, J)=SUR

X(KK, J)=B (D
CONTINUE

CONTINUE

HaP MASTER ARRAYS TO THE TIME DOMAIN
DO 150 uJ=1,N

Sun=9.9

SUK2=0.0

DO 140 K=1, NLAP
SUR=SUR+ VY (K)*X (K, JD
SUM2sSUN2+V(K) eX2(K, J)
CONTINUE

B(J)=SUN*D. 69314/T7
B2(J)=SUR2¢0.69314/T
CONRTINUE

CALCULATE TEMPERATURE/FRACTURE WIDTH DISTRIBUTION
ALONG 2

DO 180 J=1, NUN
ALPHA=SIGHAYQ(J) /(2 .8+COND)

Sun=9.¢@

sun2=0.8

DO 178 K=1, N

CO=FLOAT(K-1)e¢PI /XL
SUM=SUM+B(K)®(RI-TINJ)*COSCCO¢22(J))
SUN2sSUM2+4B2(K)*(RI-TINJ>*COS(CO*ZZ(J))
CONTINUE

TERP (Jr=SUM+FX
WIDTH(JU)=SUN2¢«WFAC*ALPHA+WO

CONTINUE



176;
1?77;¢C
178;
179;
189,
181
182;C
183;
184,;C
185;C
186
187;
188,
189;
190;
191,
192;
193;C
194, C
19S;
196;
197.;¢C
198,
199,
200;
201;
202;
203;
204;
205,

185

190

609

IFCJKPL. NE. 1> GOTO 18§

CALL XPLOTC(NUM, 22, TENP, IFLAG, 1,8
CALL PLOT(P(1,9),8.0,-3>

CALL XPLOT(NUM,Z22,WIDTH, IFLAG,2.,8)
CALL PLOT(P(2,9).,0.0,-3)

IFLAG=1

CALCULATE POWER ASSUMING COMNMDUCTION IN Z-DIRECTION
DO 190 Js=1, NUM

TEMP(J>=QCJIS(TENP(J)-TD)

CONTINUE

CALL SIMP(C(DZ, TEMP, SUM, NUM)

SUM=SUMsSIGMA~/ XL

SUN=SUM-/1008.

PL=SUN

P1 IS POWER (K¥/NM).

WRITE(12, 588) T, XMAX.,P1
FORMAT(IH ,3C(FB.3,5%))

IFC(NTYPE.NE. 1. AND. XMAX. GE. XSTOP) GOTO 608
IF(NTYPE EQ. 1 AND. T.GE. TSTOP)> GOTO 688
IF(NTYPE.EQ. 1) T=T+3DT

IFCNTYPE. NE. 1) XMAX=XMAX+DDX
IF(NTYPE.  NE. 1) NXaNX+NNX

GOTO 10

IF(NTYPE-1) 7,8,7

END




48 ;
49:C
58.C
31
$2.
$3.
S4;
5SS
S6.C
57
58
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PROGRANM ECON
COMMON PC(Z, 9>
COMMON COND,DIFF,SIGNA, TI,C,GRAD
DIMENSION T(208),X(33,a¢3>,D(3),FLOWC(3), TAVG(3), TCAP(3)
DIMENSION XR(208), AA(288), EXR(20808),E(3D
CALL INITIAL(6,1900,11.8,11.8>

ECON CALCULATES THE MINIMUM FLUID-ROCK CONTACT ARER
REQUIRED FOR AN ECONOMICALLY VIABLE GEOTHERMAL HEATING~/
POWER SYSTENM. THE PHYSICAL SYSTEM IS APPROXIMATED WITH

A UNI-DIRECTIONAL FRACTURE FLGY WITH AN IMBEDDED LINEAR
FLUID LOSS BGETWEEN INJECTIGN AND PROLUCTICN PORTS. (SEE
SUBRGUTINE THOD). THE INITIAL ROCK FORMATION TEMPERATUKRE
IS ASSUMED LINEAR WITH DEPTH AND THE MINIMUM PRODUCTION
TEMPERATURE 1S CONSTRAINED TO A GIYVEN CGNSTANT VALUE. THE
SYSTEM IS IN AN UPFLOW CONFIGURATION. .THAT IS, THE
INJECTION PORT IS AT A DEEPER (AND HOTTER) POSITION
WITHIN THE GURSI-VERTICAL FRACTURE THAN THE PRODUCTION
PORT.

sxeresvere INPUT PHYSICAL SYSTEM PARAMETERS *xesstskks
ACCEPT “ROCK CONDUCTIVITY. ..W/M. DEG ", COND
ACCEFT “ROCK DIFFUSIVITY.. M**2/SEC ", DIFF
DIFF=31.5364DIFF '
ACCEPT “*SPECIFIC HEAT OF FLUID. . Js/KG.DEG ", SIGKA
ACCEPT "INJECTION TEMFERATURE ., TI
ACCEPT “SURFACE TEMPERATURE ",ST

sesveexks® INPUT ECONOMIC SYSTEM PARAMETERS *ekxasubxs
ACCEPT “SYSTEM LIFETIME (YRS> *,SL
ACCEPT “mIN. ARCCEPTRBLE PROD. TEMP. ".PTH
TYPE
TYPE “INPUT (DRILLING COSTS/BOREHOLE> PARAMETERS"®
ACCEPT “Al (K$/KM) = *,R1
ACCEPT "A2 (K$/KMex2) = *, QA2
TYPE
ACCEPT "SURFACE ERUIP. COSTS (K$>-BOREHOLE ",SEC
SEC=SEC=*Z.8
ACCEPT “OPERATION COST PARAMETER “,0CP
ACCEPT “INTEREST COST FACTOR ", CF
TYPE
ACCEPT “INJECTION WATER VALUE (CENTS-MT.> *“,Wvl
TYPE “INPUT PUMPING COST PARAMETERS®
ACCEPT “B® (CENTS/NT » “,88
ACCEPT *"B1 (CENTS/MT. kM) *,Bl
TYPE
ACCEPT “"SYSTEM EFFICIENCY ", EFF
ACCEPT “BUILD. HEAT =1, POMER=8 “, NTYPE

sxxeerrarr INPUT PROGRAM PARAMETERS **tsexeesx
ACCEPT “NO. TIME POINTS (LT 288 “,NT
ACCEPT “"ACCEPTABLE ERROR IN MINIMUM (KM) ", EPS2
ACCEPT “FLOW CONVERGENCE PARAMETER ", EPSI
DX=EPS2/5 8
DXP=8. 9

N2=1
ACCEPT “STEF PRODULTIGN DEPTHS? (YES=1: ",NSTEP
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62iC
63;
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66.;C
67
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72
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74;
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82;
83,
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109
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109,
186.C
187
109
109
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111
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113;
114, ¢C
119,
116

18

20

22

23

24

26

27
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IF(NSTEP.NE . 1) GOTO 19
ACCEPT “NUMBER OF CASES ", N2
ACCEPT "DEPTH CHANGE (kM) ", DXP

ACCEPT *MIN. GEOTHERMAL GRADIENT (DEG/KM) *,GHIN
ACCEPT “GRADIENT SPACING (DEG/kM> *“,DG
ACCEPT *NO. SPECIFIC GRADIENT CASES *, NG

ACCEPT *PLOT AREA VS DEPTH (YES=1) ".,NPLOT

ACCEPT "LIST AREA VS DEPTH? (YES=1) ", NLIST
IF(NPLOT.EQ.1.OR.NLIST. EQ. 1) ACCEPT “XMAX (KM} *, XMAX
IF(NPLOT.EQ.1.OR.NLIST EQ.1> ARCCEPT *"NO. X PUINTS *",NX
NTOP1=1

NTOP2=2

IF(NPLOT.EQ.1. OR.NLIST. EQ. 1) NTOP2sal
IF(NPLOT.EQ.1 . OR.NLIST EQ. 1> NTOP1=NX

IF(NTYPE EQ@.1) GOTO 20

TYPE “INPUT EXERGY COEFFICIENTS®
ACCEPT “Ef (KJ/KG> ", El

ACCEPT "E2 (KJ/KG.DEG> ",E2
ACCEPT "E3 (KJ/KG.DEGe*2) *,E3

ACCEPT "MAX. FLOW (KG/M.SEC) *“,QMAX
ACCEPT "MIN. FLOW (KG-/M. SEC)> “,QMIN

ACCEPT "FLUID LOSS PARAMETER *“,FLF
IF{NTYPE.EQ.0, GOTO 23

ACCEPT *“DISPOSAL TEMPERATURE *,TD

ACCEPT “THERMAL WATER VALUE ($/GJ> ", WV
ACCEPT *"DISTRIBUTION COSTS ($/GJ) ", TC

GOTO 24

ACCEPT “BUSS-BAR POWER COST (CENTS/KWHR) “,PC

ACCEPT "BEGIN SEARCH DEPTH (KM)> ", SSH
ACCEPT °“UPPER LIMIT ON DEPTH SEARCH (KM)> ®,SHAX
IFLAG=3d

esernsseese MARCH THROUGH SPECIFIED GRADIENT CASES ¢#esx
DO 1888 KK=1,NG

GR=GMIN+FLOAT(KK-1>+DG

GRAD=-GR

DO 968 MH=i,N2
CALCULWTE FRODUCTION WELL DEPTH
Di=(PTH-ST)/GR+FLOAT(NN-1)eDXP

D2=SSH
IF(NPLOT.EQ. £ . OR NLIST EQ. 1) DXs(XMAX-D2)>/FLOAT(NX-1)
IF(NPLOT.EQ.1.0OR NLIST EQ. 1) GOTO 27

D(1)ap2-DX
D(2raD2
D(3)sD2+D¥x

DO S88 JJaf,KTOP1
IFCNPLOT. EQ.1.0R . NLIST EQ. 1) DC1>=D2+FLOAT(JJ-1)+DX
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117 PO 400 J=1,NTOP2
118; R(J)=DtJ3-D1
119, Xx=X(Jd)
128 ¢C
121 C=ST+GReD(J)
122:¢C
123;C P1 1S DEPTH OF PRODUCTION WELL (KM)
124;C P2 1S DEPTH OF INJECTION WELL (KM)
129.:C X 1S DISTANCE OF PROD. PORT FROM INJ. PORT (KM)
126;C
127.¢C ITERATE TO FIND FLOW RATE FL THAT YIELDS TEMP. PTH
128;C AT TIME SL. CAT PRODUCTION PDRT)
129.C (OMIN, OMAX) IS SEARCH DOMAIN FOR FL
130;C
131; ITER=1
132; FL=3. 0
133; Qi1=QMIN
134, Q2sQMAX
139 30 CALL TMOD(SL, XX, Q1,FLF, TEMP)
136; Fi=TEMF-PTH
137; cAaLL THMODC(SL, XX, 02, FLF, TEMP)
138; F2=TEMP-PTH
139 IFCF1.EQ.F2) GOTO Se@
149 Q3=(01+Q2)/2.0
141; CALL TMODC(SL, XX, @3, FLF, TENP)
142; FI=TEMP-PTH
143; RAT=ABS(O3-FL>/ABS(Q3)
144; IF(RAT.LE.EPSL)> GOTO Se
145, FL=Q3
146;C
147.;C L0GIC BLOCK
148 IF(F3.GT.8.0> Q1=03
149; IF(F3.LT.8.0) Q02203
150 ITER=ITER+1
181 IFCITER.GT. 200> GOTO 28
132; GOTD 30
183.¢C
154; 58 FLOWC(J)=sFL
18S.C
186;¢C CHECK ON CONSTRAINT
187, CALL TMODC(SL, XX, FL,FLF, TENP)
188 IFCABS(TEMP-PTH) GT.1.8> TYPE "FLOW CONY. ERROR®
159.C
1606 FL2=sFL/C(1.08-FLF>
161.;C FL2 IS FLOW AT INJECTION PORT (KG/M. SEC)
162; DEL1=ABS(FL-QMAX)Y/ABS(QNAX)
163; DEL2=ABS(FL-QMIN)/ABSCAMIN)
164; IF(DELL. LY. 9.001)> GOTO 2@
165 IF(DELZ2.LT. 8. 081> GOTO 29
166;C
16?2.¢C CALCULATE TEMPERATURE HISTORY OF SYSTEM
168 DT=SL/FLOAT(NT-1)
169 DO 68 K=1,NT
170 TIME=FLOAT(K-1)>¢«DT
171 CALL TMODCTIME, XX, FL,FLF,TENP)
172; TCK)=TENP

173; 60 CONTINUE
174;C
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PARGE 4
1?25.¢C CALCULATE SPECIFIC PRODUCTION OF SYSTEN (HT . 7A%e2)
176 OsFLeSL*31.536/X(J>
127 02=sFL2*5L*31.536/X(J)
178:¢C
179;¢C CALCULATE TOTAL PUMPING COSTS ($/RKex2)

180; TPC=(BR+B1*DC¢J)>eR2el DE-82

181.C

182;¢C CALCULATE INJECTION WATER COSTS ($/Mxx2)

183 TIC=WVI*FLF*Q2«1 BE-B2

184, C

18S,;¢C CALCULATE AYERAGE PRODUCTION TEMPERATURE

186 CALL SIMPC(DT, T,ANS, NT)

187; TAVG(J)Y=ANS/SL

188;C

189.¢C CALCULATE TOTAL ENERGY PRODUCED PER SQUARE METER OF
1990;C FRACTURE DVER SYSTEM LIFETIME (GJ/Mee¢2)

191, IF(NTYPE. EQ.9) GOTOD 78

192; ECJ)aSIGHA* (TAVG(J)-TD)*EFF«Q*1 BE-06

193, . GOT0 1%8

194 78 DO 80 LL=1,NT

19S5, EXRCLLYTELI+T(LL)*®*(E2+T(LLY*EJ)

196 86 CONTINUE

197 CALL SIMP(DT,EXR,ANS, NT)

198 ECJ)=ANS*«EFF*@e] PE-83-/SL

199, C

200 C CALCULATE SPECIFIC REVENUE OF SYSTEM ($/Me%2)
201, 158 IF(NTYFPE EQ.1) SPVYV=(WY-TCH*ECJ)

282; IF(NTYFE EG.8) SPY=PC+E(J)+B. 36

203:C

204;C SUBTRACT PUMPING COSTS AND INJECTION WATER COSTS FROM
285.C SPECIFIC REVENUE

206 SPY=SPY-TPC-TIC

207 C

209 C CALCULATE DRILLING COST FOR SYSTEM (K$)

289, DRIL=AQA1I*(DE+D(JUID+ACH (DI +02+4DCJ)%%2)

210.;C :

211;¢C CALCULATE TOTAL CAPITAL INVESTMENT (MEGAS)
212 TCAPCJ)>=(SEC+DRILY>/1.BEB3

213.;¢C

214;C CALCULATE TOTAL OPERATION COSTS (K$)

218 OC=0CP+(SEC+DRIL)*SL

216:C

21?7.;C CALCULATE TOTAL EXPENDITURES OVER SYSTEM LIFETIME (K$:
218 TOTEX=CFe(SEC+DRIL>+0C

219;¢C

220 C CALCYLATE CONTACT AREA (KM®x2)

221 IF(SPY.GT . 0.8) ACJ)STOTEX*1. 0E~-03~/SPYVY

222 IF(CSPY LE.8.8) A(J)I=2-1.8

223;C

224 IFC(NLIST EO. 1) WRITE(C12,2881)> GR. D1, DC1), ACL)
225 C

226 488 CONTINUE

227 IF(NPLOGT . EQ. 1) XR(JJII=DC)

228 IFCNPLOT E@. 12 ARACJJI=RC(1)

229; 568 CONTINUE

239)‘: T332 2 2222 22220 R R2 R R RS RS RS 'EE XXX EZ 2 RAAR N 28 N J
231.¢C

232 IF(NPLOT EO.1> CALL XPLOT(HNX, XR, AR, IFLAG, 1.8
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233 IFLAG=1

234 IF(NPLOT.EQ.1.0R.NLIST EQ@.1)> GOTO i@e®

238, C

236;C CALCULATE FIRST DERIVATIVE OF SYSTEM FUNCTION

237 DERISCACII-AC13>/(2.8¢DX)

238 C CALCULATE SECOND DERIVATIVE OF SYSTEM FUNCTION

: 239 DER2=(A(3)-2. B*A(23+A(1) )X/ (DX*e2)

| 240;C

241;C UPDATE DISTANCE BETWEEN INJECTION AND PRODUCTION PORTS.
| 242;C NEUTON’S METHOD IS USED TO FIND THE ZERO OF THE

243 C SYSTEM FUNCTION FIRST DERIVATIVE

244 DD2=D2-DER1-DER2

245.C

246:;C CHECK IF UPDATE IS IN SEARCH RANGE

247 IFC(PD2.LE.D1) GOTO 24

248 IF(DD2 GE.SMAX) GOTO 24

249 C

2%9.C. CHECK FOR CONVERGENCE

231 IFCABS(DD2-D2).LT EPS2) GOTO 680

2%2; p2=D)12

233 GOTO 26

2394 C

2385:C MAVE CONVERGED OM OPTIMUM SYSTEM CONFIGURATION

236; 6089 SUsSA(2)/X(2)

2387 ASP=SU/X(2)

238 FLO=FLOWC(2)

239 Q=FLO*SL*31.5367X(2)

260 POV=E(2)%A(2)+31 71/SL

261 ENSPOU*SL

262 FFsFLO*SW*1 GEB3

263.C

264 C AC2) = FLUID-ROCK CONTACT AREA (KM*x2)

26S:C s a ‘STRIP WIDTH' (KN}

266;C ASP =’'ASPECT RATIO’

267 C FLO = PRODUCTION FLOW (KG/M.SEC)

268 C Q = SPECIFIC PRODUCTION (MET. TONS/M*x2)

269 C POV = POMER PRODUCTIGN (MUATTS)

270:C EN s ENERGY (MM-YRS)

2?71;C FF = PRODUCTION WELL FLOW (KG/SEC?

272;C

273 YRITEC12, 20088)> GR, D1, D(2), @, FLO, TAVG(2),A(2),SH, RSP,

274, CPOV.EN.FF,TCAP(2)

2?S:C

276.C UPDATE BEGIMN SEARCH POINT FOR MEXT CASE

277 SSH=D(2)

278;¢C

279; 900 CONTINUE

280, 1009 CONTINUE

281 PRUSE

282;C

2863, 20088 FORMATC(IH ,13(F?.3,2X»

284; 2001 FORMATCIH ., 4(F7.3,3%))

289 GOTOo 22

2986, END
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2;¢C
3;C
4;C
$iC
6:C
[ ]
8;
9;
19;
11
12;
13;
14;
18,
16;
17
18;

FUNCTION ERF(X)

ERF COMPUTES THE ERROR FUNCTION ERF(X). FROM ABRONOWITZ

AND STEGUN,

PAGE 299 (7.1.26).

ESTIMATED ERROR IN

RETURNED FUNCTION VALUE IS LESS THAN 1.3E-97.

p=. 3273911

Als 234829392

A2=-.284496736

A3=1.421413741

Res=-1.433132027

AS=1.061403429

Te1.0/C1. 9+PeX)

F1sQ1+4To(A2+T+ (A3+T+(A4+T#RII))

FisTsF1

ERF=1.9~-FLeEXP (-XsX)

RETURN
END
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8:.C

9;C
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39;
48;
41;
42
43;
44;C
49;C
46;
4?7
48;
49;
se.;
St
32,
33
S4;
S
36
§7.:C
38,

1% J

30

40
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SUBROUTINE FOURIERCN, NUM, XLEN,SIGMA, COND, @@, @1,2ZL,ZH, G
8, F,2Z, H)
DIMENSION G(40), F(48),22(40), H(48)
Ple3 14159
fH=2eN-1

INPUT NUMBER OF 2-POINTS ON WHICH FOURIER COEFFS. ARE TO
8E COMPUTED
ACCEPT *"NZ = *,N2

SPECIFY MEAN FLOW (AVERAGE ACROSS CHANNELS)
ACCEPT "QBAR...KG/M.SEC ", @BAR

ACCEPT "2L (M) ", 2L
ACCEPT *CHANNEL TAPER WIDTH (M) *, V¥

(SEE FUNCTION CHAN FOR DEFINITIONS OF ¥,2L,2H,Q8,0Q1)
ZH=ZL+W

ACCEPT "Q1. .KG/M_.SEC = ", 01
FisW/(2. 0¢XLEN)
F2=1.0-C(¥+2L)/XLEN
F3=F1+ZL/XLEN
00=C(QBAR-01%(F1+F2))/F3
TYPE "Q®. .KG/M.SEC = *, Q@

NZM1=N2Z-1

D2sXLEN/FLOAT(NZNL)

Do 1@ J=1,N2

2=FLOAT(J-1)*D2Z

F(J>=2 B*COND/ (SIGMASCHANCA®, Q1,2ZL, ZH, 23}
CONTINUE

sesss DETERMINE FOURIER COEFFS. OF F(Z) ssxss
CALCULATE DC COEFF.

Sun=9. @

DO 28 J=2,N2N1

SUN=SUN+F (J)

CONTINUE

GC1)=((FUIX+F(NZ))»+2. @+SUM)I*D2Z/ XLEN

CALCULATE HIGHER COEFFS.
t=-1.8

DO 490 X=2.M

XK=FLOART(KX-1)

syn=8.0

PO 30 JU=2,NZN1

2=FLOAT(J-1)>eD2

SUM=SUN+F (J)*COS(XKeP I« 2 /XLEN)
CONTINUE
CCKIa((F(1)+SeF(NZ>)+2. 0sSUM)«D2/XLEN
§=-5

CONT INUE

DP2=XLEN/FLOAT(NUN-1)



39.¢C
69
61
62;
63;
64
63
66;
67
68
69
4 ¥;
(4 ¥
72
73:;C
4
75;C
76.;C
?7:C
78
79

60

78

PG 70 J=1.,MUM
22CJ>=FLOAT(J~1)eD2
HCJ)SCHANCR®D, @1, 2L, 2H, 22(¢J))
sun=9.@

PO 69 K=2.M

. XKsFLOAT (K~-1)

SUN=SUM+GC(K)®COS (XKePI#22(J) /XLEN)
CONTINUE

FCJI=GC1)72. B+SUN

FCJYn2 9¢COND/ CSIGHR*F(JD)
CONTINUE

CALL SIMP(DZ,F,ANS, NUK)

ANS=ANS/ XKLEN

TYPE "QBAR CHECK (KG/M.SEC)> °,ANS
"QBAR CHECK’ CHECKS HOW MELL THE CALCULATED FOURIER
COEFFICIENTS DUPLICATE THE MEAN FLOW ORIGIMNALLY REQUESTED

RETURN
END



1;

2;

3;C

4;C

$;C

6;C

7:;C

8;C

9;C
18;C
11;C
12;C
13;C
14;C

18,

16;

17

18;

19;
20 10
21;
22;
23
24, 20
2S;
26;
27;
28;
29
30,
31;
32 30
33;
34;
3S,; 40
36;C
37
38 180
39,
40

41;
42;C
43;
44; 1180
45;

46
47;
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SUBROUTINE LINV(N, T.FA, V., M)
DIMENSION V(100),G(8,100), H(108)

LINV CALCULATES THE NUMERICAL INVERSE OF A LAPLACE
TRANSFORM. ALGORITHM 368 (CACHM).

T = REAL SPACE INDEPENDENT VARIABLE

N = SOME EVEN INTEGER OF THE ORDER OF THE NUMBER OF DIGITS
THE MACHINE IS CAPABLE OF WORKING WITH.

M = SOME INTEGER NOT EQUAL TO N AT FIRST CALL TO LINV.

FA = THE RETURNED APPROXIMATE VALUE OF F(T).

Vv = AN INTERNAL AKRAY

XINV = A FUNCTION REPRESENTING THE TRANSFORM OF F(T)

IFCH.EQ.N) GOTO 198@
Gcor=1.0

NH=N/2

DO 18 I=1.N
GCIdaG(I-1)+FLOATCI)
CONTINBE

H(1)>22 B/G(NH-1)

DO 2@ I=2,NH
HCI)SCFLOATCI)soeNH) oG (2%1) /7 (G(NH-1)¢GC(I)eGCI-1))
CONTINUE

SN=2 O+FLOATC(MOD(NH,2))>-1.9
DO 4@ [=1,N

v(I1>=8.0

NTOP=MINOCI, NH)
NBOTs(I+1)s2

DO 38 K=NBOT, NTOP
VCI)aV(I)4HC(K) 7(GCTI-K)eG(2e¢K=-1))
CONTINUE

V(I)aSNsV (]I}

SN=-SN

CONTINUE

LR

Fa=0.0

A=B. 693147

bo 118 I=t, N
ARG=FLOAT(I)eA

ARG = LAPLACE TRANSFORM SPACE INDEPENDENT VYARIABLE
FASFA+V(I)SXINV(ARG)
CONTINUE

FA=ASFw

RETURN

END



1;
2;
3;C
4;C
3;C
6iC
?:C
8;C
- 9;¢C
18;C
11;¢€
t12;C
13;¢€C
14,;C
18
16
17,
18,
19;
28;:C
21,
e2;
23
24
23
26;
27
28,
29;:C
30
31,
32;
33;
34
33,
36;
37;
38,
39;
49
41;
42;
43;
44;
4S;
46;
47
48 ;
49;C
58;C
St
S2;
33;
34
35
$6;
§7.¢C
38:C

18

33

36
37

49

30
60

70
88

SUBROUTINE PJINV(EPS, N, A, SUN, ITER, IER)
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DINENSION SUM2(1S,13),DC15), A(1S,13),8UNC1S, 13D

PJINV CALCULATES THE INVERSE OF AN NXN MATRIX USING

THE POINT JACOBI METHOD.

EPS = CONVERGENCE CRITERION APPLIED TO EARCH ELEMENT OF

THE RETURNED SOLUTION

RANK OF MATRIX

MATRIX TO BE INVERTED (RANK N)
RETURNED INVERSE OF @

N

A
sunm
ITER

CRITERION.

1ER=1

D0 18 J=i.N
BC(JI)=st . 8/RCJ, )
ACJ, J>=0. 0

CONTINUE

BO 30 J=1,N

DO 20 K=1,N
IFC(J.EQ.K) F=1.0
IFCJ . NE K) F=0.0
ACJ, KXa-D(JIsA(J, KD
SUNCJ, KISACY, KI*F
CONTINUE

CONTINUE

ITER=D

ITER=ITER®!

90 3?7 J=1,N

D0 36 K=i,N

SUK2CJ, K>aSUN(Y, KD
CONTINUE

CONTINUE .
IFCITER.GT. 200) GOTO 389
Do 60 J=1,N

DO 30 Ks=i1,N
IF(J.EQ.K) F=1. 8
IFCJ.NE. K> F=0.0
§5=90.9

DO 4@ L=1i,N
§S=8S+SUNCY, LI*ACL, K)
CONTINUE

SUNCJ, K)=SS+F
CONTINUE

CONTINUE

CHECK FOR CONVERGENCE

DO 88 J=i.N

b0 79 K=1,N

DELT=ABS ((SUM2C(J,KD>-SUM(J, KID>/7SUNCY, KI)
IFCDELT.GT.EPS) GOTO 35

CONTINUE

CONTINUE

HAVE CONVERGED ON SOLUTION

ITERATIONS REQUIRED TO OBTAIN DESIRED CONVERGENCE
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39 DO 110 ust, N
68, DO 189 K=, N
61, SUMCJ, K)=D(K)*SUNCY, K)

62; 189 CONTINUE
63; 118 CONTINUE

64; RETURN
63,;C

66; 300 IER=9
67 RETURN

68; END
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PRGE 1§

1; SUBROUTINE SINPCH, Y, ANS, NDIN)

2;C

3;C SINP CALCULATES THE INTEGRAL OF AN EQUIDISTANTLY SPACED
4;C TARBULATED FUNCTION BY SINPSON’S RULE.
$iC :

6:;C H s INTEGRATION STEP SIZE

?7;C Y s INPUT VECTOR OF FUNCTION VALUES
8;C ANS = RETURNED VALUE OF INTEGRAL

9.C NDIN = DIMENSION OF Y

10;C Z = INTERNAL VECTOR OF INTEGRAL VALUES
11;C

12;C FROM: IBM SCIENTIFIC SUBROUTINE PARCKAGE
13;C

14, DIMENSION Y(40),2¢40)

19, HT=8.333333333+H

16; IFC(NDIN-3) ?7,8,1

1?2;C

18;C _ NDIM IS GREATER TNAN 3. PREPARATIONS OF INTEGRATION LOOP
19 1 SUNL=Y(2)+Y(2)

20; Suni=Sumt+SUNL

21 SUN1I=sHTeC(YC(1)+SUNL+Y(I))

22 AUX1I=Y(4)+Y(C4e)

23 AUXI=AUXT+AUXT
24 AUX1I=SUML+HTS(Y(I)+QAUXLI+Y(S))
23 AUX2sHT®(YC1)+3. 873¢CY(2)4Y(3))+2. 623+(Y(II+Y(4))+Y(6))
26; SUN2=Y(3)+Y(3)

27; SUN2sSUN2+SUN2

28, SUN2sAUX2-NTs(Y(4)+SUN2+Y(6))

29, 2¢1)=9.80

30 AUX=Y(3)+Y(D)

31 AUX=AUX+AUX

32; 2C2ImEUM2~-HT*(Y(2)+AUX+Y (4))

33; 2¢3)=Sunt

34 Z2C¢4)=SUN2

33 IFCNBIN-65S3,85,2

36;C

37;¢C INTEGRATION LOOP

38 2 DO 4 I=?,NDIN, 2

39, SUNI=AUX1

49 SUN2=AUX2

41, AUKL=Y(I-1)+Y(1I~-1)

42 AUXI=AUXT+AUXT

43 AUXISSUMLI+HTe(Y(I-2)+QUX1+Y(1))

44, ZC¢1-2)=Suynt

43, IFCI-NDIN) 3.6.,6

46 3 AUX2=Y(LlX+Y(l)

47 AUX2=AUX2+AUX2

48; AUK2SSUM2+HTS(YC(I~1)+AUX2+YCI+1))

49; 4 2CI-1)=28UN2

Se.; S Z(NDIN-1)=aUXL

St ZCNDIN)=QAUX2 v

$2 ANS=Z(NDIN)

$3; RETURN

34 6 Z(NDIM-1)=SUN2

83 Z(NDIM >sAUXL

S6; ANS=2(NDINM)

$7. RETURN

38.C END OF INTEGRATION LOOP
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$9;C
60 7 IF(NBIN-3) 12,11.,8
61.C
62;C NDINM IS EQUAL TO 4 OR S
63 8 SUM2=] . 12SsHTS(Y(1)+3.88Y(2)+3.08Y(3)+Y(4))
64; SUN1I=Y(2)+Y(2)
63, SUNIsSUNL+SUNT
66; SUNLaHTeCY(L1)+SUNL+Y(3))
67; 2¢1)=8. 9
69 AUXLISY(I)+Y(3)
69, AUX1sAUXT+AUXT
79, 2€¢2)=sSUN2-HTeC(Y(2)+AUX1+Y(4))
71; IFCNDIN-S) 18.5,9
72; 9 AUX1sY(4)+Y(4)
73; AUX1=AUX1+AUXT
74; Z2CS)sSUNL+HTECY(II+AUXLI+Y(S))
4% 10 2(3)agUNt
76; 2¢(4)=8UN2
??; - ANS=Z(NDIN) .
78; RETURN ‘.
79;C
80;C NDIN 1S EQUAL TO 3
81 11 SUNLISHTe (1. 25¢Y(1)+2.8¢Y(2)-0.23¢Y(3))
82; SUN2sY(2)+Y(2)
83; SUN2=SUN2+SUN2
84 Z(J)-HTO(Y(I)OSUHz*Y(B))
83, 2¢1>=9.0
86 Z2C¢2)sSUN1
87, ANS=Z(NDIN)
88; RETURN
89;C
90 ; 12 IF(NDIN.EQ. 1) GOTO 13
91; 2¢1)=0. 8
92; 2C2)s(YC1)+C(Y(2)~-Y(1))%8 S)&HT
93; ANS=Z(NDIN)
94 RETURN
9s.;C
96; 13 2¢(1)=0.0
97 ANS=Z(NDIN)
98 RETURN
99 END

. ;;‘?% -



1
2;
3
4;C
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6;C
7:C
8;€C
9:;C
10;C
11;C
t2;¢C
13;C
14;C
18;C
16;C
17;¢C
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23;C
24.C
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26;C
27;C
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40;€C
41,
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43;C
46
47
48
49
se:;
St
32,
33
S4;C
33
$6.;C
S7;

SUBROUTINE THOD(T. X.Q.FLF, TENP)
CONNON P(2,9)
COMMON XK,A,SIGMA, TI.C.D

THOD CALCULATES PRODUCTION WELL HERD TEMNPERATURE FOR

A SIMPLE FRACTURE FLOW MODEL THAT ACCOUNTS FOR A BISPRIB-
UTED FLUID LOSS BETWEEN INJECTION AND PROBUCTION PORTS

OF THE SYSTEM. THE MODEL ASSUMES A FRACTURE FLOV OF THE
FORM @(X) = QO + EPSeX WHERE X IS THE DISTANCE FROM THE
INSJECTION PORT IN THE BIRECTION OF FLOV.

PARAMETERS
T....... TINE (YRS)
X.......DISTANCE FROM INJECTION PORT TO PRODUCTION PORT (KN)
e....... PROBUCTION WELL FLOV (KG/M.SEC)
FLF..... FLUID LOSS PARAMETER
=(QCINJI-QCPROD) I /QCIND)
XK. ..... ROCK CONDUCTIVITY (U/M.DBEG)
QA....... ROCK DIFFUSIVITY (KNes2/YR)
SICMA. . .FLUID SPECIFIC HERT (J/KG.DEG)
TI...... INJECTION TEMNPERRTURE

INITIAL ROCK FORMATION TEMPERATURE 1S C + DeX

PI=3. 14139

Qe=Q/(1.8-FLF)

EPS=(Q-Q0)/X

ALPHA=2. B8+XK/ (SIGNA+QE)

IF(T.EQ.8.8) GOTO 198

IFCEPS . EQ.0.0)> GOTO 7@

GAM=EPS/Q8
BETASALPHA*ALPHA®ALOG (1. 8+GAMeX )/ (2. B=AsT+GANSGAN)
TEST=1 9+BETA .

A1=CAN*SART(A+T) ALPHA
A2=ALPHA®ALOG(1. 3+GANEX) /(2. BeGAN*SART(AsT))
A3=1 8+CANeX

Ci=s1 O-ERF(ABS(R2))
E1=(TI-C)eC1

E2=De*A3/GAN

IFCABS(BETA). LT. 9.01) GOTO 4@

B1=1 Q+ERF(ABS(AL1))

IFCTEST.LT. 8.08) 82=1.  9-ERF(TEST®A1)
IF(TEST.GE.8.8) 82=1. 9+ERF(ABS(TEST*Al1))
IFCABSC(AL1).GT.8.8) A1=8.0
C3I=A3+EXP(Al®sal)e(B1-B2)

E3=DeC3/GAN

GOTO 3@

49 E3=-2.  0sQA2¢QA3¢D/ (GANSSART(PI))

38 E4=(1.9-ERFC(A2))¢D/GAN




TENP=E1~-E24EI+E4+C+ DX

RETURN

RISALPHA*X/ (2. 9+SART(AST))
IFC(A1.GT.8.0> A1=8.0

A2=2 . 9*D*SORT(A*T/PI)Z7ALPHA
81s(TI-C~-DeX)s(1.8-ERF(AL1))
B2=Aa2s (1. 0-EXP(-Al*A1))
TENP=B1~-82+C+DsX

RETURN

TENP=C+DsX

RETURN

END
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1 SUBROUTINE XPLOT(N., X, Y, IFLAG, IT,NSYN)
2 COMMON-/PLABEL/LABIC1),LAB2(1)
3 CoMMON PC2, 9
4; DIMENSION X(280),YC200),A/(200),B(200)
§;C
6; DAR7A LABLI/2H X/
7 DATA LAB2/2W Y/
L ¥ IFCIFLRG.EQR.1) GOTO 108
9; IFCIT.EQ.2) GOTO 28
18;C
11, ACCEPT °*LENGTN C(INCNES) OF ABSICISSA ", P(1, 1)
123 ACCEPT °“HEIGHT CINCHES) OF ORDINATE ", P(1,2)
13, ACCEPT “NAX. ABCISSA VALUE ", P(1,3)
14; ARCCEPT "NIN. ABCISSA VALUE ", P(1,4)
1S, ACCEPT “"MAX. ORDINATE VALUE ",P(1.3)
16; ACCEPT *MIN. ORDINATE VALUE *.P(1,6)
17 PCL, 7)a(PC(1,3)-PC(1,4>)/P(1,1)
18 PCL,8)=(P(1,3)-P(1,6))/P(1,2)
19, PCL, 9)sP(L, 1)1, 0
20 IF(IT.E0. 1> GOTO SO
21, TYPE
22; 20 TYPE "PARAMETERS FOR PLOT 2"
23; QCCEPT "LENGTH C(INCMES) OF ABSCISSA *,P(2.1)
24, ACCEPT "HEIGNT C(INCHES) OF ORDINATE ", P(2,2)
28, ACCEPT "MAX. ABCISSA VALUE .-*,P(2,3)
26 ACCEPT "MIN. AOCISSA VALUE *,P(2,4)
R id ACCEPT "MAX. ORDINATE VALUE ".P(2. 3
28 ACCEPT “"MIN. ORDINATE VALUE *,P(2,6)
29, PC2,7)s(P(2,3)-P(2,4))>/P(C2,1)
38 PC2,8)s(P(C2,3)-P(C2,6))/7P(2,2)
., PC2,9)==-P(1,9)
32;C
33;¢C
34, SO CALL AXIS(CE.0.9.0,LAB2,2,PCIT,2),90.0.PC1T7,6),PC1T,8),2)
33 CALL AXIS(0.0,0.0,.LAB1,~-2,PC1T7,15,0.0,PCIT,4),PCIT,?),2)
36.C
37; 1090 B0 130 U=, N
38 ACI)=(XCII-PCLT, )X /PCLIT, 7)
39; BCUIY=(YCUI-PCIT,6))/PC1T,8)
48; 1356 CONTVINUE
41 NN=N
42;¢C
43 CALL LINECA,B, NN, NSYN, 1)
44 CALL PLOT(0.0.9.0.3)
43;C
46 RETURN

47 END





