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Abstract approved:

Current investigations into forced geoheat recovery are based

on hydraulic fracturing of impermeable hot dry rock formations.

Forced recovery using naturally occurring fluid conductors, viz.

fault zones, basaltic dikes, and open formation contacts, presents an

alternate approach that may circumvent some of the difficulties

associated with the hydraulic fracturing method. The latter type of

system is considered in terms of the system physical-economic

feasibility. The heat transfer surface area required for an economi-

cally viable forced recovery system for direct contact heating applica-

tions is estimated based on various geologic and economic parameters.

The heat transfer surface area reflects the required dimensions of the

subsurface system and therefore serves as an indicator of the feasi-

bility of the system.

Heat extraction from a hot rock formation based on sheet-like

flow involves a balance of the total heat transport of the heat extracting
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fluid with the conductive heat transport within the rock. The heat

recovery efficiency is considered in terms of an idealized flow model

in order to estimate the required heat transfer surface area. Various

flow characteristics adverse to heat recovery efficiency are likely to

occur within the fluid conductors under consideration. These include

primarily non-uniform flow within the conductor and fluid losses due

to leakage from the conductor. The first order effects of these

adverse flow conditions are considered in terms of the idealized flow

model using analytic and semi-analytic methods. Furthermore, a

significant change in fracture permeability can occur within the con-

ductor due to the thermoelastic response of the rock formation upon

cooling. This effect is estimated in terms of the idealized flow model

under various flow conditions within the conductor.

The results of this work indicate that, under current economic

conditions and regional geothermal gradients of 50°C/km or more, the

minimum heat transfer surface area per injection/production borehole

pair required for an economically viable direct-contact heating system

with a 10 to 20 year system lifetime is less than 1 km2. Under the

same conditions, it is found that the minimum required heat transfer

surface area for electrical power production systems is 2 to 4 times

this figure.
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HEAT TRANSFER EFFECTS IN FORCED
GEOHEAT RECOVERY SYSTEMS

I. INTRODUCTION

During the formation and evolution of the Earth to its present

state, vast quantities of heat energy have been released by several

processes. Gravitational collapse of the original diffuse dust cloud,

decay of radioactive isotopes, core-mantle differentiation, and tidal

effects have contributed to the creation of a very large reservoir of

primitive heat. It has been estimated that, in the coterminous

United States alone, the outer 10 km of the Earth's crust contains

3. 3 x io25 3 of thermal energy relative to the mean annual surface

temperature (White and Williams, 1975). From the point of view of

human energy consumption, this figure is enormous. For comparison

the entire energy consumption of the United States in 1968 amounted

to 6.3 x i019 3 (Stanford Research Institute, 1972). Most of the heat

is buried too deeply or spread too diffusely for commercial exploita-

tion. However, analogous to the case of petroleum and mineral

resources, the near-surface distribution of heat energy is not uniform

and there exist regions of sufficient heat concentration for economic

recovery.

Technological advancement and increasing demand for energy

during the last several decades have brought the worldwide geothermal
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power generating capacity to over 1100 MWe (Kruger and Ramey,

1975). However, in spite of the advantages, development of geother-

mal energy in the United States has been slow. As Armstead (1973)

points out, the reluctance in the past to embark upon fairly costly

geothermal exploration projects is attributable, in part, to the "risk

capital" associated with geothermal resource exploration. Not all

geothermal fields are necessarily amenable to economic development,

and in order to determine whether a field can be profitably put to use,

it is necessary to expend fairly large sums in carrying out explora-

tion. Thus, analogous with costs associated with petroleum explora-

tion, the costs of geothermal exploration may be regarded as risk

capital.

Assuming a successful geothermal field has been located and

developed, one market for the energy is electrical power production.

Electrical power, however, can be developed by conventional means

(oil and coal fired plants, hydroelectric plants) without the need to

extend risk capital.

The other possible market is non-electrical applications such as

space and district heating. District heating systems per se have not

been implemented to any significant degree in the United States. This

reflects the condition that consumers have in the past been able to

meet their space and hot water needs more cheaply with individual

heating systems than with district heating systems (Karkheck et al.
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1977). Furthermore, these systems are very capital intensive, and

though there exists a margin for profit, it is unlikely that extensive

development of district heating will occur without some involvement by

corporate or governmental bodies. The primary benefit of such sys-

tems will be the conservation of scarce conventional energy resources.

Development of Non-Electrical Applications of
Geothermal Energy in the United States

The recent large increases in the cost of fossil fuels have made

district heating systems and other non-electrical applications much

more attractive and this trend will continue as conventional energy

supplies become scarcer. Demographic projections show the urbani-

zation trend continuing in the United States which will also favor a

change to district heating (Karkheck et al. , 1977). Geothermal energy

used for non-electrical applications is a thermodynamically more

efficient use of the resource than is electricity production. This is

due to the fact that Carnot efficiency dominates power production but

is not involved in direct-contact heating. As a result, a lower grade

(lower temperature) resource is economically better suited for

exploitation for non-electrical uses than for power production.

Geographic distribution and relative occurrence of lower grade

resources in the United States are much greater than higher grade

resources suitable for power production (White and Williams, 1975).



It is commonly agreed that the geothermal resources that exist at a

low to medium temperature (< 150°C) are at least an order of magni-

tude larger than those which exist at temperatures high enough to be

economically used for electricity generation. As a consequence, the

risk associated with exploration for low to medium temperature

resources will be substantially less than for the higher grade

resources.

The potential for non-electrical application of geothermal energy

in the United States is large. Reistad (1975b) has estimated that 40%

of the total energy requirements of the United States could be satisfied

from geothermal resources within direct-contact heating at maximum

temperatures of 200°C. This estimate assumes that the resource is

available at each application site. The percentages for temperatures

of 150°C and 100° C are 30 and 20% respectively. Detailed summaries

of low-temperature applications of geoheat are presented by Reistad

(l975a, 1975b), Armstead (1973), and Lienau and Lund (1974).

Forced Geoheat Recovery

Geothermal energy extraction systems fall roughly into three

types: (1) free flow, (2) partially forced, or stimulated, and

(3) forced recovery systems. The free flow technique is based on free

flowing boreholes in naturally occurring hydrothermal systems. The

driving force is thermoartesian pressure that results from density



differences due to thermal expansion and phase (liquid, gaseous, or a

mixture) of the fluid within the conductor. The method is applicable

where the resulting pressure head is sufficient to maintain the

required borehole flow. The migration of meteoric water from the

surface to the reservoir replaces the fluid lost from the system. The

most notable examples of free flow systems are The Geysers,

California (dry steam); Larderello, Italy (dry steam); and Wairakei,

New Zealand (mixture). All three of these systems are exploited for

electrical power production.

The partially forced, or stimulated, system involves down-hole

pumping to compliment the natural pressure head of the system to

maintain or increase the borehole flow. The Reykjavik District Heat-

ing System, which now supplies energy for domestic heating for more

than 100, 000 people in the capital of Iceland, is a low temperature

operation where large scale resource stimulation by borehole pumping

is being applied. This system has been in operation for more than

three decades and represents one of the most successful commercial

applications of geoheat. As in the case of free convective systems,

the stimulated system relies on a natural fluid recharge to the system.

The third type of geoheat recovery, and the most recent to come

under investigation, is the forced geoheat production system. This

type of system relies on an artificial recharge of the heat extracting

fluid into the reservoir. Unlike the free and stimulated systems, in



which the fluid flows through natural fluid conducting openings, the

forced recovery system relies, at least partially, on artificial open-

ings created by hydraulic fracturing or other pressurizing operations.

As the forced recovery system does not rely on the occurrence of a

naturally convecting system there exists the possibility of extracting

heat at suitable temperatures over much wider areas than has been

possible so far. The advantages of such a system are obvious when

one considers the low transportability of thermal waters and steam.

Steam can be transported economically over distances on the order of

only a few kilometers. Thermal water can be transported at most a

few tens of kilometers.

The Hot Dry Rock Concept

The main investigation into forced geoheat recovery currently

being undertaken is the "hot dry rock" project at the Los Alamos

Scientific Laboratory (LASL) in New Mexico. The method is based on

drilling two holes into hot, relatively impermeable rock, connecting

them at depth through a large crack produced by hydraulic fracturing,

and then circulating pressurized water through this connected system

to recover heat from the rock. In 1971, a field investigation was

undertaken to determine a suitable drilling site. The chosen site, at

Fenton Hill, is situated just west of the Valles Caldera in northern

New Mexico. Drilling and hydraulic fracturing were completed at the
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site, with a measurable flow connection between the two boreholes, in

1977. The boreholes are approximately 3000 m deep. A detailed

description of the engineering aspects of the experiment is given by

Blair et al. (1976). The LASL project is directed toward electrical

power production.

The economic viability of such a system, which remains to be

shown, depends on the feasibility of creating a sufficient fracture

permeability and fluid-rock contact area required to extract the total

heat energy necessary to amortize the initial capital investment and

to cover the recurring costs associated with operation and mainte-

nance. The viability of the process is highly dependent on the occur-

rence of thermal stress cracking at the fracture boundary for fracture

extension into the hot rock mass. Theoretical results (Harlow and

Pracht, 1972) indicate that thermal stress cracking will occur in this

type of system. Testing at the Fenton Hill site is in a very early

stage at the time of this writing, and as yet, it is uncertain whether

thermal stress cracking is occurring in this system.

An Alternate Approach to Forced Geoheat Recovery

The use of natural fluid conductors presents an alternate

approach to forced geoheat extraction that may circumvent some of the

difficulties associated with the hydraulic fracture method (Bodvars son,

1976; Bodvarsson and Hanson, 1976, 1977). Four types of structures



are of primary interest, viz. , quasi-vertical conductors such as

(1) fault zones and (2) basaltic dikes with longitudinal fluid conductiv-

ity and quasi-horizontal structures such as (3) open formation con-

tacts, mainly between basaltic lava beds and (4) permeable

sedimentary horizons. Extensive use of sedimentary horizons in

forced geoheat recovery for district heating is in progress in France

(DGRST, 1976; Coulbois and Herault, 1975).

The present work investigates the feasibility of using the fluid

conductors of the types (1) through (3) listed above in forced geoheat

recovery for low temperature, non-electrical applications. The

efficiency of heat extraction from the hot rock formation is considered

in terms of the heat transfer characteristics of a sheet-like flow sys-

tern. The efficiency of the system will determine the total thermal

energy produced over a given system lifetime. For such a system to

be economically viable, the revenues must cover the costs of the

system, which include capital costs (drilling, well head equipment,

piping, etc. ) and recurring costs (interest on capital expenditure,

operation and maintenance, etc.). The purpose of this work is to

estimate the required heat transfer surface area (i. e. fluid-rock

contact area) for a forced recovery system based on various economic

and geologic parameters. The heat transfer surface area reflects the

required dimensions of the system and therefore serves as an mdi-

cator to the feasibility of the system.



The work is directed in general toward potential use in the

western United States and specifically to the Pacific Northwest. This

geographic area is characterized by relatively large areas of above

normal crustal heat flow (Sass et al. , 1971; White and Williams,

1975; Hull et al. , 1977) and exhibits specific geologic conditions con-

sistent with the type of forced geoheat recovery system under investi-

gat ion.

The shaded region in Figure 1 represents the area of the

western United States exhibiting above normal crustal heat flow. The

world-wide average1 or "normaV', crustal heat flow for continental

areas is 61. 5 mW/rn2 (Lee, 1970) corresponding to a geothermal

temperature gradient of roughly 30°C/km.

Chapter II discusses the geologic characteristics of the natural

fluid conductors being considered. Attention is given primarily to the

observed permeability characteristics of these structures. In Chap-

ter III, the fundamental heat transport equations are developed. This

is followed by the introduction of the ttfirst order heat extraction

model which is used throughout the remainder of the work. The chap-

ter concludes with the derivation of the rock and fluid temperature

field equations for a sheet-like flow system based on this model.

Chapter IV discusses the effect of adverse flow characteristics

within the fluid conductor on the behavior of the temperature field of

the fluid. Non-uniform flow within the conductor and fluid loss due to
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Figure 1. Map showing probable extent of above average crustal heat
flow (shaded region) in the western United States. Physio-
graphic provinces do not necessarily represent heat flow
provinces (from White and Williams, 1975).
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leakage from the conductor are considered in the analysis.

The ability of a forced recovery system based on sheet-like flow

to meet a constant or seasonal power demand by varying well head

flow rate is considered in Chapter V. Chapter VI derives the thermo-

elastic response of an ideal fracture to cooling and the resulting

effect on fracture permeability.

Heat recovery system design and economics, based on the

first-order model, are discussed in Chapter VII. The absolute lower

bound on the fluid-rock contact area required for an economically

viable system is computed as a function of system lifetime, economic

conditions, and geologic setting. This is followed by a discussion of

adverse flow effects with regard to system feasibility.
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11. NATURAL FLUID CONDUCTORS

Fault Zones

Many fault zones exhibit a substantial fluid conductivity. This

is demonstrated quite well in the Basin and Range Province where a

considerable number of geothermal convection systems appear to be

associated with or controlled by normal master faults of the region

(Hose and Taylor, 1974). Chemical and thermal alteration of the rock

adjacent to and within fault zones containing active or historically

active hydrothermal convection systems indicate that many systems

have lifetimes on the order of thousands to tens of thousands of years.

This observation suggests that the effective fluid-rock contact area

within such systems may be quite large.

There is evidence in southern Idaho that in the past, extensive

hot spring activity has occurred at the sites of a number of faults

which transect siliceous volcanic areas. Current hot spring activity

in this region is also associated with major fault zones (Warner,

1975; Williams et al. , 1975).

Very little is known about the in situ permeability conditions of

fault zones. Undoubtedly, intergranular type percolation through fault

gouge or breccia and/or a fracture type percolation can occur depend-

ing on the characteristics of the fracture zone. There is some indica-

tion that normal faults contain gouge that consists of broken, crushed,
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and finely ground rock material that changes in character with depth.

In the shallow parts of large faults, the gouge is commonly several

centimeters to a few meters thick and consists of sheared plastic clay

and sheared breccia containing rolled pebble- and cobble-sized rock

fragments. Within deeper parts of the same faults, the gouge is corn-

monly only a few centimeters thick and consists mainly of clay that is

hardened and brittle rather than plastic. There is little or no brec-

ciation of the adjacent rock but a crude foliation may result from

shearing (Proffett, 1977).

It is not known at what depth a fracture opening and/or fault

gouge becomes impermeable to fluid flow. It is reasonable to assume

that the increase in lithostatic pressure with depth and the regional

tectonic stress will play a dominant role. Field data based on bore-

hole pressure testing (Snow, 1968) supports the assumption that

fracture permeability decreases with depth due to overburden stress.

Dikes in Flood Basalt Areas

The most extensive swarms of Cenozoic basaltic dikes in the

United States occur in the adjoining parts of northeastern Oregon,

southeastern Washington, and western Idaho. From the number of

dikes that are visible in well exposed areas of pre-Tertiary rocks

within the swarms, it has been estimated that at least 20, 000 dikes

occur at the level of the regional unconformity beneath the Columbia
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River Basalt. Trends in dike orientation suggest that the same

tectonic forces that prevailed throughout the Basin and Range Province

were also responsible for dike emplacement in this area (Taubeneck,

1969). Little is known about the hydrology of dikes in the United

States and there is no direct evidence that the mafic dikes of the

Columbia River Basalt host hydrothermal circulation systems.

There is considerable field evidence that many basaltic dikes in

north-central Iceland have a substantial fluid conductivity. Most of

the natural hot springs in this region are controlled by dikes and a

large number of boreholes have been drilled to extract thermal water

from the dikes (Bodvars son, 1961). The geologic characteristics of

dikes associated with flood basalt areas in the United States appear to

be similar to those of dikes in the flood basalt regions of Iceland.

Thus, one may infer similarities in the permeability characteristics

of dikes in the two regions.

Formation Contacts

The Columbia River and Snake River flood basalts in Oregon,

Washington and Idaho consist of layered horizontal lava flows of

individual thicknesses ranging on the order of meters to tens of

meters. Contacts between individual lava beds quite frequently

exhibit a high degree of fluid conductivity through an interconnected

system of pipes and other related openings. This is evidenced in the
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Snake River Canyon in Idaho (Tolman, 1937). There is also consider-

able field evidence in Iceland that open contacts found at various

depths in flood basalt formations associated with geothermal systems

allow the thermal water to flow along the lava-bed contacts over very

great horizontal distances (Bodvarsson, 1961).

The lava sequence of quaternary basalts extruded on and near the

flanks of stratovolcanoes of the southern Cascade Range in Washington

form highly permeable strata. Individual flows range from 1 to 50

meters thick, the average being 2 meters in thickness. Contacts are

rarely exposed except in postglacially incised valleys (Hammond et al.,

1975).
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III. FIRST-ORDER HEAT RECOVERY MODEL
FOR SHEET-LIKE FLOW

Heat extraction from hot subsurface formations, for the type of

system being considered, involves injection of water into suitable

fluid conductors at one location and extraction of the thermal water at

another location. Figure 2 shows two possible configurations. The

boreholes are drilled to intersect the conductor at a sufficient depth

and circulation is obtained by pumping. For the case of quasi-vertical

conductors, circulation may be enhanced by buoyancy forces created

by density differences between the cooler injected water and the hotter

water within the conductor.

PRODUCTION
HOLE

RE INJECTION
HOLE

DIKEORFAULT ZONE

REINJECTION PRODUCTION
HOLE HOLE

II

-II ___
OPEN LAVABED CONTACT

Figure 2. Two possible configuratiors for forced recovery using
natural fluid conductors.
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The flow geometry within the conductor depends on several

factors and may be quite complex. These factors include the injection

and production borehole location, borehole spacing, and the permea-

bility characteristics of the fluid conductor. In addition, significant

time dependent effects on permeability due to thermoelastic response

of the fracture walls caused by temperature transients and/or cherni-

cal deposition or solution within the conductor openings are likely to

occur. Because of the uncertainty of the permeability characteristics

associated with natural fluid conductors, it is felt that an attempt at

the present time to model the complex convective processes within

such systems may be premature. Such an approach should be con-

sidered only after considerably more field data is available on these

specific parameters. It is expected that the permeability character-

istics will be, to some degree, site specific.

We have chosen instead to approach the problem of forced

geoheat recovery more from the standpoint of physical-economic sys-

tern feasibility. To cover capital and operational costs, a forced

recovery system must produce a sufficient amount of energy in the

form of thermal water during a prescribed system lifetime. The

total produced thermal energy depends primarily on the effective

fluid-rock contact area within the conductor. The effective contact

area required reflects the dimensions of the subsurface heat extrac-

tion system, and consequently, serves as an indicator of the



feasibility of the operation. The physical-economic analysis presented

in this work is based on a simplified flow geometry within the con-

ductor. This leads to a useful approximates or "first-order", heat

extraction model for sheet-like flow.

The present chapter develops the equations governing heat

transport for the sheet-like fluid flow system which serves as our

first-order heat recovery model. The chapter concludes with the

derivation of the production temperature equations assuming an opti-

mal flow configuration. This particular model will maximize the

total heat production and therefore will yield the lower bound on the

required fluid-rock contact area necessary for the economic viability

of the system. Following chapters consider deviations from such

optimal flow conditions and the resulting effects on the system pro-

duction characteristics.

Basic Heat Transport Theory

In the theoretical development of this and following chapters,

we assume that the fluid conductor is quasi-flat and that the adjacent

rock formation is homogeneous and isotropic. The geologic structures

discussed in Chapter III, viz. , fault zones, basaltic dikes and forma-

tion contacts, are generally found to have a planar geometry. Fur-

thermore, the fluid is assumed to remain in the liquid phase within

the conductor.
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Heat Diffusion Equation

It is useful to highlight the derivation of the well known diffusion

equation that governs energy transport within the rock mass bounding

the fluid conductor. Assuming a stationary rock mass, the conserva-

tion of thermal energy in some arbitrary domain B bounded by the

surface E requires that the rate of increase of enthalpy in B is

equal to the heat flow into B across plus the rate of heat

production within B. In integral form

s
r...A

SdV (3.1)8 p o TdV-\ h.ndA+tBrr Br

where r is the rock density, o is the specific heat (at constant

pressure) of the rock, is the heat flow per unit area, and S is

the specific source density per unit mass of the rock. The tempera-

ture field of the rock is given by T. The material constants

and o are assumed to be independent of time.r
Using Gauss' integral theorem the surface integral in equation

(3. 1) can be transformed to a volume integral, resulting in

${p a- 8 T+v.i-p S}dV = 0 (3.
B

rrt

Since the domain B is arbitrary the integrand must be identically
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paT+v'i-pS0 (3.3)rrt r

Assuming the empirical Fourier heat conduction law, the heat flow

can be expressed in terms of T, or

i-kvTr (3. 4)

where k is the coefficient of thermal conductivity of the rock. In

general kr is a tensor. For an isotropic solid kr reduces to a

scalar.

Substituting expression (3. 4) into equation (3.3) results in the

second order partial differential equation governing the temperature

field in the rock.

p o a T V. (k VT) p S (3. 5)rrt r r

For a homogeneous isotropic solid in which there are no sources, the

above expression reduces to the standard homogeneous form of the

diffusion equation

aT-v2T0 (3.6)
a tr

where ar is the thermal diffusivity of the rock defined by
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kra =r Pa-rr

Heat Transfer Boundary Condition

The energy transfer between a fluid flowing in a fracture, or a

similar structure, and the surrounding rock mass is governed by a

balance between conductive heat flow in the rock and the total heat

transport in the fluid.

The ratio of the convective to conductive transport in the fluid

is given by the characteristic P&let number defined by

a-fq
Pe

kf

where crf is the specific heat of the fluid, q is the mass flow per

unit length of fracture, and kf is the thermal conductivity of the

fluid. For fracture flow rates greater than 0.01 kg/(m. sec), the

Pc1et number is greater than 70. Consequently, the convective

transport of the fluid dominates the conductive transport within the

fluid by a factor of almost i02. The conductive transport within the

fluid is therefore ignored for flow rates of this magnitude.

Figure 3 shows a small fluid element flowing within a fracture

opening of width w. The velocity of the fluid averaged over the

fracture width is v. To account for the effect of debris filling the
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fracture spaces, we assume a constant volume porosity 0 within the

region between the fracture walls. Referring to this figure, the

balance of convective heat transport in the fliid with the conductive

transport in the rock, required by the conservation of energy, is

given by

{ o+ (1-0)}8 (WTf) + Pff0 v2(wT ) = 2k a TI (3.7)
f ryff rr t

where

Av -,8 +za
2 x z

and Tf is the temperature of the fluid averaged across the fracture

width and Pf is the density of the fluid. An open fracture, in which

there is no debris, corresponds to 0 = 1.

'I

Figure 3. Fluid element within conductor, showing Cartesian coordi-
nate system.
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The right hand side of equation (3. 7) is the conductive heat flow

per unit area from the rock to the fluid and implicitly assumes that the

rock temperature field is symmetric with respect to the plane of the

fluid conductor. The left hand side of this expression represents the

net rate of change of enthalpy per unit fracture wall area of the

volume element of fluid and debris. The second term on the left hand

side is the change in enthalpy associated with the mass transfer of the

fluid into or out of the element. The temperature of the solid debris

within the fracture spaces is assumed to be equal to the temperature

of the interstitial fluid.

We will limit the discussion to fracture widths on the order of

millimeters to tens of millimeters. The thermal relaxation time for

water then varies from several seconds to several minutes (see

Appendix D). Considering the fluid velocities involved for flow rates

on the order of 0. 01 to 0. 1 kg/(m. sec), these relaxation times cor-

respond to thermal relaxation distances of several centimeters to a

few meters. Thus, to good approximation, the temperature of the

fluid can be taken to be isothermal with respect to the y coordinate

and can be set equal to the temperature of the adjacent rock, or

Tf(xzt) =

With the simplification of a constant fracture width, equation (3.7)

becomes
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{PfO + +.v2T r 8T, y 0 (3.8)

where the mass flow per unit length of fracture is defined by

wp

The coordinate system shown in Figure 3 will be used in all

subsequent calculations.

First-Order Heat Recovery Model

Fluid flow within sheet-like conductors will be of a non-uniform

quasi-potential type. For the purpose of estimating the required

fluid-rock contact area, we simplify the flow geometry by assuming a

uni-directional flow between the injection and production ports. On

this model, fluid at a constant temperature is injected into the con-

ductor by a line source located at x = 0 and recovered at a line sink

located at some position x > 0. We will refer to the source and sink

as system ports". The fluid flow is in the positive x direction.

The initial rock formation temperature is assumed to be a function of

the x coordinate only. Therefore, this first-order model can be

represented mathematically by the following initial and boundary value

problem.
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1 2
3 T v T 0, y > 0 (3. 9)

a tr

2krr
{pfO + (1_o)}waT + q(x,z,t)8 T = 3 T, y 0 (3. 10)

X

T(x,y,z,t) f(x) (3. 11)tO
T(O0izt)l>o = T. (3. 12)

1.

The assumption of a constant injection temperature at the

injection port x = 0 ignores the thermal interaction of the injected

fluid with the rock mass through which the injection borehole passes.

The consequences of this assumption are discussed in some detail in

Appendix C. With the constraint on the flow rate,

q > 0. 01 kg/(m. sec), the heat transport within the rock in the direc-

tion of flow is negligible and can be ignored (see Appendix B).

Optimum Flow Configuration for the First-Order Model

The remainder of the present chapter considers a stationary and

uniform fluid flow within the conductor--that is, q(x, z, t) = constant.

For a sheet-like flow heat recovery system, this is the optimum flow

configurations in the sense of heat extraction efficiency. Therefore,

the model will yield the absolute lower bound on the required fluid-

rock contact area.



Due to the symmetry of the flow there is no conductive heat

transport in the rock in the z direction. Thus the temperature

field within the rock formation is governed, to good approximation,

by the one-dimensional diffusion equation

TO, >O (3.13)
a t yyr

Furthermore, the heat transfer boundary condition (3. 10) becomes,

for this case,

where

a T + a T = a8 T, 0 (3. 14)
t x y

per
P = {Pfe +

r r :(l-0)} L

q

and where the dimensionless parameter a is defined by

2kra
°-fq

For an open fracture, where e = 1, 3 is simply the reciprocal of

the fluid velocity.

The two additional initial and boundary conditions required to

complete the statement of the problem are given by
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Tyt)I<
o

= (3. 15)

T(OOt)I>o = T. (3.16)
I

The solution to the initial and boundary value problem repre-

sented by equations (3. 13) through (3. 16) is obtained analytically

using integral transform methods. The Laplace transform operator

and its inverse are defined by (Abramowitz and Stegun, 1964)

coo
A L{g(t)] -st
g4s) = e g(t)dt

10

1A 1 st,ç
c+i°

g(t) = L [g(s)] = e g(s)ds
s 2rri

where s is the transform variable corresponding to t.

Applying the Laplace transform to equations (3. 13) and (3. 14),

1 A
{sT-f(x)} 8 T = 0, y > 0 (3. 17)

a yyr

A A
{sT-f(x)} + 8 T = a8 T, y 0 (3. 18)

y

The general solution of equation (3. 17) that remains finite as y

is

A A f(x)T(x,y,$)A(x,$)exp(- /y)+, y>O (3.19)'Jr



Inserting expression (3. 19) into equation (3. 18), a first order differ-
A

ential equation for A(x, s) is obtained

where

and

A f'(x)8 A(x, s) + K(s)A(x, s) = - (3. 20)
x S

K(s) = a 1 -I- 3s'a'Jr

_dff (x) dx

I'

The general solution of the above for A(x, s) is given by

A
A(x,$) B(s)exp(-K(s)x) !Sexp[K(s)(xxI)]fI(xt)dxI (3.21)

A.

where B(s) is a function yet to be determined.

Thus the Laplace transform of the rock temperature field is

A
T(x, y, s) = B(s)exp(-K(s)x- j y)'Ir

exP(JY) xr exp[-K(s)(x-x')]f'(x')dx' + (3. 22)
0

5

A
Evaluating T(x, y, s) at x = y 0 and using the Laplace trans -

forms of equations (3. 15) and (3. 16), it is easily shown that



A T.-f(0)
IB(s) = (3. 23)
S

Assuming a constant geothermal gradient in the upper few

kilometers of the Earth's crust, the initial formation temperature

f(x) for quasi-vertical structures (e. g. dikes, fault zones) is a linear

function of depth. For quasi-horizontal structures (e. g. formation

contacts), the initial formation temperature is, to good approximation,

constant. Thus, we consider the special case of the initial formation

temperature

f(x) c1 + c2x (3. 24)

where c1 and c2 are constants.

Substituting expression (3. 24) into equation (3. 22), the Laplace

transformed rock temperature field becomes

(T.-cA
i. 1

T(x, y, s) = exp(-K(s)x- y)
5 r

(3. 25)
5

C2 exP(JY) c1+c2xr {-exp(-K(s)} +sK(s) s

To determine the temperature of the water within the conductor,
A
T(x, y s) is to be evaluated at y 0. Inverse Laplace transform-

ing the resulting equation (Abramowitz and Stegun, 1964; Carslaw and

Jaeger, 1959), the fluid temperature is found to be



axTf(xt) = (T.-c1)erfc( zj__)U()

a 22 a 2

+
2c2

J-
r ax r ax ax

a [ r
exp(- 4a (l+)erfc(a

2
l)1 U()r a t ax a

+ exp( )erfc( + a
2a 2 2IT 13aJr

II r r jr

2 at a 3a 2 a[i 1
2

[f
r r a t 'i r I

a ii 2a
+

Za exp(
2

)erfc( a U(t)
r Jr

+ (c1+c2x)

30

(3. 26)

where = t - 3x and U() is the unit step function defined by

10, <0
U()=1

The complimentary error function is defined as (Abramowitz and

Stegun, 1964)

x 2

erfc(x) = 1 - erf(x) 1 - e dy

The error function erf(x) is evaluated numerically using a rational

approximation (Abramowitz and Stegun, 1964) and is presented

in function subprogram form ERF(X) in Appendix E.
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At this point, it is useful to introduce the "zero fracture width"

approximation. The thermal inertia of the fluid and debris within

fracture openings on the order of millimeters wide is small and can

be neglected. We therefore set the fracture width w = 0 but keep

the flow q finite. Hence, the zero fracture width approximation

for the case under consideration is equivalent to taking the limit of

equation (3. 26) as i 0. The limit is easily shown to be

T?(x, t) lim Tf(x t)
Ia- 0

ax(T.-c -c2x)erfc( ) (3. 27)11

acrat 22ax I+J exp(- 4a t )-1
J

+ (c1+c2x), t >0air r
J

The above equation reduces to the solution obtained by Bodvars son

(1969) for the case in which the initial formation temperature is

uniform (c2 = 0).

Some examples of the magnitude of the error due to the zero

fracture width approximation are shown in Figure 4. These examples

assume that water is injected at 30°C with a flow rate of

0. 05 kg/(m. sec) into a conductor with porosity 0 1. The value of

the flow rate is considered representative for a sheet-like flow

recovery system. We note that the volume specific heat of rock is
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roughly the same as that of water. Thus, to first approximation,

r r(1 9)}W. .W--
f q Pf (3.28)

The results obtained will therefore be approximately valid for

porosities less than 1. The rock formation temperature is initially

150°C and the fracture width is 10 millimeters. The error AT

is calculated according to AT = TfT. The values of the physical

parameters for the rock and fluid (water) used in this and later corn-

putations are given in Appendix E.

C.,

0

X(m.)

CD

.0
C.,

0

.c1a

C'J

d

...i-IO.O days

20Q 400. 600. 800. 1000.

X (m.)

Figure 4. Error in fluid temperature due to zero fracture width
approximation. Injection port is at x 0 and the fluid
flow is in the positive x direction (note change of scale).
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It is evident from these examples that the error incurred by the

zero fracture width approximation damps out rapidly with increasing

time and distance from the injection port. Since the characteristic

dimensions of a forced geoheat recovery system will be on the order

of a kilometer, the error in temperature at the production port is

negligible and the zero width approximation is quite good. The same

applies for initially non-uniform formation temperatures.

The two basic flow options for a quasi-vertical conductor are

shown in Figure 5. For the purpose of definition, the case in which

the fluid flows upward within the conductor is referred to as an

tlupflowtt system. For the case in which the fluid flow is downward,

the configuration is referred to as udownflowht (Bocjvars son, 1976;

Bodvarsson and Hanson, 1976, 1977).

UPFLOW SYSTEM DOWNFLOW SYSTEM

Figure 5. Upflow and downflow system configurations for quasi-
vertical fluid conductors.
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Figure 6 shows the time evolution of the water temperature

distribution within the fluid conductor based on equation (3. 27) for

three different initial formation temperature situations. The dotted

lines represent the initial formation temperatures and the curves are

labeled according to the length of time, measured in years, after

initiation of flow. All three cases assume that the water injected into

the fluid conductor has a constant temperature of 30°C at a constant

mass flow rate of 0.05 kgl(m. sec). The initial formation tempera-

tures are as follows:

1175 - 50x °C (Case A) (3. 29)

T(xyt)<
0

= f(x) 125 + 50x °C (Case B) (3.30)

L150 °C (Case C) (3.31)

Assuming a 25°C ambient surface temperature, Figure 6A

represents an ideal flow configuration within an upflow system in

which the injection port is at a depth of 3 km. Figure 6B represents a

downflow configuration where the injection port is at a depth of 2 km.

Figure 6C assumes fluid is injected into a quasi-horizontal conductor

embedded in a rock formation that has an initial uniform temperature

of 150° C. As time increases, it is seen that the temperature distri-

butions of the three cases considered approach the same value. This

reflects the fact that the initial average temperature of the rock in the

domain (0 < x < 1) X (0 < y < °°) is identical for all three cases.



For the purpose of notational economy; the asterisk denoting

the zero width approximation will be dropped. Unless otherwise

stated, the remainder of this work will use this approximation.
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Th.o 0.2 0.4 0.6 0.8 .0

X(km.)

Figure 6. Fluid temperattre distributions within the conductor for
upflow (A), downilow (B), and initial uniform formation
temperature (C) configurations. Individual curves labeled
according to time (years) after initiation of flow. All cases
assume q = 0.05 kg/(m.sec) and T1 30°C. Initial
formation temperature distributions are given by dotted
lines.
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IV. EFFECTS OF NON-IDEAL FLOW ON
PRODUCTION TEMPERATURE

The flow geometry within an actual recovery system may deviate

substantially from the ideal case considered in the previous chapter.

Non-uniform flow within the fluid conductor as well as fluid losses

from the system due to leakage are likely to be the two main adverse

flow characteristics that will degrade the system heat extraction

efficiency. The present chapter considers these in terms of the first-

order heat extraction model and discusses the resulting effects on the

production temperature of the system.

Flow-Channelling

Non-uniform flow within a fluid conductor can arise as a result

of several processes. These include borehole location and spacing,

spatial variation of permeability prior to initiation of flow, and the

time dependent effects of thermoelastic, chemical and convective

processes on permeability. The present section estimates the effect

of non-uniform flow (which will be referred to as "flow-chanelling)

on the fluid temperature within the conductor based on the first-order

heat extraction model.

The first part of the present section is concerned with estimating

the dependence of the fluid temperature on the flow-channel wave-

length. In the present context wavelength refers to the characteristic
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distance over which a significant change in flow rate occurs. A

parameter perturbation method is used in the analysis. The second

part of the section applies the Fourier-Galerkin variational approach

to generalize the solution to allow for arbitrarily severe flow-channel

configurations.

Perturbation Method

The first-order heat extraction model is based on a line source

and line sink connected by a uni-directional flow. Using this concept,

a stationary non-uniform flow between the injection and production

ports of the system, assuming no fluid losses, translates to a flow

configuration of the form ' = q(z)Q Thus, the mathematical prob-

lem can be stated, analogous to equations (3. 9) through (3. 1Z), as

T-8 T0, y>O (4.1)
a t yy zZr

2k 8 T = o q(z)8T, y 4. 0 (4. 2)ry f

T(x, y, t)I < 0 = f(x) (4.3)

T(0,0,t)I >0 = T. (4.4)

The zero fracture width approximation in heat transfer boundary con-

dition (4. 2) has been made. Furthermore, conductive heat transport

in the rock in the direction transverse to the flow direction is included



in equation (4. 1) to allow for thermal communication between the flow

channels.

The perturbation method is based on the idea of approximating a

given system by a simpler ideal system which deviates only slightly

from the system under consideration. The perturbation theory (for

linear operators) was originated by Rayleigh and Schrodinger

(Rayleigh, 1926; Schrodinger, 1928). Criteria have been given for

the validity of the perturbation method and the reader is referred to

Titchmarsh (1949, 1950) and Kato (1951, 1966).

The perturbation method used in the present analysis assumes

that the flow rate q(z) can be represented by a constant flow rate

perturbed by a small spatial flow variation, or

where

q(z)q0+vE(z) (4.5)

E(Z)
<< 1

q0
(4. 6)

and V is a dimensionless perturbation parameter. The introduction

of the parameter V allows one to group terms of comparable

degrees of approximation in a methodical and convenient fashion.

We look for a solution of the rock temperature field of the form

T(x, y, z, t) = T1(x, y, z, t) + f(x) (4.7)
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where f(x) is the initial formation temperature. The deviation T1

from the initial configuration is represented by the perturbation series

2 (2)
y, z, t) = y, t) + VT(x, y, z, t) + V T (x, y, z, t)

n (n)
+ . . . + V T1 (x, y, z, t) + . .. (4. 8)

Defining the operators H and V(z) as

H crfq08 - 2k ary
V(z) = 0 E (z)8f x

the heat transfer boundary condition (4. 2) can be written as

[H+vV(z)]T1(x, y, z, t)
,

= crfq(z)f(x) (4. 9)

Inserting expression (4. 8) into equation (4. 9) and equating equal

powers of v, one obtains

= fq0f(x) , y 0

HT' + V(z)T0 fE (z)f'(x) , y 0

(4. 10)

HT2 + V(z)T = 0 , y 0

+ V(z)T = 0 , y 0
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Furthermore, substituting expressions (4. 7) and (4. 8) into equation

(4. 1),we find that the elements of the perturbation series must satisfy

a T° - a T° = 0, y > 0
a ti yyir

a T' - a T'' - D T = 0 y >0
a t 1 yy 1 zz 1r (4.11)

aTLa T-a T=O, y>O
a t 1 yy 1 zz 1r

The initial and boundary conditions on the elements of the

perturbation series are easily shown to be

(n) t)I 0, n0,1,...T1 (x,y,z, <o

(4. 12)

T -f(0), n0
T(O,O,z,t)I>o

i

0, n= 1,2,...

it is evident from this formulation that a solution for the nth term

of the perturbation series can, in principle, be built up from the

knowledge of the previous n-i terms.

We simplify the present analysis by truncating the perturbation

series (4. 8) after the first two terms which results in a first order

perturbation approximation. The solution will be sufficiently valid as

long as constraint (4. 6) is met. A discussion of the range of validity
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of this approximation is given in the following section. Thus, we look

for a solution of T1 of the form

where

and where

(0)
T1(x, y, z,t) T1 (x, y, t) + T(x, y, z, t)

8 T0 - 8 T° = 0, y >0
a t 1 yy 1r

(0)
f'(), y 4HT1 = -fq0-

(4. 13)
(0) =0T1 (xyt)<0

T°(0,0,t)I = T. f(0)t>0 1.

0 T' - 8 T' a T' = 0, y > 0
a t 1 yy 1 zz 1r

HT' + V(z)T0 = fE (z)ft(x), y 4 0

(1)T1 (x,y,t)l<o = 0

T'(0,0,t)I >0 = 0

(4. 14)

The solution of equations (4. 13) and (4. 14) is obtained by integral

transform techniques.

The initial rock formation temperature f(x) is again assumed

to be a linear function of x, or
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f(x) = c1 + c2x

where c1 and c2 are constants.

Laplace transforming equations (4. 13) with respect to time and

solving the resulting set of equations for T° gives

where

(T.-cAU i 1
T y, s) exp[-(a0x+y)]

r

rc2exp(- /;-)
r- {l-exp(-a0 /x)] (4.15)

r

2k r
aU

As expected, the unperturbed solution for the fluid temperature,
A(0)
T1 + f(x)/s, is identical to equation (3. 25) in the limit of zero

fracture width, corresponding to the uniform component of flow q0.

Noting that the operators H and V(z) are time independent,

the Laplace transform (with respect to time) applied to the first two

equations of (4. 14) followed by an exponential Fourier transform (with

respect to z) gives

(l) 2(1)
8 T ( + )T1 = 0, y > U (4. 16)yyl ar



and
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HT1 + =

)f(x)
(4. 17)

where the "A" indicates a Laplace followed by a Fourier transform

and the " denotes the Fourier transform. The (exponential)

Fourier transfcrm and ts inverse are defined, in symmetric form, by

(Magnus and Oberhettinger, 1966)

$00
ip' {g(t)I etg(t)dt

00

1 I

g(t) IF1{g()} \ e g(c*)d
00

The solution of equation (4. 16) that remains finite as y 00 is

I s 2'(1) AT1 (x,y,c,$) A(x,,$)exp(-j + y) (4.18)
r

SubstitutiDn of expression (4. 17) into equation (4. 18) yields a first

order differential equation for (x, , s)

4 /s 24
a A + a 1 + A = {a 9(0)1 +f'(x)} (4. 19)

x 0/a q xl yj,O
0

A(0)
With the solution of T1 given by equation (4. 15) and the homo-

geneous boundary conditions at x 0 given in equations (4. 14), it



can be shown that

where

R(x, s, )
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E(OJ)
A(x, , s) R(x, s, (4. 20)

q0

a0 /(c1-T.)--c2 exp( / - -a0Jx)
I

1 I
+cA)Z'x) exp( S

Ja

'sir r
Is 2'

j
a +-a I-

0 a 0/aJr i r

fls

2 ''Jr
I 2 I

(4.21)

f-k) ) I

a 1+(j)0/a'Ir
The analysis to this point has assumed, of course, that the Fourier

transform of E (z) exists.

Expressions (4. 20) and (4. 21) will in general be quite difficult

to invert analytically. The problem is simplified by assuming that the

flow perturbation can be represented by a pure harmonic function with

amplitude q1

E(Z) q1 cos(c0z)

With this simplification the inverse Fourier transform is immediate,

and
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A(1) AT1 (x,O,z,$)A(x,z,$)

q1
cos(c0z)R(x,

'
s) (4. 22)

q

We are primarily concerned with the temperature variation in

the fluid due to the flow perturbation. To this end, we evaluate the

peak-to-peak temperature variation as a function of channel wave-

length using equation (4. 22), or

2q1
T(x, t, X) = L 1[R(x, s)] (4. 23)

q0 s

where X is the channel wavelength. The indicated inverse is done

numerically using a method described in Appendix A.

Figure 7 shows several examples of the peak-to-peak fluid

temperature variation due to a sinusoidal flow perturbation. The

examples assume a constant 30°C injection temperature and an initial

uniform formation temperature of 150°C. The magnitude of the

unperturbed flow q0 is 0. 05 kg/(m.sec) and the flow perturbation

amplitude q1 is 20% of this value, or 0. 01 kg/(m.sec). Cases a, b

and c represent channel wavelengths of 100 m, 50 m, and 10 m

respectively. The dotted lines represent ET(x, t, X) based on equa-

tion (4. 23). The solid lines assume that there is no conductive trans-

port in the rock in the z coordinate and are computed on the basis

of equation (3. 27).
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Figure 7. Peak-to-peak fluid temperature difference within the con-
ductor in the direction transverse to flow assuming a
sinu?oidal spatial flow variation. Channel wavelengths are
100 m, 50 m, and 10 rn for cases a, b, and c rspectively.



47

It is evident that the effect of non-uniform flow is most signifi-

cant for long wavelengths and damps out rapidly for shorter wave-

lengths. This is due to the greater thermal communication between

flow channels for the shorter wavelengths and the resulting "smearing

out" of the temperature differences in the transverse (z) coordinate.

For the case in which there is no thermal communication between

channels (solid lines) the maximum peak-to-peak temperature differ-

ence moves away from the injection port with increasing time with no

change in amplitude.

The results of this simple perturbation model show that a sub-

stantial error in fluid temperature can occur by ignoring the conduc-

tive transport in the rock in the direction transverse to the flow under

non-uniform flow conditions. The consequences of ignoring this term

of the diffusion equation for wavelengths on the order of 100 m or less

can be quite severe in terms of heat extraction efficiency. For the

shorter wavelengths (K < 10 m) the temperature field of the fluid

approaches that obtained for the uniform flow case--that is, iT

becomes small. Therefore, the heat extraction efficiency, in the

limit of small flow channel wavelength, approaches the optimum

value. However, by ignoring transverse conduction, there is no

approach to this optimum.



Fourier-Galerkin Method

The perturbation method is quite instructive in regard to the

overall effect of flow channelling. However, constraint (4. 6) severely

limits the range of applicability of the method. We therefore recast

the problem of flow channelling into an equivalent variational problem.

The Galerkin variational method (Galerkin, 1915) is formulated

as follows. Assume that we are given an equation Bu - f = 0, where

B is a linear operator defined on some HUbert space. The Galerkin

method requires us to select the sequence of orthogonal elements

p E (domain of B) and the sequence of orthogonal elements

qi E DB and then to attempt to find an approximate solution, or

"trial" solution, of the form

u = akk

The coefficients ak are determined from the condition that

(Bu, qi.) = 0, i = 0, 1, .. . , n. This leads to the set of equations

ak(Bk, .) (f, j, i = 0, 1, .. . , n

from which the ak's and consequently u can be obtained. The

above formulation is Petrov's generalization of Galerkin's method. It
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is sometimes convenient to restrict the sets {p.} and {qi.} to be

identical, which yields the Bubnov-Galerkin method (Mikhlin and

Smolitskiy, 1967). It is the latter method that will be used in the fol-

lowing analysis.

For the problem under consideration, we let the flow rate q(z)

be a given periodic function of z with period 2L. Furthermore,

q(z) > 0 and is even on the interval -L < z < L. Thus, the dimen-

sionless parameter a can be expressed by the Fourier cosine

series

ZN
2kr irz

a(z) ofq(z) = c cos (4. 24)

=0

The choice of the upper summation index will become apparent as the

analysis develops. A periodicity in flow implies a periodicity in the

temperature field, so we look for a solution for the temperature field

of the form

where

T(x,y,z,t) = T1(x,y,z,t) +f(x) (4.25)

N
fliT z

y, z, t) a(x, y, t) cos (4. 26)

n= 0

and where f(x) is the initial formation temperature.
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The above equations can be thought of as the "trial solutions'

that approximates the true temperature field. The set of coefficients

{a , n 0, 1, ... , N} are chosen using the method of Galerkin such that
n

expression (4. 26) is the "best" solution (in the least squares sense)

for the true temperature field. Since the basis functions for the trial

solution are simply the set of trigonometric cosine functions, the

method is termed the Fourier-Galerkin method.

Laplace transforming equations (4. 1) and (4. 26) with respect to

time, we obtain

and

s AT -a T -8 T 0, >O (4.27)
ar 1 yy 1 zz 1

N

- (x,y,$)y, z, s) cos (4. 28)

n0

Substituting expression (4. 28) into equation (4. 27) and using the

orthogonality of the basis functions on the interval -L < z < L, one

obtains

where

A s
a a (x,y,$) - (---+ )a (x,y,$) 0, y >0 (4.29)yyn a n nr

nir
1nL

n0,l,...,N
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The solution for '(x, y, s) that remains finite as y 00 is

A A f 2'
a (x, y, s) = b (x, s)exp(- +13y), n = 0, 1, . . . , N (4. 30)
n n aJr

and therefore,

N
A \'A 2' nirz
T1(x,y,z,$) =

+13 y) cos (4.31)
n Lr

n= 0

The heat transfer boundary condition is now recast in terms of

the set of coefficients {(x, s), n 0, 1, .. . , N} by means of the

Fourier-Galerkin method. Laplace transforming the boundary condi-

tion (4. 2) with respect to time and using expression (4. 25), one obtains

B{T111 = 0 (4.32)

where the operator B is defined as

2k
B[]= r

a [1 8
[1f(x) y0 (4.33)

crfq(z) y s

The Fourier Galerkin method requires that the coefficients

s) be selected so that the N+1 algebraic equations

2çL A mlTz
j

B[T1] cos L dz 0, m 0,l,...,N (4.34)

be satisfied.
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For the purpose of notational economy, the multiple inner

product of the basis functions is defined as

2
(n, m, = cos

nirz rz
cos

mTrzcos cos dz., 'j) L

Using expressions (4. 24), (4. 31) and (4. 34), it can be shown that the

bn'S satisfy the set of equations

N ZN

(m.n)j +'c(xs)
nOO r

N

+

f'(x)(m, n)8 b (x, s) + (m, 0) = 0, (4. 35)
s

n0

m = 0, 1, . . . , N

With the use of a comraon trigonometric identity, it is evident that

(n,1,m) (i,m+n) + (1,m-n)

Furthermore, the orthogonality of the basis functions on the interval

-L < z < L requires that

1°
nm

(n,m)= 1, nm0
nm0
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Using these addition and orthogonality properties, the problem can be

reduced to solving the set of N+l first order coupled ordinary dif-

fer ential equations

where

N
A 'A A A

8 b (x, s) + ) A (s)b (x, s) = - (x, s), (4.36)xm inn n m
n0

I
+13

+m, n+m) (rn-n, rn-n) 1".1 r (n
Ia

A (s) c +
mn 2 (m,rn) rn+n (rn,m) urn-nil

J4. 37)

and where

(f'(x)
A
g (x, s)

, m 0
(4. 38)

rn
m>0

It is instructive to cast the above equations in matrix form.

-p
A A i A

8 b(x, s) + A(s)b(x, s) = -(x, s) (4. 39)
x

where

b(x, s

b(x, s) =

1(X s)-0A

LN(X,s

1f'(x) 151

-0

1(x,$)

L4(N+l)th entry
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and where

f AIA(s)
I

00
IA

A10(s)

IA[A1.0(s)

50N(s)

'NN

It is not unexpected that there is a striking similarity between equa-

tions (4.39) and (3. 20). The thermal coupling between the flow

channels and the temperature field is quite explicit in expression

(4. 36), where the matrix (s) couples the Fourier coefficients of

the temperature field with the Fourier coefficients of the flow con-

figuration. Furthermore, it is at this point evident from equation

(4. 37) why ZN+l terms were retained in the expansion of a(z).
A

We note that in t-space, the coupling matrix A(s) will be time

dependent. The final requirement for the solution of equations (4.36)
A

through (4. 38) is the value of b(x, s) at x 0. This is easily

shown to be

T. -f(0)
I

S

0

'(0, s)
0

0 (N+l)th entry



Equation (4. 39) ii integrated numerically using the Backward

Difference Approximation (BDA) method (Varga, 1962). The BDA

method approximates the differential equation (4. 39) with the finite

difference equation

b(xk+l s)

LXk
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A
I- A(s)b(xk+l, s) = _(xk+l s) (4.40)

where the real line x > 0 has been partioned into the set of sub-

intervals Xk = Xk+l Xk where x0 < x1 < ... . The injection

port at x 0 corresponds to x0. Rewriting equation (4. 40) in

terms of a computational marching scheme, we obtain

A 1" "b(xkl s) = (l+xkA(s)Y {b(xk, s)_t,xk(xk+l s)}, (4. 41)

k 0, 1,2, .

where I is the identity matrix. The above method will yield

s), k > 0 given the t!startingfl vector (x0, s). The number of

matrix inversions required in the computational procedure is mini-

mized by letting the grid spacing Xk be constant. The matrix

inversion indicated above is carried out using the point Jacobi itera-

tive procedure (Varga, 1962). Having integrated the equation to the
1

desired value of x, the resulting set of N+1 coefficients b (x,$)
n

are numerically inverse Laplace transformed by a method described



56

irk Appendix A. The temperature of the fluid, T(x, 0, z, t), is then

evaluated by expression (4. 25). A computer program, CHFLO,

based on the above procedure is given in Appendix E.

An important question to be addressed at this point is the

existence of the above indicated matrix inverse under the Jacobi

iterative procedure. A necessary and sufficient condition for the

convergence of the sequence of elements in the iteration is that the

spectral radius of the Jacobi matrix M be less than 1, where the

spectral radius is defined as

p(M) = max
J

X.
I.

i

and the X. are the eigenvalues of M. For the case under con-

sideration, the Jacobi matrix is given by M= D'(UTM+LTM),

where D, UTM, and LTM are the diagonal, upper triangular
A

matrix, and lower triangular matrix of I + xA(s) respectively.

A closed form solution for the eigenvalues will in general be quite

difficult to obtain. However, if any norm H
M of the Jacobi

matrix can be shown to be less than 1, it follows that p(M) < 1,

since p(M) < MMII (Isaacson and Keller, 1966). The matrix norm

used in the present analysis is
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N

lMlImaxI .I
j i

A
where the d. .s are the elements of t + txA(s). The values of this

13

norm for the specific examples of the Fourier-Galerkin solution to be

considered are given in Appendix £. For all cases considered, the

spectral radius of the Jacobi matrix was less than one and therefore

the iteration sequence converged.

form

A flow channel configuration on the interval 0 < z < L of the

q0, O<Z<ZL

(q0-q1) z -z
q(z) [l-cos( H

)1 + q , ZL < z < ZH
2 w 1

q1, zHzL

is used in the analysis, where q0, q1, ZL and ZH are constants

and where ZH > ZL The "taper width" w is given by ZH ZL

The cosine taper function gives a very smooth q(z), which is

advantageous in minimizing the number of terms required in expan-

sion (4. 24).

Figure 8 shows three flow channel configurations of varying

degrees of severity considered in the present analysis and in later



discussions of non-uniform flow. All have a mean flow (averaged

over the interval 0 < z < L) of 0. 05 kg/(m.sec). The choice of

these specific configurations was arbitrary. The range of severity of

the channelling goes from the uniform flow case (cirve c) to a con-

figuration that varies by a factor of ten (curve a). It is felt that this

range of flow variations may be represeitative of the degree of flow

non-uniformity to be expected in an actual recovery system. The

per iodicity of the channelling, ZL, is probably the most uncertain

parameter.

ID
c'J

0

.

U
U)

.

Kill] L

z
Figure 8. Flow channel configurations used in the Fourier-Galerkin

analysis. Channels have a periodici.ty of 2L and a mean
flow (averaged over the interval 0 < z < L) of
0.05 kg/(m.sec).
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For the purpose of example, we consider two initial rock

formation temperature distributions, corresponding to an upflow sys-

tern and an initial uniform temperature configuration. The formation

temperature distributions for these cases are given by equations

(3. 29) and (3.31) respectively. Figure 9 shows the fluid temperature

distribution for the upflow configuration and Figure 10 for the initial

uniform temperature case. The flow configuration (a) in Figure 8 is

used in the computations, where L is assumed to be 10 m. The

temperature distributions are plotted at 100 m intervals from the

injection port (x 0) of the system to a maximum distance of 1 km.

The curves on the left hand side of the figures correspond to the

Fourier-Galerkin solution ("coupled" model) and those on the right

hand side correspond to the case where conductive transport in the z

coordinate is ignored ("uncoupled" model), i. e. , equation (3. 27) with

q replaced with q(z). The latter is given for comparison in order

to observe the degree of inter-channel communication. The injection

temperature assumed for both figures is 30° C.

It is evident from Figures 9 and 10 that, for early time

(t < 0. 1 yr), there is little difference in the uncoupled and coupled

models. However, for later times, the difference becomes quite

significant. This observation is also substantiated by the simple

perturbation model discussed previously.
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Figure 9. Time development of fluid temperature distribution in an
upflow system under severely non-uniform flow. Curves
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uncoupled solution.
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Figure 10. Time development of fluid temperature distribution for the
case of an initial uniform rock formation temperature
under severely non-uniform flow. Curves on the left hand
side correspond to Fourier -Galerkin solution and those on
the right hand side correspond to uncoupled solution.
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At this juncture, it is of some interest to compare the Fourier-

Galerkin solution with the perturbation solution to determine at what

point the perturbation solution breaks down. That is, as the flow

perturbation amplitude q1 (see equation 4. 22) is increased, at

what point does the perturbation theory deviate "substantially" from

the Fourier-Galerkin solution. Since the perturbation method dis-

cussed in the previous section was developed specifically for a pure

harmonic flow variation (see equation 4.22), the Fourier -Galerkin

solution is computed on the basis of an identical flow geometry. This

is accomplished by setting ZL 0 and = L in the above

expression for q(z). Letting T be the perturbation solution and

TFG be the Fourier-Galerkin solution, the rms error of the

perturbation solution is computed as

I

TPTFGIrms = i[SL2] 1/2

where the indicated integration is accomplished numerically using

Simpson's Rule.

Figure 11 shows an example of the rms error of the perturba-

tion method as a function of distance from the injection port and time

based on a channel wavelength ?. = 10 m. Two flow perturbations,

q1 /q0 = 0. 5 and q1 /q0 = 0. 75, were considered, where q0 was

taken to be 0. 05 kg/(m. sec). The injection temperature is 30°C and
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the initial formation temperature is 150°C. It is seen that, even for

these large perturbations, the first-order theory does a very good job

of approximating the true fluid temperature for the particular flow

geometry under consideration. It is furthermore noted that the shapes

of the error distributions in Figure 11 correspond roughly to the

shapes of the peak-to-peak temperature curves of Figure 7. This

reflects the condition that the magnitude of error in the perturbation

method is correlated strongly with the transverse temperature

gradient. For the most part, the true temperature field of the fluid

is a pure harmonic function of the z coordinate, as indicated by

the relatively small rms error shown in Figure 11. The maximum

deviations from a pure harmonic field occur in regions of the con-

ductor where the transverse temperature gradient is the largest.

Additional computations have been carried out that show that the error

associated with the perturbation method for X > 10 m is smaller

than that indicated in Figure 11 for X 10 m.

The above analysis indicates that, for rather large flow

perturbations, solutions for an arbitrary uni-directional flow con-

figuration based on a linear combination of terms of the form indicated

by equation (4. 22) can serve as a good approximation to the true fluid

temperature field.



Fluid Losses

Fluid losses due to leakage from a natural fluid conductor may

significantly reduce the total produced thermal energy of a recovery

system. As a rock cools, fracture openings will enlarge due to the

thermoelastic contraction of the adjacent formation. The increased

permeability combined with the preferential downward convective

penetration of cold water within the system may serve to channel the

injected water out of the heating zone. It is evident that a fluid can be

injected between the contact planes of a closed conductor only if the

fluid pressure exceeds the local contact pressure. The magnitude of

the lithostatic (overburden) and regional tectonic stresses may be

such that in order to obtain the required flow rate, an increased well

head pumping pressure may be necessary. It is likely that the

elevated pumping pressure required for conductors exhibiting very

small natural permeability will increase fluid losses from the system.

The present section describes the effects of a distributed fluid

I
loss within the conductor on the production temperature of the system.

Fluid Los s Model

We will investigate the case where the fluid flow is a function

only of the distance between the injection and production ports of the

system. Using the first-order heat extraction model, the problem can
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be stated mathematically, analogous to equations (3. 9) through (3. 12),

as

T=0, y>O (4.42)
a t yyr

2k 8 T = r q(x)8 T, y 0 (4.43)ry f x

T(x, y, t) f(x) (4. 44)'t 0
T(0,0,t) = T (4.45)t>0 i

The zero fracture width approximation has been used in the heat

transfer boundary condition (4. 43).

The solution to the above initial and boundary value problem is

obtained using integral transform methods in a manner similar to that

discussed in Chapter III. Applying the Laplace transform with respect

to time to equations (4. 42) and (4. 43), we obtain

A A
2k 8 T = o q(x)8 T, y , 0 (4. 46)ry f x

1 A
{sT-f(x)} - 8 T = 0, y >0 (4,47)

a yyr

A
The general solution for T that remains finite as y ° is

/ +- (4.48)T(x, y, s) = A(x, s)exp(- ,I y)1r
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Inserting expression (4.48) into equation (4.46), a first order differ-
"

ential equation for A(x, s) is obtained

whe re

OJT:
(x, s) f'(x) (4. 49)3 A(x, s) + a a q(x) sx

2k
a0 fq(0)

Using standard techniques for the solution of non-homogeneous differ-

ential equations with variable coefficients (Leighton, 1966), the gen-

eral solution for (x, s) is

X
g(0) dx1A

A(x, s) exp [a0
q(x)

j (4. 50)

Xl B(s) - f'(x")exp a0 q(0) dx1 dx"

[A

rx

s Jr0 q(x)

]

A
where B(s) is a function yet to be determined. Thus, the Laplace

transform of the rock temperature field can be written as

T(x,y,$)
exp[[y+a0Sx q(0)

r q(x')
dxj]

(4. 51)

pL

g(0) dxidxl+X I B(s) - f'(x)ex
[

s
0

a0.J j0 q(x) J j
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A
Evaluating T at x = y = 0 and using the Laplace transforms of

equation (4. 44) and (4. 45),

A T.-f(0)
B(s) =

S

For the present analysis, we choose the simplest distributed

fluid loss between the injection and production ports of the system--

namely, a uniform loss. Thus, the flow rate can be written as

q(x) q1 + q2x (4. 52)

where q1 and q2 are constants and q2 < 0. The initial rock

formation temperature is again assumed to be a linear function of x,

or

f(x) = c1 + c2x

where c1 and c2 are constants. With these requirements, equa-

tion (4. 51) reduces to

a0
A
T(x,y,$) = exP[LY+ 1n(1+x]

2 1 10 s
( /ln(1+yx+J (l+x)exp

IiiL
r

+
(c1+c2x)

(4. 53)
5



where

ci?
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To determine the temperature of the water within the fluid
A

conductor, T(x, y, s) is evaluated at y 0. Inverse Laplace trans-

forming the resulting equation (Abramowitz and Stegun, 1964; Carsiaw

and Jaeger, 1959), the fluid temperature is found to be

-1 1%

Tf(x t) = L [T(x, 0, s)J
2yat y1flrao1n(1x c2(1+y r r

1 exp(
2

)erfc( )lii= (T.-c
)erfcLz i Y [ a0

a0
j

2
c a0 ln(1+yx) y a tr

+ erfc( (1+yx)exp(
2

(4. 54)
a
0

r-'v,jt a0 ln(l+yx)
X erfcl +

L a0 Zy
+ (c1+c2), t >0

It can be shown that the above solution for the fluid temperature

reduces to equation (3. 27) in the limit of zero fluid loss within the

conductor (q1 = 0).

We define a fluid loss parameter 8 as

q(0)-q(x
8= p

q(0)
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where q(0) is the injection flow rate and q(x) is the production

flow rate.

Figure 12 shows several examples of the effect of a distributed

fluid loss on the temperature of the fluid in the conductor based on

equation (4. 54). These particular examples assume a constant injec-

tion temperature of 30°C and a constant production flow rate of

0. 05 kg/(m. sec). The production port is 1 km from the injection port.

Three initial formation temperature situations, represented by the

dotted lines, are considered. As in Figure 5, these represent an

upflow (case A), downflow (case B) and initial uniform temperature

(case C) configuration. A 50°C /km geotemperature grandient has

been used for the calculation of cases A and B. The fluid temperature

distribution has been calculated for 1 year and 10 years after flow

start up and for 0%, 25%, and 50% fluid loss between the injection and

production ports. Therefore, the injection flow rates corresponding

to the 0%, 25%, and 50% losses are 0.05 kg/(m. sec), 0.067 kg/(m.sec),

and 0. 10 kg/(m. sec) respectively.
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conductor.



w
V. VARIATION OF FLOW RATE TO MEET CONSTANT

AND SEASONAL POWER LOADS

The results of Chapters III and IV are based on the assumption

that the system flow is stationary in time. The effective power

P ofqT, where ET is the effective utilized temperature span,

will vary according to the variation in iT. In many commercial

applications of geoheat, there will be an interest in a specific power

variation--for example, a seasonally varying output in the case of

domestic heating. In order to meet these types of loads, the flow rate

q must be varied in time in some manner. The present chapter con-

siders two cases of power loads; (1) constant and (2) seasonally

varying. A parameter perturbation method is used to determine the

required flow rate to meet a constant power load. A numerical

approach is used to address the question of a seasonally varying power

demand.

Constant Power Demand

The present section investigates the effect of a small time

dependent flow rate perturbation on the power output of a forced

recovery system. The perturbation method is analogous to that dis-

cussed in Chapter IV. The analysis is based on the first-order heat

recovery model. Therefore, we consider a uniform and uni-

directional flow connecting the injection and production ports of the
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system. Referring to Figure 2, a flow rate of the form q(t)2

is required.

The mathematical problem can be stated, corresponding to

equations (3.9) through (3. 12) as

a T - 8 T = 0, y > 0 (5. 1)
a t yyr

2k 8 T = q(t)8T, y 0 (5. 2)ry f

T(x, y, t)l < 0
= f(x) (5.3)

T(0,O,t)l = T (5.4)t>0 i

Again, the zero fracture width approximation has been used in the heat

transfer boundry condition (5. 2).

The perturbation method used in the present analysis assumes

that the flow rate q(t) can be represented by a constant flow rate

perturbed by a small temporal flow variation, or

where

q(t) q0 vE(t) (5.5)

<< 1, t >0 (5. 6)
q0

and where V is the perturbation parameter (see Chapter IV).
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We look for a solution of the rock temperature field of the form

T(x, y, t) = T1(x, y, t) + f(x) (5. 7)

where f(x) is the initial formation temperature and where T1 is

represented by the perturbation series

(2)
T 1(x, y, t) T0)(x, y, t) + VT(x, y, t) + V2T

1
(x, y, t)

+...

Defining the operators H and V(t) as

H = o-fq0D - 2k 8ry
V(t) = E (t)af x

heat transfer boundary condition (5. 2) can be written as

(5. 8)

[H+vV(t)]T 1(x, y, t)
I yO = ofq(t)f(x) (5. 9)

Inserting expression (5. 8) into equation (5. 9) and equating equal

powers of V, a set of equations analogous to equations (4. 10),

(4. 11), and (4. 12) is obtained. As in Chapter IV, we simplify the

analysis by truncating the series (5. 8) after the first two terms.

Thus, the problem is reduced to solving the following initial and

boundary value problem.



and

1 (0)
a T°=0, y>Oa t 1 yy 1r

HT° = -crfq0f(x), y 0

T°(x,y,t)It<0 = 0

>0 = T. - f(0)

aT'-a T'=0, y>Oa t 1 yy 1r

HT' + V(t)T° = fE (t)f'(x), y 0

T(x,y,t)It<o = 0

T'(0,0,t)I >
= 0
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(5. 10)

(5. 11)

The solution of equations (5. 10) for the unperturbed solution T°

has been obtained previously. Using the unperturbed solution, equa-

tions (5. 11) are solved for the first-order perturbation solution T'
using integral transform techniques.

The flow rate perturbation E (t) is represented by a polynomial

in t, or

N

e(t) = (l)natn (5. 12)

n0



where the a are given numerical coefficients. The reason for
n

including the factor (1)n will become apparent as the analysis

develops.

The diffusion equation in (5. 11) is Laplace transformed with
A(i)

respect to time. The resulting solution for T that remains finite

as yOC is

A r-'T1 (x, y, s) = A(x, s)exp(- / y) (5. 13)'fr

Using the relation (Abramowitz and Stegun, 1964)

A
F(s)L[( l)ntnF(t)J

n
ds

the heat transfer boundary condition in (5. 11) can be shown, following

the Laplace transformation in time, to be

N N anfl
oa a

nA(0)
HT1 + f x n T1 (x, y, s) f(x) (-1) n+l (5. 14)

Sn0 nO

y 0

Inserting expression (5. 13) into equation (5. 14), we obtain a first
I'

order differential equation for A(x, s).

A A
8 A(x, s) + a / A(x, s) = -G(x, s) (5. 15)

x 0 /a
/ r



where

E:Ij

2kra0
fq0

and where

N N
A 1 nA(0) f'
G(x, s) a a D T1 (x, y, s)l +

(x) (-l)a n!q0 xns yO q0 n n+l
Sn0 n0

A
The general solution for A(x, s) that satisfies the homogene-

ous boundary condition at x = 0 is

x
(x-x(x, s) = S

exp{a0 TI }(x', s)dx' (5. 16)
a r

We now make the simplification that the flow perturbation (t)

can be represented by a second order polynomial, i. e. , N = 2.

Furthermore, the initial formation temperature f(x) is assumed to

have the form

f(x) = c1 + c2x

A(0
where c1 and c2 are constants. Using the solution for T1

given by equation (3. 25) (in the limit of zero fracture width, where

= 0) in the evaluation of expression (5. 16), followed by an inverse

transformation, and omitting considerable algebra, we obtain



where

whe re
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1AT1(x, 0, t) = L [A(x, s)]
S

2ra at at
= (c -T ()+g1()+ : g2] (5.17)

1 i q0 0 q0

2at at
+

L

h0()+ h ()+ 2
h2(

2 q0 q0 1 q0

g0() = !J exp(-2)

g1() = Z ierfc() + 2erfc()

g2() = 12 i3erfc() + 62i2erfc() 3ierfc()

1 1h0() + ierfc() + erfc()

h1() = i3erfc() - 4i2erfc() ierfc() +

h2() = i5erfc() + 32j4erfc() + 10i3erfc() + i2erfc()

3

a0 t

2Ft

The repeated integral of the error function, inlerfc(), is

given by (Abramowitz and Stegun, 1964)



cb
l

(t)dti erfc() = i erfc

and satisfies the recurrence relation

where

fl-1 1 n-Z
)= - i erfc() + i erfc()

n 2n

2i1erfc() = exp(-2)

.0i. erfc() erfc()

Recalling from Chapter IV that for a harmonic spatial flow of

the form

q(z) = q1 + q2cos(c0z)

we obtained a fluid temperature perturbation (in Laplace transform

space) of the form

A(i q2
T '(x, 0, z, s) = cos( z)R(x, , s) (4. 22)

1 q1 0 0

where R is given by equation (4. 21). Taking the limit of the above

expression as 0 we obtain an expression for the temperature

perturbation due to a small constant flow change, given by



where

A(1)
urn T (x,O,z,$) (c -T

1 1
g(x, s) + c2x h(x, s)

aoj_ c

s) = r exp(-a0j''x)

A 1h(x,$) =exp(-a0 /- x)Jr
1 {1-exp(-a0 f'1x)}a0s/x r'Jr

It is easily shown that the inverse Laplace transforms of and

are precisely g0 and h0 given in equation (5. 17). This

expected result serves as a partial check on expression (5. 17).

As an example of the effect of a small flow perturbation on a

forced recovery system, we consider the case of an initial uniform

formation temperature of 150°C. Water is injected at a constant

temperature of 30°C and recovered at a distance of 1. 5 km from the

injection port. The power output is computed assuming that the

enthalpy is useable down to 40°C with an overall efficiency of 80%.

The power output history is varied in the model by adjusting the

perturbation coefficients a0, a1 and a2. Figure 13 shows the

thermal power history for a 10 year system lifetime with and without
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Figure 13. Variation of flow rate to meet constant power demand
based on a perturbation method.



a flow variation. The unperturbed system corresponds to a constant

flow rate of 0.05 kg/(m. sec). By a trial and error procedure, it was

found that a flow perturbation of the form

-3 -4 -42
E(t) = -4.8 x 10 - 2.0 x 10 t + 2.0 x 10 t kg/(m.sec)

was sufficient to maintain a relatively constant effective power output

over the 10 year system lifetime. In the above expression for the

flow perturbation, the time t is given in years.

Seasonally Varying Power Demand

The validity of the perturbation theory will break down for the

case of a varying power demand with large peak loads. A numerical

ITmarchingit approach is developed to address the question of the

ability of a forced recovery system to meet a seasonally varying

power demand. Equation (5. 13) can be rewritten as

exP(J y)

T1(x,y,$) {s21(x,y,$)0} 2
r (5. 18)

S

A
Inverse Laplace transforming T1(x, y, s), one obtains

T1(x,y,t) 2a2T (x, dT
0

T 1
y, T)I y0(tT)i2erfc a (t-T)r

(5. 19)



where the convolution theorem for the product of two Laplace trans-

forms has been used (Abramowitz and Ste gun, 1964). Thus, the heat

flow at a given time and position within the conductor can be expressed

in terms of the temperature history of the fluid.

28yT1(xyt)y0 = - dT (5.20)
r y0

Using the above expression, the heat transfer boundary condition

(5. 2) can be written as

4k
(x, y, T) I yO dT + fq(t){a T 1(x, y, t)

I

+f(x)} 0ar yO (5.21)N'r 0Tl

Equation (5. 21) is Laplace transformed with respect to x to obtain

4kr pt
8 T (r,y,T)IjalT

0
T 1

y0JTdT
(5. 22)

c
c +-T} =0+ crfq(t){rT1(r, y,t)I0 +

1 r i

where r is the transform variable corresponding to x. We have

again assumed an initial formation temperature of the form

f(x) c1 + c2x, where c1 and c2 are constants. The above

expression is recast in a finite difference approximation given by



4k-n-i {. (r)-.(r)+ (r)}
4nAtjt tr

a (t)2N' r jO

whe re

and

Solving for

where

and

C

+ fq(nt){rT (r)+c1+ -T} o, n = 1, z,

A A
T (r) T (r, y, ntt)

1 yO

T1(r) = 0

T0(r) = 0

we obtain

A(r)A n
T (r) -n B(r)n

n-2
-

A (r) / {T. 1(r)-2T.(r)+T 1(r)}
n 3-

j=0

(5. 23)

(5. 24)

A A
(T (r)-2T (r))

+
n-2 n-I 1q(nt)

(c +-T.)it 4k 1 rr



oq(nt)5 (r)z+r I__y__ £

n tt 'J t 4k r

The marching scheme described above can easily be generalized

to allow for a time varying injection temperature. The temperature

of the fluid within the conductor at time nt is given by

lA
Tf(x ntt) Lr {T(r)] + f(x)

where the indicated Laplace inverse transform is done numerically

by a procedure described in Appendix A.

The thermal power output of the heat recovery system is

P(x, nat) = flcTfq(nt){Tf(x, nt)_Td}

where Ti is the overall heating system efficiency and Td is the

disposal temperature of the water. Assuming that the power demand

is a prescribed function of time, the required flow rate at time

(n+1)At can be estimated in a recursive manner from the power

demand at time (n+l)tt and the production temperature at time

nLt. In schematic form, the recursive marching scheme is given by

n+l I
Input P I

P n+lflci(T -T )
I

n+1 fn d I

n = n+l



The numerical stability of the recursive marching scheme will

be difficult to determine and is beyond the scope of the present work.

However, results of the method compare favorably with the perturba-

tion method discussed in the previous section and this observation is

taken as an indicator of the stability of the method.

Figure 14 shows an example of a seasonally varying large

amplitude flow variation based on the recursive marching scheme

discussed above. As in the example given for the perturbation

method, the initial rock formation temperature is 150° C and the injec-

tion temperature is 30°C. The thermal water is recovered at a dis-

tance of 1. 5 km from the injection port. The power output is corn-

puted assuming that the enthalpy is useable down to 40°C with an

overall efficiency of 80%.

It is seen from this example that the production temperature for

a seasonally varying power demand is not degraded a significant

amount over the production temperature for a constant power demand

having the same time-averaged mean value (dotted line).
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VI. THERMOELASTIC EFFECTS

The fluid conductance of narrow open spaces such as fractures

or other type cracks is very sensitive to changes in their width.

Commercial expibitation of geoheat in significant amounts reduces the

temperature of large volumes of rock resulting in a substantial

volume strain due to thermal contraction. The resulting displacement

of the fracture walls due to the volume strain of the adjacent rock will

influence the subsurface flow pattern of the thermal fluid and may be

of great importance for the time development of a forced recovery

system.

The interaction between the thermal and hydrological phenomena

in geothermal systems is quite complex. Regional tectonic and litho-

static (overburden) stresses in the rock mass will play a significant

role in the behavior of the flow system. The problem is further com-

plicated if the flow system is composed of an interconnected net of

fractures. Since the states of flow connectivity and rock stress are

likely to be uncertain and difficult to measure, the problem is not

amenable to a meaningful theoretical analysis unless very complete

observational data are available.

In the present chapter the emphasis is of a general and qualita-

tive nature. The situation is simplified by considering a single flat

fracture in the (x, z) plane embedded in a homogeneous isotropic
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entire space with Lame's constants X and p., Poisson's ratio

v = X/(ZX+Zp.) and coefficient of linear thermal expansion aT.

Starting with an initially unstressed state, let the temperature field

in the rock be changed by an amount T(P), where P = (x, y, z)

is a general field point. The temperature change is assumed to be

moderate so that no nonlinear or inelastic effects are induced and

that uncoupled thermoelastic theory can be applied.

The temperature decrease results in a contraction of the cooled

region which is described by the displacement vector field tie. In a

homogeneous linear elastic (Hookean) solid, this vector is governed

by the differential equation (Parkus, 1968)

1 l+vZa ()vT (6. 1)
l_Zv T 1_v

Goodier (1937) has shown that the computation of the thermal

strain due to an arbitrarily prescribed temperature distribution in an

entire space reduces to the determination of the Newtonian potential

for a mass distribution whose density coincides with the given tem-

perature field. That is,

-.
u = -Vq'

where the thermoelastic potential tp is given by

(6. 2)
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a 1+v ( ET(Qt)dVQ
(P,t) = R(P,Q) (6.3)

V

and satisfies the Poisson equation

2 l+vV p + a ()T = 0 (6.4)Ti-v

The difference kernel in expression (6.3) is given by

2R(P,Q) = {(x-x') +(yyI)2+(zzt)2}/2

where P = (x,y,z) is a general field point and Q = (xt,yt,zI) is a

general source point.

For domains other than the entire space, Goodier's approach

merely supplies a particular solution of the thermoelastic equations

given by equation (6. 1) and still necessitates the solution of an

ordinary boundary value problem in the theory of elasticity.

Mindlin and Cheng (1950) have extended Goodier's method to the

problem of the half-space V1 in y >0 with a stress-free

boundary at y = 0. For a temperature change distribution in the

region V1, the displacement is given by

-pu = -Vp1 - V2p2 (6. 5)

where



and
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= (34v)v + zvya - 4(1-v)9v2y (6. 6)

a 1+v
( T(Qt)dVQ

( (P,t) =
1 41T Vj R(P,Q)Vi

aT 1+v T(Qt)dVQ
(Pt) = R(P,Q)

(6. 7)

V is the image volume of V1 in the plane y 0.

In the present case, we are mainly interested in the displace-

ment of the fracture wall in the direction normal to the fracture plane.

It is easily shown that the above expression, for this case, yields

whe r e

A -el 4(1-v)8w(S,t) YUIyo y 1 y0

aT(l+v) ç ytT(Q,t)dVQ

31, R(S,Q)3

R(S,Q) R(P,Q)I0

(6. 8)

and S (x, z) is a general point on the fracture plane. Bodvars son

(1975) has also obtained this result using a slightly different approach.

We will limit the present discussion to the plane thermal strain

case in which the temperature field is independent of the z coordi-

nate. Thus, the thermoeiastic potential ço1, given by equation (6.7),



reduces to

where

and

aT i+v1(,y,t) = -j-(j--) ET(x',y',t) in (r')dA' (6.9)

r' = {(x-xt)Z+(y-yt)Z}' /2

dAT dx'dy'

The above logrithrnic potential differs from expression (6. 3) by an

infinite (ignorable) constant. The normal displacement of the fracture

wall for plane thermal strain and with a stress free boundary is thus

given by

ZaT(l+v) yT(x',y',t) dx'dy' (6.10)w(x,t) =-
(x-x')2+y'2

Since w represents the displacement of one fracture wall, the

total change in fracture width is 2Ew.

We now take advantage of the convolution nature of the above

expression to recast the problem as a single integral in Fourier

transform space. To this end, we require that the temperature

change T is absolutely integrable on the interval -°° < x < ° and

is piecewise smooth on every finite subinterval. The Laplace trans-

form of w (with respect to t) followed by the exponential
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Fourier transform (with respect to x) can therefore be written as

00

s) = 2aT(l+V)S e y', s)dy' (6. 11)

where the "a" denotes the Laplace transform followed by the

Fourier transform.

In the present analysis for fracture flow, we assume that water

of constant temperature T. is injected into the fluid conductor at a

line source located at x = 0. The flow is uniform, stationary and

parallel to the x axis with the form

qx, x>O
-4q-

A-qx, x<O

The rock formation is assumed to have an initial uniform temperature

T(x, y, 0) = c1. With these requirements, the Laplace transform (with

respect to t) of the rock temperature field in y > 0 is given by

(see Chapter III)

(T.-cA iiT(x,y,$) = exp[-(ax+y)J + (6. 12)
5 r

where the dimensionless constant a is given by

2kra
°-fq



The zero fracture width approximation has been made in the above

expression. This approximation has been previously shown to have

little effect on the rock temperature field and the error incurred

damps out rapidly with time. The change in temperature within the

rock due to cooling is given by

A (T.-c
T(x,y,$) 1 1 exP[j'(axI+)] (6. 13)

s ar

and, upon applying the Fourier transform, one obtains

a /
4 JT(T.-c) Iaii r exp(- /; y) (6. 14)ET((,y,$)

k/ 2 s 2(a +) r
ar

Therefore, the evaluation of the integral (6. 11) is elementary, and

(T_ci) i;-' 1Lw(, s) 2[aTa S Ja (w +a )(J+/)2 2s
ar '4 r

(6. 15)

The inverse Fourier transform of the above equation is given by



(T. -c
A 2 1-1' I. I

tw(x, s) /
a..fa(1+v)'Jr

(6. 16)
,., 00

exp(-ix)d
-00 (+a )(2 2 S kI+J:')

ar r

The integral in the above equation can be evaluated most easily by a

contour integration in the complex ,-plane. The integrand has simple

poles at i/11. Thus, upon calculating the residues associated

with these poles, the integration is immediate. Figure 15 shows the

appropriate contour r in the upper half-plane that yields the solu-

tion for the half-line x < 0. A similar contour in the lower half-

plane generates the solution for x > 0. The resulting solution

defined on 00 < x < 00 is given by

A ZT(l+ Ti c1)
exP(-aJ lxi) (6. 17)w(x,$)

!_-_l
5 /(1+a)Ir

The evaluation of the inverse Laplace transform of Lw is straight

forward, and the final solution for the change in fracture half-width

is given by

fl-v r -x lxl
)]iw(x,t) ZaT(la)(Ticl) 2 exp( )-alxlerfc(4atr '4 r

(6. 18)
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Figure 15. Contour in the complex -p1ane used in evaluation of the
thern-ioelastic fracture wall response due to cooling of
the rock mass.

An example of the change in fracture half-width Aw as a

function of time and distance from the injection port is given in Figure

16. The example assumes that water at a temperature of 30°C is

injected into the conductor at a constant flow rate q = 0.05 kg/(m.sec).

The initial formation temperature is 150°C. Figure 16 shows only the

x > 0 part of the conductor. Since the flow is symmetric about x 0,

the change in fracture half-width for x < 0 is just a reflection about

the plane x 0.
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Figure 16. Fracture wall thermoelastic response assuming zero-stress boundary condition.
Spatial distribution of the change in half-width w as a function of time.
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Assuming laminar flow within the conductor, the mass flow q

per unit length of conductor is given by (Lamb, 1932)

w
q lZVf dx

where w is the total fracture width, Vf is the kinematic

viscosity of the fluid, and dp/dx is the pressure gradient in the

direction of flow. Therefore, the fluid conductivity per unit length

of the fracture is

3
w

12V

The third power of w indicates the large sensitivity of C to

changes in the fracture width. Assuming that the kinematic viscosity

of the fluid is constant and that the initial fracture width is 1 milli-

meter, the above simple examples indicate that over a 10 to 15 year

system lifetime, the fluid conductance of the conductor can increase

by a factor of 10- 10 due to just thermal effects.

The Reynoldts number for fracture flow is given by

Re= g
ovff

Since the fracture walls are no doubt quite rough, the onset of
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turbulent flow within the fracture spaces will likely occur for

q $600 PfVf. Taking the kinematic viscosity of water to be

0.3 x i6 m2/sec (at 100° C), the critical fracture flow rate for

turbulence is 0. 18 kg/(m. sec). Assuming that this flow rate is

exceeded within the system, the dependence of flow on fracture width

is given by the approximate relation (Lamb, 1932)

2q 0 w{d}

Figure 17 shows the dependence of the fracture half-width w

on the flow rate q under the same physical situation as in the

previous figure. Flow rates between 0.001 kg/(m. sec) and are

considered, the latter corresponding to an isothermal fracture wall

temperature of 30°C.

At this juncture it is of some interest to compare the solution

given by equation (6. 17) for a fracture wall free of stress with the

solution obtained based solely on the entire space thermoelastic

potential given by equation (6. 3). The latter makes no reference to

wall boundary conditions, an assumption that has been made in

numerical modeling of convection within a flat fracture because of its

computational ease (for example, Blair et al. , 1976).
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Figure 17. Fracture wall thermoelastic response assuming zero-
stress boundary condifton. Spatial distribution of the
change in half-width w as a function of fracture flow
rate q.

If the temperature distribution of the rock satisfies the Fourier

heat conduction equation, namely

& T - v2T = 0atr

then the particular solution of the thermoelas tic equations may be

obtained with a simple integration (as opposed to the multiple integra-

tion indicated in 6.3) (Goodjer, 1973; Boley an Weiner, 1960). To

accomplish this, we note that



or

V28tp
1+v+a ()aTOT 1-v t

+a ()a T} = 01+v
T 1-v r

A particular solution of this equation may therefore be obtained by

setting

1+v
8 ( + a ()a T = 0
t Ti-v r

Therefore, the general solution is given by

where
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t
1 +v

(P,t) = aTa(lV) T(P,T)dT + (P) (6. 19)

0

v2(P)
l+v

= _aT(lV)T(PO) (6.20)

For the case under consideration, the initial temperature configura-

tion of the rock mass is uniform and can be taken to be zero (Boley

and Weiner, 1960). Thus, a solution of expression (6. 20) is 4(P) 0.

Hence, the Laplace transform of the change in fracture half-width

based on the entire space thermoelastic potential can be written as

A 1+vl "
w*(S,$) -a a ()8 T(P,$)l (6.21)T r 1-v s y y,0

where the "*" indicates that the boundary conditions at the fracture
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wall have been ignored in the solution. Using the temperature model

(6. 12), the above equation can be written as

(T.-c ) __l+v i 1 S
Aw*(x,$) a a () exp(-a x) (6.22)T r 1_v 2 a

s Jr 'Ir

Comparing equation (6. 22) with equation (6. 17), we find that

2(1_v) w*(x,t) (6. 23)Lw(x, t) (1+a)

The difference between the two solutions iw and w* can

be explained as follows. As the rock cools and contracts, tensile and

shear stresses are set up at the plane in the entire space coincident

with the plane of the fracture. By applying a ttital?? compressive

and shear stress to the wall that have an opposite sense, the stresses

are removed from the boundary to obtain the stress-free condition.
4

For large flow rates, for which a << 1, the shear stress set up in

the plane is much smaller than the compressive stress. This is most

evident for the case of q = °°, in which the fracture wall is isother-

mal and therefore there are no shear stresses within the rock mass

due to thermal causes. Thus, for large flow rates, the applied

virtual stress required to eliminate the stress at the boundary is

primarily compressive and therefore iw > w* as indicated by

equation (6. 23). On the other hand, for very small flow rates, for
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which a >> 1, the shear stress in the plane of the fracture dominates

the tensile stress. This is a result of the fact that the temperature

field (6. 13) does not account for conductive transport in the direction

of flow and consequently, large temperature gradients are set up in

the x coordinate by this model for small flow rates. The applied

virtual stress required to eliminate stress at the boundary is for this

case primarily a shear stress which will tend to decrease the fracture

width relative to the entire space solution. Thus, as indicated by

equation (6. 23), tw < iw*.

By including conductive transport in the x coordinate in the

temperature model for the thermoelastic response, the relationship

between w and Lw*, analogous to equation (6. 23), is given by

2 1/2 (1v)tw(x,t) = 2(1+a ) l+a w*(x,t) (6.24)

where we have used the results obtained in Appendix B for the tem-

perature field in the rock mass. For this situation, E,w > w* for

all values of q > 0.

Fracture flow rates typical of a forced recovery system are on

the order of q >0.05 kg/(m. sec) or a < 0.02. Thus, to good

approximation,

w(x,t) =



where we have let V = 0.25. Therefore, there is roughly a 30%

error incurred in estimating the change in fracture width by ignoring

the fracture wall boundary for the first-order heat extraction model

relative to the entire space solution.

The change in fracture half-width under a non-uniform flow

condition within the conductor has been calculated using the Fourier-

Galerkin method discussed in Chapter IV. The analysis ignores the

stress boundary condition at the fracture wall and consequently, based

on the previous discussion, will underestimate the wall response to

cooling. The computation is based on equation (6. 21) and is contained

in program CHFLO given in Appendix E.

Figure 18 shows a particular example of the time development

of the change in fracture half-width under a severely non-uniform flow

condition. The stationary flow configuration corresponds to curve (a)

in Figure 8, where L = 10 in. The profiles are plotted at 100 m

intervals from the injection port (x = 0). The initial rock formation

temperature is 150° C and the injection temperature is 30°C. There-

fore, Figure 18 corresponds to the temperature history of the fluid

given in Figure 10. As in the case of Figures 9 and 10, the curves

on the right hand side correspond to the condition where conductive

transport in the z coordinate is ignored (uncoupled model"); i.e.

equation (6. 15) with q replaced with q(z).
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Figure 18. Fracture wall thermoelastic response under severely non-
uniform flow conditions. 4w is change in fracture half-
width.
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It is evident from Figure 18 that, by ignoring the transverse

conductive heat transport in the rock, the change in fracture width

under the condition of non-uniform flow is substantially altered. The

change in fracture width is enhanced in the vicinity of the flow chan-

nels over the case where transverse conduction is ignored, reflecting

the condition that conduction in two dimensions (y and z) is much

more efficient for heat extraction than conductive transport only in

the y coordinate. The differences between the two models pre-

sented here suggest that, when modeling convective processes of

sheet-like flow where non-uniform flow will be expected, some

attention must be given to the conductive transport model used for the

rock mass adjacent to the flow.

It should be noted here that the relative minima in w at

z 0 for x = 100 m and 200 m are computational artifacts gen-

erated by using too few terms in the Fourier expansion of T. In

this particular example, 10 terms were retained. The relative

minima disappear, with no observable change elsewhere, when 15

terms are kept in the expansion. The maxima in Ew at z 0 and

at x 300 m for t 5 years and 10 years are real, corres-

ponding to the maximum transverse temperature gradient (and con-

sequently the maximum transverse heat flow) which occurs at this

location within the conductor (see discussion in Chapter IV). Since

we can no longer use the plane strain symmetry under conditions of
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non-uniform flow, an estimate of the change in fracture width under a

zero wall stress boundary condition is considerably more difficult.

The analysis for the thermoelastic strain in this case is beyond the

scope of the present work and will not be considered.

The discussion given above of some thermoelastic effects on

fracture width has been limited to very simple flow configurations and

rather ideal wall stress boundary conditions. Furthermore, the effect

of overburden and tectonic stress on fracture width has been ignored.

We have assumed in this analysis that the rock mass is initially free

of stress. It is expected that, for the deeper regions of the heat

recovery system (for quasi-vertical structures) where the lithostatic

stress is greater, substantially more cooling of the rock mass will be

required for the negative thermal normal stress at the fracture wall

to exceed the normal lithostatic stress and therefore open the frac-

ture. This condition will tend to confine the convective regime to a

fixed region within the conductor. Furthermore, it is of interest to

note that for a recovery system in the upflow configuration, water

flowing from the deeper and hotter regions of the fluid conductor

transfers heat to the surrounding rock in the shallower and cooler

regions of the formation. Ihus, rather than cooling, the rock in this

region increases in temperature. This effect is shown in Figure 5A.

This may result in a decrease in permeability of the conductor due to

the thermoelastic expansion of the material within the conductor and
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the adjacent rock mass. In urder to maintain the required flow rate

in the system, increased puriping pressure may be necessary to

overcome this closure effect. Stearns and Friedman (1972) have

pointed out however that because fracture surfaces are rarely per-

fectly planar, a shear displacement of one wall relative to the other

can cause a "poorer" fit between adjacent sides of the fracture and

thus maintain or even increase the permeability by propping the open-

ings. This phenomenon may counteract the effect of closure due to

the thermoelastic response. In addition, if there is also fragmenta-

tion into chip-sized material along the fracture openings, these chips

may also prop the opening.
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VII. SYSTEM DESIGN AND ECONOMICS BASED ON THE
FIRST-ORDER MODEL

The economic feasibility of a forced geoheat recovery system is

determined by the requirement that total system revenues balance

capital and operational costs over a given system lifetime. The pre-

sent chapter considers fundamental system design and cost criteria to

estimate the minimum fluid-rock contact area required for an eco-

nomically viable forced recovery system under current and projected

economic conditions and various geoternperature environments. The

analysis is based on the first-order heat recovery model defined in

Chapter III.

Des in Criteria and Load Characteristics

In the remainder of the present discussion, emphasis will be on

the use of quasi-vertical conductors such as fault zones and basaltic

dikes. Two basic flow options within the conductors, namely the

upflow and downflow configurations, can be considered. Assuming a

linear increase of geotemperature with depth, which is the usual

situation, the downflow system is more efficient with respect to pro-

duction temperature than the upflow system. This is easily shown by

considering the two initial rock formation temperature distributions
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x
f (x)c +c2(±x)
u 1

fd(x) c1 c2(x-

where x is the distance from the injection port to the production

port within the conductor. In the above expressions c2 > 0 and

o < x < x. Both cases have the same initial formation enthalpy in

the domain (0 < x < x ) X (0 < y < 00), f (x) is associated with an
p u

upflow system and fd(x) is associated with a downflow system.

Using expression (3. 27) for the production temperature model,

it is easily shown that

ax
T (x ,t) T (x ,t) = c x erf(

d i up Zp 2jat

4c ITT 22ax
+ /[1exp(4t)J>OaJ r

where Td(x, t) and T(x, t) are the production temperatures

associated with the downflow and upflow systems respectively. Thus,

the downflow system will have a higher production temperature than

the upflow system, given the same initial average formation tempera-

ture. In the case of the downflow system, however, fluid is injected

at the top, and the flow pattern within the conductor will be more

likely to develop a "short-circuit" channelling between injection and
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production ports due to convective and thermoelastic effects. The

upflow system, where the cold fluid enterg from below, will likely be

more stable with regard to both short-circuiting and convective mix-

ing. Therefore, it is expected that the upflow system will exhibit a

greater flow uniformity than the downflow system. The present

economic model assumes that the system is in the upflow configura-

tion. Figure 19 shows a suggested multihole upflow system con-

figuration. In this figure. A BL is the required contact area and

S = ZB is the borehole spacing.

VIEW ALONG THE CONDUCTOR

CTURE ZONE

VIEW ACROSS THE CONDUCTOR

i-.- B-I

REQUIRED CONTACT AREA A=BL

Figure 19. Multihole forced recovery system ir the upflow
c onfi gu ration.

A consumer heating system may have highly varying power

demand characteristics. For example, domestic heating will typi-

cally have a seasonal demand. Such load variations must be
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considered in the economic evaluation of a heating system. The

flexibility of a forced recovery system to meet a constant or varying

power demand has been discussed in Chapter V.

At this juncture, we simplify the picture by basing the economic

model on the time-averaged load characteristics of the system rather

than on peak load,

Cost Factors

The total construction cost per production unit, which is defined

here as a single injection/production borehole pair, consists of two

components: (1) the cost of boreholes and (2) the cost of surface

equipment such as pumps, pipelines and so on. For the present pur-

pose, we can assume that the cost of drilling per unit depth is a

linearly increasing function of depth. The surface equipment consti-

tutes a fixed cost per production unit. Thus, we will assume that the

total construction cost per production unit has the form

C(D., D ) = c + C (D.+D ) + c (D+D2)
1 p 0 lip 2i p

where D. and D are the injection and production depths respec-

tive ly.

It is well known that borehole drilling costs vary greatly

depending on depth, region, and geology. Dagum and Heiss (1968)
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give a very comprehensive survey of drilling costs of oil and gas wells

in various regions of the United States. The data are given as cost

per unit depth as a function of depth, diameter and rock drillability or

hardness. Since the Cenozoic volcanics of the Pacific Northwest are

quite hard compared with most oil or gas field formations, cost data

obtained for drilling to depths of the order of 3 km in formations

which are referred to as being very hard are selected. Assuming

routine drilling operation and allowing for cost increases since 1968

including additional costs of greater depths and casing, Bodvarsson

and Reistad (1975) have arrived at the following estimates for the cost

parameters for a single production unit, where the borehole diam-

eters are from 250 to 300 millimeters.

$400, 000

= $60,000/km

c2 = $50, 000/km2

An independent investigation of drilling costs based on existing

oil and gas well data has been done by Milora and Tester (1976). The

cost projection model assumes that the functional relationship of cost

with depth will be the same for geothermal wells as it is for oil and

gas wells. Again, the cost data are inflated to 1976 dollars to provide

a consistent basis for comparison. Figure 20 shows the drilling cost
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Figure 20. Borehole drilling costs based or existing oil and gas well
data. Shaded region (b) from Milora. and Tester (1976);
solid line (a) from Bodvarsson and Reistad (1975).
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per unit depth as a function of depth for the results of Bodvarsson and

Reistad (solid curve) and Milora and Tester (shaded region). The

data are for a single hole. The economic model presented here

assumes drilling costs conform to the estimate by Bodvars son and

Rel stad.

Interest on capital is assumed to amount to 8% and is corn-

pounded annually. Moreover, the total annual operational costs and

expenditures exclusive of electrical energy for pumping are estimated

at 5% of the invested capital. Total pumping pressure is assumed to

vary from 50 bar for systems with injection at 2 km to 100 bar for

injection at 4 km. The resulting pumping energy is 2 to 4 kWhrhnetric

ton of water. At an energy cost of 3/kWhr, the total pumping energy

cost will vary as 3 D. /metric ton, where D. is the injection

depth in kilometers.

In an ideal forced recovery system, no water will be lost from

the system and the injected mass flow of fluid can be met simply by

reinjection of the produced fluid. In a non-ideal system, where fluid

loss due to leakage may occur, additional water for reinjection to

replace that lost must be obtained.

assumed to be lc/metric ton.

The cost of the reinjected fluid is
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Thermal Water Value and Network Distribution Costs

An estimate of distribution costs fo a district heating system

in the Pacific Northwest, based on a yearly average load density of

the assumed market of 6 MW/km2, has been obtained by Bodvars son

and Reistad (1975). The cost is estimated at $1. 7 /GJ (one GJ = 10 J)

and is based on an assumed 100° C effective temperature drop. In the

present analysis, a conservative value of $2/GJ has been used.

It is interesting to note that the production and distribution costs

in the Reykjavik Municiple District Heating System are now approxi-

mately $1. 50/GJ (Zoega, 1974). The low production costs of the

Reykjavik system reflect the extremely favorable source conditions in

the low-temperature areas of southwestern Iceland.

Thermal water value is estimated on the basis of the value of

effective heat in the domestic, industrial and agricultural heating

market using fuel oil with an equivalent price of $0. 39 /gal of oil and

assuming an overall system (combustion-distribution) efficiency of

70%. This leads to a price of $4/GJ effective heat.

Evaluation of Required Contact Area

The system production temperature is assumed to have the

analytic form T(D., D, g, t, q), where D and D are injection

and production depths respectively, g is regional geothermal



122

gradient, t is time after flow start-up, and q is the flow rate.

The production temperature is constrained to have a minimum value

T over the given system lifetime SL and the value of T at
m m

t 0. Assuming an upflow system, this constraint fixes the produc-

tion borehole depth and flow rate to specific values, referred to as

D* and q*, for a given injection depth D and gradient g.

That is,

and

T -Tm S (7.1)
p g

T(D., D*, g. SL, q*) - T = 0 (7.2)
i p m

where T is the average ambient surface temperature. The flow

rate q* is calculated numerically using an interative technique

applied to the functional (7. 2). With this constraint, the production

temperature is reduced to dependence only on injection borehole

depth, time and gradient. The consequences of relaxing the con-

straint (7. 1) are discussed in a later section. Total revenues of the

system are based on the average of the production temperature over

the system lifetime. Thus, the fluid-rock contact area required to

amortize the capital investment can be considered as a function of the

two "physical system" variables, D. and g, and the set of

"economic model" variables discussed earlier.



The minimum required fluid-rock contact area, for a given

system lifetime, economic condition, and geologic environment, is

determined by the requirement that

and

..) = 0
I

2
(D.,g,a1,a2,...) >0

8 D.
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where A is the required fluid rock contact area and the a's are

the various economic variables. For the present purpose, we will

refer to the system configuration that meets the above requirements

as the "optimal" system.

A computer program, ECON, has been developed to evaluate the

minimum required fluid-rock contact area based on the above pro-

cedure, and is presented in Appendix E.

An example of the dependence of the required contact area on

injection depth and geothermal gradient for a forced recovery system

based on the production temperature model given by expression (3. 27)

is presented in Figure 21. The minimum production temperature is

constrained to 100° C and the ambient surface temperature is assumed

to be 10°C. The injection temperature is 30°C and the thermal

power is calculated relative to a 40°C disposal temperature. The sys-

tern is assumed to have an overall heating system efficiency of 80%--



124

that is, the water enthalpy down to a temperature of 40°C can be

utilized withan overall efficiency of 80%. It is noted that the utiliza-

tion efficiency for district heating in the Namafjall area of Iceland is

about 80% (Ragnars et al., 1970). Furthermore, the fluid is assumed

to remain in the liquid phase. These parameter values will be used in

later discussions as well. The results displayed in Figure 21 assume

a system lifetime of 10 years.

o 9 = 30°C/km

DI

CJE 1
40°C/km

CsJt<I
w I

50°C/km

4 60°C/km

I dl 70°C/km
I0 80°C/km' .

4 I 90°C/km\..I
z .

I

I
I00°C/km\

d1

0Idl
0.0 1.0 2.0 3.0 4.0 5.0 &0 70 8.0 9.0 10.0

D. (km.)

Figure 21. Dependence of required fluid-rock contact area per pro-
duction unit on injection borehole depth and geothermal
gradient. Based on a 10 year system lifetime and direct-
contact heating application.

As expected, there exist definite optimum injection borehole

depths that minimize the required fluid-rock contact area. For
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injection depths greater than the optimum, increased drilling and

pumping costs increase the required contact area. Furthermore, as

the geothermal gradient increases, the required contact area

decreases. This simply reflects the fact that, for higher geothermal

gradients, shallower holes are required to meet the constraint of a

minimum production temperature. Thus, a smaller fluid rock contact

area is needed to amortize the initial capital investment, which is

dominated by the drilling costs of the system. A final observation to

be made from Figure 21 concerns the nature of the minima. The size

of the initial capital investment may serve as a deterrent for the

development of geothermal energy by private industry because of the

inherent risk associated with exploitation of this resource. The

minima of the required contact area curves are quite flat, suggesting

that the injection depth may be decreased somewhat from the economic

optimum without increasing the required fluid-rock contact area

significantly. Since drilling costs are a rapidly increasing function of

depth, the capital costs of the system may be reduced from the costs

associated with the absolute minima without increasing production

costs substantially. On the other hand, in cases where relatively high

temperatures are required and adequate fluid conductance is available,

the flat minima indicate deep drilling may be feasible. This observa-

tion has also been made by Bodvars son and Reistad (1975).
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Tables 1 and 2 present data that correspond to minimum

required fluid-rock contact areas for systems with 10 and 20 year

lifetimes respectively, based on the prodLction temperature model

(3. 27). Price levels are expected to increase in the future due to

depletion of high grade energy resources. We have therefore investi-

gated the result of increasing the effective enei gy value on the mini:-

mum required contact area. Effective energy values of $4/GJ

$6/GJ, $8/GJ, and $l0/GJ are considered in the analysis. It is

expected that, along with effective energy costs, distribution costs

will also increase. This will be primarily the result of inflationary

trends associated with increasing energy costs. Therefore, we have

included in the computations an inflated distribution cost scale of

$2/GJ, $2.33/GJ, $2. 67/GJ, and $3/GJ corresponding respectively

to the effective energy values listed above.

Under current economic conditions, corresponding roughly to the

$4/GJ effective energy value figure, data in Tables 1 and 2 indicate

that the minimum contact areas for regional geotemperature gradients

of 50°C /km or more are of the order of 1 km2 or less, depending on

system lifetime. A gradient of 50°C/km has been observed in fairly

extensive regions of moderately high crustal heat flow and is there-

fore not an uncommon situation. A comparison of Tables 1 and 2

indicates that an economically viable 20 year system requires a

slightly greater fluid-rock contact area than for a 10 year system.
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Legend for Tables 1 rhrough 9

g geothermal gradient (°C/km)

D production well depth (km)

D. injection well depth (km)

A minimum required contact area (km2) per production
unit

B "strip width" (km)

Tav time averaged production temperature (°C)

q flow rate per unit length of conductor (kg/m. sec)

P time averaged minimum effective power (MW heat*)
per production unit

E time averaged minimum total energy (MW-years) per
production unit

F required minimum production well flow (kg/sec)

C total initial capital costs (drilling and surface
equipment) in M$ per production unit

* = MW(e) for the case of Table 4



Table 1. Optimal system parameters for a single production unit, based on a 10 year system
lifetime (direct-contact heating).

g D D. A B T q P E F C
p av

$4 /GJ

30 3.00 5.28 1. 83 0. 80 111.8 0.09 17. 2 172.4 71. 8 2.74
40 2.25 4.53 1.05 0.46 115. 1 0. 10 12. 1 120.5 47.9 2.09
50 1. 80 4.23 0.72 0. 29 119. 2 0. 13 10. 1 100. 9 38. 1 1. 82
60 1.50 3.93 0.53 0.22 122.0 0. 15 8.7 86.6 31. 5 1. 61
70 1.29 3.72 0.42 0. 17 124.5 0. 16 7.7 77.4 27.4 1.48
80 1. 13 3.56 0.34 0. 14 126. 8 0. 17 7. 1 71. 1 24.5 1. 38
90 1. 00 3.43 0. 29 0. 12 128. 9 0. 19 6. 7 66.6 22.4 1. 31

100 0. 90 3.33 0. 25 0. 10 130. 8 0. 20 6.3 63. 1 20. 8 1. 25

$6/GJ
30 3. 00 5. 88 0. 80 0. 28 114. 5 0. 13 8. 9 8.8. 6 35. 5 3. 11
40 2. 25 5. 13 0.49 0. 17 118. 3 0. 15 6. 6 66. 0 25. 1 2.41
50 1.80 4.68 0.34 0. 12 121.8 0. 17 5.5 54.6 20.0 2.05
60 1.50 4.38 0.26 0.09 124.8 0. 19 4. 8. 48.0 16.9 1. 83
70 1.29 4. 17 0.20 0.07 127.4 0.21 4.4 43.6 14.9 1.68
80 1. 13 3.89 0. 17 0.06 129.0 0. 21 3. 9 39. 1 13. 1 1.52
90 1.00 3.76 0. 14 0.05 131.2 0.23 3.7 36.9 12. 1 1.44

100 0.90 3.66 0. 12 0.05 133. 1 0.25 3.5 35.2 11.3 1.38

NJ



Table 1. Continued.

g D
p

D.
1

A B T
av q P E F C

$8/GJ

30 3.00 6. 13 0.52 0. 16 115.5 0. 14 6. 0 60 0 23.7 3.28

40 2.25 5.34 0.32 0. 10 119.4 0. 17 4.5 45. 2 17. 0 2.53

50 1. 80 4.74 0. 22 0. 08 122. 1 0. 18 3. 6 36.4 13. 3 2. 08

60 1.50 4.44 0.17 0.06 125.1 0.20 3.2 32.2 11.3 1.86

70 1. 29 4.23 0. 14 0. 05 127. 8 0.22 2. 9 29.4 10. 0 1.71

80 1. 13 4.07 0. 11 0.04 130.2 0.24 2.7 27.4 9. 1 1.60

90 1.00 3. 94 0. 10 0. 03 132.3 0.26 2. 6 26. 0 8.4 1.52

100 0. 90 3. 84 0. 08 0. 03 134. 2 0.28 2. 5 24. 9 7. 9 1. 46

$10 /G J

30 3.00 6.36 0.38 0. 11 116.4 0. 16 4.6 46.3 18. 1 3.43

40 2. 25 5.46 0. 23 0. 07 120. 0 0. 18 3.4 34.4 12. 8 2. 60

50 1.80 4.92 0. 17 0.05 123.0 0. 19 2. 8 28.3 10. 2 2. 17

60 1. 50 4.44 0. 13 0. 04 125. 1 0. 20 2. 4 23. 9 8.4 1. 85

70 1.29 4.22 0. 10 0.03 127. 8 0.22 2. 2 21. 9 7.4 1.71

80 1. 13 4. 06 0. 08 0. 03 130. 2 0. 24 2. 0 20. 5 6. 8 1. 60

90 1. 00 3. 94 0. 07 0. 02 132.3 0. 26 1. 9 19.4 6. 3 1. 52

100 0. 90 3. 84 0. 06 0. 02 134. 2 0. 28 1. 9 18. 6 5. 9 1.46

N)



Table 2. Optimal system parameters for a single production unit, base don a 10 year system
lifetime (direct-contact heating).

g D A B T q P E F C
p 1 av

$4 /GJ

30 3. 00 5.38 2.75 1. 16 112.2 0. 07 18. 8 377. 0 77.9 2.80
40 2.25 4. 63 1. 59 0. 67 115.7 0. 08 13. 2 264. 1 52. 1 2. 14
50 1.80 4.18 1.08 0.45 118.8 0.09 10.6 211.1 40.0 1.79
60 1.50 4.00 0.80 0.32 122.4 0.11 9.4 laE.4 34,1 1.64
70 1.29 3.79 0.63 0.25 125.0 0. 12 8.4 16a. 6 29.6 1. 50
80 1. 13 3.63 0.52 0.21 127.3 0. 13 7. 8 155.0 26.5 1.41
90 1.00 3.50 0.44 0. 17 129.4 0. 14 7,3 145. 1 24.2 1.33

100 0. 90 3.40 0.38 0. 15 131.3 0. 15 6. 9 137.5 22.5 1. 28

$6/GJ
30 3. 00 5.90 1. 21 0.42 114.6 0.09 9. 5 189. 6 38. 0 3. 13
40 2.25 5. 15 0.73 0.25 118.5 0. 11 7. 1 141.3 26.9 2.43
50 1.80 4.70 0.51 0.18 121.9 - 0.12 5.9 117.1 21.4 2.06
60 1.50 4.40 0.39 0. 13 124.9 0. 14 5. 1 iaz. 9 18. 1 1. 84
70 1.29 4.06 0.31 0. 11 126. 8 0. 14 4.5 90.0 15. 5 1.63
80 1. 13 3. 90 0. 25 0. 09 129. 1 0. 15 4. 2 83. 6 14. 0 1.53
90 1.00 3.78 0.22 0.08 131.3 0. 17 3.9 78.9 12. 9 1.45

100 0.90 3.68 0. 19 0.07 133.2 0. 18 3.8 75.3 12. 1 1.39

0



Table 2. Continued.

g D
p

D.
i

A B T
av q P E F C

$8 /GJ

30 3. 00 6.27 0.78 0.24 116. 1 0. 11 6.6 131. 9 25.9 3.37

40 2.25 5.30 0.48 0. 16 119. 2 0. 12 4. & 95. 2 18. 0 2. 51

50 1.80 4.85 0.33 0. 11 122.7 0. 13 4. 0 79 8 14.4 2. 14

60 1. 50 4. 55 0. 25 0. 08 125.7 0. 15 3. 5 70. 6 12. 3 1. 91

70 1.29 4. 18 0.20 0.07 127.5 0. 15 3. 1 61.7 10.5 1.68

80 1. 13 4.02 0. 17 0.06 129.9 0. 16 2.9 57. 5 9. 6 1. 58

90 1. 00 3.90 0. 14 0.05 132. 0 0. 18 2. 7 54. 5 8. 8 1. 50

100 0.90 3.80 0. 13 0.04 133. 9 0. 19 2. 6 52. 1 .8. 3 1. 44

$10 /G J

30 3.00 6.50 0.57 0. 16 117.0 0. 12 5. 1 101.5 19.7 3.53

40 2.25 5.49 0.35 0. 11 120. 1 0. 13 3.7 73.7 13.7 2. 62

50 1.80 4. 86 0.25 0. 08 122.7 0. 13 3. 0. 59.3 10.7 2. 14

60 1.50 4.56 0.19 0.06 125.8 0.15 2.6 52.6 9.2 1.91

70 1. 29 4. 34 0. 15 0. 05 128. 5 0. 16 2.4 48.. 2 8. 1 1. 76

80 1. 13 4. 18 0. 13 0.04 130.9 0. 18 2.3 45. 1 7.4 1.66

90 1.00 4.06 0. 11 0.04 133.0 0.20 2. 1 42.8 6.9 1. 58

100 0. 90 3. 82 0. 09 0. 03 135. 1 0. 20 2. 0 39. 3 6. 2 1.45

I-
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The minimum required borehole flow rates, however, are roughly the

same for the two system lifetimes.

The tabulated injection borehole depths in Tables 1 and 2 are

those that minimize the required fluid-rock contact area. It is empha-

sized that the required contact area is quite insensitive to injection

borehole depth in the vicinity of the "optimal" system configuration,

as indicated in Figure 21. It is therefore expected that, in practice,

the injection depths can be significantly shallower than those indicated

by the optimum depth without increasing production costs significantly.

Table 3 illustrates the consequences of constraining the injection bore-

hole depth to be 1 km deeper than the production borehole depth. The

data are calculated based on a 10 year system lifetime and a $4 /GJ

effective heat value. A comparison of Table 3 with Table 1 shows

that the required contact area for these cases is not significantly

elevated above the absolute minimum. Furthermore, there is a sub-

stantial reduction of initial capital cost reflecting the decreased

drilling costs for these systems.

At this juncture, it is of some interest to compare the required

fluid-rock contact areas for systems based on electrical power pro-

duction application with the above results for direct-contact heating

application. Since thermal energy is only partially convertible to

useful mechanical energy, enthalpy is not a convenient measure of the

mechanical work which can be derived from the heat content of a



Table 3. System parameters for a single production unit, based on a 10 year system lifetime with
a constrained suboptimal injection borehole depth (direct-contact heating).

g D D. A B T q P E F C
p av

$4/GJ
30 3.00 4.00 1.97 1.97 105.3 0.03 12. 1 120.7 55.2 2. 07
40 2.25 3.25 1. 17 1. 17 107. 0 0. 03 8. 1 81.4 36. 3 1. 51
50 1.80 2.80 0.81 0.81 108.8 0. 03 6.3 63.3 27.5 1. 23
60 1.50 2.50 0.61 0.61 110.4 0.04 5.3 53.3 22.6 1.07
70 1.29 2.29 0.49 0.49 112.0 0.04 4.7 47.3 19.6 0.96
80 1. 13 2. 13 0.41 0.41 113.5 0.04 4.2 42.3 17. 2 0.88
90 1. 00 2. 00 0.35 0.35 115. 0 0. 05 4. 0 39. 7 15. 8 0. 85

100 0.90 1.90 0.31 0.31 116.4 0.05 3.8 38. 1 14.9 0.79

(J
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substance at a given initial and end temperature. The exergy, or

specific availability, of thermal water is the maximum amount of

mechanical work which can be derived from the enthalpy by cooling it,

at a constant pressure, from some initial temperature to a final

temperature. For a production temperature in the range

100°C < T < 300° C, Bodvarsson and Eggers (1972) have shown that

the exergy e(T) of thermal water can be represented to good

approximation by a second order polynomial

e(T) = a0 + a1T + a2T2

where a0, a1, and a2 are constants that depend on the disposal

temperature. For electrical power production, we have calculated

system revenues on the basis of total exergy produced and have

assumed that the overall mechanical to electrical conversion effi-

ciency is 65%. Revenues are computed on the basis of the time

averaged exergy produced over the system lifetime.

Table 4 presents the data that correspond to minimum required

contact areas for power production. A 10 year system lifetime has

been assumed in the model. Injection temperature, disposal tern-

per ature, ambient surface temperature, and the constraint on mini-

mum production temperature are the same as those used for the heat-

ing situation in Tables 1 and 2. Current buss-bar power costs fall



Table 4. Optimal system parameters for a single production unit, based on a 10 year system
lifetime (electrical power production).

g D D. A B T q P E F C
p 1 av

3'j /kWhr

30 3. 00 * * * * * * * *

40 2.25 3.86 8.38 5.22 111.1 0.06 6.2 61.2 319.5 1.76
50 1.80 4. 16 3.90 1. 65 118.7 0. 12 4. 9 48.6 204. 1 1.79
60 1.50 4. 13 2.33 0. 89 123.2 0. 16 3.9 38 8 145.2 1.70
70 1. 29 4. 17 1. 59 0.55 127.4 0.21 3.4 34. 3 115.7 1. 68
80 1.13 4.18 1.17 0.38 130.9 0.26 3.1 31.4 97.3 1.66
90 1. 00 4. 18 0. 91 0. 29 133. 7 0. 30 2. 9 29. 2 84. 5 1. 63

100 0.90 4. 08 0. 73 0. 23 135. 6 0.32 2. 7 26.7 73. 6 1. 57

4ç /kWhr

30 3.00 4.88 9.45 5.04 109.8 0.07 6.4 63.8 339.6 2.51
40 2.25 5.13 3.63 1.26 118.3 0.15 4.4 44.3 187.5 2.41
50 1.80 5.01 2.00 0.62 123.5 0.20 3.4- 33.9 126.0 2.23
60 1. 50 4. 88 1.30 0. 39 127.5 0. 25 2. 8 28.4 95. 5 2. 08
70 1. 29 4. 78 0. 94 0. 27 130. 9 0. 29 2. 5 25. 1 77. 9 2. 00
80 1. 13 4.62 0.71 0. 20 133.3 0.32 2.2 22.4 65.3 1. 88
90 1.00 4.49 0. 57 0. 16 135.4 0.35 2. 0 20. 5 56.7 1.79

100 0. 90 4.52 0.47 0. 13 138. 0 0.40 2. 0 19. 9 51. 7 1. 79

*Required contact area greater than 10 km2.

Ui
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within the range of 3/kWhr to 4/kWhr. It is evident from this data

that the minimum required contact areas are elevated considerably

over the heating case, reflecting the inherent inefficiency of electrical

power production. This is a direct consequence of the low Carnot

efficiency associated with the relatively small temperature difference

between the thermal reservoir and the disposal temperature. It

should also be pointed out that the required minimum production well

flow rates are increased by a factor of three to four over the case for

heating application. The conductor must exhibit a significantly higher

permeability to meet these required flow rates. Figure Z2 displays

graphically selected data from Tables 1 and 4 for direct-contact

heating systems and electrical power production systems.

We now consider the effect on the economic model of relaxing

the constraint (7. 1) on the production well depth. Table 5 presents

data for a heat recovery system based on a 10 year system lifetime

with an effective energy value of $4/GJ. The data corespond to a

geothermal gradient of 50°C/km and production well depths greater

than or equal to D*. It is seen from this data that as D increases,
p p

the injection well depth that minimizes the required contact area

decreases. This simply reflects the fact that, by relaxing the con-

straints on both the production and injection borehole depths, the

economic model will search for the configuration that minimizes the

sum of the drilling costs for both boreholes in the production unit



137

I0I_ -IO

10 YEAR SYSTEM LIFETIME

- - PRODUCTION FLOW
CONTACT AREA

ELECTRICAL

POWER

5 .5 2
NE.5

5*

5% .5-
.5

.5
5'

.5.5

4
Ui

o
U.

4
5,' z

5,

'5 5'
'5,.

0
l00_

I-
z 0
0
C) __5_

5' DIRECT-CONTACT.5 _____________

0
a.

2
5.

5' '5
5, 2

2 2
z2

.5 2
.5

.5
.5 ___________________

.5 _____________________
.5 5' $

.5 _________________
.5

io- - 10

30 40 50 60 70 80 90 100

g (°C/km)

Figure 22. Minimum required fluid-rock contact area and production
flow rate for electrical power production and direct-
contact heating. Based on a 10 year system lifetime.
Buss-bar costs are given for the electzical power case
and effective heat costs are given for the direct-contact
heating case.
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while still meeting the constraint that the production temperature be

> Tm over the given system lifetime. The approach to this configu-

ration is seen in Table 5, where the "strip-width" B increases by

a factor of three. At this point, it is convenient to define a geometric

"aspect ratio" as the ratio B/L, where L is the distance between

the injection and production ports of the system. The aspect ratio for

the given example ranges between 0. 12 and 1. 6. An evaluation of a

realistic value for the aspect ratio is governed by the characteristics

of the convective processes within the fluid conductor and the bore-

hole location and spacing. Such an evaluation will require consider-

ably more field data on the permeability conditions of the conductor

and the regional stresses at the system site than is presently avail-

able. Furthermore, such an evaluation will require that the point

source/sink nature of the system ports be accounted for in the con-

vection model. The simple first-order heat extraction model used in

this work is not applicable to this problem. The estimation of

suitable or optimum aspect ratios is therefore beyond the scope of the

present analysis. We will take those values computed on the basis of

constraint (7. 1) as a conservative estimate of the minimum required

fluid-rock contact area. These values can be interpreted as a

"greatest" lower bound on the contact area.



Table 5. Optimal system parameters for a single production unit, based on a 10 year system
lifetime with unc onstrained production borehole depth (direct contact heating).

D D. A B T q P E F C
p t av

$4/GJ, g = 500C/km

1. 80

2. 00

2. 20

2.40

2. 60

4.23 0. 72 0.29 119.2 0. 13 10. 1 101.0 38. 1 1. 82

3.95 0.67 0.35 119. 8 0. 10 9.4 94. 0 35. 2 1.74

3.67 0.63 0.43 120.5 0.08 8.8 88.2 32.7 1.67

3.42 0. 60 0.59 121. 5 0. 05 8.4 84. 1 30. 8 1.62

3.20 0. 57 0. 95 122. 6 0. 03 8. 2 81. 6 29. 5 1. 60

'.0



Adverse Flow Effects

Flow Channelling
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The effect of non-uniform flow within the fluid conductor on heat

recovery efficiency is investigated on the basis of the theoretical

development of Chapter IV. The thermal power output (averaged over

the interval 0 < z < L, where 2L is the channel period) is cal-

culated as a function of time:

P(x, t) z, t)Td}dz

where the fluid temperature T(x, z, t) is computed on the basis of

the Fourier-Galerkin solution given by expressions (4. 31) and (4. 36)

and where Td is the disposal temperature. The integration mdi-

cated above is calculated numerically using an algorithm based on

Simpson's Rule.

As an example of the effect of non-uniform flow in a forced

recovery system, Figures 23 and 24 present the thermal power output

history of a system with a flow channel half-period L of 10 m and

50 m respectively. The top set of curves (set "a") in both figures

corresponds to an initial formation temperature of 150°C. The lower

set of curves (set "b") in both figures corresponds to an upflow sys-

tern where the regional geothermal gradient is 50°C/km. The
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Figure 23. System power output under non-uniform flow conditions.
Channel periodicity ZL = 20 m.
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computations for the latter case are based on the initial formation

temperature f(x) given by equation (3. 29). In all cases the produc-

tion port is 1 km from the injection port. The set of individual curves,

labeled (a), (b), (c), (d) and (e) correspond to the following situations:

(a) tuncoupledH model (equation 3. 27) using flow configuration

(c) in Figure 8

(b) Fourier-Galerkin solution ("coupled" model) using flow

configuration (b) in Figure 8

(c) Fourier-Galerkin solution ("coupled" model) using flow

configuration (a) in Figure 8

(d) "uncoupled" model (equation 3. 27) using flow configuration

(b) in Figure 8

(e) "uncoupled" model (equation 3. 27) using flow configuration

(a) in Figure 8.

It is evident from these specific examples that the heat extrac-

tion efficiency is not degraded a significant amount from the uniform

situation by a severely non-uniform flow within the conductor with

channel spacing on the order of tens of meters. This is a consequence

of the large thermal communication between channels for this magni-

tude of channel spacing (see Chapter IV). A substantially greater

degradation of power output will occur, however, for spacing on the

order of a hundred or so meters. The latter is of the same magnitude

as the expected borehole spacing for the system under consideration
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as indicated by Tables 1 and 2. With proper borehole placement, the

flow non-uniformity on this scale may possibly be reduced.

Fluid Losses

The minimum fluid-rock contact area required for an economi-

cally viable forced recovery system with fluid losses is calculated

according to the procedure discussed previously using expression

(4. 54) as the production temperature model.

Tables 6 and 7 present data based on a 10 year system lifetime

assuming a 25% and 50% fluid loss from the system respectively.

Tables 8 and 9 are based on a 20 year system lifetime with 25% and

50% fluid loss respectively. The economic and physical variables

used in the calculation of these data are the same as those used in the

calculations of Tables 1 and 2.

The reduction in heat recovery efficiency due to fluid loss is

evident in these data. The effect is particularly noticeable for the

lower values of the regional geothermal gradient. The required

fluid-rock contact area is increased by over a factor of two for the

case of a 20 year system lifetime and a 30°C/km gradient under cur-

rent economic conditions and a 50% fluid loss. This is an extreme

example, however, and it is noted that an increase in effective energy

value from $4/GJ to $6/GJ brings the required contact area down to

less than 1 km2 for gradients equal to or greater than 50°C/km
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assuming the rather severe fluid loss of 50%.

Discussion and Conclusion

The previous analysis establishes a lower bound on the required

fluid-rock contact area necessary for an economically viable forced

recovery system based on a sheet-like flow for low-temperature non-

electrical application. The ability to approach these minimal require-

ments will depend strongly on the permeability characteristics of the

fluid conductor. Unfortunately, little work has been devoted to the

study of the natural fluid conductors wiich have been considered in

this work. Hence, considerably more field data than that presently

available will be necessary to satisfactorily account for the interac-.

tion of the elastic, thermoelastic, and chemical effects within these

types of conductors.

The values of the required fluid-rock contact area and produc-

tion well flow rates do not, however, appear unreasonable for the

case of direct-contact heating under the condition of a moderately high

crustal heat flow (g > 50°C/km). Furthermore, the analysis indicates

that, as the effective heat value increases, as will no doubt occur

under current economic trends, the required contact area will

decrease substantially. It is evident that under these conditions, the

relative feasibility of the system will increase and the associated risk

involved in exploitation will correspondingly decrease.
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In view of the present trends in the national energy economy,

the results derived in this work appear sufficiently favorable to war-

rant further investigation into this type of forced recovery geoheat

recovery system.



Table 6. Optimal system parameters for a single production unit, based on a 10 year system
lifetime with 25% distributed fluid loss (direct-contact heating).

g ID D. A B T q P E F C
p av

$4/GJ
30 3. 00 4. 64 2.64 1. 61 108. 0 0. 05 17. 2 171. 9 75. 5 2. 39
40 2.25 4. 12 1.47 0.78 111.9 0.06 12.2 122. 1 50.7 1.89
50 1.80 3.85 0.98 0.47 115. 8 0.08 10. 1 100.6 39.7 1.65
60 1. 50 3. 68 0. 72 0.33 119.2 0. 10 8. 8 88.4 33.3 1. 50
70 1.29 3.47 0.56 0.26 121.6 0. 11 7.8 78.0 28.5 1.37
80 1. 13 3.41 0.46 0.20 124.6 0. 13 7.4 73.9 26. 1 1.32
90 1. 00 3.29 0.38 0. 17 126.7 0. 14 6. 9 68. 7 23. 7 1. 25

100 0. 90 3. 19 0.33 0. 14 128. 5 0. 15 6.5 64.7 21. 8 1.20

$6/GJ
30 3. 00 5.66 1.06 0.40 112.7 0. 09 9. 2 92.0 37. 8 2.97
40 2.25 4.91 0.63 0.24 116.3 0. 11 6.7 66.9 26. 2 2. 29
50 1. 80 4.46 0.44 0. 16 119. 5 0. 13 5. 5 54. 6 20. 5 1. 93

60 1. 50 4. 16 0.33 0. 12 122.3 0. 14 4. 7 47. 5 17. 2 1. 72

70 1.29 3.95 0.26 0. 10 124.9 0. 15 4.3 42.8 15. 1 1.58
80 1. 13 3.79 0. 22 0. 08 127. 2 0. 17 4. 0 39. 6 13. 6 1.48
90 1.00 3.66 0. 18 0. 07 129.3 0. 18 3. 7 37.3 12. 5 1.40

100 0.90 3.56 0. 16 0.06 131.2 0.20 3. 5 35.5 11. 6 1.34

-1



Table 6. Continued.

g D
p

D.
i

A B T
av q P E F C

$8 /GJ

30 3.00 5.89 0.66 0.23 113.6 0. 11 6. 0 60. 2 24.4 3. 12

40 2. 25 5. 14 0.40 0. 14 117.4 0. 13 4. 5 45. 0 17.4 2.42

50 1. 80 4. 69 0. 28 0. 10 120. 7 0. 14 3. 7 37.4 13. 8 2. 05

60 1.50 4.28 0.21 0.08 123. 1 0. 15 3.2. 31.9 11. 5 1.78

70 1. 29 4.07 0. 17 0. 06 125.7 0. 17 2. 9 29. 0 10. 1 1. 63

80 1. 13 3.91 0. 14 0. 05 128. 0 0. 18 2.7 26. 9 9. 1 1. 53

90 1. 00 3.78 0. 12 0. 04 130. 1 0. 20 2. 5 25.4 8.4 1.45

100 0.90 3.68 0. 10 0.04 132.0 0.21 2.4 24.3 7. 9 1.39

$10 /G 3

30 3. 00 6. 12 0.48 0. 15 114. 5 0. 12 4. 6 45. 9 18.4 3.27

40 2.25 5.24 0.29 0.10 117.9 0.13 3.4 33.8 12.9 2.48

50 1. 80 4.79 0. 21 0. 07 121.3 0. 15 2. & 2& 3 10.4 2. 11

60 1.50 4.39 0. 16 0.05 123.7 0. 16 2. 4 24. 2 8. 6 1.83

70 1. 29 4. 12 0. 13 0. 04 126.3 0. 18 2. 1 22. 1 7. 6 1. 68

80 1. 13 4.01 0. 10 0. 04 128.7 0. 19 2. 1 20.6 6.9 1. 58

90 1. 00 3.89 0. 09 0. 03 130. 8 0. 21 2. 0 19. 5 6.4 1. 50

100 0. 90 3.79 0. 08 0. 03 132.7 0. 23 1. 9 18. 7 6. 0 1.44



Table 7. Optimal system parameters for a single production unit, based on a 10 year system
lifetime with 50% distributed fluid loss (direct-contact heating).

g D D. A B T q P E F C
p i av

$4 /GJ

30
40
50
60
70
80
90

100

$6 /GJ

30
40
50
60
70
80
90

100

3.00 3.78 5.23 6.74
2.25 3.42 2.64 2.25
1.80 3. 19 1.68 1.21
1.50 3.10 1.20 0.75
1.29 3.02 0.92 0.53
1.13 2.86 0.74 0.43
1.00 2.91 0.61 0.32
0. 90 2. 81 0. 52 0. 27

103.3 0.01 18.8 188.0 88.7 1.97
106. 8 0. 03 12. 8 12&. 3 57. 3 1. 58
110.0 0.04 10. 1 101. 1 43. 1 1.37
113.5 0.05 8.9 88.7 36.0 1.27
116.6 0.06 8.0 80.3 31.3 1.20
118. 5 0.06 7. 1 71.4 27. 2 1. 11
121.9 0.08 7. 0 70.3 25.7 1. 11
123.6 0.09 6.5 65.4 23.4 1.06

3.00 4.85 1.69 0.91 108.1 0.04
2.25 4.28 0.97 0.48 111.6 0. 06
1.80 3.95 0.66 0.31 115.0 0.07
1.50 3.77 0.49 0.22 118.2 0.08
1.29 3. 55 0.39 0. 17 120.6 0. 09
1. 13 3.39 0.32 0. 14 122.8 0. 10
1.00 3.39 0.27 0.11 125.7 0.12
0.90 3.29 0.23 0. 10 127.5 0. 13

9.0 89.6 39.3 2.50
6.5 64.6 26.9 1.96
5.3 53.0 21.1 1.69
4.7 46.8 17.9 1.54
4.2 41.6 15.4 1.40
3.8 38. 1 13.7 1.31
3.7 37.1 12.9 1.29
3.5 35.1 12.0 1.23

I-

'.0



Table 7. Continued.

g D
p

D.
i

A B T
av q P E F C

$8/GJ

30 3.00 5. 32 0.98 0.42 110. 1 0. 06 5.9 59.4 25. 3 2. 77

40 2.25 4.57 0.59 0.25 113.2 0.07 4.3 42. 6 17.4 2. 11

50 1.80 4.27 0.41 0. 16 116.9 0.09 3.6 36. 1 14.0 1.84

60 1.50 3.97 0.31 0.12 119.5 0.10 3.1 31.2 11.7 1.63

70 1.29 3.56 0.24 0. 10 122.0 0. 10 2. 8 2&.1 10. 2 1.49

80 1. 13 3.71 0.20 0.08 124.0 0. 12 2.7 26. 9 9. 5 1.44

90 1.00 3. 58 0. 17 0. 07 127. 0 0. 13 2. 5 25. 3 8. 7 1. 37

100 0.90 3.48 0.15 0.06 128.9 0.14 2.4 24.0 8. 1 1.31

$10 /G J

30 3.00 5.61 0.69 0.26 111.3 0.07 4.5 44.7 18.7 2.94

40 2.25 4.86 0.42 0. 16 114. 6 0. 08 3.3 32. 9 13.2 2.26

50 1.80 4.41 0.29 0.11 117.7 0.08 2.7 27. 1 10.4 1.91

60 1.50 4.11 0.22 0.08 120.4 0.10 2.4 23.6 8.8 1.70

70 1.29 3.90 0. 18 0.07 122.9 0. 11 2. 1 2L4 7.7 1. 55

80 1. 13 3.74 0. 15 0.06 125.2 0. 13 2.0 19. 8 7.0 1.45

90 1.00 3.61 0.12 0.05 127.2 0.14 1.9 18.7 6.4 1.28

100 0.90 3.61 0. 11 0.04 129.8 0. 16 1.8 18.4 6. 1 1.37

I-.

Ui
0



Table 8. Optimal system parameters for a single production unit, based on a 20 year system
lifetime with 25% distributed fluid loss (direct-contact heating).

g D D. A B T q P E F C
p i av

$4/GJ
30 3.00 4.60 3.98 2.49 107.8 0. 03 18.0 360.7 79.4 2.36
40 2.25 4. 15 2.21 1. 17 112. 1 0.05 13. 1 262.0 54.3 1.90
50 1.80 3.87 1.47 0.71 115.9 0.06 10.8 215.0 42.3 1.65
60 1.50 3.68 1.08 0.50 119.2 0.07 9.4 187.7 35.4 1.50
70 1.29 3.46 0. 84 0.39 121.5 0.08 8.3 165.6 30.3 1.37
80 1. 13 3.40 0.69 0.30 124.5 0.09 7.8 156.4 27.6 1.31
90 1. 00 3. 28 0.58 0. 25 126.5 0. 10 7.3 145.3 25. 1 1. 24

100 0.90 3. 18 0.50 0.22 128.4 0. 11 6. 8 137.0 23. 1 1. 19

$6/GJ
30 3.00 5.57 1.60 0.62 112.3 0. 06 9. 6 191.4 39. 5 2.92
40 2.25 4. 82 0.95 0.37 115. 8 0. 07 6.9 138.8 27.3 2.24
50 1.80 4.37 0.66 0.26 118.9 0.08 5.7 113.1 21.4 1.89
60 1.50 4.07 0.49 0.19 121.8 0.09 4.9 98.2 17.8 1.68
70 1.29 3.86 0.39 0. 15 124.3 0. 10 4.4 88.6 15.7 1.54
80 1. 13 3.70 0.32 0. 13 126.6 0. 11 4. 1 81.9 14. 1 1.44
90 1.00 3.67 0.27 0. 10 129.4 0. 13 4.0 79.6 13.3 1.41

100 0.90 3. 57 0. 24 0. 09 131.3 0. 14 3. 8 75. 8 12.4 1.35

Lfl



Table 8. Continued.

g D
p

D.
1

A B T
av q P F F C

$8/GJ

30 3. 00 5. 85 0.99 0.35 113.4 0. 07 6.4 127. 0 25. 8 3.09

40 2.25 . 10 0.60 0.21 117. 2 0.09 4.7 94.8 18.3 2.39

50 1.80 4.65 0.42 0. 15 120.5 0. 10 3.9 78.6 14.6 2.03

60 1.50 4.35 0.32 0.11 123.4 0.11 3.5 69.1 12.4 1.81

70 1. 29 4. 13 0. 26 0. 09 126. 0 0. 12 3. 1 62. 8 10. 9 1. 66

80 1.13 3.97 0.21 0.07 128.4 0.13 2.9 58.5 9.9 1.56

90 1. 00 3. 85 0. 18 0. 06 130. 5 0. 14 2. 8 55. 2 9. 1 1.48

100 0.90 3.75 0. 16 0. 06 132.4 0. 16 2.6 52.7 8. 5 1.42

$10 /GJ

30 3.00 6.09 0.72 0.23 114.4 0. 08 4. 9 97. 0 19. 5 3. 25

40 2.25 5.22 0.44 0.15 117.0 0.09 3.6 71.5 13.7 2.46

50 1.80 4.77 0.31 0.10 121.2 0.11 3.0 59.8 11.0 2.09

60 1. 50 4.47 0. 24 0. 08 124. 1 0. 12 2. 6 52. 8 9.4 1. 87

70 1. 29 4. 26 0. 19 0. 06 126. 8 0. 13 2. 4 48. 2 8.3 1. 72

80 1. 13 4. 10 0. 16 0. 05 129. 2 0. 14 2. 3 45. 0 7. 5 1. 61

90 1. 00 3. 83 0. 13 0. 05 130.4 0. 14 2. 0 40. 8 6. 7 1.47

100 0.90 3. 73 0. 12 0. 04 132.4 0. 15 2. 0 39. 0 6.3 1.41

U'



Table 9. Optimal system parameters for a single production unit, based on a 20 year system
lifetime with 50% distributed fluid loss (direct-contact heating).

g ID D. A B T q P E F C
p i av

$4/GJ
30 3.00 3.74 7. 88 10.70 103. 1 0. 01 19.7 393. 1 93. 0 1.95
40 2.25 3.42 3.97 3.40 106. 8 0. 02 13.6 272.4 61. 0 1. 58
50 1.80 3. 19 2. 52 1. 82 110.0 0. 03 10. & 215.4 45.9 1.37
60 1.50 3. 08 1.80 1. 14 113.4 0.03 9.4 187.7 38. 2 1.26
70 1.29 3.01 1.38 0. 80 116. 6 0.04 8.5 170.7 33.3 1. 19
80 1. 13 2. 95 1. 11 0. 61 119.3 0.05 7.9 158.6 29. 8 1. 14
90 1.00 2.83 0.92 0.50 121.2 0.05 7.2 144.8 26.6 1.08

100 0. 90 2. 86 0. 78 0. 40 124. 1 0. 06 7. 1 142. 5 25. 3 1. 08

$6 /GJ

30 3.00 4. 84 2.54 1.38 108. 0 0. 03 9. 5 190.4 41. 8 2.49
40 2.25 4. 28 1.46 0.72 111. 6 0.04 6.9 137.4 28.6 1.96
50 1. 80 3. 96 0.99 0.46 115. 1 0.05 5.7 113.2 22.5 1.69
60 1. 50 3. 66 0.74 0. 34 117. 6 0. 05 4. 8 96. 2 18. 5 1.49
70 1. 29 3. 59 0. 58 0. 25 120. 9 0. 07 4. 5 89.9 16. 6 1.42
80 1. 13 3.43 0.48 0. 21 123. 1 0.07 4. 1 82.2 14.. 8 1.33
90 1.00 3.31 0.40 0. 17 125.0 0.08 3. 8 76.7 13. 5 1.26

100 0. 90 3. 33 0.35 0. 14 127. 8 0. 09 3. 8 75. 8 12. 9 1. 25



Table 9. Continued.

g D
p

A B T
av

q P E F C

8$ /GJ

30 3. 00 5. 28 1. 48 0. 65 109.9 0. 04 6. 2 124.9 26. 7 2.74

40 2.25 4. 66 0. 88 0.37 113. 6 0.05 4. 7 93. 1 18.9 2. 15

50 1.80 4.21 0.61 0.25 116.5 0.06 3.8 75.5 14.7 1.81

60 1.50 4.03 0.46 0. 18 119.9 0. 07 3.4 67.7 12. 6 1.66

70 1.29 3. 81 0.37 0. 14 122.3 0. 08 3. 0 60.9 11. 0 1.52

80 1. 13 3.65 0.30 0. 12 124.6 0.08 2. 8 56. 2 9.9 1.42

90 1. 00 3. 53 0. 26 0. 10 126. 6 0. 09 2. 6 52. 8 9. 1 1.34

100 0. 90 3.43 0.22 0. 09 128. 5 0. 10 2. 5 50. 2 8. 5 1. 29

$10 /G J

30 3.00 5.62 1.03 0.40 111.3 0.05 4.8 95.3 20.0 2.95

40 2. 25 4. 87 0.63 0.24 114. 6 0. 06 3. 5 70.2 14. 0 2. 27

50 1.80 4.42 0.44 0. 17 117.7 0.07 2.9 57.7 11. 1 1.91

60 1. 50 4. 12 0. 33 0. 13 120.4 0. 07 2. 5 50.4 9.4 1. 70

70 1. 29 3.90 0. 27 0. 10 122. 9 0. 08 2. 3 45 6 8. 2 1. 56

80 1. 13 3.83 0.22 0. 08 125.7 0.09 2.2 43.4 7. 6 1.49

90 1. 00 3. 70 0. 19 0. 07 127. 8 0. 10 2. 0 40. 9 7. 0 1.42

100 0.90 3.60 0. 16 0.06 129.7 0. 11 2.0 39.0 6. 5 1.36

I-
u-I
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APPENDIX A

The Numerical Laplace Inverse Transform Method

Considerable use of the numerical Laplace transform inversion

has been made in this work. Since the numerical method used is

based on a substantially different approach than the more "classicaF'

numerical inversion techniques, a brief descriptiop of the method is

presented here with some examples of its application.

The Laplace transform of a function F(t) is given by the

integral

A
F(s) e_StF(t)dt (A. 1)

.io

In determining a function F(t) from its Laplace transform F(s),

one applies an integration along some contour in the complex s-plane,

given by

c +i°
F(t) eStths)ds (A. 2)

2iri

One thus obtains F(t) in terms of the poles and residues and/or the
A

values of F(s) on a contour of the s-plane. Several numerical

approximation methods have been proposed for inverting equation

(A. 2) based on the expansion of F(t) in a finite series of given



functions k(t). That is,
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1(t)

k=O

(A.3)

The functions can be exponential, trigonometric, Legendre or

Laguerre functions where the expansion coefficients Ck are calcu-
A

lated based on the value of F(s) at discrete values of s (Lanczos,

1956; Papoulis, 1957; Bellman et al., 1966; Piessens, 1969).

The method of numerical Laplace transform inversion used in

this work differs from the aforementioned procedure in that no pre-

sumption as to the form of 1(t), such as is given by expression

(A. 3), is made. The calculation method originates from Gayer (1966),

who considers the integral of F(t) with respect to a given weighting

function. The procedure is illustrated by the problem of evaluating

the integral

00

R (a) = F(t)f (a, t)dt (A. 4)
n

where R(a) can be considered the "expectation't of F(t) under

the weighting function f(a,t). The particular weighting function con-

sidered by Gayer is

f (a t) a(Zn)! -atn -nat
n ' n!(n-l)! (l-e ) e , a >0 (A.5)
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Upon inserting expression (A. 5) into equation (A. 4), it is easily shown

that

n
a(2n)! ()(-1)([n+i]a) (A. 6)R (a) =n n!(nl)!

i0

where the binomial expansion (Jolley, 1961)

n

(1+x)"
n j= (.)x
3

j=o

has been used in the calculation. Gayer has shown that, as n

the asymptotic expansion of R(a) is given by

a aR (a)F()+++...n a n 2
n

Thus, by retaining a sufficient number of terms in the series (A. 6),

R(ln 2/t) will be a good approximation to the function F(t). This

approximation is given by

n
ln 2ln 2 (Zn)! ()(-l)([n+i] ) (A. 7)F(t) t n!(n-l)'

i0
A

The above scheme requires n+l discrete values of F for

the evaluation of F(t) at a specific value of t. Stehfest (1969) has

found that, for a given n+l values of F, a much better



164

approximation to F(t) than that given by expression (A. 7) is attain-

able. This is done by using a linear combination of the n+l values

RAln Z/t), j = 0, 1,. .. , n. Stehfest's result is given by

where

n

F(t) 112V A
2VF( (A.8)Li

j=i

nlLn(I,) n

V.

2

k2(Zk)!
I

... (s-k) !k! (k-i)! (i-k) !(2k-i)
2

In comparing the inverses of 50 test functions using both the

above method as well as the inversion technique of Bellman et al.

(1966), where k(t) = et, Stehfest concludes that the above method

'generally produces better results". It is the generalization of

Stehfest given by expression (A. 8) that is used in this work.

The computer subprogram LINV, given in Appendix F, evaluates

the numerical inverse of the Laplace transform according to the above

scheme. Several examples of the application of this method are given

below. The function F(t) being considered along with its Laplace
A

transform F(s) are given at the top of each table. The exact value

of F(t) is also given for comparison. All computations were done

using 18 significant figure (double precision) arithmetic and rounded

to 6 significant figures.
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Table 10. Examples of the numerical Laplace transform inversion method.

F(t) (LINV)
t F(t) (exact) N = 5 N 7 N = 10

F(t) = erfc(l/2'JT); F(s) = (l/s)exp(-.T)
1. 0 0.479500 0.486963 0.479012 0.479500
2.0 0.617075 0.621102 0.616621 0.617093
3.0 0.683091 0.686021 0.682761 0.683104
4.0 0.723674 0. 726073 0. 723423 0. 723612
5.0 0.751830 0.753913 0.751630 0.751835
6.0 0.772830 0.774701 0.772664 0.772834
7.0 0.789268 0.790984 0.789126 0.789271
8.0 0. 802587 0. 804183 0. 802463 0. 802589
9.0 0.813664 0.815164 0.813553 0.813665

10. 0 0. 823063 0. 824484 0. 822963 0. 823064

N=7 N=10 N=15

F(t) = exp(-t);
1.0
2. 0
3.0
4.0
5. 0
6. 0
7.0
8.0
9.0

10. 0

A
F(s) = l/(s+1)

0. 367879
0. 135335

1
0.497879 x loi
0. 183156 x 10
0.673795 x 102
0. 247875 x 10

100.911882 x
0. 335463 x 10
0. 123410 x 10
0. 454000 x 10

0. 362884
0. 138335

1
0. 566080 x 10
0.239532 x 10
0. 988510 x 10
0. 351690 x 10
0. 569946 x 103

-0. 776785 x 10
-0. 134902 x 10
-0. 154009 x 10

0.367784
0. 135613

10. 502589 x 101
0. 184358 x 10
0.644480 x 102
0. 197091 x 103
0.387155 x 104

-0. 917344 x 10
-0. 166031 x 10
-0. 110112 x 10

0.367875
0. 135343

10. 498002 x 10
0. 182947 x lOz
0.668800 x l0
0.243243 x 103
0.892637 x 103
0. 347781 x 10
0. 159392 x 10
0.932897 x 10

0'



Table 10. Continued.

F(t) (LINV)
t F(t)(exact) N=5 N=7 N10

F(t) = (l/)exp(-l/4t); p(s) = (l/)exp(-J)
1.0 0.439391 0.425791 0.438596 0.439558
2.0 0.352065 0.345335 0.352645 0.352051
3. 0 0. 299691 0. 295406 0. 300288 0. 299659
4.0 0.265004 0.261848 0.265503 0.264976
5.0 0.240008 0.237475 0.240417 0.239987
6.0 0.220930 0.218782 0.221269 0.220914
7.0 0. 205762 0.203875 0. 206048 0. 205750
8.0 0. 193334 0. 191634 0. 193579 0. 193325
9.0 0.182911 0.181351 0.183124 0.182904

10.0 0. 174007 0. 172557 0. 174195 0. 174002

C'



APPENDIX B

Justification for Ignoring Conductive Heat Transfer
within the Solid in the Coordinate Parallel to the

Direction of Fluid Flow

A common approximation made in both analytic and numerical

heat ex±raction models for sheet-like fluid flow within a rock mass is

that of ignoring conductive heat transfer in the rock in all directions

except that coordinate perpendicular to the fluid sheet (Bodvarsson,

1969; Hariow and Pracht, 1972; Grigarten et al. , 1975; Blair et al.

1976). If the fluid flow is quasi-uniform and "sufficiently large" the

approximation will be quite good. The error incurred by this

approximation when dealing with severely non-uniform flow can be

large and is discussed in some detail in Chapter IV. The purpose of

this investigation is to obtain a lower bound on the fluid flow rate

within the fracture below which this approximation breaks down.

That is, we will quantify what is meant by a "sufficiently large" flow

rate.

The basic heat extraction model under consideration assumes

that a flat fracture of infinitesimal width (see Chapter III for the "zero

fracture width" approximation) is embedded in the plane y 0 in an

infinite, homogeneous, and isotropic rock mass of thermal conductiv-

ity kr and thermal diffusivity ar. For t < 0, the temperature

of the fluid in the fracture is equal to the initial rock formation
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temperature c1 where c1 is a constant. For t >0, a stationary

fluid flow per unit length of fracture, q, is injected into the frac-

ture at x 0 with an injection temperature T.. The fluid flow is

in the pos itive x direction. The fluid has specific heat cry.

The temperature field within the solid is governed by the heat

conduction equation

LaTa T-8 T=0, y>O (B.1)
a t xx yyr

The heat transfer boundary condition at the fracture wall is given by

(see equation 3. 10)

2k 8 T = Ofq8T, y 0 (B.2)ry

The additional initial and boundary conditions required to complete the

statement of the problem are

T(x,y,t)l<0cj (B.3)

T(0, 0,t)I T (B.4)t>0 i

Equations (B. 1) through (B. 4), which correspond to equations

(3.9) through (3. 12), are so'ved using two significantly different

methods.
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Method I

The first method requires a transformation of the set of

independent variables according to

where

T(x, y, t) T '(x, p, t)

P = ZkrX + °fqy

This transformation reduces the distributed Neumann boundary

equation (B. 2) to a homogeneous Neumann boundary condition. Equa-

tions (B. 1) through (B. 4), under the above transformation, take the

form

where

atT' - DT1 = 0 (B. 1)'

a T' 0
x

T'(x,p,t)ft<0c1 (B.3)'

T'(O,O,t)Jt >0 = T (B.4)'

= 4k2 + °fq

Applying the Laplace transform with respect to time to (B. 1)'

through (B. 4)' and solving the resulting set of equations, one obtains
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A (T.-c1) ci
T '(x, p, s) exp ) + (B. 5)

S Sr

inverting the above equations to t-space followed by a transformation

from the independent variable set (x, p, t) to (x, y, t), we obtain

the solution for the temperature field of the rock.

where

and

ax+yT(x,y,t) = (T.-c1)erfc(2 i a't (B.6)
"Jr

2kra
°-fq

a' = (i+a2)a

Thus we have the interesting result that including conductive

heat transport in the rock in the direction parallel to the fluid flow

does not, for the case considered, change the form of the solution

(see equation 3. 27) but does introduce a flow-dependent "effective"

thermal diffusivity a' which is greater than the thermal diffusivity

of the rock.

Method ii

The second method of solution is presented here primarily

because it demonstrates an alternative formulation based on the
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diffusion of isothermal surfaces. Such an approach gives consider-

able insight into this simple problem and may be useful in dealing with

other conductive heat transfer problems where the geometry of the

isothermal surfaces is known a priori to be simple and/or to be time

independent.

We note that the inverse transform (with respect to s) of

expression (3. 25), in the limit of zero fracture width (3 0) and

an initial uniform formation temperatire (c2 0), reduces to

ax+yT(x,y,t) (T.-c )erfc(2'1-.) +
i. 1

For a given time t t*, an isothermal surface within the rock mass

is a plane, denoted by ax + y const. This observation suggests

that we try, as a solution of (B.1), a rock temperature field of the

form

T(x, y, t) A erfc{ + B (B.7)

where A and B are constants and the functional

h(x, y) - const. = 0 defines an isothermal surface within the rock.

Inserting (B. 7) into equations (B. 1) through (B. 4), one obtains

(a h)2 + (a h)2 . = 0 (B. 8)
x y 4ar
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2k a h = o qa h, y , 0 (B. 9)ry f x

A = T. - c1, B = c1 (B. 10)
I

If the geometry of the isothermal surfaces is allowed to be time

dependent, h(x, y, t) must also satisfy a diffusion equation given by

ah-a h-a h=0, y>Oa t xx yyr

Expression (B. 8) is called the Eikonal equation and appears often in

the context of wave propagation in solids (Officer, 1974).

It is obvious that the reformulation of the problem in terms of

diffusing isothermal surfaces has not simplified the mathematics for

the general case of an arbitrary field. However, if the "geometrical

structure" of the isotherms is known a priori to be time independent,

it may be that a solution of (B. 8) through (B. 10) is more easily

attained than (B. 1) through (B.4). For a case under investigation, we

consider a surface of the form

h(x, y) = d1x + d2y

where d1 and d2 are constants to be determined. Inserting the

above expression into equations (B. ) and (B. 12), one obtains
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d +d
1 2 4ar

Zkrd2 crfqd1

Thus, d1 and d2 are given by

where

d1
7_,_

, d2 2J

2
a = (1+a )ar r

and we again obtain the result (B. 6).

Based on typical values of the physical parameters of the sys-

tern (see Appendix E), the table given below displays the dependence

2 1 /2
of (l+a ) on q.

q (kg/rn. sec)

1 x

1 x

I x

1 x 10_i

2a

io2

100

102

2 1 /2(l+a

10. 049876

1.414213

1.000500

1. 000050

It is evident from these data that for fracture flow rates greater

than 0.01 kg/(m. sec) the error incurred by ignoring heat conduction

within the rock in the direction of fluid flow is negligible. That is,

the "true" rock diffusivity is very close to the value of the "effective"
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rock diffusivity. However, the approximation breaks down for flow

rates on the order of 0. 001 kg/(m. sec) or less.
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APPENDIX C

Temperature Transients in Borehole Flow

Throughout this work, the temperature of the water injected into

the heat extraction system (e. g. fractu:e zone, sedimentary horizon,

etc.) has generally been assumed constant. This approximation

ignores the thermal interaction that will occur between the fluid flow-

ing in the borehole and the hot rock formation through which the bore-

hole passes. As a result of this thermal interaction, the injection

temperature at the borehole-fluid conductor intersection will vary with

time. Numerical finite difference models (Lowell and Bodvarsson,

1975) and analytic models (Bodvarsson et al., 1974) have been con-

structed to investigate temperature transients of borehole flow under

the assumption that the rock formation temperature prior to the

initiation of flow is uniform and that the flow is constant. The purpose

of this investigation is to extend these models of borehole flow to

account for an initially non-uniform formation temperature.

The borehole flow model being considered assumes that a bore-

hole of radius r0 is drilled vertically down through a homogeneous,

isotropic, and impermeable solid. At t < 0, the temperature of

the fluid in the borehole is equal to the temperature of the surrounding

rock, given by f(x) where x is the distance from the position of

fluid injection into the borehole. A constant mass flow F of a
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homogeneous liquid having a density Pf velocity v in the positive

x direction, and specific heat crf enters the borehole at x 0

for t > 0. The injection temperature T. at x 0 is assumed

constant. Moreover, the radius r0 of the borehole is assumed so

small that the temperature of the liquid is independent of r, where

r is the coordinate perpendicular to the borehole axis. Conductive

heat transfer within the rock mass parallel to the borehole axis is

ignored.

The temperature field within the solid is governed by the heat

conduction equation which, due to cylindrical symmetry, takes the

form

8 T a (r8 T) = 0, r > r0 (C. 1)
a t r r rr

The heat transfer boundary condition at the borehole wall is given by

2k

pfof{atT+vaT} = a T, rr0 r r0 (C.2)

The additional initial and boundary conditions required to complete

the statement of the problem are given by the following two expres-

s ions.

T(x, r, t)It < 0 = f(x) (C. 3)
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T(0,r0,t)I>0 T. (C.4)
1.

Laplace transforming equations (C. 1) and (C. 2) with respect to time,

where

Al
8 T+-8T---T= (C.5)rr r r a ar r

A A A
0 TI {138 T-ysT} + 'f(x) (C. 6)

x rr0 r r,r0

22k rrr 0
Pflrr0

YF and = F

The general solution to expression (C. 5) that remains finite as

is
0

A A
T(x, r, s) A(x, s)Ko(Ji'r) + r > r0 (C. 7)

r

where K0 is the modified Bessel function defined according to the

integral representation (Abramowitz and Stegun, 1964)

K0() cos(t) dt >0
0 Jt2+l

Inserting expression (C. 7) into boundary condition (C. 6), we obtain
'S.

the following first order differential equation for A(x, s).
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I" A f'(x) (C. 8)8 A(x, s) + i(s)/A(x s) =

r
x r sK 'Ir

r > r0

where (s) is defined by

Ki(JIro) yar r
(s) =

Ko(j'ro) --- (C.9)

r

and K1 is the modified Bessel function, defined according to the

integral representation (Abramowitz and Stegun, 1964)

,- 00 etJtZldt
1

The general solution to equation (C. 8) is given by

A
A B(s)
A(x, s)

K0(JT r)
exP((s)jT1 x)

r

r

(C. 10)

1 Xexp{pLl)(s)/: (xxI)}ft(xt)dxl

sK0(/'r0) 0 r

r

Using expressions (C. 3) and (C. 4), it is easily shown that the function
A
B(s) in the above equation is given by



A T.-f(0)
B(s)

S

A
Evaluating A(x, s) assuming an initial formation temperature of the

form f(x) = c1 + c2x, where c1 and c2 are constants, and sub-

stituting the resulting expression into (C. 7), we find that

A (T.-c1)
T(x,r0,$) = exp(-i(s) /- x)

S 'Jr
(C. 11)

c2
{l-exp(-(s) x)}

(ci+cx)
+

S131J(s)sfI' r
r

It is of some interest to note that the form of (C. 11) is identical

with (3. 25) for the temperature of fluid flowing through a flat fracture.

The product I3qi(s) in (C. 11) represents a geometrical Uform

factor u, which takes the value a = Zkr /(ofq) for the case of fracture

flow. Unlike other analytic models of borehole flow (Bodvarsson

et al., 1975), the previous formulation has included the time deriva-

tive component of boundary condition (C. 2) and as a result, solution

(C. 11) includes the effect of a non-zero borehole radius (see discus-

sion of the zero fracture width approximation in Chapter III). As in

the case of fracture flow, this term becomes important for the very

early history of the borehole flow and its effect damps out rapidly for

increasing time.
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An analytic form for the inverse Laplace transform of expres-

sion (C. 11) will be very difficu]t to obtain due to the rather complex

nature of qi(s). An approximate inverse has been calculated using

the numerical Laplace transform inversion method discussed in

Appendix A. The modified Bessel functions K0 and K1 are

evaluated using polynomial approximations (Abramowitz and Ste gun,

1964) and are presented in function subprogram form, BESKO and

BESK1, in Appendix E.

Assuming a borehole radius of r0 0. 1 m and physical

parameters given in Appendix E, some numerical results are dis-

played in the figures below. Figure Z5 represents the case or an

initial uniform (c.= 0) rock formation temperature of 150°C and a

constant fluid injection temperature T. of 30°C. The temperature

of the fluid 1 km from the injection point is plotted as a function of

time for several borehole flow rates ranging from 1 kg/sec to

50 kg/sec. The results indicate, for this particular case, a very

short relaxation time for borehole flows greater than 10 kg/sec and

much longer relaxation times for borehole flows less than 2 or

3 kg/sec. Relaxation time, in the present context, is a measure of

the characteristic time required for the temperature of the fluid in the

borehole to fall to within a close margin of the asymptote T.

Figure 26 shows the effect of a non-uniform initial rock forma-

tion temperature on the fluid temperature within a flowing borehole.
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Figure 25. Temperature transients in borehole flow for various flow
rates F. Assumes an initial uniform formation tern-
perature with outlet temperature T measured at 1 km
from injection port.
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Figure 26. Temperature transients in borehole flow under initially
non-uniform formation temperature conditions. Examples
given for a downflow (a), uniform (b), and upflow (c)
c onfi gur ati on.
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In this example, the injection temperature is assumed to be 30°C and

the borehole flow is 1 kg/sec. The temperature of the fluid 1 km

from the injection point is plotted as a function of time for upflow (c)

and downflow (a) configurations as well as the case of an initial uni-

form rock formation temperature (b) (see Chapter III for terminology).

A geothermal gradient of 50°C /km, representative of a moderately

high crustal heat flow, is assumed for both the upflow and downflow

configurations. The initial rock formation temperature distributions

are summarized as follows:

125 + 50x°C (Case a)

f(x) 150 °C (Case b)

175 - 50x°C (Case c)

where x is in kilometers.

It is evident from this example that the borehole temperature

transients associated with a non-uniform rock formation temperature

have, as in the case of fracture flow, characteristic signatures

dependent on the geothermal gradient. However, because of the

geometry of the heat extraction surface, in this case the borehole

wall, the temperature transients are much shorter lived than for the

case of fracture flow. Curves (a) and (c) trend asymptotically to

curve (b) for increasing time, reflecting the fact that the three cases

under consideration have the same initial average formation
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temperatures. The short (10 yr) constant temperature section at

the beginning of curve (b) corresponds to the length of time for water

entering the borehole at the injection point to travel 1 km through the

borehole. The rather sharp break in this curve at years shows

the ability of the numerical Laplace inversion method to represent a

step-like function quite well.

Temperature logging in boreholes is usually performed by

lowering a temperature sensitive device, such as a thermistor, into

the hole and taking either discrete or continuous readings. At tem-

peratures less than 200°C, temperature measurements using a

thermistor device can attain a precision of 102°C. However, there

frequently are difficulties associated with installing down -hole

devices due to the elevated temperature and pressure of the downhole

environment. Monitoring temperature of a flowing borehole at the

top of the borehole is usually much more convenient.

The numerical results presented in Figure 26 suggest that, for

small borehole flows, monitoring welihead fluid temperature as a

function of time shortly after (within days or weeks) the initiation of

flow will yield a measure of the initial down-hole rock formation

temperature distribution. An additional observation is that, assuming

the initial rock formation temperature is already known from well

logging, a measure of the down-hole in situ thermal conductivity of the

rock formation may be obtained using a curve matching procedure. A



method similar to this has recently been used with good results to

determine the in situ thermal conductivity of granite at depth in a high

crustal heat flow area west of the Valles Caldera in northern New

Mexico (Blair et al. , 1976).
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APPENDIX D

Thermal Relaxation Time of Fluid in a Fracture

- The length of time for a mass of fluid within a fracture to

equilibrate with the surrounding rock can be estimated by the following

simple example. Consider a flat slab of fluid of thickness w and

initial uniform temperature T0. At t = 0, the temperature of the

slab faces is instantaneously increased to the constant temperature

T . A measure of the thermal relaxation time of the fluid slab is that
r

length of time for the fluid temperature, averaged across the fracture

width, to increase to a factor 0. 5 of the face temperature T.

Referring to the diagram below, the problem can be stated as

T0, 0<y<w
af t YY

T(y,t)T0, t<0 (D.1)

T(0, t) = T(w, t) = T , t > 0r

where af is the thermal diffusivity of the fluid and T(y, t) is the

temperature of the fluid.

y

\Y.\ \\\\\\\\\\\\\\\\\\\\
w

_0 4'\\\\\\\\\\\\\\\-\\\ \'\"\ \\\



The solution for T is easily obtained using standard classical

techniques (Carsiaw and Jaeger, 1959) and can be shown to be

00

4(TøTr) \' 1T(y,t)
TU L1 (Zn+l) exp{-

n= 0

X sin[ (zntTI + Tr

af(Zn+ l)2ir2t

2
w

ii

Ii

Averaging the above expression across the slab width, one obtains

00 228(T -T ) a (Zn+l) TU t
0 r\" 1 (D.2)<T(t)> L )Z

exp r
iT (Zn+l wnO

Since considerable use of the numerical Laplace transform

inversion (see Appendix A) is made in this work, it is of some

practical interest to recast the above simple problem so that the

numerical inversion can be applied and the results compared with

expression (D. 2) as an additional check on the precision of the inver-

sion procedure. To this end, we Laplace transform equations (D. 1)

with respect to time and solve the resulting equations for the trans-

form of the fluid temperature, which is easily shown to be

s+rA (T -T0)
{sinh{w-y)J + sinh(jY))T(y,$)

,Jafs sinh( 1w)



The average across the fracture width of the above expression is

given by

I'

<T(s)> =
2(T-T)r 0

sw sinh( f w)Jaf

T
{cosh( Iw)-l}+

S 5

Figure 27 shows sone examples of <T>/T plotted as a

(D. 3)

function of time for several fracture widths ranging from 1 mm to

20 mm, where T is taken to be 0. Values of <T>/T com-
0 r

puted according to (D. 2) are denoted by circles and values computed

by applying the numerical inverse Laplace transform to expression

(D. 3) are denoted by the solid lines. The maximum series truncation

error imposed on expansion (D. 2) is io6 and 6 terms were retained

in the numerical Laplace transform inversion summation. It is quite

evident that the numerical inversion method does an acceptable job of

inverting (D. 3) for what may be considered a relatively few number of

terms retained in the inversion expansion. The numerical results

presented here indicate that the relaxation time for fractures of widths

of a few millimeters to tens of millimeters varies from a few seconds

up to a minute or so, respectively.
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Figure 27. Thermal relaxation of water th a fracture for several
values of fracture width. Solid lines correspond to
numerical Laplace transform inversion and circles cor-
respond to exact solution.
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APPENDIX E

Notes on Numerical Computation and Conputer
Program Listings

1. All calculations in this work were done on a NOVA 1200 computer

with a 32K 16-bit word memory.

2. The following values for the physical parameters were used in the

calculations:

k = 2. 1 watts/(m. °C)r
-6 2

a l.OxlO m /secr

2.7 x l0 kg/rn3

= 7.8 X 102 J/(kg. °C)

aT = 0.6 x 10 °C1

kf 0.63 v'atts/(m. °C)

-7 2af = 1.5 x 10 in /sec

Pf 1.0 x l0 kg/m3

= 4.2 x 1O3 J/(kg. o)

3. Urdess otherwise stated, all numerical Laplace transform inver-

sions retained 6 terms in the inversion summation (see equation

A. 8). It was found that an increase in the number of terms
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retained resulted in an insignificant change in solution for these

cases.

Chapter IV

4. In integrating the Fourier-Galerkin solution (equation 4.36) using

the BDA method the integration step size used was x = 10 m.

Ten terms were retained in the Fourier expansion of the tempera-

ture field given by equation (4. 28). Unless otherwise noted in the

text, no significant change in solution was observed upon decreas-

ing step size or increasing the number of terms retained in the

Fourier expansion.

5. The norm of the Jacobi matrix relevant to the BDA procedure for

the solutions based on the Four ier-Galerkin method were found

to be (referring to Figure 8):

LlOm
IIMII < 0.46 (curve a), 0. 1 < s < 10.0

MI < 0. 40 (curve b),

M = 0. 0 (curve c), I'

L50m
1

M < 0. 24 (curve a), 0. 1 < s < 10. 0

IIMII < 0. .9 (curve b), I'

IIMtI = 0.0 (curve c), U

where s is the transform variable corresponding to t.
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6. The specific parameters defining the flow channel configurations

in Figure 8 are given by:

curve (a): ZL 0. 0

ZH 0. 3L

q1 0.02 kg/(m. sec)

curve (b): ZL = 0. 3L

ZH = 0. 6L

q1 0.02 kg/(m. sec)

7. Elements of the matrbc inverse indicated in equation (4.41) were

computed to a precision of 1o6.

Chapter V

8. Fifteen terms were retained in the numerical Laplace inverse

(see equation A. 8) in the inversion of equation (5. 24). The time

step size was t = 0. 1 year.

Chapter VII

9. q* was calculated to a precision of 1o6 in the iterative solution

of the functional equation given by equation (7. 2).

10. Injection depths D. that minimize the required fluid-rock con-

tact area were calculat'.d to a precision of 0. 1 km using Newton's

method of root location.
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Ii SUBROUTINE BDA(NUN1 N. IX. A F1 8)
2; DIMENSION F(15).8(15).CC15).A(15.15)
3sC
4jC IDA SOLVES, USING THE IMPLICIT BACKWARD DIFFERENCE APPROX
SIC IRATIOI4. THE SET OF COUPLED FIRST ORDER DIFFERENTIAL
SaC EQUATIONS WHICH. IN MATRIX FORM1 ARE.
?aC

(I'DX)B + G.8 F

9aC
ISaC WHERE F AND B ARE NVECTORS
11;C C IS AN NXN MATRIX
12C
13,C IN THE FOLLOWING SCHEME, A IS AN NXN MATRIX WHICH IS EQUAL
14;C TO THE INVERSE OF,
13, C

16,C (I + DX.G)
1?,C
i8;C WHERE. I IS THE IDENTITY MATRIX
19; C

28aC NUN XIHDEX AT WHICH SOLUTION VECTOR IS RETURNED
21,C DX INTEGRATION STEP SIZE
22; C

23;C
24; KOUNT1
25; 5 DO 2$ J1,N
26, SUMS.8
2?; SUN2.S.S
28; DO 1$ Ks1,N
29, SUNSUN+A(J,K)*B(K)
38. SUM2aSUN2+DX*A(J,K)*F(K)
31, 18 CONTINUE
32, C(J)SUN+SUN2
33; 28 CONTINUE
34; DO 3$ J1,N
33; B(J)C(J)
36. 38 CONTINUE
3?, KOUNT.KOUNT+1
38; IF(KOUNTEQNUN) GOTO 58
39; GOTO 5
4$; 58 RETURN
41; END
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1; FUNCTION BESK8(X)
41=-. 57721566

3; 42=42278428
4; 43.23069756
5; #4=. 83488598
6; 45=. 80262698
7; #6=08018758
8; 47m 80088748
9 81=1.25331414

10, B2-. 07832358
11 83.82189568
12, 84-. 81862446
13, 85.8058?872
14; B6-. 80251548
15, 87=80053208
16, C

17; IF(X.GT.2.0) COTO 58
18; R(X,2.8)**2
19;, FR*(42+R*(43+R*(44+R*(45+R*(46+R*47)))))
28, BESKO=-4LOG (X/2. 0) *BESIO(X )+A j+F
21; RETURN
22; 50 R2.O'X
23; F=R*(82+R*(B3+R*(B4+R*(B5+R*(86+R*B?)))))
24; BESKOEXP<-X)*(B1+F)/SQRT(X)
25; RETURN
26; END

1; FUNCTION 8E818(X)
2; 41=3.5156229
3; #2:3.0899424
4 43=1.2067492
5; 44 2659732
6 #5=8368768
7; 46=8045813
8; 81=39894228
9; 82=81328592

10; 03:88225319
11; 04=-.00157565
12; 85.08916281
1.3; 66:-. 82857706
14; 87=. 82435537
15; 88=-. 81647633
16; 89=. 08392377
17; C

18; T=X/3. 75
19; IF(X.GT.3.75) COTO 50
20; RT*T
21; FR*(#1+R*(#2+R*(43+R*(44+R*(45+R*46)))))
22; BESIO1.84F
23; RETURN
24; 58 R:1.O'T
25; F=R*(82+R*(83+R*<B4+R*(B5+R*(B6+R*:8?+R*(68R*89)))
26; 6ESI8=EXNx.*:B1sF),SQRTx
27, RETURN
28; END



1 FUNCTION BESK1(X>
2; A1. 15443144
3, A2=-. 67278579
4; A3=-. 18156897
5; i4-. 81919482
6; A5-.08118404
7; A6-. 00884686
8 B11.25331414
9; 82=23498619

18; 83-. 8.3655620
11; 84=91504268
12; 85=-. 00788353
13; 86=80325614
14; 87=-. 80068245
15; C

16; IF(X.GT.2.0) GOTO 59
1?;
18;
19; BESK1=(1.0+F+X*LOG(XI2.0)*BES11X
20; RETURN
21; 50 R:2.0/)
22 FR*(82+R*(B3+R*(844R*(85+R*(86*B
23; BESKI(81+F)*EXP(-X)/SQRT(X)
24; RETURN
25; END

1; FUNCTION BESI1(X)
2; A1.8?890594
3; A2. 51498869
4; A3. 15084934
5; A4.92658733
6; A5.88301532
7; A6=.00032411
8; B1.39894228
9 B2-.03988824

10; 83-. 80362818
11; 84=00163801
12; 85-.81031555
13; 86.82282967
14; 87=- .02895312
15; 88=. 01787654
16 89-. 80429059
17; C

18; TX'3. 75
19; IF(X.GT.3.75) GOTO 50
20; RT*T
21; FR*(41+R*(A2+R*(A3$R*(A4+R*(A5+R*46)))))
22; BESI1(B. S4F)*X
23; RETURN
24; 58 R1.O'T
25; FR*(82sRs<83+R*(84+R*(85sR*.B6+R*(B?+Rs(88+R*B9)))))))
26. BESI1=EXP(X)*(81+F)rSQRT(X)
2?. RETURN
28; END
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1. FUNCTION CHAH(08.Q1,ZL.ZH,Z)
2,C
3;C CHAN GENERATES A FLOW CHANNEL CONFIGURATION OF THE
4,C FORM:
S.0
6;C 0(Z) 00 , 8(Z(ZL

01 Z>ZH
8,C (A COSINE TAPER) ZL(Z(ZH
9;C
10;C WHERE THE TAPER WIDTH IS DEFINED AS:
11 IC

12. C ZH-ZL
13;C
14; P1.3.14159
15; ZHZL
16; IF(Z.GE.ZL) GOTO 20
1?; CHANsOG
18; RETURN
19, 20 IF(Z.LT.ZH) COTO 38

CHANOI
21; RETURN
22, 30 CHAN.(QB-Q1)*(1.0-COS((ZH-Z)*PI,W)),2.0+Q1
23; RETURN
24; END
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1C PROGRAM CHFLO
2 COMMON P(2.9)
3; DIMENSION X(18, 15), S( 15), V(15). DC 15), 8(15)
4; DIMENSION (4Ø),F(15),ZZ(4ø),TEMP(48),WIDTH(48).B2(15)
5. DIMENSION O(48),A2(15,15),X2(19,15),A(15,15).AINV(15,15)
6; CALL IHITIAL(6,1SB. 11.8. 11.8)

81C CHFLO CALCULATES THE TEMPERATURE DISTRI8UTION OF A
9.iC CHANNELLED FLOW WITHIN A OUASI-FLAT FRACTURE IN AN
iS.0 INITIALLY HOT FORMATION. THE FLUID FLOW IS ASSUMED UNI-
l1;C DIRECTIONAL AND THE FLOW CHANNEL CONFIGURATION IS ASSUMED
12C PERIODIC IN THE DIRECTION TRANSVERSE TO THE DIRECTION OF
13C FLOW. CONDUCTIVE HEAT TRANSFER IN THE ROCK IS ASSUMED TO
14iC OCCUR IN THE COORDINATE PERPENDICULAR TO THE FRACTURE
15;C PLANE AS WELL AS IN THE COORDINATE TRANSVERSE TO THE DIR-
16;C ECTION OF FLOW. IN ADDITION. CHANGE IN FRACTURE WIDTH
lflC DUE TO THERMAL EXPANSIOH'CONTRACTION OF THE ROCK MASS
18;C IS CALCULATED. THIS 1$ BASED ONLY ON THE THERMOELASTIC
19;C POTENTIAL WITHOUT REGARD TO STRESS BOUNDARY CONDITIONS
28;C AT THE FRACTURE WALLS. THE FOURIER-GALERKIN METHOD IS USED
21C IN ALL CALCULATIONS. INITIAL FORMATION TEMPERATURE IS
22;C ASSUMED LINEAR IN THE DIRECTION OF FLOW... I.E. T8*R1+R2*X.
23; C

24; P1.3.14159
25;C INPUT ROCK AND FLUID PARAMETERS
26; ACCEPT UROCK CONDUCTIVITY... /M.DEG N,COND
27; ACCEPT ROCK DIFFUSIVITY.. .M**2/SEC .DIFF
28; ACCEPT SPECIFIC KEAT OF FLUID. ..J"KG. DEC N, SIGMA
29; ACCEPT INJECTION TEMP. N,TINJ

38; ACCEPT NUISPOSAL TEMP. ,TD
31; ACCEPT NRI ,Rt
32, ACCEPT R2 .R2
33; ACCEPT CHANNEL DOMAIN LENGTH (N) N,XL
34; DIFFz31.536E06*DIFF
35; ACCEPT UNO Z-POINTS TO BE PLOTTED'INTEGRATED N,NUM
36;C
3?; 5 ACCEPT TMHO. TERMS IN FOURIER EXPANSION U.N
38; C
39;C SET UP FOURIER COEFFS. FOR FLOW CHANNEL CONFIGURATION
48; CALL FOURIERCH,NUM,XL.SIGMA.COND,O9.O1.ZL.ZH,C.O,ZZ
41; .WIDTH)
42; C
43; ACCEPT PLOT CHANNEL CONFIGURATION? (YESI)U,IFLAC
44; IF(IFLAG.EO.I) CALL XPLOTCNUM.ZZ.O,B.I.-2)
45; IF(IFLAG.EO.1) CALL. XPLOT(NUM.ZZ.WIDTH. 1. 1,8)
46; C

4?; ACCEPT USATISFACTORY CHANNEL? (YES1) U,IFLAC
48; IF(IFLAG.NE.1) GOTO 5
49; C

58; ACCEPT UN_FACTOR FOR LAPLACE INVERSE ".NLAP
51; C

52; ACCEPT UDO THERNOELASTIC COMPS. ?(Yzt.HzS) U ITHERN
53; IF(ITHERN.NE. 1) GOTO 6
54; ACCEPT POISSONS RATIO '.PR
55, ACCEPT LIHEAR EXPANSION COEF.(E-85) N,EXPC
56; ACCEPT INITIAL FRACTURE HALF-WIDTH (NPt) ".ue
5?; WFAC-1.BE-92*EXPC*DIFF*(1.8+PR)'(I.ø-PR)
58; C
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59; 6 ACCEPT 00 ANY PLOTTINC?(YESXI) a,JKPL
60; ACCEPT CONVERGENCE PARAMETER FOR NAT INY "IEPS
61; DZsXL'FLOAT(NUM-I)
62;C
63;C CALCULATE V-ARRAY USED IN THE LAPLACE INVERSION
64; CALL LINV(NLAPV)
651C
66; IFLAG=0
6?;C
68 DDX0.0
69; DDTaS.8
?S;C
71, ACCEPT USTEP ALONG TIME? (YES1) HTYPE
72; IF(HTYPE-1)7,8,?
73; 7 ACCEPT X-STEP SIZE CM) u,DDX
74; ACCEPT X (N) u,XSTOP
75, ACCEPT NO X GRID POiNTS PER STEP HX
76; ACCEPT T1$E (YRS) T

7?; XMAXzDDX
78; NHXxNX
79; COTO 10
80; 8 ACCEPT TIME-STEP SIZE (YRS) 1DDT
81; ACCEPT SMAX TIME(YRS) .TSTOP
82; ACCEPT UDISCHARGE POSITION (N> u,XMAX
83; ACCEPT BEG1H TIME (YRS) ,T
84; ACCEPT 140 X GRID POINTS .NX
85;C
86; 10 DXzXN#X/FLOAT(HX-.1)
8?; FX*Rt+R2*XMAX,1080.
88, C
89; COzO.69314,T
90; DO 20 Js1,NLAP
91; S(J)SFLOAT(J)*CO
92; 20 CONTINUE
93;C
94, DO 128 KK1,NLAP
95; C

96;C SET UP COUPLING MATRIX
9?; 00 30 J1,N
98; BBFLOAT(J-1)SPI'XL
99; D(J)aSORT(88*80+S(kK),DIFF>
lOu 30 CONTINUE
101 ;C
102; DO 5$ J1,H
183, IF(J.EQ.1) BB2.0
104; IF(qJ.HE.1) 881.0
105; DO 40 g*1,N
106; I1J+K-1
10?; I2iABS(J-K)+1
108; A2(J,K)D(K>*(G(I1).G(12)),(2G.BB)
109; A(J,K)aDXSA2(J,K)
110; IF(J.EQ.K) A(J,K)ZA(J,K)+1.B
111; 40 CONTINUE
112; 50 CONTINUE
113; C
114; C
115;C CALCULATE INVERSE OF COUPLING MATRIX
116; CALL PJINY(EPS.N,A. AINY, ITER, IER)
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I1?,C
118, DO 60 Jal,N
119,
120, 60 CONTINUE
121; F(1)s-R2(S(KK)'(R1-T1NJ)*1000.0)
122.0
123;C INITIALIZE SCALED SOLUTION VECTOR
124; B(1)*-t.0S(KK)
125; DO 100 J21N
126;
12?; 100 CONTINUE
128..0
129;C INTEGRATE COUPLED D.E.'S VIA PADE BACKWARD DIFFERENCE
130;C APPROXIMATION
131; CALL 9DA(NX.N9DXAINV,F,B)
132,C
133;C STORE SOLUTION VECTOR IN MASTER ARRAYS
134;C X( , ). TEMPERATURE
135;C X2( , FRACTURE WIDTH
136, DO 110 Ja1,H
137, SUMO.0
138; DO 105 L1.N
139; SUMSUN+A2(J,L)*B(L)
140; 105 CONTINUE
141; SUNSUM'S(KK)
142; X2(KKJ)SUM
143; X(KK,J)x8(J)
144; 110 CONTINUE
145; 120 CONTINUE
1 46; C

147; C
148;C MAP MASTER ARRAYS TO THE TIME DOMAIN
149; DO 150 Jal,N
150; SUN.0.0
151; SUN20.0
152, DO 148 K.1.NLAP
153; SUNSUM+V(K)*X(KsJ)
154; SUM2*SUM2+V(K)*X2(K,qJ)
155; 140 CONTINUE
156; B(J)zSUN*0.69314/T
15?; 82(J)aSUN2*0.69314/T
158; 150 CONTINUE
159; C
160; C
161,C CALCULATE TEMPERATURE.FRACTURE WIDTH DISTRIBUTION
162,C ALONG Z
163; DO 180 J*1. HUM
164; ALPHASICMA'Q(J)'(2.0.COND)
165; SUN.0.S
166; SUM2.0.S
167; DO 170 K1.H
168; CO'FLOAT(K-l)*PI'XL
169; SUMSUM+B(K)*(R1-TINJ)*COS(CO*ZZ(J))
170; SUM2aSUN2+B2(K)*(R1-TIHJ)*COS(CO*ZZ(J))
171; 170 CONTINUE
172; TENP(J)ZSUM+FX
173; WIDTH(J)=50M2*WFAC*ALPHA+W8
174; 190 CONTINUE



1?5;C
176
177;C
178,
179;
188;
181
182,C
183;
184 iC
185,C
186k
18?;
188;
189;
190;
191;
192;
193, C
194;C
195;
196;
19?; C
198;
1 99;
290;
281;
292;
283;
204;
205;

IF(JKPL. NE. 1) GOTO 185

CALL XPLOT(NUPI1ZZ1TEMP1IFLAC1.0)
CALL PLOT(P(11 9),0. L-3)
CALL ICPLOT(NUM,ZZ.WIDTH1IFLAG.218)
CALL PLOT(P(2.9)10.S-3)

IFLAG1

CALCULATE POWER ASSUMING CONDUCTION
185 DO 190 Jal, NUN

TEMP(J)aO(J )*( TEMP(J)-TD)
190 CONTINUE

CALL SIMP(DZ, TEMP, SUM. NUN)
SUMSUP1*S IGIIA'XL
SUNSUN' 1008.
P 1SUN
P1 IS POWER (KM/N).

WRITE(12590) T.XMAX,P1
599 FORMAT(1H .3(F8.3.5X))
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IN Z-DIRECTION

IF(NTYPE.NE.1.AHD.XNAX.GE.XSTOP) GOTO 698
IF(NTYPE.EQ.1.AHD.T.GE.TSTOP) GOTO 608
IF(NTYPE.EQ.l) TT+IDT
IF'(NTYPE. NEt) XMAX*XMAX+DDX
IF(NTYPE. NE. 1) HX=NX+NNX
COTO 10

690 IF(NTYPE-1) 78.7
END
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1.0 PROGRAM ECOI4
2; COMMON P'.2.9)
3; COMMON COND DIFF, SIGflA TI, C GRAD
4; DIMENSION 2e8,X(3),A':3) D(3),FLOW(3),TAVG(3). TCAP(3)
5; DIMENSION XR(208),AA(288),EXR(208),E(3)
6 CALL IHITIAL(6,100,Il.0, 11.8)

8,C ECON CALCULATES THE MINIMUM FLUID-ROCK CONTACT AREA
93C REQUIRED FOR AN ECONOMICALLY VIABLE GEOTHERMAL HEATING'

18,C POWER SYSTEM. THE PHYSICAL SYSTEM IS APPROXIMATED WITH
11;C A UHI-DIRECTIOHAL FRACTURE FLOW WITH AN INBEDDED LINEAR
12,C FLUID LOSS BETWEEN II4.ECTIOH AND PRODUCTION PORTS. <SEE

13;C SUBROUTINE IMOD). THE iNITIAL ROCK FORMATION TEMPERATURE
14;C IS ASSUMED LINEAR WITH DEPTH AND THE MINIMUM PRODUCTION
15,C TEMPERATURE IS CONSTRAINED TO A GIVEN CONSTANT VALUE. THE

16;C SYSTEM IS IN AN UPFLOW CONFIGURATION. . THAT IS, THE

17,C INJECTION PORT IS AT A DEEPER (AND HOTTER) POSITION
18;C WITHIN THE QUASI-VERTICAL FRACTURE THAN THE PRODUCTION
193C PORT.
28;C
21,C s****'*.** INPUT PHYSICAL SYSTEM PARAMETERS ********
22; ACCEPT "ROCK CONDUCTIVITY...W'M.DEG ",COND
23; ACCEPT "ROCK DIFFUSIYITY...M**2/SEC "DIFF
24; DIFF31. 536*DIFF
25; ACCEPT "SPECIFIC HEAT OF FLUID. ..J/KG. DEC U,SIGMA
26, ACCEPT "INJECTION TEMPERATURE ",Tl
2?; ACCEPT "SURFACE TEMPERATURE ",ST
28, C
29;C ****$**** INPUT ECONOMIC SYSTEM PARAMETERS **********
30; ACCEPT "SYSTEM LIFETIME (YRS) ",SL
31, ACCEPT "M114. ACCEPTABLE PROD. TEMP. ",PTN
32, TYPE
33; TYPE INPUT (DRILLING COSTS/BOREHOLE) PARAMETERS"
34, ACCEPT "Al (1(11KM) = ".Al
35; ACCEPT "A2 (K$IKM**2) = ",A2
36, TYPE
3?, ACCEPT "SURFACE EQUIP. COSTS (1(S)/BOREHOLE ",SEC
38, SECSEC*2.8
39; ACCEPT "OPERATION COST PARAMETER ",OCP
4$; ACCEPT 'INTEREST COST FACTOR ".CF
41; TYPE
42; ACCEPT "INJECTION WATER VALUE (CENTS/MT.) ",WVI
43; TYPE "INPUT PUMPING COST PARAMETERS"
44; ACCEPT "88 (CENTS/MT ) ",88
45; ACCEPT "81 (CEHTS'MT.KM) ",Bi
46; TYPE
4?; ACCEPT "SYSTEM EFFICIENCY ",EFF
48; ACCEPT "BUILD. HEAT 1,POWER8 ",NTYPE
49; C
58;C t*****'*** INPUT PROGRAM PARAMETERS **t*******
51, ACCEPT "NO. tItlE POINTS (LT 208:' ",NT
52; ACCEPT "ACCEPTABLE ERROR IN MINIMUM (1(M) ",EPS2
53; ACCEPT "FLOW CONVERGENCE PARAMETER ",EPS1
54; DXEPS2'S 8
55, DXP=8 0
56 C

57. K21
58 ACCEPT "STEP PRODUCTION DEPTHS" (YES=1' ".NSTEP
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59; 1F(NSTEP.NE.1> COTO 19
68; ACCEPT "NUMBER OF CASES ",N2
61; ACCEPT "DEPTH CHANGE (KM) " DXP

62; C
63; 13 ACCEPT "NIH. GEOTHERMAL GRADIENT (DEC'KM) "GN!N
64; ACCEPT "GRADIENT SPACING (DEC/kM.' ",DC
65; ACCEPT "NO. SPECIFIC GRADIENT CASES ",NG
66, C
6?; ACCEPT "PLOT AREA VS DEPTH (YES1) ",NPLOT
69; ACCEPT "LIST AREA VS DEPTH? (YES1) "JNLIST
69; IF(NPLOT.EO.1.OR.NLIST.EQ.1) ACCEPT "XMAX .KM) ",XMAX
79; IF(NPLOT.EQ.1.OR.NLIST.EQ.1 ACCEPT "NO. X POINTS "HX
71, NTOPIi1
72; NTOP2a3
73. IF(NPLOT.EO.1.OR.NLIST.EQ.1) HTOP21
74; IF(NPLOT.EQ.1.OR.NLIST.EQ.1) HTOPIHX
?5.iC
76; IF(HTYPE.E9.1) GOTO 20
7?, TYPE "INPUT EXERCY COEFFICIENTS"
79; ACCEPT "El (KJ'KG) ",El
79; ACCEPT "E2 KJ'KG.DEC) ",E2
90; ACCEPT "E3 (KJ/KC.DEC.*2) ",E3
81; C
82; 28 ACCEPT 'PIAX. FLOW (KG'PLSEC) ",QMAX
83; ACCEPT "MIII FLOW (KG'M.SEC) ",QPIIN
84; C
85; 22 ACCEPT FLUID LOSS PARAMETER "FLF
86; IF(HTYPE.EQ.0I COTO 23
8?; ACCEPT "DISPOSAL TEMPERATURE ",TD
88; ACCEPT "THERMAL WATER VALUE ($/GJ) ",WV
89; ACCEPT "DISTRIBUTION COSTS ($/CJ) ',TC
90; GOTO 24
91; 23 ACCEPT "BUSS-BAR POWER COST (CEHTS'KWHR) ,PC
92; C
93; 24 ACCEPT "BEGIN SEARCH DEPTH (KM) ",SSH
94; ACCEPT "UPPER LIMIT ON DEPTH SEARCH (KM) ",SMAX
95; IFLAGZIa
96;C
9?; C
98;C ******** MARCH THROUGH SPECIFIED GRADIENT CASES ****s
99; DO 1080 Ul.NG

100; GRaGMIN+FLOAT(Kk-l)*DG
101; GRADa-GR
182; C
103; DO 989 NM1N2
194;C CALCULATE PRODUCTION WELL DEPTH
105; D1a(PTM-ST.'GR+FLOAT($M-l)*DXP
106; C
10?; D2aSSH
189; IF(PIPIOT.EQ.1.OR.NLIST.EQ.1) DX(XNAX-D2)'FLOAT(HX-l)
109; IF(NPLOI.EQ.1.OR.NLIST.EQ.1) GOTO 2?
118; C
111; 26 D(l)D2-DX
112; D(2>aD2
113; D(3)D2+D>c
114; C
115. 27 DO 509 JJ.l,NTOPI
116; !F(NPLOT.EQ.1.OR.NLIST EQ. 1) D(1>D2.FLOAT(JJ-1)*DX



117;
118;
119;
128; C
121;
122; C
123; C
124; C
125; C
126;C
12?';C
128;C
129;C
130; C
131;
132;
133;
134;.
135;
136;
137;
138;
139;
140;
141;
142;
143;
144;
145;
146; C
147; C
148;
149;
150;
151;
152;
153; C
154;
155; C
156; C
15?;
158;
159;C
160;
161. C
162
163;
1 64;
165;
166; C
16?; C
168k
169;
1 70;
171;
I 72.
173;
1 74; C
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80 488 J=1,NTOP2
X(J)zDt.J)-D1
XX.X(J)

C2ST,CR*D(J)

Dl IS DEPTH OF PRODUCTION WELL (KM)
12 IS DEPTH OF INJECTION WELL (KM)
K IS DISTANCE OF PROD. PORT FROM IHJ. PORT (KM)

ITERATE TO FIND FLOW PATE FL THAT YIELDS TEMP. PTM
AT TIME SL. (AT PRODUCTION PORT)
(OMIN,QMAX) IS SEARCH DOMAIN FOR FL

I TER1
FLs3. 9
Q10MIN
Q2zQMAX

30 CALL TNOD(SL.XX,Q1.FLF,TENP)
F l TEMP-P TM
CALL TMOD(SL. XX, 02. FLF, TEPIP)
F2.TEIIP-PTM
IF(F1.EQ.F2) GOTO 58
93z(01402)'2. B
CALL TPfOD(SL. XX, 03, FLF. TEMP)
F3uTEMP-PTM
RAT*ABS( 83-FL) 'ABS( 03)
IF(RAT.LE.EPSL) GOTO 58
FL03

LOGIC BLOCK
IF(F3. CT. 0. 0) Q1Q3
IF(F3.LT.0.8) 82283
ITER2I TER+1
IF(ITER.CT.Z89, GOTO 28
GOTO 38

50 FLOU(J)aFL

CHECK ON CONSTRAINT
CALL TNOD(SL. XX, FL. FLF, TEMP)
IF(ABS(IEMP-PTM).GT.1.8) TYPE FLOW CONY. ERROR

FL2aFL,( 1. 8-FLF)
FL2 IS FLOW AT INJECTION PORT (KC'M.SEC)
DELI 2ABS ( FL-QPIAX )/ABS (OMAX)
DELZ2ABS ( FL-QIIIH )'ABS .QM IN)
IF(DEL1.LT.8.90I) GOTO 28
!F(DELZ.LT.8.081) GOTO 20

CALCULATE TEMPERATURE HISTORY OF SYSTEM
DT2SL/FLOAT(NT-1 )
DO 69 1,HT
TIME-FLOAT(K- I )*DT
CALL TMOO(TIME,XX. FL, FLF. TEMP)
T (K) .TEMP

68 CONTINUE



1 75 C
176;
17?.
1 78; C

179. C

180.
181 ;C
182; C
183;
184;C
185; C
186;
18?;
188; C

189.iC
198; C

191.
1 92;

193;
194;
195;
196;
197.
198;
1 99; C

200; C
201
282;
203;C
204; C
295; C
206;
29?; C
208; C
209;
218; C
211; C
212;
213; C
214; C
215;
216;C
21?; C
218;
219;C
220; C
221;
222;
223; C
224;
225. C
226;
227;
228;
229;
238; C
231 C

232;
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CALCUL4TE SPECIFIC PRODUCTION OF SYSTEM (MT./M**2)

QFL.SL*31. 536'X(J)
Q2FL2.SL*31. 536'X.J)

CALCULATE TOTAL PUMPING COSTS (S,M**2)
TPC=(B8s81*L(J))*Q2*1BE-82

CALCULATE INJECTION WATER COSTS ($/Ms*2)
TICsWVI*FLFsQ2*1 BE-02

CALCULATE AVERAGE PRODUCTION TEMPERATURE
CALL SINP(DTT,ANSNT)
TAVC(J)ANS'SL

CALCULATE TOTAL ENERGY PRODUCED PER SQUARE METER OF
FRACTURE OVER SYSTEM LIFETIME (GJ,N**2)
IF(HTYPE.EQ.B) GOTO 78
E(J)aSIGPIA*(TAVG(J)-TD)*EFF*Q*1. OE-06
GOTO 1.50

78 DO 88 LLt,$T
EXR(LL)ZE1+T(LL)*(E2+T(LL)*E3)

80 CONTINUE
CALL SINP(DT,EXRAI4S1NT)
E(J)aANS*EFFsQ*1.0E-0.3,SL

CALCULATE SPECIFIC REVENUE OF SYSTEM ($/$**2)
150 IF(HTYF'E. EQ. 1) SPV=(WV-TC)sE(J)

IF(HTYFE.ECi.0) SPV=PC4E(J)'0.36

SUBTRACT PUMPING COSTS AND INJECTION WATER COSTS FROM
SPECIFIC REVENUE
SPVSPV- TPC-T IC

CALCULATE DRILLING COST FOR SYSTEM (KS)
DRIL-A1*:fl14DJ))+A2s:D1*,2+Dji2

CALCULATE TOTAL CAPITAL INVESTMENT (MECA$)
TCAP(J)=(SEC+DRIL)'l. 8E83

CALCULATE TOTAL OPERATION COSTS <KS)
OCOCP4 (SEC$DR IL >bSL

CALCULATE TOTAL EXPENDITURES OVER SYSTEM LiFETIME (KS:'
TOTEXzCF* (SEC+DR IL) +QC

CALCULATE CONTACT AREA (KM**2)
IF(SPV.GT.8.8) A(J)aTOTEX*1. eE-63'SPV
IF(SPV LE.0.8) A(J)-1.0

IF(NLIST.EQ.1) WRITE(12,2081) GR,D1,D(1),A(1>

488 CONTINUE
IF(NPLOT.EQ.I) XR(JJ)D(1)
IF(HPLOT EQ 1) AA(JJ)=A(1

508 CONTINUE

IF(HPLOT EQ. 1) CALL XPLOTHX, XR,AA, IFLAG 18)
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233; IFLAG1
234; IF(NPLOT.EQ.1.OR.NLIST.EQ.1) GOTO 1880

235;C
236;C CALCULATE FIRST DERIVATIVE OF SYSTEM FUNCTION
23?; DER1 s(A(3 )-A( 1) )ø(2. OsDX)

238;C CALCULATE SECOND DERIVATIVE OF SYSTEM FUNCTION
239; )ER2a(A(3)-2.OaA(2)+A(1)),(DX**2)
24rC
241;C UPDATE DISTANCE DETWEEN INJECTION AND PRODUCTION PORTS.

242;C NEWTON'S METHOD IS USED TO FIND THE ZERO OF THE
243;C SYSTEM FUNCTION FIRST DERIVATIVE
244; DD2.D2-DERI'DER2
245;C
246;C CHECK IF UPDATE IS IN SEARCH RANGE
24?; IF(DD2.LE.D1) GOTO 24
248; IF(DD2 GE.SNAX) GOTO 24
249; C
250;C. CHECK FOR CONVERGENCE
251; IF(AOS(9D2-D2).LT.EPS2) GOTO 688
252; D2DD2
253; COtO 26
254;C
255;C HAVE CONVERGED OH OPTIMUM SYSTEM CONFIGURATION
256; 680 SMA(2)'X(2)
257; ASPSW'X(2)
258k FLOuFLOV(2)
259; Q.FLO*SL*31536,X(2)
260; POWE(2)eA(2)*31.?1'SL
261; EN.POW*SL
262; FFaFLOSW*1.BE83
263;C
264;C A(2) FLUID-ROCK CONTACT AREA (KMi'*2)
265;C SW 'STRIP WIDTH' (KM>
266;C ASP 'ASPECT RATIO'
26?;C FLO PRODUCTION FLOW (KG'M.SEC)
268;C 0 SPECIFIC PRODUCTION (MET. TOHS/fl**2)

269;C POW POWER PRODUCTION (MWATTS)
2?$;C EN ENERGY (MW-YRS)
2?1;C FF PRODUCTION WELL FLOW (KG'SEC)
272; C
273; WRITE(12.2880) GRD1Dc2),OFLU,TAvG(2),4(2),SvASP.
274; CPOW.EN,FFTCAP(2)
275; C
276;C UPDATE OEGIN SEARCH POINT FOR NEXT CASE
2??; SSHD(2)
278; C
279; 900
280; 1988
281
282; C
283; 2088
284; 2881
285;
286;

CONT INUE
CONT IHUE
PAUSE

FORMAT(IH 13(F?. 3, 2X))
FORPIAT(IH ,4(F?.3,3X))
GOTO 22
END
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FUNCTION ERF(X)
2;C
3,C ERF COMPUTES THE ERROR FUNCTION ERF(X). FROM ABRONOVITZ

4IC AND STEGUN, PAGE 299 (7. 1.26). ESTIMATED ERROR IN

SiC RETURNED FUNCTION VALUE IS LESS THAN 1.SE-8?.

dc
7; P.32?59I1
8; Al.. 254829592
9i A2u-. 284496736
lDi A3-I.421413?41
11; 44.-1.45315282?
12; A5'1.061485429
13; T.1.O,(1.8+P*X)
14; F1.A1,Ts(A2.Ta(43,T.(A4+T*AS)))
15; F1TsF1
15; ERFaI.8-FIsEXP(-X.X)
1?; RETURN
18; END
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1; SUBROUTINE FOUR1ER(N,NUM,XLEN,SIGMACOHD1QB.Q1ZLZHG
2 DF,ZZ.H)
3; DIMENSION C(40), F(48),Z2(48), H(48)
4;C
5; P1.3.14159
6. N.2*N-1

8.0 INPUT NUMBER OF Z-POINTS ON WHICH FOURIER COEFFS. ARE TO

9.0 BE COMPUTED
1$; ACCEPT N2 NZ
11 ;C

12,C SPECIFY MEAN FLOW (AVERAGE ACROSS CHANNELS)
13. ACCEPT 'OBAR. . .KC'N.SEC ",QBAR
14;C
15, ACCEPT ZL (N) .2L

16; ACCEPT 'CHANNEL TAPER WIDTH (N) W

l7iC
18;C (SEE FUNCTION CHAN FOR DEFINITIONS OF WsZLZH,O8,Q1)
19;C
2$; ZH.ZL+W
21 C

22; ACCEPT '01. .KGI'$.SEC '01
23; F1.W'(Z.$*XLEH)
24; F21.B-(W4ZL)/XLEN
25; F3F1+ZL/XLEN
26; QBa(QBAR-01s(F1+F2))/F3
27; TYPE '08. .KG/M.SEC 2 '08
28;C
29;C
3$; HZM1zNZ-1
31; DZaXLEN'FLOAT(HZN1)
32; DO IS J1,NZ
33; Z.FLOAT(J-1)*DZ
34; F(J)a2.SsCONO,(SIGMAsCHAN(Q8,Q1,ZL,ZH,Z))
35, 18 CONTINUE
U; C
37C s*S*s DETERMINE FOURIER COEFFS. OF F(Z) *****
38;C CALCULATE DC COEFF.
39 SUM.S.B
4$; DO 28
41, SUNSUM+F(J)
42; 28 CONTINUE
43; G(1)a((F(1)+F(NZ))+2.9*SUN)*DZ/XLEN
44; C

45;C CALCULATE HIGHER COEFFS.
46; 8.-1.S
4?, DO 48 K2.M
48; XKaFLOAT(K-1)
49; SUNS.8
5$; DO 3$ J2.NZ$1
51; ZFLOAT(J-1)sDZ
52; SUPISUM+F(J )*COS (XKsPI*Z'XLEN)
53, 38 CONTINUE
54; C(K)a((F(1),S*F(NZ))+2.8*SUM)sDZ,XLEN
55.
56; 48 CONTINUE
57; C

58. DZXLEN.'FLOAT(NUPI-1)
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59;c
69; 10 79 J.I1NUM
613 ZZ(d).FLOAT(J-1)*DZ
62; HCJ)aCHAN(Q9,Q1,ZL,ZHsZZ(J))
63; SUM9.9
64; DO 69 K.2,N
65; .KK.cLOAT(K-I)
66; SUMaSUM+C(K )*COSCXK*PI*ZZ(J) /XLEN)
6?, 69 CONTINUE
69; F(J)G(1)'2.9+SUN
69; F(J).2. 9*COND'(SIGMA*F(J))
79; 79 CONTINUE
71; CALL SINP(flZ,F,AHS,HIJN)
72; ANSANS'XLEN
?3;C
74; TYPE QBAR CHECK (KG'M.SEC) ,AHS

?5,C 'Q8AR CHECK' CHECKS HOW WELL THE CALCULATED FOURIER
?6;C COEFFICIENTS DUPLICATE THE MEAN FLOW ORIGINALLY REQUESTED.

79; RETURN
79; END
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1; SUBROUTINE LINY(NT.FA1VN)
DIMENSION V(1S0)G(01108).H(188)

3,C
4;C LINY CALCULATES THE NUMERICAL INVERSE OF A LAPLACE
SiC TRANSFORM. ALGORITHM 368 (CACK).
6..0

T REAL SPACE INDEPENDENT VARIABLE
8;C N SOME EVEN INTEGER OF THE ORDER OF THE NUMBER OF DIGITS
9;C THE MACHINE IS CAPABLE OF WORKING WITH.

N SOME INTEGER NOT EQUAL TO N AT FIRST CALL TO LIHV.
11,C FA THE RETURNED APPROXIMATE VALUE OF F(T).
12..0 V RN iNTERNAL ARRAY
13;C XINV A FUNCTION REPRESENTING THE TRANSFORM OF F(T)
14, C

*5. IF(N.EQ.N) GOb 190
16; G(8)al.0
1?; HH.H'2
18; DO 10 1*1,14
19, G(I )aG(l-1).FLOAT(I )
28; 10 CONTINUE
21; H(1)a2.B,'G(NH-l)
22; DO 28 I.2HH
23; H(I).(FLOAT(I)**NH)*G(2*I),(G(HH-i)SG(I)*C(I-1))
24; 20 CONTINUE
25; 5N2.esFLQAT(nOD(HH,2))-1. 0
26; DO 40 i1.N
2?, V(I)aO.0
28, NTOP2MINO(I,NH)
29; NBOT*(I+1)'Z
30; DO 38 KsNBOT,NTOP
31. V(I)V(I)+H(K),(G(I-K)*G(2*K-1))
32; 38 CONTINUE
33; V(I)SN*Y(I)
34; SN-SH
35; 40 CONTINUE
36;C
3?, MN
38; 180 FA9.0
39; Aa869314'T
48; DO 118 I1N
41; RRGaFLORT(Z)*R
42;C ARG a LAPLACE TRANSFORM SPACE INDEPENDENT VARIABLE
43; FAaFA+V(I)*XINV(ARG)
44; 110 CONTINUE
45; FAA*Fw
46; RETURN
4?; END
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SUBROUTINE PJINV(EPS. 14 ASUN ITER, ZER)

2; DIMENSION SUN2(15115)D(15).A(1515)SUM(15.15)
3;C
4,C PJINV CALCULATES THE INVERSE OF AN MXII MATRIX USING

5;C THE POINT JACOBI METHOD.
6;C

EPS - CONVERGENCE CRITERION APPLIED TO EACH ELEMENT OF
8.iC THE RETURNED SOLUTION
9;C N C RANK OF MATRIX
10,C A MATRIX TO BE INVERTED (RANK N)
IIiC SUM RETURNED INVERSE OF A
12;C hER s ITERATIONS REQUIRED TO OBTAIN DESIRED CONVERGENCE
13;C CRITERION.
14;C
15; hER-I
16, DO 10 J1N
1?, D(J)sl.OIA(J1J>
18; A(J.J)-S.0
19; 10 CONTINUE
20;C
21; DO 30 J.1.$
22; DO 20 K.1.,N
23; IF(J.EG.K) F1.0
24; IF(J.NE.K) FaO.0
25; A(J.K)a-D(J)*A(J,K)
26; SUN(J.K)aA(J,K)+F
2?; 28 CONTINUE
28; 38 CONTINUE
29; C

30; ITERO
31, 35 ITERITER+1
32; DO 3? J1,N
33; DO 36 KaI,N
34; SUM2(JK)aSUNCJ.K)
35; 36 CONTINUE
36; 3? CONTINUE
3?; IF(ITER.GT.200) GOTO 500
38; DO 60 J1.,N
39; DO 50 K.1,N
40; IF(J.EQ.K) F-I.e
41; IF(J.NE.K) F0.0
42, S$a8.0
43; DO 40 L1,H
44, SSSS+SUM(J.L)sA(L.K)
45; 40 CONTINUE
46, SUM(J1K)SS+F
4?; 50 CONTINUE
48; 60 CONTiNUE
49; C
58;C CHECK FOR CONVERGENCE
51 DO 88 J1,N
52; DO ?8 Kui,N
53; DELT'ABS((SU$2(J1K)-SUN(J.K)),SUM(J,K))
54.. IF(DELT.GT.EPS) COTO 35
55. 70 CONTINUE
56, 80 CONTINUE
57 C
58.0 HAVE CONVERGED ON SOLUTION
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59; DO lID J.1.N
61; DO III K.I,t4
61; SUN(J,K).D(K)*SUM(J,K)
62; 100 CONTINUE
63; iii CONTINUE
64; RETURN
65;C
66; 500 IER$
6?; RETURN
68; END
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PACE
SUBROUTINE SINP(H.YANSNDIM)

2,C
3iC SIMP CALCULATES THE INtEGRAL OF AN EQUIDISTANTLY SPACED
4,C TABULATED FUNCTION BY SIMPSON'S RULE.
5;C
6,C H a INTEGRATION STEP SIZE

V - INPUT VECTOR OF FUNCTION VALUES
B;C ANS RETURNED VALUE OF INTEGRAL
9.0 NDIM DIMENSION OF V

1SiC Z - INTERNAL VECTOR OF INTEGRAL VALUES
11 IC

12;C FRON IBM SCIENTIFIC SUBROUTINE PACKAGE
13;C
14; DIMENSION Y(4S)Z(41)
15; HTS333333333*H
16; IF(NDIN-5) 7.8.1
1?;C
18;C NDIN IS GREATER THAN 5. PREPARATIONS OF INTEGRATION LOOP
19; 1 SUNIY(2)+Y(2)
28; SUMI.SUNI+SUMI
21; SQM1HTSCY(1)+SUMI+Y(3))
22; AUXIY(4)sY(4)
23; AUX1.AUXI+AUXI
24; AUK1SUMI'HT*(Y(3)+AUXI+YC5))
25; AUK2.HTS(Y(1)+3.8?5*(YC2)+Y(5))+2.625s(Y(3)+Y(4))+Y(6))
26; SUN2Y(5)+Y(5)
2?; SUM2SUMZ.80N2
28; SUM2.AUX2-NT*(Y(4)+SUM2+YC6))
29;
31; AUK.Y(3)+Y(3)
31; AUX-AUX+AUX
32; Z(2).SUM2-HT*(Y(2)+AUX+Y(4))
33; Z(3)-SUNI
34; ZC4).SUM2
35; IF(NDIPI-6)S,52
36;C
3?;C INTEGRATION LOOP
38, 2 DO 4 Ia?,NDLN.2
39, SUM1-AUXI
41, SUN2-AUX2
41; AUX1.Y(I-I)+Y(I-1)
42; AUXI.AUX1+AUXI
43; AUX1-SUNI+HT*CYCI-2)+AUXL+Y(I))
44; Z(I-2)-SUM1
45; IF(I-NDIN) 36.6
46; 3 AUX2-Y(I)+Y(I)
4?; AUX2.AUX2+AUX2
48; AUX2.SUM2+HT*(YCI-1)+AUX2.y(I.1))
49; 4 Z(I-1)SU$2
55; 5 Z(NDIN-'l)sAUXI
51; Z(NDIN).AUX2
32; ANSZ(NDIN)
53; RETURN
54; 6 Z(NDIN-1)-SUN2
55; Z(NDIP3)-AUXI
56; ANSZ(NDIN)
57. RETURN
58;C END OF' INTEGRATION LOOP
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59,C
69; 7 IF(N1I$-3) 12.11.8
61 ;C

62;C NUIN IS EQUAL TO 4 OR 5
63; 8 SUN2sl.125*HT.'(Y(1)+3.S*Y(2)+3.I*Y(3)Y(4))
64; SUN1Y(2)+Y(2)
65; SUN1.SUNI+SUNI
66, SUH1-HT*(Y(1)+SUNI+Y(3))
6?; ZCi).S.9
69, AUX1Y(3)+Y(3)
69, AUX1aAUXI+AUXI
79; Z(2).SUN2-HT*(YC2)+AUXI+Y(4))
71; IF(NDIN-5) 10,9.9
72; 9 AUX1Y(4)+Y(4)
73; AUKI.AUXI+AUXI
74; Z(S).SUNI+HT*(Y(3)+AUXI+Y(5))
75; 10 Z(3)SUMl
76; Z(4)'SUN2
7?; ANS.Z(P4DIN)
78; RETURN
79; C

81;C NDIN IS EQUAL TO 3
81; 11 SUN1HT*(1.25*Y(I)+2.S*Y(2)1.25*Y(3))
82; SUM2Y(2)+Y(2)
93; SUN2aSUNZ,SUN2
84; Z(3).HT*(Y(1)+SUN2+Y(3))
85; Z(1)S.S
86; Z(2)zSUMI
9?; ANSZ(NDIN)
88, RETURN
89; C

98; 12 IF(NDIN.EQ.1) GOTO 15
91; Z(1)8.9
92; Z(2)(Y(l)+(YC2)Y(1))*9.5)*HT
93; ANSZ($DIN)
94; RETURN
95; C

96; 15 Z(1)S.S
97; ANS.Z(MDIN)
98; RETURN
99; END
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PAGE
ii SUBROUTINE TMOD(T,X,Q,FLF,TENP)
2. COMMON P(2.9)
3; COMMON XKASSIGNA.TI,CID
4;C
S.0
S.0 TMOI CALCULATES PRODUCTION WELL HEAD TEMPERATURE FOR

A SIMPLE FRACTURE FLOW MODEL THAT ACCOUNTS FOR A DISPRIB-
B;C UTED FLUID LOSS BETWEEN INJECTION AND PRODUCTION PORTS
9;C OF THE SYSTEM. THE MODEL ASSUMES A FRACTURE FLOW OF THE
ISaC FORM OCX) OS + EPS*X WHERE N IS THE DISTANCE FROM THE
11;C INJECTION PORT IN THE DIRECTION OF FLOW.
12;C
13;C PARAMETERS
14;C T ....... TINE <YRS)
I5;C K ....... DISTANCE FROM INJECTION PORT TO PRODUCTION PORT (KM)
16;C S ....... PRODUCTION WELL FLOW CKG/N.SEC)
17,C FLF ..... FLUID LOSS PARAMETER
18;C .(Q(INJ)O(PROI))'Q(INJ)
19;C
2SaC KK ...... ROCK CONDUCTIVITY (V/N.DEG)
21;C A ....... ROCK DIFFUSIVITY (KM**2/YR)
22;C SIGMA. ..FLUID SPECIFIC HEAT (J/KG. DES)
23;C TI ...... INJECTION TEMPERATURE
24;C
25,C INITIAL ROCK FORMATION TEMPERATURE IS C + D*X
26,C
2?, C

28; P1.3.14159
29; QI.Q'Cl.$FLF)
3$; EPS.(OOS)/X
31, ALPHA.2.S*XK,(SIGNA*OS)
32; IF(T.EO.8.$) COTS 185
33; IF(EPS.EO.S.B) COTS 75
34; GAMEPS/O8
35, BETA.ALPHA*ALPHA*ALOGCI. $+GAN*X)/(2. 5*A*T*GAM*GAM)
36; TEST.1.S+BETA
3?; A1.CAN*SORT(A*T)'ALPHA
38; A2.ALPHA*ALQG(1.e+GAM*X),(2.SeCAM*SORT(A*T))
39, A3.I.$+CAM*X
45; C

41, C1.1.SERF(ABS(A2))
42, E1(T1C)*C1
43,C
44; E2.1sA3'GAM
45iC
46; IF(ABS(BETA).LT.S.81) COTS 48
4?, Blal.B+ERF(ABS(A1))
48, IF(TEST.LT.8.8) 82.1.SERF(TEST*A1)
49, 1FCTEST.CE.8.8) 82.1.$+ERF(ABS(TEST*A1))
55; IF(ABS(A1).CT.8.8) A1.8.$
51; C3.A3*EXP(A1*A1)*(B1-82)
52; E3D*C3'GAfl
53; COTS 50
54;C
55. 48 E3-2. e*A2*A3*D/(GAM*SORT(PI))
56;C
5?; 55 E4(1.8ERF(A2))sD'GAM
58 C
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1 TENP.E1-E2.E3.E4+C+)aX
ISa C

RETURN
62aC
63a 75 *1sALPNA*X(2.5*SQRT(AsT))
64a IF(A1.GT.8.S) AlaS.$
GSa A2.2.SeDSSSRT(A*T,pI),ALPNA
66, BICTICD*X)*(1.S-ERFCAI))
6?a BZ.A2e(1.SEXPCAIsA1))
IS, TEMP.8I-82+C+D*X
69; RETURN
71; tee TENP.C+D*X
hi RETURN
72; ENS
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I, SUBROUTINE XPLOT(NX,Y. IFLAG. IT.NSYM)
2, CONNON'PLABEL/LABI (1) LAB2CI)

COMMON PC2.9)
4, DIMENSION X(2$S),Y(2S1)A(21S),B(21S)
SIC
6, DA7A LABI'2H N'

DATA LAB2/2H YI
I, IFCIFLAG.EQ.1) GOTO Ill
9, IF(IT.EQ.2) GOTO 2$
1I,C
II, ACCEPT LENGTH CINCNE$) OF ABSICIS$A ',PCl.I)
12, ACCEPT NEIGHT CINCHES) OF ORDINATE ,P(1,2)
l3i ACCEPT NAX. ASCISSA VALUE '.PCl,3)
14, ACCEPT 'NIN. AICISSA VALUE .PC1.4)
15, ACCEPT NAX. ORDINATE VALUE .PC1.5)
16, ACCEPT 'RIM. ORDINATE VALUE '.PCl,6)
1?, PC1.?)a(PCi,3)PC1,4))/P(1,1)
l.a P(l.$).(P(I.5)P(l.6))#'P(1.2)
19, PCI. 9).PCI. I)+I.S
2$, IFCIT.E$.I) GOTO 5$
21i TYPE
22, 21 TYPE 'PARAMETERS FOR PLOT 2'
23, ACCEPT 'LEHGTN (INCHES) OF ABSCISSA '.PCZl)
24, ACCEPT 'HEIGHT (INCHES) OF ORDINATE 'P(Z.Z)
25, ACCEPT NAK. AICISSA VALUE .'.PC2.3)
26, ACCEPT 'NIN. ASCISSA VALUE .P(24)
2?, ACCEPT NAX. ORDINATE VALUE '.P(Z.S)

ACCEPT 'RIM. ORDINATE VALUE '.P(2.6)
29i PC2. ?)(P(2,3)PC2.4))/PC2.I)
3$, P(2. 8).(P(2,5)P(2, 6))/P(2.2)
31, P(2,9)nP(I.9)

13i C
34, 5$ CALL AXIS(S.S,l.I.LAI2.2.PCIT.2).91.I.PCIT.6).PCIT.8),2)
35a CALL AXIS(l.S.S.S.LAS1-2,P(IT. l).S.SPCIT.4),PCIT. ?).2)
36aC
3?, Ill DO 15$ Jal,N
3$, A(J).(X(J)P(LT.4))'PCIT.?)
39 l(J).(Y(J)P(IT 6))'P(IT.8)
4S 15$ CONTINUE
41s NN.N
42,C
43, CALL LINE(A.B.NN,NSYN1)
44, CALL PLOT(I.I. S. 5. 3)
45;C
46, RETURN
47 END




