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The issue of global climate change and an increasing interest in the reduction of fossil fuel 

carbon dioxide emissions by using forest biomass for energy production has increased the importance of 

quantifying forest biomass in recent years. The official U.S. forest carbon reporting is based on the forest 

biomass estimates obtained from the equations, sample tree measurements, and forest area estimates 

of the U.S. Forest Service, Forest Inventory and Analysis (FIA). These biomass estimates differ from the 

estimates obtained from regional and other commonly used biomass equations and the difference is 

more evident in the component biomass estimates. 

In this dissertation, I assessed the efficiency of different sampling strategies to estimate crown 

biomass using data collected destructively from sampled trees. In terms of bias and root mean squared 

errors (RMSE), the stratified random sampling with probability proportional to branch basal diameter 

was better than other methods when 3 or 6 branches per tree are sampled but a systematic sampling 

with ratio estimation technique produced the smallest RMSE when 9 or 12 branches per tree are 

sampled. 



 
 

Total and component aboveground biomass estimates were obtained using the existing 

approaches and locally fitted equations based on the data collected in this study. The use of existing 

equations resulted in biased component biomass estimates along with higher RMSE. The locally fitted 

system of component biomass equations with seemingly unrelated regression (SUR) provided better 

estimates than existing equations. The need to use other explanatory variables in addition to the 

diameter at breast height (DBH) to estimate component biomass was justified by decrease in RMSE. 

Beta, Dirichlet, and multinomial loglinear regressions that predict proportion of biomass in each 

component were unbiased and produced lower RMSEs compared to the SUR methods for most of the 

species-component combinations. 

Three different methods for adjusting regional volume and component biomass equations were 

applied. All the adjustment methods were able to improve the performance of regional equations. 

Based on the leave one out cross validation, the RMSEs in cubic volume including top and stump (CVTS) 

and component biomass estimation were similar for the adjustments from a correction factor based on 

ordinary least square (OLS) regression through origin and an inverse approach. The adjustment based on 

OLS with intercept did not perform as well as the other two adjustment methods. When only one tree is 

available for calibration of regional models, we found it useful to use the tree with maximum DBH to 

calibrate regional CVTS and bark biomass equations and the dominant tree to calibrate bole, foliage, and 

branch biomass rather than to use randomly selected one tree. 
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1. Introduction 
 

1.1. Background 

The potential contribution of forest ecosystems in mitigating climate change can be realized 

through sustainable forest management. Although there is a consensus that climate change is affecting 

forests around the world, less is known of forest dynamics under the changing climate (Liang et al. 

2011). Accordingly, forest management will face new and evolving challenges in balancing interests 

between wood production and ecosystem services (Temesgen et al. 2015). Amount of biomass available 

in a forest is a critical factor that determines its role in climate change mitigation (Brown et al. 1995). 

Additionally, information on forest biomass is essential to calculate the carbon flux due to deforestation 

and carbon sink that results from reforestation (Houghton 2005).  

Biomass, in general, includes both above and below ground living and dead mass of trees, 

shrubs, vines, and roots (Lu 2006) and is expressed as oven-dry weight (Brown 1997). The components 

of aboveground tree biomass are main stem, stem bark, bare branch, and leaves or needles while the 

belowground tree biomass components are coarse roots and fine roots (Fonseca et al. 2012). The 

biomass in these different components can serve different purposes. For example, the biomass in stem 

wood is important in timber sale while the biomass in crown is useful in fuel load assessment, 

formulating fire management strategies and in developing wildfire models (He et al. 2013). The biomass 

in small branches and leaves or needles is essential in assessing the available feedstock for bioenergy 

plants. 

Forest management decisions rely on the quality, quantity, and distribution of forest resources. 

This information is obtained from systematic collection of the data that characterize stands, a process 

known as forest inventory. Due to the extensive nature of forest resources, measurement of the entire 

resources is neither practical nor economically feasible. Sampling is the process of selecting a subset of a 
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population to observe so as to estimate the characteristics of the whole population (Thompson 2002). 

The use of sampling strategies in forestry has a long history. Budget limitations and lack of resources are 

two major reasons that we use sampling instead of total enumeration. Additionally, measurement of 

some variables requires the destruction of itself, an excellent example of which is the measurement of 

biomass. 

Because the direct estimation of crown biomass is not only tedious and laborious but also 

economically not feasible, different sampling approaches have been used to quantify this biomass 

component. These approaches range from the methods that do not require any additional 

measurements such as simple random sampling, systematic sampling, and stratified random sampling to 

more complex designs that require detailed auxiliary information such as probability proportional to size 

sampling and randomized branch sampling (Temesgen et al. 2011). 

Simple random sampling is the basic building block and is generally used as a reference to 

evaluate the performance of other sampling designs. The stratified sampling provides samples that are 

more representative of the target population by grouping the population into homogenous strata. 

Snowdon (1986) found improved accuracy from stratification based on crown position in estimating 

crown biomass compared to the simple random sampling. Temesgen (2003) found stratified random 

sampling to result in the lowest mean squared error in estimating total leaf area in a tree. Temesgen et 

al. (2011), on the other hand, found the systematic sampling with ratio estimation as the most efficient 

method to estimate of individual tree foliage biomass. 

The randomized branch sampling (RBS), originally introduced by Jessen (1955) to estimate fruit 

counts on individual orchard tree, has also been used by many researchers to quantify biomass in tree 

crown (e.g. Valentine et al. 1984; Williams 1989; Gregoire et al. 1995; Schlecht and Affleck 2014). One 

advantage of the RBS is that the samples are sequentially collected along the path starting from the 
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lowest branch thus counting the total number of branches beforehand is not necessary. However, as the 

RBS was designed for trees with decurrent crown structures, the optimal placement of RBS decision 

nodes is less apparent in the conifers (Schlecht and Affleck 2014). They found the performance of RBS to 

be intermediate between the probability proportional to size sampling and the simple random sampling 

in estimating green crown mass in Douglas-fir and western larch. Chapter 2 of this dissertation evaluates 

different sampling strategies for estimating crown biomass i.e. total dry weight of foliage and branch 

with bark. 

The U.S. forest carbon inventories until 2009 were based on the tree biomass estimates 

obtained from Jenkins et al. (2003) biomass equations along with the U.S. Forest Service, Forest 

Inventory and Analysis (FIA) sample tree measurements and forest area estimates (Heath et al. 2008). 

Recent U.S. official carbon inventories are based on tree biomass estimates obtained from the 

component ratio method described by Woodall et al. (2011) and understory vegetation biomass 

obtained from Jenkins et al. (2003) equations (U.S. EPA, 2015). 

The Jenkins et al. (2003) equations were developed by modified meta-analysis of the compiled 

diameter-based equations for total aboveground biomass. Merchantable stem wood, stem bark, and 

foliage biomass in their method is estimated as the proportion of total aboveground biomass while the 

biomass in stump and branches is calculated by subtraction. The Jenkins et al. (2003) equation for total 

aboveground biomass is a single entry equation that only uses DBH as predictor variable. With their 

equation form, biomass continues to increase as diameter increase (Heath et al. 2008) and does not 

account for the variation in stem form (Zhou and Hemstrom 2009). 

The need for accurate and consistent methods of estimating total and component aboveground 

biomass is undoubted. In 2009, the FIA updated its biomass estimation protocols by switching to the 

component ratio method (CRM) to estimate biomass of medium and large trees. The CRM was proposed 
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for consistent national biomass estimation based on FIA volume estimates (Zhou and Hemstrom 2009) 

however because different FIA units use different volume equations, the biomass for trees of same 

species with same diameter differs by regions (Heath et al. 2008). The CRM calculates biomass in 

merchantable bole by converting sound wood volume to bole biomass using wood specific gravity 

factors compiled by Miles and Smith (2009). Similarly, the biomass in bole bark is based on the percent 

bark and bark specific gravities given in Miles and Smith (2009). Biomass in stump wood and bark is 

based on volume equations in Raile (1982) and the compiled set of wood and bark specific gravities. The 

biomass of tops and limbs is calculated by subtraction and using a CRM adjustment factor. Total 

aboveground biomass is obtained by summing these component masses. 

The Pacific Northwest unit of the FIA uses its specific set of equations to calculate total and 

component biomass. The stem wood biomass is calculated from the cubic volume estimates and wood 

density factors. Each tree species is associated with a set of local volume and component biomass 

equations (Zhou and Hemstrom 2009). The regional models, however, may not be unbiased at the local 

scale if there is spatial variation in the tree form due to one or more unknown predictors  and this 

regional bias could be reduced or removed if the models are localized to each sub-region or subarea 

(Räty and Kangas 2008). 

When the aboveground biomass is estimated, the accuracy of the component models is 

different than the accuracy of the models that estimate total aboveground biomass. The biomass in 

each of the components can be estimated as the proportion of the total aboveground biomass. 

Proportions are bounded between zero and one thus can be modeled using regressions that assume 

distributions other than normal. Two commonly used distributions to model percentage or proportions 

are the beta and Dirichlet distributions. The beta distribution has been used in forestry to characterize 

the understory vegetation cover of the riparian area by Eskelson et al. (2011) and to model percent 
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canopy cover in a conifer forest by Korhonen et al. (2007). Chapter 3 of this dissertation compares the 

performances of different approaches to estimate total and component aboveground biomass. 

Since biomass estimation requires destructive sampling, the use of allometric equations is 

essential. Additionally, the assessment of the performance of these methods using independent dataset 

is tedious in itself. On the other hand, the amount of data and the number of equations needed to 

precisely estimate biomass is unknown. If a small sample of biomass data is available for the area for 

which the biomass estimates are desired, the regional models can be adjusted or calibrated.  

In an effort to develop models that are suitable for prediction of biomass at large scale, de-

Miguel et al. (2014) proposed mixed-effects meta-models that can be calibrated for local conditions by 

sampling at least one tree for component biomass. Previously, adjustment factors based on ordinary 

least squares regression have been used to adjust regional height-diameter models (e.g. Temesgen et al. 

2008; Garber et al. 2009). However, these methods have not been used in adjusting biomass equations. 

Chapter 4 of this dissertation uses three different methods for adjusting regional volume and 

component biomass equations for Douglas-fir and lodgepole pine. 

1.2. Organization of Dissertation 

The overall objective of this dissertation is to explore the methods for sampling and estimating 

total and component aboveground biomass. The specific objectives are to (1) evaluate the sampling 

strategies to estimate crown biomass, (2) develop methods for estimating aboveground biomass and its 

components for five Pacific Northwest tree species, and (3) calibrate the volume and component 

biomass equations for Douglas-fir and lodgepole pine forests in Western Oregon. These objectives are 

addressed in Chapters 2, 3, and 4, respectively. Figures and tables are appended at the end of each 

Chapter. 
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Abstract 

Depending on tree and site characteristics crown biomass accounts for a significant portion of 

the total aboveground biomass in the tree. Crown biomass estimation is useful for different purposes 

including evaluating the economic feasibility of crown utilization for energy production or forest 

products, fuel load assessments and fire management strategies, and wildfire modeling. However, 

crown biomass is difficult to predict because of the variability within and among species and sites. Thus 

the allometric equations used for predicting crown biomass should be based on data collected with 

precise and unbiased sampling strategies. Using data collected from 20 destructively sampled trees, we 

evaluated 11 different sampling strategies using six evaluation statistics: bias, relative bias, root mean 

square error (RMSE), relative RMSE, amount of biomass sampled, and relative biomass sampled. We 

also evaluated the performance of the selected sampling strategies when different numbers of branches 

(3, 6, 9, and 12) are selected from each tree. Tree specific log linear model with branch diameter and 

branch length as covariates was used to obtain individual branch biomass. 

Compared to all other methods stratified sampling with probability proportional to size 

estimation technique produced better results when 3 or 6 branches per tree were sampled. However, 

the systematic sampling with ratio estimation technique was the best when at least nine branches per 

tree were sampled. Under the stratified sampling strategy, selecting unequal number of branches per 

stratum produced approximately similar results to simple random sampling, but it further decreased 

RMSE when information on branch diameter is used in the design and estimation phases. Use of 

auxiliary information in design or estimation phase reduces the RMSE produced by a sampling strategy. 

However, this is attained by having to sample larger amount of biomass. Based on our finding we would 

recommend sampling 9 branches per tree to be reasonably efficient and limit the amount of fieldwork. 
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2.1. Introduction 

The global issue of climate change and an increasing interest in the reduction of fossil fuel 

carbon dioxide emissions by using forest biomass for energy production has increased the importance of 

forest biomass quantification in recent years. Different national and international reports have 

presented the amount of carbon sequestered by forest ecosystems. For example, the Intergovernmental 

Panel on Climate Change reports that forests contain about 80% of aboveground and 40% of 

belowground carbon stock (IPCC 2001). Additionally, it is reported that the amount of carbon stored in 

dry wood is approximately 50% by weight (Brown 1986; Paladinic et al. 2009; Sedjo and Sohngen 2012). 

Biomass, in general, includes both above and below ground living and dead mass of trees, 

shrubs, vines, and roots. However, most of the researches on biomass estimation have focused on 

aboveground biomass because of the difficulty in collecting belowground data (Lu 2006). The amount of 

biomass in a forest is influenced by various site factors such as stand density and site productivity; soil 

characteristics such as texture and moisture content; and tree characteristics such as species and age. 

On the other hand, distribution of crown biomass affects the carbon cycle, soil nutrient allocation, fuel 

accumulation, and wildlife habitat environments in terrestrial ecosystems and it governs the potential of 

carbon emission due to deforestation (Lu 2005). The major components of aboveground tree biomass 

are merchantable stem biomass (bole including bark and wood), stump biomass, foliage biomass, and 

branches/top biomass (Zhou and Hemstrom 2009). 

The common biomass estimation approach selects some trees, which are representative of the 

populations of interest, for destructive sampling and weighs their components. Regression models are 

then fit to relate some easily measurable attributes, such as diameter at breast height and total tree 

height, with tree (or component) biomass. The amount of biomass distributed in different components 

is dependent on species and their geographic location (Pooreter et al. 2012), management practices 
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(Tumwebaze et al. 2013) and tree size and stand density (Jenkins et al. 2003).  Ritchie et al. (2013) found 

that for the given DBH and crown ratio, thinned stands had more foliage biomass but slightly less branch 

biomass than unthinned stands. Similarly, the contribution of component biomass to the total 

aboveground biomass varies by tree size (de Miguel et al. 2014). Henry et al. (2011) found differences in 

biomass due to floristic composition, tree species and growth strategies for the tree species within a 

given climatic zone. Thus, the component biomass estimations, for example branch or crown biomass, 

bole biomass, and bark biomass, are important to account for the variability within the tree. The 

common understanding among researchers and practitioners is that an accurate carbon stock estimate 

requires improved and consistent methods for tree and component biomass estimation (Hansen 2002; 

Zhou and Miles 2009). 

Crown biomass is the oven dry weight of the entire crown, including the leading shoot above the 

last-formed whorl, excluding the main bole (Hepp and Brister 1982). The components of crown biomass 

are wood, bark, and foliage weights.  Crown biomass accounts for a significant portion of total tree 

biomass but the amount and its distribution varies by tree and site characteristics. Using the data from 

two Alaskan Picea mariana ecosystems, Barney et al. (1978) reported that foliage comprised 17% to 37% 

of the total tree mass for the lowland stand and 17% to 50% of the total tree mass in the upland stand. 

Total bole mass ranged from 11% to 58% in lowland stands and 21% to 61% in the upland stands. In a 

study to determine the patterns of biomass allocation in dominant and suppressed loblolly pine, Naidu 

et al. (1998) found that the dominant trees allocated 24.5% of biomass to the crown (13.2% in branch 

and 11.3% in needle) and the suppressed trees allocated 12.3% (6.7% in branch and 5.6% in needle). 

Kuyah et al. (2013) found that crown biomass formed up to 26% (22% in branch and 4% in needle) of 

aboveground biomass in farmed eucalyptus species. In assessing the importance of crown dimensions to 

improve tropical tree biomass estimate, Goodman et al. (2014) found the trees in their study to have 

nearly half of the total aboveground tree biomass in branches (44 ± 2%). 
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Estimates of crown biomass for each stand condition is necessary to understand nutrient 

depletion and for evaluating the economic feasibility of crown utilization for energy production or forest 

products (Hepp and Brister 1982). Furthermore, estimates of crown biomass aid in fuel load 

assessments and fire management strategies (He et al. 2013) because it is one of the important input 

variables in most wildfire models (Saatchi et al. 2007). Much of the focus in estimating crown biomass 

has been in the form of regression models and in the selection of predictor variables rather than in the 

methods of sample selection. In addition, comparisons of sampling strategies have been carried out 

mainly for foliar biomass sampling rather than the total crown (branch wood, bark, and foliage) biomass. 

Thus, the evaluation of different sampling designs and sample size in estimating crown biomass is an 

important aspect of aboveground biomass estimation. 

Common sampling strategies used in aboveground biomass estimation include simple random 

sampling, systematic sampling, stratified random sampling, and randomized branch sampling. The 

suitability of a technique is determined by the availability of funds, required accuracy, structure and 

composition of vegetation, and desired specificity of estimation (Catchpole and Wheeler 1992). 

Additionally, the amount of time a particular technique takes to implement in the field is also important. 

The simple random sampling is generally used as the basis to evaluate the performance of other 

sampling designs (e.g. Snowdon 1986; Temesgen 2003). 

Gregoire et al. (1995) have proposed a number of sampling procedures (randomized branch 

sampling, importance sampling, control-variate sampling, two-stage and three-stage sampling) that can 

be used to estimate foliage and other characteristics of individual trees. The randomized branch 

sampling (RBS) was originally introduced by Jessen (1955) to determine the fruit count on orchard trees. 

Valentine and Hilton (1977) used this method to obtain estimates of leaf counts, foliar area, and foliar 

mass of mature Quercus species. Good et al. (2001) have employed RBS with importance sampling for 

estimating tree component biomass. Since the sample is accumulated sequentially along the path, RBS 
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does not require locating and counting the total number of branches beforehand. However, Chirici et al. 

(2014) posed some doubts on the effectiveness of RBS in sampling big trees or trees with irregular 

forms. According to Valentine and Hilton (1977), the accuracy of RBS is largely dependent on the 

probability assignment and the time required to take RBS samples depends on the size of the trees and 

experience of those taking the samples. 

Swank and Schreuder (1974) compared stratified two-phase sampling, two-phase sampling with 

a regression estimator, and two-phase sampling with a ratio-of-means estimator. They found the 

stratified two-phase sampling as the most precise and appropriate method for estimating surface area 

and biomass for a young eastern white pine forest. Temesgen (2003) found that stratified random 

sampling produced the lowest mean squared error value in comparing five sampling designs to quantify 

tree leaf area. Stratification in branch biomass sampling can be done in many different ways. Snowdon 

(1986) showed improved accuracy of estimates by stratification based on crown position compared to 

those obtained by simple random sampling, especially at low sampling intensities. Their findings suggest 

that stratification by whorl was slightly but not significantly inferior to stratification based on crown 

position or branch diameter. Another approach used in selecting branches for estimating crown biomass 

is to divide the bole into sections and pile up the branches from each section into different size class and 

randomly select a number of branches proportional to the total number of branches in each size class 

(e.g. Devine et al. 2013, Harrison et al. 2009). In an evaluation of ten different sampling strategies, 

Temesgen et al. (2011) found that systematic sampling with ratio estimation as the most efficient 

estimate of individual tree foliage biomass. de-Miguel et al. (2014) developed generalized , calibratable, 

mixed-effects meta-models for large-scale biomass prediction. One of their objectives was to investigate 

and demonstrate how the biomass prediction differed when calibration trees were selected using 

different sampling strategies. They found that a stratified sampling was better compared to the simple 

random sampling. Thus there is no strong rationale to support one method as being superior to another. 
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Crown biomass is difficult to predict because of the variability within and among species and 

various sites. A good allometric equation for predicting aboveground biomass should be based on data 

collected with an appropriate (precise and unbiased) sampling method. In this context, the objective of 

this study was to evaluate different sampling strategies to estimate crown biomass. We also evaluated 

how the performance of different methods was affected when different number of branches (3, 6, 9, 

and 12) per tree was sampled in estimating crown biomass. 

2.2. Methods 

2.2.1. Study Area 

This study was conducted in the McDonald-Dunn Forest, an approximately 4550 ha property, 

managed by the Oregon State University in the western edge of the Willamette Valley in Oregon and on 

the eastern foothills of the Coast Range (123°15’ W, 44°35’ N, 120 m elevation). The forest consists 

predominantly of the Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) and a small portion of Grand 

fir (Abies grandis (Dougl. ex D. Don) Lindl.) and has a wide range of overstory age-class distribution with 

majority of the stands less than 80 years old and some stands that are 80 to 120 years old. The forest 

receives approximately 110 cm of annual rainfall and average annual temperature ranges from 6° to 17° 

C. 

2.2.2. Data 

Twenty sample trees (11 Douglas-fir and 9 Grand fir) were subjectively selected from stands of 

different ages for destructive sampling avoiding the trees with obvious defects and trees close to stand 

edges. The field work was carried out between the first week of July and third week of September 2012. 

Trees that were forked below breast height and with damaged tops were not included in sampling. Tree 

level attributes including total height, height to the base of first live branch, crown width, and main stem 

diameter at 0.15 m, 0.76 m, 1.37 m, and 2.4 m above ground, and every 1.22 m afterwards were 
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recorded. The branches were divided into four diameter classes (1.3 cm class = 0 – 2.5 cm, 3.8 cm class = 

2.6 – 5.1 cm, 6.4 cm class = 5.2 – 7.6 cm, 8.9 cm class = 7.9 – 10.2 cm). For all first order branches, height 

to- and diameter- at branch base were measured. 

For the first and every third branch, when proceeding from the base, in each diameter class, 

length and weight of both live and dead branches were recorded. From those selected branches, four 

branches per diameter class were weighed with and without foliage. The needles were removed in the 

field to obtain the green weight of foliage and branch wood with bark. Two of these four branches were 

taken to the lab, keeping branch and foliage in separate paper bags, for drying. The branches were 

chipped in to small pieces to expedite the drying process and placed in a kiln for drying at 105° C. The 

oven dry weight was recorded by tracking the weight lost by each sample until no further weight was 

lost. Table 2.1 presents the tree and branch level summary of the felled-tree data used in this study. 

2.2.3. Individual Branch Biomass 

Kershaw and Maguire (1995) developed a tree specific log linear model (equation 1) using 

branch diameter (BD) and depth into the crown (DINC: the distance from tip to the base of the branch) 

as covariates to estimate branch foliage biomass. Temesgen et al. (2011) successfully used this model in 

comparing sampling strategies for tree foliage biomass estimation. 

              ln(𝑦𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖 ln(𝐵𝐷𝑖𝑗) + 𝛽2𝑖 ln(𝐷𝐼𝑁𝐶𝑖𝑗) + 𝜀𝑖𝑗                (1) 

This model was modified by replacing DINC with branch length (Equation 2). The modified 

model provided the best fit (Adj-R2 = 0.93), therefore was used to predict individual branch biomass 

within each tree. 

             ln(𝑦𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖 ln(𝐵𝐷𝑖𝑗) + 𝛽2𝑖 ln(𝐵𝐿𝑖𝑗) + 𝜀𝑖𝑗             (2) 

 Where, 𝑦𝑖𝑗, 𝐵𝐷𝑖𝑗 and 𝐵𝐿𝑖𝑗  are oven dry weight (kg) of branch (wood, bark, and foliage 

combined), branch diameter (cm), and branch length (m) of the jth branch on ith tree respectively; 𝛽𝑖𝑗′𝑠 
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are regression parameters to be estimated; ln(·) is the natural logarithm; and 𝜀𝑖𝑗′𝑠 are the random error. 

The full model included other variables such as height to the base of the branch, crown width and crown 

length, but were dropped because they were not statistically significant (p-value > 0.05). Lengths for the 

2/3rd branches (not measured in the field) were obtained by fitting the following log linear model (Adj-R2 

= 0.74): 

              ln⁡(𝐵𝐿𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖ln⁡(𝐵𝐷𝑖𝑗) + 𝛽2𝑖ln⁡(𝑅𝐵𝐷𝑖𝑗) + 𝜀𝑖𝑗            (3) 

Where, 𝐵𝐷𝑖𝑗, 𝐵𝐿𝑖𝑗  , and 𝜀𝑖𝑗  are same as defined in equation (2) and 𝑅𝐵𝐷𝑖𝑗 is the relative branch depth 

(relative position of the subject branch from the crown base) of jth branch in ith tree and is computed as 

follows (Ishii and Wilson 2001): 

𝑅𝐵𝐷 =
𝑡𝑜𝑡𝑎𝑙⁡𝑡𝑟𝑒𝑒⁡ℎ𝑒𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡⁡𝑡𝑜⁡𝑡ℎ𝑒⁡𝑏𝑎𝑠𝑒⁡𝑜𝑓⁡𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑏𝑟𝑎𝑛𝑐ℎ

𝑡𝑜𝑡𝑎𝑙⁡𝑡𝑟𝑒𝑒⁡ℎ𝑒𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡⁡𝑡𝑜⁡𝑡ℎ𝑒⁡𝑏𝑎𝑠𝑒⁡𝑜𝑓⁡𝑙𝑜𝑤𝑒𝑠𝑡⁡𝑙𝑖𝑣𝑒⁡𝑏𝑟𝑎𝑛𝑐ℎ
 

The RBD is 1.0 for the first live branch. The logarithmic regressions are reported to result in a 

negative bias when data are back transformed to arithmetic scale. The commonly used remedy to this is 

to multiply the back transformed results by a correction factor [𝑒𝑥𝑝 (
𝑀𝑆𝐸

2
)], where MSE is the mean 

squared error obtained by the least-squares regression. However, there are conflicting remarks about 

the correction factor itself. For example, Beauchamp and Olson (1973) and Flewelling and Pienaar 

(1981) suggested that this correction factor was still biased because the sample variance is consistent 

but biased for finite sample size. We did to not use the correction factor in our study. The trend in the 

relationship between crown biomass and branch diameter and length was similar but the variability in 

biomass increased with increasing branch length (Figure 2.1). All statistical procedures were performed 

using statistical software R (R Core Team 2014). 
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2.2.4. Methods for Crown Biomass Sampling 

We evaluated 11 sampling methods to select branches for estimating crown biomass. The 11 

sampling strategies belonged to three main categories: simple random sampling, systematic sampling, 

and stratified sampling. Methods 1 and 2 are based on simple random sampling (SRS) strategy. In each 

of these methods, each branch was chosen randomly such that each individual branch has equal 

probability of selection at any stage of selection. The difference in these methods is in the estimation of 

total tree biomass: method 1 uses SRS estimator while method 2 (SRS-RAT) uses the ratio estimator with 

squared branch diameter as auxiliary information. Method 1 is also the basis for comparing the 

performance of other methods. 

Method 3, probability proportional to size (PPS), uses branch size as auxiliary information in 

sample selection. Total crown biomass in this method was calculated using Horvitz-Thompson estimator 

(Horvitz and Thompson 1952). Methods 4 (SYS) and 5 (SYS-RAT) are systematic sampling with similar 

design phase but different estimation phase. Method 4 uses the SRS estimator while method 5 uses the 

ratio estimator. The fractional interval systematic sample selection procedure was used in the 

systematic selection of the branches because it ensures the equal probability of selection for all the 

branches (Temesgen et al. 2011). The interval was determined based on the total number of branches in 

each tree. In fractional interval systematic sample selection, first a random starting point between 1 and 

total number of branches was randomly chosen, the interval then is added obtaining exactly n (sample 

size) branches. Then the numbers are divided by the sample size and rounded to the nearest whole 

number to get the selected samples. 

Methods 6-11 belonged to different stratified sampling strategies. The stratified sampling 

method divides the population into subpopulations of size 𝑛ℎ, where 𝑛ℎ is the number of elements in 

stratum h. The total crown length was divided into three sections having equal number of branches as 

three strata. In methods 6 (STR) and 7 (STR-RAT), n/3 branches were randomly selected with equal 
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probability, where n is the sample size. Again, the difference between these two methods lies in the 

estimation of total crown biomass. STR method uses the SRS estimation technique while STR-RAT 

method uses the ratio estimation technique to obtain the total crown biomass. Method 8 (STR-PPS), 

stratified sampling with PPS, selected branches in each stratum with probability proportional to the 

square of branch diameter. Total crown biomass in this method was obtained by summing the stratum 

total crown biomass calculated using Horvitz-Thompson unequal probability estimator (Horvitz and 

Thompson 1952). 

Methods 9-11 (stratified, unequal) are based on the idea that the distribution of crown biomass 

in different strata depends on the relative position of the branches in the tree. Ishii and McDowell 

(2001) found that mean branch volume increased from upper- to lower-crown. For a given density, 

biomass (oven dry weight) is the function of volume. Therefore, the stratified sampling method was 

modified to incorporate the variability of biomass distribution within a tree. Trees were first divided into 

three sections having equal number of branches. Then 4, 3, and 2 branches from the lower, middle, and 

upper section of the trees were selected respectively. This corresponds that the number of branches 

selected in each section is proportional to the observed biomass in that section of the tree. Because 

stratification based on crown length resulted in the biased estimation of crown biomass, the balanced 

stratification method was applied. The total number of branches selected in each tree (nine) was 

determined based on the amount of biomass sampled. Total crown biomass in each stratum was 

computed using the SRS estimation technique in method 9 (Un-STR), PPS in method 10 (Un-PPS), and 

ratio estimation in method 11 (Un-STRRAT). Total crown biomass in each tree was computed by 

summing the crown biomass in each stratum. The unequal branch selection strategy was also evaluated 

using similar evaluation statistics used for the other 8 methods.  

Performances of first eight methods were evaluated by selecting four different sample sizes (3, 

6, 9, and 12) in each tree. These sample sizes were chosen for the ease of distributing samples into three 
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different strata in stratified sampling with equal number of branches per stratum. Methods 9-11 were 

based on selecting nine branches in each tree. Table 2.2 summarizes the inclusion probability, selection 

probability, and the estimator of the total crown biomass in each of the sampling strategies evaluated in 

this study. 

2.2.5. Evaluation of Sampling Strategies 

We evaluated the performance of 11 sampling strategies to estimate crown biomass using the 

following six statistics estimated from 5000 iterations. These measures were successfully used to 

evaluate the performance of sampling strategies to estimate foliage biomass in Temesgen et al. (2011). 

1. Bias: For each tree the bias (kg) was calculated as the mean difference between observed and 

predicted total crown biomass for that tree as follows: 

𝐵𝑖 =
1

5000
∑(𝜏𝑖𝑠 − 𝜏̂𝑖𝑠)

5000

𝑠=1

 

Where, 𝜏𝑖𝑠⁡and⁡𝜏̂𝑖𝑠 are the observed and predicted total crown biomasses for ith tree in sth iteration, 

respectively. 

2. Relative Bias: Relative bias percentage is the ratio of bias to the total observed crown biomass for 

that tree and computed as follows: 

𝑅𝐵𝑖 =
1

5000
∑

(𝜏𝑖𝑠 − 𝜏̂𝑖𝑠)

𝜏𝑖𝑠

5000

𝑠=1

 

Where, all the variables are same as defined previously. 

3. Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸𝑖 = √
1

5000
∑(𝜏𝑖𝑠 − 𝜏̂𝑖𝑠)

2

5000

𝑠=1
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4. Relative RMSE:  

𝑅 − 𝑅𝑀𝑆𝐸𝑖 = √
1

5000
∑ (

𝜏𝑖𝑠 − 𝜏̂𝑖𝑠
𝜏𝑖𝑠

)
25000

𝑠=1

 

5. Biomass Sampled (BS): Amount of cost for crown biomass estimation is directly proportional to the 

amount of crown biomass sampled. Therefore the amount of crown biomass sampled was also used 

as a criterion for the evaluation of sampling strategies. The amount of crown biomass sampled 

(sampling intensity) is calculated as follows: 

𝐵𝑆𝑖 =
1

5000
∑ ∑𝑦𝑖𝑗𝑠

𝑗∈𝑆

5000

𝑠=1

 

6. Relative Biomass Sampled (RBS %): indicates the proportion of crown biomass sampled with 

respect to the total crown biomass measured and is calculated as follows: 

𝑅𝐵𝑆𝑖𝑗 =
1

5000
∑ ∑

𝑦𝑖𝑗𝑠

𝜏𝑖𝑗𝑠
𝑗∈𝑆

5000

𝑠=1

 

2.3. Results and Discussion 

Except for the ratio estimators, the estimators of population totals were unbiased, with biases 

close to zero for all sample sizes (Tables 2.3 and 2.4). The squared bias for these methods ranged from 

zero to 0.435 kg. Ratio estimators resulted in greater bias than the other methods. The absolute bias of 

the ratio estimators decreased with increasing sample size as expected.  

As expected, the RMSE (and relative RMSE) decreased with increasing sample size (Tables 2.5 

and 2.6) for all sampling strategies. Based on the RMSE values obtained from 5000 simulations, the 

stratified sampling with PPS estimation was the superior method compared to all other methods when 

sample size is 3 or 6 branches per tree. However, while using PPS, stratification of the crown into 

sections did not reduce the RMSE and relative RMSE significantly. On the other hand, when at least nine 
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branches per tree were sampled, the SYS-RAT was the best and the SRS-RAT was the second best 

method. Number of branches required to achieve desired precision is another important aspect of 

estimating crown biomass. On average, the RMSE decreased by 34.3% when the sample size increased 

from three branches per tree to six branches per tree. The RMSE further decreased by 22.1% and 15.4% 

when the sample size increased from 6 to 9 and 9 to 12 respectively. 

The amount of biomass sampled determines the cost that would be incurred in estimating 

crown biomass. Biomass sampled and relative biomass sampled in different sampling strategies are 

presented in Tables 2.7 and 2.8. The Strategy-Cost-Accuracy graph (Figure 2.2) shows the efficiency 

trade-off across the strategies compared in the study. The SRS and SYS method resulted in the lowest 

amount of biomass sampled. On average, the amount of biomass sampled using the PPS method was 

1.6, 1.5, 1.4, and 1.4 times higher than the amount of biomass sampled in stratified random sampling 

when 3, 6, 9, and 12 branches per tree were selected respectively. 

On average, selecting 12 instead of 9 branches per tree increased the amount of biomass 

sampled by 29.2%. Therefore, nine branches in each tree were selected in evaluating the performance 

of unequal stratified sampling strategy. Results from unequal branch selection are presented in 

Table2.9. This strategy reduced the relative RMSE by 0.6%, 4.5% and 3.5% compared to selecting 9 

branches using stratified random sampling, stratified sampling with ratio estimation, and stratified 

sampling with PPS respectively. This reduction in relative RMSE is obtained by sampling just a little more 

amount of biomass (1.03 times on average). 

Use of allometric equations is inevitable in aboveground biomass estimation because weighing 

the trees and their components for direct biomass determination is destructive and prohibitively 

expensive. Choice of biomass sampling strategy determines the quality of data available for fitting such 

equations. Use of auxiliary information in design and/or estimation phase (PPS and ratio estimation) 
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produced better results in terms of RMSE compared to the methods that do not make use of such 

information in this study. Previous researches (e.g. Temesgen et al. 2011) have also shown the benefits 

from using auxiliary information in the design and/or estimation concerning tree biomass. 

The model used in estimating branch biomass which is later used as a dependent variable in the 

test population, was a logarithmic model (equation 2). There is an inherent negative bias in this method 

because the dependent variable is transformed prior to estimation (Snowdon 1991). The ratio 

estimation strategies, SRS-RAT, SYS-RAT, and STR-RAT in this study, were negatively biased. However, in 

terms of RMSE, these strategies were clearly superior methods compared to the SRS approach. As noted 

in Temesgen et al. (2011), however, the efficiency of sampling strategies with ratio estimation may be 

affected by the amount of work and difficulty in implementing these techniques in the field. 

The amount of biomass sampled determines the cost that would be incurred in estimating 

crown biomass. Choice of a sampling strategy determines the amount of biomass and relative biomass 

sampled. This ultimately determines the amount of time and cost required for a biomass estimation 

project. The SRS and SYS method resulted in the lowest amount of biomass sampled. Our results in 

terms of RMSE values reported and the amount of biomass sampled by each strategy are consistent 

with the findings of Temesgen et al. (2011) in estimating foliar biomass of Douglas-fir and Ponderosa 

pine.  

2.4. Conclusions 

Crown biomass estimation is a complex process that requires intensive manual field work 

involving destructive sampling. The amount of fieldwork required and the accuracy of biomass 

estimation is dependent on the sampling strategy used. Furthermore, the accuracy of the estimation can 

be improved by adopting appropriate techniques in both the design and estimation phases, beginning 

with the selection of sample plots and sample trees through model development. In this study, we 
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evaluated 11 different sampling strategies that belonged to three main categories: simple random 

sampling, systematic sampling and stratified sampling. The SRS, PPS, and ratio estimation techniques 

were used to obtain the total crown biomass in each tree.  

Based on the RMSE values obtained from 5000 simulations, the stratified sampling with PPS 

estimation produced better results as compared to all other methods when 3 or 6 branches per tree 

were sampled. However, the SYS-RAT was the best and the SRS-RAT was the second best method when 

at least nine branches per tree were sampled. It should also be noted that the lower RMSE values in the 

PPS estimation techniques are obtained with an increased amount of biomass sampled in each tree. On 

the other hand, if the auxiliary information on branch size is not used, the systematic sampling provided 

better results than the SRS or STR method when at least 6 branches per trees were selected. Thus the 

selection of a specific sampling strategy is dependent on the availability of the time and cost for the 

given biomass sampling project. Based on our finding we would recommend sampling 9 branches per 

tree to obtain reasonable efficiency and amount of work involved in the field.  

The logic for selecting unequal numbers of branches per stratum within a tree is justified by the 

fact that the biomass distribution within a tree is not uniform. Selecting equal branches per stratum 

produced approximately similar results to unequal sampling when the SRS estimation technique was 

used. However, making use of auxiliary information on branch size in the design and estimation phases 

further decreased the relative RMSE. Once again, the decreased RMSE by use of auxiliary information is 

attained by having to sample slightly higher amount of biomass. Findings of this study should prove 

beneficial for the stakeholders working in the field of aboveground biomass and carbon estimation. 

Additional work using the data from different species and location should be done to further validate 

the findings in this study. 
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Figure 2.1. Scatterplot of dry biomass (kg) against branch diameter (a) and branch length (b) by species 
(DF=Douglas-fir, GF=Grand fir). 
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Figure 2.2. Relative RMSE (%) produced Vs. relative biomass sampled (percent of total crown mass) in 
different sampling strategies and sample sizes. 
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Table 2.1. Summary of felled-tree and branch-level attributes used in this study. 

Variable n Mean SD Minimum Maximum 

Tree data      
DBH (cm)  62.8 27 23.9 114 
Height (m)  34.6 10.3 18.3 46.5 
Crown base height (m)  10.2 6.3 0.8 23.7 
Crown length (m)  24.4 6.2 12.2 34.4 
Crown width (m)  8.6 2.4 5.2 13.4 

Branch data      
Diameter (cm) 3464 3.7 2.1 0.8 10.4 
Length (m) 1178 2.8 1.6 0.1 10.2 
Total green weight (kg) 1102 4.14 5.61 0.05 46.99 
Green weight of branch 
wood (kg) 

326 
3.98 5.61 0.05 38.01 

Green foliage weight (kg) 264 1.8 1.84 0.05 9.71 
Total dry weight (kg) 128 3.44 4.08 0.12 18.4 
Dry weight of branch wood 
(kg)  

128 
2.68 3.49 0.07 15.37 

Dry foliage weight (kg) 128 0.76 0.79 0.04 4.58 
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Table 2.2. Summary of methods used for crown biomass estimation in this study. 

Methods 
Equations for 

Total Crown Biomass 
Selection 

Probability 
Inclusion 

Probability 

Simple Random Sampling 

SRS 
𝜏̂𝑖 = 𝑁𝐵𝑖 (

1

𝑛
∑𝑦𝑖𝑗

𝑛

𝑗=1

) (
1

𝑁𝐵𝑖
)
𝑛

 
𝑛

𝑁𝐵𝑖
 

SRS-RAT 𝜏̂𝑖 =
∑ 𝑦𝑖𝑗
𝑛
𝑗=1

∑ 𝐵𝐷𝑖𝑗
2𝑛

𝑗=1

∑𝐵𝐷𝑖𝑗
2

𝑁𝐵𝑖
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 (
1

𝑁𝐵𝑖
)
𝑛
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Systematic Sampling 
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Stratified Sampling 
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STR-PPS 
𝜏̂𝑖(𝑆𝑇𝑅−𝑃𝑃𝑆) = ∑ ∑
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Notation: 𝜏̂𝑖is the estimated total crown biomass for ith tree; 𝑦𝑖𝑗  is the oven dry weight of jth branch on ith 

tree;  𝑁𝐵𝑖  is the number of branches on ith tree; n is number of branches sampled; 𝑁𝑖ℎ  is the number of 
branches in hth stratum on ith tree; and 𝑛ℎ= number of branches sampled in hth stratum. 
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Table 2.3. Average bias (kg) produced by different sampling methods and sample sizes based on 5,000 
simulations. 

Sample 

Size 

Sampling Strategies 

SRS SRS-RAT PPS SYS SYS-RAT STR STR-RAT STR-PPS 

3 0.237 -4.091 -0.158 0.433 -9.320 -0.659 -3.554 -0.104 

6 0.215 -1.711 0.010 0.139 -1.922 0.399 -1.387 -0.101 

9 -0.081 -0.937 -0.068 0.133 0.166 0.191 -0.857 -0.094 

12 -0.030 -0.894 0.158 0.043 -0.078 -0.242 -0.776 -0.073 
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Table 2.4. Relative bias (percent) produced by different sampling methods and sample sizes based on 
5,000 simulations. 

Sample 

Size 

Sampling Strategies 

SRS SRS-RAT PPS SYS SYS-RAT STR STR-RAT STR-PPS 

3 0.101 -2.437 -0.169 0.107 -6.086 -0.321 -2.107 -0.034 

6 -0.001 -1.115 0.024 0.061 -1.061 0.197 -0.900 -0.012 

9 0.063 -0.600 -0.027 0.038 0.033 0.148 -0.543 -0.069 

12 -0.011 -0.523 0.100 0.037 0.032 -0.035 -0.439 -0.040 
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Table 2.5. Average RMSE produced by different sampling methods and sample sizes based on 5,000 
simulations. 

Sample 

Size 

Sampling Strategies 

SRS SRS-RAT PPS SYS SYS-RAT STR STR-RAT STR-PPS 

3 88.57 42.56 38.04 113.17 48.54 85.05 42.08 34.95 

6 60.49 30.01 29.23 57.94 29.98 58.54 29.56 27.99 

9 48.60 23.92 25.19 37.88 22.12 46.48 23.55 24.46 

12 40.77 20.18 22.78 30.77 17.91 38.89 19.75 22.33 
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Table 2.6. Relative RMSE percent produced by different sampling methods and sample sizes based on 
5,000 simulations. 

Sample 

Size 

Sampling Strategies 

SRS SRS-RAT PPS SYS SYS-RAT STR STR-RAT STR-PPS 

3 55.70 25.72 23.46 72.02 28.80 53.41 25.61 21.57 

6 38.07 17.93 18.23 35.23 17.53 36.63 17.78 17.59 

9 30.38 14.19 15.83 23.58 13.29 29.03 14.07 15.55 

12 25.42 11.92 14.40 18.37 11.11 24.27 11.76 14.22 
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Table 2.7. Amount of biomass sampled (kg) by different sampling strategies and sample sizes. 

Sample 

Size 

Sampling Strategies 

SRS PPS SYS STR STR-PPS 

3 7.74 12.58 7.73 7.68 12.40 
6 15.49 23.79 15.46 15.50 23.29 

9 23.17 33.77 23.18 23.19 33.05 

12 30.91 42.83 30.92 30.86 41.79 
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Table 2.8. Relative amount of biomass sampled (%) by different sampling strategies and sample sizes. 

Sample 

Size 

Sampling Strategies 

SRS PPS SYS STR STR-PPS 

3 5.36 8.67 5.35 5.33 8.45 

6 10.71 16.37 10.71 10.72 15.87 
9 16.08 23.16 16.06 16.07 22.45 

12 21.42 29.27 21.43 21.40 28.33 

 

  



40 
 

 
 

Table 2.9. Evaluation statistics produced when selecting 4, 3, and 2 branches from lower, middle, and 
upper stratum. 

Method Bias 
Relative 

Bias 
RMSE 

Relative 
RMSE 

Biomass 
Sampled 

Relative Biomass 
Sampled 

Un-STR 0.100 0.061 46.16 28.87 24.25 16.87 
Un-STRRAT -0.731 -0.491 22.58 13.44 

  
Un-PPS 0.140 0.063 23.67 15.00 33.85 23.04 
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Abstract 

Estimating aboveground biomass and its components requires sound statistical formulation and 

evaluation. Using data collected from 90 destructively sampled trees in different parts of Oregon, we 

evaluated the performance of three groups of methods to estimate total aboveground biomass and/or 

its components based on the bias and root mean squared error (RMSE) they produced. The first group of 

methods used analytical approach to estimate total and component biomass using existing equations, 

and produced biased estimates for our dataset. The second group used a system of equations fitted with 

seemingly unrelated regression (SUR), and were superior to the group I methods in terms of bias and 

RMSE. The third group of methods predicts the proportions of biomass in each component using beta, 

Dirichlet, and multinomial loglinear regression (MLR). The predicted proportions are then applied to the 

total aboveground biomass to obtain amount of biomass in each component. The MLR approach 

produced smaller RMSE compared to the SUR approaches except for grand fir branch biomass while the 

beta and Dirichlet regressions provided smaller RMSE compared to the SUR approaches for 85 percent 

of the species-component combinations. 
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3.1. Introduction 

Forests play dual role in the global carbon cycle as an important sink by removing carbon dioxide 

through photosynthesis, converting that photosynthate to forest biomass, and as a carbon source by 

releasing carbon dioxide through respiration, wildfires, and decomposition. If forests are properly 

managed and timber is used for long-term products, such as buildings, forest management could result 

in a net reduction of atmospheric carbon while burning of wood for residential and commercial uses 

increases carbon emission rates. Thus there is a great concern about the uncertainty over whether 

forests will be a sink or a source of carbon in the future. Forest growth rates, harvest activities, natural 

disturbances such as wildfire, and loss of forest cover due to landuse changes are key factors that alter 

the carbon stock and absorption ability of a forest. It is essential to have knowledge of carbon stocks and 

fluxes to understand the current state and future course of carbon cycle in response to changing land 

uses and climatic conditions (Hollinger 2008). The amount of biomass as living vegetation or dead wood 

and debris is important factor that relates forestry function in regulating atmospheric carbon (Brown 

2002). 

Total carbon stocks in forest ecosystems can be divided in to two main parts as aboveground 

pools and fluxes and belowground pools and fluxes (Hoover 2008). Aboveground biomass constitutes 

the major portion of carbon pools in forest ecosystems (Vashum and Jayakumar 2012). Xiao et al. (2003) 

found 0.14 ratio of belowground biomass to aboveground biomass in 73-year-old Scots pine (Pinus 

sylvestris L.) forest. Czapowskyj et al. (1985) found 80 percent biomass in aboveground components and 

20 percent in the root and stump of black Spruce (Picea mariana B.S.P. (Mill.)) in Maine. Aboveground 

biomass estimation has received significant attention in recent years because of the fact that the change 

in aboveground biomass is associated with the components of climate change (Lu et al. 2002). It depicts 

the forest’s potential to sequester and store carbon. Therefore, aboveground biomass estimation is 

central in quantifying and monitoring of the amount of carbon stored in forest ecosystems.  
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The amount of biomass contained in a tree is influenced by various site factors such as stand 

density, site productivity; soil characteristics such as texture and moisture content; and tree 

characteristics such as species and age. Generally, aboveground biomass is estimated through the use of 

allometric equations that relate easily measurable attributes such as diameter at breast height (DBH), 

height, etc. to total tree biomass or component biomass. It is critical to note, however, that different 

regions and species link these attributes to biomass through different functions such as logarithmic, 

linear, or quadratic form (Zhou and Hemstrom 2009). Thus, site and species specific models might be 

better than regional models in predicting aboveground biomass at the local level. 

Aboveground biomass is commonly divided into three major components: bole (main stem), 

stem bark, and crown (branch wood and foliage). The component biomass models are useful to account 

for the variability within the tree. Moreover, the use of component biomass for various purposes such as 

bioenergy production requires the estimate of biomass in each component to determine the associated 

cost of transportation and processing biomass at a bioenergy plant.  

The amount of biomass allocated to different tree components varies by species and their 

geographic locations (Luo et al. 2013). In an effort to quantify aboveground biomass and net primary 

production of pine, oak and mixed pine-oak forests, Nunes et al. (2013) found that in pine, the greater 

distribution of biomass was on the stem whereas in oak and mixed stands the foliage was the 

component with the greater distribution of biomass. Repola (2006) found that wood density in pine 

decreased from the butt to the top, and the gradient in wood density was steep at the butt but 

decreased in the upper part of the stem. Even though the vertical dependence was similar in birch (a 

hardwood species), the density gradient was much smaller. Because mass is a function of volume and 

density, it also affects the amount of biomass contained in trees. In addition, the differences in 

management practices influence the allocation of biomass to different components (Tumwebaze et al. 

2013). Therefore locally derived species specific biomass equations may yield biomass estimates that are 
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considerably different from the estimates obtained by using more generalized regional biomass 

equations. Weighing trees in the field would be the most accurate method for estimating tree biomass. 

However, it is time consuming and very expensive thus the use of allometric equations is essential. The 

type and amount of data and the number of equations required to accurately quantify biomass is 

unknown. Cautionary measures should be taken in developing and evaluating the methods for 

estimating aboveground biomass and its components. 

When component models are fitted, the strength of relationship exhibited by bark, branch, and 

foliage models is nowhere near that for the stem wood (Boudewyn et al. 2007). On the other hand it is 

desired that the prediction from component regression equations add to the prediction from total tree 

regression model (Parresol 2001). The relationship between component mass and easily measurable 

tree attributes differ considerably in conifers and hardwoods. Component biomass modeling in 

hardwood requires more innovative approach due to decurrent form (Westfall et al. 2012). 

With substantial increase in the demand of forest biomass information in recent years, 

considerable efforts have been made to estimate aboveground biomass and its components. Stem wood 

biomass accounts for the major portion of aboveground biomass. In comparing different approaches of 

aboveground biomass estimation, Zhou and Hemstrom (2009) found the proportion of softwood 

merchantable biomass ranging from 72 to 83 percent of the total aboveground biomass with little 

variation among species. Using LiDAR data from a Picea crassifolia (a coniferous tree) stand, He et al. 

(2013) found that, on average 72 percent of the total above-ground biomass of a tree is contained 

within the stem. The branches, foliage, and fruits in their study accounted 11, 13, and 4 percent of total 

aboveground biomass respectively. However, Kuznetsova et al. (2011) found only 31 and 27 percent of 

aboveground biomass in the main stem of 8-year old Scots pine and lodgepole pine respectively in the 

oil shale post-mining landscapes in Estonia. They found 32 and 28 percent in shoots and 37 and 45 

percent in the needles of those 8-year old scots pine and lodgepole pine respectively.  
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These differences in proportion of biomass in different components among species warrant for 

species specific component models. More than 90 percent of aboveground live tree biomass in Oregon 

is contributed by softwood species (Zhou and Hemstrom 2009). Douglas-fir by itself contributes about 

51 percent of total aboveground biomass of trees larger than 12.5 cm (5 inch) DBH and western hemlock 

and ponderosa pine contribute about 8 percent each (Zhou and Hemstrom 2009). Additionally, Douglas-

fir, western hemlock, grand fir, red alder, and lodgepole pine are among the top eight tree species in 

Oregon. In this study, we have developed and evaluated different approaches for estimating 

aboveground biomass and its components for these five tree species using the data from destructively 

sampled trees. 

Approaches in biomass estimation depends on scale of analysis, need for detail, user group 

interests and purpose of estimation (Zhou and Hemstrom 2009). Although there is a need for consistent 

methods of biomass estimation, there is no strong rationale to justify one method of estimation as being 

superior to another. In this study, we compared different methods that belonged to three major groups. 

The first group of methods (Group I methods) uses an analytical approach to estimate total and 

component biomass using existing equations. Group I methods are the component ratio method of the 

USDA Forest Service’s Forest Inventory and Analysis (FIA-CRM), the regional approach for the Pacific 

Northwest (FIA-PNW), and an approach developed by Jenkins et al. (2003) (Jenkins). The second group 

(Group II methods) is a regression based approach that used a system of equations fitted with seemingly 

unrelated regression. The dependent variables in the system of equations were component and total 

biomass and the independent variables were DBH, DBH and total height, or DBH and crown length. 

These two groups of methods give the amount of biomass contained in each component and also the 

total aboveground biomass. The third group of methods (Group III methods) predicts the proportions of 

biomass in each component using beta, multinomial loglinear, and Dirichlet regression. Predicted 
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proportions are then applied to the observed total aboveground biomass to obtain amount of biomass 

in each component. 

3.2. Materials and Methods 

3.2.1. Data and Study Area 

A detailed biomass data collection was carried out by destructively sampling 90 trees in different 

forests within the state of Oregon (Figure 3.1). Efforts were made to select trees to give an 

approximately equal representation across a range of size class while avoiding the trees with severe 

defects and close to the stand edges. Trees that were forked below breast height and with damaged 

tops were also not included in sampling. The 90 trees belonged to five different species: Douglas fir 

(Pseudotsuga menziesii (Mirbel) Franco), Grand fir (Abies grandis (Dougl. ex D. Don) Lindl.), Lodgepole 

Pine (Pinus contorta), Western Hemlock (Tsuga heterophylla), and Red Alder (Alnus rubra). The field 

work was carried out between the first week of July and third week of September 2012 and 2013. Tree 

level attributes DBH, total height, crown base height (height to the base of the first live branch), crown 

width, and main stem diameter at 0.15 m, 0.76 m, 1.37 m, and 2.4 m above ground, and every 1.22 m 

afterwards were recorded. Diameter measurements were made on a total of 11783 and 472 branches 

from conifers and hardwood species respectively. The average DBH ranged from 24.6 cm to 54.9 cm and 

average height ranged from 17 m to 33 m (Table 3.1). 

The crown of the sample tree was divided in to three equal length strata. For all first order 

branches, height to- and diameter- at branch base were measured and for the first and every third 

branch in each stratum, branch length and green weight of both live and dead branches were recorded. 

Four, three, and two branches respectively from lower, middle, and upper stratum were randomly 

selected for weighing with and without foliage. The needles were removed in the field to obtain 

separate green weight of branch wood and foliage. These branches were then brought to the lab, 
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keeping branch wood and foliage in separate paper bags, for drying. Three to five centimeter thick disks 

were removed from the top of the stump and every 5.18 meter. Green weight of disks with and without 

bark as well as four measurements 90° apart along the disk edge for thickness was recorded in the field. 

Five to ten cm long bark sample was removed from each disk. The width, thickness, and length of the 

bark samples were also recorded in the field. 

The sample branches were chipped in to small pieces to expedite the drying process and placed 

in a kiln for drying at 105° Celsius. Oven dry weight was recorded by tracking the weight lost by each 

sample (disk, branch wood, needle, and bark) until no further weight was lost.  

Total tree biomass computation involved additional steps. Volume of each 5.18 m sections was 

converted into biomass by multiplying it by the average density of the disks taken from two ends. Total 

bole biomass was obtained by summing the section masses. Individual branch wood and foliage biomass 

was obtained by fitting species specific log linear model of the following form: 

                              ln(𝑦𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖 ln(𝐵𝐷𝑖𝑗) + 𝜀𝑖𝑗                                (1) 

Where, 𝑦𝑖𝑗, and 𝐵𝐷𝑖𝑗 are oven dry weight (kg) of branch wood or foliage and branch diameter 

(cm) at base of the jth branch on ith tree respectively; 𝛽𝑖𝑗′𝑠 are regression parameters to be estimated 

from the data; ln(·) is the natural logarithm; and 𝜀𝑖𝑗′𝑠 are the random error. The logarithmic regressions 

are reported to result in a negative bias when data are back transformed and the commonly used 

remedy to this is to multiply the back transformed results by a correction factor [𝑒𝑥𝑝 (
𝑀𝑆𝐸

2
)] , where 

MSE is the mean squared error obtained by the least-squares regression. However, there are conflicting 

remarks about the correction factor itself (e.g. Beaucham and Olson 1973, Flewelling and Pienaar 1981) 

and the effects of adjustment might be negligible (e.g. Harrison et al. 2009). Therefore, we did not use 

the correction factor in this study. Total branch wood and foliage biomass in each tree was obtained by 

summing these fitted values. The distribution of aboveground biomass in different components differed 
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among species with the majority of the aboveground biomass (73 to 82 percent on average) being 

present in the main bole (Figure 3.2). 

3.2.2. Methods for Estimating Aboveground Biomass 

There are many different methods available for the calculation of aboveground biomass and its 

components. The Forest Inventory and Analysis (FIA) of the U.S. Department of Agriculture (USDA) 

Forest Service uses the component ratio method (CRM) described in Heath et al. (2008) to produce 

national-level biomass and carbon estimates. The FIA-CRM approach is a multi-step process that 

involves converting sound volume of wood in the merchantable bole using a compiled set of wood 

specific gravities. The biomass in bole bark is calculated using a compiled set of percent bark and bark 

specific gravities. The set of wood and bark specific gravities and percent bark are compiled in Miles and 

Smith (2009). The biomass of tops and limbs is calculated as a proportion of the bole biomass based on 

component proportions from Jenkins et al. (2003). Biomass in stump wood and bark is based on volume 

equations in Raile (1982) and the compiled set of wood and bark specific gravities. Total aboveground 

biomass is obtained by summing these component masses. 

The FIA program of the USDA Forest Service has four regional units: Northern, Southern, Interior 

West, and Pacific Northwest (FIA-PNW). The FIA-PNW collects and maintains the data on plots in coastal 

Alaska, California, Hawaii, Oregon, Washington, and U.S.-affiliated Pacific Islands. To calculate 

aboveground biomass, the FIA-PNW uses its specific set of equations. Tree stem biomass is calculated 

from the cubic volume and wood density factor. The specific equations used by FIA-PNW for volume and 

aboveground biomass in the Pacific Northwest can be found in Zhou and Hemstrom (2010). 

The Jenkins et al. (2003) equations were derived by fitting regressions on pseudo-data 

generated from previously published equations. Jenkins et al. (2003) equations for total aboveground 

biomass are single entry equations that only use DBH as predictor variable. Biomass of the components 
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is predicted as the proportions of total aboveground biomass using an exponential function of DBH, 

differently for hardwood and softwood species groups. 

Aboveground biomass equations are used to convert forest inventory data to biomass 

estimates. These equations combine biomass data obtained from destructive sampling with the 

dendrometric information through regression. Regression models for total and component aboveground 

biomass have been fitted using different fitting approaches with linear and nonlinear functions. The sets 

of component biomass equations can be fitted independently or as a system of equations. When a 

system of equations is fitted simultaneously, the residuals are correlated because the component 

biomasses come from the same tree. Therefore the SUR approach that allows the inclusion of 

dependencies among the error terms of the component biomass equations is commonly used to 

estimate component and total aboveground biomass (e.g. Parresol 1999; Lambert et al. 2005; Ritchie et 

al. 2013). The SUR models can be constrained such that the prediction of component equations sum to 

the prediction of total tree regression. 

The single entry DBH-based allometric models for component biomass are much more complex 

than for total aboveground biomass (Jenkins et al. 2003). Zhang et al. (2004) found diameter at the base 

of the live crown as a better predictor of crown foliage biomass than DBH. For a mixed-species Atlantic 

forest stands, a transformed nonlinear biomass equation that used squared DBH, total tree height, and 

wood density as predictor variable was the most accurate model for aboveground biomass (Junior et al. 

2014). Therefore we extended the single entry DBH-based SUR models to include other predictor 

variables. Both single-and multiple-entry SUR models were constrained such that the prediction of 

component equations sum to the prediction of total tree regression. The models for component and 

total biomass in the simple and extended SUR method were in the following form: 

          𝐵𝑜𝑙𝑒⁡ = ⁡𝑒𝑥𝑝(𝑎11⁡ + ⁡𝑎12 ∗ 𝑋1 + ⁡𝑎13 ∗ 𝑋2⁡ + ⁡𝑎14 ∗ 𝑋3)             (2) 
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        𝐵𝑎𝑟𝑘 = ⁡𝑒𝑥𝑝(𝑎21⁡ + ⁡𝑎22 ∗ 𝑋1 + ⁡𝑎23 ∗ 𝑋2⁡ + ⁡𝑎24 ∗ 𝑋3)                                                      (3) 

                      𝐵𝑟𝑎𝑛𝑐ℎ⁡ = 𝑒𝑥𝑝(𝑎31⁡ + ⁡𝑎32 ∗ 𝑋1 + ⁡𝑎33 ∗ 𝑋2⁡ + ⁡𝑎34 ∗ 𝑋3)                                                  (4) 

      𝐹𝑜𝑙𝑖𝑎𝑔𝑒 = 𝑒𝑥𝑝(𝑎41⁡ + ⁡𝑎42 ∗ 𝑋1 + ⁡𝑎43 ∗ 𝑋2⁡ + ⁡𝑎44 ∗ 𝑋3)                                                    (5) 

      𝑇𝑜𝑡𝑎𝑙⁡ = ⁡∑ 𝑒𝑥𝑝(𝑎𝑖𝑗⁡ + ⁡𝑎𝑖𝑗 ∗ 𝑋1 + ⁡𝑎𝑖𝑗 ∗ 𝑋2⁡ + ⁡𝑎𝑖𝑗 ∗ 𝑋3)𝑖,𝑗                                                        (6) 

Where 𝑎𝑖𝑗, (𝑖 = 1, 2, 3, 4, and⁡𝑗 = 1, 2, 3,4) are parameters to be estimated from the data and 

X1, X2, and X3 are natural logarithms of DBH, total tree height and crown length respectively. Note that 

for the simple SUR, only X1 was used as explanatory variable. SAS procedure PROC MODEL (SAS Institute 

Inc 2013) was used to fit both simple and extended SUR models. We made necessary computational 

adjustments to match the component definitions in all methods and applied these methods to estimate 

component and total aboveground biomass of all five species. 

3.2.3. Estimating Component Proportions 

The component biomass can be estimated as the proportions of total aboveground biomass. A 

proportion is bounded between 0 and 1, and therefore the effect of explanatory variables tends to be 

nonlinear and the variance tends to decrease when the mean get closer to one of the boundaries. In this 

study we evaluated three different methods for estimating proportions namely the beta regression, 

Dirichlet, and the multinomial loglinear regression. 

3.2.3.1. Beta Regression 

The Beta regression model was introduced by Ferrari and Cribari-Neto (2004) and is useful when 

the variable of interest is continuous, restricted to the interval (0, 1) such as percentages, proportions 

and fractions or rates, and related to other variables through a regression structure. Since then it has -

been used in many fields including medicine (Hubben et al. 2008), economics (De Paola et al. 2010), 

education (Smithson and Verkuilen 2006), and forestry (Korhonen et al. 2007; Eskelson et al. 2011). 
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Korhonen et al. (2007) used this technique for modeling percent canopy cover in a conifer dominated 

study area in central Finland. Eskelson et al. (2011) used beta regression to estimate riparian percent 

shrub cover. This method produced smaller mean squared prediction error and absolute bias compared 

to the ordinary least squares and generalized least squares regression models used in their study. The 

usual beta distribution is of the following form: 

                        𝑓(𝑦; ⁡𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)⁡Γ(𝛽)
𝑦𝛼−1(1 − 𝑦)𝛽−1, for⁡0 < y < 1                                              (7) 

Where, 𝛼, 𝛽 > 0 are two shape parameters and Γ(·) is the gamma function.  

In order to obtain a regression structure for the mean of the response and a precision 

(dispersion) parameter, Ferrari and Cribari-Neto (2004) used a different parameterization of beta 

distribution. With mean and precision parameters defined as 𝜇 =
𝛼

(𝛼+𝛽)
 and 𝜙 = (𝛼 + 𝛽) respectively, 

the beta density function has the following form under new parameterization: 

                   𝑓(𝑦; ⁡𝜇, 𝜙) =
Γ(𝜙)

Γ(𝜇𝜙)Γ((1−𝜇)𝜙)
𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1, for⁡0 < y < 1                             (8) 

Where, 0 < 𝜇 < 1⁡and⁡𝜙 > 0. 

With this parameterization the beta regression model can be written as: 

     𝑔(𝜇𝑖) = 𝐱𝑖
T𝜷 = 𝜼𝑖                                                                                       (9) 

Where, 𝑔(·) is strictly increasing and double differentiable link function that maps (0, 1) in to 

the real line ℝ, 𝐱𝑖 = (𝑥𝑖1, ……… , 𝑥𝑖𝑘)
T is a vector of 𝑘 explanatory variables, 𝜷 = (𝛽1, ……… , 𝛽𝑘)

T is a 

vector of unknown 𝑘 unknown regression parameters (𝑘 < 𝑛), and 𝜼𝑖  is a linear predictor (i.e. 

𝜼𝑖 = 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑘𝑥𝑖𝑘 , usually 𝑥𝑖1 = 1 for all 𝑖 so that the model has an intercept) (Cribari-Neto and 

Zeileis 2010). 
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We used various combinations of explanatory variables to predict proportion of aboveground 

biomass present in different components. The logit link function 𝑔(𝜇) = log (
𝜇

1−𝜇
) was used, thus the 

predicted proportions are obtained as 𝜇𝑖 =
𝑒𝑥𝑝⁡(𝜂𝑖)

1+exp⁡(𝜂𝑖)
 . The beta regression was performed in R 3.1.2 (R 

Core Team 2014) with function betareg in package betareg (Cribari-Neto and Zeileis 2010). 

3.2.3.2. Dirichlet Regression 

The Dirichlet distribution is a multivariate generalization of the beta distribution and takes the 

following form: 

𝑓(𝒚;𝜶) =
1

B(𝜶)
∏ 𝑦𝑐

(𝛼𝑐−1)𝐶
𝑐=1                                                                         (10) 

Where, 𝛼𝑐 are the shape parameters for each variable, 𝛼𝑐 > 0, for all 𝑐, 𝑦𝑐 ∈ (0,1), ∑ 𝑦𝑐
𝐶
𝑐=1 = 1 

for all 𝑐, and 𝐶 is the number of variables. B(𝛼𝑐) =
∏ Γ(𝛼𝑐)
𝐶
𝑐=1

Γ(∑ 𝛼𝑐
𝐶
𝑐=1 )

  is the multinomial beta function and Γ(·) 

is the gamma function. If 𝐶 = 2, then the Dirichlet distribution reduces to the beta distribution. Maier 

(2014) used the generalization of Ferrari and Cribari-Neto (2004) and re-parameterized the Dirichlet 

distribution with mean and precision parameters 𝜇𝑐 =
𝛼𝑐

𝜙
 and 𝜙 = 𝛼0 = ∑ 𝛼𝑐

𝐶
𝑐=1  respectively. Then the 

Dirichlet density has the following form: 

                                     𝑓(𝒚; 𝝁, 𝜙) =
1

B(𝝁𝜙)
∏ 𝑦𝑐

(𝜇𝑐𝜙−1)𝐶
𝑐=1                                                                      (11) 

Where, 0 < 𝜇 < 1⁡and⁡𝜙 > 0. 

The Dirichlet regression is useful for modeling data that represent the components as 

percentage of total. With the usual parameterization, the regression model can be formulated as: 

            𝑔(𝛼𝑐) = 𝜂𝑐 = 𝑿[𝑐]𝜷[𝑐]                                                                                    (12) 
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Where 𝑔(·) is the link-function which is log(·) for the model with usual parameterization (Maier 

2014), the superscript [𝑐] represent predicted proportion of component 𝑐. The predicted values are 

obtained as 𝜇𝑐 = 𝑒𝑥𝑝⁡(𝜂𝑐). The Dirichlet regression was performed in R 3.1.2 (R Core Team 2014) with 

function DirichReg in package DirichletReg (Maier 2014a). 

3.2.3.3. Multinomial Loglinear Regression 

In this method, four components (bole, bole bark, branch, and foliage) were set to four nominal 

values. The models to predict proportions of total tree biomass found in bole wood, stem bark, branch 

and foliage were fit simultaneously using a multinomial logit model. The models for component 

proportions were: 

    𝑝𝐵𝑜𝑙𝑒 =
1

1+𝑒(𝑎1+𝑎2×𝑋1+𝑎3×𝑋2)+𝑒 ⁡(𝑏1+𝑏2×𝑋1+𝑏3×𝑋2)+𝑒(𝑐1+𝑐2×𝑋1+𝑐3×𝑋2)⁡
                                                   (13) 

    𝑝𝐵𝑎𝑟𝑘 =
𝑒(𝑎1+𝑎2×𝑋1+𝑎3×𝑋2)

1+𝑒(𝑎1+𝑎2×𝑋1+𝑎3×𝑋2)+𝑒 ⁡(𝑏1+𝑏2×𝑋1+𝑏3×𝑋2)+𝑒(𝑐1+𝑐2×𝑋1+𝑐3×𝑋2)⁡
                                                  (14) 

    𝑝𝐹𝑜𝑙𝑖𝑎𝑔𝑒 =
𝑒 ⁡(𝑏1+𝑏2×𝑋1+𝑏3×𝑋2)

1+𝑒(𝑎1+𝑎2×𝑋1+𝑎3×𝑋2)+𝑒 ⁡(𝑏1+𝑏2×𝑋1+𝑏3×𝑋2)+𝑒(𝑐1+𝑐2×𝑋1+𝑐3×𝑋2)⁡
                                              (15) 

    𝑝𝐵𝑟𝑎𝑛𝑐ℎ =
𝑒(𝑐1+𝑐2×𝑋1+𝑐3×𝑋2)

1+𝑒(𝑎1+𝑎2×𝑋1+𝑎3×𝑋2)+𝑒 ⁡(𝑏1+𝑏2×𝑋1+𝑏3×𝑋2)+𝑒(𝑐1+𝑐2×𝑋1+𝑐3×𝑋2)⁡
                                              (16) 

Where, 𝑝𝐵𝑜𝑙𝑒, 𝑝𝐵𝑎𝑟𝑘, 𝑝𝐹𝑜𝑙𝑖𝑎𝑔𝑒 and 𝑝𝐵𝑟𝑎𝑛𝑐ℎ are proportions of total aboveground biomass in 

bole, bark, foliage, and branch respectively; 𝑋1= DBH; 𝑋2= total tree height; and 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 (𝑖 = 1, 2,3) are 

model parameters. The multinomial logit fit provides the “probability” of observing these components 

and can be considered as the proportion of biomass in each component and estimated by model 

parameters (Boudewyn et al. 2007). The multinomial loglinear regression (MLR) was performed in R 

3.1.2 (R Core Team 2014) with function multinom in package nnet (Venables and Ripley 2002). The 

biomass present in each component was used as frequency weight and component bole was used as 

reference group. 



56 
 

 
 

3.3. Results and Discussion 

The methods used to estimate aboveground biomass and/or its components in this study were 

applied to all five species. Performance of all the methods was evaluated based on the bias and RMSE 

produced by each method. The FIA-CRM, FIA-PNW, and the Jenkins methods were biased and produced 

the highest values for root mean squared error. The average bias and RMSE produced by these methods 

are given in Table 3.2. These methods produced similar estimates for total aboveground biomass except 

for Douglas fir. The Jenkins method for Douglas fir produced total aboveground biomass that was 

respectively 18.4 and 23.7 percent higher than the estimates provided by the FIA-PNW and FIA-CRM 

methods. Despite their similar predictions for total aboveground biomass, these methods showed 

discrepancies in component biomass estimates. However, none of these methods were consistent in 

over- or under-predicting the component masses (Figure 3.3).  

It is important to note that the component biomass estimates obtained from these methods 

were similar for lodgepole pine and red alder. Both lodgepole pine and red alder were the trees with 

smaller diameter (average diameter 24.6 and 27.1 cm for lodgepole pine and red alder respectively) in 

our study. Indeed, these methods were more sensitive to tree size compared to other methods. For 

example, the RMSE percent for total aboveground biomass using Jenkins equations for Douglas fir 

dropped from 57.7 percent to 11.1 percent when this approach was applied to the trees that are less 

than 94 cm in DBH. With the FIA-CRM, the RMSE percent for total aboveground biomass of Douglas fir 

decreased from 10.2 to 7.1 percent for trees that are less than 94 cm in DBH. Similarly, the RMSE 

percent for total aboveground biomass of Douglas fir decreased from 16.3 to 8.5 percent in using FIA-

PNW approach for trees that are less than 94 cm in DBH. 

The parameter estimates and their approximate standard errors of the simple and extended 

SUR models for Douglas fir are presented in Table 3.3. The average bias and RMSE produced by simple 



57 
 

 
 

and extended SUR approaches are presented in Table 3.4. Both of these methods consistently provided 

lower RMSE compared to the FIA-CRM, FIA-PNW, and Jenkins methods. Including additional explanatory 

variables than just DBH in the SUR model resulted in the decrease in RMSE percent from 10.7 to 8.3 for 

Douglas fir, 4.7 to 4.3 for grand fir, 22.8 to 20.5 for lodgepole pine, 10.7 to 1.9 for Western hemlock, and 

14.0 to 8.0 for red alder total aboveground biomass respectively. The RMSE for bole biomass estimation 

was reduced by 2.3, 0.2, 6.9, 10.1, and 2.0 percent for Douglas fir, grand fir, lodgepole pine, western 

hemlock, and red alder respectively by using the extended SUR approach instead of the simple SUR. It is 

logical because one would, for example, expect differences, at least, in the bole biomass for a same DBH 

tree with different height which would not be accounted for by DBH only models.  

However, it should be noted that even though the RMSE for total aboveground biomass is 

decreased by using the extended SUR approach, the RMSE for some component biomass increased 

(Figure 3.4). This could have been avoided by not constraining the extended SUR models i.e. fitting 

independent component models rather than fitting a system of equations which in turn would have 

affected the additivity of the component models. 

The beta, Dirichlet, and multinomial loglinear regressions provided the predicted proportions of 

each component biomass. The predicted proportions were then applied to observed total aboveground 

biomass to obtain predicted biomass estimates in different components (𝐵̂𝑐) i.e. 𝐵̂𝑐 = 𝑝̂ ∗ 𝐴𝐺𝐵, where 

𝑝̂⁡and⁡𝐴𝐺𝐵 are predicted proportions and observed total aboveground biomass (kg) respectively. The 

parameter estimates for these models (including parameters estimates for SUR models for other 

species) are available on request. The bias and RMSE produced by these methods are given in Table 3.5. 

These methods unbiasedly predicted component proportions for all species. Additionally, these 

methods consistently produced smaller values for bias and RMSE compared to the FIA-CRM, FIA-PNW, 

and Jenkins methods but there were some exceptions when these methods were compared against the 

simple and extended SUR methods. However, there was no clear winner within this group of methods. 
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The beta regression produced smaller RMSE compared to the simple SUR models except for 

grand fir foliage and bark biomass and Douglas fir branch biomass while it produced smaller RMSEs than 

the extended SUR models except for grand fir foliage, bark, and branch biomass. It is unclear whether 

the poor performance of beta regression in grand fir component proportion estimation is due to smaller 

sample size (n=9) because it performed better than both SUR methods for bole mass and better than 

the simple SUR for branch biomass for this species. In case of other species-component combinations, 

beta regression produced up to 24.6 and 17.7 percent lower RMSE for conifers and up to 46.8 and 40.9 

percent lower RMSE for red alder (hard wood) compared to the simple and extended SUR methods 

respectively. 

Similarly, the Dirichlet regression also produced smaller RMSE compared to the simple and 

extended SUR methods with some exceptions. It specifically performed poorly for red alder producing 

up to 32.1 and 22.3 percent higher RMSE compared to the simple and extended SUR methods 

respectively. In the case of conifers, it produced smaller RMSE compared to SUR except for Douglas fir 

branch biomass while it performed better than extended SUR except for western hemlock bark and 

grand fir branch biomass estimation. One advantage of using Dirichlet regression over beta regression is 

that the Dirichlet regression allows simultaneous fitting of the component proportions and therefore the 

predicted proportions sum to 1. 

The MLR consistently produced smaller RMSE compared to the SUR method for all species and 

all components. It also produced smaller RMSE compared to the extended SUR for all species and 

components except for grand fir branch biomass for which it produced 2.7 percent higher RMSE 

compared to the extended SUR method. Once again, one of the reasons for this could have been smaller 

sample size (n=9) for grand fir. In a simulation study, Peduzzi et al. (1996) showed that with less than 10 

events per predictive variables, the logistic regression model produced biased coefficients in both 

positive and negative directions. However, this method provided better estimates (up to 4.4 and 6.8 
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percent smaller RMSE compared to simple and extended SUR approaches respectively) for other 

components even in the grand fir. 

3.4. Summary and Conclusion 

The methods to estimate aboveground biomass and/or its components used in this study 

provided differing estimates for total aboveground biomass and its components. Both simple and 

extended SUR approaches performed better than the FIA-CRM, the FIA-PNW, and the Jenkins 

approaches for our dataset. The FIA-CRM, FIA-PNW, and Jenkins methods provided results comparable 

to both SUR approaches for smaller trees (less than 94 cm DBH) but they were highly biased for bigger 

trees. We would like to note that the larger trees (greater than 94 cm DBH) in our sample were all 

Douglas-fir and the extension of this result to other species might need further validation. The methods 

for estimating proportions were clearly superior to the FIA-CRM, the FIA-PNW, and the Jenkins methods 

in terms of bias and RMSE. These methods were also superior to both simple and extended SUR 

approaches with some exceptions. However, none of these methods was clearly superior to the other. 

The Jenkins method for our Douglas fir trees produced total aboveground biomass that was 18.4 

and 23.7 percent higher than the estimates provided by the FIA-PNW and FIA-CRM methods. Zhou and 

Hemstrom (2009) reported similar differences (17 and 20 percent respectively) for the major softwood 

species in Oregon. The FIA-CRM, FIA-PNW, and Jenkins methods produced up to 3.7, 2.7, and 3.4 times 

higher bark biomass estimates. The bole biomass estimates were within 10 percent for Douglas fir and 

grand fir and within 20 percent for lodgepole pine, red alder, and western hemlock. These methods 

were very inconsistent for branch and foliage biomass, over-estimating for some species and under-

estimating for others. The FIA-CRM and Jenkins methods were developed for larger scale biomass 

estimation, therefore the estimates obtained from these methods are inconsistent at the smaller scale, 

perhaps due to generalized nature of the equations. 



60 
 

 
 

In fitting the SUR models, the use of explanatory variables other than DBH was justified by the 

reduction in RMSE produced by the extended SUR approach in estimating total aboveground biomass. 

This also reduced RMSE for bole biomass. However, for some species, it did not improve prediction for 

other components. This could be because the added variable provided more information for the bole 

and total biomass but not for other components. We also found that, for Douglas fir, the addition of 

crown length rather than total height to the DBH only model was useful in estimating foliage and branch 

biomass. By using crown length instead of total height, the adjusted R-squared of the foliage and branch 

models increased from 0.44 and 0.55 to 0.81 and 0.89 respectively. 

The knowledge of biomass distributions in different tree components is essential to determine 

which portion of the tree can provide what amount of biomass for different purposes. The proportion of 

component biomass can be predicted using the beta, Dirichlet, and multinomial loglinear regressions. 

These methods were not only unbiased and but also produced very small RMSE values compared to the 

FIA-CRM, FIA-PNW, and Jenkins methods. They also provided better results compared to both SUR 

approaches for most of the species and components. This was expected because the measurement of 

proportion take values on the open interval (0, 1) and the influence of explanatory variables on 

continuous responses bounded between 0 and 1 can be investigated with the beta regression (Ferrari 

and Cribari-Neto (2004)) and the Dirichlet regression is multivariate extension of the beta. Additionally, 

the simultaneous fitting in the Dirichlet regression ensures that the predicted component proportions 

sum to 1. 

Even though the methods or models that are capable of predicting forest biomass at the large-

scale are desired, the use of such models without local calibration could lead to serious bias. With 

increasing interest in the utilization of component biomass for bioenergy, the importance of component 

models is also increasing. The differences in the scale of development and application of model could 

result in higher bias for the component biomass estimation. The findings of the study should provide 
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information on the efficiency of selected methods in quantifying component and total aboveground 

biomass. Application of the methods to predict component proportions for other species and locations 

and with the larger dataset would further validate their accuracy. 
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Figure 3.1. Locations of study sites. Data collection was carried out in the summer of 2012 and 2013.  
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Figure 3.2. Aboveground biomass distribution in different tree components (percentage of total 
aboveground biomass) in different species (Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole 
Pine; RA = Red Alder; WH = Western Hemlock). 
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Figure 3.3. Average component biomass estimates produced by the FIA-CRM, FIA-PNW, and Jenkins 
methods in different species (Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole Pine; RA = Red 
Alder; WH = Western Hemlock). 
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Figure 3.4. RMSE produced by simple and extended SUR approaches in estimating component biomass 
for different species (Species are DF = Douglas Fir; GF = Grand-fir; LP = Lodgepole Pine; RA = Red Alder; 
WH = Western Hemlock). 
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Table 3.1. Summary statistics for tree data sampled (Species are DF = Douglas-fir; GF = Grand Fir; LP = 
Lodgepole Pine; RA = Red Alder; WH = Western Hemlock). 

Species 
Number 
of trees 

DBH (cm)  Total Height (m) 

Min Max Mean  Min Max Mean 

DF 22 19.3 114.0 54.9  16.6 48.8 33.0 

GF 9 23.9 84.3 53.1  18.3 44.4 32.7 
LP 33 13.5 42.9 24.6  9.2 31.9 17.0 
RA 14 16.3 51.8 27.1  12.8 31.6 23.7 
WH 12 18.0 69.9 44.7  14.4 39.8 31.3 
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Table 3.2. Average bias and RMSE for component and total aboveground biomass produced by the FIA-CRM, FIA-PNW, and Jenkins approaches 
(Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole Pine; RA = Red Alder; WH = Western Hemlock). 

Method Species 
Bias (kg)  RMSE (kg) 

Foliage Bark Branch Bole Total  Foliage Bark Branch Bole Total 

FIA-
CRM 

DF -79.6 -189.6 -73.3 -109.7 -32.5  126.0 281.1 136.8 289.8 234.5 

GF -14.4 -208.7 105.4 -161.2 107.3  24.9 270.6 166.8 255.6 281.0 

LP 3.2 -4.8 19.4 25.1 72.4  12.7 12.5 37.9 70.5 101.8 

WH -11.2 -148.8 77.7 -184.0 17.6  20.9 184.1 154.3 240.2 88.3 

RA -4.8 -29.4 3.5 -27.7 -2.5  6.4 41.2 79.6 53.8 87.7 

FIA-
PNW 

DF -14.9 -143.2 -161.2 182.8 -136.6  37.7 232.5 280.3 311.7 376.1 

GF -67.0 -132.4 185.4 114.6 100.7  88.4 175.1 263.6 229.8 265.7 

LP 6.6 -3.9 22.7 38.8 64.2  12.0 9.4 40.6 78.7 99.7 

WH 34.5 -19.6 166.4 45.0 226.4  49.4 26.9 237.3 81.8 305.7 

RA -1.8 -29.6 13.8 19.6 2.1  2.5 41.9 71.0 35.8 71.5 

Jenkins 

DF -102.1 -255.5 -134.8 -93.8 -586.2  176.0 418.7 246.5 597.6 1327.7 

GF -7.0 -174.7 125.9 180.0 124.2  16.3 228.5 188.1 249.4 203.9 

LP 3.5 -18.7 29.7 49.1 63.6  9.9 26.7 44.6 102.5 104.2 

WH 7.0 -103.8 128.9 216.8 248.9  13.6 136.2 185.0 305.8 323.9 

RA -3.6 -26.8 17.5 61.0 48.2  5.0 38.8 81.3 80.3 105.6 
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Table 3.3. Parameter estimates, their approximate standard errors, and p-values of the simple and 
extended SUR models for Douglas-fir. 

Method Parameter Estimate 
Approximate 

Standard Error 
Approximate 

Pr > |t| 

Simple 
SUR 

a11 -0.34906 0.0961 0.0018 

a12 1.925357 0.0210 <.0001 

a21 -3.24695 0.7009 0.0002 

a22 1.919085 0.1536 <.0001 

a31 -2.60374 0.8215 0.0050 

a32 1.942273 0.1799 <.0001 

a41 -3.24152 0.8960 0.0018 

a42 1.75849 0.1973 <.0001 

Extended 
SUR 

a11 -1.99252 0.0618 <.0001 

a12 1.597243 0.0115 <.0001 

a13 0.826614 0.00861 <.0001 

a21 -4.45886 0.8061 <.0001 

a22 2.168904 0.1756 <.0001 

a31 -3.85644 0.4539 <.0001 

a32 1.795146 0.0931 <.0001 

a33 0.611343 0.0459 <.0001 

a41 -4.51727 0.5643 <.0001 

a42 1.496697 0.1467 <.0001 

a43 0.778996 0.1709 0.0002 
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Table 3.4. Average bias and RMSE for component and total aboveground biomass produced by the simple and extended SUR approaches 
(Species are DF = Douglas Fir; GF = Grand-fir; LP = Lodgepole Pine; RA = Red Alder; WH = Western Hemlock). 

Method Species 
Bias (kg)  RMSE (kg) 

Foliage Bark Branch Bole Total  Foliage Bark Branch Bole Total 

Simple 
SUR 

DF 4.0 0.4 0.3 -44.1 -39.3  18.4 28.2 66.2 249.2 245.8 

GF -1.2 1.6 -6.6 1.8 -4.4  9.8 9.5 34.2 74.3 98.4 

LP 0.7 0.1 2.3 -2.7 0.5  8.8 7.1 28.7 79.7 67.9 

WH -5.8 -0.8 -20.1 12.1 -14.8  14.4 7.5 56.5 192.4 159.7 

RA -2.8 -6.1 24.4 -16.3 -0.5  3.5 7.8 32.8 47.1 56.2 

Extended 
SUR 

DF -0.7 12.7 -16.6 -16.3 -20.9  19.9 32.5 72.9 204.3 190.9 

GF -4.9 -5.1 6.6 2.1 -1.4  12.8 11.3 16.1 70.8 90.4 

LP 2.5 0.2 6.8 -10.9 -1.2  8.3 7.1 26.2 64.4 60.9 

WH 0.4 -1.4 -0.8 -0.7 -2.7  19.3 5.6 51.2 79.4 27.8 

RA 0.5 -2.3 5.8 -3.3 1.0  3.3 10.3 39.9 40.9 32.3 
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Table 3.5. Average bias and RMSE of component biomass produced by the beta, multinomial loglinear, 
and Dirichlet regression approaches (Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole Pine; 
RA = Red Alder; WH = Western Hemlock). Predicted component biomass was obtained by applying 
predicted proportions to the observed total aboveground biomass. 

Method Species 
Bias (kg)  RMSE (kg) 

Foliage Bark Branch Bole  Foliage Bark Branch Bole 

Beta 

DF -0.218 -2.619 -1.221 2.994  15.3 20.0 72.5 79.8 

GF 1.109 -0.392 -0.152 -0.320  13.7 14.3 24.3 36.0 

LP -0.122 0.105 -0.111 -0.766  5.9 6.6 22.2 25.5 

WH 0.811 -0.386 1.330 -1.567  13.6 5.4 32.8 43.2 

RA 0.350 -0.258 3.801 -3.230  1.9 4.2 22.4 20.8 

MLR 

DF 0.001 -0.005 -0.004 -0.083  17.2 23.2 63.7 74.3 

GF -0.002 0.000 0.001 0.001  9.4 6.1 25.7 35.4 

LP -0.007 -0.006 -0.025 -0.114  7.0 6.5 21.6 27.9 

WH 0.009 0.008 0.042 0.108  11.4 5.1 29.8 40.8 

RA -0.001 -0.017 -0.023 -0.173  1.1 2.6 13.6 12.9 

Dirichlet 

DF -1.948 -2.971 6.807 -1.979  17.5 24.3 70.8 83.0 

GF -0.832 0.177 -0.312 0.968  9.4 6.0 24.7 33.5 

LP -1.515 -1.356 0.729 1.990  7.5 7.0 21.7 28.6 

WH 1.473 -2.130 5.325 -4.501  13.3 7.1 34.9 45.7 

RA -0.859 -5.289 15.286 -9.353  1.6 15.8 51.6 35.6 
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Abstract 

Volume and biomass equations developed for national or regional scales are commonly used at 

the local scale. However, these models may not be unbiased at the local scale if there is spatial variation 

in the tree form due to one or more unknown predictors and this regional bias could be reduced or 

removed if the models are localized to each sub-region or subarea. The performance of regional volume 

and component biomass equations was evaluated using data collected destructively from sampled 

Douglas-fir and lodgepole pine trees. Upper stem diameters and volume estimates were also obtained 

by fitting a variable-exponent taper function. The volume and component biomass equations were 

calibrated using three different adjustment methods (a) use of a correction factor based on ordinary 

least square regression through origin (OLS-RTO method), (b) use of a correction factor based on OLS 

with intercept (OLS-WI method), and (c) an inverse approach. The regional volume equations performed 

fairly well and produced similar results as the locally fitted volume equations of the same form. The 

taper based volume estimates for Douglas-fir were comparable (root mean squared error (RMSE) within 

3%) to the volume estimates obtained from regional volume equations but for lodgepole pine taper 

based volume estimates were highly biased. The regional predicted component biomass estimates were 

highly biased. All the adjustment methods were able to improve the performance of regional equations. 

Based on the leave one out cross validation, the RMSEs in cubic volume including top and stump (CVTS) 

and component biomass estimation was similar for the adjustments from a correction factor based on 

OLS-RTO and an inverse approach. The OLS-WI method did not perform as well as other two adjustment 

methods. When only one tree is available for calibration of regional models, we found it useful to use 

the tree with maximum DBH to calibrate regional CVTS and bark biomass equations and the dominant 

tree to calibrate bole, foliage, and branch biomass. Selecting trees of such characteristics to calibrate the 

regional models was more useful than randomly selecting one tree. The decreasing trend in RMSE by 

using randomly selected 𝑚 trees slowed down significantly after five trees. 
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4.1. Introduction 

The estimation of total and merchantable stem volume is crucial for land managers to ascertain 

continuous production. Two approaches are used to obtain these estimates (1) use of a direct volume 

equation and (2) integration of stem profile equations or taper functions. The volume equations are 

typically species specific regression models that range from a single entry simple linear regression 

models that relate tree volume with diameter at breast height (DBH) to multiple entry nonlinear models 

that use DBH, height, and crown ratio etc. The taper functions provide additional advantages in the 

sense that they can provide diameter inside or outside bark at certain height on the stem, estimates of 

total and merchantable stem volume, and volume of an individual log (Kozak 1988) or a height at given 

diameter (Li et al. 2012).  

Several published volume and profile equations are available and are being used at different 

scales of forest management. Generally, these volume and profile equations are developed for either a 

national scale or a regional scale applications but commonly used to predict tree volume at local scales. 

The Forest Inventory and Analysis program in the Pacific Northwest Research Station (FIA-PNW) uses the 

direct volume equations for tree volume estimation. Particularly, for Douglas-fir and lodgepole pine 

cubic volume estimation, the FIA-PNW uses equations and tarif system based on Brackett (1973). The 

differences in stand conditions affect the tree form and thus tree volume (Bluhm et al. 2007). The 

evaluation of existing volume and taper equations itself is a rare opportunity (Omule et al. 1987) 

because it requires destructively sampled data. 

Biomass of a tree or its component is defined as its oven-dry weight. Quantifying biomass in a 

forest ecosystem has received significant attention in recent years because the carbon content in 

biomass is approximately 50%. The amount of biomass present in a forest determines the potential of 

that forest to sequester and store carbon dioxide. Various climate change agreements and action plans 
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at scales ranging from local to international level such as the United Nations Framework Convention on 

Climate Change and in particular the Kyoto Protocol recognize the importance of forest carbon sink and 

the need to monitor, preserve and enhance terrestrial carbon stocks (Zianis et al. 2005). Additionally, a 

number of voluntary and regulated carbon markets have provisions for credits for carbon sequestration 

from forest management projects that meet certain criteria and verification.  

In addition to total aboveground biomass estimate, the knowledge of biomass present in 

different components is useful for different purposes. Stem wood is important in timber sale; 

knowledge of crown biomass is useful in fuel load assessment, formulating fire management strategies, 

and in developing wildfire models while the biomass in small branches and leaves /foliage determines 

the possibility of installing bioenergy plants in that area. The FIA-PNW calculates the biomass in main 

stem, whether merchantable or total, from the cubic volume estimates and previously compiled wood 

density factors. The biomass in other components is calculated from published models that are derived 

from local tree studies as functions of DBH and total height (Zhou and Hemstrom 2009).  

Three major methods used in aboveground biomass estimation in the United States are: 1) the 

component ratio method (CRM) of the FIA, 2) the equations developed by Jenkins et al. (2003) based on 

meta-analysis of the previously published models, and 3) the models developed for regional 

applications. In comparing these three methods, Zhou and Hemstrom (2009) found similar estimates for 

total aboveground biomass but substantially different estimates for the merchantable biomass for 

softwood species in Oregon with Jenkins method producing estimates 17 percent higher than the 

regional equations. We, ourselves, found that the Jenkins method for our Douglas fir trees produced 

total aboveground biomass that was 18.4 and 23.7 percent higher than the estimates provided by the 

FIA-PNW and FIA-CRM methods respectively (see Chapter 3). 
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Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global 

and regional terrestrial carbon fluxes (Pflugmacher et al. 2008). Direct measurement of biomass on the 

ground is time consuming and expensive (Houghton 2005) and the component biomass estimates 

obtained as percentages of total or stem biomass from the published information might be very 

simplistic (Hansen 2002). Similar to volume and taper equations, the evaluation of biomass models, in 

itself, is time consuming and expensive because it requires destructively sampled data.  

A stem profile based system with an allometric model for biomass components would have 

more biological basis than the empirical models now being used (Hansen 2002). Stating the problem of 

compatibility of forest biomass estimates among different scales, Zeng et al. (2011) used the dummy 

variable model approach to construct compatible single-tree biomass equations at different scales. They 

found these models with local parameters to perform better than a population-average model. The 

regional models may not be unbiased at the local scale if there is spatial variation in the tree form due to 

one or more unknown predictors and this regional bias could be reduced or removed if the models are 

localized to each sub-region or subarea (Räty and Kangas 2008). 

Model calibration is needed when the predictive validity of model is in question or when the 

data are inadequate to estimate model inputs. It is the process of systematic adjustment of model 

parameters such that the adjusted model predicts the observed outputs more accurately (Taylor et al. 

2012). Two options are available when sample volume and biomass data is available at the local scale: 

one is to fit new volume or biomass equation and the other is to use the available data to calibrate the 

existing regional models, however, the sample size required for fitting new models is relatively larger 

than that required for calibration of existing equations (Garber et al. 2009). 

Calibration itself is sometimes criticized because it requires destructive sampling if the original 

model formation is based on the destructive sampling (Ketterings et al. 2001). Mixed effects models 
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have been widely used in forestry applications so as to describe the mean effect by a certain model form 

and to account the variability due to the stand or plot effects through random effects (e.g. de-Miguel et 

al. 2014). The calibration process in this approach uses the best linear unbiased predictor of the random 

effects parameter. Temesgen et al. (2008) used this approach to calibrate nonlinear height-diameter 

equations while Garber et al. (2009) used this approach in evaluating the effects of height imputation 

strategies on stand volume estimation. Another commonly used method for calibrating regional models 

is based on an ordinary least square (OLS) correction factor. A multiplicative correction factor based on 

an OLS regression is obtained based on observed and regional predicted variable of interests (e.g. Hanus 

et al. 1999; Hann 2006; Temesgen et al. 2008; and Garber et al. 2009). Temesgen et al. (2008) obtained 

results from OLS correction factors that were comparable with the results from mixed effects model 

when four or more trees were subsampled for height while Garber et al. (2009) obtained 95% decrease 

in root mean squared error (RMSE) when the regional models were calibrated with a subsample of three 

tree heights. 

The objectives of this study are to evaluate the performance of (1) existing volume and biomass 

equations in terms of their prediction errors; (2) a locally fitted taper equation in estimating inside bark 

cubic volume and upper stem diameters; (3) evaluate the performance of three different calibration 

methods (a) use of a correction factor based on OLS regression through origin (OLS-RTO method), (b) 

use of a correction factor based on OLS with intercept (OLS-WI method), and (c) an inverse approach. 

The abbreviation RTO for regression through origin was adopted from (Eisenhauer, 2003). 

4.2. Materials and Methods 

4.2.1. Data 

Only the Douglas-fir and lodgepole pine tree data that was also used in Chapter 2 was used in 

this study. In summary, the tree level attributes DBH, total height, crown base height (height to the base 
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of the first live branch), crown width, and main stem diameter at 0.15 m, 0.76 m, 1.37 m, and 2.4 m 

above ground, and every 1.22 m afterwards were recorded. The average diameter for the Douglas-fir 

trees was 54.9 cm and for lodgepole pine was 24.6 cm and average height was 33 m and 17 m 

respectively. The details of methods for obtaining total and component biomass is described in Chapter 

3. The distribution of aboveground biomass in different components differed among species with the 

majority of the aboveground biomass (73 to 82 percent on average) being present in the main bole 

(Figure 3.2). 

The “observed” inside bark cubic volume including top and stump (CVTS) in the felled trees was 

calculated as follows. After the subject tree is felled, it was sectioned into 5.18 m long sections. The 

inside-bark cubic volume in these sections was calculated using the Smalian’s formula below: 

𝑉 =
𝐴1+𝐴2

2
× 𝐿                  (1) 

Where, 𝑉 is the volume of 5.18 m section in cubic meter, 𝐴𝑖
′𝑠⁡(𝑖 = 1, 2) are the cross-sectional 

areas at the small and large end of the sections in m2 with 𝐴𝑖 =
𝜋𝐷𝑖

2

4
 where 𝐷𝑖 = diameter inside bark (m) 

at the ith end of the section, and 𝐿 is the length of the section in meters (5.18 m).  

Inside bark volume of stump was calculated as cylinder while the volume of top section was 

calculated as cone. 

  𝑉𝑠 =
𝜋𝐷𝑠

2𝐻𝑠

4
                                   (2) 

    𝑉𝑡 =
𝜋𝐷𝑡

2𝐻𝑡

12
                                                                                       (3) 

Where, 𝑉𝑠 and 𝑉𝑡 are inside bark volume of stump and top, respectively, in cubic meter, 𝐷𝑠 and 

𝐷𝑡 are the inside bark diameter (m) at the stump top and bottom of the top section, respectively, and 𝐻𝑠 
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and 𝐻𝑡 are the stump height and length of top section in meters. Total inside-bark CVTS was calculated 

by summing volume of all sections, stump, and top. 

4.2.2. Methods 

Tables 4.1 and 4.2 summarize the different sets of volume and biomass equations used by FIA-

PNW to obtain CVTS and component biomasses respectively. The FIA-PNW estimates lack biomass for 

foliage (Melson et al. 2011) therefore we used the foliage biomass equation from Standish et al. (1985) 

to compute FIA-PNW equivalent foliage biomass estimates. The FIA-PNW volume and biomass equations 

were also refitted with our dataset to compare the prediction error differences in using published 

coefficients against the refitted models of the same form. 

4.2.2.1. Taper Equation 

The Kozak (2004) Model 02 taper equation that has been successfully used by many researchers 

(e.g. Li et al. 2012, Rojo et al. 2005) was used as the base model for fitting upper stem diameters. 

Because the diameter inside bark (DIB) was only measured at 5.18 m intervals and diameters outside 

bark were measured at every 1.22 m, the inside-bark diameter at every 1.22 m was first obtained by 

fitting a linear model for which the inside bark diameter was calculated by adding 𝑒𝑖𝑗  drawn from 

normal distribution with mean zero and variance equal to the residual standard error of the linear 

model. 

                    𝐷𝐼𝐵̂ = ⁡ 𝛽̂0 + 𝛽̂1 ×𝐷𝑂𝐵 + 𝛽̂2 × 𝑅𝐻 + 𝑒𝑖𝑗                                              (13) 

Where, 𝛽̂𝑖
′𝑠⁡⁡(𝑖 = 1, 2, 3) are regression coefficients estimated from the data and  𝑅𝐻⁡ =

⁡ℎ

𝐻𝑇
 is 

the relative height above ground. The adjusted 𝑅2 value for this model was 0.996 and 0.993 for Douglas-

fir and lodgepole pine, respectively (n = 673 and 523, residual standard error 1.32 and 0.73). A mixed 
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effects model with individual tree random effect did not perform (higher Bayesian Information Criterion 

(BIC)) as well as the fixed effects model. 

The variable-exponent taper model of Kozak (2004) Model 02 is of the following form: 

            𝑑̂𝑖 = 𝑎0𝐷
𝑎1𝐻𝑎2𝑋𝑖

𝑏1𝑍𝑖
4+𝑏2[1/𝑒

𝐷/𝐻]⁡+𝑏3𝑋𝑖
0.1+𝑏4[1/𝐷⁡]+𝑏5𝐻

𝑄𝑖+𝑏6𝑋𝑖          (14) 

Where, 𝑋𝑖 = [1.0 − (ℎ𝑖 −𝐻)
1

3] / [1.0 − 𝑝
1

3]; 

              𝑄𝑖 = [1.0 − (ℎ𝑖 −𝐻)
1

3]; 

              p =
1.3

H
; and 

 𝑍𝑖 =
ℎ𝑖

𝐻
 with ℎ𝑖 = height on bole, 𝐻 = total tree height, D = DBH, and 𝑑̂𝑖 = predicted 

diameter inside bark at ℎ𝑖. 

Different fitting approaches namely a nonlinear fixed effects model (NFEM),  nonlinear mixed 

effects model (NMEM), nonlinear mixed effects model with first and second order continuous 

autoregressive error structures (CAR1 and CAR2) were tested. An error model of the following form was 

fitted. 

𝑒2 = 𝑎 + 𝑏 ∗ 𝐷𝐵𝐻 + 𝑐 ∗ 𝐻𝑇 + 𝑑 ∗ 𝑇𝑂𝑇𝐻𝑇              (15) 

Where, e is the residual obtained from fitting Kozak 2004 Model 02 with NFEM, HT = height on 

bole, TOTHT = total tree height, and 𝑎, 𝑏, 𝑐, and 𝑑 are regression parameters.  The reciprocal of the 

predicted values of 𝑒2 were used as weights in model fitting. The final model was selected based on the 

BIC. After the upper stem diameter is obtained from the fitted taper model, the CVTS calculation was 

done in the similar fashion as in calculating measured volume using Smalian's formula.  
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4.2.2.2. Calibration of Regional Models 

Model calibration is needed when the predictive validity of model is in question or when the 

data are inadequate to estimate model inputs. We, first, graphically compared the regression lines 

produced by regional volume equations with the locally refitted volumes and bole biomass equations. 

The empirical cumulative distribution function (ECDF) of the component biomass estimates obtained 

from the FIA-PNW equations and the ECDFs of the measured volume and biomass estimates in different 

aboveground components were also graphically compared. The ECDF is the cumulative distribution 

function associated with the empirical measure of the sample observations. For independent and 

identically distributed random variables 𝑥1, … ,  𝑥𝑛, the ECDF is defined as: 

𝐹̂(𝑥) =
1

𝑛
∑ 𝟏{𝑋𝑖 ≤ 𝑥}𝑛
𝑖=1                 (16) 

Where, 𝟏{𝐴} is the indicator of an event 𝐴. 

Additionally, a nonlinear regression model of the following form was fitted to determine if the 

calibration of the regional models is necessary or not. 

𝑦 = 𝑎 ∗ 𝑦𝑅
𝑏              (17) 

Where, 𝑦 and 𝑦𝑅 are the measured and regional estimates of the inside bark volume and 

component biomass estimates and 𝑎 and 𝑏 are regression parameters. A joint hypothesis 𝐻0: (𝑎, 𝑏) =

(1, 1) for both species was tested using a Wald test at 5% level of significance in SAS procedure PROC 

MODEL (SAS Institute Inc 2013). 

4.2.2.3. OLS-RTO Method 

If a sample of volume and biomass estimates for n new trees is available, the regional models 

can be calibrated using a correction factor based on an ordinary least squares regression through origin. 

The technique is described in Draper and Smith (1998, p. 225) and has been implemented by Temesgen 
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et al. (2008) to calibrate nonlinear height-diameter models and by Garber et al. (2009) to estimate stand 

volume. With n sample trees from a new stand, the OLS correction factor through origin can be 

calculated as: 

    𝑘 =
∑ 𝑋̂𝑖𝑋𝑖
𝑛
𝑖=1

∑ 𝑋̂𝑖
2𝑛

𝑖=1

                      (17) 

Where, 𝑋𝑖  and 𝑋̂𝑖  are observed and regional predicted values of volume or component 

biomasses for the ith tree respectively. Then the corrected (calibrated) value of volume or component 

biomass for new tree is be calculated as 𝑘 × 𝑋̂𝑖. The OLS correction factor can be obtained based on the 

measurement of a single tree. In that case, the correction factor is just a ratio of measured and regional 

predicted volume or biomass of that tree. This correction factor was calculated with all trees; leave one 

(tree) out method, randomly selected m trees, with dominant tree, and a tree with maximum DBH. 

4.2.2.4. OLS-WI Method 

Let 𝑋 be the measured volume or biomass and 𝑌 be the estimate of 𝑋 obtained from a regional 

model, then the relation between 𝑋 and 𝑌 is given by a simple linear regression model of the following 

form: 

𝑦 = 𝛼 + 𝛽𝑥 + 𝜀               (18) 

Where, 𝛼 and 𝛽 are the parameters of linear regression and 𝜀 is the random error and for 𝑖 

observations, the model in (18) can be written as: 

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖             (19) 

Using the notation by Krutchkoff (1967), the least squares estimators 𝑏 and 𝑎 of 𝛽 and 𝛼 with 

𝑢𝑖 = 𝑥𝑖 − 𝑥̅, and 𝑣𝑖 = 𝑦𝑖 − 𝑦̅ respectively are: 

𝑏 =
∑ 𝑢𝑖𝑣𝑖
𝑁
𝑖=1

∑ 𝑢𝑖
2𝑁

𝑖=1

             (20) 
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and      𝑎 = 𝑦̅ − 𝑏𝑥̅                                (21) 

Then the calibration equation is 𝑥 =
𝑦−𝑎

𝑏
 (Krutchkoff 1967; Kutner et al. 2004, p. 168) 

Thus, if now one obtains 𝑌 as the regional predicted value of volume or biomass, the unknown 

value (𝑋) of local volume or biomass estimate is obtained as: 

  𝑋̂ =
𝑌−𝑎

𝑏
                              (22) 

4.2.2.5. Inverse Approach 

The inverse approach of model calibration has been described by (Krutchkoff 1967). The process 

is as follows. With, 𝛾 = −
𝛼

𝛽
, 𝛿 =

1

𝛽
, and 𝜀′ = −

𝜀

𝛽
, the model in (18) can be rewritten as: 

𝑥 = 𝛾 + 𝛿𝑦 + 𝜀′                                (23) 

And for 𝑖 observations, the model can be written as  

𝑥𝑖 = 𝛾 + 𝛿𝑦𝑖 + 𝜀𝑖
′            (24) 

Once again, using the notation by Krutchkoff (1967), the least squares estimators 𝑑 and 𝑐 of 𝛿 and 𝛾 

respectively are: 

𝑑 =
∑ 𝑢𝑖𝑣𝑖
𝑁
𝑖=1

∑ 𝑣𝑖
2𝑁

𝑖=1

              (25)  

and      𝑐 = 𝑥̅ − 𝑑𝑦̅               (26) 

The calibration equation then is 

𝑥 = 𝑐 + 𝑑𝑦             (27) 

Thus, if now one obtains Y as the regional predicted value of volume or biomass, the unknown 

value of local volume or biomass estimate can be obtained as (Krutchkoff 1967): 
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  𝑋̂ = 𝑐 + 𝑑𝑌               (28) 

The results obtained from these three methods were calculated using all data and validated with 

the leave one (tree) out method. Performance of all the methods was evaluated based on the bias, bias 

percent, RMSE, and RMSE percent (collectively called “evaluation statistics”) produced by each method. 

In statistics, bias is defined as the difference between the true value of an unknown parameter and the 

expected value of its estimator. Bias in this study is defined as the mean difference between the 

measured/observed and model predicted value of the variable of interest. 

4.3. Results and Discussion 

The volume estimates obtained from FIA-PNW and refitted local equations are similar for 

Douglas-fir trees that are smaller than approximately 80 cm DBH. For the trees larger than 80 cm DBH, 

the FIA-PNW equation slightly underestimated the cubic volume (Figure 4.1). On the other hand, for 

lodgepole pine, the FIA-PNW equation consistently over-estimated the CVTS even for the trees that are 

25 cm DBH (Figure 4.1). 

The summary of the evaluation statistics in inside bark diameter prediction obtained from the 

taper equation fit with different fitting approaches are given in Table 4.3. The mixed effects model fitted 

with second order autoregressive correlation structures, the model with smallest BIC compared to all 

models was considered the final taper model. Therefore, volume calculation is also based on the 

diameter inside bark predicted from this model. This fitting technique was also found useful by Rojo et 

al. (2005) in comparing 31 taper functions for maritime pine (Pinus pinaster Ait.) in Galicia, 

Northwestern Spain. The predicted relative diameter (predicted DIB/DBH) is plotted against the relative 

height (height / total height) in Figure 4.2. 

The locally refitted volume equations provided better, in terms of the evaluation statistics used, 

estimates of inside-bark CVTS for both Douglas fir and lodgepole pine (Table 4.4) compared to the 
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regional volume equation and taper based volume estimates. The taper based volume estimates might 

have been affected by the fact that inside bark diameter itself was first predicted from the outside bark 

diameter. 

The FIA-PNW bole biomass estimates are product of the inside-bark CVTS and the compiled sets 

of species specific wood density values. Thus the curves of inside-bark bole biomass estimates against 

DBH are similar to inside bark CVTS curves but scaled by the wood density i.e. they have same shape but 

different scale (Figure 4.3). 

The ECDFs of component biomasses obtained from regional models and measured component 

biomasses differed for both species and the differences are more pronounced in components other than 

bole (Figures 4.4 and 4.5). This implies that the probability of observing a tree with certain amount of 

component biomass based on FIA-PNW equations is different than the probability of what actually was 

observed in this study. 

If one rejects a joint null hypothesis H0: (a, b) = (1, 1) for the model in equation (17), this implies 

that the regional model needs to be calibrated. In case of Douglas-fir, a Wald test of this null hypothesis 

was highly significant for bark and foliage biomass, marginally significant for branch biomass, and 

statistically non-significant for CVTS and bole biomass while for the lodgepole pine, same test was 

statistically significant for CVTS, bole biomass, and bark biomass and non-significant for foliage and 

branch biomass (Table 4.5). Note, however, that none of the coefficients were exactly 1 (Table 4.5). 

The evaluation statistics in volume estimates obtained from regional and locally refitted volume 

and component biomass equations are given in Table 4.6. The FIA-PNW regional Douglas-fir bark 

biomass equation does a very poor job with over-estimating it by 221.52 percent (Table 4.6). This 

difference could possibly be attributed to the fact that the FIA-PNW bark biomass equation for Douglas-
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fir was based on the data with maximum tree DBH of 66 cm. Hence, a careful consideration might be 

necessary in applying the regional models to estimate bark biomass in Douglas-fir. 

4.3.1. OLS-RTO Method 

The evaluation statistics obtained by using a correction factor based on OLS-RTO method in 

calibrating regional volume and component biomass equations using all data are given in Table 4.7 and 

similar statistics obtained from leave one (tree) out cross validation method are given in Table 4.8. 

The values of OLS-RTO correction factor ranged from .02770 (for Douglas-fir bark biomass) to 

1.7849 (for lodgepole pine branch biomass). When all available data is used, the OLS-RTO correction 

reduced the RMSE by 2.4, 3.3, 335.3, 29.1 and 8.1 percent for Douglas-fir CVTS, bole, bark, foliage, and 

branch biomass and 5.0, 5.2, 16.2, 10.8, and 16.3 percent for lodgepole pine CVTS, bole, bark, foliage, 

and branch biomass respectively. While the results from the leave one out cross validation showed that, 

this correction factor increased RMSE by 1.3 percent for Douglas-fir CVTS and reduced RMSE in bole, 

bark, foliage, and branch biomass by 4.4, 325.4, 24.1, and 2.5 percent. For the lodgepole pine, the RMSE 

was reduced by 3.3, 2.1, 7.4, 6.2, and 10.1 percent for CVTS, bole, bark, foliage, and branch biomass 

respectively. The performance of adjustment based on OLS-RTO correction factor calculated using 

randomly selected m trees in a Douglas-fir and lodgepole pine stand is shown in Figures 4.6 and 4.7 

respectively. 

The RMSE decreases significantly by using two trees compared to just one and the rate of 

decrease in RMSE slows down after five trees for both species. It should be noted that, measuring 

biomass in a large number of trees to calibrate the regional models is impractical (Temesgen et al. 2008) 

because one would rather fit a local model than to calibrate regional model with the available data set. 

Therefore, we also looked at the performance of this adjustment based on dominant tree and the tree 

with maximum DBH (Tables 4.9 and 4.10). For our lodgepole pine tree, however, the tree with highest 
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DBH was the same as dominant tree while using the second largest tree in terms of DBH, the RMSE for 

branch biomass was more than 100 percent. Therefore the results based on second largest trees are not 

reported. 

The performance of the adjusted volume equation did not improve when only one (dominant 

tree or a tree with maximum DBH) is used to calculate the correction factor. With the correction factor 

based on dominant tree, the RMSE for Douglas-fir bole, bark, and branch biomass was reduced by 5.8, 

288.6, and 17.8 percent but for branch biomass it was increased by 1.4 percent. However, for the 

lodgepole pine, the correction factor reduced RMSE in branch biomass estimate by 8.4 percent but it did 

not improve the estimates of any other components. Using the tree with maximum DBH for Douglas-fir 

further decreased RMSE in CVTS and bark biomass (3.4 and 39.6 percent respectively) but produced 

slightly higher RMSE in other components (0.6, 3.3, and 4.7 percent for bole, foliage, and branch 

biomass respectively). The reason behind this could be that there is more volume and bark biomass in 

the lower sections of the trees and is more affected by the diameter of the tree rather than the height 

while on the other hand biomass in branch and foliage is more dependent on the height of the tree.  

4.3.2. OLS-WI Method 

The adjustment based on a correction factor based on OLS with intercept provided unbiased 

estimates of CVTS and component biomass when all the data was used in calibrating the regional 

equation. The absolute bias obtained from the leave one out cross validation was less than 2 percent for 

CVTS and all component biomass. The RMSE and RMSE percent obtained with this adjustment based on 

all data are shown in Table 4.11. The results from leave one out cross validation is presented in Table 

4.12. 

This adjustment, using all data, reduced RMSE in all Douglas-fir CVTS and component biomass 

estimation and lodgepole pine CVTS and bole biomass estimates but it did not improve other 
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component biomass equations for lodgepole pine. The leave one out cross validation results were 

similar for trend in RMSEs and showed small negative bias. 

4.3.3. Inverse Approach 

The inverse approach of calibration of regional equations provided unbiased estimates of CVTS 

and component biomass when all the data was used in calibrating the regional equation. The absolute 

bias obtained from the leave one out cross validation was less than 2 percent for CVTS and all 

component biomass from this approach as well (same in OLS-WI). The RMSE and RMSE percent 

obtained with this adjustment based on all data are shown in Table 4.13. The results from leave one out 

cross validation is presented in Table 4.14. 

It is expected that the calibrated models perform better than the unadjusted regional models. 

However, from practical perspective, it is desired that the calibrated models perform as well as the 

locally fitted models. Figures 4.8 and 4.9 compare the performance of calibrated models against the 

locally refitted models. The OLS-RTO adjustment performed as well as the locally refitted models for 

CVTS and component biomass models except for Douglas-fir foliage biomass when all the data set is 

used to calculate the correction factor. The results from leave one out cross validations for this 

adjustment method were intermediate between the FIA-PNW estimates and the local predictions. The 

results from using dominant tree or tree with maximum DBH were intermediate between the FIA-PNW 

estimates and the local models. 

Even though having an intercept in the calibration provides more flexibility in adjustment, the 

OLS-WI adjustments, when all data is used, performed as well as local models for bole and foliage 

biomass in Douglas-fir and CVTS and bole biomass in lodgepole pine but its performance was 

intermediate between FIA-PNW estimates and local model for other variables. The RMSE percent from 

leave one out validation was higher compared to the local models for CVTS and all component biomass 
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equations for both species. The inverse approach with all data performed as well as the local models 

except for Douglas-fir CVTS and bark biomass. It produced higher RMSE compared to the local models 

based on the leave-one out cross validation results.  

When all data is used to calibrate the regional model, the OLS-RTO method produced smallest 

RMSE for Douglas-fir CVTS and bark biomass, the OLS-WI method produced smallest RMSE for foliage 

biomass and the inverse approach produced smallest RMSEs for bole and branch biomass.  For 

lodgepole pine, the inverse approach produced smallest RMSEs for CVTS and all component biomass. 

However, from the leave one out validation, the RMSEs from OLS-RTO and inverse approach were very 

similar for both species CVTS and component biomass. 

4.4. Summary and Conclusion 

We evaluated the performance of regional volume and component biomass equations in terms 

of bias and RMSE using the data from destructively sampled Douglas-fir and lodgepole pine trees. A 

taper equation adopted from Kozak 2004 was fitted and its performance in estimating inside bark CVTS 

was also assessed. Three different adjustment methods based on ordinary least squares regression were 

applied to the regional volume and component biomass equations. The regional volume equations 

performed fairly well and produced similar results as the locally fitted volume equations of the same 

form. The taper based volume estimates for Douglas fir were comparable (within 3% RMSE) to the 

volume estimates obtained from regional equations but for lodgepole pine taper based volume 

estimates were highly biased and produced RMSE that that was three times higher than the RMSE from 

the regional equation. Part of the error might have come from the fact that the inside bark diameters 

itself were first predicted using a model. 

The regional component biomass estimates were highly biased producing up to 360 percent 

higher estimates for bark biomass in Douglas fir. We would like to make cautionary note on bark 
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biomass estimates because our calculation of “observed” bark biomass is based on a 3 – 5 cm bark 

sample obtained from the disks taken at every 5.18 m intervals. The density of these bark samples is 

based on their volume calculated as rectangles. This could have been erroneous assumption since the 

bark sample lacks regular shape. To check this, we calculated total bark volume by subtracting inside 

bark CVTS from outside bark CVTS and used the compiled sets of density factors (same as the ones used 

by the FIA-PNW) for Douglas-fir and lodgepole pine. The total bark biomass estimates obtained from this 

approach was similar to what we had obtained before. Better method to estimate bark volume would 

be to use a water displacement method but that is both time consuming and expensive compared to the 

method we used. 

All the adjustment methods used in this study were able to improve the performance of regional 

equations. Based on the leave one out cross validation, the RMSEs in CVTS and component biomass 

estimation was similar for the adjustments from a correction factor based on OLS-RTO and an inverse 

approach. When all data is used to calibrate the regional model, the OLS-RTO method produced smaller 

RMSE for Douglas-fir CVTS and bark biomass, the OLS-WI method produced smaller RMSE for foliage 

biomass and the inverse approach produced smaller RMSEs for bole and branch biomass. For lodgepole 

pine, the inverse approach produced smaller RMSEs for CVTS and all component biomass.  

The OLS-RTO correction factor can be calculated using only one tree with desired characteristics 

such as a dominant tree in the stand or the tree with maximum DBH and therefore might be considered 

better than the OLS-WI and inverse approach. Choice between the dominant tree and a tree with 

maximum DBH should be governed by which component model is desired to calibrate. We found it 

useful to use the tree with maximum DBH to calibrate regional CVTS and bark biomass equations and 

the dominant tree to calibrate bole, foliage, and branch biomass. Selecting trees of such characteristics 

to calibrate the regional models was useful than randomly selecting one tree. The decreasing trend in 

RMSE by using randomly selected 𝑚 trees slowed down significantly after five trees.  
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Figure 4.1. Graphical comparison of CVTS estimates obtained by using regional model coefficients and 
locally refitted volume equations of the same form. 
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Figure 4.2. Predicted profiles for Douglas-fir (DF) and lodgepole pine (LP) plotted against relative height 
(height/total height). 
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Figure 4.3. Graphical comparison of inside-bark bole biomass estimates obtained from regional model 
coefficients and locally refitted model of the same form. 
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Figure 4.4. Comparison of ECDFs of Douglas-fir component biomass estimates obtained from regional 
equations (dotted line) and measured (solid line) values. 
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Figure 4.5. Comparison of ECDFs of lodgepole pine component biomass estimates obtained from 
regional equations (dotted line) and measured (solid line) values. 
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Figure 4.6. Trend in RMSE percent in estimating component biomass from regional models adjusted with 
OLS-RTO method calculated from randomly selected m Douglas-fir trees. The RMSE percent from 
unadjusted regional equations were 16.3, 361.6, 66.2, and 38.7 percent for bole, bark, foliage, and 
branch biomass respectively. 
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Figure 4.7. Trend in RMSE percent in estimating component biomass from regional models adjusted with 
OLS-RTO method calculated from randomly selected m lodgepole pine trees. The RMSE percent from 
unadjusted regional equations were 35.8, 78.1, 68.1, and 85.4 percent for bole, bark, foliage, and branch 
biomass respectively. 
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Figure 4.8. Comparison of RMSE percentage, for Douglas-fir, obtained from different methods: (1) Local 
model, (2) OLS-RTO based on all data, (3) OLS-RTO (leave one out), (4) OLS-RTO based on dominant tree, 
(5) OLS-RTO based on tree with maximum DBH, (6) OLS-WI based on all data, (7) OLS-WI (leave one out), 
(8) Inverse approach based on all data, and (9) Inverse approach (leave one out). 
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Figure 4.9. Comparison of RMSE percentage, for lodgepole pine, obtained from different methods: (1) 
Local model, (2) OLS-RTO based on all data, (3) OLS-RTO (leave one out), (4) OLS-RTO based on 
dominant tree, (5) OLS-RTO based on tree with maximum DBH, (6) OLS-WI based on all data, (7) OLS-WI 
(leave one out), (8) Inverse approach based on all data, and (9) Inverse approach (leave one out). 
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Table 4.1. Volume equations used by FIA-PNW to estimate cubic volume including top and stump (CVTS).  

Species Volume Equation  

Douglas-fir 𝐶𝑉𝑇𝑆𝐿⁡

=
−3.21809 + 0.04948 × log(𝐻𝑇) × log(𝐷𝐵𝐻) − 0.15664 × (log(𝐷𝐵𝐻))2

+2.02132 × log(𝐷𝐵𝐻) + 1.63408 × log(𝐻𝑇) − 0.1685 × (log(𝐻𝑇))^2
 

 

(4) 

 𝐶𝑉𝑇𝑆 = ⁡10𝐶𝑉𝑇𝑆𝐿  

Lodgepole 
Pine 

𝐶𝑉𝑇𝑆𝐿 = −2.615591 + 1.847504 × log(𝐷𝐵𝐻) + 1.085772 × log(𝐻𝑇) (5) 

 𝐶𝑉𝑇𝑆 = ⁡10𝐶𝑉𝑇𝑆𝐿  

(Base of the logarithm is 10, HT = total tree height, and DBH = diameter at breast height) 
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Table 4.2. Biomass equations used by the FIA-PNW to estimate component and total aboveground 
biomass for Douglas-fir and lodgepole pine trees.  

Species Component Biomass Equation  

Douglas Fir 

Bole 𝐶𝑉𝑇𝑆 ×𝑊𝐷 (6) 

Foliage 10.3⁡ + ⁡3.9 × 𝐷𝐵𝐻2 × 𝐻𝑇 (7) 

Bark 3.1⁡ + ⁡15.6 × 𝐷𝐵𝐻2 × 𝐻𝑇 (8) 

Branch 12.6⁡ + ⁡23.5 × 𝐷𝐵𝐻2 × 𝐻𝑇 (9) 

Lodgepole 
Pine 

Bole 𝐶𝑉𝑇𝑆 ×𝑊𝐷  
Foliage 5.5⁡ + ⁡4.0 × 𝐷𝐵𝐻2 × 𝐻𝑇 (10) 
Bark 3.2⁡ + ⁡9.1 × 𝐷𝐵𝐻2 × 𝐻𝑇 (11) 
Branch 7.8⁡ + ⁡12.3 × 𝐷𝐵𝐻2 × 𝐻𝑇 (12) 

(WD is wood density which is 28.7 and 23.71 pounds per cubic foot for Douglas-fir and lodgepole pine 
respectively) 
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Table 4.3. Evaluation statistics of inside bark diameter predictions for Douglas-fir and lodgepole pine 
trees using different fitting techniques: (I) nonlinear fixed effects model, (II) nonlinear mixed effects 
model, (III) nonlinear mixed effects model with first order continuous autoregressive correlation, and 
(IV) nonlinear mixed effects model with second order continuous autoregressive correlation structure. 

Species Method Bias (cm) Bias Percent RMSE (cm) RMSE Percent 

Douglas-fir 

I -0.01 -0.03 3.10 8.31 

II 0.01 0.04 2.57 6.90 

III 0.06 0.15 2.61 6.99 

IV 0.08 0.20 2.65 7.10 

Lodgepole pine 

I -0.01 -0.03 1.79 9.40 
II 0.02 0.11 1.56 8.20 
III 0.05 0.25 1.59 8.38 
IV 0.10 0.51 1.65 8.69 
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Table 4.4. Evaluation statistics produced by different methods in inside bark CVTS predictions for 
Douglas-fir and lodgepole pine trees. 

Species Method Bias (m3) 
Bias 

Percent 
RMSE  
(m3) 

RMSE 
Percent 

Douglas fir 

Local 0.01 0.30 0.50 12.48 

PNW 0.13 3.22 0.59 14.83 

Taper -0.40 -10.14 0.70 17.53 

Lodgepole pine 

Local 0.00 -0.34 0.07 15.24 

PNW -0.03 -6.66 0.09 19.52 

Taper -0.19 -41.39 0.27 60.02 
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Table 4.5. The parameter estimates and associated chi-squared p-values for testing a joint null 

hypothesis H0: (a, b) = (1, 1) for the nonlinear model (y = a ∗ yR
b) describing measured volume and 

component biomass as function of FIA-PNW estimates of the same quantity are (1, 1). 

Variable Parameter 
Douglas-fir  Lodgepole pine 

Estimate Pr > ChiSq  Estimate Pr > ChiSq 

Volume 
a 1.1976 

0.7493 
 0.9241 

<.0001 
b 0.9735  0.9274 

Bole 
a 1.5405 

0.4292 
 2.4334 

0.0001 
b 0.9627  0.8783 

Bark 
a 1.8849 

<.0001 
 1.2527 

0.0003 
b 0.7494  0.8403 

Foliage 
a 3.0913 

<.0001 
 2.9366 

0.4139 
b 0.7462  0.7598 

Branch 
a 2.3883 

0.0647 
 4.1689 

0.3482 
b 0.9007  0.7749 
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Table 4.6. Evaluation statistics in volume and component biomass estimation obtained from regional and locally refitted volume and component 
biomass equations. Units for bias and RMSE are cubic meter for CVTS and kg for component biomasses, respectively. 

Species Variable 
Local  Regional 

Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

 Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

DF 

CVTS 0.01 0.30 0.50 12.48  0.13 3.22 0.59 14.83 

Bole 130.49 6.81 248.06 12.94  182.83 9.54 311.68 16.26 

Bark -2.49 -2.36 27.82 26.32  -234.16 -221.52 382.25 361.60 

Foliage 0.01 0.02 18.41 32.38  -14.89 -26.18 37.66 66.22 

Branch 0.94 0.42 66.11 29.82  47.05 21.23 85.86 38.73 

                                                                                                                                                                                                                                                                                                                                                                            
LP 

CVTS 0.00 -0.34 0.07 15.26  -0.03 -6.66 0.09 19.52 

Bole 49.58 22.52 87.58 39.78  38.83 17.64 78.71 35.75 

Bark 0.00 -0.01 7.38 61.47  -3.87 -32.21 9.39 78.14 

Foliage 0.00 0.01 9.96 56.40  6.59 37.31 12.02 68.07 

Branch -0.01 -0.02 32.42 68.10  22.67 47.61 40.65 85.38 
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Table 4.7. Evaluation statistics in CVTS and component biomass estimates obtained from OLS-RTO 
adjustment of the regional equations using all data. Units for bias and RMSE are cubic meter for CVTS 
and kg for component biomasses, respectively. 

Species Variable Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

DF 

CVTS 0.03 0.63 0.57 12.48 

Bole 17.41 0.91 200.17 12.94 

Bark 11.62 10.99 35.23 26.32 

Foliage 7.25 12.76 21.10 37.10 

Branch 11.16 5.03 68.01 30.68 

                                                                                                                                                                                                                                                                                                                                                                            
LP 

CVTS 0.01 2.61 0.06 14.48 
Bole 9.95 4.52 67.25 30.54 
Bark 0.56 4.68 7.44 61.91 
Foliage 0.83 4.68 10.12 57.32 
Branch 3.12 6.56 32.87 69.05 
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Table 4.8. Evaluation statistics in CVTS and component biomass estimates obtained from OLS-RTO 
adjustment of the regional equations: results from leave one out cross validation. Units for bias and 
RMSE are cubic meter for CVTS and kg for component biomasses, respectively. 

Species Variable k Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

DF 

CVTS 1.0268 0.02 0.52 0.64 16.11 

Bole 1.0955 15.15 0.79 227.18 11.85 

Bark 0.2770 10.78 10.20 38.30 36.24 

Foliage 0.6920 6.85 12.04 23.97 42.15 

Branch 1.2061 10.26 4.63 80.37 36.25 

                                                                                                                                                                                                                                                                                                                                                                            
LP 

CVTS 0.9134 0.01 2.32 0.07 16.26 
Bole 1.1598 8.88 4.03 74.05 33.63 
Bark 0.7215 0.47 3.92 8.49 70.71 
Foliage 1.5212 0.74 4.17 10.94 61.91 
Branch 1.7849 2.75 5.77 35.86 75.32 
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Table 4.9. Evaluation statistics obtained by using OLS-RTO method based on dominant tree in calibrating 
regional volume and component biomass equations. Units for bias and RMSE are cubic meter for CVTS 
and kg for component biomasses, respectively. 

Species Variable Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

DF 

CVTS 0.36 9.02 0.75 18.78 

Bole 10.67 0.56 200.41 10.45 

Bark -32.69 -30.92 77.13 72.97 

Foliage 19.83 34.87 27.55 48.44 

Branch 50.46 22.76 88.98 40.14 

                                                                                                                                                                                                                                                                                                                                                                            
LP 

CVTS 0.05 11.84 0.09 19.52 
Bole 50.62 22.99 88.54 40.22 
Bark 7.30 60.80 11.46 95.36 
Foliage 7.28 41.20 12.46 70.53 
Branch 16.39 34.43 36.66 77.01 
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Table 4.10. Evaluation statistics obtained by using OLS-RTO method based on tree with maximum DBH in 
calibrating regional volume and component biomass equations for Douglas-fir. Units for bias and RMSE 
are cubic meter for CVTS and kg for component biomasses, respectively. 

Variable Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

CVTS 0.17 4.39 0.61 15.34 
Bole -31.67 -1.65 212.35 11.08 
Bark 11.18 10.58 35.23 33.33 
Foliage 21.81 38.36 29.43 51.74 
Branch 60.85 27.45 99.44 44.85 
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Table 4.11. RMSE and RMSE percentage obtained by using a correction factor based on OLS-WI method 
in calibrating regional volume and component biomass equations using all data. Units for RMSE are 
cubic meter for CVTS and kg for component biomasses, respectively. 

Variable 
Douglas-fir Lodgepole pine 

RMSE 
RMSE 

Percent 
RMSE 

RMSE 
Percent 

CVTS 0.58 14.46 0.06 14.14 
Bole 199.73 10.42 69.20 31.43 
Bark 33.29 31.49 9.69 80.68 
Foliage 69.38 31.30 50.77 106.64 
Branch 20.11 35.36 17.19 97.30 
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Table 4.12. Evaluation statistics obtained by using a correction factor based on OLS-WI method in 
calibrating regional volume and component biomass equations from leave one out cross validation. 
Units for bias and RMSE are cubic meter for CVTS and kg for component biomasses, respectively. 

Species Variable a b Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

Douglas-fir 

CVTS 0.0268 0.9611 -0.01 -0.16 0.67 16.78 

Bole -12.8586 0.9113 -3.07 -0.16 232.28 12.12 

Bark -41.4628 3.6063 -1.22 -1.15 37.46 35.44 

Foliage -9.2455 1.4245 -0.26 -0.47 23.28 40.93 

Branch -1.374 0.794 -0.66 -0.30 81.94 36.96 

Lodgepole 
pine 

CVTS -0.0154 1.1008 0.00 -0.40 0.07 16.42 
Bole 1.3692 0.8173 -1.96 -0.89 79.16 35.95 
Bark 5.4361 0.8699 -0.10 -0.84 10.55 87.81 
Foliage 6.281 0.2715 -0.11 -0.63 18.76 106.20 
Branch 12.2349 0.2671 -0.65 -1.37 56.82 119.36 
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Table 4.13. RMSE and RMSE percentage obtained using inverse approach in calibrating regional volume 
and component biomass equations using all data. Units for RMSE are cubic meter for CVTS and kg for 
component biomasses, respectively. 

Variable 
Douglas-fir Lodgepole pine 

RMSE 
RMSE 

Percent 
RMSE 

RMSE 
Percent 

CVTS 0.57 14.32 0.06 14.01 
Bole 198.71 10.37 65.76 29.87 
Bark 31.77 30.06 7.38 61.47 
Foliage 18.41 32.38 9.96 56.40 
Branch 66.26 29.89 32.42 68.10 
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Table 4.14. Evaluation statistics obtained by using inverse approach to calibrate regional volume and 
component biomass equations, results from leave one out cross validation. Units for bias and RMSE are 
cubic meter for CVTS and kg for component biomasses, respectively. 

Species Variable c d Bias 
Bias 

Percent 
RMSE 

RMSE 
Percent 

Douglas-fir 

CVTS 0.048 1.0209 -0.01 -0.15 0.64 16.14 

Bole 33.3182 1.0863 -2.98 -0.16 230.22 12.01 

Bark 19.925 0.2525 -0.69 -0.65 35.26 33.36 

Foliage 14.6011 0.5892 -0.20 -0.35 21.80 38.33 

Branch 20.9354 1.1498 -0.83 -0.37 80.86 36.48 

Lodgepole 
pine 

CVTS 0.0231 0.8893 0.00 -0.38 0.07 16.11 
Bole 19.7394 1.1055 -1.45 -0.66 74.58 33.87 
Bark 1.3806 0.6698 -0.18 -1.51 8.97 74.69 
Foliage 3.8887 1.2446 -0.26 -1.47 11.16 63.16 
Branch 9.3362 1.5354 -0.74 -1.56 36.12 75.88 
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5. General Conclusion 

The overall objective of this dissertation was to explore different methods for sampling and 

estimating aboveground tree biomass. The specific objectives were to (1) evaluate different sampling 

strategies to estimate crown biomass, (2) develop methods for estimating aboveground biomass and its 

components, and (3) calibrate regional volume and component biomass. These objectives were assessed 

using data collected destructively from sampled trees that belonged to five different species namely 

Douglas-fir, grand fir, lodgepole pine, western hemlock, and red alder. These species account for 

approximately 50 percent of gross live volume in the Pacific Northwest. 

In Chapter 2, eleven different strategies for crown biomass sampling were evaluated based on 

their performance in terms of 6 different evaluation statistics. These strategies belonged to three major 

categories: simple random sampling, systematic sampling, and stratified sampling. We also evaluated 

their performance when different numbers of branches (3, 6, 9, and 12) are selected from each tree. The 

stratified sampling method with proportional to size produced better results when 3 or 6 branches per 

tree were sampled. When at least nine branches per tree are sampled, the systematic sampling with 

ratio estimation technique provided the smallest RMSE compared to all other methods. Under the 

stratified sampling strategy, selecting 4, 3, and 2 branches from lower, middle, and upper section of the 

tree produced approximately similar results to simple random sampling, but it further decreased RMSE 

when information on branch diameter is used in the design and estimation phases. Measuring more 

branches per tree would reduce the bias and RMSE, but our results showed sampling 9 branches per 

tree to be reasonably efficient and limit the amount of fieldwork in crown biomass estimation. 

In chapter 3, total aboveground biomass and/or its components were estimated using (a) 

analytical approach with existing biomass equations, (b) simultaneous fitting of a system of biomass 

equations based on DBH only and DBH and other explanatory variables using a seemingly unrelated 
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regression (SUR), and (c) three regression methods (beta regression, Dirichlet regression, and 

multinomial log linear) that predicted proportion of biomass in main stem, stem bark, bare branch, and 

foliage components. The analytical approaches were the component ratio method used by the USDA 

Forest Service, Forest Inventory and Analysis (FIA), approach used by the Pacific Northwest unit of FIA, 

and the approach described by Jenkins et al. (2003). Biomass estimates obtained from the analytical 

approaches were highly biased for our dataset, especially in component biomass estimation. The need 

for biomass equations that include height or crown length in them was justified by the reduction in 

RMSE by such models in our analysis. The methods that predicted proportions were unbiased and 

produced RMSEs smaller than that provided by analytical methods. These methods produced smaller 

RMSEs for 85% of the species component combinations. The component proportions are simultaneously 

fitted in the Dirichlet regression thus ensuring that the predicted component proportions sum to 1. If 

desired, the component proportion models within Dirichlet system can have separate explanatory 

variables. Thus this approach of estimating component biomass might have greater value than the 

existing methods. 

In chapter 4, methods for adjusting regional volume and component biomass equations were 

explored. Performance of a variable-exponent taper function in estimating upper stem diameters and 

inside bark cubic volume was also assessed. The regional volume equations provided more accurate 

volume estimates than that obtained by using the Smalian's formula and the predicted inside bark 

diameters from the fitted taper equation. Three methods for adjusting regional volume and component 

biomass equations namely (a) use of a correction factor based on OLS regression through origin (OLS-

RTO method), (b) use of a correction factor based on OLS with intercept (OLS-WI method), and (c) an 

inverse approach were applied. These adjustment methods were able to improve the performance of 

regional equations in terms of root mean squared error (RMSE). The results from leave one out cross 

validations showed that the adjusted models produced better estimates (low RMSE) than provided by 
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the regional models. For some components, the error in prediction was same as obtained from the 

locally refitted model of the same form. Among these three adjustment methods, the OLS-RTO and 

inverse approach provided similar results that were superior to that of the OLS-WI method. 

5.1. Future Directions 

In this study we did not evaluate the performance of RBS compared to other sampling 

strategies. The RBS is a special case of multistage sampling. Even though, this method was originally 

used in estimating fruit count in individual tree, it has been used in estimation branch and leaf/foliage 

biomass (e.g. Valentine et al. 1984; Williams 1989; Gregoire et al. 1995; Schlecht and Affleck 2014). One 

advantage of the RBS is that, samples are sequentially collected along the path thus counting the total 

number of branches beforehand is not necessary. Schlecht and Affleck (2014) found the performance of 

RBS to be intermediate between the probability proportional to size sampling and the simple random 

sampling in estimating green crown mass in Douglas-fir and western larch. There is increasing interest in 

the use of this method as a nationally consistent method for crown sampling. Therefore, it is necessary 

to assess the performance of this method compared to the traditional simple random sampling, 

systematic sampling, and stratified random sampling. 

With the available technology, upper stem diameters can be obtained without destructive 

sampling. This makes it possible to calibrate the taper equations to obtain better upper stem diameter 

estimates. For example, Cao (2009) found optimal gain in upper stem diameter prediction when the 

taper function is calibrated using diameter at midpoint between breast height and the tree tip. The 

density data can be obtained from small tree cores with minimal field work. Because, biomass is the 

function of volume and density, thus integrating these two variables could provide efficient method for 

estimating aboveground biomass. 
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The data in this study came from trees selected subjectively, thus the scope of inference could 

be limited. Therefore, future works should consider data collection that is safeguarded by theory of 

random sampling. Even though the destructive nature of biomass sampling creates logistic problem, it is 

essential that the biomass data be collected in the same FIA plots that are used to measure tree for 

volumetric information. 

There have been significant researches in biomass mapping using the remotely sensed data. 

Combining remote sensed data with the data from ground measurement can improve the accuracy of 

remote sensed based biomass estimates. This approach would, additionally, provide opportunity to 

validate the models based on remotely sensed dataset. Furthermore, the biomass models based on 

remotely sensed data can be calibrated using small sample of the ground measured data.  
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