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Cross-Context Benefit Transfer:
A Bayesian Search for Information Pools

Klaus Moeltner and Randall S. Rosenberger

Commodity equivalence and population similarity are two widely accepted paradigms for the
valid transfer of welfare estimates across resource valuation contexts. We argue that strict
adherence to these rules may leave relevant information untapped. We propose a Bayesian
model search algorithm that examines the probabilities with which two or more sub-sets
of meta-data, each corresponding to a different combination of commodity and population,
share common value distributions. Using as an example a large meta-data set of willingness-
to-pay for diverse outdoor activities across different regions of the U.S., we find strong
potential for contexts that would not traditionally be considered as transfer candidates to
form information pools. Exploiting these commonalities leads to substantial efficiency gains
for benefit estimates.
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This paper questions the universal necessity of
two widely accepted Benefit Transfer (BT) re-
quirements: (i) The basic commodities under
consideration must be essentially equivalent be-
tween study site and policy site, and (ii) The af-
fected population should be similar (e.g. Boyle
and Bergstrom 1992; Brouwer 2000; U.S. En-
vironmental Protection Agency 2000; Loomis
and Rosenberger 2006). These criteria, along
with the requirement of similar baseline and
change of environmental quality for the two
sites, are often referred to as the “EPA guide-
lines”, after they were codified in that agency’s
Guidelines for Preparing Economic Analyses
(U.S. Environmental Protection Agency 2000).

Boyle et al. (2009) re-examine and formal-
ize these requirements within a utility-theoretic
structural framework. They derive what they
label as “sufficient conditions” for valid prefer-
ence function transfer.1 They point out that
the EPA guidelines can be relaxed to some ex-
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1 Their title reads “Necessary Conditions for Valid
Benefit Transfer”, while throughout the text they refer
to these conditions as “sufficient”. We believe that the
latter designation is more in line with the gist of their
argument.

tent as long as unobservable site characteris-
tics and corresponding preferences are separa-
ble from observed characteristics, and the BT
method controls for observable, choice-relevant
differences in the underlying populations. How-
ever, their framework rests on a set of other
important assumptions, most notably that the
statistical distribution of error components and
preferences are correctly specified and identical
for study and policy contexts.

On the empirical side, the EPA conditions
have found support through studies that ex-
plicitly focus on BT errors, usually in a con-
vergent validity setting. Summaries of the nu-
merous “BT validity” contributions are given
in Johnston and Rosenberger (2010) and Kaul
et al. (2013). As synthesized by Johnston and
Rosenberger, p. 482: “... there is now a fair de-
gree of consensus that site similarity - including
similarity over populations, resources, markets
and other site attributes - is an important de-
terminant of transfer validity and reliability.”

In summary, both from a theoretical and
an empirical perspective the requirements for
meaningful BT seem daunting. Close commod-
ity similarity rarely holds, underlying stake-
holder populations are bound to differ in many
observable and unobservable aspects, and the
odds of two populations sharing identical distri-
butions for all relevant stochastic model com-
ponents are likely microscopic for most BT sce-
narios.
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In this study we argue that none of these
requirements are truly necessary to conduct
policy-informative BT. This is based on the
recognition that the relevant input to a pol-
icy maker’s decision problem is ultimately a
value distribution for access or change in en-
vironmental quality for a given site and stake-
holder population. Given the typical valuation
models used in the field, this value distribution
is generally a complex function of observables,
preferences, and parameters corresponding to
the stochastic model components. While close
similarity of all of these elements is naturally
a sufficient condition for two value distribu-
tions to take similar shape and support, sim-
ilar distributions can also arise via a myriad
of combinations of their arguments. In other
words, even if population and commodity char-
acteristics appear to be quite different between
study and policy sites, the two corresponding
value distribution can still be similar if pref-
erence and error distributions counter-balance
the difference in observables.2 Moeltner et al.
(2009) provide some evidence of this by show-
ing that the Willingness-to-Pay (WTP) distri-
butions for conserving a specific plot of farm-
land largely overlap for several mid-Atlantic
communities, despite pronounced heterogene-
ity in underlying parameter estimates and pop-
ulation statistics.

In the assessment of recreation benefits, one
of the most prolific arenas for BT, it is therefore
also conceivable for two value distributions to
be similar across different activities. This possi-
bility has to date not been explored in a formal
fashion in the BT literature. In virtually all ex-
isting applications, the underlying recreational
activity has been assumed as given and con-
stant across source studies. A notable excep-
tion is Moeltner and Rosenberger (2008), who
examine the effect of generalizing the “scope”
of the valued activity on BT estimates within
a Meta-Regression framework. They find that
for some combinations of individual activities
a more robust and efficient valuation transfer
can be achieved compared to considering each
activity in isolation.

In this study we combine elements of both
Moeltner and Rosenberger (2008) and Moelt-
ner et al. (2009) by examining if valuation dis-

2 In essence, this argument is the reverse of that
made by Bateman et al. (2011), who note that erro-
neously assuming that parameter homogeneity holds
across seemingly similar populations can produce vastly
misleading results for BT.

tribution can share common elements across
both different populations and commodities.
We split the largest currently available meta-
dataset of outdoor recreation into four geo-
graphic regions and 14 outdoor activities. We
then apply a Bayesian model search algorithm
to explore which region/activity pairs, which
we label as “contexts”, share a common value
distribution. We find several such clusters, with
strong pooling probabilities both within and
across regions and / or activities. Exploiting
these pooling patterns leads to substantial effi-
ciency gains in the estimation of expected ben-
efits.

In a recent contribution León-Gonzalez and
Scarpa (2008) address a similar challenge - pref-
erence similarity across recreation sites in the
United Kingdom and Ireland- via a Bayesian
model search. In their case, primary valuation
data were collected for each site via an identical
discrete-choice type survey instrument. Their
algorithm provides guidance as to which clus-
ter of sites are associated with similar prefer-
ence parameters. We follow their general es-
timation strategy, broadening their distinction
by “sites” to a distinction by “contexts”. Impor-
tantly, our framework encompasses both mul-
tiple geographic regions (comparable to “sites”
in the León-Gonzalez and Scarpa (2008) study)
and multiple recreation activities that would
traditionally be analyzed in isolation. This al-
lows us to examine the transferability of ben-
efits not only across regions, but also across
activities. The latter would not be possible in
León-Gonzalez and Scarpa’s application, which
focuses on a single (aggregate) activity - for-
est recreation.3 However, knowledge on the fea-
sibility of both cross-region and cross-activity
transfer is of important practical relevance to
policy makers, given the paucity of primary ob-
servations currently available for many region-
activity combinations (that is, contexts) of in-
terest.

We also extend the León-Gonzalez and
Scarpa (2008) framework along econometric
dimensions. Most importantly, while León-
Gonzalez and Scarpa only consider the exis-
tence of a single pooled WTP distribution, we
allow for the existence of multiple data pools,
each associated with a different value distribu-
tion. We find that under the constraint of a

3 The authors do not elaborate on the exact mix of
outdoor activities that feeds into this aggregate cate-
gory. Presumably, their notion of forest recreation is
most closely related to our activity category of hiking.
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single pool, other, more subtle pools might be
missed, leading to the erroneous inference that
certain contexts must be dealt with in isolation,
when in fact they share a common value distri-
bution with other region-activity pairs. This, in
turn, leads to inefficient transfer estimates.

In addition, we modify León-Gonzalez and
Scarpa’s Bayesian algorithm, which is geared
towards a discrete choice contingent valuation
context, to be suitable for a linear regression
model as it is customarily employed in BT
applications based on meta-regressions (e.g.
Moeltner, Boyle, and Paterson 2007; Moeltner
and Rosenberger 2008). This requires the spec-
ification of a different likelihood function, dif-
ferent prior distributions for several parame-
ters, and different conditional posterior densi-
ties that feed into the Bayesian simulation al-
gorithm (Gibbs Sampler). All of these technical
details and modifications, along with program-
ming code, are provided in a supplementary on-
line appendix to facilitate replication by other
researchers.

The following section outlines our economet-
ric framework. This is followed by an empir-
ical section that discusses the data, detailed
model specifications, and estimation results.
The penultimate section provides several ro-
bustness checks to examine if our results are
sensitive to the level of aggregation and elicita-
tion methods in the underlying source studies.
The final section concludes.

Econometric Framework
We consider the common situation where a pol-
icy maker seeks an aggregate benefit estimate
for a specific recreational activity and region -
i.e. a specific context in our jargon. She has
access to a broader data set that comprises
j = 1 . . . J individual contexts. Each of these, in
turn, includes nj observations on outcome vari-
able yj , and, possibly, explanatory data matrix
Xj . The sample distribution for each context is
stipulated as f (yj |θj ,Xj), where θj comprises
the parameters of this density.4

The policy maker now has the choice of pick-
ing a single data set yp that corresponds to
her context of interest, or any pooled combina-
tion of the available context-specific sub-sets.

4 In practice, the free-standing contexts can be as
defined at any desired level of refinement, as long as nj
remains sufficiently large to estimate parameters θj . In
addition to econometric considerations, context defini-
tion will largely be guided by policy relevance.

The latter would be preferable, in terms of
sample size and thus estimation efficiency, if
all contexts in the pool share the same value
distribution with each other and the policy
context, i.e if f (yj |θj ,Xj)≈ f (yk|θk,Xk)≈
f (yp|θp,Xp) , ∀j, k.

If the total number of available sub-sets J
is relatively large, which will likely be the case
if contexts are defined at a (desirable) refined
level, the detection of “value pools” poses a lo-
gistic dilemma, as the number of pooling com-
binations becomes quickly intractable.

Let ψ be a J-dimensional vector that, for
each individual context, includes a binary in-
dicator set to 1 if context j is in the pooled
portion of the data, and to 0 otherwise. Each
unique combination of zeros and ones in ψ is
considered a “model”. The resulting total num-
ber of possible models is thus given as M = 2J .
This includes the no-pooling or fully indepen-
dent model.5 For example, at J = 10, we have
1014 possible pooling combinations. At J = 20,
this number grows to over one million, and at
J = 31, as is the case for our application, the
total number of possible models amounts to
over two billion. Our algorithm is designed to
rapidly move through this large model space,
with a built-in mechanism that assures that
more promising models are visited more fre-
quently.

Let a specific model (i.e. a specific combi-
nation of zeros and ones in ψ) be indexed as
m. We label the set of contexts that are in the
pooled group for a given model mp, and the
complementary set of contexts that are treated
as independent as mn. Terms associated with
individual contexts in mp will be subscripted
with mp, 1,mp, 2 etc.. The total number of con-
texts in mp is denoted as Jmp. Analogously,
Jmn reflects the total number of contexts in
mn.

Choosing a normal density for the sample
distribution of yj , j = 1 . . . J , leads to the fol-
lowing likelihood function for the full data set,
conditional on a given model m:6 where nj and
nmp denote, respectively, the sample size for
individual context j and the pooled portion of
contexts. Thus, a set of Jmn individual coeffi-
cient vectors βj and error variances σ2

j are es-
timated for the independent contexts of model

5 This corresponds to the NT model in León-
Gonzalez and Scarpa (2008).

6 In our application, the dependent variable is in log
form. The resulting log-normal density for WTP in dol-
lars is by far the most common specification in existing
meta-regressions geared towards benefit transfer.
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)−nj/2
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y′mp,1 y′mp,2 . . . y′mp,Jmp

]′
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Xmp =
[
X′mp,1 X′mp,2 . . .X′mp,Jmp

]′
,

m. Conversely, a single coefficient vector βmp
and variance σ2

mp are estimated for the pooled
portion of the model.

Since our model space also includes the fully
independent case, we need prior densities for all
J coefficient vectors and variances. We follow
León-Gonzalez and Scarpa (2008) and choose a
conjugate g-prior for the coefficient vectors. As
discussed in Fernández, Ley, and Steel (2001),
such a g-prior greatly reduces the number of
parameters that need to be determined by the
researcher a priori, facilitates the interpretation
of posterior results, and assures speedy model
evaluation as part of the search process.7 Thus,
we have

(2) p
(
βj |σ2

j

)
=N

(
µ0j , gjσ

2
j

(
X′jXj

)−1)
where N denotes the k-variate normal density,
with k indicating the length of βj . In our ap-
plication, which proceeds without explanatory
variables, Xj reduces to a vector of ones, βj
reduces to a scalar βj , and the prior density
simplifies to

(3) p
(
βj |σ2

j

)
=N

(
µ0j , gj ∗ σ2

j /nj
)
.

As in León-Gonzalez and Scarpa (2008) we
stipulate the conventional inverse-gamma (ig)
prior for σ2

j , with shape parameter ν0 and
context-specific scale parameter τj .8 The exact
choices for the prior parameters µ0j , ν0, and τj ,

7 Specifically, our conjugate normal/inverse-gamma
prior for βj and σ2

j given below assures an analytical
expression for the marginal likelihood. This, in turn, is
an integral component of the model selection step of the
posterior simulator, as discussed below in more detail.

8 We parameterize the ig density as given in Gelman
et al. (2004), p.574, with expectation τj

ν0−1
and variance

τ2j
(ν0−1)2(ν0−2)

.

as well as the tuning parameter gj are discussed
below in our empirical section.9

For the parameters of the pooled portion
within a given model priors are derived “on the
fly” as part of the posterior simulator. Specif-
ically, we choose the same prior density fam-
ilies (i.e. normal for βmp and inverse-gamma
for σ2

mp), and compute prior parameters as
context-weighted averages. That is

(4) p
(
βmp|σ2

mp

)
=N

(
µ0,mp, gmpσ

2
mp/nmp

)
,

p
(
σ2
mp

)
= ig (ν0, τ0,mp) , with

µ0,mp =
∑
j∈mp

nj

nmp
µ0j , τ0,mp =

∑
j∈mp

nj

nmp
τ0j ,

gmp =
∑
j∈mp

nj

nmp
gj , nmp =

∑
j∈mp

nj

Our framework also requires a prior model
probability for each possible m. As discussed
in León-Gonzalez and Scarpa (2008), a more
tractable approach is to specify instead a prior
pooling probability for each context, i.e. αj =

9 Fernández, Ley, and Steel (2001) suggest an im-
proper (i.e not integrating to one) prior density for σ2

to avoid prior variance parameters exerting a strong in-
fluence on posterior results. However, in their context
the model search is over the inclusion or exclusion of
explanatory variables, i.e. the composition of β. Thus,
there is only a single variance term in their framework
and it figures in every possible model. Under these cir-
cumstances, proper posterior analysis and model com-
parison are possible even under an improper variance
prior. In our case, a given model can include up to j
different variance terms. Furthermore, the number of
variance terms changes across models. This would lead
to erroneous interpretation of posterior model probabil-
ities and Bayes Factors under improper priors, a situa-
tion often referred to as the Bartlett’s paradox (see e.g.
Koop, Poirier, and Tobias 2007, ch.11).
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pr (ψj = 1). This yields a prior model probabil-
ity of p (m) =

∏J
j=1 α

ψj

j (1− αj)1−ψj .
Combining the likelihood kernel and pri-

ors yields the model-conditioned joint posterior
density. Its kernel can be written as

(5) p
({
βj
}
j∈mn ,

{
σ2
j

}
j∈mn ,

βmp, σ
2
mp|y,X,m

)
∝∏

j∈Jmn

p
(
βj |σ2

j

)
p
(
σ2
j

)
∗

p
(
βmp|σ2

mp

)
∗ p
(
σ2
mp

)
∗

p
(
y|
{
βj
}
j∈mn ,

{
σ2
j

}
j∈mn ,

βmp, σ
2
mp,X,m

)
As described in León-Gonzalez and Scarpa
(2008) this joint posterior can be evaluated
via a Gibbs Sampler (GS) with a built-in
reverse-jump Metropolis-Hastings (MH) step
for model selection (Green 1995). The GS
proceeds by iterating sequentially through the
following steps:

1) Select an initial model m0, represented by
ψm0 , conditional on the data y,X, and the
prior parameters as shown in (2) through (4).
2) Draw, independently, βj from
p
(
βj |σ2

j ,yj ,Xj

)
,∀j ∈mn, and βmp from

p
(
βmp|σ2

mp,ymp,Xmp

)
3) Draw, independently, σ2

j from
p
(
σ2
j |yj ,Xj

)
,∀j ∈mn, and σ2

mp from
p
(
σ2
mp|ymp,Xmp

)
4) Using a reverse-jump Metropolis-Hastings
(MH) step choose between the current model
(in the beginning this will be m0) and a new
model m∗, and repeat steps (1)-(3).
5) Repeat steps (1)-(4) until the desired
number of parameter draws is reached.

The details for these steps are given in the
supplementary online appendix. Importantly,
each draw of βmp and σ2

mp is assigned to ev-
ery context that falls into the pooled group for
modelm. Thus, at the end of the sampling pro-
cess, say after R iterations, each context will
have allocated either R draws of βj and σ2

j , if it
never ends up in a pooled group, or a mix of rn
draws of βj and σ2

j , and rp draws of βmp, σ2
mp,

if it was assigned to the pooled group in rp out
of R iterations.

That is, upon completion the sampling pro-
cess delivers draws of coefficients and variances

from their respective marginal posterior dis-
tribution, unconditional of any specific model.
Collecting coefficients and variance for a given
context in a single vector φj , this marginal pos-
terior can be written as

(6) p
(
φj |y,X

)
=

M∑
m=1

p (m|y,X) ∗

[
p
(
φj |yj ,Xj

)
I (j ∈mn)+

p
(
φmp|ymp,Xmp

)
I (j ∈mp)

]
where p (m|y,X) is the posterior model proba-
bility, and I (.) is an indicator function. Analo-
gously, the moments of these chains also reflect
thismodel-averaging process. An important ad-
vantage of our approach is that it allows for the
computation of both empirical and analytical
posterior model probabilities. This can be ex-
ploited to verify that the Bayesian sampler has
converged, i.e. has visited a sufficiently large
sub-space of total model space M for empirical
and analytical model probabilities to be virtu-
ally indistinguishable (e.g. Fernández, Ley, and
Steel 2001). A detailed derivation of both ver-
sions of posterior model probabilities is given
in the supplementary online appendix.

What Drives Pooling?
Section B in the supplementary online ap-
pendix discusses the detailed econometric un-
derpinnings of how prior settings and data
characteristics affect pooling probabilities. In
a nutshell, a given context is more likely to be
assigned to the pooled category if (i) its sample
size is close to the combined sample size for the
existing pool (thus both individual context and
pool rest on comparable empirical evidence),
(ii) the context-specific sample mean lies close
to the sample mean of the pooled category, (iii)
the context sample mean is not too distant from
the prior mean of the pooled group (µ0,mp in
equation (4)), and (iv) the within-context vari-
ability (as measured in squared deviations from
the sample mean) is small compared to the data
variability in the pooled category.

Condition (iii) gains in importance over con-
dition (ii) as the gj-terms, i.e. the tuning pa-
rameters in equation (3) decrease in magnitude.
This increases the prior variance of βj and thus
places more weight on the actual data for a
given context relative to its priors. Thus, the



6 Amer. J. Agr. Econ.

more informative the context-specific data is
relative to its prior, the more stringent is the re-
quirements of mean-closeness in data to be as-
signed to the common pool. This is intuitively
attractive, as it lends a priori more indepen-
dence to contexts with relatively stronger in-
formational content in the sample data. As we
describe below in more detail, in our applica-
tion we let gj be directly related to the original
sample size of all underlying studies that feed
into a given context. This places more weight
on independence over pooling for contexts that
rest on original studies with large sample sizes,
i.e. substantial amounts of empirical evidence.

In addition, both conditions (ii) and (iii) be-
come more important with increasing context-
specific sample size. In other words, the larger
the individual sample size, the closer the con-
text mean must be located to the pooled prior
and sample means to be absorbed into the
pooled category. Again, this carries the notion
of leaning more towards granting independence
to contexts that rest on strong empirical evi-
dence, ceteris paribus.

Our algorithm thus strikes an intuitive bal-
ance between recognizing context-specific em-
pirical substance (sample size, informative con-
tent of priors), penalizing for within-context
noise, and observing closeness of central ten-
dencies in both prior and sampling distribu-
tions. Section B in the supplementary online
appendix provides the mathematical underpin-
nings for these different pooling criteria.

Allowing for Multiple Pools
One noteworthy limitation of the León-
Gonzalez and Scarpa (2008) algorithm is that
it only allows for a single pool. With a suf-
ficiently large number of contexts, it is pos-
sible that multiple pools exist, each centered
around a different population mean. Our pre-
liminary runs with simulated data show that
when there are multiple “true” pools, but the
model allows only for a single pooled group, the
algorithm tends to only recognize the pool with
the smallest pooling penalties (see Section B
in the supplementary online appendix), i.e the
“most obvious” cluster. Naturally, this is less of
an issue if the main concern of the analyst is
to avoid wrongful pooling, as in León-Gonzalez
and Scarpa (2008). However, in our case, we
would like to identify all existing pooling pat-
terns between contexts.

As will become evident from our empirical
application, missing secondary pools can lead
to serious efficiency losses for BT predictions.
This is due to the fact that a naïve single-pool
model erroneously classifies several contexts as
“un-poolable”, leaving the analyst to treat these
cases as independent, and basing inference on
often very small sample sizes.

In theory, a multiple-pool version of our
model could be specified along the lines of a la-
tent class, or finite mixture of normals (FMN)
model, with each context being assigned a prior
and posterior probability of belonging to a spe-
cific class, that is information pool (see e.g.
Koop, Poirier, and Tobias 2007; Frühwirth-
Schnatter 2001; Frühwirth-Schnatter, Tüchler,
and Otter 2004). However, in our case this has
several conceptual and computational draw-
backs. First, it requires the ex ante specifi-
cation of the number of expected pools, for
which there is little empirical guidance. Second,
such a framework would allow for a context
to be assigned to multiple pools with nonzero
probability. In turn, none of these pools will
have a straightforward “label” as the underly-
ing likelihood function is invariable to permu-
tations of the latent class designations.10 While
this would not affect our ability to derive valid
posterior predictive distributions of benefits, it
would preempt any meaningful interpretation
of the emerging pooling patterns. Perhaps the
largest hurdle to the implementation of a di-
rect multi-pool model is that the number of
model transitions and corresponding transition
probabilities in the Metropolis-Hastings step of
the Gibbs Sampler become quickly intractable,
even with as few as two or three pools.

Instead, we propose a multi-step estimation
approach: We first run the Bayesian Model Av-
eraging (BMA) algorithm using the full set of
31 contexts. We then discard all contexts that
exhibit a posterior pooling probability of 90%
or higher, and repeat the algorithm for the re-
maining sites. This is based on the observation
that the contexts with such large pooling prob-
abilities in the original run pool primarily with
each other. Thus, removing these highly pooled
contexts in the second round should not heavily

10 This is the notorious “label-switching” problem in
finite mixture models, as discussed e.g. in Frühwirth-
Schnatter (2001), Frühwirth-Schnatter, Tüchler, and
Otter (2004), and Geweke (1997). As discussed in the
latter contribution, this issue is irrelevant if the labeling
of the classes has no practical meaning, and for poste-
rior constructs that are implicitly averaged over classes,
such as class-unconditioned predicted outcomes.
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affect the information content of the remaining
data with respect to identifying further pools.
The second run produces an additional cluster
of contexts with pooling probabilities close to
one. We set those aside and run the posterior
simulator for a third time to examine if addi-
tional residual pools exist. The third run does
not produce any additional pronounced pooling
patterns, and thus becomes the endpoint of our
analytical sequence. The discovery of a second
pool leads to substantial efficiency gains in BT
predictions for contexts that did not pool in the
first stage, but exhibit high pooling probabili-
ties in stage two. Details for these results are
given in the next section.

Empirical Application

Data
Our starting data set includes 2,594 observa-
tions from 325 individual studies that report
WTP / day for access to one of 27 outdoor
recreation activities. Each estimate represents
an aggregate welfare measure for a specific ac-
tivity. The level of aggregation differs across ob-
servations. About a third of observations rep-
resent aggregates over individuals for a single-
site context. The remaining welfare estimates
are aggregated over individuals and sites, with
spatial aggregation ranging from a local site-
systems to the national level. The largest sub-
set of the data (40%) represents aggregation at
the State level.

We first eliminate duplicate cases, i.e. WTP
estimates that are based on the exact same
data11 (17% of the starting set), observations
that are not associated with a specific activity
(23%), and observations with unknown under-
lying sample size (14%). Given the focus of this
study on inter-activity and inter-regional ben-
efit transfer within the U.S., we also drop cases
with aggregation at the national level (3%), and
all Canadian entries (3%). In a final cleaning
step we eliminate a few isolated activities that
are represented by fewer than 10 data points
(0.01%).

Summary statistics for the final sample of
1,135 observations are shown in Table 1. There

11 The most common source of duplication is within-
study, when authors report multiple estimates for the
same welfare measure, based on different econometric
specifications. In most cases the original authors indi-
cated their preferred specification, which we then re-
tained for the final data set.

are 164 contributing studies, with underlying
primary data collected between 1961 and 2004,
and comprising a total of 14 individual outdoor
activities. The data also represent four broader
census regions: Northeast, Midwest, South, and
West. The entries in the table are organized by
these regions, and - within region - by activity.
The first three regions each encompass six ac-
tivities, while the West comprises 13 recreation
types. Importantly, five activities are included
in every region. These are wildlife viewing, run-
ning water fishing, stillwater fishing, water fowl
hunting, and deer hunting. This allows for an
examination if welfare estimates are transfer-
able across regions for the same activity type.
The second and third columns depict, respec-
tively, the number of observations and the num-
ber of independent underlying studies associ-
ated with each region / activity group. Obser-
vation counts range from 11 (Northeast, saltwa-
ter fishing) to 77 (West, running water fishing).
The minimum study count is two (Midwest,
motor boating; West, beach), and the maxi-
mum is 25 (West, running water fishing). Col-
umn four shows the total sample size under-
lying the original studies. These figures range
from close to 1,000 (Northeast, water fowl hunt-
ing) to over 200,000 (West, hiking). We will
utilize this information to assign estimation
weights to each category in our preferred econo-
metric specification below.

The columns labeled “%(sp)” and “%(site)”
capture the percentage of obervations within
a given group that stem from Stated Prefer-
ence elicitation and, respectively, the share of
observations that are associated with a single-
site welfare measure. As is evident from the ta-
ble, these percentages vary widely across cate-
gories. We will use this information to examine
if patterns of information pooling are sensitive
to these study design features.

The remaining columns of Table 1 give sam-
ple statistics for WTP (in 2006 dollars) for
each region / activity combination. Most group
means lie in the $30 to $60 range. There are
interesting region-specific patterns as to which
activity generates the highest per-day welfare.
For example, in the Midwest, running water
fishing produces by far the highest average per-
day value compared to the other recreation
types. In a less pronounced fashion, this also
holds for the Northeast. In the West, saltwater
fishing and whitewater rafting are the premier
outdoor activities based on per-day welfare.
The South presents a more homogeneous pic-
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ture, with similar mean WTP values for most
activities.

Several activities exhibit similar values for
mean and standard deviation across regions
(e.g. wildlife viewing for the Northeast, South,
and West; deer hunting for the Midwest and
South). The same holds for different activi-
ties within the same region (e.g. stillwater fish-
ing and waterfowl hunting in the Northeast;
wildlife viewing and stillwater fishing in the
West), and even for different activities across
regions (e.g. stillwater fishing in the Midwest
and motor boating in the South; water fowl
hunting in the South and wildlife viewing in
the West). Thus, these sample statistics hint at
ample opportunities for borrowing and trans-
ferring information across regions, activities, or
both. We will explore this possibility more for-
mally using our econometric framework.

Model Specification
Following the bulk of recent meta-regression
contributions, we specify our dependent vari-
able as log(WTP) in all subsequent models.
This forces predicted WTP to remain in the
positive domain, which makes intuitive sense
given the “site-access” interpretation of the
value estimates captured in our meta-data.
Given the lack of meaningful explanatory vari-
ables that are observed for all 31 contexts, we
opt to specify our empirical models without any
regressors. Our framework thus relates to an
Analysis-of-Variance (ANOVA), as it consid-
ers both the within-context and across-context
variability in the dependent variable in its eval-
uation of pooling potential.12

In spirit, our approach also shares common
ground with the non-parametric meta-analysis
recently suggested by Kaul et al. (2013). As
do Kaul et al. (2013), we avoid the risk of
mis-specifying the meta-relationship between
the outcome of interest and explanatory vari-
ables. This also circumvents the “N vs. K”
dilemma discussed in Moeltner, Boyle, and Pa-
terson (2007), i.e. the need to truncate the
meta-sample due to the lack of regressors for
some observations.

This simplification implies that the prior
mean of βj , µ0j , signifies the prior expecta-
tion of the outcome variable yj , i.e. log(WTPj).

12 However, in stark contrast to classical ANOVA we
do not aim for a binary decision rule on the hypothesis
that two or more contexts share a common population
mean, but rather derive a posterior probability for each
possible pooling pattern.

This makes it difficult to assign an arbitrary
value to this parameter without using the data.
Certainly, the popular value of zero for the
prior mean of the regression intercept would
be a rather extreme choice, given that the ob-
served WTP estimates in our data generally
take larger values than $1. We compromise on
this issue by using the sample statistics re-
ported in Table 1 of Walsh, Johnson, and McK-
ean (1992) (p.708) to formulate priors. This ta-
ble depicts aggregate WTP per day for a va-
riety of outdoor activities that largely over-
lap with ours. These values are based on 287
individual estimates flowing from 120 studies
conducted between 1968 and 1988. Thus, the
Walsh, Johnson, and McKean (1992) data set
can be interpreted as a sub-set of the earlier
portion of our meta-data. We use their reported
mean WTP estimates as prior means for βj , af-
ter converting to 2006 dollars and taking logs.
Since Walsh, Johnson, and McKean (1992) do
not provide dis-aggregated results by census re-
gion, we assign the same activity-specific value
to each region.13

We proceed in similar fashion with the speci-
fication of the prior shape and scale parameters
for the inverse-gamma density of the error vari-
ance σ2

j . First, we set the shape ν0 to a value of
2 for all contexts. Given our parameterization,
this implies that the prior expectation of σ2

j is
equal to the prior scale, τ0j . We then use the
(implicitly) reported standard deviations in Ta-
ble 1 of Walsh, Johnson, and McKean (1992) to
assign prior values to these shape parameters,
after converting to 2006 currency and adjusting
for the logged form of our outcome variable.14.

The final parameter that needs to be cho-
sen a priori is gj . It enters directly into the ex-
pression for the prior variance of βj (see (3)),
and also regulates the relative influence of the
prior mean µ0j on model selection, as described
in Section B of the supplementary online ap-
pendix. Specifically, a large setting for gj will

13 Walsh, Johnson, and McKean (1992) do not pro-
vide an explicit list of their underlying original studies.
However, 61 (37%) of our studies that are associated
with original data collected after the end of the Walsh,
Johnson, and McKean (1992) time frame of 1968-1988.
This assures that there is at best partial overlap be-
tween the two data sets.

14 Specifically, in our case τ0j denotes the expecta-
tion of the variance of log(WTP). The Walsh, John-
son, and McKean (1992) standard deviations, how-
ever, refer to WTP in absolute (un-logged) terms.
A conversion is given via var (logWTPj) = τ0j =

log

(
1 +

var(WTPj)
E(WTPj)

2

)
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place relatively less weight on µ0j during model
estimation and comparison.

León-Gonzalez and Scarpa (2008) follow a
recommendation by Fernández, Ley, and Steel
(2001) and other empirical BMA contributions
and set gj = nj . For our application this would
imply that var (βj) = σ2

j , i.e. the prior variance
for βj corresponds to the sampling variance for
a single data point within context j (see (3)).
The expectation of this variance is given by
τ0j , as discussed above. These τ0j terms fall
into a range of 0.2 - 0.8 for most contexts.
This centers the prior of βj relatively tightly
around µ0j . To allow for more prior variabil-
ity we prefer setting gj equal to nj times the
log of the total number of original observations
underlying all studies comprised in context j
(third column of Table 1 above). This places
relatively more weight on the meta-data and
less weight on the prior settings for contexts
that are associated with a large amount of pri-
mary data, regardless of the number of meta-
observations nj . We choose this specification
primarily to lend more empirical importance to
contexts with large underlying sample sizes. At
the same time this also illustrates the ability of
a Bayesian meta-analytical framework to incor-
porate prior information that would be difficult
to capture in a classical estimation context.15
We will henceforth refer to our preferred spec-
ification as “M1”. Detailed prior settings for all
contexts are given in Section D of the supple-
mentary online appendix.

We set the prior pooling probability, αj , to
0.5 for all contexts. This yields an equal prior
probability of 0.531 for all possible models.
This uniform prior model probability facilitates
model evaluation in the MH step of our algo-
rithm (see Section A of the supplementary on-
line appendix).

We assess convergence of the posterior al-
gorithm by computing the correlation between
empirical and analytical posterior model prob-
abilities, as suggested in Fernández, Ley, and
Steel (2001). This correlation coefficient ex-
ceeds 0.99, and thus suggests that the posterior
algorithm provided adequate model coverage.

For comparison purpose, we also estimate
a fully independent model, labeled “M2”, that
estimates population moments separately for
each context. The prior settings for βj and

15 We also estimate a more traditional model with
gj = nj . The results are very similar to our preferred
specification, and are thus not reported in the interest
of brevity.

σj and the number of burn-ins and retained
draws are as for model M1. To assess con-
vergence for the J individual contexts we use
Geweke’s (1992) convergence diagnostics (CD).
These scores clearly indicate convergence for all
parameters. To gauge the degree of (undesir-
able) serial correlation in our Markov chains
we also compute Inefficiency Factors (IEF) for
all parameters as suggested in Chib (2001). All
IEF scores are close to one, which indicates
that our posterior simulator has efficient mix-
ing properties.

Estimation Results, Round 1
We implement our search algorithm via a
Markov-Chain Monte Carlo (MCMC) program
with 100,000 discarded “burn-in” draws and
200,000 retained draws for all model param-
eters. We start the chain with the fully in-
dependent model, i.e. with a zero-vector for
model identifier ψ. The algorithm visits 2,669
distinct models in the retained iterations. Pos-
terior probabilities for the top ten models lie
in the 0.02 to 0.04 range. While this leaves a
considerable degree of model uncertainty for
this application, these posterior model proba-
bilities are of orders of magnitude larger than
the prior probability of 0.531. More impor-
tantly, the model search produces clear signals
for cross-context pooling.

Estimation results for models M1 and M2 are
given in table 2. For ease of interpretation the
table also repeats key sample statistics (first
triplet of columns). The remainder of the ta-
ble captures posterior pooling probabilities for
M1 (column four), and the posterior mean and
lower and upper bound of the 95% credible in-
terval for expected WTP, in dollars, for both
models.16 The most important result captured
in the table is that there are several contexts
that almost always fall into the pooled cate-
gory, i.e that have posterior pooling probabil-
ity of close to one. These include wildlife view-
ing in the Northeast, South, and West, still-
water fishing in the South and West, two ad-
ditional non-motorized water activities in the
South (running water fishing, water fowl hunt-

16 The posterior results for expected WTP in
dollars were obtained by computing E (yj,r) =

exp
(
βj,r + 0.5 ∗ σ2

j,r

)
for all r= 1 . . . R draws of

parameters flowing from the Gibbs Sampler, and
all j = 1 . . . J contexts. The 95% credible interval
comprises the area between the 2.5th and the 97.5th

percentile of the posterior distribution for expected
WTP.
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ing), and one additional activity in the West
(pleasure driving).

For most of these eight contexts, sample
means ($50 - 55) and standard deviations ($38-
45) are of comparable magnitude, which favors
posterior pooling. Two of the contexts, West,
pleasure driving and South, stillwater fishing
have somewhat lower sample means, in the $40-
45 range. For West, pleasure driving, the meta-
sample size (12) is small enough to dampen the
pooling penalty that derives from the deviation
of the context-specific sample mean ($40.74)
from the pooled sample mean (about $55) to be
sorted into the pooled group by the posterior
algorithm (see (??) in Section B of the supple-
mentary online appendix). For South, stillwa-
ter fishing the context-specific sample mean is
close enough to the pooled sample mean such
that the efficiency penalty that comes with in-
dependent estimation exceeds the penalty of
mean-deviation, as illustrated in Section B of
the supplementary online appendix.

In general, the algorithm categorically re-
jects pooling for contexts that have extreme
sample means (e.g. Midwest, running water
fishing,West, saltwater fishing, West, beach),
or a large enough meta-sample size such that
even a minor deviation from the pooled sample
mean translates into prohibitive pooling penal-
ties (e.g. Midwest, South, deer hunting). The
latter tendency is consistent with the finding
in León-Gonzalez and Scarpa’s simulation exer-
cise, where pooling probabilities decrease with
increasing sample size for sites known to be in-
dependent.

The posterior pooling probabilities captured
in table 2 indicate how often a given context
was assigned to the pooled category, but do
not provide information on pooling associa-
tions, i.e. which other contexts were included
in the pool at a given iteration. To visualize
pairwise pooling probabilities, we create a di-
agram akin to “heat maps” used in the phys-
ical sciences. It is a 2 by 2 symmetric grid
where each cell corresponds to a specific pair
of contexts. The intensity of the shading of the
cell indicates the magnitude of pairwise pool-
ing probabilities, i.e. how often the specific two
contexts were included in the pooled group to-
gether. Figure 1 displays these patterns. The
legend at the bottom of the figure show abbre-
viations for regions and activities, as well as a
key for pooling intensity. The diagonal line of
cells captures the own-pooling probabilities, i.e.
how often a context was assigned to the pooled

category. The exact numerical values for these
probabilities are given in the “pr.pool” column
of table 2. The figure confirms that the con-
texts with extremely high pooling probabilities
listed above are naturally also highly pooled
in each pairwise combination. A second pool-
ing pattern that emerges is that for three of
the four regions, Northeast, South and West,
wildlife viewing pools at least moderately high
with water-based fishing and hunting activities,
which, in turn, pool with one another. The fig-
ure also visualizes the weak pooling patterns
associated with any activity in the Midwest,
and the complete absence of any pooling for a
variety of contexts. However, as illustrated be-
low, some of these seemingly independent con-
texts will form their own pool in our second
estimation round.

The last six columns of table 2 compare pos-
terior results for expected WTP (in dollars)
for the BMA (M1) and the Independent model
(M2). For contexts that never pool the results
for the two models are close to identical. Re-
maining differences are solely related to ran-
dom simulation noise. The payoff for recog-
nizing pooling patterns becomes visible when
comparing credible intervals for contexts with
high pooling probabilities. The efficiency gains
in terms of tighter credible intervals are stag-
gering, ranging from 15-70% for contexts with
pooling probability of 0.8 or higher. This pro-
nounced information gain is visualized in figure
2, which depicts posterior densities for expected
WTP for four contexts with high pooling prob-
abilities along with their independent counter-
parts.17

Estimation Results, Round 2
We discard all contexts from the first round
with posterior pooling probabilities in excess
of 90%. This facilitates the detection of a sec-
ond pool, if it exists. We then re-run the pos-
terior simulator for model M1. The results are
shown in table 3. There are now five new con-
texts with posterior pooling probability of close
to one: Northeast, saltwater fishing; Midwest,
stillwater fishing; South, motor boating; West,
camping, small game hunting. All of them had
zero pooling probability in the first round.
This illustrates the benefit of our multi-step

17 Similar efficiency gains hold for median WTP,
computed as med (yj,r) = exp (βj,r) for all r= 1 . . . R
draws of parameters flowing from the Gibbs Sampler.
These results and corresponding figures are provided in
the supplementary online appendix.
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Figure 3. Heat Map for Pairwise Pooling Probabilities, Round 2
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approach, as the new pool would have oth-
erwise remained undetected. The “heat map”
with pairwise pooling probabilities for round
two is given in figure 3. It shows that three
additional activities, Midwest, motor boating
and West, hiking, beach also figure relatively
frequently in the pooled category. A compar-
ison of posterior densities for expected WTP
for the BMA and the Independent model mir-
rors the finding from the first round that in-
formation borrowing across contexts can pro-
duce sizable efficiency gains. For example, the
credible intervals for Northeast, saltwater fish-
ing andWest, small game hunting generated by
the independent model are almost twice as wide
than those produced by the pooled version. Fig-
ure 4 compares posterior densities for four of
the five contexts that did not pool in the first
round, but formed a high-probability informa-
tion pool in round two. As can be seen from the
figure, the context-specific (individual) mod-
els generally produce WTP predictions with
much higher posterior variability compared to
the pooled version. This effect is especially pro-
nounced for Northeast, saltwater fishing (up-
per left panel) and West, small game hunting
(lower right panel).

In summary, extending the León-Gonzalez
and Scarpa (2008) model to allow for multiple
information pools has important practical im-
plications, as it can greatly reduce the plausible
range for predicted benefits.

Robustness Checks
Ideally, we would like to interpret the pool-
ing patterns that emerge from our analysis as
evidence of value similarities across activities
and regions. However, it is also possible that
our results are largely driven by commonali-
ties in study design or implementation, usu-
ally referred to as “methodological factors” (e.g
Johnston et al. 2006; Moeltner, Boyle, and Pa-
terson 2007) or “study design features” (Boyle
et al. 2010) in meta-analytical work. Further-
more, common levels of aggregation underly-
ing individual meta-observations could in the-
ory affect pooling patterns.

Our data set includes two variables that al-
low for at least a cursory check if such unde-
sirable methodological pooling effects might be
present: an indicator variable for Stated Pref-
erence elicitation and an indicator variable for
WTP values that derive from site-specific val-

uation, as opposed to regional aggregates over
multiple sites. The proportion of observations
falling into each category for a given context
are listed in table 1 under the heading of %sp
and %site, respectively.

At first glance, table 1 shows that the highly
pooled contexts in rounds 1 and 2 of our orig-
inal analysis exhibit strong variability for both
methodological categories. For the eight con-
texts with pooling probabilities over 90% from
the first round, the within-context proportion
of sp observations ranges from 25% to 100%,
and the proportion of site specific observations
from 13% to 81%. For the five highly pooled
contexts from round 2, sp proportions range
from 15% to 68%, and site proportions from
17% to 93%. Thus, based on this purely de-
scriptive inspection, there does not appear to
exist an obvious pattern of methodology or
aggregation-driven pooling.

To explore this possibility more formally we
repeat our analysis for the two separate subsets
of our meta-data associated with positive en-
tries for sp and site, respectively. In both cases,
we follow the strategy for composing the origi-
nal data set and eliminate contexts with fewer
than ten remaining observations after applying
the respective filters. Table 4 contains sample
statistics and estimation results for the sp-only
set. On average, the filtering by sp led to a
20% loss in observations across clusters. The
set includes eight contexts that pooled at 80%
or higher in the original round 1, and only one
context that pooled highly in the original round
2. Thus, in absence of any methodological ef-
fects, we would again expect our round 1 pat-
tern to emerge for this sub-set. This is indeed
the case. Despite an average observation loss
of 25% for the highly-pooled cases, the origi-
nal pooling pattern largely survives, with six
of the eight contexts pooling again at 79% or
higher. Thus, we conclude that the original pri-
mary pooling pattern is relativley robust to the
elicitation format used in the underlying stud-
ies.

Sample statistics and estimation results for
the site-only subset are given in table 5. The
set contains 14 remaining clusters, with an av-
erage observation loss of 31% compared to the
unfiltered data. The set includes four contexts
that pooled at 80% or higher in our original
round 1, and six contexts that pooled at 80% or
higher in our original round 2. Thus, we expect
emerging pooling patterns to be dominated by
the latter group, in absence of any aggregation
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Figure 4. Posterior distributions for expected WTP, Round 2

Table 4. Results for the SP-elicitation subset

sample pr. Expected WTP
region, activity obs mean std pool mean lower upper

Northeast, wildlife viewing 40 50.35 42.21 0.99 50.09 43.70 57.27
Northeast, stillwater fishing 21 27.08 16.95 0.17 31.46 22.26 50.78
Northeast, water fowl hunting 17 36.30 22.91 0.65 45.54 32.21 55.32

Northeast, deer hunting 47 56.85 33.22 0.41 55.50 46.82 68.24
Midwest, wildlife viewing 39 35.89 17.33 0.05 36.97 31.93 46.17
Midwest, stillwater fishing 26 32.33 12.91 0.38 39.42 28.68 52.75
Midwest, water fowl hunting 23 31.88 14.44 0.68 44.66 29.00 54.96

Midwest, deer hunting 56 56.12 18.76 0.00 57.25 52.50 62.61
South, wildlife viewing 59 50.03 57.64 0.93 50.08 43.32 57.69
South, stillwater fishing 33 38.57 15.51 0.81 47.85 36.29 55.66
South, water fowl hunting 26 40.31 17.42 0.08 42.55 35.91 51.30

South, deer hunting 72 57.67 22.42 0.00 58.98 53.59 65.22
West, wildlife viewing 63 54.59 44.57 0.89 50.83 44.66 59.21

West, running water fishing 16 78.84 72.77 0.79 58.28 45.07 112.39
West, stillwater fishing 39 54.13 44.36 0.99 50.16 43.79 57.51
West, water fowl hunting 20 43.56 25.32 0.40 47.11 37.88 56.15

West, deer hunting 50 69.58 25.74 0.00 72.73 63.62 83.78
West, elk hunting 19 77.78 26.53 0.00 82.74 70.36 98.20

West, whitewater rafting 10 139.91 106.85 0.01 183.22 83.70 400.47
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Table 5. Results for the SITE-specific subset

sample pr. Expected WTP
region, activity obs mean std pool mean lower upper

Midwest, stillwater fishing 45 17.09 18.53 0.86 23.28 15.34 35.64
Midwest, motor boating 14 16.91 27.92 0.84 22.63 10.41 36.09

South, running water fishing 17 49.20 27.25 0.12 56.44 39.57 80.86
South, motor boating 13 19.56 13.04 0.72 23.73 16.03 37.72

West, hiking 30 57.53 67.30 0.27 60.09 27.49 106.82
West, camping 32 24.03 25.62 0.85 24.54 17.61 38.12

West, wildlife viewing 10 66.71 52.59 0.36 67.04 22.78 145.69
West, running water fishing 49 62.77 55.67 0.12 65.55 50.45 87.52

West, stillwater fishing 17 52.34 45.05 0.12 54.86 39.37 76.77
West, saltwater fishing 14 154.19 121.43 0.00 167.25 109.74 266.06

West, small game hunting 18 44.54 83.36 0.88 26.80 17.51 58.58
West, deer hunting 17 37.55 28.41 0.12 41.95 28.30 68.03

West, beach 11 14.55 24.39 0.85 22.56 8.63 36.47
West, whitewater rafting 19 108.01 122.22 0.11 125.25 56.36 289.17

effects. This is confirmed by the results cap-
tured in the table. Five of the six highly pooled
contexts in original round 2 pool again at 80%
or higher, despite an average observation loss of
20% compared to the full data. Moreover, when
we eliminate these cases and re-run the model,
a pooling pattern emerges that closely resem-
bles our original round 1 results. Specifically, all
four originally pooled contexts pool again with
probabilities of 85-99%. Thus, we do not find
any evidence of pronounced aggregation effects
that may drive the identified pooling patterns.

Discussion
As mentioned above, our results are probably
most meaningful when applied to a BT situa-
tion where a general, or aggregate value esti-
mate is needed for a given activity and region.
For example, a decision maker may seek the
value of a “typical day of motor boating in the
South”, perhaps in the context of a regional eco-
nomic impact analysis of new legislation on mo-
torized boating. The available direct evidence
consists of 14 observations from 5 underlying
studies (see table 1), producing an estimated
expectation of $25.28 (table 3). However, our
Bayesian model suggests that the value distri-
bution specific to this activity / region pair is
practically indistinguishable from value distri-
butions associated with four or five other con-
texts, as discussed above. The Bayesian pooled
expectation of $30.88 is based on an implicit
sample of 169 observations, involving 41 origi-
nal studies. Thus, the BMA estimate is likely
a more reliable indicator of boating values in
the South, even though the bulk of contribut-

ing observations come from other activities and
regions.

As noted in León-Gonzalez and Scarpa
(2008), the benefits of exploiting the pooling
patterns made transparent by the BMA algo-
rithm are largest in small sample situations for
the target site or - in our case - contexts. The
ability to borrow information from other con-
texts is less critical when own-context sample
sizes are relatively large. For example, a policy
maker interested in the per-day value of wildlife
viewing in the West, perhaps in context of a
benefit-cost analysis of a new regional wildlife
management plan, can resort to 76 observations
from 15 original studies to derive this estimate
($54.35, table 2). As is evident from table 2, lit-
tle is gained by substituting this figure for the
Bayesian pooled mean of $55.29.

Overall, our analysis presents a promising
picture for the potential of cross-context infor-
mation borrowing for outdoor recreation. Of all
31 activity / region pairs in our meta-data, 26
pool at least occasionally with other combina-
tions in one of the two estimation rounds. Only
four contexts are persistently reluctant to pool
with any other activity / region pairs. These
are wildlife viewing in the Midwest, water fowl
hunting in the south, and saltwater fishing and
elk hunting in the west. In those cases the de-
cision maker is left to make do with context-
specific data to draw inference on recreation
values.

Naturally, this raises the question as to which
contexts ought to be included in the meta-data
in the first place.18 As described above, our al-
gorithm makes pooling decisions purely based

18 We thank one of our reviewers for raising this
point.
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on statistical criteria, such as within-sample
variability and closeness of sample means. In
theory, the meta-model could include a hodge-
podge of contexts from any realm of socio-
economic activity or even purely scientific pro-
cesses, each of which may be pooled with any
other if its statistical properties allow for it.
However, this is exactly akin to the notion of
which variables to include in a regression model
if predictive fit is the primary analysis goal. In
both cases the analyst’s judgment is needed to
decide on a reasonable scope for the model. In
regression modeling, the ultimate inclusion cri-
terion is likely the - at least remote - plausibil-
ity of a causal relationship with the dependent
variable. In our case, it would probably be pru-
dent to only include contexts that are - at least
at some level - conceptually related, say along
the notion of potentially flowing from common
structural preferences. For our application, all
contexts can be lumped into the umbrella of
“leisure activities”, or - even more narrowly -
“outdoor recreation activities”. It is not unrea-
sonable to assume that structural preferences,
say marginal utilities, might be similar across
the activities and/or regions included in our
data.

A more practical decision rule for the ana-
lyst might be based on the (hypothetical) ques-
tions if the strength of pooling between two, po-
tentially very disparate, contexts would likely
increase or diminish with increasing context-
specific sample size. Our algorithm is quite sen-
sitive to own-sample sizes, and is more likely to
reject pooling as context-specific sample sizes
increase, ceteris paribus. Additional work along
these lines and, more generally, addressing the
issue of “optimal scope” of the meta-data when
a search for information pools for BT purposes
is the primary goal could be very beneficial.

Conclusion
We adapt the Bayesian Model Search algorithm
by León-Gonzalez and Scarpa (2008) to ex-
plore if different outdoor recreation contexts
based on different underlying populations may
nonetheless share the same value distribution.
Using a large meta-data set comprising 14 out-
door activities across four U.S. regions we find
strong evidence of value similarity across multi-
ple activities and regions. Exploiting these re-
vealed pooling patterns allows for the deriva-
tion of more reliable, and in some cases vastly

more efficient, WTP distributions for a spe-
cific context. This ability to borrow informa-
tion across contexts is especially beneficial in
small sample settings, which is often the norm
if only meta-data are available.

We modify León-Gonzalez and Scarpa’s
econometric framework along two primary di-
mensions. First, we relax their constraint of a
single information pool. Using a simple and in-
tuitive multi-step approach we allow for the
emergence of secondary, more subtle pools that
would otherwise remain undiscovered. This
leads to further efficiency gains in BT predic-
tions for contexts that would have erroneously
been classified as “un-poolable” in a single pool
framework. Second, we adapt León-Gonzalez
and Scarpa’s Bayesian algorithm, which is
geared towards a discrete choice / contingent
valuation approach, to accommodate the likeli-
hood function and priors for a standard linear
meta-regression model.

Our Bayesian estimation framework exhibits
numerous desirable features, such as the abil-
ity to quickly identify pooling patterns for a
relatively large context space, and to capture
information spillovers even under imperfect,
i.e. partial pooling. However, we would like to
re-iterate the main objective of this analysis,
that is to highlight the feasibility and poten-
tial practical benefits of cross-context BT. If
only a handful of contexts are under considera-
tion, the analyst could in theory proceed within
a classical estimation framework, for instance
by estimating a general model with context-
specific parameters, and then testing for poten-
tial cross-context pooling restrictions. We pri-
marily hope that our work will encourage re-
searches to consider a broader mix of contexts
when specifying that “general model”.

On a final note, we motivate our cross-
context analysis by arguing that value distribu-
tions can converge across contexts despite dif-
ferences in site characteristics, population fea-
tures, or preferences. By the same token, we
cannot infer preference similarity from observa-
tionally identical value distributions, as tempt-
ing as it may be. However, if subsequent anal-
ysis, overcoming the limitations of our meta-
data, should reveal that two or more highly
pooled contexts from our BMA model also ex-
hibit strong similarities in population and site
characteristics, similarity in value distributions
may indicate similarity in preferences. This
would be a logical extension of our analysis and
a fruitful avenue for future research.
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