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Low temperature combustion (LTC) engines offer improved efficiency and reduced emissions 

over traditional gasoline spark-ignited and diesel compression-ignition engines.  The ability to 

produce fuels optimized for LTC engines could help increase efficiency and therefore improve 

fuel economy, insomuch that Federal fuel economy standards could be met.  Currently, a fuel 

performance rating that can indicate how a fuel will perform in LTC engines has not been well 

established; this is needed to aid in fuel design/optimization.  Furthermore, traditional fuel 

performance metrics, e.g., Research Octane Number (RON), may not fully explain LTC 

performance and require expensive, time-consuming experiments.  In this work, the LTC index 

fuel performance metric, which has been recently introduced, was chosen to represent a 

quantitative measure for LTC fuel performance.  This fuel performance metric rates fuels by 

their potential fuel savings for useful real world operating conditions.  In a parallel effort, 

statistical models based on chemometric techniques were developed to correlate liquid 

hydrocarbon infrared absorption spectra first to RON for validation and insight into the 

approach, and finally to the LTC index. Here we show that the developed chemometric models 

can predict the performance of the FACE gasolines (research grade gasoline-like fuels) for RON 

(±10 for all 22 FACE) and the LTC index (±0.4 for FACE A and C).  To the author’s 



 

 

knowledge, these models are novel in that actual gasoline samples are not used to inform the 

chemometric model; instead, only neat hydrocarbon components are used (individually or up to 

five component mixtures).  The chemometric models could aid researchers and industry alike as 

an easy, cost-effective, and fast tool to determine LTC performance of gasoline fuels and help in 

an effort to design next-generation fuels.           
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Chapter 1: Literature Review  

1.1 Introduction 

Combustion of hydrocarbon fuels will maintain their status as the United States’s leading source 

of energy between now and 2040, supplying 80 percent of the nation’s energy needs by 2040 

(increasing dependence) [1].  Society continues to rely on internal combustion engines (ICEs) for 

transportation, commerce, and power generation. As a result, the demands to reduce emissions 

and improve efficiency in these systems are significant to lessen the growing environmental and 

economic impacts.  Therefore, there is motivation to seek out alternative, eco-friendly fuels and 

to move away from traditional combustion strategies in favor of advanced, next-generation 

systems that are cleaner and more efficient. 

Since the inception of the ICE, harmful pollutants such as particulate matter, nitrogen oxides, 

unburned hydrocarbons, and carbon dioxide have been expelled into the atmosphere that can 

cause serious adverse health effects and negatively impact the environment [2], [3].  This has 

been managed by exhaust after-treatment strategies and by inherently improving the efficiency of 

the combustion process within the engine.  Fuel efficiency steadily improved over the years due 

to increasing compression ratios, downsizing, and turbo-charging resulting in increased thermal 

efficiency [4]; in addition, increased electric hybridization led to reduction in overall fuel use [5].  

Recent governmental regulations including the CAFE 2025 standards mandate reaching 54.5 

mpg within the next 10 years—a significant engineering effort to accomplish in such a short time 

frame.  Solving this challenge will be aided by continued electric hybridization, but it is 

projected that by 2025 only 11% of total vehicles in the U.S. will be registered as a hybrid 

vehicle [5].  Therefore, there is motivation to further improve upon the reciprocating internal 

combustion engine for public transportation to meet CAFE standards.  

Low temperature combustion (LTC) engines, which implement a non-traditional combustion 

strategy, offer higher efficiencies and lower emissions that could satisfy CAFE standards.  This 

strategy is still of current research interest and requires further development to become a viable 

option.  This work focuses on the fuel design aspect of LTC engine research and development, as 

the success of this combustion strategy is highly fuel (e.g., gasoline, diesel, ect.) sensitive.  

Traditional fuel performance metrics, which give insight to how a fuel will perform in ICEs, 

have had little success in describing how a fuel will perform in a LTC engine.  Additionally, 
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traditional fuel performance metrics require time consuming and expensive physical experiments 

to determine.  In order to design fuels for LTC engines, a fuel performance metric is required and 

a means to determine the metric rapidly would accelerate the process.  This work is a parallel 

effort to mitigate these two issues.  That is to say, this work will review newly proposed fuel 

metrics, and the metric that best indicates how a fuel will perform in a LTC engine will be 

selected.  With this, a robust tool will be created which can predict this LTC fuel performance 

metric for fuels; as opposed to the need for expensive, time consuming experiments.  The goal of 

this work is to use chemometrics to predict low-temperature combustion performance of real 

fuels to aid in the effort for LTC fuel design.   

First, a brief overview of the workings of the classic reciprocating ICEs will be introduced, along 

with a discussion of current areas for improvement and where past and current research efforts 

bring us.  Second, next-generation engine concepts will be introduced with a discussion on the 

benefits they offer over the classic ICE strategies.  Third, fuel performance metrics will be 

discussed that give useful insight into how particular fuels will perform in their respective ICEs, 

and will be a primary topic of this work as it is mostly concerned with fuel design.  Fourth, with 

any given LTC engine fuel performance metric, the methodology to statistically correlate the 

metric to chemical data will be discussed (i.e., chemometrics).  The last topic of discussion is 

utilizing chemometrics to accurately predict fuel properties along with the necessary tools to do 

so.    

Internal combustion engines have two predominant thermodynamic cycles utilizing 

fundamentally different fuels, the gasoline spark ignition engine (SI) and the diesel compression 

ignition engine (CI).  These two ICE types share many of the same attributes, yet they operate in 

different manners from a thermodynamic, chemical kinetic, and control systems standpoint.  

These will now be discussed in the following two sections.  Following this, LTC engines will be 

introduced.     

1.1.1 Gasoline Spark Ignition (SI) Engine  

The SI engine premixes gasoline fuel with air at stoichiometric proportions (or close to 

stoichiometric, depending on the platform) in an attempt to create a homogeneous charge of 

reactants prior to entry in the piston-cylinder chamber.  A spark plug is used to ignite the reactant 

mixture to control favorable initiation of combustion.  This cycle is most basically modelled 
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thermodynamically by an idealized Otto cycle, viz.: isentropic compression, constant volume 

heat addition, isentropic expansion, and constant volume heat rejection [6 pg. 163].  Although 

the Otto cycle is useful as a tool to understand the SI process on a fundamental level, the 

idealizations ignore physics at play that have significant impacts on the efficiency and emissions; 

these are presented as follows.   

Here, a brief overview of the efficiency of the SI engine will be introduced.  These efficiencies 

encompass the combustion, thermodynamic, gas exchange—e.g., fluid and gas dynamics—and 

mechanical losses, where the product of these losses yield the overall efficiency of the system.   

Combustion efficiency is the fraction of the fuel energy supplied that is released in the 

combustion process.  Typically, combustion efficiency for SI engines is on the order of 95-98% 

around stoichiometric equivalence ratios—which is the ratio of the actual fuel-air mixture to the 

stoichiometric proportion of fuel to air—and decreases as the mixture gets richer in fuel 

proportions due to insufficient oxygen to complete combustion [6 pg. 82].  Thermodynamic 

efficiency comprises the heat lost in the cycle that is not utilized; this occurs primarily from the 

heat lost by the exhaust and that is transferred to the engine coolant through the cylinder walls—

typically around 34-45% and 17-26% of the total losses respectively [6 pg. 674].  This efficiency 

increases when the geometric compression ratio and isentropic exponent (ratio of 

thermodynamic specific heats 𝛾, or 𝐶𝑝/𝐶𝑣) of the working fluid of the engine is increased, in 

addition to when the combustion temperatures decrease for less heat transfer losses [7, 8].  

Compression ratios for gasoline-fueled SI engines typically range from 8-12 [9].  Gas exchange 

efficiency, usually called pumping efficiency, in SI engines is caused by inducting/expelling 

air/exhaust through restrictions.  The intake and exhaust performance are usually defined by the 

volumetric efficiency, and are governed by the gas dynamics of the process.  SI engines have a 

throttle plate that restricts airflow to manage the load of the engine, and accrues significant 

pumping losses at lower loads when it is mostly closed.  Mechanical efficiency accounts for 

overcoming resistance of all the moving parts in the engine as well as engine accessories.  

Pumping and mechanical efficiency are typically lumped into the friction efficiency category, 

since the work used to overcome this resistance dissipates as heat.  Friction efficiency can 

account for 3-10% of total losses in the system [6 pg. 674].  In total, typically around 25-28% of 

the total fuel energy supplied will be converted to useful shaft work at high load operation [6 pg. 

674]; i.e., all the losses combined take nearly 70% of the fuel energy and reject it as waste heat.  
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Note that the numbers described here apply to an SI engine operating at maximum power; at 

lower loads, the overall efficiency is lower due to the higher pumping losses from the throttle 

plate, reducing it to around 20% or less.  

Figure 1 [10] visually depicts the efficiency losses of an SI engine, where the size of the arrows 

represent the magnitude of the heat lost through inefficiencies.  Rather than being represented as 

efficiency, mean effective pressure (MEP) is used, which is the normalized work that can be 

achieved (ratio of work to the displacement volume of the engine).  As can be seen, the 

maximum work that can be done is represented initially as the Fuel MEP that comes into the 

system with the fuel.  After all the losses, the final amount of useful work that makes it to the 

shaft is represented as the brake mean effective pressure (BMEP), and is at best a third of what 

came originally into the system with the fuel.  

Nitrogen oxides (NOx) are formed in SI engines due to the high combustion temperatures.  In 

addition, carbon monoxide (CO) and unburned hydrocarbons are produced due to incomplete 

conversion of the fuel, associated with the 95-98% combustion efficiency.  This is dealt with by 

using a three-way catalyst to eliminate these emissions to insignificant proportions by conversion 

into benign species (e.g., H2O and N2).  While effective, they are expensive due to their reliance 

on noble metals such as platinum, palladium, and rhodium for the catalyst. 

Figure 1: Qualitative fuel availability and pathways of heat losses (inefficiency). [10] 
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1.1.2 Diesel Compression Ignition Engine (CI) 

CI engines do not premix the fuel and air; instead, only air is drawn into the piston-cylinder 

assembly. Diesel fuel is then directly injected into the high-temperature, pressurized air wherein 

spontaneous ignition of the diesel occurs.  This cycle is most basically modelled 

thermodynamically by an idealized Diesel cycle, viz.: isentropic compression, constant pressure 

heat addition, isentropic expansion, and constant pressure heat rejection [6 pg. 163].  The 

efficiency and emissions of the CI engine will now be discussed.   

Combustion efficiencies of diesel engines are typically higher than SI, but not drastically: about 

98% [6 pg. 83].  Thermodynamic efficiency is comparatively higher than the SI engine, due to 

the higher compression ratios that can be achieved in this cycle—typically 12-24 [9]—along 

with lower combustion temperatures for less heat loss.  The coolant and exhaust losses are 

typically 16-35% and 22-35%, respectively [6 pg. 674].  Considered together, the losses are 

comparatively lower than for SI engines.  The fluid friction losses associated with the CI engine, 

around 2-6% [6 pg. 674], are also lower than in SI engines.  Unlike SI engines, CI engines 

require no intake throttling and thus achieve low fluid friction losses at low loads, where at 

higher loads SI and CI are nearly the same [6 pg. 713].  All these considered, the overall 

efficiency of the Diesel cycle is around 34-38% [6 pg. 674].  Thus, diesel seems to be the 

superior option over SI engines due to the higher overall efficiency.  However, the diesel fuel 

itself has a larger molecular weight and results in a more complex combustion process from a 

chemical kinetics standpoint; in addition, the injection strategy results in regions of extremely 

rich combustion and thus formation of unburned hydrocarbons and soot that are challenging to 

counteract, as discussed next.  

The combustion of diesel is complex and heterogeneous. When diesel is injected into the engine 

cylinder assembly, a distribution in air/fuel ratio develops across the space as shown in Figure 2.  

This distribution causes locally rich and lean mixtures.  At the extreme limits, the lean regions 

can be lean enough to be below the lean combustion limit, which is at about 𝜙 ≈ 0.3. In contrast, 

extremely rich zones produce soot, and near-stoichiometric regions produce NOx due to the 

associated high combustion temperatures.  
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Figure 2: Diesel spray distribution with soot and NO production zones. [11] 

At the time of ignition, the locally over-lean mixture reacts slowly or not at all, and results in 

products of incomplete combustion.  Additionally, regions of over-rich—but combustible—

mixtures can cool down due to the latent heat of vaporization and do not burn all the way to 

products; this is known as quenching.  As a result, there are incomplete combustion products 

from the over-lean and rich mixtures; which include unburned hydrocarbons in volatile and solid 

form (soot).  Soot formation can visually be witnessed as a black smoke emitting from the tail 

pipe.  Pyrolysis can also occur, which is another mechanism leading to more unburned 

hydrocarbons [6 pg. 620]. 

Particulate matter traps in the exhaust have been designed to substantially reduce soot emissions, 

but are difficult to implement in all applications. The filters cause problems when clogged and 

are typically not used in heavy-duty applications, but have been implemented in light-duty 

automobile engines where the soot formation is smaller.  Over time the filters clog up, and as a 

result the engine injects more fuel to compensate for the loss of power. This increases the 

exhaust temperature, and in-turn heats up the catalytic material on the soot trap to oxidize the 

trapped soot: the process was put into effect in the late 1980s. This method proved to reduce 
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particulate emissions by 70% or more [12].  The amount of soot expelled after exhaust treatment 

relative to SI is still higher.  The efficiency of burning the soot in particulate filters has increased 

over the years, largely due to the improvement of control systems.  Today, the engine computer 

will run in a manner to increase exhaust temperatures (e.g., variable valve timing, injecting fuel 

at retarded timing) in conjunction with an extra fuel injector placed in the exhaust.  Fuel is 

injected into the hot exhaust to react with a catalyst element to burn the excess soot. The soot is 

converted into ash and trapped [13].  

High in-cylinder temperatures result in the production of NOx, due to the dissociation of 

molecular nitrogen (N2) and the subsequent reactions of N with O radicals.  To mitigate this, 

exhaust gas recirculation and retarding fuel injection timing are used to lower the temperatures 

and freeze the chemistry required for NOx formation [6 pg. 587].  To further reduce NOx—or to 

replace the aforesaid techniques to reduce NOx—the use of selective catalytic reduction has been 

recently implemented. This technique regulates the injection of a synthetically produced aqueous 

solution called urea.  When heated, this liquid forms ammonia and reacts with NOx to produce 

nitrogen and water.  Since diesel engines always operate on the lean side of stoichiometric, CO 

emissions are low enough to be insignificant [6 pg. 592].  Three-way catalysts cannot be used 

with diesel engines because they require stoichiometric air-fuel proportions in order for the 

catalyst to work effectively. Diesel engines run largely diluted mixtures of fuel to air, which 

causes a lack of UHC and CO relative to NOx in the exhaust that the catalyst needs in order to 

effectively reduce all three pollutants to benign species [9].   

The current exhaust after-treatment systems (for NOx and soot management) implemented in 

Diesel engines are very expensive.  In a modern truck, the expense for these systems is roughly 

the same cost as the IC engine itself, and therefore is a major expense [7].  In the following 

section, LTC engine concepts will be introduced that offer the potential of reducing or 

eliminating the need for exhaust after-treatment strategies [14] and offer increased 

thermodynamic efficiency [10]. 

1.1.3 Low Temperature Combustion Engines 

Diesel engines are capable of operating at higher thermal efficiencies due to the high 

compression ratios, lean mixtures (therefore higher isentropic exponent), and unthrottled 

operation (i.e., high volumetric efficiency).  However, due to the complex heterogeneous 
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combustion of the high molecular weight diesel fuel, large amounts of soot form.  Therefore, 

diesel engines are thermodynamically efficient but not considered clean. On the other hand, SI 

engines combust a homogeneous, stoichiometric charge of reactants and thus produce low 

amounts of soot.  At the same time, the higher combustion temperatures produce NOx, requiring 

three-way catalysts to reduce the pollutant emissions.  Thus, SI engines are considered clean but 

not as efficient as diesel engines.  Advanced combustion engines are an attempt to operate in a 

regime that both minimizes emissions and increases efficiency by reducing the combustion 

temperatures.  This idea is called low temperature combustion (LTC), and will be the focus of 

this section. 

LTC engines are an attempt to unify the benefits of SI and CI engines, where a lean fuel-air 

mixture (to keep temperatures low and isentropic exponent high) is introduced into the piston-

cylinder chamber and ignited through compression [7].  Homogeneous charge compression 

ignition (HCCI) engines implement the LTC concept with a lean, well-mixed (homogeneous) 

charge of fuel (e..g, gasoline, diesel, or viable hydrocarbons) and air.  This cycle is 

thermodynamically similar to the Otto cycle, but offers higher compression ratios.  With this, it 

is possible to offer the efficiency closer to that of or higher than a diesel engine, but with low 

emissions of particulates, CO2, and NOx without the need for expensive exhaust after-treatment 

[14].  However, the homogeneous charge coupled with compression ignition leads to control 

issues (e.g., rapid heat-release, ignition timing) due to the fuel-air mixture igniting all at once, 

coupled with ignition timing being chemistry controlled and not by a physical process.  Other 

methods, such as reactivity controlled compression ignition (RCCI), leverage multiple fuels and 

injection strategies to operate in the LTC regime with fewer control issues than HCCI [7]. There 

are other variants of LTC engines, and interested readers are guided to Yao et al. [15] for a more 

comprehensive survey.   

This work will focus on HCCI operation, as it utilizes the LTC concept and theoretically offers 

higher efficiency over the other LTC variants due to the homogeneous charge [7], with net 

indicated efficiencies reaching upwards of 50% [10].  Recall that fuel performance associated 

with LTC engines is a primary scope for this work.  The chosen metric should reflect the fuels 

ability to operate in the theoretically most efficient LTC mode.  As a result, HCCI was chosen as 
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the cycle to represent LTC operation.  Efficiency, emissions and challenges of LTC operation 

will now be discussed.     

From a thermodynamics standpoint, LTC is favorable for two main reasons. The first being a 

reduction of in-cylinder temperatures, which reduces the heat transfer losses.  LTC having 

temperatures of 1800 K are typical, whereas, for example, diesel CI can exceed 2500 K [16] (see 

Fig. 4).  Assuming similar wall temperatures between LTC and the diesel example (e.g., 450 K), 

a 5% increase in efficiency can be achieved simply by minimizing the heat transfer effects [17].  

Secondly, as we know from analyzing the ideal Otto and Diesel cycles, an increase in the 

isentropic exponent—the heat capacity ratio, 𝛾—results in more useful work output due to less 

heat being required to increase the temperature of the gas, and therefore less work input is 

needed to move the piston.  LTC engines achieves higher isentropic exponents by running fuel-

lean (see Fig. 3).  Furthermore, the isentropic exponent decreases as temperature increases (see 

Fig. 3).  Due to this, reducing the overall combustion temperatures and running fuel-lean is 

favorable from a work expansion standpoint.  Increasing the isentropic exponent from 1.36 to 

1.38—considering an ideal Otto cycle where 𝜙 = 0.5, 𝑃1 = 1 𝑏𝑎𝑟, 𝐶𝑅 = 14: 1, and constant 𝛾—

results in an increased gross work output by 55% [8].   LTC operation conveniently provides 

fuel-lean operation, lower combustion temperatures—as well as diesel CI-like compression 

ratios—which both provide increased isentropic exponents for an increase in work availability.  

The overall impacts of these benefits will now be discussed.     

Figure 3: Isentropic exponent (ratio of specific heats Cp/Cv) of air and a stoichiometric 

mixture of air/iso-octane with temperature dependence. Making the mixture leaner 

increases the isentropic exponent. [8] 
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LTC-based engines are potentially the most fuel efficient and clean ICEs as they exploit 

compression ignition of lean (high-𝛾) fuel-air mixtures after mostly complete mixing [7].  This 

sets the stage for lower temperatures and quiescent flows—resulting from the lean mixtures with 

no flame-front propagation—which decrease the convective heat transfer losses to the cylinder 

walls to increase thermal efficiency [7].  As a result, fuel efficiency can be up to 20% higher over 

CI diesel and 40-50% over conventional SI gasoline engines [7].  If LTC engines were adopted 

in favor of SI engines, a 34% reduction in oil usage could be achieved—i.e., all the current U.S. 

oil imports from the Persian Gulf [7].  It is also possible to reduce our reliance on fossil fuels 

with LTC operation, as renewable fuels such as bio-diesel, methanol, or ethanol can be utilized. 

As can be seen in the Figure 4 on the following page, LTC engines operate at low temperature 

and lean fuel-air mixtures to avoid operating regions that are required for NOx and soot to be 

produced.  Note that the y-axis is in equivalence ratio.  Thus, an equivalence ratio greater than 

unity represents a fuel-rich mixture.  Temperatures cannot be too low because fuel combustion 

efficiency is compromised, as seen in Figure 5, which results in the production of CO and UHC. 

With overall efficiencies being higher, the CO2 emissions are lower; since LTC operation is 

clean enough to get rid of expensive exhaust after-treatment systems and inherently does not rely 

on high pressure injection systems, such engines (e.g., HCCI, RCCI) could be cheaper to 

produce [14]. 
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Figure 4: Operating envelopes of diffusion diesel CI, SI, and LTC. [18] 

 

 

Figure 5: Temperature dependence of complete combustion, and the tradeoff with NOx formation. 

[19] 
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There are two major challenges that face advanced LTC combustion engines, including HCCI 

and variants thereof, and their continued development.  The first being that there is no 

mechanical means to control ignition of the fuel, such as a spark or directly injecting a fuel that 

reacts nearly spontaneously; instead, the chemical kinetics of the fuel govern when the fuel will 

ignite during compression and how fast it will burn.  The first challenge is then a timing issue 

that is governed by the fuel chemistry.  The effect of ignition timing issues can be seen in Figure 

6.  Some fuels alone, such as iso-octane in Fig. 6, are not adequate for LTC combustion from a 

phasing standpoint for most operating conditions.  The second issue with HCCI is the low torque 

per unit displaced volume, i.e. low torque for the size of the engine, caused by the onset of high 

pressure-rise rates (knock) that are highly audible as a ringing noise, and more importantly 

highly destructive to the ICE itself [20].  Knock is the result of rapid chemical heat release, and 

can cause engine damage—this is further discussed in Sec. 1.2.1.  Because of the onset of knock, 

high load limits are difficult to achieve making LTC unfavorable as a power source for 

transportation means in its current state.  Additionally, low-load limits are difficult to achieve 

due to incomplete combustion of the reactants leaving behind unacceptable UHC and CO 

emissions.  These challenges can be visualized in Figure 7, which shows typical upper and lower 

limits of HCCI engine operation due to the aforementioned reasons.  In order to make 

contributions to LTC development, one must study engine combustion as a whole; the overall 

fuel reaction rate is highly dependent on the ICE environment.   
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Figure 6: Ignition delays of various fuels and the required values for IC operation. [9]   

 

Figure 7: Typical HCCI and SI operating envelopes (specific power vs. engine speed). [21] 

Much of the current research and development (R&D) targeted towards LTC involves fuel [22]–

[26] and control systems design [8], [9], [27].  Interested readers are directed to Yao et al. [15], 
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who summarize the inception of HCCI research, key developments, HCCI fundamental theory, 

control systems, fuel considerations, and recent trends.  Control system design encompasses 

concepts such as reactivity controlled compression ignition (RCCI), where multiple fuels with 

different reactivity (e.g., gasoline and diesel) are used in varying proportions in an effort to 

control ignition timing at different engine speeds and loads [9].  Another control system effort is 

for dual-mode HCCI/SI operation, where SI operation is used for high loads and HCCI is used 

for low loads to achieve better fuel economy [27].  Alternatively, conventional diesel engines 

have been converted to run on gasoline in the LTC regime with clever multiple-stage injection 

strategies utilizing premixing and direct injection [8].  This current research, however, focuses on 

the fuel design aspect of HCCI R&D, and therefore the remainder of the introduction will focus 

on fuel performance and metrics, followed by how this work intends to contribute to this area of 

research.  

1.2 Fuel Performance Metrics  

Fuel performance has been traditionally measured in two metrics, anti-knock index (AKI) for 

gasoline—or pump octane number, as it is the number assigned to the different qualities of 

gasoline at the pump—and Cetane number (CN) for diesel fuels.  The first ignition metric 

discussed will be for gasoline. 

1.2.1 Gasoline Spark Ignition (SI) Engines 

In ICEs, the higher the geometric compression ratio used, the higher the thermal efficiency 

achieved for an Otto cycle [6 pg. 170].  The limitation on the compression ratio for SI engines is 

dictated by the onset of engine knock that is itself influenced by the combination of fuel 

chemistry and operating conditions—higher compression ratios in general increase the 

propensity for knock.  Knock is the result of rapid chemical heat release, and can cause engine 

damage.  For completeness, knock will be briefly explained here.   

With knock, extremely rapid chemical heat release occurs.  This additional heat release results in 

higher pressures and the higher pressure rise rates, potentially causing damage to the engine—

this is known as “knock”, as the process creates an audible knocking or ringing sound.  Two 

theories exist for the cause of knock: autoignition or detonation theory.  Autoignition theory 

refers to the spontaneous ignition of the end gas—i.e., the fuel, air, and residual gas mixture 

ahead of the spark-ignited propagating flame—that occurs due to pre-flame chemistry from 
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elevated temperature and pressures [6 pg. 457].  The detonation theory suggests that the 

advancing flame front actually accelerates to supersonic velocities.  More recently, Dibble et al. 

suggest that the causation of knock is from hot spots, caused by non-uniformity in temperature or 

concentrations, in the end-gas that auto-ignite too quickly for the pressure to equilibrate [28].  

This results in pressure waves, which can cause the formation of detonation waves [28]. Simply 

put, this is a combination of auto-ignition and detonation theory—interested readers are guided 

to Heywood [6] for a brief overview of the concepts and to Dibble et al. for a more current 

understanding of the phenomena [28]. Regardless of the causation, the result is potential engine 

damage and noise pollution. 

Some fuels are more resistant to knock than other fuels, and knock constrains engine efficiency.  

Effectively limiting the temperature and pressure of the end-gas—to combat the occurrence of 

knock—limits the engine compression ratio [6 pg. 453].  Since particular fuels are more resistant 

to knock withstanding higher compression ratios can be achieved.  It is therefore useful to define 

the ignition quality of gasoline fuels as the propensity to withstand knock (e.g., octane 

requirement).  The AKI assigns a performance metric to the gasoline auto-ignition quality, and is 

defined by the arithmetic average of the research octane number (RON) and motored octane 

number (MON). The two octane numbers are determined in an experimental facility using a 

Cooperative Fuels Research (CFR) engine via the ASTM-CFR standard testing procedures 

D2700-14 and D2699-13b [29], [30].  Fuels are combusted in the engine while the compression 

ratio is increased, till the fuel starts to exhibit significant cyclic variation (instability) or auto-

ignition.  Each test has specific operating points, the primary difference being air-fuel charge 

temperature regulation and engine speed [29], [30].  The operating points can be seen in Table 1. 
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Table 1: Testing conditions for RON and MON tests; from Heywood [6 pg. 473] 

Operating Conditions for Research and Motor Methods 

 Research Method (RON) Motor Method (MON) 

Inlet Temperature 52𝑜 𝐶 (125𝑜F) 149𝑜  𝐶 (300𝑜F) 

Inlet Pressure Atmospheric 

Humidity 0.0036-0.0072 kg/kg dry air 

Coolant Temperature 100𝑜𝐶 (212𝑜𝐹) 

Engine Speed 600 rev/min 900 rev/min 

Spark Advance 13𝑜 BTC  

(constant) 

19 − 26𝑜 BTC 

(varies with compression 

ratio) 

Air/fuel ratio Adjusted for maximum knock 

 

The octane scale is based on the primary reference fuels (PRFs) iso-octane (2,2,4-

trimethylpentane)  and n-heptane; the former corresponds to a value of 100, and the latter 0 for 

both RON and MON.  The octane rating of PRF mixtures scales with volume percent of the 

respective fuels. For example, PRF20, a 20 [vol%] mixture of iso-octane and 80 [vol%] of n-

heptane corresponds to an octane rating of 20.  The scales are quantitatively determined by the 

compression ratio required to make the PRFs spontaneously ignite.    

In order to attribute an octane rating to a fuel of research interest, the critical compression ratio is 

measured from the RON and MON tests, and then compared to what mixture of the PRFs is 

required to yield the same compression ratio results.  Then, the octane rating of the fuel in 

question refers to the volume percentage of iso-octane in this similarly performing PRF mixture.  

1.2.2 Diesel Compression Ignition (CI) Engine 

Diesel engines are capable of operating at higher thermal efficiencies due to the high 

compression ratios, lean mixtures (therefore higher isentropic exponent), and unthrottled 

operation (i.e., high volumetric efficiency).  High compression ratios are achievable because the 

diesel fuel is introduced into the piston-cylinder chamber when it is desirable to ignite the fuel, 

and not along with the air during the intake stroke as is done with SI engines (with the exception 
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of direct injected SI—also known as stratified SI, which is not yet widely adopted).  When the 

diesel is injected, there is a finite time delay until auto-ignition occurs.  Since knowing the delay 

time is significant to ensure optimal combustion timing, and therefore efficiency, the cetane 

number (CN) corresponds to this ignition delay. CN can be thought of as the antithesis of sorts to 

AKI. That is, resistance to autoignition results in a high AKI, but low CN.  A high CN is in most 

cases desirable for reduced emissions (e.g., fewer unburned hydrocarbons) and lower noise [31].  

The scale is defined by Cetane (hexadecane) and alpha-methyl naphthalene (iso-cetane); the 

former ignites very quickly and is associated a value of 100, and the latter very slowly and 

assigned as 0.  The values are determined in a similar manner to that of RON and MON with a 

Cooperative Fuels Research (CFR) engine, where instead the compression ratio is increased until 

a set ignition delay time is achieved.  The resulting CN is determined by the resulting mixture of 

Cetane and iso-Cetane required to achieve the compression ratio attained by the test.  

1.2.3 Low Temperature Combustion Engines 

LTC engines currently do not have any sort of accepted standard to quantify fuel performance, 

although a brief overview of some significant efforts focused in this area are presented below.  

Knock in SI engines is a similar phenomenon to what occurs in HCCI engines; and with this, a 

question comes to light.  Since the octane rating measures the fuel’s resistivity to knock, is it 

therefore possible to utilize known RON and MON to predict HCCI performance? 

Unfortunately, in SI engines when knock occurs it primarily involves flame propagation in the 

end-gas at elevated temperatures and pressures.  In HCCI engines, however, knock occurs with 

the entire air-fuel charge at lower temperatures and lean equivalence ratios potentially below the 

lean flammability limit for flame propagation.  Different chemistry dominates these processes, so 

the octane metric may not pertain to HCCI.   

Despite the physical differences of SI and HCCI knock phenomena, modifications to the original 

AKI were made—in an original attempt to create a better index for SI engines—to characterize 

fuel performance with HCCI.  The octane index (OI), proposed by Kalghagti [32], uses RON and 

MON along with an engine parameter, K, whose value accounts for the specific engine and 

operating conditions that RON and MON do not contain alone.  Note that if K is set to 0.5, the 

AKI is returned. The octane index is determined using 
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𝑂𝐼 = (1 − 𝐾) 𝑅𝑂𝑁 + 𝐾 𝑀𝑂𝑁 = 𝑅𝑂𝑁 − 𝐾 𝑆 , 

where S is the sensitivity of the fuel: 

𝑆 =  𝑅𝑂𝑁 − 𝑀𝑂𝑁 .  

The value of K is determined by a best-fit linear regression of OI to the crank angle at which 

50% of the combustion has occurred (CA50), as seen below in Figure 8, where K is the slope of 

the best fit line.  Kalghagti discovered that K could be correlated to the temperature in the 

cylinder when pressure is at 15 [bar] during the compression stroke [32]. The value of K could 

then be correlated to the compression temperature for a given engine, and provide a useful 

correlation for OI.  

The work by Kalghagti discovered that HCCI performance does not correlate well with RON or 

MON taken individually, and instead the two must be considered together.  It was proposed that 

highly sensitive fuels are likely to allow an HCCI engine to operate over a wider load range at a 

given speed than less sensitive fuels of the same RON [32].  It has been shown by Liu et al. that 

the Kalghagti OI does not work well to predict the performance oxygenated fuels [33]; most 

gasolines today contain ethanol.  Rapp et al. found that the OI correlates well with auto-ignition 

of PRF’s, but poorly predicts gasoline fuel blends containing naphthenes, aromatics, and ethanol 

[34].  

Figure 8: Kalghagti Octane Index correlation to determine K [32]. 
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Kalghatgi’s OI reliance on only RON and MON to describe the fuel properties led Shibata and 

Urshihara to conclude that the OI is insufficient to describe HCCI performance [18–20].  They 

proposed a new index based on MON; the relative volume percentage of n-alkanes, iso-alkanes, 

olefins, aromatics, and oxygenates; and temperature-dependent constants. A linear relationship 

between their index and the crank angle at which 20% of the high temperature heat release 

occurred was found.  The Shibata-Urushihara absolute HCCI index is as follows:  

S − U HCCI Index (abs) = m MON + a (nP) + b(iP) + c(O) + d(A) + e(OX) + Y 

where nP, iP, O, A, and OX correspond to volume percent’s of n-paraffins, iso-paraffins, olefins, 

aromatics, and oxygenates, respectively. The remaining symbols (m, a, b, c, d, e, and Y) are 

constants that depend on temperature and the chemical compound used to represent each 

chemical class (e.g., the compound n-heptane could represent the class of n-paraffins).  A 

correlation that used RON as opposed to MON was also developed since RON is more widely 

used as an individual octane descriptor of gasoline fuel performance. Rapp et al. found that the 

S − U HCCI index correlates well with auto-ignition of PRF’s, but poorly predicts gasoline fuel 

blends containing naphthenes, aromatics, and ethanol [34]. 

Truedsson et al. defined an HCCI number similar to that of RON and MON [23].  Like RON and 

MON, the PRFs were used as the scale to define 0-100.  Recall for RON and MON, the 

compression ratio was recorded that caused engine knock.  Truedsson et al. defined the HCCI 

number with the compression ratio to phase combustion at 3𝑜 ATDC (using CA50).  This was 

performed for several intake temperatures at a constant engine speed of 600 RPM, with a 

constant equivalence ratio of 0.33.  A quadratic equation was developed to solve for HCCI 

number if the critical compression ratio is measured: 

𝐶𝑅𝑐𝑟𝑖𝑡 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

𝐻𝐶𝐶𝐼 𝑁𝑢𝑚𝑏𝑒𝑟 =  −
𝑏

2𝑎
+ √(

𝑏

2𝑎
)

2

− (
𝑐 − 𝐶𝑅𝑐𝑟𝑖𝑡

𝑎
) 

where x is the volume percent of iso-octane in the PRF used to develop the correlation; and a, b, 

and c are temperature-dependent constants.  
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Engine speed was also investigated at three intake temperatures to consider the effect on the 

HCCI number; this generated new constants for a, b, and c as expected.  The HCCI number was 

found to have almost no correlation to RON and MON, and little correlation to low temperature 

heat release (LTHR).  This HCCI number needs to be further refined by more experiments of the 

primary reference fuels in the interval, and additionally a method for determining HCCI numbers 

outside of the 0-100 interval.  Also, this work should be investigated in other engines.  Lastly, 

more equivalence ratio’s, boosted conditions, and EGR should be investigated.  Nonetheless, this 

HCCI index offers a representation of the required engine geometry, intake temperature, and 

engine speed required for a particular fuel to operate at optimal combustion timing for LTC 

operation.    

Rapp et al. [34] studied the performance of various fuels in a CFR engine operating in HCCI 

mode, and discovered that neither octane ratings nor the recently developed HCCI indices of 

Kalghatgi, or Shibata and Urushihara, reliably predict the autoignition behavior for a wide range 

of fuels; the Lund-Chevron number was not included in that study.  Specifically, gasoline blends 

with high levels of aromatics, naphthenes, and ethanol are not sufficiently predicted.  The HCCI 

number developed by Truesdsson et al., while a good metric to rate some fuels for successful 

HCCI operating points, has minimal predictive capability of real fuel HCCI performance due to 

the limited fuels studied and operating points considered.  Also, a new HCCI equation for each 

equivalence ratio, intake pressure, and engine tested would have to be created; similar to that of 

the OI, which requires a new K-equation for the aforesaid—having so many relations would be 

cumbersome.        

All prior HCCI performance metrics, while partially successful at describing combustion 

behavior for gasoline-like fuels, have little relation to realistic engine performance such as fuel 

economy.  It would be helpful if a metric could rank the performance of fuels in such a way that 

gave insight to potential performance gains from use in LTC engines, in addition to identifying 

how the fuel will chemically behave in the LTC engine.  A LTC fuel performance metric should 

be able to help designers avoid potentially damaging auto-ignition/knock, but also indicate how 

efficient the fuel is in HCCI.  This metric could then also be used to identify attractive fuels for 

LTC engine operation based on the potential performance gain associated by using that fuel in 

addition to containing information on combustion behavior.   
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A novel LTC index which rates fuels by their potential fuel savings in order to capture useful 

engine performance from HCCI operation was developed.  Niemeyer et al. [35] recently 

introduced this index (OSU-Chevron LTC index) based on operating envelopes—engine speeds 

and loads that can be achieved with a given fuel governed by attributes such as auto ignition 

timing, knock constraints, fuel conversion efficiency, etc.—and comparing the HCCI results to 

useful operating conditions.  The definition of the OSU-Chevron LTC-index is as follows:   

 𝐼𝐿𝑇𝐶 =
𝑚𝑓,𝑆𝐼 𝜖{𝐻𝐶𝐶𝐼} 

𝑚𝑓,𝑆𝐼 
∗ 100%  

where 𝑚𝑓 represents the mass of fuel used, and subscripts SI and HCCI refer to the IC modes. 

The numerator represents the mass of fuel that HCCI operation could potentially replace, and the 

denominator that of the entire driving cycle: the ratio of the two is a mass weighting of sorts that 

encapsulates potential fuel savings achieved using bi-modal operation of HCCI-SI over its 100% 

SI counterpart.  The (useful) operating envelopes are those required for realistic operating and 

driving conditions, determined from transient driving cycle simulations.  A fuel with poor 

performance has an operating envelope that is not within realistic conditions.  If a fuel cannot 

achieve realistic operating conditions via HCCI, governed by combustion constraints, then there 

are no potential fuel savings and therefore a low LTC index assigned.  This LTC index is distinct 

from prior efforts in developing a fuel rating index for HCCI due to the real-world impact on fuel 

economy that is represented within the index, in addition to the combustion constraints that are 

held to define viable HCCI operation. 

1.3 Chemometrics 

1.3.1 Concept 

In the last section, it was explained how fuel metrics are determined and used to give an 

indication of how a fuel will perform in an ICE.  This section will discuss how it is possible to 

predict these metrics with statistical methods.  These statistical methods will leverage chemical 

data to correlate to a metric of choice, such as a fuel performance metric like RON or MON.  

The purpose of this is creating a model that can accurately predict the performance metric of a 

fuel sample as to avoid extensive experimental effort.  This could be done with a LTC metric to 

be able to predict LTC fuel performance properties.  The model can then aid in next-generation 

fuel design, as it could predict LTC properties of fuels or fuel blends that have not yet been 
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targeted in past research efforts.  The science to achieve this is known as chemometrics, and will 

now be introduced.     

Chemometrics is the science of extracting information from chemical systems by way of data-

driven means, i.e., performing calculations on the data.  In this work, infrared (IR) absorption 

spectra are the chemical data, and the calculations done are statistical correlations relating the IR 

absorption spectra to chemical properties of interest—the core concept being that infrared 

absorption spectra provides information on chemical functional groups present in the fuel 

species, and that these functional groups can be statistically correlated to a chemical property 

(e.g., index) of interest.  More so, the IR absorption spectra require significantly little 

experimental effort to collect.   

A test dataset is used to create the statistical model, which includes set of IR spectra and the 

chemical property associated with each spectra.  This test dataset limits the predictive 

capabilities of the model, as it is based entirely from the data provided—the larger and more 

robust the training dataset, typically the better the model.  The final result of this is a regression 

equation, which uses IR absorption spectra as an input and returns a prediction for the chemical 

property of interest.  In other words, chemical properties of interest, such as density, Reid vapor 

pressure, octane rating, etc., can be retrieved if the IR spectra is known.   

 

Figure 9: Flow chart of chemometric analysis. A regression model is built from the training data-set 

(absorption spectra and known indices of each spectra), and the model gives a predicted index 

based on the input of the unknown samples absorption spectra.   

 



23 

 

1.3.2 Applications of Chemometrics  

Kelly et al. showed that chemometrics can be used to predict the octane number of gasolines to a 

standard error within 0.4–0.5 [36], which is within the error bounds of the ASTM RON tests 

itself at ±0.7 [37].  Predicting the octane number of an unknown fuel sample is desirable since 

physical testing requires time—around 20 min per fuel sample—and is very costly: CFR engines 

cost around $100,000, require constant maintenance, and each test consumes around a pint of 

fuel [36].  Collecting the IR spectra of an unknown fuel sample can take as little as a minute—

depending on IR collection technique used—and use merely a few milliliters, or even a couple 

drops, then immediately predict the octane rating using the chemometric model.  The significant 

cost associated with this method is the investment of the IR collection equipment, which can cost 

half or less than a CFR engine.  In addition, collecting IR spectra requires significantly less 

safety and expert technician/operator considerations and lab modification compared to operating 

a CFR engine.  Kelly et al. demonstrated this with octane number [36]; likewise, the CFR testing 

procedure for Cetane number could be displaced with this same methodology.   

Products developed from industry have leveraged chemometrics to create instruments that 

analyze gasoline or diesel on-site or in the lab with ease.  One of the leading instruments today—

the IROX, developed by Garber [38]—uses a robust training dataset of over a thousand gasoline 

and diesel samples from around the world to create a regression model for properties including 

octane and cetane number, distillation point, and vapor pressure.   

Zeltex, Inc. developed the ZX-101C [39] to predict octane number, which operates on the same 

fundamental principles as the IROX.  However, this version is much simpler and cheaper as it 

uses 14 selected wavelengths (instead of a broad spectrum) by using infrared-emitting diodes 

instead of a Fourier transform infrared spectrometer (FTIR, ).  As a result, the equipment is 

significantly cheaper than the IROX, but most likely less robust as it uses less data points.  

Regardless, the accuracy of the instrument proved to predict the octane number of gasoline 

within ±0.5 [39].  Instruments such as the IROX and ZX-101C, which package the chemometric 

statistical algorithms and the IR measurement source in a compact manner, demonstrate that 

chemometrics is a powerful tool for fast, accurate, and easy determination of chemical 

properties. 
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1.4 Intent of work 

The goal of this work is to use chemometrics to predict low-temperature combustion 

performance of real fuels.  The ability to produce fuels optimized for LTC engines (such as 

HCCI, as considered in this work) could help reduce fossil fuel consumption, insomuch as a 34% 

reduction could be achieved in the U.S. [7].  The OSU-Chevron fuel performance index will 

represent the LTC performance of the fuels: heretofore called the LTC index.  Indices for any 

given fuel of interest can be determined computationally (not to be confused with statistically 

predicted) as opposed to physical experiments.  The LTC index represents potential real-world 

benefits and encapsulates successful combustion behavior of any fuel in LTC engines.  Because 

of this, it is believed that this index is the best choice as of yet, and compliments the efforts of 

this work.  Investigating alternative LTC performance metrics to that of the LTC index would be 

disadvantageous, primarily because the LTC index is computationally determined which 

accelerates this works primary effort.  Leveraging indices that rely on experimental studies for 

the fuels and operating points considered in this work would require vast experimental effort—

prior efforts for other LTC performance metrics considered very limited operating conditions 

[16–20].  By using computational studies to collect LTC performance of fuels rather than time-

consuming experiments, the chemometric study can consider a larger data set of fuels.  The end 

goal will be a useful tool that can take an unknown fuel’s IR absorption spectra and predict a 

quantitative value pertaining to LTC performance (LTC index).  The model can target 

hydrocarbon components that result in favorable LTC performance to aid in next-generation 

advanced fuel design.  This tool can therefore point experimentalists in the right direction 

without the need for time-consuming and costly engine testing.   

With the creation of a novel LTC performance index predictive model, instrumentation such as 

the IROX or ZX-101C fuel analyzer can include this, for researchers and industry alike, as an 

easy tool to determine LTC fuel performance and help in the effort to design next-generation 

fuels.  It should be noted that the LTC index in itself should not dictate the success of this 

project; rather, it is a means to prove the concept that chemometrics could predict LTC fuel 

performance of any kind.  That is to say, the success of a chemometric model that can accurately 

predict the LTC index proves that this is a viable technique—it just so happens that the LTC 
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index can also be computationally determined, which helps accelerate the process of creating a 

data set large enough to inform a chemometric model.   

1.5 Computational Modeling   

The LTC index, as implemented here, requires accurate computational modeling of HCCI engine 

operation.  Single-zone simulations—i.e., assuming spatial homogeneity and no multi-

dimensional fluid transport—are computationally efficient and reliable for predicting the ignition 

quality and knock occurrence of fuels [34, 35].  Multi-zone models exist that divide the piston-

cylinder assembly into a few subspaces to consider the boundary layer, core, and crevices, but 

are computationally more expensive; however, multi-zone models are far less computationally 

expensive than spatially resolved computational fluid dynamics (CFD) simulations.  While these 

more expensive methods increase the accuracy of heat release, peak pressure, and unburned 

hydrocarbon emissions predictions to more closely match experimental results, single-zone 

models suffice for the interest of studying trends and relative fuel performance.  Secondly, when 

considering large chemical kinetic mechanisms that represent fuel chemistry along with a vast 

parametric study of engine operating points, computationally efficient single-zone models are 

favored.   

For single and multi-zone HCCI simulations, Reaction Design’s Chemkin and Chemkin-Pro [41] 

are widely used due to their built-in models for such.  Alternatively, Cantera is an open-source 

C++ library for chemical kinetics and thermodynamics problems that integrates with Python, 

MATLAB, C++, and Fortran, and has capabilities to perform stiff chemical kinetic integration 

and work in conjunction with built-in reactor functions [42].  This approach requires knowledge 

of programming with the aforesaid programing languages, and requires the user to create the 

piston-cylinder control volume, heat transfer effects, etc.  Cantera does, however, offer more user 

controllability, and is an attractive approach for researchers interested in developing simulations 

particular to their problem at hand.  Cantera allows complete control and flexibility in terms of 

both the calculations and the resulting data.  As such, Cantera was chosen for the basis of single-

zone simulations in the current work. 
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1.6 Gasoline and the Surrogate Representation 

Gasoline fuel is a mixture of hundreds of hydrocarbon species [43] divided into various classes: 

n-alkanes, iso-alkanes, naphthalene’s, aromatics, alkenes, and oxygenates (alkanes and alkenes 

are also known as paraffins and olefins, respectively).  The chemical structure of these various 

compounds can be visualized in Figure 10.  

 

 

Figure 10:  Molecular structures of hydrocarbon classes. [43] 

Commercial gasoline consists of all the above compounds in various amounts. The compositions 

vary widely depending on factors such as the refinery, the source of the crude oil, and  additives 

tailored for optimized drivability depending on the season [44].  Because gasoline is a mixture of 

different compounds, all of which have different boiling points, gasoline boils, or distills, over a 

range of temperatures; Figure 11 shows a typical distillation curve for summer and winter 

gasolines (ASTM D86). The distillation characteristics (volatility) of the gasoline correlate with 

engine drivability, e.g., how the engine starts, warms up, and runs [44].  For instance, the “front-

end” (low temperature distillation characteristics) volatility is known to affect easy cold and hot 

starting—cold starting being starting the car before it has warmed up, not that it is actually cold 

outside—freedom from vapor lock (i.e., fuel vaporizing in the fuel line and stalling the fuel 



27 

 

pump), and running-loss emissions (i.e., the fuel evaporates straight from the gas tank to the 

environment) [44].  Midrange and tail-end volatility are known to effect many other properties; 

to name a few good short-trip fuel economy and freedom from engine deposits, respectively [44].  

Due to all the prior stated reasons, the typical compositions of gasoline in the U.S. vary widely 

and can be seen in Figure 12.  

As discussed, gasoline is a very complex mixture and as a result is difficult to study 

computationally.  In the interest of studying fuel properties, specifically how different 

hydrocarbon classes and isomers comprising the classes affect fuel properties, gasoline is studied 

with a surrogate representation. This is done by using a few compounds, typically one of each 

hydrocarbon class, to create a mixture that approximates the chemical behavior of actual 

gasolines.  This gives the ability for researchers to study the same fuel mixtures, since gasoline 

compositions widely vary, as well as gain understandings of how individual components interact. 

Typical surrogate mixtures consist of primary reference fuels (PRFs) and toluene reference fuels 

(TRFs).  Recall that PRFs are represented by relative amounts of n-heptane (n-alkane) and iso-

octane (iso-alkane), and TRFs with the addition of Toluene to the PRF.  These are simplest 

representation for gasoline, but often does not predict the chemical behavior of real gasolines as 

Figure 11: LEFT: Distillation profile for typical commercial gasoline. RIGHT: Distillation profile 

effects on engine performance. [44] 
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many have, olefins, naphthenes, and oxygenates.  In an effort to better represent gasoline, the 

PRFs are often mixed with relative amounts of ethanol and toluene, among other compounds, to 

represent oxygenates, aromatics, naphthenes, and olefins present in today’s gasoline.   

Truedsson et al. studied all the aforementioned fuel surrogates for the Lund-Chevron HCCI 

index [23], and Foong et al. investigated ethanol and toluene for their effects on gasoline RON 

via ERF and TERF mixtures [45].  Surrogate PRF and TRF mixtures do not include olefin and 

naphthenes that are present in gasolines.  Perez et al. studied auto-ignition behavior for various 

mixtures of TRFs, with the addition of 1-hexene and methylcyclohexane to represent the olefin 

and naphthene class, respectively [46].  Kalghatgi et al., while studying OI with relation to 

HCCI, considered TERF mixtures with the addition of diisobutylene to represent olefins [32].   

 

Figure 12: Ranges of hydrocarbon classes found in U.S. gasoline. [47] 
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1.7 Chemical Mechanisms 

Accurate prediction of fuel combustion and pollutant emissions by way of numerical simulation 

requires detailed knowledge of the molecular reactions that take place during the process, i.e., a 

chemical mechanism.  Chemical mechanisms are the systematic sequence of elementary 

reactions by which overall fuel oxidation occurs.  This is a vital component in reactor 

simulations; they inform the model that govern combustion processes.  In the end, chemical 

mechanisms provide means to solve species conservation and the first law of thermodynamics, as 

well as provide data for chemical equilibrium (second law of thermodynamics).  

Chemical mechanisms currently encompass pure hydrocarbon species, such as n-heptane, or 

many pure components and their interactions to represent surrogates for gasoline, jet, or diesel 

fuels.  For TERF mixtures, the Princeton detailed mechanism is an option [48]–[51].  However, 

TERF mixtures lack a hydrocarbon representing the naphthene class.  Methylcyclohexane is 

frequently suggested as a candidate component of real fuels [52], [53] for the naphthene class, 

and a mechanism for this component was created by Weber et al. [54].  Many more mechanisms 

exist for components that comprise gasoline such as n-alkanes, 2-methylalkanes, iso-alkanes, 

olefins, aromatics, and naphthenes [55]–[65].  Some of these mechanisms are very large, and 

would require species and reaction reductions if a multitude of studies are needed in a succinct 

time period.  For example, solving a single-zone engine model with the Weber et al. 

methylcyclohexane mechanism—without a mechanism reduction—on a modest office machine 

(Intel Core i7-4790K @ 4.4 GHz with 95% CPU utilization) for calculation of the LTC-index 

would take nearly a month to solve. 

Mechanism Automatic Reduction Software (MARS), developed by Niemeyer et al., is capable of 

automating the process of mechanism reduction given the initial conditions and fuels of interest 

[66]–[68].  The result of the software yields a reduced mechanism that improves computational 

efficiency of combustion calculations for the initial parameters selected (pressure, equivalence 

ratio, hydrocarbon considered), while still retaining the most significant reactions to predict the 

combustion behavior for the initial conditions considered.  Given the size of some of the 

chemical mechanisms used in this work, this software was utilized to perform mechanism 

reduction.    
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1.8 Outline of work  

The remainder of this thesis is presented as the methodology (equations, theory, etc.), 

experimental design, and results for each of the individual topics that comprise this work. The 

topics include the LTC index, infrared spectroscopy, and chemometrics.  Chapter 2 will cover 

how the LTC-index calculations were performed.  Chapter 3 covers Infrared spectroscopy, which 

compares transmission-based and attenuated total reflectance-based spectroscopy (see Appendix 

B for in-depth detail on these subjects).  Chapter 4 discusses the underlying statistical methods 

for chemometrics—Principal Component Analysis (PCA) and Support Vector Machine 

Regression (SVMR).  In addition, this section will combine the results of the LTC index and IR 

absorbance data to create the final LTC index chemometric model.  
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Chapter 2: LTC Index 

2.1 Methodology 

In the following sections, firstly the computational approach to calculate the LTC index is 

explained and secondly the experimental section is presented (i.e., the fuels chosen to be 

computationally simulated). 

2.1.1 HCCI Simulations 

Computational simulations were initially performed with Reaction Design’s Chemkin software, 

using a single-zone HCCI model.  Later, a Cantera-based model was created in an attempt to 

better parallelize parametric studies while also having the ability to add more complexity to the 

model for future research.  All documentation on the governing equations, model development, 

validation, and benefits (over Chemkin) of the Cantera HCCI model can be found in Appendix 

A.  In short, the Cantera-based model created mimics the operation of Chemkin (property 

evaluation, heat transfer, etc.) and was determined to give virtually identical results to that 

previously found from Chemkin.  With the capability to computationally model the 

thermodynamics of HCCI operation, the chemical mechanism aspect that is required to model 

the chemistry of fuels of research interest will be discussed.    

HCCI simulations require chemical kinetic mechanisms as an input to model the fuel chemistry.  

For the fuels of research interest, the chemical mechanisms employed from recent literature 

include:  Chaos et al. for TERF’s [48]–[51], Weber et al. for methylcyclohexane [54], Sarathy et 

al. for 2-methylalkanes and TRF mixtures [55], Sarathy et al. for the FACE A surrogate [69], and 

lastly Ahmed et al. for the FACE C surrogate [70].  Each mechanism has significant complexity, 

as particular mechanisms describe chemical behavior of different fuels and have varying levels 

of species and reactions.  If mechanisms found were too large—and therefore too 

computationally expensive to utilize as-is, in addition to having no other alternative mechanisms 

to leverage for that given fuel—Niemeyer et al.’s MARS software was used to perform 

mechanism reduction [66]–[68].  With the appropriate chemical mechanisms at hand and, if 

needed, reduced to a manageable size to computationally model in a timely manner, the 

parametric studies to calculate the LTC indices could take place.  The parameters studied for the 

parametric study will now be discussed, including their importance on HCCI engine 

performance.  
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The goal of the HCCI simulations is to find all the operation points at which HCCI combustion is 

viable.  To do this, parametric studies of equivalence ratio (𝜙 = [0.15: 0.01: 0.45]), air-fuel 

charge temperature at BDC (𝑇𝑖 = [350: 20: 550]), compression ratio (CR = [9.5, 13]—primarily 

13), and engine speed (RPM = [800:100:3000]) were investigated for each fuel; heat release 

profile, combustion duration, and phasing are dependent on these, which dictate HCCI 

performance.  By simulating through all these conditions, the operational boundaries at which 

HCCI operation is successful and unsuccessful will be found to adequately determine the 

operation “map” that any given fuel can accomplish.  The reasons that these parameters were 

selected as they were and their importance will now be explained.  

The equivalence ratio array was selected based on typical operating conditions that HCCI engine 

researchers have successfully accomplished and then extended the range to find 

unsuccessful/successful operation boundaries [15]; the step-size of 0.01 is chosen to give a fine 

resolution of the LTC performance, as performance was expected to be highly sensitive to 

equivalence ratio.  Equivalence ratio significantly effects the torque output of the HCCI engine; 

lower equivalence ratio is less torque, and visa-versa.  Due to this, equivalence ratio is used as a 

means to adjust engine load.  Too little fuel (low equivalence ratio) and the fuel/air mixture may 

not ignite or burn to completion, and too much fuel can cause combustion to occur too rapidly 

(i.e., knock).  The equivalence ratio array is designed to find these two extremes that limit 

successful HCCI operation, i.e., to find the limits of incomplete combustion and excessive heat 

release rates that cause engine problems.  Equivalence ratio, in other words, affects the amount 

and duration of heat release of the combustion event.  Additionally, equivalence ratio can 

significantly affect the ignition delay—being the residence time the air/fuel charge is in the 

engine prior to significantly raising the charge temperature—due to low temperature heat release 

(LTHR).  This is caused by low temperature chemistry that causes an exothermic reaction and 

acts to raise the mixture temperature and break down fuel components into smaller components 

early in the compression stroke.  This leads to advance the initiation of the more significant, 

higher temperature heat release (ignition).  Figure 13 illustrates the equivalence ratio effects that 

can be seen for LTC operation.  
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Figure 13: Fuel H60E40 (60 vol% n-Heptane, 40 vol % Ethanol) HCCI combustion at Ti = 350 [K], 

Pi = 1 [atm], Engine Speed = 800 RPM, CR = 13, 𝝓 = [0.15: 0.1: 0.45].  Pressure, Temperature, and 

NHRR per CAD as a function of crank angle.  Shown here is the effect of varying equivalence ratio 

while olding all other parameters constant.  

As can be seen for this particular fuel and operating conditions, as equivalence ratio increases the 

maximum amount of heat release increases, depicted by the increased temperature, pressure and 

net heat release rate.  The duration of the heat release decreases as timing is advanced, due to 

compression heating.  Compression heating accelerates the reaction, due to in-cylinder 

temperatures rapidly increasing from the heat release occurring during the compression stroke.  

Furthermore, we observe LTHR from -15 to 10 CAD, which acts to preheat the mixture and 

advance the ignition of the main, high-temperature heat release.  The LTHR increases as the 

amount of fuel increases, acting to advance timing with the additional preheating.  Interestingly, 

the LTHR is delayed as equivalence ratio increases due to the increase in the specific heat ratio 

of the air/fuel mixture.  Temperature effects will now be further discussed.  
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The temperature array represents the amount of intake air preheating to the air prior to entry into 

the piston/cylinder assembly.  It is well known that the fuel chemistry is highly dependent on 

initial temperature, and therefore significantly affects HCCI performance through combustion 

phasing.  Higher intake temperatures, and therefore higher in-cylinder temperatures, aid the 

initiation of heat release to happen earlier in the compression stroke.  This can yield advanced 

timing beneficial for faster engine speeds, while lower intake temperatures serves to delay timing 

for slower engine speeds.  With the given engine speed range, the temperature range was 

designed to be large enough for any given fuel to achieve successful HCCI operation for the 

engine speed limits.  Figure 14 portrays the effect of changing intake temperature holding all 

other parameters constant.  

 

Figure 14: Fuel H60E40 (60 vol% n-Heptane, 40 vol % Ethanol) HCCI combustion at                      

Ti = [350:40:470] [K], Pi = 1 [atm], Engine Speed = 800 RPM, CR = 13, 𝝓 = 0.25. Pressure, 

Temperature, and NHRR per CAD as a function of crank angle.  Shown here is the effect of 

varying initial temperature while holding all other parameters constant. 



35 

 

As intake temperature is increased, the phasing of heat release is advanced and the burn duration 

decreases.  In general, since the heat release at higher intake temperatures advanced earlier in the 

compression stroke, much higher temperature and pressures are seen that lead to more rapid heat 

release thus decreasing the burn duration.  

To summarize equivalence ratio and temperature effects on HCCI operation, they both can affect 

the ignition delay, duration, and total amount of heat release. Together, the combustion event can 

be tailored to achieve various torque outputs at different engine speeds depending on the fuel 

used.  If the fuel was found to successfully operate at the equivalence ratio and temperature 

conditions mentioned above such that the speed and load boundaries were not found, the array 

bounds were extended to find the point at which LTC operation was unsuccessful.     

Recall that the successful HCCI operating points will be compared to real-world engine use to 

determine potential fuel savings, hence to calculate the LTC fuel index.  The operating points 

that can be accomplished with HCCI will supplement the SI engine that was originally used to 

accomplish the real-world operating points.  As will be explained in detail in the following 

section, a 2012 Toyota Camry—the best-selling passenger vehicle in North America—is 

simulated over a driving cycle.  The driving cycle represents required vehicle speeds the vehicle 

must accomplish over a given time period.  The vehicles engine then has to match this response 

with enough torque at any given time to overcome the vehicle weight, road and aerodynamic 

drag, etc., to achieve the desired speeds.  The vehicle simulations with the Camry platform 

proved that the powertrain is capable of accomplishing the driving cycle in the engine speed 

range of 800 to 3000 RPM.  Therefore, for the HCCI simulations used the same range to directly 

compare the LTC engine operation to that of the SI engine.  Figure 16 shows the effect of 

varying engine speed holding all else equal.      
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Figure 15: Fuel H60E40 (60 vol % n-Heptane, 40 vol % Ethanol) HCCI combustion at Ti = 390 [K], 

Pi = 1 [atm], Engine Speed = [800:200:1400] RPM, CR = 13, 𝝓 = 0.25. Pressure, Temperature, and 

NHRR per CAD as a function of crank angle.  Shown is the effect of varying engine speed while 

holding all other parameters constant. 

Figure 15 illustrates that changing the RPM shifts the phasing of combustion in the engine, and 

changes the rate of heat release due to a finite time chemical kinetic effect.  Up to this point, it is 

clear that for any given engine speed and torque output desired, a combination of equivalence 

ratio and intake temperature would have to be well matched to get combustion phasing to a 

desired value—this will be discussed in the following section.  Now, compression ratio effects 

will be introduced.  

Lastly, the compression ratios were chosen to represented typical SI compression ratios used in 

the majority of older and basic engines today (CR=9.5) [4]. Higher compression ratios (CR=13) 

were also chosen that are representative of newer engines due to technology advancements such 
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as variable valve timing or direct fuel injection [4].  The majority of this work is focused on the 

higher compression ratio of thirteen. 

For any given fuel and compression ratio, the entirety of the parametric study equates to typically 

7,834 initial conditions for the HCCI simulations.  The importance of a compact chemical 

mechanism paired with a single-zone HCCI model becomes apparent in order to simulate a large 

number of fuels.  With each operating point, crank-angle-resolved parameters were obtained 

directly from the simulation; such as temperature, pressure, net-heat release, and mass fractions 

of species; were used to determine engine performance.  Post processing the obtained values 

from the engine simulation yields parameters that characterize engine performance.  These 

parameters include indicated mean effective pressure (IMEP), being the non-dimensional 

representation of work done by the cycle; CA50, which is the crank angle at which 50% of net-

heat release is observed and a descriptor of combustion timing; and maximum pressure rise rate 

(MPRR)—the last parameter in addition to the amounts of CO and CO2 generated by the end of 

the engine cycle being descriptors of engine knock and fuel conversion efficiency, respectively.   

With these parameters determined from the HCCI simulations, they can be used to determine the 

viable HCCI operating points.  The bounds that dictate successful HCCI operation were briefly 

introduced qualitatively in this section, and will now be quantitatively introduced.      

Successful operation of HCCI combustion is defined by realistic operation limits.  These limits 

for successful operation were bounded by ideal combustion phasing, the maximum pressure rise 

rate in the combustion chamber, and lastly fuel conversion efficiency.  The quantitative limits 

used for the aforesaid parameters used in literature have been discussed by Niemeyer et al. [35], 

[71].  A brief overview of the importance of the parameters used to define successful HCCI 

operation will be discussed.  First, the upper and lower constraints that limit successful HCCI 

operation will now be introduced.  

Often, at higher engine loads much of the heat-release occurs rapidly causing in-cylinder 

pressures to rise too quickly.  The pressure rising in this manner can be destructive to the engine 

and cause unacceptable noise.  This is the upper limit of engine operation, and is characterized 

by the maximum pressure rise rate (MPRR), 𝑑𝑃/𝑑𝜃, and has been set to a limit of 20 bar/( 𝑜CA), 

guided by literature [72], [73]. 
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Figure 16: Representative pressure traces for PRF0 (n-heptane) HCCI combustion at CR = 9.5, 

𝑻𝒊 = 330 K, 𝑷𝒊 = 1 [atm], engine speed = 1400 [rpm], and varying equivalence ratios, demonstrating 

knocking combustion, normal combustion, and misfire (incomplete combustion). [71] 

The lower limit defining successful HCCI operation is represented when misfire occurs; i.e. 

incomplete combustion.  This is determined by the fuel conversion efficiency, defined by the 

molar conversion of carbon in the fuel to carbon dioxide—the value is set to 90% [74], [75].  

These combustion limits can be visualized in Figure 16 for a few operating points.  Lastly, the 

third parameter used to define successful HCCI operation will now be discussed.  

As in any reciprocating ICE, the phasing at which combustion occurs is of significant importance 

to HCCI engines.  This timing dictates the overall performance of the engine including emissions 

and power output.  For HCCI engines, CA50 is often used for defining combustion phasing, as it 

correlates well with engine performance (e.g., efficiency, load, emissions) [76]. Optimal 

combustion timing for HCCI is determined by selecting the best balance between power, 

emissions, and acceptable operating conditions.  Higher torque (power output) typically requires 

late CA50—more than 10 CAD after top dead center (aTDC)—to reduce the ringing intensity, 

i.e., MPRR in the engine, for safe operation [77]–[79].  However, lower loads favor around 2-6 

CAD aTDC for the lowest production of NOx and unburned hydrocarbons, and ensuring low 

ringing intensity [77].  All loads, however, have the highest combustion efficiency at early CA50 
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(≤ 5𝑜)—but advanced timings are limited to the allowable ringing intensity [77] .  In conclusion, 

CA50 at 2-6 CAD aTDC is a good target for emissions, efficiency, and low ringing intensity for 

the majority of the load range for HCCI—numerous authors used this range [23], [80]–[84].  

Higher loads require boosted intake pressures (turbo/supercharging), which will not be 

considered for this work, and therefore the required CA50 greater than 6 CAD aTDC will not be 

considered.  Guided by the literature, a CA50 tolerance of 3 ± 2 CAD aTDC will be used to 

control combustion phasing.  

With all three performance limitations defined to ensure realistic HCCI operation, the operating 

envelopes of LTC operation are then determined.  The useful work—dictated by the HCCI 

operation limit criteria—from the LTC cycle is calculated a posteriori from the pressure-volume 

history and converted to indicated mean effective pressure (IMEP).  Recall that IMEP is a 

normalized representation of work, and is later used to compare to the driving cycle simulations.  

The relation for IMEP is as follows:  

𝑖𝑚𝑒𝑝 =
𝑊𝑐

𝑉𝑑
 

where 𝑊𝑐 is the net work from the engine cycle and 𝑉𝑑 is the engine displacement volume. An 

example of successful operating conditions for HCCI operation, with load represented via 

indicated mean effective pressure, can be seen in Figure 17.  

With the successful operating points determined (left) a map is drawn around the points using a 

convex-hull algorithm (right) [85], [86].  This map of successful HCCI operation will later be 

compared with that determined from the ADVISOR vehicle driving cycle simulations in order to 

find the useful fuel economy savings from the LTC cycle: the LTC index.  The driving cycle 

operating envelopes for realistic real-world use, determined from vehicle simulations, will now 

be discussed. 
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2.1.2 Driving Cycle Operating Envelope Simulations  

As mentioned, a light-duty passenger vehicle (2012 Toyota Camry) was simulated in the US 

EPA FTP-75 driving cycle [87].  Recall that the purpose of this simulation is to determine the 

engine operating points—in terms of torque/work and engine speed—associated with realistic 

driving conditions.  These points, when found, are compared to the viable HCCI operating 

points.  The FTP-75 driving cycle is a velocity profile over a time period, and can be seen below 

in Figure 18.  This is the standard used to measure the fuel economy and emissions of passenger 

vehicles in the United States.  The cycle itself simulates a short cold start, transient, and a hot 

start phase.  The total distanced travelled is 17.8 km in 1874 s—not including the 10 min break 

in the cycle—with an average speed of 34.1 km ℎ−1.   

The program used to simulate the driving cycle is called Advanced VehIcle SimulatOR 

(ADVISOR).  ADVISOR is a hybrid backward/forward-facing vehicle simulator; where 

backward indicates the tractive force required to move the vehicle at the directed speed, and 

forward facing indicating an actual driver directing the engine to meet the necessary speeds.  

Figure 17: Operating Envelope of PRF 20 (80 vol% n-Heptane, 20 vol% iso-Octane).  The left plot 

depicts temperature and equivalence ratio dependence for successful operation points, i.e., viable 

HCCI operation at different engine speeds and loads.  Note equivalence ratio is not marked, but for 

any given temperature, load is increased by increasing the amount of fuel.  On the right the 

operation map boundary is depicted, used to overlay with the ADVISOR simulation operating map.   
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Combined, an accurate representation of fuel economy and emissions is determined.  For more 

information on these models, please see Wipke et al. [88] or Gao et al. [89].  The vehicle chosen 

to represent the vehicle is the 2012 Toyota Camry, which is the best-selling passenger car in 

North America in recent years, as a representative typical light-duty vehicle.   

The Toyota Camry is simulated via ADVISOR with the VHE_SMCAR default small passenger 

car model to determine the operating points to accomplish the driving cycle.  This model is based 

on a 1994 Saturn SL1.  The Saturn SL1 model was altered—VEH_SMCAR_CAMRY—and 

includes the estimated parameters for the 2012 Toyota Camry: coefficient of drag (0.28), frontal 

area (2.28 m2), fraction of vehicle weight on front axle (0.54), center of gravity (0.53 m), 

wheelbase (2.775 m), and curb weight (1447 kg).  With this vehicle model the FC_SI95 engine 

model is used as a representative engine, which is based on the Saturn 1.9L dual overhead cam 

SI engine [108]. This engine model was modified by scaling the engine default maximum power 

of 95 kW (Saturn SL1) to 133 kW (Toyota Camry) to more accurately represent the Camry’s 

engine.  

ADVISOR yields the engine speed and torque required to achieve the vehicle speed from the 

driving cycle in one second intervals.  The torque value is normalized to indicated mean effective 

pressure to compare to the HCCI simulation results.  The basic relation for a four-stroke engine 

to calculate this is as follows:  

𝑖𝑚𝑒𝑝(𝑡) =
4 𝜋 𝑇(𝑡)

𝑉𝑑
 

Where 𝑇(𝑡) is the torque required to accomplish the necessary vehicle speed as a function of 

time.  The final results of the ADVISOR driving cycle simulation for the 2012 Toyota Camry 

can be seen in Figure 19.  
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Figure 18: US EPA FTP-75 driving cycle: Required vehicle speed as a function of time, 

representing typical real-world use. This driving cycle is the U.S. standard for determining fuel 

economy. [35] 

 

 

Figure 19: Engine Operating points for the 2012 Toyota Camry that are required to accomplish the 

driving cycle.  White dots represent the torque, or work, required in 1 sec. intervals to accelerate 

the vehicle to the driving cycle vehicle speeds.  The color indicates the amount of fuel required to 

achieve the engine loads (torque). [35]     
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2.1.3 LTC Index Calculation  

As covered in chapter 1, we found that the LTC index is calculated based on the potential fuel 

savings offered by LTC operation over its SI counterpart.  The fuel savings is defined as the 

mass of fuel used with the SI cycle within viable LTC operation to that of a pure SI cycle.  

Again, as shown in Chapter 1, the LTC index can be calculated using  

𝐿𝑇𝐶𝑖𝑛𝑑𝑒𝑥 =
𝑚𝑓,𝑆𝐼{𝐿𝑇𝐶}

𝑚𝑓,𝑆𝐼
∗ 100% 

where subscripts SI{LTC} indicate SI cycle within the LTC operating map, and SI only that of 

SI operation.  This calculation can be visualized by the overlay of the HCCI operation envelope 

with that of the real world requirement from the driving cycle simulation, as seen in Figure 20.  

With the IMEP map determined for successful HCCI operation, the overlay shows the capable 

IMEP points that can supplement real world use.  The ratio of the mass of fuel used in the 

operating map to that of all the operating points combined gives the potential fuel savings, as 

defined by the LTC index.  That is, the index is a mass-weighted fraction of operating points.  

Figure 20 illustrates an LTC index of 34.2.    

 

 

Figure 20:  Viable HCCI operation map of PRF 20 at CR=13 (yellow) overlaid with required 

operation points for real-world operation (blue).  The potential fuel savings here (LTC index) were 

calculated to be 34.2% 
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2.2 Computational Experiment Design 

This section explains the fuels considered to computationally simulated for the LTC index, that 

is, fuels of importance to utilize for the chemometric model.  Ideally, experimental simulations 

of gasoline’s would take place.  However, as mentioned, gasoline consists of hundreds of 

components so researchers begin studies with pure components and mixtures of pure components 

that are better characterized.  In this particular study, the only option to represent gasoline-like 

fuels are surrogate models that are either neat components or mixtures of neat components.  In 

the end, the LTC indices of the pure hydrocarbon components and mixtures of such will be used 

to inform the statistical model in combination with their absorbance spectra, and the resulting 

model used to predict the LTC index of real gasoline fuels.   

In the search for fuels for advanced engines which provide fuel efficiency benefits, fuels of 

research interest to be computationally studied were guided by literature [23], [32], [45], [46], as 

well as findings from this work.  Primarily, the fuels studied were that considered in the work of 

Truedsson et al. [23], who focused on binary, ternary, and quaternary mixtures of 2,2,4-

trimethylpentane (iso-octane), n-heptane, toluene, and ethanol.  Other fuel mixtures studied 

considered constituents such as methylcyclohexane guided by Perez et al. [46].  Later, from 

findings in this work (see Sec. 4.2.3), it was seen that xylene(s), 2-methybutane and 2-

methylhexane could be of significant importance in describing real gasoline fuel behavior, and as 

a result these were also studied.  

Many of the relative mixtures of the pure components studied to represent real fuel qualities or to 

determine blending effects had already been presented in past literature.  However, novel relative 

mixtures needed to be selected for the new fuels of interest guided by this work.  These mixtures 

were guided by a few motives; the first being to mix the new constituents with the original 

fuels—iso-octane, n-heptane, etc.—to capture how these fuels interact with each other in LTC 

mode, and the second being to capture these effects with as little blends as possible to reduce 

computational efforts.  Ultimately, since the chemical mechanisms describing these additional 

components were relatively large—even after mechanism reduction—the computational effort 

was still immense.  As a result, a smaller number of mixtures in comparison to the original intent 

were considered due to time limitations.  To put the computational effort in perspective for the 

more complex studies, a single LTC performance index calculation would take around 168 hours 
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to complete on a server utilizing 36 quad-core CPUs @ 2.9 GHz.  The extensive list of fuels 

computationally studied can be seen in the Appendix D.  Mixtures of n-heptane, iso-octane, 

toluene, ethanol, methylcyclohexane, 2-methylbutane (iso-pentane), 2-methylhexane, and m-

xylene were conducted. 

In addition to simulating pure components and mixtures of pure components, surrogate 

representations of specific research-grade gasoline fuels were also studied.  Recall that the goal 

of this work is to be able to predict the LTC performance of real fuels, and therefore the LTC 

index of real gasolines would have to be known to be able to validate the final chemometric 

model.  Research grade gasoline blends—known as the Fuels for Advanced Combustion Engines 

(FACE) gasolines—designed by the Coordinating Research Council (CRC, a consortium of fuel 

and automobile manufacturers conducting environmental research [90]), were used as the 

gasoline test set.  These ten gasoline fuels were statistically designed in an effort to target 

attractive gasoline blends for next-generation advanced IC engines.  Surrogate chemical 

mechanisms exist for a few of these specific research fuels (FACE A and C) [69], [70], and were 

computationally studied to determine the LTC indices of these real fuels.  The FACE fuels that 

are able to be computationally simulated will be predicted with the chemometric model, and 

validated against the computed LTC index.  Therefore, FACE fuels “A” and “C” will be 

computationally studied as means to validate the final chemometric model for its ability to 

predict the LTC index of real fuels.  
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2.3 Results and Analysis 

2.3.1 HCCI Operating Envelope Examples  

Operating envelopes for successful HCCI combustion are shown in Figs. 21–23 for selected 

fuels; the entirety of the results can be found in the Appendix C.  The figures show the 

temperature dependence to achieve the operating points, as well as the results overlaid onto the  

Toyota Camry driving cycle operating points.  The mass-weighted fuel savings are indicated in 

each figure via the LTC index, as well. 

 

 

Figure 21: PRF 40 Operating Envelope. RON/MON (40/40), LTC index (32.75%) 
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     Figure 22: PRF 85 Operating Envelope RON/MON (85/85), LTC index (23.3%) 

Figure 23: H80T20 Operating Envelope RON/MON (27.7/24.8), LTC index (41.58%) 
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2.3.2 LTC indices  

A table summarizing the calculated LTC indices, as well as known RON/MON values, are found 

in the Appendix C.  A total of 102 fuels were considered consisting of binary, ternary, and 

quaternary mixtures including PRFs, TRFs, ERFs, TERFs, and TRFs mixed independently with 

m-xylene and iso-pentane (X and S fuels, respectively).  In addition, certain pure components 

were considered including iso-pentane, methylcyclohexane, xylene, and 2-methylhexane.  Lastly, 

surrogate fuel mixtures that mimicked the behavior of FACE fuels “A” and “C” were simulated.   

The higher LTC index scoring fuels for the compression ratio of 13 are presented here.  

 

Table 2: High scoring LTC index fuels for CR=13 

Fuel Name RON MON LTC index 

Two Component Mixtures 

PRF20 20 20 34.2 

PRF40 40 40 32.75 

H90T10 14.1 12.6 37.72 

H80T20 27.7 24.8 41.58 

H60E40 71.4 65 35.57 

Three Component Mixtures 

TRF1 39 37 35.2 

TRF4 82.8 80.7 34.1 

 

2.3.3 LTC index vs. other Fuel Performance Metrics 

Traditional performance metrics such as RON and MON, fuel sensitivity (RON-MON), or anti 

knock index (AKI) were found to have no correlation to the LTC index.  It was hypothesized that 

if the LTC index is a good descriptor of LTC performance, then it should be consistent with 

similar findings in literature that support the notion that RON/MON do not have significant 

correlation to LTC performance [23], [34].  The notion that RON and/or MON are not good 

descriptors of LTC performance alone was shown to be further supported with the LTC index.   
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As can be seen in Figures 24 and 25, for the fuels studied, the LTC index does not correlate to 

RON, MON, or octane sensitivity.  No linear trend is found, e.g., increasing RON/MON 

resulting in smaller LTC indices.  Fuels with widely varying RON/MON values, due to 

significantly different fuel compositions, did not necessarily result in different LTC indices: 

which resolves the possibility of a non-linear trend to correlate the data.  Instead, fuels with low 

RON/MON values proved to be capable of having similar LTC performance to that of high 

RON/MON.  Furthermore, fuels with similar RON, MON, or octane sensitivity showed to have a 

wide spread of LTC index values.  These results support the findings, e.g., of Rapp et al., in that 

traditional performance metrics do not correlate to those that indicate LTC performance.            

 

Figure 24: LTC index vs. MON (left) and RON (right) 
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Figure 25: LTC index vs. Sensitivity (RON-MON) 

 

2.3.3 Attractive Next-generation LTC Fuels 

It was found that pure components alone do not exhibit the highest or lowest LTC performance.  

Instead, synergistic blending was seen with mixtures to yield higher or lower LTC performance 

than any of the respective components alone.  For example, pure n-heptane (PRF0) and iso-

octane (PRF100) had indices of 15.36% and 23.76%, respectively. However, when PRF20 is 

considered, the performance increased to a value of 34.2%.  Synergistic effects showed that 

relative mixtures of the components had a strong effect on LTC performance.  

 In the pursuit of identifying attractive fuels for LTC performance, it is beneficial to have the 

highest LTC index.  In addition to a high LTC index, secondarily it is also desirable to have a 

high RON/MON in order to be able to operate in SI mode (to resist autoignition) for a dual-mode 

HCCI/SI control scheme.  It was found that fuels with high LTC indices in addition to high 

RON/MON values exhibited significant equivalence ratio sensitivity to ignition delay, which 

extended the operating range of these fuels significantly.  This trend was exclusively seen for the 

higher RON/MON fuels with high LTC index (e.g., H60E40, TRF4); this was also seen for 
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lower RON/MON fuels with high LTC index (e.g., H90T10, H80T20, TRF1) with the exception 

of high LTC index PRF fuels.  The equivalence ratio sensitivity is illustrated in the following 

figure, where a constant-volume homogeneous reactor was simulated to show the trends that 

explain the increased operating envelopes for these fuels.   

 

 

Figure 26: Ignition delay of H80T20 as a function of equivalence ratio and temperature. This trend 

shown allows for the torque output of the engine to be controlled over a wide range (as equivalence 

ratio changes) while avoiding negative impacts on combustion timing.  Note that temperature is 

decreasing as the x-axis increases (𝑻−𝟏). 

As can be seen in Figure 26, for a constant initial temperature the ignition delay decreases 

significantly as the equivalence ratio increases from 0.2 to 0.3. Alternatively, ignition delay—

closely connected to combustion phasing (CA50) in an HCCI engine—can be held roughly 

constant as equivalence ratio is increased and temperature decreased (or vice versa) for this fuel.  

Equivalence ratio scales the engine load (i.e., more fuel results in more torque/power), and 

ignition timing across these equivalence ratios can be held constant as intake temperature is 

Constant volume homogeneous auto-ignition of H80T20 at P
0
 = 20 atm 
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appropriately varied. Therefore, the engine load can be varied by way of altering the equivalence 

ratio and the combustion phasing controlled by way of altering the intake temperature.   

The advantage of equivalence ratio sensitivity, i.e., a large allowable fueling range while 

temperature is varied, is illustrated in Figure 23, which shows the viable operating map for HCCI 

combustion for fuel H80T20.  Comparing this fuel map with the other two PRF fuels illustrated 

in this section, Figures 21 and 22, it can be seen that fuel H80T20 is nearly a combination of the 

two PRF operating envelopes.  Both of the PRF fuels illustrated did not have the beneficial 

equivalence ratio sensitivity, and therefore the allowable fueling range is smaller as intake 

temperature changes.  PRF 40 demonstrated higher loads, and PRF 100 lower loads.  H80T20 

was, however, capable of achieving both load regimes due to the equivalence ratio sensitivity.  

Because varying equivalence ratio across a wide range of intake temperatures did not affect 

ignition timing, the amount of fueling could be adjusted to change the engine load without 

negatively effecting ignition timing that in turn leads to non-viable HCCI combustion.  It is now 

clear that the equivalence ratio sensitivity allows for a wider range of loads to be accomplished 

as the intake temperature is appropriately varied, whereas fuels that do not have this trend are 

limited in viable load ranges.    

Most of the fuels studied did not exhibit equivalence ratio sensitivity; as a result, they had 

smaller operating envelopes and therefore lower LTC indices (e.g., PRF 85, see Fig. 22).  The 

fuels that did display this trend (e.g., H80T20, see Fig 23) had the highest LTC indices and were 

also shown to have a wide range of RON/MON values.  In the end, the high LTC index fuels 

with high RON/MON values pertained to that of fuels H60E40 and TRF4. These fuels should be 

considered for further research as candidates for next-generation LTC fuels.  Designing fuels that 

can further capitalize on equivalence ratio sensitivity benefits may be the next step to making 

LTC strategies viable for light-duty automotive applications.    
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Chapter 3: Infrared Spectroscopy 

3.1 Methodology 

Infrared spectroscopy operates on the fundamental principle that passing radiation at specific 

wavelengths into a material excites particular vibration modes acting in response to absorb 

radiation to some degree.  Absorption occurs at varying degrees with frequency dependence on 

the identity, state, and concentration of a molecule.  Simple molecules can experience 

symmetrical or asymmetrical stretching, scissoring, rocking, twisting, or wagging—each of 

which correspond to the absorption of a particular amount of radiation at some frequency.  In 

general, the number of degrees of freedom increases as the size of the molecule increases and 

gets more complex.    

Imagining more complex molecules, it is possible to classify these based on the multiple 

vibrational modes they will uniquely exhibit due to the increased degrees of freedom.  Slight 

changes in chemical structures result in the absorbance to be altered due to the change in 

vibrational characteristics.  Each molecule exhibits unique absorbing frequencies as well as the 

amount it absorbs.   

In Appendix B, an overview of the working principles of Fourier transform infrared spectroscopy 

(FTIR), data processing techniques, and the two IR collection methods utilized in this current 

work are discussed.  First, Beer’s law is derived and the important physical parameters that 

comprise the final relation are explained; this law is used to convert raw collected light intensity 

measurements to the more intuitive absorption representation.  Second, the working principles of 

FTIR spectroscopy equipment are briefly introduced.  Following this, the two IR collection 

techniques used in this work—transmission and attenuated total reflectance (ATR)-based 

spectroscopy—are explained.  In these two sections, the theory and relations used to process 

absorbance data specific to highly absorbing media, e.g., liquids, will be presented in detail.    

The work of contributing researchers in this field [91]–[103] has been presented in the author’s 

own words.  The section is designed to give the reader a sufficient understanding to the extent 

that they could conduct their own experiments, and provides all the necessary literature 

resources.                    
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In the following section, the pros and cons of transmission and ATR-based methods are 

discussed.  These two methods were investigated in this work as the IR absorbance spectra with 

transmission-based data are quantitative, whereas with ATR—to the author’s knowledge—is 

qualitative.  Recall the purpose of collecting IR absorbance data is to correlate it to fuel 

performance ratings by way of chemometrics.  As discussed in detail in Chapter 4, determining if 

one IR collection method works better than the other with chemometrics was an important 

question to address.  Here, the two IR collection techniques are compared and contrasted from a 

spectrophotometry point of view.     

3.1.1 Discussion of ATR vs. Transmission  

Typically, the path length is on the order of 10 [𝜇𝑚] for ATR measurements.  This is a needed 

feature for measuring samples with high molar absorption coefficients, such as liquids.  Solid 

absorption spectra can also be measured with ATR, since the beam is reflected.  For transmission 

experiments, measurements at 10 [𝜇𝑚] or less are difficult to achieve since spacers of that 

thickness are difficult to make and use effectively.  As a result, liquids have to be pressed 

between the transmission slides with no spacer, where the path length is determined from linear 

extrapolation from known, longer path length data.  Alternatively, transmission slides that have a 

significantly different refractive index than that of the sample can be used to count the 

interference fringes with no spacer inserted, but this creates a sinusoidal baseline in the data and 

so this method is typically avoided: see Lacey et al. for this alternate method [91].  Moreover, the 

film thickness of liquids typically do not permit being pressed together in a repeatable fashion, 

usually due to variability in the size and number of drops placed on the slides and viscosity 

differences between samples.  In conclusion, transmission-based experiments at low path lengths 

introduce experimental uncertainty in the final results since the path length has to be linearly 

extrapolated, otherwise sinusoidal baseline uncertainties are introduced.  Even though ATR 

inherently has a path length with an uncertain definite value—due to the reliance on theory to 

determine the path length—short path length measurements with transmission are either not 

feasible or have their own uncertainties from the aforesaid reasons.  Therefore, ATR can be a 

favorable alternative to transmission-based experiments to measure substances with high 

absorption coefficients, especially if it is a solid. 
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In addition to the technical feasibility of measuring the IR spectra of liquids and solids using 

ATR, it is also easy to do in a timely manner.  A drop of liquid on top of the ATR crystal, or by 

pressing a solid sample to ensure complete contact, is all that is needed for sample preparation.  

This takes little time, and absorptivity experiments can be completed in as little as a few minutes 

per sample.  However, from the authors experience with transmission-based experiments, a 

single sample can take multiple hours to complete, and slides diminish in quality over time and 

have to be polished by expert hands to restore them.  With this said, it is clear that if a large 

effort toward measuring many samples are required, ATR is then desired as a complete study 

could be done in as little as a day, whereas a large transmission-based study may take weeks or 

months.   

3.2 Experimental Design 

3.2.1 Transmission 

A commercial FTIR, ThermoFisher Nicolet iS10, was used for the transmission-based 

experiments (450 to 4500 cm-1 at 2 cm-1 resolution) with a variable path length KBr optical cell. 

These transmission-based experiments consisted of absorptivity measurements at multiple path 

lengths; path length determination will be discussed first.  The variable path length transmission 

apparatus has Teflon spacers of varying thicknesses to insert between the KBr slides—see Figure 

27.  The apparatus is assembled with no liquid sample inside, followed by measuring the IR 

spectrum for that of air and then the transmission slides alone.  These results displayed in percent 

transmittance shows the interference fringe pattern.  The interference fringe pattern and the 

associated wavelength values were used to calculate the actual path length. 

With the path length determined, the liquid sample is injected into the container using a push-

pull method. Two Norm-ject 1 [ml] latex-free (VWR-53548-001) disposable syringes, one filled 

with the sample and the other empty, could fill the transmission slide apparatus through the 

access ports.  Following this, the absorbency measurements can commence.  Prior to each liquid 

absorbency measurement, the background spectrum was first captured by measuring the air only; 

the transmission apparatus is then put into place for liquid IR absorbency measurements to 

follow.  Single beam data are saved in comma-separated format (.csv) to later be post-processed.  
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The apparatus is disassembled after each trial, cleaned with cotton and methanol, and another 

path length set-up is constructed with a new spacer.  The path length studies were done 

in descending order (e.g., 500, 50, 15, and ≤15 𝜇m).  Interested readers are directed to Figure 53 

in Appendix B to see the effect of path length.  Measurements less than 15 𝜇m, if needed for 

resolving highly absorbing frequencies, were accomplished by using no Teflon spacer—no 

spacers were available for ≤15 𝜇m—with a few droplets of the sample pressed between the 

slides.  After setting up the apparatus with a new path length, the process was repeated.  

 

Figure 27: Optical cells used in liquid transmission experiments. Teflon spacers used had 

thicknesses 15, 50, and 500 𝝁m. [100] 

3.2.2 Attenuated Total Reflectance 

Here, the same Nicolet FTIR used for transmission-based experiments was also used, but the 

Nicolet Smart ATR accessory is implemented to replace the transmission-based slide holder.   

There is a solid sample press (the blue handle), which can be used to ensure proper contact when 

measuring solid samples—this was rotated to make way for liquid samples. To prepare the fuels 

that are mixtures of pure components, a Hamilton Gastight syringe was used.  

It was detailed in section 3.1.1 that experimental effort by way of ATR is straightforward.  For 

all the fuels measured, Norm-ject 1 [ml] latex-free (VWR-53548-001) disposable syringe 

transferred a few drops of the liquid sample directly onto the ATR crystal.  The liquid was free to 
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spread and evaporate as the measurement took place.  It was found that constructing a barrier 

with a lid to hold 1 [ml] of liquid, to ensure no evaporation occurred and to prevent the liquid 

from spreading too thin, yielded consistent absorbency results.  The latter method was avoided 

because it required more of the liquid sample and effort to clean between fuel sample 

experiments. Additionally, there was risk of the liquid seeping into the crystal and contaminating 

the ATR accessory.  Prior to sample collection, the FTIR was purged with nitrogen to remove 

water vapor contamination in the data. With the easier “droplet” method utilized, the sample 

surface was wiped clean with methanol and cotton to prepare for the next fuel sample.      

3.3 Results and Analysis 

3.3.1 Transmission  

The measured optical constants of liquid toluene were compared to the previously published data 

of Bertie et al. [111] (Figs. 28 and 29) to validate the results.  The reference data were measured 

independently by six spectroscopists in four different laboratories, and showed that the 

reproducibility of the optical constant technique (the IR data post-processing procedure) for the 

molar absorption coefficient is within 2.5 % [98].  The measurements made in this work were in 

good agreement with the published data, though some slight discrepancies were found.  The 

possible cause of the discrepancies will be discussed here.  

On average, molar absorption coefficients across the spectrum were measured about 10% higher 

than in the reference data.  The path lengths used in this work for absorption measurements, in 

addition to transmission slides used, are likely the cause for the variation.  Bertie et al. measured 

absorptivity at more path-lengths (finer resolution) in addition to path lengths greater than 500 

𝜇m where appropriate [98] .  Additionally, Bertie et al. performed the long path length 

measurements with NaCl, CaF2, and KBr slides to more accurately determine linear absorption 

coefficients at the anchor points [98] .  In addition, Bertie et al. measured at a resolution of 1 cm-

1 whereas this work is at 2 cm-1 [98] .  The combination of reproducibility of the optical constant 

method (2.5%), path lengths used, and multiple transmission slides considered for long path 

lengths could account for the overall discrepancy found between this work and that of Bertie et 

al. [98]. 
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Figure 28: Measured real refractive index of liquid toluene compared with published data [98]. The 

residual is defined as 𝑛𝐷𝑎𝑙𝑦 − 𝑛𝐵𝑒𝑟𝑡𝑖𝑒 

 

 

Figure 29: Molar Absorption Coefficient of liquid toluene compared with published data [98]. The 

residual is defined as 𝝈𝑫𝒂𝒍𝒚 − 𝝈𝑩𝒆𝒓𝒕𝒊𝒆 
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IR spectra of neat components and the FACE gasolines, collected via transmission-based 

methods, are presented below.  The entirety of the results are found in Appendix E.  Analyzing 

Figure 30, the intrinsic absorbing capabilities of the neat components measured can be realized.  

Now considering FACE A, depicted in Figure 31, interesting insight into blending effects of 

ethanol are seen.  An approximate representation of the absorption spectrum for FACE A with no 

ethanol can be achieved by a blend of iso-octane and n-heptane; these components are the 

majority that constitutes FACE A [104].   Introducing ethanol in FACE A should result in 

absorbing frequencies intrinsic to ethanol to be exhibited in the mixture.  This does occur, as 

seen in the major absorbing frequencies around 1100 and 3300 [cm-1], although at some 

frequencies interesting synergistic blending effects occur.  At around 2950 [cm-1], with a small 

introduction of ethanol (e.g., 10% and 15%), the absorptivity increases.  The magnitude of this 

absorptivity is higher than iso-octane, n-heptane, or ethanol alone.  Therefore, with the 

introduction of ethanol, there is no linear combination of the three individual spectra that results 

in what was observed—this is atypical of the usual linear blending of hydrocarbon absorbance.  

Non-linear blending effects of alcohols with hydrocarbons have been observed and explained in 

literature [105]–[107].  In general, it is suggested that alcohols interact with hydrocarbons in 

various ways by means of van der Walls forces, and the molecular structures formed (e.g., 

double-bonded dimer, linear polymer, water-like structure, etc.) are a function of the alcohol 

concentration.  These various interactions thereby alter the original molecular structure of the 

hydrocarbons and therefore their absorbing characteristics.  This may explain the synergistic 

blending effects, i.e., the combined effects being greater than the sum of their separate effects, 

seen with the FACE A mixture, as well as other FACE gasolines that exhibit similar trends with 

ethanol introduction, since ethanol effects are concentration-dependent.  These spectroscopic 

trends should be investigated further in future work. 
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Figure 30: Linear Absorption Coefficient Spectra of neat component fuels. Note both y-axes are 

multiplied by 104
 and x-axes are continuations of each other. 

 

× 104   
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Figure 31: Linear Absorption Coefficient Spectra of FACE A and various blends with ethanol.  

Atypical synergistic blending effects caused by ethanol introduction are best seen around 2900 cm-1 

for ethanol concentrations of 10 and 15%.    
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3.3.2 Attenuated Total Reflectance 

Over 200 fuels were procured by the author and measured on the ATR equipment, 34 of which 

were pure hydrocarbon components.  The extensive lists of fuels studied can be found in 

Appendix D.  Figure 32 shows some of the pure hydrocarbon absorptivity spectra collected in 

this work.  All the hydrocarbons shown here represent the aromatic class, and shown here to only 

illustrate a sub-set of the hydrocarbons IR absorption spectra measured.   

  

 

Figure 32: Example sub-set of absorption spectra measured by the author. Aromatic hydrocarbons 

considered in this work are shown here.  Note that all ATR results shown are uncorrected for any 

effects, e.g., variable path length and dispersion. 
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Chapter 4: Chemometrics 

The goal of this work is to collect IR absorption spectra for fuels of research interest, calculate 

the LTC index for each fuel, and use chemometric analysis to create a model. This model could 

then take an unknown fuel’s IR absorption spectrum as an input and predict the LTC 

performance of that fuel. 

First, the basic working principles of two multivariate statistical techniques are explained (Sec. 

4.1).  In this work, these methods correlate IR absorbance spectra to the fuel performance ratings 

RON and  LTC index.  Secondly, the experimental section (sec. 4.2) investigates how the 

statistical models are affected by various parameters: multiple studies were conducted to inform 

this.  The studies conducted are explained in detail, including how the statistical models were 

developed, and the findings of the studies are discussed.  Lastly and most importantly, the LTC 

index correlation is created and discussed.  

4.1 Methodology  

The reader may recall from the earlier section 1.3.2 the discussion of the industry products IROX 

[38] and Zeltex ZX-101C [39].  These devices are capable of measuring a fuel’s IR absorption 

spectrum and predicting various fuel-manufacturing specifications such as the octane rating, 

density, Reid vapor pressure, etc.  These products do so with a built-in FTIR and chemometric 

model developed for these particular applications.  A short introduction to the statistical theory 

that allows chemical data to be correlated to a desired variable of choice will be provided.  This 

overall process is known as chemometrics [108].             

Chemometrics is the science of extracting information from chemical systems by data-driven 

means.  Statistical methods, such as principle component regression (PCR) and support vector 

machine regression (SVMR), extract patterns from the chemical data and attempt to create a 

correlation to an explanatory variable of choice. In this work, IR absorption spectra are the 

chemical data, and the explanatory variable are the fuel performance ratings RON and LTC 

index.  This section will cover the theory of the two statistical methods investigated: Principal 

Component Regression (PCR) and Support Vector Machine Regression (SVMR).   
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4.1.1 Principal Component Regression (PCR) 

Principal component regression, or PCR, is a linear method that identifies patterns in multi-

dimensional data and correlates these to an explanatory variable, i.e., a variable that may explain 

the patterns found in the chemical data.  In short summary, the fundamental mathematics of this 

technique is eigenvector decomposition of the datasets’ covariance matrix.  Readers that are 

unfamiliar with multi-dimensional statistics or linear algebra techniques are directed towards the 

tutorial of PCR by Smith [109], which offers an introductory explanation of statistical covariance 

and eigenvectors; a more rigorous mathematical explanation of the methodology can be found in 

the book by Anton et al. [110].  MATLAB software was used for PCR.  A tutorial on how to use 

MATLAB’s PCR tools for chemometric applications can be found online [111].  Since PCR is 

relatively easy to understand, a brief summary of the concepts is given in the order of operations 

that take place for the method.   

Covariance is a measure of the standard deviation between two arrays, and can be seen as 

𝑐𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)(𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛) 𝑛

𝑖=1

𝑛 − 1
                                           (4.1) 

where n is the number of variables within the dataset represented by arrays X and Y.  This does 

not yield a meaningful number; instead, the sign is only of importance: a positive sign indicates 

that X and Y increase together, a negative sign indicates that one dimension increases while the 

other decreases, and a value of zero represents no correlation between the two dimensions.  

For high-dimensional datasets, the covariance values are organized in a symmetrical matrix 

about the diagonal.  This is mostly for mathematical convenience for the following operations. 

An example is visualized here with a three-dimensional dataset, represented by x, y, and z.   

𝐶 = (

𝑐𝑜𝑣(𝑥, 𝑥)   𝑐𝑜𝑣(𝑥, 𝑦)   𝑐𝑜𝑣(𝑥, 𝑧) 

𝑐𝑜𝑣(𝑦, 𝑥)   𝑐𝑜𝑣(𝑦, 𝑦)   𝑐𝑜𝑣(𝑦, 𝑧)

𝑐𝑜𝑣(𝑧, 𝑥)   𝑐𝑜𝑣(𝑦, 𝑧)   𝑐𝑜𝑣(𝑧, 𝑧)
)                                                (4.2) 

With the covariance matrix, eigenvalue decomposition can be performed on the covariance 

matrix to find the eigenvectors, i.e., the principal components.   

Eigenvalue decomposition is laborious for matrix dimensions greater than three.  The 

methodology for this is beyond the scope of this work; interested readers are directed to Anton 
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[110] for decomposition techniques.  The result of this process will be illustrated with a two-

dimensional dataset. Figure 33 shows a random dataset plotted after subtracting the mean value.  

The eigenvectors of the covariance matrix are overlaid with the data, and oriented in the 

directions of maximum covariance.  As can be seen, one eigenvector is aligned with the primary 

linear relationship that the data exhibits, whereas the other is aligned with the small spread in the 

data.  Each eigenvector has an associated eigenvalue, where the magnitude of the eigenvalue 

represents the amount of variance of the data in the direction of each eigenvector.  The 

eigenvector aligned with the primary linear relationship has a large eigenvalue, as it explains the 

majority of the trend the data exhibits, while the other eigenvector has a smaller eigenvalue. 

 

Figure 33: Example data set that has been normalized (mean subtracted) with eigenvectors overlaid 

to visually show the maximum covariance of the data.  [109]. 

N-dimensional datasets have N eigenvectors and corresponding eigenvalues.  The eigenvalues 

for each eigenvector are a weighting of sorts that explain the variance in the data, where the 

eigenvalues represent the spatial direction of the variance.  This information can then be used 

with a least-squares regression method to correlate the data to an explanatory variable (see 

Canale et al. [112] regarding least-squares regression).     

Example Data with Eigenvectors Overlaid 
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4.1.2 Kernel-Based Support Vector Machine Regression (SVMR) 

Support Vector Machines (SVM) are learning algorithms capable of modeling complex non-

linear datasets by way of user-defined kernel functions.  This statistical learning algorithm was 

invented by Vapnik in 1979, though has not received attention until recently [113]. According to 

Devos et al., this technique has been recently introduced to chemometric analysis and has proven 

to be powerful in IR spectra classification problems [114].   

To summarize the governing theory for this complex statistical technique would require an 

exhaustive amount of effort, even if the goal were to be a mere basic introduction.  The reader is 

guided to the useful work of Burges [113], for an in-depth understanding of the theory and 

supporting mathematics.  The basic idea and systematic approach are presented here, instead, 

guided by the helpful work of Devos et al. [114] and Luts et al. [115].  These sources provide 

useful graphics to illustrate the principles, and apply the methodology to multiple types of 

problems.  For example, the robustness of this technique is demonstrated in brain tumor 

classification, near-IR absorbance spectrum classification, and more.  First, the basics of SVMs 

is introduced following by the kernel methods that make nonlinear analysis possible.   

In order to classify patterns in data sets, hyperplanes are mathematically constructed to define 

decision boundaries.  That is to say, the decision boundary separates data that fall into two 

defined classes: one class being data that has a positive influence on the descriptor variable, and 

the other proving to have a negative influence on the descriptor variable.  For example, if certain 

data prove to have a higher “performance value”, they will be separated from data that has “low 

performance”.  The idea here is to map the original data points from the original dimensions, 

called input space, into a high-dimensional—or even infinite-dimensional—feature space to 

make the problem feasible.  Take, for example, the data set provided in Figure 34.  As can be 

seen, the two concentric circles are not linearly separable; i.e., the positive and negative 

influential data points cannot have a linear decision boundary drawn between them in any 

fashion.  However, mapping these data into a higher-dimensional feature space by way of a 

mathematical transformation allows a clear decision boundary, or hyperplane, to be drawn.  With 
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the data “stretched” into a higher-dimensional form, the next step in the SVM process is to 

determine a hyperplane that can now separate the data, as seen in Figure 35 (from [116]).  

 

Figure 35: Transformed data set and the hyperplane constructed via SVM to separate the data set 

(left) and shown after transforming back to the original dimensional space (right). [116] 

 

Transformation 

Figure 34: Non-linear data set (left) and transformed data set (right) into a higher dimension.  [116] 

 

  

X  

 

Y
 

Z
  

Z
  

X  

Y
 

 

 



68 

 

Kernel functions provide a means to transform data into a higher dimension prior to the SVM 

algorithm that determines the hyperplane decision boundary.  In the previous section, Figure 34 

illustrated that the concentric circles were not linearly separable.  However, after the 

mathematical transformation, i.e., the kernel function, a hyperplane (via. SVM) could then be 

constructed that separates the classes in data (Fig. 37).  The mathematical form of the kernel 

function can be linear or highly nonlinear.  There are many types of kernel functions used in 

literature [113]–[115], some of which are  

 Linear:                                      𝐾(𝑥, 𝑦) = 𝑥𝑇𝑦                                                                          (4.6) 

 

 Polynomial:                             𝐾(𝑥, 𝑦) = (𝜏 + 𝑥𝑇𝑦)𝑑, 𝜏 ≥ 0                                                 (4.7) 

 

 Gaussian:                                 𝐾(𝑥, 𝑦) =  exp (−
||𝑥−𝑦||

2

2𝜎2 )                                                    (4.8) 

 

 Square Root Gaussian:         𝐾(𝑥, 𝑦) =  exp (
√(𝑥−𝑦)(𝑥−𝑦)𝑇

2𝜎2 )                                              (4.9) 

 

 Sigmoid:                                  𝐾(𝑥, 𝑦) = tanh (𝑎𝑥𝑇𝑦 + 𝑏)                                                (4.10) 

 

 

where x is the data, y is the explanatory variable we wish to correlate to, and the other constants 

𝜏, 𝜎, 𝑎, 𝑏, 𝑑, are user-defined kernel parameters.  With this brief introduction to kernel functions 

complete, the methodology to determine what kernel function and kernel parameters to use, in 

addition to a meta-parameter required for the SVM hyperplane decision boundary, will be 

discussed.  This leads us to SVMR parameter optimization.  

Multiple parameters, known as kernel and meta parameters, dictate the hyperplane boundary 

complexity and therefore the performance of the statistical model. Kernel parameters vary the 

way in which the data is transformed into a higher-dimensional space, and the meta parameter 

affects the error tolerance used for the hyperplane decision boundary by the SVM algorithm.  

Guided by the work of Devos et al. [114] and Luts et al. [115], a cross-validation study, i.e., a 
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parametric study of kernel and meta-parameters, is performed. Figure 36 visualizes an example 

of such a cross-validation study from Devos et al. [114]. 

 

Figure 36: Cross-validation study, from Devos et al. [114], showing the effect of the hyperplane 

decision boundary (black line) as a function of meta (C) and kernel-parameter (G).  In this work, 

the kernel used is the Gausian function and the kernel parameter G is 1/𝝈𝟐 in relation to eq. 4.8.  

The light black lines surrounding the darker black line (decision boundary) indicate the error 

tolerance dictated by the meta parameter, C. 

As can be seen in Figure 36, the tunable parameters affect the decision boundary.  With the 

cross-validation methodology, Devos et al. [114] and Luts et al. [115] then performed a leave-

one-out validation study, where a random subset of the data is removed prior to building the 

statistical model.  The statistical model created utilized only a fraction of the original data, where 

subsequently it was applied to predict the performance of the data that were left out.  When the 

minimum error is determined from this study, those kernel and meta-parameters are selected.  

This process is repeated for several kernel functions until the optimal kernel function, kernel 

parameters, and meta parameter are determined for the dataset at hand.  At this point, the kernel-

based SVMR is complete.   
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4.2 Experimental Design 

Recall the goal of this work is to collect a training data set, i.e., collect IR absorption spectra for 

and calculate the LTC index fuels of research interest, and use chemometric analysis to create a 

model that can predict LTC index of an unknown sample.  Three problems needed to be 

addressed in order to accomplish this goal:  

1. Which spectroscopic method is better for the statistical model—transmission or ATR?  

Recall ATR yields qualitative results and could potentially not inform the chemometric 

models well enough compared to the quantitative transmission-based method.   

Addressed in section 4.2.1   

2. Can the IR spectra of a blended fuel, e.g., a mixture of n-heptane and iso-octane, be 

represented by the linear combination of the pure component fuel spectra?  In other 

words, is it required to measure the IR absorbance spectrums of fuels that are simple 

mixtures of pure components, or can the linear combination of spectra be used?  

Addressed in section 4.2.2     

3. Which and how many fuels are required to build the chemometric model? Each fuel’s 

IR absorption spectrum and LTC index, which can require a significant effort to 

procure, are necessary to inform the chemometric model.   

Addressed in section 4.2.3    

 

Guided by the findings of the above questions, a final chemometric model predicted the LTC 

index of the FACE fuels (Sec. 4.3.1).    

4.2.1 Transmission vs. ATR-based models  

In order to answer these questions, the initial effort of this work was to determine if ATR 

methods suffice to inform the chemometric model.  This was of interest as collecting fuel 

samples in this manner is easy, takes little time, and only a few drops of the fuel sample are 

required.  First, a few fuel absorption spectra were measured using transmission and ATR 

methods.  Fuels initially considered were n-heptane, iso-octane, toluene, and ethanol.  These pure 

component fuels were simulated computationally to find the LTC performance index, as 

discussed in Chapter 2.  With the absorption spectra and performance variables determined, 

some initial chemometric analysis could take place.  This initial analysis used PCR as the 
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statistical method, as it was easily understood and required no parameter optimization in contrast 

to SVMR.  However, even though PCR is in essence a simpler technique, it should still inform 

whether transmission or ATR-based data may be preferred in future chemometric analysis.   

In order to investigate the effects of ATR or transmission-based data on the chemometric 

models, a statistical model was created with both methods.  The statistical models were created 

with pure components only—i.e., informing the model with four absorption spectra and 

corresponding LTC indices—and using this model to predict the LTC performance of blends of 

these pure components.  The blends of pure components were computationally simulated for the 

LTC index, so that the actual LTC performance was known.  Absorption spectra used were linear 

combinations of the pure components, where the relative proportions of each spectrum known by 

the mole fractions of the fuel mixture.  ATR-based spectra were not post-processed for any 

dispersion or path-length effects; the data used with the chemometric model was therefore 

qualitative and in terms of absorbance.  Transmission spectra were post-processed for path length 

and dispersion effects; these data should be quantitative and are in terms of linear absorption 

coefficient.  The results of this study are found here.   

Building a chemometric model for the LTC-index (CR=9.5) with ATR and transmission-based 

absorbance spectra gave the same coefficient of determination (R2) and standard deviation (𝜎) to 

within seven significant figures; hence no discernable difference between ATR and transmission-

based results.  Since ATR methods gave the same statistical performance as transmission-based, 

the remainder of the work utilized ATR methods as it is simpler to implement.  This finding 

should hold true if and only if the same ATR equipment is used throughout the study.  Each 

instrument is different for one way or the other, and therefore measured absorbance spectra will 

vary. 

Guided by the findings of this study, question #2 was addressed and is presented in the following 

section. 
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4.2.2 Linear Combination Spectra  

Guided by literature, it was suspected that ethanol would cause non-linear effects on the 

absorption characteristics when blended with hydrocarbons.  This was also discussed in section 

3.3.1, where this phenomenon was experimentally observed with the FACE gasolines containing 

ethanol (FACE fuel spectra are found in Appendix E).  Therefore, a linear combination spectrum 

for simple fuel blends with ethanol could most likely not be used.  This was first investigated by 

measuring the FACE gasoline IR absorption spectra via transmission-based methods and 

analyzing the effects of ethanol introduction—to the author’s knowledge, the data itself is of 

research interest as quantitative spectra has not yet been published for these research fuels.  As 

can be seen with the FACE fuels, to spectroscopically represent fuels with ethanol the fuel’s 

actual absorption spectra needs to be measured.  

Since the chemometric models to follow in this work were to be built using ATR-based data, 

dispersion effects, i.e., variable index of refraction as a function of light frequency, in the ATR 

data were of concern (see Appendix B2.2.1).  Pure components have different refractive indices 

and therefore different path lengths as a function of light frequency.  Blends of these components 

now have a “blended” refractive index that could cause minor phase shifts in the data; therefore, 

assuming a linearly blended spectra would not capture these effects.  To investigate this, ATR 

absorbance spectra of mixtures of the pure component spectra were measured.  Two 

chemometric models, powered by PCR, were both built with pure components and pure 

component mixtures.  One model used linearly blended absorbance spectra for the fuel blends, 

and the other model used the actual fuel IR spectrum for each fuel blend.  The results of this 

study are preseted here.  

Figures 37 and 38 on the following page show that regardless of the fuel type the actual spectra 

are required to inform the model due to non-ideal ATR effects and non-linear blending 

phenomena.  For the PCR model, adding linearly combined spectra for the blended absorbance 

spectra did not add any intrinsic information to the model.  However, when adding the actual 

blended fuel spectrum to the model, the fuel performance metrics were perfectly predicted, as 

expected.  As a result, actual fuel IR spectra of blended mixtures were used.  With question #2 

addressed, question #3 was investigated and is covered in the following section.  
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Figure 38: LTC Index (CR=9.5) prediction using using linearly blended IR absorbance spectra 

to build the chemometric model. 

Figure 37: LTC Index (CR=9.5) prediction using actual IR absorbance spectra to build 

the chemometric model. 
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4.2.3 RON Predictions for CRC FACE Gasolines 

In an effort to determine which fuels were needed to inform the chemometric model, i.e., what 

functional groups are required to accurately predict LTC performance, a chemometric study was 

done with research octane number (RON) as the fuel performance rating.  RON is known for 

many pure component hydrocarbons and the FACE gasolines.  Calculating the LTC index as the 

fuel performance rating, which requires time-consuming computational studies, can be avoided 

in favor of using RON to determine the necessary components.  In addition, at this time there are 

chemical mechanisms available for only two FACE gasolines and selective pure component, as 

discussed in Section 1.7, which limits the types of fuels that can be investigated.  With the 

availability of RON for the fuel performance metric, only the absorbance spectra have to be 

determined from FTIR measurements, and therefore a robust dataset can be analyzed.  With this 

study, many fuel’s IR spectra can be determined quickly with ATR to build a chemometric 

model.  Following that, the performance of the FACE gasolines can be predicted with this model 

and validated against the true RON values.     

For this work, a novel chemometric model was created wherein only pure component fuels 

informed the statistical model to predict real gasoline fuel RON.  As discussed in section 1.3.2, 

Kelly et al. [36] created a RON model with great success, but informed the model using a large 

dataset of real gasoline fuels; this yielded great statistical performance.  However, in relation to 

LTC performance (i.e., LTC index), at this time only pure components and mixtures of pure 

components are capable of being computationally simulated for the LTC index.  Therefore, real 

gasoline data sets cannot inform the model with the exception of the few FACE gasolines with 

surrogate mechanisms available.  As a result, the effect of only using pure components to predict 

RON of the FACE fuels was investigated to determine the feasibility of this technique.  From 

this, pure component fuels that increase the accuracy of the RON prediction for the FACE fuels 

can be targeted for the LTC index model.   

The major constituents found within the FACE gasolines drove fuels targeted for this study.  The 

CRC report [104] has a succinct summary of these primary compounds found in the FACE 

gasolines.  Nearly the entirety of these fuels were procured and the IR absorbency spectra were 

measured with the ATR equipment. 
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Many chemometric models were created by way of PCR and SVMR, that is, the fuels used to 

inform the chemometric model were selectively added to determine the relative impacts each 

fuel has on the predictive capabilities.  This was accomplished by first creating a baseline 

statistical model that incorporated no pure component spectra.  Spectra were collected for n-

heptane, iso-octane, toluene, ethanol, methylcyclohexane, and 1-hexene, both individually and in 

blends based on mixtures given by Truedsson [23], Foong et al. [45], and Perez et al. [46]. The 

“baseline” fuel list primarily consists of every single fuel mixture (binary and above) from the 

three previously stated sources, among a few other mixtures: the list is found in Appendix D.  

This initial model was used to then predict RON values for the FACE gasolines.  Following that, 

the statistical model would then be “re-built” with the addition of one new pure component.  The 

FACE gasolines are then predicted again, and the new results compared to the baseline results—

this was repeated for all pure components.  The results are discussed next.  

The results are depicted in Figure 39.  The y-axes represents the difference between the baseline 

model and that with a pure hydrocarbon component added.  Mixtures of five pure components 

represent the baseline, and as a pure component is selectively added (moving along x-axis) the 

chemometric model is then informed by the baseline fuels in addition that single pure 

component.  Noting the first x-axes point, the “baseline” y-axes value is zero as the baseline 

chemometric predictive values has been subtracted out of the data.  This way, when a  pure 

component is selectively added to the baseline model the sensitivity of adding the pure 

component is represented in the y-axes.  For example, looking at the third x-axis value (2-

methylbutane), the model is informed by the baseline fuels and only that hydrocarbon component 

(i.e., the previous fuel at the second x-axis value (n-heptane) is not included).  A large y-axis 

value indicates that the chemometric model prediction is significantly effected when a 

hydrocarbon component is added to inform the chemometric model.  A small y-axes value 

indicates that adding a hydrocarbon component has no effect on the chemometric model 

prediction.  The y-axes has no indication as to the accuracy of the model, only if the predictions 

significantly changed.  The legend labels “FACE_X_%”, which indicates the “X” FACE 

gasoline with “%” volume percent ethanol blended into that fuel.  
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The results indicate that the alkane and aromatic classes are not represented adequately by iso-

octane and toluene, respectively.  It appears that including the information of nearly any of the 

other alkanes considered here should improve the accuracy of the model, and as for the aromatic 

class xylene and 2-propyltoluene should be considered. 

At this point, another question was raised: will adding additional pure components to the model 

add redundant information?  For example, if two important pure components representing the 

alkane class are added to the model, are there diminishing returns for predictive performance?  

That is to say, could we add one pure component of the two and still get the same predictive 

performance of having both?  Figure 40 illustrates this effect.  Instead of adding only one pure 

component to the baseline and analyzing the sensitivity of the model to that component, the pure 

components here are added to the baseline additively as we move along the x-axis, as seen on the 

following page.  

Figure 40’s x-axes represents adding the hydrocarbon components additively, e.g., the third x-

axes point (xylene) represents that the chemometric model is built with the baseline, the second 

x-axes point (2,3-dimethylpentane) and xylene. The y-axes represents the accuracy of the model, 

where the magnitude is the actual RON value of the FACE gasolines less the predicted RON 

value. Unlike the previous study, the y-axis here represents the model performance. Refer to 

Table 3 for a summary of the predicted and actual RON values.   

Clearly, it is possible to reach predictive performance of ±10 RON by adding two additional 

pure components that represent the alkane and aromatic class, instead of requiring all of the pure 

components to follow.  Here, 2,3-dimethylpentane represented the alkane class and xylene(s) that 

of the aromatic class.  Adding additional pure components after these first two—including pure 

components which show a high RON sensitivity effect (Fig. 39)—demonstrates that the 

predictive capabilities of the model has diminishing returns.  This may indicate that it is instead 

feasible to select a few components from each class to get adequate predictive performance.  

There also appears to be some leeway as to which pure components to selectively use—this 

would like to be investigated in future work.  For example, instead of using 2,3-dimethylpentane, 

to which the model showed a large sensitivity (Fig. 39), it could be replaced by a few 2-

methylalkanes for the same effect.  Figure 41 illustrates this principle.  
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In this additive RON study, 2-methylalkanes replaced 2,3-dimenthylpentane.  Some other pure 

components were also randomly distributed.  It was found that 2-methylbutane or 2-

methylhexane could be interchanged for the same effect, i.e., if 2-methylhexane was first added 

in lieu of 2-methylbutane it would have the same initial effect, and when 2-methylbutane was 

later added it had no effect.  Interestingly, when these initial pure components are used, 

methylcyclohexane now shows a strong effect on the RON prediction.  The earlier sensitivity 

studies indicated that methylcyclohexane, and the naphthenic class in general, had little effect on 

the predictive capabilities for RON.  Furthermore, in the previous additive study 

methylcyclohexane had no effect when it was added after the other pure components.  This may 

indicate that adding pure components from one class can significantly affect the predictive 

capabilities of hydrocarbons from other classes.  This could be due to hydrocarbon IR 

absorbance spectra in fundamental vibrating frequencies, i.e., the C-H stretching frequency, from 

one class overlapping with hydrocarbons from other classes, albeit in varying magnitudes.  

Spectroscopically, this results in redundant information being added to the model, and may 

explain why some hydrocarbons can inform the chemometric model in the same way as other 

hydrocarbons, even if it represents a completely different class.  As a result, it is difficult to 

determine which components can be selectively used, as adding one can affect the other 

regardless of hydrocarbon classes considered and vice versa.   

The chemometrics relates the chemical functional groups, i.e., the IR absorbance spectra, to the 

RON performance of real gasolines.  These sensitivity RON studies targeted which functional 

groups could be most important for predicting real gasoline performance.  In a way, we are 

developing spectroscopic surrogates for real gasolines.  While this study was originally intended 

to help target fuels to simulate for the LTC index, the studies may also have another broad 

impact.  This pure component chemometric predictive approach, not necessarily with RON, 

could help aid in targeting hydrocarbon species that explain the majority of a combustion 

phenomenon for gasolines.  Therefore, these studies show that there could be additional effort 

towards creating spectroscopic surrogates to represent real gasolines.  Future work includes 

developing pure component spectroscopic surrogates, informed by chemometrics, to represent 

real gasolines.  
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The results of the selective and additive RON studies, along with available chemical mechanism 

considerations, informed the decision to target methylcyclohexane, 2-methylbutane, 2-

methylhexane, and xylene(s) for the LTC index model. 

In addition to investigating the effects of individual fuels, the relative predictive performance of 

PCR and SVMR were also analyzed.  This was done by using all the fuel blends and pure 

components to build the model, i.e., all of the fuels considered in this study.  It was found for the 

RON studies that SVMR yields the same results as PCR when a linear kernel is used; non-linear 

kernel choices for SVMR proved to give detrimental performance over the linear kernel. 

Table 3: Actual and predicted RON values for CRC FACE gasolines.  Chemometric model (PCR) 

informed with baseline and all pure components tested in this work.  

CRC FACE Gasolines 

Fuel Actual RON [104] Predicted RON % Error 

FACE_A 

FACE_A_10 

FACE_A_15 

FACE_A_30 

FACE_B 

FACE_B_10 

FACE_B_15 

FACE_B_30 

FACE_C 

FACE_C_10 

FACE_C_15 

FACE_C_30 

FACE_D 

FACE_E 

FACE_F 

FACE_G 

FACE_H 

FACE_H_10 

FACE_H_15 

FACE_H_30 

FACE_I 

FACE_J 
 

83.9 

92.0 

94.8 

102.3 

95.8 

101.1 

103.0 

106.0 

84.3 

91.7 

94.8 

101.5 

93.2 

87.4 

94.0 

96.5 

86.9 

92.1 

94.1 

99.4 

70.0 

73.8 
 

86.2 

92.0 

97.7 

106.6 

99.5 

104.1 

107.2 

114.4 

89.5 

92.6 

97.0 

107.0 

99.3 

84.0 

90.8 

98.4 

80.2 

83.2 

88.1 

98.7 

69.5 

64.7 
 

2.7521 

0.0985 

3.1000 

4.2294 

3.8875 

3.0089 

4.0938 

7.9669 

6.1757 

1.0738 

2.3458 

5.4878 

6.5785 

2.8021 

3.3785 

2.0141 

7.6807 

9.6402 

6.3486 

0.6844 

0.6421 

12.3038 
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4.2.4 LTC Index Chemometric Model  

The previous sections addressed three important questions prior to the arrival at creating a 

chemometric model for the LTC index—recall that creating this model is the primary motivation 

of this work.  We previously found that actual IR absorbance spectra were required to be used for 

the chemometric models (see section 4.3.1), i.e., it is not advised to use linearly blended spectra 

due to unideal ATR effects and non-linear blending effects.  Additionally, ATR proved to give 

the same results as transmission despite no corrections performed on the ATR data to account for 

non-ideal effects (see section 4.3.2).  Lastly, based on the pure component RON study, pure 

components that drastically affected the statistical prediction of the FACE gasolines’ RON 

values were determined.  Based on these results, in addition to considering available chemical 

mechanisms to simulate these pure components, additional pure components—2-methylbutane, 

2-methylhexane and xylene blended with TRFs, and pure methylcyclohexane—were 

computationally simulated for the LTC index.  In future work, additional pure components 

should be simulated to enhance the statistical model, in addition to more FACE gasolines to 

validate the model.  

A chemometric model for predicting LTC performance (LTC index), built from all the 

considered pure components and mixtures thereof, was used to predict the performance of the 

FACE gasolines.  At this time, the model can be validated against FACE gasolines A and C, as 

chemical mechanisms were readily available to simulate these fuels.  The meta and kernel 

parameters for SVMR-based models were chosen to minimize the coefficient of determination 

for predicting FACEs A and C, that is, the indices of FACEs A and C were the two data points 

used as the data subset for model creation (as explained in section 4.1.2).  The final model yields 

promising results, as seen in the results and analysis section.  

4.3 Results and Analysis 

4.3.1 Predicted LTC index  

The final chemometric model was created and used to predict the LTC index of all the FACE 

fuels.  The model was validated against the known values for FACEs A and C.  All the fuels 

simulated (for LTC index) to create this model can be found in Appendix C.  The final results are 

depicted here in Figure 47. The x-axes represents the FACE gasolines being predicted by the 
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chemometric model, and the y-axis is the predicted LTC index (“x” markers). Also shown are 

the true values of FACE gasolines A and C (“triangle” markers), which serve to validate the 

model.  

 

Figure 42: Final model for LTC index.  This chemometric model utilizes SVMR with a non-linear 

kernel.  The kernel used is a modified Gaussian profile (see equation 4.9), where the meta and 

kernel parameters were chosen to minimize the coefficient of determination for predicting FACE 

fuels A and C—kernel parameter, 𝝈, is 0.273 and SVM meta parameter, c, is 1000.  The true values 

of FACEs A and C are indicated by the triangle markers. 

The results in Figure 42 show a close LTC index prediction of FACE gasolines A and C: both 

within ± 0.4.  In order to further prove the accuracy of this model, the other FACE fuels should 

be simulated to check against.  Due to the close prediction of FACEs A and C, this work helps 

motivate further surrogate mechanism development for the remaining FACE fuels.     

Figure 43 shows other chemometric predictive model results overlaid with the previously 

presented results, i.e., the models utilized different statistical methods than the prior. The legend 

in the figure indicates whether PCR, linear-based SVMR, and non-linear-based SVMR were 

used (and the Kernel type and parameter values).   
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Figure 43: Multiple chemometric models for LTC index overlaid.  It is seen that PCR and SVMR 

with a linear kernel yield the same results (red circles and blue squares, respectively).  The final 

SVMR regression is shown here (purple “X”), as well as another SVMR model with a larger kernel 

parameter (yellow “X”).  The larger kernel parameter value (0.7 versus 0.273) gives significantly 

different results. 

Figure 43 indicates that non-linear SVMR methods proved to be more accurate in predicting 

FACE fuels A and C over the linear PCR and linear SVMR approaches (given the current 

training data set).  Interestingly, recall that RON proved to be better predicted with linear 

methods.  The IR absorbance spectra are non-linearly related to LTC index, yet linearly related 

to RON according to the performance of the chemometric models.  This idea needs to be 

investigated further, however, due to the limited FACE fuel data points to validate the LTC 

index chemometric model. 
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Chapter 5: Conclusion 

5.1 Overview  

Low temperature combustion (LTC) engines are an attempt to unify the benefits of traditional 

gasoline spark-ignited and diesel compression-ignition engines, where a lean fuel-air mixture is 

introduced into the piston-cylinder chamber and ignited through compression [7].  With this, it is 

possible to offer efficiencies closer to diesel engines, but with low emissions of particulates and 

NOx without the need for expensive exhaust after-treatment.  The ability to produce fuels 

optimized for LTC engines could help reduce fossil fuel consumption, insomuch as a 34% 

reduction could be achieved in the U.S. [7] .  It is desirable to create fuels that can operate in the 

LTC regime in order to promote advanced, next-generation engines as a viable alternative.  The 

scope of this work is creating a tool that can predict the LTC performance of gasoline fuels, as 

well as target attractive fuel components to aid in designing fuels for LTC operation.  This tool 

will avoid the need for expensive and time-consuming physical testing as required with 

traditional fuel performance metrics such as octane rating.   

5.2 Methodology   

This body of work investigated chemometric modeling as a means to predict next generation 

engine performance of real gasoline fuels.  Chemometrics extracts information from chemical 

systems from data-driven means by performing calculations on the data.  In this work, infrared 

(IR) absorption spectra are the chemical data, and the calculations done are statistical 

correlations relating the IR absorption spectra to chemical properties of interest. 

The chemical property of interest in this work is a fuel performance rating specific to next 

generation engines operating on the LTC concept.  This is defined by the LTC index, which rates 

fuels by their potential fuel savings in order to capture useful engine performance from LTC 

operation. Niemeyer et al. [35] recently introduced this index based on operating envelopes—

engine speeds and loads that can be achieved with a given fuel—and comparing the LTC results 

to useful operating conditions. 

Over 200 infrared absorption spectra comprising pure hydrocarbon components, mixtures of pure 

components, and research grade gasolines (FACE) were collected to provide the chemical data.  

The IR absorbance spectra were collected via transmission-based and attenuated total reflectance 



86 

 

(ATR)-based spectroscopy—the effects of using either approach with chemometric modeling 

were investigated.   

Two novel chemometric models were created, one for predicting Research Octane Number 

(RON)—as a means to validate the chemometric approaches and to investigate attractive fuels 

for the LTC model—and the other model to predict the LTC index.  The models predicted the 

performance of FACE gasolines and blends containing ethanol.  This served to bound the task of 

creating a model to predict real gasoline fuels that contain hundreds of various hydrocarbons.  

The FACE gasolines are 22 fuels that were statistically designed by experts in the field to 

represent the chemical and ASTM performance variations found in gasolines.  The important 

findings of this work will now be discussed.    

5.3 Summary of Results   

Traditional performance metrics such as RON, Motored Octane Number (MON), or Octane 

Sensitivity (RON-MON) were found to have little correlation to the LTC index.  This was found 

to be true for over 100 fuels that were considered consisting of pure components, mixtures of 

pure components, and gasoline-like fuels (FACEs A and C).  Fuels with widely varying 

RON/MON values, due to significantly different fuel compositions, did not necessarily result in 

different LTC indices.  Instead, similar LTC performance was observed with fuels having low or 

high RON/MON.  Furthermore, fuels with similar RON, MON, or octane sensitivity showed 

wide spreads of LTC index values.  These results support the findings that the traditional fuel 

performance metrics do not fully explain LTC performance, and there is motivation to adopt a 

new industry standard for fuel performance rating for advanced LTC engines.    

Attractive fuels that had high LTC performance, in addition to favorable high RON/MON 

values, exhibited significant equivalence ratio sensitivity for ignition delay, which extended the 

operating range of these fuels significantly.  Designing fuels that can further capitalize on the 

benefits from equivalence ratio sensitivity may be the next step to making LTC strategies viable 

for light-duty automotive applications. 

The two infrared absorption collection techniques, quantitative transmission and the qualitative 

attenuated total reflectance (ATR), yielded the same statistical performance with the 

chemometric models—so long as all the ATR data used is from the same equipment.  This is a 
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significant finding as ATR-based spectroscopy is easy, fast, requires a few droplets of sample to 

test, and does not need extensive data post-processing—further highlighting the merit of this 

work as it proves to reduce physical experimental effort over traditional fuel performance testing 

(as well as significantly reduce cost).   

Chemometrics were verified to be capable of predicting RON for pure hydrocarbon components 

and mixtures of such.  More importantly, it was also shown that chemometric modeling—

informed by a limited dataset of pure hydrocarbon components—could predict RON for all 22 

gasoline-like fuels (FACE gasolines) considered in this work to within ±10 RON.  These 

models, to the author’s knowledge, are novel in that only pure components are used to inform the 

chemometric model (as opposed to real gasoline samples) to predict the performance of real 

gasoline fuels.  This initial study helped verify that particular chemical functional groups, 

represented by infrared absorbance spectra of pure hydrocarbon components, could explain 

gasoline performance.     

Informed by the RON modeling results, a novel chemometric model was created to predict the 

LTC index.  This model predicted the LTC index of FACE gasolines A and C within 3% (±0.4) 

of the true value.  Due to the high accuracy of the LTC chemometric model for these gasoline 

samples, this work merits further attention.  This model could aid researchers and industry alike, 

as an easy tool to determine LTC performance of gasoline fuels and help in the effort to design 

next-generation fuels.  This tool not only predicts the LTC index of an unknown fuel sample, but 

also indicates which functional groups influence the LTC index.  That is to say, the weighting 

coefficients in the final regression equation indicate which wavenumbers in the absorbance 

spectra attribute positive or negative LTC index.  With this, we can target beneficial functional 

groups to create fuels with high LTC index.       

5.4 Future Work  

Significant non-linear blending effects with the IR absorption spectra were observed with 

mixtures containing ethanol.  Will non-linear effects significantly affect this work, e.g., with 

predicting the LTC index of gasoline fuels containing ethanol? The causes and implications of 

this phenomena should be investigated in future efforts. 
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A chemometric sensitivity study with RON was conducted, wherein the predictive capabilities of 

the model for the FACE gasolines were determined as a function of the pure components.  This 

technique demonstrated that particular hydrocarbon components that prove beneficial to the 

predictive performance of the chemometric model could be targeted.  This methodology is of 

sorts a means to create surrogate representations of infrared absorption spectra of real gasoline 

fuels; that is to say, pinpointing the most important chemical functional groups to represent 

gasoline.  However, it was found that there was leeway as to which pure components could be 

used to the same effect—this needs to be further investigated.  Potentially, if the previous 

question is addressed, this methodology can help inform new surrogates that emulate gasoline 

fuels.  This pure component chemometric predictive approach, not necessarily with RON, could 

help aid in targeting hydrocarbon species that explain the majority of combustion phenomena for 

gasolines.  Using this methodology to aid in the effort for LTC engine fuel design should also be 

investigated as future work.   

The LTC index model requires further validation.  Accomplishing this is possible when surrogate 

chemical mechanisms for the remaining FACE gasolines (or any research grade gasoline) are 

developed; this would provide the additional data needed to better validate the LTC chemometric 

model.  The results of this work, until then, are only promising.   

 

 

 

 

 

 

 

 

 

 



89 

 

References 

[1] “Hydrocarbons America’s Leading Source of Energy Consumption” [Online]. Available: 

http://instituteforenergyresearch.org/topics/encyclopedia/fossil-fuels/. 

[2] “United States Environmental Protection Agency - Particulate Matter.” [Online]. 

Available: http://www.epa.gov/pm/health.html. 

[3] U. S. E. P. Agency, “How nitrogen oxides affect the way we live and breathe,” no. 

September, 1998. 

[4] J. B. Heywood and O. Z. Welling, “Trends in Performance Characteristics of Modern 

Automobile SI and Diesel Engines,” vol. 2, no. 1, pp. 1650–1662, 2009. 

[5] “US diesel car registrations increased by 24% from 2010-2012, hybrids up 33%,” 2013. 

[Online]. Available: http://www.greencarcongress.com/2013/04/diesel-20130426.html. 

[6] John B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 

1988.  

[7] R. D. Reitz, “Directions in internal combustion engine research,” Combust. Flame, vol. 

160, no. 1, pp. 1–8, 2013. 

[8] C. P. Loeper, “Experimental Investigation of Gasoline Compression Ignition Combustion 

in a Light-Duty,” 2013. 

[9] S. L. Kokjohn, R. M. Hanson, D. a. Splitter, and R. D. Reitz, “Fuel reactivity controlled 

compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion,” 

Int. J. Engine Res., vol. 12, no. x, pp. 209–226, 2011. 

[10] D. B. Johansson, “High Efficiency Combustion Engines– What is the Limit?,” Lund Univ. 

[11] Dec, J., "A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging", 

SAE Technical Paper 970873, 1997, doi:10.4271/970873. 

[12] G. Abthoff, J., Schuster, H., Langer, H., and Loose, “The Regenerable Trap Oxidizer –An 

emission Control Technique for Diesel Engines,” SAE, no. 850015, 1985. 

[13] J. H. Kim, M. Y. Kim, and H. G. Kim, “-Assisted Soot Regeneration Behavior in a Diesel 

Particulate Filter with Heavy-Duty Diesel Exhaust Gases,” Numer. Heat Transf. Part A 

Appl., vol. 58, no. 2, pp. 725–739, 2010. 

[14] H. Yun, N. Wermuth, and P. Najt, “Extending the High Load Operating Limit of a 

Naturally-Aspirated Gasoline HCCI Combustion Engine,” vol. 3, no. 1, pp. 681–699, Apr. 

2010. 



90 

 

[15] M. Yao, Z. Zheng, and H. Liu, “Progress and recent trends in homogeneous charge 

compression ignition (HCCI) engines,” Prog. Energy Combust. Sci., vol. 35, no. 5, pp. 

398–437, Oct. 2009. 

[16] J. et al. Neely, G., Sasaki, S., Huang, Y., Leet, “New Diesel Emission Control Strategy to 

Meet US Tier 2 Emissions Regulations,” SAE, 2005. 

[17] J. A. Caton, “A Review of Investigations Using the Second Law of Thermodynamics to 

Study Internal-Combustion Engines,” SAE, no. 2000–01–1081, 200AD. 

[18] “No Title.” [Online]. Available: 

http://www.princeton.edu/puceg/perspective/combustion/fig1.jpg. 

[19] Boyce, P. M, 2002, ‘Gas turbine engineering handbook’, Gulf Professional Publishing, 

2nd edition, Huston, Texas, USA. 

[20] P. E. Yelvington, M. B. I. Rallo, S. Liput, J. W. Tester, W. H. Green, and J. Yang, 

“Prediction of Performance Maps for Homogeneous-Charge Compression-Ignition 

Engines,” Combust. Sci. Technol., vol. 176, no. 8, pp. 1243–1282, Aug. 2004. 

[21] Lacey, Joshua S., et al. "HCCI operability limits: the impact of refinery stream gasoline 

property variation." Journal of Engineering for Gas Turbines and Power 135.8 (2013): 

081505. 

[22] Kalghatgi, G. T. "Fuel anti-knock quality-Part I. Engine studies." No. 2001-01-3584. SAE 

Technical Paper, 2001. 

[23] Truedsson, Ida. "The HCCI Fuel Number-Measuring and Describing Auto-ignition for 

HCCI Combustion Engines." PhD diss., Lund University, 2014. 

[24] T. Shibata, G., Urushihara, “Auto-Ignition Characteristics of Hydrocarbons and 

Development of HCCI Fuel Index,” SAE, vol. 2007–01–02, 2007. 

[25] K. Shibata, G., Oyama, “Correlation of Low Temperature Heat Release With Fuel 

Composition and HCCI Engine Combustion,” SAE, vol. 2005–01–01, 2005. 

[26] T. Shibata, G., Oyama, K., Urushihara, T., and Nakano, “The Effect of Fuel Properties on 

Low and High Temperature Heat Release and Resulting Performance of an HCCI 

Engine,” SAE Tech. Pap., vol. 2004–01–05, 2004. 

[27] X. Yang and G. Zhu, “SI and HCCI combustion mode transition control of an HCCI 

capable SI engine,” IEEE Trans. Control Syst. Technol., vol. 21, no. 5, pp. 1558–1569, 

2013. 

[28] J. Warnatz, U. Maas, and R. W. Dibble, Combustion, ISBN-10 3-540-25992-9 4th ed. 

Springer Berlin Heidelberg New York,  2006. 



91 

 

[29] ASTM D2700-14, Standard Test Method for Motor Octane Number of Spark-Ignition 

Engine Fuel. West Conshohocken, PA: ASTM International, 2014. 

[30] A. D2699-13b, Standard Test Method for Research Octane Number of Spark-Ignition 

Engine Fuel. West Conshohocken, PA: ASTM International, 2014. 

[31] J. C. Guibet, Fuels and Engines - Technology, energy, environment, Éditions T. Paris, 

1999. 

[32] G. T. Kalghatgi, “A Method of Defining Ignition Quality of Fuels in HCCI Engines,” 

SAE, 2014. 

[33] Z. Liu, H., Yao, M., Zhang, B., Zheng, “Influence of Fuel and Operating Conditions on 

Combustion Characteristics of a Homogenous Charge Compression Ignition Engine,” 

Energy & Fuels, no. 23, pp. 1422–1430, 2009. 

[34] V. H. Rapp, W. J. Cannella, J.-Y. Chen, and R. W. Dibble, “Predicting Fuel Performance 

for Future HCCI Engines,” Combust. Sci. Technol., vol. 185, no. 5, pp. 735–748, May 

2013. 

[35] Niemeyer, K. E., Daly, S. R., Cannella, W. J., & Hagen, C. L. (2015). A Novel Fuel 

Performance Index for Low-Temperature Combustion Engines Based on Operating 

Envelopes in Light-Duty Driving Cycle Simulations. Journal of Engineering for Gas 

Turbines and Power, 137(10), 101601. doi:10.1115/1.4029948 

[36] J. J. Kelly, C. H. Barlow, T. M. Jinguji, and J. B. Callis, “Prediction of Gasoline Octane 

Numbers from Near-Infrared Spectral Features in the Range 660-1215 nm,” Analytical 

Chemistry, vol. 61, no. 4, pp. 313–320, 1989. 

[37] A. B. of A. Standards, “ASTM Procedures D 2699 and D 2700,” vol. 5.02, 1995. 

[38] http://www.grabner-instruments.com/products/fuelanalysis/index.aspx. 

[39] http://www.zeltex.com/eval.html. 

[40] J.-Y. C. G. Chin, “Modeling of emissions from HCCI engines using a consistent 3-zone 

model with applications to validation of reduced chemistry,” Proc. Combust. Inst., no. 33, 

pp. 3073–3079, 2011. 

[41] R. Design, “Reaction Workbench 15131.” San Diego, 2013. 

[42] Dave Goodwin, Nicholas Malaya, Harry Moffat, and Raymond Speth, “Cantera: An 

object-oriented software toolkit for chemical kinetics, thermodynamics, and transport 

processes. Version 2.1a1.” url: http://www.cantera.org/ 



92 

 

[43] H. Pitz, W.J., Cernansky, N.P., Dryer, F.L., Egolfopoulos, F.N., Farrell, J.T., Friend, D.G., 

Pitsch, “Development of an experimental Database and Chemical Kinetic Models for 

Surrogate Gasoline Fuels,” SAE 2007-01-0175, 2007. 

[44] C. Company, “Motor Gasolines Technical Review,” vol. FTR-1, pp. 1–69, 1996. 

[45] T. M. Foong, K. J. Morganti, M. J. Brear, G. Da Silva, Y. Yang, and F. L. Dryer, “The 

octane numbers of ethanol blended with gasoline and its surrogates,” Fuel, vol. 115, pp. 

727–739, 2014. 

[46] P. L. Perez and A. L. Boehman, “Experimental Investigation of the Autoignition Behavior 

of Surrogate Gasoline Fuels in a Constant-Volume Combustion Bomb Apparatus and Its 

Relevance to HCCI Combustion,” Energy & Fuels, vol. 26, no. 10, pp. 6106–6117, Oct. 

2012. 

[47] N. and Grumman, “Northrop Grumman Motor Gasolines, Winter 2004-05,” no. Report 

No. NGMS-240 PPS, 2005. 

[48] M. Chaos, A. Kazakov, Z. Zhao, “A high-temperature chemical kinetic model for primary 

reference fuels,” Int. J. Chem. Kinet, no. 39, pp. 399–414, 2007. 

[49] M. Chaos, Z. Zhao, A. Kazakov, P. Gokulakrishnan, M. Angioletti, “A PRF+toluene 

surrogate fuel model for simulating gasoline kinetics, in: Fifth Joint Meeting of the US 

Sections of the Combustion Institute,” Pap. E26, 2007. 

[50] J. Li, A. Kazakov, M. Chaos, “Chemical kinetics of ethanol oxidation, in: Fifth Joint 

Meeting of the US Sections of the Combustion Institute,” Pap. C28, 2007. 

[51] F. M. Haas, M. Chaos, F. L. Dryer, "Low and intermediate temperature oxidation of 

ethanol and ethanol–PRF blends: An experimental and modeling study", Combust. Flame 

156 2346–2350, 2009. 

[52] T. Bieleveld, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, U. Niemann, "Experimetnal 

and kinetic modeling study of combustion of gasoline, its surrogates and components in 

laminar non-premixed flames." Proc. Combust. Inst, no. 32, pp. 493–500, 2009. 

[53] C.V. Naik, W.J. Pitz, C.K. Westbrook, M. Sjöberg, J.E. Dec, J.P. Orme, H.J. Curran, 

“Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to 

an HCCI Engine,” SAE, Int., no. Report No. 2005–01–3741, 2005. 

[54] B. W. Weber, W. J. Pitz, M. Mehl, E. J. Silke, A. C. Davis, and C. J. Sung, “Experiments 

and modeling of the autoignition of methylcyclohexane at high pressure,” Combust. 

Flame, vol. 161, no. 8, pp. 1972–1983, 2014. 

 



93 

 

[55] S. M. Sarathy, C. K. Westbrook, M. Mehl, W. J. Pitz, C. Togbe, P. Dagaut, H. Wang, M. 

a. Oehlschlaeger, U. Niemann, K. Seshadri, P. S. Veloo, C. Ji, F. N. Egolfopoulos, and T. 

Lu, “Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from 

C7 to C20,” Combust. Flame, vol. 158, pp. 2338–2357, 2011. 

[56] Curran, H. J., P. Gaffuri, William J. Pitz, and Charles K. Westbrook. "A comprehensive 

modeling study of n-heptane oxidation." Combustion and flame 114, no. 1 (1998): 149-

177. 

[57] Westbrook, Charles K., William J. Pitz, Olivier Herbinet, Henry J. Curran, and Emma J. 

Silke. "A comprehensive detailed chemical kinetic reaction mechanism for combustion of 

n-alkane hydrocarbons from n-octane to n-hexadecane." Combustion and Flame 156, no. 

1 (2009): 181-199. 

[58] Curran, Henry J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. "A comprehensive 

modeling study of iso-octane oxidation." Combustion and flame 129, no. 3 (2002): 253-

280. 

[59] Oehlschlaeger, Matthew A., Justin Steinberg, Charles K. Westbrook, and William J. Pitz. 

"The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: 

Shock tube experiments and kinetic modeling." Combustion and flame 156, no. 11 (2009): 

2165-2172. 

[60] Westbrook, C. K., W. J. Pitz, J. E. Boercker, H. J. Curran, J. F. Griffiths, C. Mohamed, 

and M. Ribaucour. "Detailed chemical kinetic reaction mechanisms for autoignition of 

isomers of heptane under rapid compression." Proceedings of the combustion institute 29, 

no. 1 (2002): 1311-1318. 

[61] Westbrook, Charles K., William J. Pitz, Henry C. Curran, Janice Boercker, and Eric 

Kunrath. "Chemical kinetic modeling study of shock tube ignition of heptane 

isomers." International Journal of Chemical Kinetics 33, no. 12 (2001): 868-877. 

[62] Mehl, Marco, Guillaume Vanhove, William J. Pitz, and Eliseo Ranzi. "Oxidation and 

combustion of the n-hexene isomers: A wide range kinetic modeling study." Combustion 

and Flame 155, no. 4 (2008): 756-772. 

[63] Mehl, Marco, William J. Pitz, Charles K. Westbrook, Kenji Yasunaga, Christine Conroy, 

and Henry J. Curran. "Autoignition behavior of unsaturated hydrocarbons in the low and 

high temperature regions." Proceedings of the Combustion Institute 33, no. 1 (2011): 201-

208. 

[64] Mehl, Marco, William J. Pitz, Charles K. Westbrook, and Henry J. Curran. "Kinetic 

modeling of gasoline surrogate components and mixtures under engine 

conditions." Proceedings of the Combustion Institute 33, no. 1 (2011): 193-200. 



94 

 

[65] Silke, Emma J., William J. Pitz, Charles K. Westbrook, and Marc Ribaucour. "Detailed 

chemical kinetic modeling of cyclohexane oxidation." The Journal of Physical Chemistry 

A 111, no. 19 (2007): 3761-3775. 

[66] K. E. Niemeyer, C.-J. Sung, and M. P. Raju, “Skeletal mechanism generation for surrogate 

fuels using directed relation graph with error propagation and sensitivity analysis,” 

Combust. Flame, vol. 157, no. 9, pp. 1760–1770, Sep. 2010. 

[67] Niemeyer, Kyle E., and Chih-Jen Sung. "Mechanism reduction strategies for 

multicomponent gasoline surrogate fuels." In 7th US National Combustion Meeting of the 

Combustion Institute. 2011. 

[68] Niemeyer, Kyle E., and Chih-Jen Sung. "Mechanism reduction for multicomponent 

surrogates: A case study using toluene reference fuels." Combustion and Flame 161, no. 

11 (2014): 2752-2764. 

[69] Sarathy SM, Kukkadapu G, Mehl M, Wang W, Javed T, Park S, et al., "Ignition of alkane-

rich FACE gasoline fuels and their surrogate mixtures". Proc Combust Inst 2015;35:249–

57. doi:10.1016/j.proci.2014.05.122. 

[70] Ahmed A, Goteng G, Shankar VSB, Al-Qurashi K, Roberts WL, Sarathy SM. "A 

computational methodology for formulating gasoline surrogate fuels with accurate 

physical and chemical kinetic properties". Fuel 2015;143:290–300. 

doi:10.1016/j.fuel.2014.11.022. 

[71] K. E. Niemeyer, S. R. Daly, W. J. Cannella, and C. L. Hagen, “Investigation of the LTC 

fuel performance index for oxygenated reference fuel blends,” Fuel, vol. 155, no. x, pp. 

14–24, 2015. 

[72] A. Aldawood, S. Mosbach, M. Kraft, "HCCI combustion control using dual-fuel 

approach: Experimental and modeling investigations", SAE Technical Paper 2012-01-

1117, 2012. doi:10.4271/2012-01-1117. 

[73] T. Aroonsrisopon, V. Sohm, P. Werner, D. E. Foster, T. Morikawa, M. Iida, "An 

investigation into the effect of fuel composition on HCCI combustion characteristics", 

SAE Technical Paper 2002-01-2830, 2002. doi:10.4271/2002-01-2830. 

[74] A. Oakley, H. Zhao, N. Ladommatos, T. Ma, "Experimental studies on controlled auto-

ignition (CAI) combustion of gasoline in a 4-stroke engine", SAE Technical Paper 2001-

01-1030, 2001. doi:10.4271/ 2001-01-1030. 

[75] P. Yelvington, W. Green, "Prediction of the knock limit and viable operating range for a 

homogeneous-charge compression-ignition (HCCI) engine", SAE Technical Paper 2003-

01-1092, 2003. doi:10.4271/ 2003-01-1092. 



95 

 

[76] Jacob R. Zuehl, Jaal Ghandhi, Christopher L. Hagen, William Canella., "Fuel Effects on 

HCCI Combustion Using Negative Valve Overlap". SAE Technical Paper on 2010-12-04, 

doi:10.4271/2010-01-0161. 

[77] S. Saxena, J.-Y. Chen, and R. Dibble, “Maximizing Power Output in an Automotive Scale 

Multi-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine,” no. x, Apr. 

2011. 

[78] S. Saxena, N. Shah, I. Bedoya, and A. Phadke, “Understanding optimal engine operating 

strategies for gasoline-fueled HCCI engines using crank-angle resolved exergy analysis,” 

Appl. Energy, vol. 114, pp. 155–163, Feb. 2014. 

[79] Eng et al. US patent US20070119417. 

[80] I. Truedsson, M. Tuner, B. Johansson, W. Cannella, "Pressure sensitivity of HCCI auto-

ignition temperature for primary reference fuels", SAE Int. J. Engines 5 1089–1108., 

2012. 

[81] I. Truedsson, M. Tuner, B. Johansson, W. Cannella, Emission formation study of HCCI 

combustion with gasoline surrogate fuels, SAE Technical Paper 2013-01-2626, 2013. 

doi:10.4271/2013-01-2626. 

[82] I. Truedsson, M. Tuner, B. Johansson, W. Cannella, Pressure sensitivity of HCCI auto-

ignition temperature for oxygenated reference fuels, J. Eng. Gas. Turb. Power 135 

072801, 2013. 

[83] Hyvönen, Jari, Göran Haraldsson, and Bengt Johansson. Balancing cylinder-to-cylinder 

variations in a multi-cylinder VCR-HCCI engine. No. 2004-01-1897. SAE Technical 

Paper, 2004. 

[84] R.H. Butt et al., Improving ion current of sparkplug ion sensors in HCCI combustion 

using sodium, potassium, and cesium acetates: Experimental and numerical modeling, 

http://dx.doi.org/10.1016/j.proci.2014.06.084. 

[85] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python, 

http://www.scipy.org/, 2001–. [Online; accessed 2014-09-03]. 

[86] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, 

ACM Trans. Math. Software 22 (1996) 469–483. 

[87] EPA Office of Transportation and Air Quality, 2013. Dynamometer drive schedules. 

http://www.epa.gov/ nvfel/testing/dynamometer.htm. 

[88] Wipke, K. B., Cuddy, M. R., and Burch, S. D., 1999. ‘ADVISOR 2.1: A user-friendly 

advanced powertrain simulation using a combined backward/forward approach’. IEEE 

Trans. Vehicular Technol., 48(6), pp. 1751–1761. 



96 

 

[89] Gao, D. W., Mi, C., and Emadi, A., 2007. ‘Modeling and simulation of electric and hybrid 

vehicles’. Proc. IEEE, 95(4), pp. 729–745. 

[90] http://www.crcao.org/workshops/LCA%20October%202013/Opening/Bailey,%20Brent.pdf. 

[91] L. a. Averett, P. R. Griffiths, and K. Nishikida, “Effective path length in attenuated total 

reflection spectroscopy,” Anal. Chem., vol. 80, no. 8, pp. 3045–3049, 2008. 

[92] Harrick, N. J.Internal Reflection Spectroscopy; Interscience Publishers: New York, 1967. 

[93] N. J. Harrick and F. K. du Pré, “Effective thickness of bulk materials and of thin films for 

internal reflection spectroscopy.,” Appl. Opt., vol. 5, no. 11, pp. 1739–1743, 1966. 

[94] Harrick, N. J. J. Opt. Soc. Am. 55, 851-857, 1965. 

[95] Robert Siegel and John R. Howell. Thermal radiation heat transfer. Taylor & Francis, 

New York, 2002. 

[96] Craig Bohren and Donald Huffman. Absorption and Scattering of Light by Small 

Particles. Wiley., 1998. 

[97] David W. Ball. The basics of spectroscopy. Tutorial texts in optical engineering, v. TT 49. 

SPIE- The International Society for Optical Engineering, Bellingham, WA, 2001. 

[98] Bertie, J., Infrared Intensities of Liquids XIII: Accurate Optical Constants and Molar 

Absorption Coefficients Between 6500 and 435 cm-1 of Toluene at 25 C, from Spectra 

Recorded in Several Laboratories., Applied Spectroscopy Vol:48 No:1,” 1994. 

[99] Jason Morgan Porter, "Laser-Based Diagnostics for Hydrocarbon Fuels in the Liquid and 

Vapor Phases", PhD. Thesis, Stanford University, 2009. 

[100] J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared absorption measurements of 

liquid hydrocarbon fuels near,” J. Quant. Spectrosc. Radiat. Transf., vol. 110, no. 18, pp. 

2135–2147, Dec. 2009. 

[101] C. Dale Keefe, “Computer programs for the determination of optical constants from 

transmission spectra and the study of absolute absorption intensities,” J. Mol. Struct., vol. 

641, no. 2–3, pp. 165–173, Nov. 2002. 

[102] Bertie, John E., C. Dale Keefe, and R. Norman Jones. "Infrared intensities of liquids VIII. 

Accurate baseline correction of transmission spectra of liquids for computation of absolute 

intensities, and the 1036 cm-1 band of benzene as a potential intensity 

standard." Canadian journal of chemistry 69, no. 11 (1991): 1609-1618. 

 



97 

 

[103] Mirabella, Francis M. Internal reflection spectroscopy: Theory and applications. Vol. 15. 

CRC Press, pg. 20, 1992. 

[104] W. Cannella et al., "Face Gasolines and Blends with Ethanol : Detailed Characterization 

of Physical and Chemical Properties", CRC Report No . AVFL-24, July 2014. 

[105] S. Corsetti, F. M. Zehentbauer, D. McGloin, and J. Kiefer, “Characterization of 

gasoline/ethanol blends by infrared and excess infrared spectroscopy,” Fuel, vol. 141, pp. 

136–142, Feb. 2015. 

[106] J. T. Reilly, a. Thomas, a. R. Gibson, C. Y. Luebehusen, and M. D. Donohue, “Analysis of 

the Self-Association of Aliphatic Alcohols Using Fourier Transform Infrared (FT-IR) 

Spectroscopy,” Ind. Eng. Chem. Res., vol. 52, pp. 14456–14462, 2013. 

[107] H. C. Van Ness, J. Van Winkle, H. H. Richtol, and H. B. Hollinger, “Infrared spectra and 

the thermodynamics of alcohol-hydrocarbon systems,” J. Phys. Chem., vol. 71, no. 6, pp. 

1483–1494, 1967. 

[108] Barry K. Lavine and Jerome Workman, “Chemometrics,” Anal. Chem., vol. 74, no. 12, pp. 

2763–2770, 2002. 

[109] L. I. Smith, “A tutorial on Principal Components Analysis Introduction,” 2002. 

[110] “Elementary Linear Algebra 5e” by Howard Anton, Publisher JohnWiley & Sons Inc, 

ISBN 0-471-85223-6. . 

[111] http://www.mathworks.com/help/stats/partial-least-squares-regression-and-principal-

components-regression.html. 

[112] Chapra, Steven C., and Raymond P. Canale. Numerical methods for engineers. Vol. 2. 

McGraw-Hill, 2012. 

[113] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data 

Min. Knowl. Discov., vol. 2, pp. 121–167, 1998. 

[114] O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, and J. P. Huvenne, “Support vector 

machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization 

and model interpretation,” Chemom. Intell. Lab. Syst., vol. 96, no. 1, pp. 27–33, 2009. 

[115] J. Luts, F. Ojeda, R. Van de Plas Raf, B. De Moor, S. Van Huffel, and J. a K. Suykens, “A 

tutorial on support vector machine-based methods for classification problems in 

chemometrics,” Anal. Chim. Acta, vol. 665, no. 2, pp. 129–145, 2010. 

[116] E. Kim, “Everything You Wanted to Know about the kernel Trick.” [Online]. Available: 

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html. 



98 

 

[117] “FTIR graphic” [Online]. Available: 

https://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy#/media/File:FTIR

_Interferometer.png. 

[118] “Nicolet FTIR commercial graphic” [Online]. Available: 

http://www.thermoscientific.com/content/tfs/en/product/omnic-series-software.html. 

[119] “Hawranek,J.P., The control of errors in i.r. spectrophotometry—III. Transmission 

measurements using thin cells, Spectrochimica acta. Part A, Molecular spectroscopy, 

Vol:32, is: 1,” 1976. 

[120] J. E. Bertie and S. L. Zhang, “Infrared intensities of liquids. IX. The Kramers–Kronig 

transform, and its approximation by the finite Hilbert transform via fast Fourier 

transforms,” Can. J. Chem., vol. 70, no. 2, pp. 520–531, Feb. 1992. 

[121] D. C. Keefe, "Computer Programs for Optical Constant Method"  [Online] Available: 

http://faculty. uccb.ns.ca/dkeefe/ programs. 

[122] Scherzer, Julius. "Octane-enhancing, zeolitic FCC catalysts: scientific and technical 

aspects." Catalysis Reviews—Science and Engineering 31, no. 3 (1989): 215-354. 

[123] Colorado school of mines, “Hydrocarbon Database”.  

[124] Francis A. Carey, Richard J. Sundberg, "Advanced Organic Chemistry: Part A: Structure 

and Mechanisms", Springer Science & Business Media, (2007), ISBN: 0387448977, 

9780387448978. 

[125] K. Owen, T. Coley: Automotive Fuels Handbook, Society of Automotive 

Engineers,Warrendale, PA, 1990, pp.564–565. 

[126] API Research Project 45: "Knocking characteristics of pure hydrocarbons". 1958, ASTM. 

[127] Perez, P.L. and A.L. Boehman, "Low-Temperature Oxidation of Hydrocarbon Fuels in a 

Motored Engine", In ACS Fuel Chemistry Division Preprints, 55(1), 566-567 (2010). 

[128] T. a. Albahri, “Structural Group Contribution Method for Predicting the Octane Number 

of Pure Hydrocarbon Liquids,” Ind. Eng. Chem. Res., vol. 42, pp. 657–662, 2003. 

[129] M.J. Pilling, Low-temperature Combustion and Autoignition. Amsterdam: Elsvier Science 

B.V., 1997. 

[130] Hunwartzen I., ‘Modifications of CFR test engine unit to determine octane numbers of 

pure alcohols and gasoline-alcohol blends’. SAE Technical Paper 820002; 1982. 

 



99 

 

[131] Anderson JE, Leone TG, Shelby MH, Wallington TJ, Bizub JJ, Foster M, et al., "Octane 

numbers of ethanol–gasoline blends: measurements and novel estimation method from 

molar composition". SAE Technical Paper 2012-01- 1274; 2012. doi: 

http://dx.doi.org/10.42.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 

 

Appendix A: Development of Python/ Cantera Model 

A1 Engine Geometry 
 

Table 4: Engine Geometry/ Parameters for HCCI Simulations 

Engine Geometry/ Parameters for CRC Research Engine 

Parameter Value / Equation 

13 

0.828 

616 E-06 

4.44 

Compression Ratio, rc 

Cylinder Bore [m], B 

Displacement Volume [m3], Vd 

Ratio of Stroke to Crank Radius, c 

Stroke [m], s 4𝑉𝑑/(𝜋𝐵2)   

Maximum Cylinder Volume [m3] 4𝑉𝑑𝑟𝑐/(𝑟𝑐 − 1)  

Piston Area [m2] 𝜋𝐵2/4 

Rotation Rate [rad/s], 𝑤̇  𝑅𝑃𝑀𝜋/30 

 

 

 A2 Control Volume Relations 
 

Table 5: Piston Speed and Control Volume Relations for HCCI Simulations 

Piston Speed/ Control Volume Relations 

Parameter Equation 

Piston Speed(t) 

[m/s]  ẇ
s

2
sin(t ẇ) (1 −

cos(t 𝑤̇) 

√c2 − sin(t 𝑤̇)2
) 

Volume(t) 

[m3], V(t) 

Vd

rc − 1
+

Vd

2
∗ (1 + c − cos(t 𝑤̇ − π) − √c2 − sin(t 𝑤̇ − π)2)  
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A3 Heat Transfer Relations 
 

Table 6: Woschni Heat Transfer Correlation for HCCI Simulations 

Heat Transfer Correlation  

Parameter Equation 

0.1 ∗ 𝐶1𝜇 (𝑇)𝐶2𝜇  

10−5 ∗ 𝐶1𝑘(𝑇)𝐶2𝑘  

2*s*RPM/60 

C11*Sm 

Viscosity, 𝜇 

Thermal Conductivity [W/m-K], kg  

Average Piston Speed [m/s], Sm 

Woschni average cylinder gas velocity, 

𝑤̅ 

Reynolds Number, Re Bw̅ρ/μ 

Nusselt Number, Nu aRebPrc 

Convective Heat Transfer Coefficient 

[W/m2-K], h  

Nu ∗ kg/B 

Heat Transfer Flux [W/m2], 𝑞′′  
(h ∗ (Tw − T) ∗

(2 ∗ π ∗ B3 + 16 ∗ V(t))
4 ∗ B )

Ap
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A4 Thermo-Physical Property Evaluation 

During the evaluation of the Cantera model, it was found that results considering heat transfer 

were not consistent with Chemkin results.  The issue was narrowed down to the thermo-physical 

property evaluation used in the heat transfer model.  The form for the property evaluation within 

Chemkin are as follows:   

𝜇 = 0.1 ∗ 𝐶1𝜇 (𝑇)𝐶2𝜇   

𝑘𝑔 = 10−5 ∗ 𝐶1𝑘(𝑇)𝐶2𝑘 

Reaction Design kindly provided the constants (C1 and C2) to evaluate the above expressions.  

These properties are used to determine the convective heat transfer coefficient for the control 

surface boundary, via the Woschnii heat transfer correlation.  Using the same heat transfer 

correlation and thermo-physical constants as that of Chemkin within Cantera, the heat transfer 

results were still found to be significantly different.  A small study was done to investigate this 

discrepancy.    

Chemkin outputs crank resolved heat losses through the control surface, piston-cylinder heat 

transfer area, and temperature—it is therefore possible to back-solve for the thermo-physical 

properties with the heat transfer correlation.  Through this study, it was found that the constants 

Reaction Design provided were “half correct”.  If the constants were not user-defined and left 

blank within the Chemkin menu, it would be expected that the default values would be 

referenced.  This is not the case, and in fact the default values provided by reaction design were 

not actually being used for this scenario.  Albeit, if one or more of the constants were user-

defined and a few left blank, the default constants were being used for the constants not user-

defined (left blank).  Regardless, it was of importance for this study to match Chemkin since 

prior fuel studies had been done with Chemkin, so with the transition to Cantera it was then 

desired to have comparable results.  With the previous Chemkin studies all constants were left 

undefined, so the constants actually being used by Chemkin were left to be determined.  

The thermo-physical properties from Chemkin—back-solved from the heat transfer 

correlations—were plotted versus temperature.  Seen in Figure 44, it is observed that after TDC 

new constants are used.  It is inferred that Chemkin is taking into account that air is primarily 
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present BTDC, while ATDC it is exhaust products.  Since the variation is very slight, a best fit 

line was determined and the constants yielding this were recorded:   

𝐶1𝜇= 1.1258e-05 

𝐶2𝜇= .485 

𝐶1𝑘= 132.7906 

𝐶2𝑘= .5 

 

When these above constants are used within the Cantera model, excellent agreement between 

heat transfer results was achieved to that of past Chemkin results.  The LTC index for CR9.5 

with pure n-Heptane, which was determined with Chemkin, was found to be the same value with 

Cantera-based results.    
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Figure 44: Chemkin viscosity (top) and thermal conductivity (bottom) back-solved from heat 

transfer correlations.  A best-fit line is fit to solve for the constants used within Chemkin.  

Temperature [K] 

T
h
er

m
al

 c
o
n
d
u

ct
iv

it
y
, 
k

 
V

is
co

si
ty

, 𝜇
 

Temperature [K] 

0.025 

0.03 

0.04 

0.05 

0.035 

0.045 

400 600 800 1000 1200 1400 1600 1800 

400 600 800 1000 1200 1400 1600 1800 200 
1.5 

2.5 

3.5 

4.5 

4 

3 

2 

×10-5  



106 

 

A5 Chemkin vs. Python Comparison Studies  

A5.1 Adiabatic compression  
   

 

 

 

Figure 45: Adiabatic compression results of Python/Cantera model vs. Chemkin. % Error of 

temperature and pressure of Python/Cantera vs. Chemkin for Adiabatic compression results 
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A5.2 Adiabatic combustion 

 
 

 

 

Figure 46: Adiabatic combustion of pure n-heptane results of Python/Cantera model vs. Chemkin. 

% Error of temperature and pressure of Python/Cantera vs. Chemkin for Adiabatic combustion of 

pure n-heptane results. 
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A5.3 Combustion with Heat Loss  

 

 

Figure 47: Combustion with heat loss of pure n-heptane: heat loss results of Python/Cantera model 

vs. Chemkin.    

 

 

Figure 48: Combustion with heat loss of pure n-heptane: net heat release per crank angle results of 

Python/Cantera model vs. Chemkin.  
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Appendix B: Infrared Spectroscopy Theory / Post-processing 

B1 Beer’s Law 

Beer’s law describes how the attenuation of light through materials depends on the sample 

thickness and concentration of the material.  The thickness, i.e., path length, dependence was 

discovered independently by Pierre Bouguer and Johann Lambert in 1729 and mid-1750s, 

respectively [97].  Following this, August Beer contributed the concentration dependence in 

1852 [97] .  These concepts combined together create the Beer-Lambert-Bouguer law, or simply 

Beer’s Law.  The mathematical derivation of the law can be found in many texts (e.g., [95], 

[96]), but will briefly be presented here.  

Take a beam of coherent light at some wavelength and intensity, 𝐼𝜈, incident upon a material of 

some thickness (visualized below).  The incoming radiation will pass through the material and be 

absorbed to some degree, indicated by the change of a finite amount of intensity  𝑑𝐼𝜈.        

   

 

 

 

 

Figure 49: Illustration of attenuation of light through an absorbing medium for Beer’s law   

 

An energy balance can be performed that equates the energy in, out, and absorbed within the 

control volume: 

𝑑𝐼𝜈 = 𝐼𝑖𝑛,𝜈 − 𝐼𝑜𝑢𝑡,𝜈 

The addition of the attenuation coefficient, 𝛽, will be introduced to represent the scalar amount 

that could be multiplied by the incident radiation to retrieve the exiting radiation after absorption 



110 

 

occurs at some differential thickness, ds.  Note that it has been assumed that the material under 

consideration has no fluorescent qualities and Mie scattering can be ignored.    

𝑑𝐼𝜈 = −𝛽𝑒,𝜈,𝑇 𝐼𝑖𝑛,𝜈𝑑𝑠 

Rearranging Iin to the left side of the equation and integrating results in,  

ln (
𝐼

𝐼𝑖𝑛
)

𝜈

= ln (𝑇) = −𝛽𝑒,𝜈,𝑇𝑠  

where transmittance has been defined as the ratio of I to Iin.  Now, defining the absorbance, A, 

and separating the attenuation coefficient out to account for concentration and molecular size 

effects: 

−ln(𝑇) = 𝐴 =  𝜎𝜈,𝑇 𝑐 𝑠                                                          (𝐵. 1) 

The absorbance represents the amount of light absorbed by the material, and is linearly 

proportional to the path length and attenuation coefficient.  The attenuation coefficient represents 

the product of the concentration of the sample, c, and the effective cross sectional area of the 

absorbing material, 𝜎𝜈,𝑇.     

B2 Fourier Transform Infrared Spectroscopy (FTIR) 

The working principle of FTIR for collecting IR data is based on the Michelson Interferometer.  

In a Michaelson Interferometer, light is split into two beams at a beam splitter, where one beam 

is reflected back from a stationary mirror and the other from a moving mirror. The moving 

mirror acts to delay the beam’s arrival to create destructive and constructive interference of the 

light wave depending on wavelength and the mirror position. This makes it possible to take the 

polychromatic light source and modulate many different wavelengths.  With the moving mirror’s 

known position as a function of time, the Fourier transform can be taken of the interferogram—

the light intensity as a function of mirror position—to determine the frequency of the generated 

light.   
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Figure 50: working principle of Michelson Interferometer. [117] 

A scan of mirror positions and light intensity are taken without a sample (Io) in the FTIR beam 

path and with a sample in the beam path (I).   These two signals are ratioed as described in 

Equation B.1 and used to determine wavelength specific absorbance.  Two common approaches 

for collecting sample measurements with and FTIR are explained next. 

B2.1 Transmission 

Transmission-based FTIR (hereafter referred to as transmission) is a quantitative IR collection 

technique, in which the light physically passes through a sample.  With transmission, it is 

possible to know with certainty the important physical parameters that are present in Beer’s law.  

These properties are the path length—controlled by the geometry of the sample container—and 

the concentration(s) (i.e., density) of the sample of interest.  With these parameters, as well as 

other parameters and relations to account for reflection losses, it is possible to determine the 

effective absorbing cross-sectional area, i.e., molar absorption coefficient, which is a quantitative 

measure of the optical absorbing capability of that medium.  Since it is possible to determine a 
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quantitative measure of the optical property of the material, transmission is a quantitative 

spectroscopic technique.  The post-processing theory for transmission data will now be 

discussed.  

B2.1.1 Post Processing Transmission Data 

In liquid transmission experiments the sample is confined between two optically transparent 

windows, such as potassium bromide (KBr), at short path lengths.  First, determining the path 

length of the sample container will be discussed, followed by how to account for ideal and non-

ideal reflection losses caused by the cell windows.   

The path length is determined by counting the interference fringes caused by internal reflections 

between the two cell windows (i.e., an etalon).  To do this, light (Io) is passed through the 

atmosphere, and then again (I) through the cell windows with no sample inside.  Light reflects at 

the boundaries of disparate media, which causes destructive interference between the two 

windows in addition to the interference within the cell windows itself. However, the windows are 

sufficiently thick and cause a large overtone that is not captured in the spectral range under 

consideration.  The path length is determined using 

𝐿 =
𝑀

2(𝜈1−𝜈2)
 ,                                                          (B.2) 

where M is the number of intensity peaks between optical frequencies 𝜈1 and 𝜈2.  Because of the 

interference pattern created (see Figure 51 for an example), it is possible to determine the path 

length. These interference fringes also produces noise in the absorbance data if the baseline 

measurement includes this.   

 

Figure 51: 0.515 [mm] path length interference fringe pattern.  Peak values, labeled with associated 

frequencies, were determined with OMNICTM series software [118]. 
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Therefore, the baseline used for these experiments (Io) is that of only the atmosphere in the 

beam’s path with no cells, and the sample measurement (I) is with the windows and sample.  

This is done because the liquid samples of interest have an index of refraction close to that of the 

potassium bromide cells, and thus the interference fringes are negligible.  When the liquid 

sample is inside the transmission windows no fringes are created.  As a result, only the 

atmosphere for the baseline measurement is used when measuring liquid hydrocarbons.  

Otherwise, when the baseline (Io) and measurement (I) are ratioed the interference fringe pattern 

would appear in the post-processed data.     

Path length measurements of less than 15 [𝜇𝑚] were performed for a few highly absorbent 

samples.  In this case, the liquid is pressed between the two transmission slides directly (i.e., with 

no spacer), and as a result there is no way to determine the path length by way of counting the 

interference fringes.  Instead, the path length is linearly extrapolated based on the absorbance 

measurements from the longer path length experiments at non-saturated absorbing frequencies.  

For these shorter path length cases, the value of path length was calculated using  

𝐿𝑠ℎ𝑜𝑟𝑡[𝑐𝑚] =
𝐴𝑠ℎ𝑜𝑟𝑡(𝜈)−𝑏

𝐴𝑙𝑜𝑛𝑔(𝜈)−𝑐
𝐿𝑙𝑜𝑛𝑔                                                       (B.3) 

where the constants b and c represent values that correct non-absorbing frequencies to zero 

absorbance; this serves as a first-order approximation to correct for the reflection losses from the 

lenses. This is only done for path length measurements less than 15 microns.  The process for 

longer path lengths will be discussed next.  

With the path length determined experimentally (or extrapolated for small path lengths), the 

required parameters for Beer’s law are all known.  However, the absorbance hides an additional 

term: the amount of light reflected by the lenses themselves.  Accounting for these reflection 

losses is important as they inflate the absorbance attributed to the sample, since in reality a 

portion of the measured absorbance is reflected away from the light detector and not in fact 

absorbed by the material at all.  These windows reflect some of the incident radiation due to the 

difference between the refractive indices when mediums change (i.e., air to slides, slides to liquid 

sample).  Therefore, the light captured by the detector has been attenuated by the medium and 
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the light lost due to reflection—and therefore the measured absorbance is larger than the true 

value for the absorbing medium.  The work of Bertie et al. (see Bertie et al [102], and Porter et 

al. [99], [100]) presents the theory, solution procedure, and developed software to account for 

ideal and non-ideal losses due to reflection for this application.  A complete summarization of 

the referenced work [99], [100], [102] is presented here.         

In order to account for light lost due to reflection in the transmission slides, it is important to 

leverage other developments from both the particle and wavelike behaviors of light.  The 

remainder of this section will introduce the theory that makes it possible to account for these 

reflection losses: guided by the useful summarization by Porter et al. [99] of the collective efforts 

of Bertie, Hawranek, Keefe, and many others towards liquid transmission I.R. spectroscopy.  

First, an introduction of the real and imaginary optical refractive index will be introduced. 

Second, the imaginary refractive index will be related to the molar absorption coefficient present 

in Beer’s law. Third, Kramers–Kronig integration will be established as a means to relate the real 

and imaginary optical constants.  Lastly, the step-by-step process of how all these relations allow 

us to determine ideal and non-ideal reflective losses in the transmission lenses will be laid out in 

full detail—the entirety of this process to be discussed is known as the optical constant method.  

The frequency dependent optical constants for materials are referred to as the real and imaginary 

refractive indices, which sum together to form the complex refractive index [119].  

𝑚(𝜈) = 𝑛(𝜈) + 𝑖𝑘(𝜈)                                                               (B.4) 

The real refractive index, 𝑛(𝜈), is understood by the physical distortion of light at the interface 

of disparate media, e.g., when light “bends” as it transitions from air to water.  The imaginary 

refractive index, i.e., absorption index 𝑘(𝜈), is related to the molar absorption coefficient and 

measures the attenuation of electromagnetic radiation propagating through an absorbing medium.  

The above optical constant relation may be better understood by comparing it with the solution 

of harmonic oscillations for a damped-mass-spring system; which has real (e.g., physical 

position, much like the physical distortion of light) and imaginary portions (e.g., energy decay 

through absorbance by the dampener, much like the energy decay of light by being absorbed by 

the medium).  The imaginary refractive index, the value attributed to energy being absorbed by 

the medium, will now be related to the molar absorption coefficient. 
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It is possible to derive Beer’s law from Maxwell’s equations, which also gives the useful 

expression relating the imaginary refractive index to the molar absorption coefficient.   

Moreover, it illustrates an intuitive definition of the refractive index(s), and shows that real and 

imaginary refractive index are dependent on each other—interested readers are directed to the 

thesis of Porter et al. [99] for a full, succinct derivation.  The end result is summarized as 

follows:  

𝜎(𝜈) =
4𝜋𝜈𝑘(𝜈)

𝑛𝑎
                                                                 (B. 5) 

where 𝜎 is the effective molar cross sectional area in cm2/mole (e.g., molar absorption 

coefficient), and 𝑛𝑎 is the concentration in mole/cm3. The final physical relation required for the 

optical constant method will now be introduced.   

With the above expression (eq. B.5) derived from classical mechanical arguments, another useful 

relation—derived with little physical intuition—known as the Kramers–Kronig relations are 

presented.  The relation states that an imaginary solution for a given system can be retrieved 

from the real solution, and vice versa.  Again, for illustrative purposes, imagining a damped-

mass-spring system, if one knows the position as a function of time the imaginary portion (e.g., 

energy dissipated in the dampener) can be deduced.  This process can be done analytically with 

the Kramers–Kronig relations—also known as dispersion relations specific to the application of 

optics—and is accomplished through integral equations.  The form of the following relation is 

specific to optical constants, though is not too far off from the general relation:  

𝑛(𝜈𝑖) − 𝑛(∞) =
2

𝜋
 𝑃 ∫

𝜈𝑘(𝜈)

𝜈2 − 𝜈𝑖
2 𝑑𝜈

∞

0

                                           (B. 6) 

where 𝑃 indicates taking the principal value of the improper integral, due to the singularity at 

𝜈 = 𝜈𝑖 [120].   

Recall that the purpose of the optical constant method is a means to correct the absorbance data 

to account for reflection losses in the transmission lenses.  The reasons for this process will be 

discussed due to unknown variables and underlying assumptions; first, the unknown variables 

and the procedure to solve for them are to be outlined.   
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The Fresnel relations determine the ideal loss of transmission of light from the lenses—not 

defined in the Optical Constant Method –Equations section.  These relations, and the specific 

application towards thin film spectrophotometry, can be found in Hawranek [119].  The Fresnel 

relations solve for the fraction of electromagnetic radiation that is lost, i.e., refracted away from 

its original path at the interface of disparate media due to the real index of refraction differences.  

Excluding some variables, the relations depend on the real index of refraction of both substances 

(the lenses and the sample).  The real index of refraction as a function of wavenumber, i.e., n-

spectrum, for the lenses are typically known and can be found readily, while that of the samples 

are typically unknown—especially for liquid hydrocarbons which have not extensively been 

studied quantitatively [99], [100].  Since the real index of refraction for the sample is unknown, 

it has to be determined from the series of equations developed a priori leveraging the actual 

absorption measurements of the sample. 

Since the real refractive index is unknown for the sample, a first approximation is found from the 

uncorrected absorbance data by utilizing Maxwells’ relation and performing Kramers–Kronig 

integration (eq. B.5 and B.6, respectively).  This gives an approximate n-spectrum as it still 

represents non-ideal and ideal losses present from the uncorrected absorbance data.  Nonetheless, 

this n-spectrum can be used in the Fresnel relations (see Hawranek [119]) to find the 

approximate ideal reflection losses.  These losses are subtracted from the data and referred to as 

a baseline correction.  An example n-spectrum can be seen in Figure 52. In addition to ideal 

losses caused by reflection, non-ideal losses will be explained and a solution process to account 

for this will now be introduced.  This process first requires an explanation of the importance of 

using multiple path length measurements.  
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Figure 52: n-spectrum of Ethanol near 3000 [𝒄𝒎−𝟏] from Daly  

Multiple path length absorption measurements and why such a process is used to create a 

composite spectrum, in addition to how it provides a means to solve for non-ideal losses will 

now be discussed.  Liquid hydrocarbons have high molar absorption coefficients at absorbing 

frequencies, and therefore short path lengths are required for measurements to avoid spectral 

saturation—i.e., absorbance values greater than three.  Guided by literature [99], [100], an 

absorbance value greater than three is taken to be saturated data, which corresponds to 0.1% of 

the incident radiation transmitting through the sample.  It was found from experiments in this 

work that our instrument followed this “rule of thumb”, as anything higher than an absorbance of 

three was beyond the instrument resolution; e.g., see Figure 53 and notice the longer path lengths 

do not follow the trends of the unsaturated shorter path length samples.  Therefore, long path 

length measurements give better resolution at lower-absorbing frequencies, and the short path 

lengths capture the higher absorbing frequencies without spectral saturation.  In the end, a 

composite spectrum is constructed that combines the multiple spectra of each path length.  Note 

that in Figure 53, the ethanol absorbance at the longer path lengths at highly absorbing 

frequencies cannot be used as the data is completely saturated, whereas as the path length 

decreases the saturation is eliminated.  However, at the smaller path lengths some of the 

moderately absorbing peaks are barely captured.  The process by which the longer path length 

samples are used to correct for non-ideal losses will now be presented.   
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Longer path lengths are sought after, as they give better spectral resolution (i.e., signal to noise 

ratio) at lower-absorbing frequencies that cannot be achieved with short path length 

measurements.  More importantly, non-ideal losses make little-to-no contribution to the overall 

losses (e.g., due to cell positioning, which enhance non-ideal losses as the path length decreases) 

in long path length measurements [102].  It is assumed that for long path lengths the light 

absorbed is the sum of the ideal transmission losses through the cell and that by the sample, since 

 Understanding the importance of multiple path length measurements brings us to the idea of 

Anchor point correction. Invented by Bertie et al. [102], this method leverages the longer path 

length samples (that lack non-ideal losses) to determine the non-ideal losses in the shorter path 

length samples that we require to avoid saturated data.  Before continuing, the linear absorption 

coefficient is introduced: 

𝐾(𝜈) =
𝐴(𝜈)

𝑠
                                                                  (B. 7) 

Figure 53: Ethanol IR Absorbance Spectrum at various path lengths from Daly 
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The linear absorption coefficient is the absorption (from Beer’s law in Equation B.1) normalized 

by the path length used at that measurement. Thus, if one were to compare the linear absorption 

coefficient of various path lengths for a sample—for a constant concentration throughout—the 

coefficients should be equal.  Linear absorption coefficients are determined at all the path length 

studies at anchor points—user-determined points where low-absorbing frequencies exist, as they 

are not saturated when long path lengths are used.  Take, for example, ethanol, which is 

illustrated in Figure 55.  A good “anchor point” for this example is seen to be around 2450 

[𝑐𝑚−1], as the long path length data is not saturated at this point.  With the linear absorption 

coefficients (K(𝜈)) at the chosen anchor point for all path lengths, the K(𝜈) values at long path 

lengths can be compared to the shorter path length samples. The difference between the “long” 

and “short” linear absorption coefficients gives the non-ideal losses present in the “short” 

samples at the anchor points.  As a result, in addition to accounting for the ideal reflection losses 

via the Fresnel relations, it is now also possible to subtract out non-ideal losses present in short 

path length data.  However, the non-ideal losses are only known at the anchor points, as at other 

frequencies the data is too saturated and therefore the linear absorption coefficient cannot be 

determined.  Bertie et al. [102] uses a linear fit of the non-ideal losses between user-defined 

anchor points across the spectral breadth considered.  With an understanding of how to account 

for ideal and non-ideal losses the solution procedure will now be laid out.  

With the physical assumptions and mathematical relations laid out, a map of the solution process 

from the original, uncorrected data to the corrected absorbance data will be discussed.  Guided 

by the original work of Bertie et al. [102], and the useful summary of that work from Porter et al. 

[99], the previously stated methodology can be implemented with updated software from Keefe 

et al. [101].  The software used (multiple windows executable files) is introduced as the solution 

process is explained, all of which can be found on the World Wide Web [121].  The solution 

process will now be laid out, and a flow chart illustrating the process is seen in Figure 54.      

Using the developed in-house (OSU) Python script, the raw single beam spectra are first taken 

and converted to transmittance.  Following this, the transmittance spectra are converted to 

absorbance for convenience: recall Beer’s law relates absorbance to concentration, path length, 

and the molar absorption coefficient.  These absorbance spectra are now ready to be corrected to 

account for the ideal and non-ideal reflection losses from the lenses.  Before continuing, it will 
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be noted that the programs to be introduced are windows executable files (.exe) that read and 

write Meta files and access these when executed.  To automate using these programs, another in-

house Python script was created to efficiently read and write the Meta files and run the windows 

executable’s—previously, the output of one program, being a Meta file, had to be manually 

entered into another Meta file repeatedly.  The created Python program can be found in 

Appendix F. 

Since the n-spectrum of the fuel sample is unknown, an approximation of the ideal losses cannot 

be determined via the Fresnel relations.  To mitigate this, the uncorrected absorbance spectrum is 

converted to the imaginary index, 𝑘(𝜈), via Beers’s law (eq. B.1) and Maxwell’s relation (eq. 

B.5).  The k-spectrum is then used with the Kramers–Kronig dispersion integral equation (eq. 

B.6) to calculate the n-spectrum—all these operations are internally done with EXPABS2K.  

These initial operations can be visualized as step #1 in Figure 54. With the approximate n-

spectrum—now moving to step #2 in Figure 54—the Fresnel relations can be utilized to solve for 

the ideal losses. Subsequently the linear absorption coefficients, 𝐾(𝜈), in the long path length 

sample at the anchor points are determined: accomplished with BASELINE.  At this point, the 

long path length sample have been corrected as the non-ideal losses are insignificant for this 

sample [102].  The non-ideal losses for the short path length samples can be found with anchor 

point correction, which will now be explained.  

EXPABS2K accepts the linear absorption coefficients at the user-defined anchor points from 

program BASELINE.  Recall the difference between the linear absorption coefficient of the long 

path length samples and the short path length samples yields the non-ideal losses [102].  The 

non-ideal losses are linearly interpolated between the anchor points and are subtracted from the 

data at each respective path length throughout the spectrum.  Additionally, EXPABS2K performs 

a baseline correction for the short path length samples that are being corrected in this step.  All 

absorbance spectrums for each path length have now been approximately corrected for ideal and 

non-ideal losses. 

With the absorbance spectrums approximately corrected for reflection losses, the aforesaid 

process (step #2) is repeated.  At this point, a more accurate n-spectrum and absorbance 

spectrum will be used to repeat step #2: indicated by the dashed lines seen in Figure 54.  This 

will serve to better correct all path length samples.  At convergence, which usually occurs in 
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about three to four iterations, the ideal and non-ideal losses have been adequately accounted 

for—convergence is defined when the residual of 𝐾(𝜈) for all anchor points between iterations 

are within 1E-4.  At this point, absorbance spectrums of all path lengths are combined to create a 

composite spectrum, as illustrated in step # 3.  This is done by taking the molar absorption 

coefficient spectra (or k-spectrum since they are related through Maxwell’s relation) and filtering 

the data.  Longer path length samples are preferred unless the data is spectrally saturated, i.e., the 

absorbance value is greater than three.  If this is the case, the next shortest path length data at that 

frequency is selected, and so on.  This corrected composite spectrum of all path lengths is the 

final result of the optical constant correction method for the 𝑘-spectrum.  The final step is using 

Kramers-Kronig integration with the composite 𝑘-spectrum to determine the final n-spectrum: 

done with KKTRANS, a stripped down version of EXPABS2K, which accepts the k-spectrum as 

an input.   
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Figure 54: Flow chart of post-processing transmission-based IR absorbance data.  This particular 

strategy is known as the optical constant method with anchor point correction.  Dashed lines 

indicate process paths undergoing iteration. Subscripts “i” indicating the iteration count, and “c” 

indicating the spectrum has been corrected.  After the convergence criteria is reached (𝑲𝒊+𝟏 − 𝑲𝒊 ≤
𝟏𝑬-𝟒 for all anchor points), 𝒌𝒊,𝒄(𝝂) and 𝑨𝒊,𝒄(𝝂) spectra are sent to step # 3 where the final composite 

spectrum is created.  Note: all programs based on log base 10 absorbance.  EXPABS2K.exe has 

built in real refractive indices for various transmission slides, including KBr.     
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B2.2 Attenuated Total Reflectance (ATR) 

In contrast to transmission spectroscopy, attenuated total reflectance (ATR) spectroscopy is a 

qualitative technique to gather IR absorption spectra.  Instead of passing the light through the 

sample, the ATR process merely reflects light against a sample.  This is again done with a 

Michelson interferometer, where the recombined light beam is passed at an angle into a crystal 

with a high real refractive index.  As governed by the Fresenel relations, light can totally reflect 

at the interface of disparate media, i.e., where the crystal meets the sample, if the index of 

refraction difference between the crystal and the sample is large enough—hence the high index 

of refraction of ATR crystals.  The critical angle 𝜃𝑐 necessary to ensure total reflectance is 

described with 

𝜃𝑐 = sin−1 (
𝑛2

𝑛1
)                                                                    (𝐵. 8) 

where n2 and n1 are the real refractive indices of the two media, where n1 represents the media 

the light is first traveling in.  The light comes into contact with the interface of the ATR crystal 

and the sample, which totally internally reflects back toward the light collector when the angle of 

incidence is greater than the critical angle 𝜃𝑐.  At this area of reflection an evanescent wave is 

produced, as predicted by the Maxwell equations.  This evanescent wave, literally meaning a 

wave that tends to vanish, protrudes into the sample at an exponential decay with distance.  The 

sample absorbs the energy of this wave, and as a result the intensity of the beam reflecting back 

towards the light detector decreases.  Due to the nature of this evanescence wave there is 

uncertainty in the beam’s path length, and thus ultimately the path length needs to be calculated 

from equations based on electromagnetic theory as it cannot be measured directly—therefore, 

ATR is primarily a qualitative technique.  That said, there are multiple methods for determining 

the evanescent-wave-effective path length, as will be introduced in the following section.  

B2.2.1 Post Processing ATR Data 

The profile of evanescence waves decay exponentially into the sample.  The depth of penetration 

can be estimated as the point at which the energy depletes to 𝑒−1 of its value at the surface of the 

wave [103].  This equation assumes that the efficiency of the polarizations for the 

instrumentation used are equivalent.  The relation is as follows:  
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𝑑𝑝 =
𝜆

2𝜋𝑛1√sin2 𝜃 − 𝑛2
21

                                                      (𝐵. 9) 

where 𝜆 is the frequency of light in cm, 𝜃 is the incident angle, 𝑛1 is the real index of refraction 

of the sample, and 𝑛21 is the ratio of the sample and ATR crystal real refractive index. 

In an attempt to better compare ATR and transmission absorptivity results, the “effective” path 

length was defined.  This was defined as the equivalent path length in a transmission 

measurement that would lead to the same absorbency with ATR.  The effective path length has 

parallel and perpendicular polarization contributions, developed by Harrick [92]–[94], which 

penetrate to different depths as determined by  

𝑑𝑒⊥  =
𝑛1

2𝑛2cosθ

(𝑛1
2 − 𝑛2

2)
 

𝜆

𝜋√𝑛1
2 sin2 𝜃 − 𝑛2

2 
                                       (𝐵. 10)  

𝑑𝑒∥ =
𝑛1

2𝑛2cosθ

(𝑛1
2 − 𝑛2

2)
 

𝜆

𝜋√𝑛1
2 sin2 𝜃 − 𝑛2

2 

2𝑛1
2 sin2 𝜃 − 𝑛2

2

(𝑛1
2 − 𝑛2

2) sin2 𝜃 − 𝑛2
2                          (𝐵. 11) 

The effective penetration for an unpolarized IR beam is then the average of the parallel and 

perpendicular polarizations: 

𝑑𝑒 =
(𝑑𝑒⊥ + 𝑑𝑒∥)

2
                                                                   (𝐵. 12) 

Harrick assumed [92]–[94]  that dispersion effects are small, i.e., the real refractive index of the 

absorbing sample is constant throughout the measurement range, and therefore it is implied that 

the absorbance is small—which is not the case for liquid measurements.   

Lacey et al. recently applied the Maxwell relation along with Kramers–Kronig integration to 

ATR absorbance data [91], similar to the methodology described in the earlier transmission-

based spectroscopy section in order to account for dispersion effects (i.e., the variation in 𝑛2).  

The algorithm is proprietary, as it was developed for Thermo Fisher Scientific and is integrated 

into their spectroscopy software.  Based on this, it seems as though ATR could be extended to be 

a more quantitative spectroscopic technique; this author would like to investigate this further for 

future work.  Nonetheless, it is speculated that the solution procedure is similar to that outlined 
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for transmission-based data wherein the path length would also be iteratively determined along 

with the real refractive index until convergence.   

Path length considerations for ATR are complicated and rely exclusively on theoretical 

equations.  As a result, to the author’s current knowledge, ATR is still primarily qualitative and 

as a result cannot be compared directly to transmission-based spectra—as mentioned, this would 

like to be investigated further as future work.  Therefore, IR spectra intended for use by any kind 

of modeling need to be collected exclusively with either ATR or transmission.   
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Appendix C: LTC Indices / Operating Envelopes  
 

Table 7: LTC indices of fuels considered in this work  

Fuel Name RON MON LTC index 

Two Component Mixtures 

PRF0 0 0 15.36 
PRF20 20 20 34.2 
PRF40 40 40 32.75 
PRF55 55 55 28.4 
PRF70 70 70 26.77 
PRF85 85 85 23.3 

PRF100 100 100 23.76 
H90T10 14.1 12.6 37.72 
H80T20 27.7 24.8 41.58 
H60E40 71.4 65 35.57 

Three Component Mixtures 
TRF1 39 37 35.2 

TRF2 88.8 84.8 15.14 
TRF3 76.2 70.9 17.46 
TRF4 82.8 80.7 34.1 
ERF1 78.7 76.7 23.22 

H20T20 84.9 81.8 15.1 
H20T40 89.8 82.9 14.93 
H20T60 93.9 83.9 13.79 
H20E1 80.5 80.4 14.75 
H20E5 84.4 83.2 14.93 

H20E10 87.9 85.6 14.13 
H20E20 94.1 88.2 13.87 
H30E1 70.6 70.2 23.05 
H30E5 73.2 73.1 23.1 

H30E10 78.7 76.7 22.01 
H30E20 85.1 81.2 20.56 
H40E60 94.4 82.8 21.92 
H45E55 89.7 80.4 22.9 
H50E50 84.7 76.8 25.46 
H55E45 78 71.6 21.54 

Four Component Mixtures 
TERF1 67.1 63.7 23.12 
TERF2 94.7 88.5 14.95 
TERF3 97 87.6 14.76 
TERF4 80.8 73 24.21 
TERF5 79.6 74.5 24.23 



127 

 

TERF6 85.3 78.6 15.24 
TERF7 83.8 78.1 22.86 
TERF8 71.8 65.8 27.24 
TERF9 81.6 77.9 22.34 

TERF10 90.2 84.1 14.83 
TERF11 83.8 78.2 22.86 
TERF12 78.3 74.3 25.95 
TERF13 86.1 83.6 14.89 
TERF14 74.8 68.9 27.31 
TERF15 92.3 86.4 15.27 
TERF16 87.9 81.4 23 
TERF17 83.8 78.1 22.86 

TERF91-15 91 88.4 14.84 
TERF91-15-10 97.8 91.7 6.61 
TERF91-15-20 102.6 93.2 14.73 
TERF91-15-40 107.1 93.6 14.88 
TERF91-15-60 107.7 93.6 14.79 
TERF91-15-80 1078 91.7 13.85 

TERF91-30 91.3 86.1 14.83 
TERF91-30-10 97 89.4 14.78 
TERF91-30-20 101.4 91.1 14.92 
TERF91-30-40 106 91.2 14.93 
TERF91-30-60 107.1 92 14.88 

TERF91-80 107.5 91.4 13.7 
TERF91-40 91.1 86.5 14.75 

TERF91-40-15 96 87.2 14.88 
TERF91-40-20 100.2 89.1 14.08 
TERF91-45-40 104.6 90.9 14.77 

Neat Fuels 

IC5H12 (iso-pentane) 92 90 15.22 
methylcyclohexane 74.1 74 11.44 

C7H16-2 (2-

methylbutane) 

42.4 46.3 24.62 
TRF Mixtures with iso-pentane 

S1 ? ? 22.38 
S4 ? ? 28.61 
S6 ? ? 25.68 
S7 ? ? 22.08 

TRF Mixtures with m-xylene 

X1 ? ? 21.14 
X2 ? ? 22.34 
X3 ? ? 14.31 
X4 ? ? 19.18 
X5 ? ? 21.31 
X6 ? ? 22 
X7 ? ? 22.44 
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X8 ? ? 21.5 
X9 ? ? 18.67 

X10 ? ? 9.65 
X11 ? ? 23.43 
X12 ? ? 26.99 
X13 ? ? 28.44 
X14 ? ? 21.56 
X15 ? ? 25.45 
X16 ? ? 26.03 
X17 ? ? 20.76 
X18 ? ? 21.8 
X19 ? ? 26.89 
X20 ? ? 25.53 
X21 ? ? 25.55 
X22 ? ? 29.36 
X23 ? ? 26.53 
X24 ? ? 27.05 
X25 ? ? 27.08 
X26 ? ? 28.97 
X27 ? ? 26.92 
X28 ? ? 26.99 
X29 ? ? 26.32 
X30 ? ? 24.06 

FACE Gasolines 

FACE A 84 84 14.19 
FACE C 84 84 14.13 
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Appendix D: Fuel List 
 

Table 8: Pure components procured in this work.  Infrared absorption spectra of these were 

acquired via. ATR spectroscopy.  Note (*) indicates multiple sources were averaged.    

Pure Components 

Fuel name RON Carbon 

Number 

Class 

heptane 

2-methylbutane 

2-methylpentane 

3-methylpentane 

2-methylhexane 

3-methylhexane 

2,4-dimethylpentane 

2,3-dimethylpentane 

2,5-dimethylhexane 

2,4-dimethylhexane 

3-ethyl-2-methylpentane 

isooctane 

toluene 

xylenes 

1,2,3-trimethylbenzene 

4-ethyl-m-xylene 

2-ethyl-p-xylene 

1,2,4-trimethylbenzene 

cumene 

1,3,5-trimethylbenzene 

1,2,3,4-tetrahydronaphthalene 

2-propyltoluene 

1,2,3,4-tetramethylbenzene 

cyclopentane 

Cyclohexane 

methylcyclohexane 

butylcyclohexane 

1-Pentene 

2-methyl-2-butene 

2-pentene 

2-methyl-1-butene 

1-hexene 

diisobutylene 

ethanol 
 

0 

92[122] 

73.4[123] 

74.5[123] 

42[123], [124]* 

52 [123], [124]* 

83.1 [123], [124]* 

91.1 [123], [124]* 

55.3 [123], [124]* 

65.2 [123], [124]* 

87.3 [123], [124]* 

100 

113[23] 

114[125]* 

100.5[123] 

100.6[123] 

100.6[123] 

101.4[123] 

102.1[123] 

106[123] 

96.4[123] 

100.3[123] 

100.5[123] 

100.1[123] 

80.7[126] 

74.1[127] 

63.8[128] 

90[125] 

97.3[123] 

98[122] 

100.2[123] 

74.9[127] 

103.8[129] 

108.5 [45], [130], [131]* 
 

7 

5 

6 

6 

7 

7 

7 

7 

8 

8 

8 

8 

7 

8 

9 

9 

9 

9 

9 

9 

10 

10 

10 

5 

6 

7 

9 

5 

5 

5 

5 

6 

8 

2 
 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Alkane 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Aromatic 

Naphthene 

Naphthene 

Naphthene 

Naphthene 

Olefin 

Olefin 

Olefin 

Olefin 

Olefin 

Olefin 

Alcohol 
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Table 9: Fuel mixtures considered in this work created by the author for LTC index to inform 

chemometric model.  

Fuel Name n-heptane  isooctane  toluene  ethanol 2-methylbutane Xylene(s) 

S1 50 0 0 0 50 0 

S2 30 0 20 0 50 0 

S4 30 20 0 0 50 0 

S6 70 0 10 0 20 0 

S7 50 20 20 0 10 0 

X1 30 20 0 0 0 50 

X2 30 20 5 0 0 45 

X3 30 20 10 0 0 40 

X4 30 0 20 0 0 50 

X5 30 5 20 0 0 45 

X6 30 10 20 0 0 40 

X7 30 20 20 0 0 30 

X8 30 10 10 0 0 50 

X9 30 5 5 0 0 60 

X10 30 0 0 0 0 70 

X11 50 0 0 0 0 50 

X12 50 20 0 0 0 30 

X13 50 20 5 0 0 25 

X14 50 20 10 0 0 20 

X15 50 0 20 0 0 30 

X16 50 5 20 0 0 25 

X17 50 10 20 0 0 20 

X18 50 20 20 0 0 10 

X19 50 10 10 0 0 30 

X20 50 5 5 0 0 40 

X21 70 0 0 0 0 30 

X22 70 20 0 0 0 10 

X23 70 0 20 0 0 10 

X24 70 10 0 0 0 20 

X25 70 0 10 0 0 20 

X26 70 10 10 0 0 10 

X27 70 5 5 0 0 20 

X28 70 5 0 0 0 25 

X29 70 0 5 0 0 25 

X30 90 0 0 0 0 10 
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Table 10: “Baseline” fuel list for RON study.  Hydrocarbon component compositions for the fuel 

mixtures can be found in the literature. “IBX” fuels indicate iso-octane/diisobutylene mixtures, 

where the number indicates the diisobutylene composition in vol%. “Perez” fuels 1, 9, 17, and 21 

purposefully left out (pure components).    

Perez 

et al. 

[46] 

Truedsson 

[23] Foong et al. [45] Others 

Perez 2 H20T10 TERF1 T-E10 TERF91-30 -80 PRF10-E60 PRF40-E60 PRF80-E40 IB20 

Perez 3 H20T20 TERF2 T-E20 TERF91-45 -10 PRF20-E20 PRF40-E80 PRF80-E60 IB40 

Perez 4 H20T40 TERF3 T-E40 TERF91-45 -20 PRF20-E30 PRF50-E10 PRF80-E80 IB60 

Perez 5 H20T60 TERF4 T-E60 TERF91-45 -40 PRF20-E40 PRF50-E20 PRF90-E5 IB80 

Perez 6 H20E1 TERF5 T-E80 TERF91-45 -60 PRF20-E50 PRF50-E30 PRF90-E10  

Perez 7 H20E5 TERF6 TERF91-15 TERF91-45 -80 PRF20-E60 PRF50-E40 PRF90-E20  

Perez 8 H20E10 TERF7 TERF91-30 PRF0-E30 PRF20-E80 PRF60-E10 PRF100-E10  

Perez 10 H20E20 TERF8 TERF91-45 PRF0-E40 PRF30-E10 PRF60-E20 PRF100-E20  

Perez 11 H30E1 TERF9 TERF91-15 -10 PRF0-E50 PRF30-E20 PRF60-E30 PRF100-E40  

Perez 13 H30E5 TERF10 TERF91-15 -20 PRF0-E60 PRF30-E30 PRF60-E40 PRF100-E60  

Perez 14 H30E10 TERF11 TERF91-15 -40 PRF0-E70 PRF30-E40 PRF60-E60 PRF100-E80  

Perez 15 H30E20 TERF12 TERF91-15 -60 PRF0-E80 PRF30-E50 PRF60-E80   

Perez 16 H40E60 TERF13 TERF91-15 -80 PRF0-E90 PRF40-E10 PRF70-E10   

Perez 18 H45E55 TERF14 TERF91-30 -10 PRF10-E20 PRF40-E20 PRF70-E20   

Perez 19 H50E50 TERF15 TERF91-30 -20 PRF10-E30 PRF40-E30 PRF70-E30   

Perez 20 H55E45 TERF16 TERF91-30 -40 PRF10-E40 PRF40-E40 PRF80-E10   

  TERF17 TERF91-30 -60 PRF10-E50 PRF40-E50 PRF80-E20   
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Appendix E: IR Absorbance Spectra  

E1 Transmission-based 

 

 

Figure 56: Linear Absorption Coefficient Spectrum of FACE B and various blends with ethanol. 

Non-linear blending effects are easily seen in vicinity of 2900 cm-1 

Figure 55: Linear Absorption Coefficient Spectrum of FACE A and various blends with ethanol.  

Non-linear blending effects are easily seen in vicinity of 2900 cm-1 
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Figure 57: Linear Absorption Coefficient Spectrum of FACE C and various blends with ethanol.  

Non-linear blending effects are easily seen in vicinity of 2900 cm-1 

 

Figure 58: Linear Absorption Coefficient Spectrum of FACE D, E, F and G. 
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Figure 59: Linear Absorption Coefficient Spectrum of FACE H and various blends with ethanol. 

 

 

Figure 60: Linear Absorption Coefficient Spectrum of FACE I and J. 
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E2 Attenuated total reflectance-based 

E2.1 Pure Components  

 

Figure 61: Alkane hydrocarbon absorption spectra 

 

Figure 62: Naphthenic hydrocarbon absorption spectra  
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Figure 63: Olefin hydrocarbon absorption spectra 

 

Figure 64: Aromatic hydrocarbon absorption spectra 
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Figure 65: Oxygenated hydrocarbon absorption spectra 

E2.2 Pure Component Mixtures   
 

 

Figure 66: Perez et al. [46] fuels 
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Figure 67: Primary Reference Fuels (PRF)  

 

Figure 68: Toluene-Ethanol Reference Fuels (TERF) fuels from Truedsson [23]  
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Figure 69: n-heptane/toluene and n-heptane/ethanol mixture fuels from Truedsson [23] 

 

Figure 70: iso-octane and diisobutylene (IBX) mixtures and fuels from Foong et al. [45]  
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Figure 71: Foong et al. [45] TERF91-15-EX fuel mixtures 

 

Figure 72: Foong et al. [45] TERF-30-EX fuel mixtures 
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Figure 73: Foong et al. [45] TERF-45-EX fuel mixtures 

 

 

Figure 74: Foong et al. [45] PRF0-EX fuel mixtures 
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Figure 75: Foong et al. [45] PRF10-EX fuel mixtures 

 

 

Figure 76: Foong et al. [45] PRF20-EX fuel mixtures 
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Figure 77: Foong et al. [45] PRF30-EX fuel mixtures 

 

Figure 78: Foong et al. [45] PRF40-EX fuel mixtures 
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Figure 79: Foong et al. [45] PRF50-EX fuel mixtures 

 

Figure 80: Foong et al. [45] PRF60-EX fuel mixtures 
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Figure 81: Foong et al. [45] PRF70-EX fuel mixtures 

 

Figure 82: Foong et al. [45] PRF80-EX fuel mixtures 
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Figure 83: Foong et al. [45] PRF90-EX fuel mixtures 

 

Figure 84: Foong et al. [45] PRF100-EX fuel mixtures 
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Appendix F: In-House Developed Code  

F1 HCCI Simulation Code (Python/Cantera) 

1. # -*- coding: utf-8 -*-   
2. """  
3. @author: Shane  
4. Contact: dalys@onid.oregonstate.edu   
5. 0-D Homogeneous Charge Compression Ignition (HCCI) Engine Simulation  
6. Features Woschnii heat transfer (variable heat transfer coefficient)  
7. """   
8. from __future__ import division       #Python version 3 features   
9. import numpy                          #Mathematical operations   
10. import cantera                        #Cantera library   
11. from joblib import Parallel, delayed  #Parallel processsing function import    
12. import h5py                           #Data storage in HDF5 format   
13. import os                             #Operating system operations (to create working d

irectories)    
14. import time                           #Allows us to track processor time   
15. "--->Fuel Specification<---

"                                                               
16. fuel_names =['T1_kal','T2_kal','T3_kal','T4_kal','T5_kal','T6_kal','T7_kal','T8_kal','T

9_kal','T10_kal','T12_kal','T13_kal','T14_kal','T15_kal','T16_kal'] #'H20T10'   
17. num_fuels = len(fuel_names) #How many fuel mixtures are in parametric study   
18. fuel_species =[['nc7h16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h16','i

c8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h16'
,'ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h
16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['n
c7h16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],['nc7h16','ic8h18','c6h5ch3'],
['nc7h16','ic8h18','c6h5ch3']]   

19. X_fuel=[[ 0.3746,    0.3836,    0.2419],[   
20.     0.1147,    0.4441,    0.4411],[   
21.     0.1287,    0.2029,    0.6684],[   
22.     0.2804,    0.1651,    0.5545],[   
23.     0.2639,    0.3734,    0.3628],[   
24.     0.2219,    0.3016,    0.4765],[   
25.     0.2264,    0.3681,    0.4055],[   
26.     0.3528,    0.2206,    0.4266],[   
27.     0.2274,    0.5093,    0.2633],[   
28.     0.1627,    0.4033,    0.4340],[   
29.     0.2655,    0.4499,    0.2846],[   
30.     0.1656,    0.6564,    0.1780],[   
31.     0.3216,    0.2588,    0.4196],[   
32.     0.1375,    0.4427,    0.4198],[   
33.     0.1920,    0.3456,    0.4624]]   
34.    
35. "--->File Specifications<---"    
36. working_dir = "C:\Users\Shane\Documents\Python Scripts\\"   
37. "--->Number of Processing Cores<---"    
38. num_cores=6 #cores used in parallel processing    
39. "--->Parametric Study Values<---"   
40. dRPM=100.0                            #RPM stepsize   
41. RPM=numpy.arange(800.0,3100.0,dRPM)   #Revolutions per minute   
42. #RPM=[800.0]   
43. Pi=100000                             #Initial Pressure (BDC)   
44. dphi=0.01                             #equivalence ratio stepsize    
45. phi=numpy.arange(0.15,0.45,dphi)      #Equivalence Ratio   
46. phi=-numpy.sort(-phi)    
47. #phi=[.33]    
48. dT=20                                #Temperature stepsize   
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49. Ti=numpy.arange(350,550+dT,dT)       #Initial Temperature (BDC)   
50. #Ti=-numpy.sort(-

Ti)                 #Sorting Temperature in decending order (higher temperature takes l
onger to simulate, helps with "time-remaining of simulation" accuracy)   

51. #Ti = [350]    
52. "--->Engine Parameters<---"   
53. rc=13                                #Compression Ratio [Vmax/Vmin]       
54. B=.0828                              #Cylinder Bore    
55. Vd=616*10**(-6)                      #Displacement Volume of Engine [m^3]    
56. c=4.44                               #ratio of connecting rod to crank radius    
57. "--->Woschni heat transfer constants<---"     
58. aa=.035                             #Nusselt Number Correlation Constant   
59. bb=.8                               #Nusselt Number Correlation Re power constant   
60. C11=2.28                            #from Chemkin   
61. Tw=430                              #Wall (Bore) Temperature       
62. Pr=0.7   
63. cc=0            
64. "--->Chemical Mechanism<---"     
65. while True: #This simply suppresses the Exception from mechanism import (Happens with p

arallel processing forks trying to access file at same time), and allows a re-
try without spamming alot of useless information in print window.     

66.     try:   
67.         mechanism=cantera.Solution('Princeton_10atm.cti') #mechanism import  #Princeton

_10atm Sarathy_Mech_Reduced_TRF_isopentane.cti Andrae_Xylene_mech FACE_C_mech_re MCH_me
ch_skeletal   

68.     except:   
69.         continue   
70.     break    
71. "--->Recorded Time-step and Crank Angle Duration<---"    
72. RPM_range=286                        #Crank Angle Degree simulation finishes (CAD aBDC)

   
73. #timesteps=286/.05                   #Recoreded timesteps for crank angle range   
74. #--------------------->HCCI Simulation Function Code<--------------------------------   
75. def HCCI(RPM,Ti,phi,fuel_species,X_fuel,FuelFolder,FilePrefix):         
76.     #Specifying air for the ideal gas reactor (required for engine simulation) and prop

erty evaluations for viscosity, density, and thermal conductivity     
77.     air=cantera.Solution('air.xml')        #air (the piston model is air separated by a

 wall(piston) to the reactor)     
78.     io2 =mechanism.species_index('o2')     #Finding species indices    
79.     in2 = mechanism.species_index('n2')    #Finding species indices    
80.     ico2 =mechanism.species_index('co2')   #Finding species indices   
81.     ico =mechanism.species_index('co')     #Finding species indices     
82.     ih2o = mechanism.species_index('h2o')  #Finding species indices        
83.     #Engine and Heat Transfer Parameters   
84.     s=4*Vd/(numpy.pi*B**2)                 #Stroke [m]   
85.     Vmax=Vd*rc/(rc-1)                      #Maximum cylinder Volume [m^3]   
86.     Ap=(numpy.pi*B**2)/4                   #Piston Area   
87.     wdot=RPM*numpy.pi/30                   #rotation rate in rad/s    
88.     #Simulation Resolution        
89.     t_end=RPM_range/(6*RPM) #Simulation time domain of crank angle's to be resolved    
90.     #theta=t*wdot*180/numpy.pi                       #Simulation crank angle (Just a re

corded value, not used in any calculations)   
91.     "slider crank rule for piston velocity" #Cantera calls for piston(reactor wall) vel

ocity, not Volume(t) or dV/dt (for the energy equation)   
92.     def piston_speed(t):   
93.         return (wdot*s/2*numpy.sin(t*wdot))*(1-(numpy.cos(t*wdot))/(numpy.sqrt(c**2-

numpy.sin(t*wdot)**2)))   
94.     "Piston Volume Function" #(used for heat transfer Area calculation)    
95.     def Volume(t):   
96.         return Vd/(rc-1)+Vd/2*(1+c-numpy.cos(t*wdot-numpy.pi)-numpy.sqrt((c)**2-

numpy.sin(t*wdot-numpy.pi)**2))   
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97.        
98.     "Heat Transfer Function"    
99.     #Chemkin Property Evaluation constants   
100.     C1_mu= 1.1258e-05   
101.     C2_mu= .485   
102.     C1_k= 132.7906   
103.     C2_k= .5   
104.     def q(t):   
105.         rho = r2.kinetics.density_mass       
106.         mu=(C1_mu*(r2.T)**(C2_mu))*0.1       #Viscosity of air   
107.         k_g=(C1_k*(r2.T)**(C2_k))*10**-(5)   #Thermal Conductivity of air [W/m-

K]            
108.         Sm=2.0*s*RPM/60                #Average Piston Speed   
109.         w_bar=C11*Sm                   #Woschni average cylinder gas velocity   
110.         Re=B*w_bar*rho/mu              #Reynolds Number   
111.         Nu=aa*Re**bb*Pr**cc            #Nusselt Number   
112.         h=Nu*k_g/(B)                   #convective heat transfer coefficient   
113.         return (h*(Tw-r2.T)*(2*numpy.pi*B**3+16*Volume(t))/(4*B))/Ap    
114.    
115.            
116.     def net_heat_release_per_deg(t):   
117.         return (-

Volume(t)*numpy.pi*sum(r2.kinetics.partial_molar_enthalpies*r2.kinetics.net_production_
rates)+q(t)*Ap)/(wdot*180)   

118.            
119.     "Fuels and composition Parameters" #(Solves for Stoich F/A micture)   
120.     length_f=len(fuel_species)                  #Defining this value for loops b

elow    
121.     ifuel=numpy.zeros(length_f)                 #pre-

allocating an array for fuel indices    
122.     stoich_o2_fuel=numpy.zeros(length_f)        #pre-

allocating an array for stoich O2 amounts for each pure component in the fuel    
123.     x = numpy.zeros(len(mechanism.X))           #pre-

allocating an array for mole fractions to later define the relative mole fractions for 
the chemical mechanism   

124.     output_variables=[]                         #pre-
defining an empty list for the string list of output variables    

125.     for i in range(length_f):   
126.         "Solving for stoich O2 mixture"           
127.         ifuel[i] =mechanism.species_index(fuel_species[i])  #capturing the prope

r indiced in the chemical mechanism for the fuel component    
128.         stoich_o2_fuel[i]=X_fuel[i]*(mechanism.n_atoms(fuel_species[i],'C')+mech

anism.n_atoms(fuel_species[i],'H')/4-
mechanism.n_atoms(fuel_species[i],'O')/2) #solving for stoich amount of oxygen for each
 fuel pure component   

129.         "Creating fuel composition array for mechanism input"    
130.         x[ifuel[i]] = X_fuel[i]*phi                              #relative amoun

t of fuel to air    
131.         "Creating first performance parameters as fuel mole fraction"    
132.         output_variables.append('X'+fuel_species[i])             #the fuel mole 

fractions "output variable names" are being added to the list    
133.     "Stoich O2 Mixture"   
134.     stoich_o2=numpy.sum(stoich_o2_fuel)                          #The above solv

ed for the stoich mixture of the fuels components separately. The final answer is the s
um of the oxygen amounts    

135.     x[io2] = stoich_o2                                           #stoichiometric
 A/F amount of Oxygen                  

136.     x[in2] = stoich_o2*(0.79/0.21)                               #stoichiometric
 A/F amount of Nitrogen    

137.     "Setting Fuel and air mixture composition in mechanism"    
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138.     mechanism.TPX=Ti,Pi,x[:]                                      #The chemical 
mechanism is set to have the user defined initial conditions    

139.     r2 = cantera.IdealGasReactor(mechanism,  name='HCCI Reactor') #specifying th
at r2 is an ideal gas reactor (varying temperature and pressure)    

140.     r2.volume=Vmax                                                #Specifying in
itial volume of ideal gas reactor (BDC volume)   

141.        
142.        
143.     "Populating output variables -

- columns are each performance variable and rows indicate crank angle"        
144.     output_variables = output_variables + ['Xo2','Xco','Xco2','Xn2' ,'Xh2o', 'pr

es','temp','volume','crank_rotation_angle','net_heat_release_rate_per_CA','mass','molec
ular_weight','mass_density','specific_heat','mixture_enthalpy','time','chem_heat_releas
e_per_deg','net_heat_release_per_deg','heat_loss','rho']   

145.     Performance_Parameters=numpy.zeros([1,len(output_variables)]) #The matrix of
 numerical values corresponding to the user selected reactor parameters       

146.     Performance_Parameters_add=numpy.zeros([1,len(output_variables)])   
147.     "------>Cantera HCCI Simulation<----------"   
148.     env = cantera.Reservoir(air, name='Environment (Air at the specified heat tr

ansfer correlation temperature')   
149.     cantera.Wall(env, r2,velocity=piston_speed,A=Ap,Q=q)   #This is the "piston"

 in the simulation. The "wall" is moving and has heat transfer through it    
150.     sim = cantera.ReactorNet([r2])  #this is the completed cantera reactor that 

will simulate HCCI    
151.     time = sim.time                 #starting simulation time (default 0.0s for 

sim.time)      
152.     n=0                                  
153.     end_time = t_end           #Simulation End-time   
154.     sim.rtol=1e-

9                   #Sets maximum integration relative tolerance    
155.     sim.atol=1e-

20                  #Sets maximum integration absolute tolerance           
156.     count=0                  
157.     heat_release = []       
158.     while time < end_time:          #Cantera Simulation integraiton loop     
159.         heat_release.append(net_heat_release_per_deg(time))           
160.         if count ==1:   
161.             Performance_Parameters = numpy.concatenate((Performance_Parameters, 

Performance_Parameters_add), axis=0)   
162.            
163.         "Reactor Parameters to get"   
164.         for ff in range(length_f):               
165.             if ff<=length_f:   
166.                 Performance_Parameters[n,ff] = r2.kinetics.X[ifuel[ff]]   
167.         Performance_Parameters[n,(ff+1):] = r2.kinetics.X[io2],r2.kinetics.X[ico

],r2.kinetics.X[ico2],r2.kinetics.X[in2],r2.kinetics.X[ih2o],r2.thermo.P,r2.thermo.T,r2
.volume,time*wdot*180/numpy.pi,r2.kinetics.enthalpy_mass,r2.mass,r2.kinetics.mean_molec
ular_weight,r2.kinetics.density,r2.kinetics.cp,r2.kinetics.enthalpy_mass,time,-
r2.volume*numpy.pi*sum(r2.kinetics.partial_molar_enthalpies*r2.kinetics.net_production_
rates)/(wdot*180),net_heat_release_per_deg(time),q(time)*Ap,r2.kinetics.density_mass   
  

168.         
169.         "Advancing Simulation"    
170.         sim.step(end_time)   
171.         time = sim.time   
172.            
173.         count = 1   
174.         n=n+1         
175.        
176.     "net_heat_release analysis to determine frequency of data collection (findin

g appropriate d_theta)"   
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177.     #If net heat release is greater than some threshhold, record at 0.1 CAD, oth
erwise collect at 2 CAD.       

178.    
179.        
180.     for xx in range(len(output_variables)):   
181.         if output_variables[xx] == 'crank_rotation_angle':   
182.             THETA_INDICE = xx   
183.     dtheta=[]   
184.     ind=[]   
185.     p1=0   
186.     for p in range(len(heat_release)-1):   
187.         dtheta.append(abs(Performance_Parameters[p1,THETA_INDICE] - Performance_

Parameters[p,THETA_INDICE]))   
188.         if heat_release[p] >= 0.2: #Record at 0.1 CAD   
189.             #Get every 0.1 indice    
190.             #If dtheta > 0.1 grab indice and reset beginning d_theta ind.       

        
191.             if dtheta[p] >= 0.1:   
192.                 p1=p #reset the initial d_theta_indice   
193.                 ind.append(p)    #grab indice of simulation at which this happen

ed    
194.         else: #Record at 2 CAD    
195.             #Get every 2 CAD Indice   
196.             if dtheta[p] >= 2:   
197.                 p1=p #reset the initial d_theta_indice   
198.                 ind.append(p)    #grab indice of simulation at which this happen

ed               
199.            
200.     "File Specification"    
201.     FileName = "%s_RPM=%s_Ti=%s_phi=%s.hdf5" %(FilePrefix,RPM,Ti,phi)           

              #Generating a filename based on fuel name and initial parametric study va
lues    

202.     f=h5py.File(FuelFolder + FileName,"w")                                      
              #Creating file for each parametric study point #f.name is 'u/'   

203.     "Performance Paramater Saving"    
204.     for v in range(len(output_variables)):   
205.         f.create_dataset("%s" %(output_variables[v]),data=Performance_Parameters

[ind,v])        #creating hdf5 datasets for each performance parameter inside the file 
created above           

206.     f.close()                                                                   
              #close the file we just created    

207.     return    
208.        
209. "Parallel Process job Executor for HCCI function"       
210. if __name__ == '__main__':                                                   #No

 idea what this does, but Windows machines need it to "protect" the main loop (whatever
 that is...) for parallel processing       

211.     while True:   
212.         try:   
213.             start_time = time.clock()                                           

     #capturing time for the start of the simulation    
214.             for q in range(num_fuels):                                          

     #Fuel Loop    
215.                 FuelFolder= working_dir + "CR_" + str(rc) + "\\" + fuel_names[q]

                  #fuel folder to save data in    
216.                 FilePrefix="\\"+fuel_names[q]+"_CR=%s_Pi=%.1f" %(rc,Pi*10**(-

5))     #prefix to name of saved file within fuel folder          
217.                 start_time2 = time.clock()                                      

     #Starting processor time of simulation        
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218.                 if not os.path.exists(FuelFolder):                              
     #If the fuel working directory already exists, don't try and overwrite the folder 
   

219.                     os.makedirs(FuelFolder)                                     
     #Creating working directory   

220.                 for z in range(len(Ti)):   
221.                     new_time1= time.clock()          
222.                     for k in range(len(phi)):              
223.                         Parallel(n_jobs=num_cores)(delayed(HCCI)(RPM[o],Ti[z],ph

i[k],fuel_species[q],X_fuel[q],FuelFolder,FilePrefix) for o in range(len(RPM))) #parall
el process executor    

224.                         print "Finished: Ti=%s, phi=%s, all RPM" %(Ti[z],phi[k])
 #Delta t    

225.                         "Keyboard interrupt to pause simulation"   
226.                            
227.                     new_time2=time.clock()                                      

     #This, and new_time1 allows calculation of how long it takes to do a complete temp
erature study with all phi and RPM    

228.                     "Elapsed time, estimated time until completion, and parametr
ic studies being finished"    

229.                     print "Elapsed time:  %.0f hour(s) and %.1f minute(s)" %((ti
me.clock() - start_time2)/3600,((time.clock() - start_time2)/3600-
numpy.fix((time.clock() - start_time2)/3600))*60) #Elapsed t   

230.                     print fuel_names[q] + " " + "is estimated to take a remainin
g %.0f hour(s) and %.1f minute(s)" %((new_time2 - new_time1)/3600*len(Ti[(z+1):]) , (((
new_time2 - new_time1)/3600)*len(Ti[(z+1):])-
numpy.fix(len(Ti[(z+1):])*(new_time2 - new_time1)/3600))*60)                           
                    

231.                 print "The simulation for"+" "+"[" +FilePrefix+"]"+" "+ "took %.
0f hour(s) and %.1f minute(s)" %((time.clock() - start_time2)/3600,((time.clock() - sta
rt_time2)/3600-numpy.fix((time.clock() - start_time2)/3600))*60) #Total Elapsed t   

232.                 print "The remaining fuel studies are estimated to take a remain
ing %.0f hour(s) and %.1f minute(s)" %((new_time2-start_time2)/3600*(num_fuels-
(q+1)) , (((new_time2-start_time2)/3600)*(num_fuels-(q+1))-numpy.fix((num_fuels-
(q+1))*(new_time2-start_time2)/3600))*60)   

233.             print "The simulation took a total of %.0f hour(s) and %.1f minute(s
)" %((time.clock() - start_time)/3600,((time.clock() - start_time)/3600-
numpy.fix((time.clock() - start_time)/3600))*60) #Total Elapsed t   

234.             if q == max(q):   
235.                 break   
236.         except KeyboardInterrupt:   
237.             print '\nPausing...  (Hit ENTER to continue, type quit to exit.)'   
238.             try:   
239.                 response = raw_input()   
240.                 if response.lower() == 'quit':   
241.                     break   
242.                 print 'Quitting...'   
243.             except KeyboardInterrupt:   
244.                 print 'Resuming...'   
245.                 continue 
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F2 Transmission Spectra Optical Constant Method Correction (Python) 

1. #Automates ANCHORPT.exe EXPABS2K.exe and updates .ASC files for iterative process   
2. import numpy as py              #"Numpy" for Mathematical operations   
3. from subprocess import Popen   
4. from time import sleep   
5.  
6.    
7. wdir=["C:\Users\Shane\Documents\IRKK\FACE Fuels\\","C:\Users\Shane\Documents\IRKK\FACE 

Fuels\\"]   
8. comment_line= "FB30"   
9. absorbance_filename1=[comment_line+"015_.SPC",comment_line+"000_.SPC"]   
10. absorbance_filename2=comment_line+"5_.SPC"   
11. absorbance_filename3=[comment_line+"015c.SPC",comment_line+"000c.SPC"]   
12. absorbance_filename4=[comment_line+"015n.SPC",comment_line+"000n.SPC"]   
13. baseline_wavenumber=['450', '942', '990', '1184', '1224', '1587', '1736', '2050', '2310

', '2440', '2558', '2646', '3676', '3854', '4000']                               
14. baseline_wavenumber = baseline_wavenumber[::-1]   
15. num_anchor=str(len(baseline_wavenumber))   
16. pathlength1 =['14.7323','.6039'] #in micrometers   
17. pathlength2 ='513.557' #in micrometers   
18. n_infinity= '1.4' #index of refraction at n-infinity   
19. kk_iterations='9' #maximum iterations for kramers kronig convergence    
20. kk_method='2'    
21. slide='6' #slide index (6 for Kbr)    
22.    
23. #comment_line= "MCH Fuel"   
24. #absorbance_filename1=["MCH000_.SPC"]   
25. #absorbance_filename2="MCH5_.SPC"   
26. #absorbance_filename3=["MCH000c.SPC"]   
27. #absorbance_filename4=["MCH000n.SPC"]   
28. #baseline_wavenumber=['2733','3060']      
29. #num_anchor=str(len(baseline_wavenumber))   
30. #pathlength1 =['9.4847'] #in micrometers   
31. #pathlength2 ='514.72' #in micrometers   
32. #n_infinity= '1.4235' #index of refraction at n-infinity   
33. #kk_iterations='9' #maximum iterations for kramers kronig convergence    
34. #kk_method='2'    
35. #slide='6' #slide index (6 for Kbr)    
36.    
37.    
38. for i in range(len(wdir)):   
39.     Anchor_Baseline = []   
40.     correction_collected = []   
41.     for j in range(len(baseline_wavenumber)):   
42.         try:           
43.             Anchor_Baseline = Anchor_Baseline + str(baseline_wavenumber[j]) + " "   
44.         except TypeError:   
45.             Anchor_Baseline = str(baseline_wavenumber[j]) + " "   
46.                
47.     #-------------STEP 1-------------------   
48.     #Defining BASELINE.ASC (It never changes)   
49.     file1 = open(wdir[i] + "anchorpt.ASC", "w")   
50.     file1.write("1\nData for Optically Thick "+comment_line+"\n" + absorbance_filename4

[i] + "\n" + str(len(baseline_wavenumber)) + " " + "1" "\n"+Anchor_Baseline +"\n"+absor
bance_filename2 + " " + pathlength2 +" 6")   

51.     file1.close()   
52.        
53.     #Running expabs2k with no baseline correction for initial n-spectrum estimate    
54.     file2 = open(wdir[i] + "expabs2k.ASC", "w")   
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55.     file2.write("1\n----
data run 1\n"+ absorbance_filename1[i] +"\n"+comment_line+" 15 micron KBr Cell\n1/29/15
\n2 "+kk_iterations+" 6 0 0 0 "+ pathlength1[i] + " 0.0\n" + n_infinity + "\n0")   

56.     file2.close()   
57.     Expa_1 = Popen(wdir[i] + 'expabs2k.exe',cwd=wdir[i] )   
58.     sleep(1)   
59.     Expa_1.kill()   
60.     #Baseline correction with initial n-spectrum estimate    
61.     Anch = Popen(wdir[i] + 'anchorpt.exe',cwd=wdir[i] )   
62.     sleep(1)   
63.     Anch.kill()   
64.        
65.        
66.     residual=[]   
67.     tolerance = 0.0001   
68.     loop_count=0   
69.        
70.        
71.     #-------------STEP 2-------------------   
72.     #Creating new expabs2k ASC file to read baseline correction data    
73.     file3=open(wdir[i] + "anchorpt.log",'r')   
74.     anchorlog=file3.readlines()   
75.     file3.close()   
76.    
77.     correction = []       
78.     Expa_Baseline = []   
79.     ind = 21   
80.        
81.     for j in range(len(baseline_wavenumber)):    
82.            
83.         correction_indice=anchorlog[ind].find('\n')   
84.         correction_indice2=anchorlog[ind][(correction_indice-

12):correction_indice].find(' ')   
85.         correction.append(anchorlog[ind][(correction_indice-

12+correction_indice2):correction_indice]) #Linear absorption coefficient first value   
86.         ind = ind + 6   
87.         try:           
88.             Expa_Baseline = Expa_Baseline + str(baseline_wavenumber[j]) + " " + str(cor

rection[j]) +"\n"   
89.         except TypeError:   
90.             Expa_Baseline = str(baseline_wavenumber[j]) + " " + str(correction[j]) +"\n

"   
91.        
92.     correction_collected.append(correction)           
93.     #With new linear absorption coefficient values, we can now specify these values in 

expabs2k.ASC   
94.        
95.     file4 = open(wdir[i] + "expabs2k.ASC", "w")   
96.     file4.write("1\n----

data run 1\n"+ absorbance_filename1[i] +"\n"+comment_line+" in 15 micron KBr Cell\n1/29
/15\n2 "+kk_iterations+" 6 0 0 0 "+pathlength1[i]+ " 0.0\n"+n_infinity+"\n" + str(len(b
aseline_wavenumber)) + "\n"+Expa_Baseline)   

97.     file4.close()   
98.     Expa = Popen(wdir[i] + 'expabs2k.exe',cwd=wdir[i])   
99.     sleep(1)   
100.     Expa.kill()   
101.        
102.        
103.     # Up to here, we have successfully estimated an initial n-

spectrum, and used that information to do our first baseline correction on uncorrected 
data. Now, we must correct the "corrected" data until convergence    
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104.        
105.     #------------------STEP 3 ITERATIVE PROCESS -------------------   
106.     #EXPAS2K now needs to correct its "corrected" absorbance spectrum until conv

ergence of linear absorption coefficient is found    
107.     x=1   
108.     while x==1:  #While TRUE   
109.        
110.         #First, we run baseline with the new n-

spectrum after first correction     
111.         anch_i = Popen(wdir[i] + 'anchorpt.exe',cwd=wdir[i] )   
112.         sleep(1)   
113.         anch_i.kill()   
114.         #Next, update the expas2k with new linear absorption coefficient values 

from anchorpt.log, and now use the previously corrected absorbance spectrum    
115.            
116.         file5=open(wdir[i] + "anchorpt.log",'r')   
117.         anchorlogi=file5.readlines()   
118.         file5.close()   
119.            
120.         correction = []       
121.         correction_indice = []      
122.         correction_indice2 = []    
123.         Expa_Baseline = []   
124.         ind = 21   
125.        
126.         for j in range(len(baseline_wavenumber)):    
127.             correction_indice=anchorlogi[ind].find('\n')   
128.             correction_indice2=anchorlogi[ind][(correction_indice-

12):correction_indice].find(' ')   
129.             correction.append(anchorlogi[ind][(correction_indice-

12+correction_indice2):correction_indice]) #Linear absorption coefficient first value   
130.             ind = ind + 6   
131.             try:           
132.                 Expa_Baseline = Expa_Baseline + str(baseline_wavenumber[j]) + " 

" + str(correction[j]) +"\n"   
133.             except TypeError:   
134.                 Expa_Baseline = str(baseline_wavenumber[j]) + " " + str(correcti

on[j]) +"\n"   
135.            
136.         correction_collected.append(correction)   
137.         filei = open(wdir[i] + "expabs2k.ASC", "w")   
138.         filei.write("1\n----

data run 1\n"+ absorbance_filename1[i] +"\n"+comment_line+" in 15 micron KBr Cell\n1/29
/15\n2 "+kk_iterations+" 6 0 0 0 "+pathlength1[i]+ " 0.0\n"+n_infinity+"\n" + str(len(b
aseline_wavenumber)) + "\n"+Expa_Baseline)      

139.         filei.close()   
140.         Expa_i = Popen(wdir[i] + 'expabs2k.exe',cwd=wdir[i])   
141.         sleep(1)   
142.         Expa_i.kill()   
143.            
144.         for j in range(len(baseline_wavenumber)):    
145.             residual.append(abs(py.array(correction_collected[loop_count+1][j],d

type=py.float32)-py.array(correction_collected[loop_count][j],dtype=py.float32)))   
146.                
147.         loop_count=loop_count+1   
148.         if all(j <= tolerance for j in residual): #If all residuals have converg

ed, while loop breaks    
149.             x=0   
150.         residual = []   
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