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Fourier Analysis and Equidistribution on the p-adic Integers

1 Introduction

1.1 Equidistribution theory on the circle group R/Z

The theory of equidistribution of sequences modulo one was initiated by Her-

mann Weyl in 1916. Since then, it has spurred a lot of interest in many areas of

mathematics, including number theory, harmonic analysis, and ergodic theory. The

standard reference in this subject is Kuipers and Niederreiter [14].

Consider the compact circle group R/Z, and recall that this quotient group may

be identified with a natural fundamental domain, the interval [0, 1) with addition

modulo one. Let {xn} be a sequence in R/Z. It is interesting to investigate how

this sequence distributes itself over the interval [0, 1). That is, do the terms of the

sequence fall in to each subinterval proportionally as n increases, or are they more

concentrated in some parts and less so in others? Are there gaps in its distribution?

As a simple example, consider the sequence {xn} = {1/n}. Since zero is its only

limit point, the sequence gets clustered near zero. Hence, this would be an example of

a sequence that does not distribute evenly over R/Z. On the other hand, consider the

sequence {xn} = {na}, where a is an irrational real number. We have the following

theorem.

Theorem 1.1. Let a be a real number. The sequence {xn} = {na} is dense in R/Z

if and only if a is irrational.

Such sequences were investigated by Kronecker in relation to Diophantine ap-

proximations, who also proved Theorem 1.1 (see [11]). But, how does the sequence

{xn} = {na} distribute itself as n increases? We are looking for a deeper notion than
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density. As we shall see in Theorem 1.5, the sequence {na} is not just dense but also

equidistributed.

Definition 1.1 (Equidistribution on R/Z). The sequence {xn} is equidistributed in

R/Z if given any subinterval A = [a, b] of [0, 1) we have

lim
N→∞

|{x1, x2, ..., xN} ∩ [a, b]|
N

= b− a.

In other words, Definition 1.1 says that the proportion of the first N elements

of {xn} lying in A is equal to the length of A in the limit of large N , and this holds

true for all subintervals A = [a, b] in R/Z.

Note that the definition of equidistribution implies that any equidistributed

sequence is also dense. Equidistribution is a property dependent on the ordering of

the sequence, as the next theorem shows.

Theorem 1.2. Any sequence has a rearrangement that is not equidistributed. Any

dense sequence has an ordering that is equidistributed.

Proof. Both statements follow from the pigeon hole principle. To prove the first

statement, suppose that {xn} is a dense sequence (if {xn} is not dense, then there is

nothing to prove). Since {xn} is dense, pick the first hundred terms in a rearrange-

ment of the sequence to be in the interval [0, 1/2). Then pick the next term in the

rearrangement to be in [1/2, 1), and repeat the process. This rearrangement is not

equidistributed.

To prove the second assertion, suppose {xn} is dense in R/Z. Then consider

a sequence of dyadic partitions Pk of the interval [0, 1] of the form Pk = {j/2k | j =

0, 1, ..., 2k}, for k ∈ N. For a fixed k, pick an element of {xn} from every subinterval

[j/2k, (j+ 1)/2k) for {j = 0, 1, ..., 2k}. Repeat this procedure for all k ∈ N. It can be

shown that this leads to a rearrangement of {xn} that is equidistributed.

In particular, there is an ordering of the rational numbers in [0, 1) that is

equidistributed. Another interesting question is whether Definition 1.1 should be
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extended from subintervals to more general Borel measurable sets in R/Z, replacing

length with the Lebesgue measure. Such an extension would make any ordering of

rationals not be equidistributed, since it would admit the set of irrational numbers in

[0, 1) whose measure is one. However, it is possible to reasonably extend the definition

to the algebra of Jordan sets. Pete Clark’s expository article [3] develops these ideas

further.

The connection between equidistribution and Fourier analysis was first estab-

lished in the following foundational result of Weyl.

Theorem 1.3 (Weyl’s Criterion). A sequence {xn} in R/Z is equidistributed if and

only if

lim
N→∞

1

N

N∑
n=1

e2πikxn = 0,

for all k ∈ Z− {0}.

That is, a sequence is equidistributed if and only if the average value of any

non-trivial Fourier mode e2πikx over the first N terms of the sequence goes to zero

in the limit of large N . Theorem 1.3 can easily be generalized to the space of all

Riemann integrable functions.

Theorem 1.4 (Generalized Weyl’s Criterion). A sequence {xn} in R/Z is equidis-

tributed if and only if for every Riemann integrable function f : R/Z→ C we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x) dx. (1.1)

Proof. Given any interval A, let XA(x) denote the characteristic function on A. Note

that the definition of equidistribution implies that

lim
N→∞

1

N

N∑
n=1

XA(xn) =

∫ 1

0

XA(x) dx.

Therefore the condition in (1.1) is satisfied by XA(x). The reverse implication of

Theorem 1.4 follows immediately since characteristic functions of intervals are Rie-

mann integrable. For the forward implication, suppose first that f is a real valued
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Riemann integrable function and that {xn} is equidistributed. The condition in (1.1)

also holds for step functions (i.e. finite linear combinations of characteristic functions

of intervals), since it holds for characteristic functions of intervals. Note that any

Riemann integrable f can be approximated by step functions s1 and s2, such that

s1 ≤ f ≤ s2 and
∫ 1

0
(s2 − s1)(x) dx ≤ ε, for any arbitrarily small ε. Hence,

∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn) ≤
∫ 1

0

s2(x) dx− 1

N

N∑
n=1

f(xn)

≤
∫ 1

0

s2(x) dx− 1

N

N∑
n=1

s1(xn)

=

∫ 1

0

(s2 − s1)(x) dx+

∫ 1

0

s1(x) dx− 1

N

N∑
n=1

s1(xn)

≤ ε+

∫ 1

0

s1(x) dx− 1

N

N∑
n=1

s1(xn). (1.2)

Similarly, we have∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn) ≥
∫ 1

0

s1(x) dx− 1

N

N∑
n=1

f(xn)

≥
∫ 1

0

s1(x) dx− 1

N

N∑
n=1

s2(xn)

=

∫ 1

0

(s1 − s2)(x) dx+

∫ 1

0

s2(x) dx− 1

N

N∑
n=1

s2(xn)

≥ −ε+

∫ 1

0

s2(x) dx− 1

N

N∑
n=1

s2(xn). (1.3)

Now taking the limit as N →∞ in (1.2) and (1.3), we get

−ε ≤
∫ 1

0

f(x) dx− lim
N→∞

1

N

N∑
n=1

f(xn) ≤ ε.

Since ε was arbitrary, the result follows. The result also holds for complex valued

functions f by considering the real and imaginary parts separately.

An immediate application of Theorem 1.3 is the following.
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Theorem 1.5. Let a and b be real numbers. The sequence {xn} = {na + b} is

equidistributed in R/Z if and only if a is irrational.

Proof. For the forward implication suppose that a is rational, and a = p/q for p,

q integers. Then consider e2πiqxn . We have e2πiqxn = e2πiqb for all n, and therefore

Weyl’s criterion is not satisfied. For the reverse implication, let a be irrational. Then,

for any non-trivial Fourier mode using the geometric series identity we have

1

N

∣∣∣∣∣
N∑
n=1

e2πik(na+b)

∣∣∣∣∣ =
1

N

∣∣∣∣1− e2πikNa

1− e2πika

∣∣∣∣
=

1

N

∣∣∣∣sin(πkNa)

sin(πka)

∣∣∣∣
≤ 1

N

1

| sin(πka)|
. (1.4)

Since a is irrational, | sin(πka)| is not equal to zero. Hence, the last expression

in (1.4) goes to zero as N → ∞. Therefore, by Weyl’s criterion the sequence is

equidistributed.

Remark 1.1. There is a natural connection between ergodic transformations on

R/Z and Theorem 1.4. For suppose that T : R/Z→ R/Z is ergodic. Then Birhoff’s

Ergodic Theorem states that for all f ∈ L1(R/Z) we have

lim
N→∞

1

N

N−1∑
n=0

f (T n(x)) =

∫
R/Z

f(x) dx,

for almost all x. That is, if T is ergodic then its forward orbit is equidistributed for

all most all x. In particular, it can be shown that the transformation T (x) = a + x

is ergodic in R/Z if and only if a is irrational. The book by Walters [25] provides a

good introduction to ergodic theory.

1.2 Discrepancy theory

Discrepancy theory is a quantitative study of the distribution of sequences. It

attempts to measure the deviation of a finite sequence from visiting any interval
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proportionally.

Definition 1.2 (Discrepancy). The discrepancy of a finite sequence

{x1, x2, ..., xN} in R/Z is

DN = sup0≤a≤b≤1

∣∣∣∣ |{x1, x2, ..., xN} ∩ [a, b]|
N

− (b− a)

∣∣∣∣ .
That is, DN measures the maximal deviation of a set of N elements of R/Z from

visiting any interval in proportion to its length. Discrepancy theory was extensively

studied by van der Corput and Pisot [24]. Some elementary arguments gives us the

following theorem.

Theorem 1.6. The discrepancy of a finite sequence satisfies

1

N
≤ DN ≤ 1.

Theorem 1.7. A sequence {xn} in R/Z is equidistributed if and only if limN→∞DN =

0.

A proof of Theorem 1.7 is given by Weyl in [26]. The backward direction is

immediate from the definitions, while the forward direction is not obvious a priori.

However, it follows at once for example by Theorem 1.8 and the dominated conver-

gence theorem.

There are two main theorems that establish upper bounds on the discrepancy

DN using the exponential sums that occur in Weyl’s criterion (Theorem 1.3). The

proof of both Theorems 1.8 and 1.9 are given in Kuipers and Niederreiter [14].

Theorem 1.8 (LeVeque’s Inequality). The discrepancy DN for a finite sequence

{x1, x2, .., xN} satisfies

DN ≤

 6

π2

∞∑
k=1

1

k2

∣∣∣∣∣ 1

N

N∑
n=1

e2πi kxn

∣∣∣∣∣
2
1/3

.
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It is easily seen that the constant appearing in Theorem 1.8 is the best possible.

The sequence of zeros {xn} = {0, 0, 0, . . .}, satisfies the inequality exactly. In [15],

LeVeque also shows that the exponent of 1/3 is the best possible.

A weaker version of the Theorem 1.8 was given by LeVeque in [15]. A more

general version was presented by Elliot in [8]. The second main theorem is that of

Erdös and Turán (see [9]).

Theorem 1.9 (Erdös and Turán). For a finite sequence {x1, x2, .., xN} of real num-

bers, and any positive integer m, we have

DN ≤
6

m+ 1
+

4

π

m+1∑
k=1

(
1

k
− 1

m+ 1

) ∣∣∣∣∣ 1

N

N∑
n=1

e2πikxn

∣∣∣∣∣ .
A proof of Theorem 1.9 is given in [14] and [16]. In practice, the inequality

of Erdös and Turán gives a better bound than the LeVeque inequality. Montgomery

in [16] provides a detailed discussion and considers some examples. In particular,

consider the sequence {na} where a = 1+
√

5
2

. The Erdös-Turán gives a bound of

DN � (log(N))2/N , whereas the use of the LeVeque inequality gives only DN �

N−2/3.

Other notions of discrepancy also exist. In particular, the Lp discrepancy is

defined as

DN =

(∫ 1

0

∣∣∣∣ |{x1, x2, ..., xN} ∩ [0, x)|
N

− x
∣∣∣∣p dx)1/p

.

For more background and references on the theory of equidistribution in R/Z see

Kuipers and Niederreiter [14]. The survey article of Pete Clark [3] also provides a

good introduction.

1.3 Summary of main results

Before stating our main results, we give a brief overview of the p-adic field

Qp, define equidistribution and discrepancy on the p-adic unit ball Zp analogous to

Definitions 1.1 and 1.2 on R/Z, and define notation relating the Prüfer p-group Z(p∞)
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to the dual group of Zp. This will be sufficient for us to state our main results clearly

and concisely. A more detailed discussion of this introductory material is done in

Chapters 2, 3 and 4.

For a fixed prime p, let | · |p denote the p-adic absolute value on the set of

rationals Q. Then the field Qp is the completion of Q with respect to the p-adic

absolute value. Let

Zp = {x ∈ Qp | |x|p ≤ 1},

be the ring of p-adic integers. Any element of Zp can be given a unique canoni-

cal expansion of the form x = a0 + a1p + a2p
2 + ...., where the ai are elements of

{0, 1, 2, ..., p− 1} (see for example [12, 13]).

For k ≥ 0, and a ∈ Zp, we denote by

D(a, 1/pk) = {x ∈ Zp | |x− a|p ≤ 1/pk}

= a+ pkZp,

a disk of radius 1/pk centered at a. As a compact Hausdorff topological group, Zp
has a natural translation invariant measure µ called the Haar measure. The measure

could be normalized so that µ(Zp) = 1, and the measure of a disk is equal to its

radius.

The following definition of equidistribution on Zp using disks is an analogue to

Definition 1.1 on R/Z, where the length of an interval is replaced by the measure of

a disk.

Definition 1.3. A sequence {xn} is said to be equidistributed in Zp if for every a in

Zp and every k ∈ N, we have

lim
N→∞

∣∣D(a, 1/pk) ∩ {x1, ..., xN}
∣∣

N
=

1

pk
.

That is, the proportion of the first N elements of {xn} lying in a disk D(a, 1/pk)

is equal to its measure in the limit of large N , and this holds true for all such disks.

The discrepancy of a set of N elements of Zp is defined analogously to Definition 1.2.
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Definition 1.4. The discrepancy of a finite sequence {x1, x2, ..., xN} in Zp is

DN = supa∈Zp, k∈N

∣∣∣∣∣
∣∣D(a, 1/pk) ∩ {x1, ..., xN}

∣∣
N

− 1

pk

∣∣∣∣∣ .
That is, DN measures the maximal deviation of a set of N elements of Zp from

visiting any disk in proportion to its radius. As in the classical case, some elementary

arguments show that
1

N
≤ DN ≤ 1.

The main aim of this dissertation is to prove a Fourier analytic upper bound on

the discrepancy DN given by Definition 1.4.

Let T be the circle group under multiplication, T = {z ∈ C | |z| = 1}. Given a

compact abelian group G, the set of continuous group homomorphisms from G to T

form a discrete group called the Pontryagin dual group of G. Let Z(p∞) denote the

Prüfer p-group, the group of all p-th power roots of unity in C. That is

Z(p∞) =
{
e2πi m

pn | m,n ∈ N ∪ {0}, p - m
}
.

The dual group of Zp is naturally isomorphic to Z(p∞), and its elements will play a

role analogous to the functions e2πikx, k ∈ Z, in classical Fourier analysis on R/Z.

Note that every element of Z(p∞) has finite order.

Notation 1.1. We denote the order of ζ ∈ Z(p∞) by ‖ζ‖.

Notation 1.2. Suppose that ζ ∈ Z(p∞) has order pn, and let x ∈ Zp have the

canonical expansion x = a0 + a1p + a2p
2 + .... + an−1p

n−1 + ...... Then we interpret

the notation ζx as

ζx = ζa0+a1p+a2p2+....+an−1pn−1

.

The following theorem is a p-adic analogue to LeVeque’s inequality.

Theorem 1.10 (Main Theorem). The discrepancy of a finite sequence {x1, ..., xN}

in Zp is bounded by

DN ≤ C(p)

 ∑
ζ∈Z(p∞)\{1}

1

‖ζ‖3

∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣
2
 1

4

,
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where C(p) is a constant dependent only on p.

Corollary 1.1. A sequence {xn} in Zp is equidistributed if and only if lim
N→∞

DN = 0.

Proof. The reverse direction follows immediately from Definition 1.4. The forward

implication follows from Theorem 1.10, the p-adic Weyl’s criterion as stated in Propo-

sition 4.1, and the dominated convergence theorem.

As an example application of Theorem 1.10, we have the following corollary.

Corollary 1.2. Let a, b ∈ Zp, and assume a is a unit in Zp. Then the sequence

{na+ b} has discrepancy

DN = O
(
N−1/2

)
.

Some quantitative results on the discrepancy of special p-adic sequences were

found by Beer in [1] and [2]. In particular, she proves in [1] that the discrepancy of

the sequence {na+ b} with a a unit is exactly equal to DN = N−1, the best possible.

It is not surprising that the LeVeque-type inequality gives us a weaker bound, as this

is the case in the classical setting on R/Z.

Let {x1, x2, ..., xN} be N points in R/Z, and f : R/Z −→ R. Theorem 1.4

motivates analyzing inequalities of the form∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ CDN ,

where C is a constant. Let f be a function of bounded variation on R/Z, with

variation V (f). The classical Koksma inequality in R/Z gives a bound of the form∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ V (f)D∗N ,

where D∗N is the star discrepancy, which is obtained by fixing a = 0 in Definition 1.2

(note that D∗N ≤ DN ≤ 2D∗N , see [16]).
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We derive a Fourier analytic Koksma inequality in Zp. For a function f ∈

L1(Zp), its Fourier coefficients f̂(ζ) are given by

f̂(ζ) =

∫
Zp
f(x)ζ−x dµ(x),

for ζ in Z(p∞). We have the following theorem.

Theorem 1.11. Let f be a continuous complex-valued function on Zp with Fourier

coefficients f̂(ζ) for ζ ∈ Z(p∞). Then, for a set of N points {x1, ..., xN} in Zp with

discrepancy DN we have∣∣∣∣∣
∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ DN

∑
ζ∈Z(p∞)

ζ 6=1

‖ζ‖
∣∣∣f̂(ζ)

∣∣∣ . (1.5)

Corollary 1.3. Let ζ ∈ Z(p∞) and {x1, ...., xN} be N points in Zp with discrepancy

DN , then ∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣ ≤ ‖ζ‖DN .

In [1], Beer derives a Koksma inequality in Zp based on a notion of bounded

variation. We discuss this result in detail in Chapter 7, and compare it with Theorem

1.11.

1.4 Outline of dissertation

We start with an introduction to p-adic fields in Chapter 2. We define the p-adic

absolute value, the p-adic field Qp, and the p-adic unit ball Zp which is a compact

topological group that is the primary set over which we work. We state and prove

some elementary theorems on the topology of Zp. These theorems would make the

reading of the succeeding chapters meaningful.

In Chapter 3, we develop the Fourier analytic tools that are necessary for inves-

tigating the distribution of sequences in Zp. In particular, we calculate the Pontryagin
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Dual group of Zp. We also explicitly calculate the Fourier series representation of the

characteristic function of a disk in Zp. Also included in this chapter is a discussion of

the Dirichlet and Fejér kernels and the convergence of Fourier series in Zp. However,

this latter part is not crucial for further reading.

In Chapter 4, we discuss Definition 1.3 and 1.4 in more detail and prove a

version of Weyl’s criterion for continuous functions using the density of trigonometric

polynomials (the criterion also holds for a more general class of Riemann integrable

functions).

The proof of Theorem 1.10 is given in Chapter 5, using the Fourier analysis

established in Chapter 3.

The behavior of the linear sequence {xn} = {na+b} in Zp is analyzed in Chapter

6. We give a Fourier analytic proof that this sequence is equidistributed in Zp if and

only if a is a unit in Zp. We also use Theorem 1.10 to find an upper bound on the

discrepancy of this sequence.

In Chapter 7, we discuss some existing Koksma inequalities in both R/Z and Zp
based on notions of functions of bounded variation. We also derive a Fourier analytic

Koksma inequality in Zp, as given by Theorem 1.11.
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2 p-adic Fields

In this chapter, we give a brief introduction to the p-adic fields and state some

theorems that are useful. The p-adic numbers were first explicitly described by Kurt

Hensel in 1897. Since then, the concept has grown to become an important aspect of

modern number theory, including playing an important role in Wiles’ proof of Fer-

mat’s Last Theorem. Applications have grown to such fields as mathematical physics

and quantum mechanics (see for example [20] and the review article by Dragovich

[6]). Two good elementary introductions to the topic are the books by Gouvêa [12]

and Katok [13]. The results stated in this chapter can be found in Katok [13].

2.1 p-adic Absolute value

In number theory, it is of interest to measure the divisibility of rational numbers

by a fixed prime number p. To this end, we define the p-adic absolute value on Q as

follows.

Definition 2.1 (p-adic absolute value). Suppose that x ∈ Q, x 6= 0, and x = pr a
b

where a, b, and r are integers with p - ab. Then

|x|p = p−r.

If x = 0, we take |x|p = 0.

Example 2.1 helps illustrate the definition.

Example 2.1. Let p = 3.

i. |18|3 =
∣∣2× 32

∣∣
3

=
1

9

ii. |1/9|3 = 9

iii.
∣∣∣∣18

5

∣∣∣∣
3

=

∣∣∣∣32 2

5

∣∣∣∣
3

=
1

9
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iv. |7|3 =
∣∣30 × 7

∣∣
3

= 1

v.
∣∣∣∣162

45

∣∣∣∣
3

=

∣∣∣∣2× 34

5× 32

∣∣∣∣
3

=

∣∣∣∣32 × 2

5

∣∣∣∣
3

=
1

9
.

An important implication of Definition 2.1 is that the p-adic absolute value | · |p
takes on only discrete values of the form pk, k ∈ Z or 0. Suppose that x =

s

t
∈ Q.

Then |x|p is small when the numerator s is highly divisible by p. On the other hand,

if the denominator t is highly divisible by p then |x|p is large. In particular, we have

that lim
k→∞
|pk|p = 0, and |1/pk|p grows without bound as k gets larger and larger. If p

does not divide either s or t then |x|p = p0 = 1.

2.2 The field Qp

Definition 2.2 (Norm on a field F ). Let F be a field. Suppose that ‖ · ‖ : F −→

[0, ∞) satisfies the following properties.

1. ‖x‖ = 0 if and only if x = 0.

2. ‖xy‖ = ‖x‖‖y‖, for all x, y ∈ F .

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ F .

Then, ‖ · ‖ is called a norm on F , and F is said to be a normed field.

Definition 2.3 (non-Archimedean norm). A norm ‖ · ‖ on a field F is called non-

Archimedean if it satisfies the additional property

‖x+ y‖ ≤ max(‖x‖, ‖y‖). (2.1)

Remark 2.1. The property given by (2.1) is called the strong triangle inequality,

because it clearly implies the triangle inequality.

Proposition 2.1 (Strongest wins property). If F is a non-Archimedean field and

x, y ∈ F with ‖x‖ < ‖y‖, then ‖x+ y‖ = ‖y‖.
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Proof. First, note that ‖x‖ < ‖y‖ implies that max(‖x + y‖, ‖x‖) = ‖x + y‖. For

otherwise, we would have ‖y‖ = ‖x + y − x‖ ≤ max(‖x + y‖, ‖x‖) = ‖x‖ which

contradicts our assumption that ‖x‖ < ‖y‖.

Therefore, we have ‖y‖ = ‖x + y − x‖ ≤ max(‖x + y‖, ‖x‖) = ‖x + y‖ ≤

max(‖x‖, ‖y‖) = ‖y‖. Hence, ‖x+ y‖ = ‖y‖.

Proposition 2.2. The p-adic absolute value | · |p is a non-Archimedean norm on Q.

Proof. Suppose that x, y are in Q with x = pr a
b
, y = ps c

d
, with p - ab and p - cd. Then

|x|p = p−r and |y|p = p−s.

First, we verify property 2 in Definition 2.2. We have xy = p(r+s) ac
bd

and p - ac,

p - bd. Hence, |xy|p = p−(r+s) = |x|p|y|p.

Next, we show that | · |p satisfies the strong triangle inequality as given in (2.1)

and the triangle inequality property in Definition 2.2 would follow. Without loss of

generality assume that s ≤ r, and thus |x|p ≤ |y|p. We have

|x+ y|p = |pr a
b

+ ps
c

d
|p

= |ps(pr−sa
b

+
c

d
)|p

= |ps|p|(
pr−sad+ bc

bd
)|p

≤ |ps|p, (2.2)

where the last line in (2.2) follows from the fact that p - bd. Hence, |x + y|p ≤

|y|p = max(|x|p, |y|p). By symmetry we would have |x + y|p ≤ |x|p = max(|x|p, |y|p)

if r ≤ s.

Suppose that F is a normed field with norm ‖·‖, that is not necessarily complete.

Then F can be completed with respect to ‖ ·‖, to produce a new field F̂ . This is done

by identifying all Cauchy sequences in F under an equivalence relation ∼, with two

Cauchy sequences {xn} and {yn} being related under ∼ if ‖xn − yn‖ → 0 as n→∞.

Then the set of all equivalence classes under this equivalence relation is F̂ .
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Moreover, F̂ has a norm induced by ‖ · ‖. For any x ∈ F ,

‖x‖ = lim
n→∞

‖an‖,

where {an} is any Cauchy sequence belonging to the equivalence class x in F̂ . In

addition, F can be identified with a dense subset of F̂ .

The real line R can be viewed as the completion of the rationals Q under the

standard absolute value as the norm. It can be shown that Q is not complete with

respect to the p-adic norm. The completion of Q with respect to | · |p is denoted by

Qp. The p-adic unit ball Zp is the set

Zp = {x ∈ Qp | |x|p ≤ 1}.

Every nonzero x ∈ Qp has a unique canonical expansion of the form

x =
∞∑
n=k

anp
n, (2.3)

where k is an integer, the coefficients an belong to the set {0, 1, 2, ..., p − 1} and

ak 6= 0 [13]. The series in (2.3) diverges with respect to the ordinary absolute value,

but converges in the p-adic norm.

Proposition 2.3. Suppose that a nonzero x ∈ Qp has the canonical expansion x =

akp
k + ak+1p

k+1 + ..., for some k ∈ Z, with ak 6= 0. In other words, ak is the first

non-zero coefficient in the canonical expansion of x. Then |x|p = p−k.

Proof. Consider the sequence x1 = akp
k, x2 = akp

k+ak+1p
k+1, x3 = akp

k+ak+1p
k+1+

ak+2p
k+2,.... in Q. That is, {xn} is the sequence of partial sums appearing in the

canonical expansion of x. The sequence is Cauchy in Q since for any m > n we have

|xm − xn|p ≤ 1/pn+1 which goes to zero as n,m go to infinity. By the strongest wins

property, |xn|p = p−k for all n. Moreover, the sequence xn belongs to the equivalence

class represented by x and so

|x|p = lim
n→∞

|xn|p = p−k.
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Remark 2.2. An important consequence of Proposition 2.3 is that the induced norm

| · |p on Qp − {0} takes the same values as | · |p does on Q− {0}, on the discrete set

{pk, k ∈ Z}.

Since |x|p ≤ 1 for all x ∈ Zp, every x in Zp has a unique canonical expansion of

the form

x =
∞∑
n=0

anp
n, (2.4)

where the an belong to the set {0, 1, 2, ..., p− 1}. Therefore, Zp can be viewed as the

set of all canonical expansions in the non-negative powers of p

Zp =
{
a0 + a1p+ a2p

2 + .... | an ∈ {0, 1, 2, ..., p− 1}
}
.

If an = 0 for n = 0, 1, ...,m− 1 and am 6= 0, then

|x|p =
1

pm
.

In particular, if a0 6= 0 then |x|p = 1.

It follows from the definition of Zp that Z ⊂ Zp. Moreover, the canonical

expansions given by (2.4) implies that Z is densely embedded in Zp.

Proposition 2.4. The p-adic unit ball Zp is an abelian group under addition and

and a ring under multiplication.

Proof. The strong triangle inequality ensures that Zp is closed under addition, making

it an abelian group under addition. The multiplicative property (which is property 2

in Definition 2.2) ensures that Zp is closed under multiplication. Hence, Zp is a ring

under multiplication.

Due to the algebraic structure given by Proposition 2.4 and the canonical ex-

pansions given by (2.4), Zp is called the ring of p-adic integers.

By Z×p , we denote the set of all the elements of Zp whose first term in the

canonical expansion is non-zero. That is,

Z×p = {a0 + a1p+ a2p
2 + .... | a0 6= 0}.
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Alternately,

Z×p = {x ∈ Qp | |x|p = 1}.

The set of units in Zp is precisely Z×p . As such, Z×p is a multiplicative group.

2.3 The topology of Qp and Zp

The p-adic absolute value naturally induces a metric d(x, y) on Qp such that

d(x, y) = |x − y|p. In this section, we shall look at the metric topology on Qp. The

strong triangle inequality leads to a topology on Qp that is very different from R. In

particular, Qp is a totally disconnected space, and topologically Zp is homeomorphic

to a Cantor set. The details are given in [13].

Definition 2.4 (Disks and Circles). Let a ∈ Qp and r > 0 with r = pk for k ∈ Z.

By a disk centered at a with radius r in Qp, we mean the set

D(a, r) = {x ∈ Qp | |x− a|p ≤ r}.

By a circle centered at a with radius r in Qp, we mean the set

S(a, r) = {x ∈ Qp | |x− a|p = r}.

We state and prove the following propositions, which are useful for our analysis.

Proposition 2.5. Consider the disk D(a, r) and suppose b ∈ D(a, r). Then D(b, r) =

D(a, r). That is, every point of a disk may also play the role of a center.

Proof. Suppose c ∈ D(a, r). Then

|b− c|p = |b− a+ a− c|p
≤ max(|b− a|p, |a− c|p)

≤ max(r, r)

= r.

So, c ∈ D(b, r). This means D(a, r) ⊆ D(b, r). The result follows by symmetry.
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Proposition 2.6. Suppose D(a, r) ∩ D(b, s) 6= ∅. Then either D(a, r) ⊆ D(b, s) or

D(b, s) ⊆ D(a, r). That is, if two disks intersect then one contains the other.

Proof. Without loss of generality assume that r ≤ s, and let c ∈ D(a, r) ∩ D(b, s).

Then using Proposition 2.5 we have D(c, r) = D(a, r) and D(c, s) = D(b, s). There-

fore, D(a, r) = D(c, r) ⊆ D(c, s) = D(b, s).

Proposition 2.7. A disk D(a, r) in Qp is both open and closed.

Proof. We only need to show that D(a, r) is open. Note that r = pk, for some k ∈ Z.

So,

D(a, r) = {x ∈ Zp | |x− a|p ≤ pk}

= {x ∈ Zp | |x− a|p < pk+1}, (2.5)

and the set in the last line of (2.5) is open by definition.

Proposition 2.8. The characteristic function XD(a,r)(x) of a disk D(a, r) in Qp is

continuous.

Proof. Suppose that x ∈ Qp. If x is in D(a, r), then for any ε > 0, D(x, r) = D(a, r)

is an open neighborhood of x such that |XD(a,r)(x) − XD(a,r)(y)| = 0 < ε, for all

y in D(x, r). On the other hand, suppose x /∈ D(a, r). Then pick an s < r, and

observe that D(x, s) ∩ D(a, r) = {∅} (otherwise, by Proposition 2.6 we will have

D(x, s) ⊆ D(a, r) which is not possible). Then for all y in the open neighborhood

D(x, s), we have |XD(a,r)(x)−XD(a,r)(y)| = 0 < ε.

Proposition 2.8 is surprising at first glance since the analogous function in R

has jump discontinuities.

Proposition 2.9. The set of all disks in Qp is countable.

Proof. This follows from the facts that the radii are discretely valued, the rational

numbers are dense in Qp, and Proposition 2.5.
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Proposition 2.10. For each k ≥ 0, Zp can be expressed as the disjoint union of pk

disks of radius 1/pk.

Proof. Consider the integers 0, 1, 2, ..., pk − 1. Each of them are at a p-adic dis-

tance greater than 1/pk from each other. Therefore, the disks D(j, 1/pk) for j =

0, 1, 2, ..., pk−1 are disjoint. Then note that any element of Zp can be written as

x = j + pky, where j ∈ {0, 1, 2, ...., pk − 1} and y ∈ Zp. Hence, we have

Zp =

pk−1⋃
j=0

D(j, 1/pk).

Proposition 2.11. Zp is compact.

Proof. We follow Katok [13], and show that Zp is sequentially compact. Let {xn} be

a sequence in Zp, and suppose that each element of {xn} has canonical expansions of

the form

x1 = a1
0 + a1

1p+ a1
2p

2 + a1
3p

3 + · · ·

x2 = a2
0 + a2

1p+ a2
2p

2 + a2
3p

3 + · · ·

x3 = a3
0 + a3

1p+ a3
2p

2 + a3
3p

3 + · · ·
...

Since each aji belongs to the finite set {0, 1, 2, ..., p − 1}, we can find a subsequence

{x0k} of {xk} such that each element of x0k has the same first coefficient b0 in its

canonical expansion. That is,

x01 = b0 + a01
1 p+ a01

2 p
2 + a01

3 p
3 + · · ·

x02 = b0 + a02
1 p+ a02

2 p
2 + a02

3 p
3 + · · ·

x03 = b0 + a03
1 p+ a03

2 p
2 + a03

3 p
3 + · · ·

...

We can now repeat this procedure to the sequence {x0k} to obtain a new sequence

{x1k} such that the first two coefficients b0 and b1 match. Then the next sequence
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{x2k} is a subsequence of {x1k} such that the first three coefficients b0, b1, and b2

match and so on. We have a sequence of such sequences

{x0k} = {x00, x01, x02, x03, · · · }

{x1k} = {x10, x11, x12, x13, · · · }

{x2k} = {x20, x21, x22, x23, · · · }
...

Now pick the diagonal elements {x00, x11, x22, ...}. This is a subsequence of the original

sequence {xn} that converges to the point with canonical expansion b0 + b1p+ b2p
2 +

......

Proposition 2.12. Zp is a compact abelian group.

Proof. This follows immediately from Propositions 2.4 and 2.11.
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3 Fourier analysis on Zp

3.1 Harmonic analysis on groups

We begin with a brief discussion of Harmonic analysis on locally compact Haus-

dorff abelian groups (LCA groups). We state some of the basic theorems that help us

develop the tools necessary for the succeeding chapters. We follow Rudin [21] closely.

Theorem 3.1 (Haar Measure). Let G be a locally compact Hausdorff abelian group

with group operation written additively. Then there exists a positive regular Borel

measure µ on G, the Haar measure, that is translation invariant. That is,

µ(E + x) = µ(E),

for every x in G and every Borel set E in G.

Remark 3.1. The Haar measure is unique up to scaling. That is if µ and ν are Haar

measures on G, then ν = cµ, for some c ∈ R+.

Remark 3.2. If G is compact, then we have a normalized Haar measure such that

µ(G) = 1.

The usual construction of this measure is done by finding a positive linear func-

tional T on Cc(G), the space of continuous functions with compact support on G, with

the property that T is invariant under precomposition by each translation operator

f(x) 7→ f(x + a) on Cc(G). The Reisz representation theorem then guarantees the

existence of a measure µ such that T (f) =
∫
G
f dµ, for every f in Cc(G). The details

can be found in some standard texts on real analysis, for example Folland [10].

Let T = {z ∈ C | |z| = 1} be the circle group under multiplication. A continuous

group homomorphism γ : G→ T is called a character of G. The set of all characters

of G form a group called the Pontryagin dual group.



23

Proposition 3.1 (Dual group). Let G be an LCA group, and let Ĝ be the set of all

characters of G. Then Ĝ is an abelian group, with the group operation · defined by

(γ1 · γ2)(x) = γ1(x)γ2(x),

for all x in G.

Note that the identity element of Ĝ (also called the trivial character of G) is

given by γ0(x) = 1, for all x ∈ G.

We have the following orthogonality condition.

Theorem 3.2. Let G be a compact abelian group with normalized Haar measure µ,

and let γ ∈ Ĝ. Then

∫
G

γ(x) dµ(x) =

 1 if γ is trivial

0 else.

Proof. Clearly,
∫
G

γ0(x) dµ(x) = µ(G) = 1, as µ is the normalized Haar measure.

Suppose that γ is not trivial. Then there exists some x0 ∈ G such that γ(x0) 6= 1.

Then, ∫
G

γ(x) dµ(x) =

∫
G

γ(x+ x0) dµ(x)

= γ(x0)

∫
G

γ(x) dµ(x), (3.1)

where the first line of (3.1) follows from the translation invariance of the Haar measure.

Since γ(x0) 6= 1, the result follows.

Definition 3.1 (Fourier Transform). Let G be an LCA group. For any f ∈ L1(G)

define the map
f̂ : Ĝ −→ C

γ 7−→
∫
G
f(x)γ(−x) dµ(x).

The map f̂ is called the Fourier transform of f .



24

Let A(Ĝ) be the collection of all Fourier transforms as given in Definition 3.1.

We then endow Ĝ with the weak topology induced by A(Ĝ). That is, it is the weakest

topology on Ĝ that makes each f̂ ∈ A(Ĝ) continuous. We have the following theorem.

Theorem 3.3. If G is compact, then the weak topology on Ĝ is discrete.

Proof. We follow Rudin [21]. Define f : G→ C by f(x) = 1 for every x in G. Since

G is compact, f is in L1(G). Let γ0 denote the trivial character. Then using the

orthogonality condition in Theorem 3.2, f̂(γ0) = 1 and f̂(γ) is zero otherwise. With

Ĝ endowed with the weak topology, f̂ is continuous. Therefore, f̂−1(1) is an open set

in Ĝ containing γ0 alone. So, Ĝ is discrete.

For any two functions f, g : G −→ C, we define their convolution by

(f ∗ g)(x) =

∫
G

f(x− y)g(y) dµ(y), (3.2)

provided the integral in (3.2) exists. In particular, if f and g are in L1(G) then (3.2)

holds for almost all x ∈ G and (f ∗ g)(x) = (g ∗ f)(x). Moreover, for every γ ∈ Ĝ the

Fourier transform of f ∗ g is f̂ ĝ.

The weak topology on Ĝ makes Ĝ an LCA group, with a Haar measure µ̂. This

measure could be appropriately scaled so that the following theorem holds (see [21]).

Theorem 3.4 (Plancherel Theorem). Let f ∈ (L1 ∩ L2)(G). Then the map f 7→ f̂

is an isometry (with respect to the L2 norms), from (L1 ∩L2)(G) onto a dense linear

subspace of L2(Ĝ). That is,∫
G

|f(x)|2 dµ(x) =

∫
Ĝ

|f̂(γ)|2 dµ̂(γ).

Moreover, this isometry may be uniquely extended to an isometry of L2(G) onto

L2(Ĝ).

Remark 3.3. For the purpose of this dissertation, we consider f ∈ (L1 ∩ L2)(G)

where G is compact. Hence Ĝ is discrete, and the Haar measure on Ĝ is the counting

measure [21]. In this case, Theorem 3.4 is a version of Parseval’s theorem as seen in

elementary Fourier analysis [22].
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3.2 Fourier series on R/Z

In order to emphasize the analogy between R/Z and Zp we first recall classical

Fourier analysis on the circle R/Z. Some good references on this topic are the books

by Dym and McKean [7] and Stein and Shakarchi [22].

Theorem 3.5. For any n ∈ Z, the map ζn : R/Z −→ T given by

ζn : R/Z −→ C

x 7−→ e2πinx,

is a character of R/Z. Moreover, the map n 7→ ζn is an isomorphism between Z and

the dual group of R/Z.

Let f ∈ L1(R/Z). Then the Fourier coefficients of f are given by

f̂(n) =

∫
R/Z

f(x)e−2πinx dx,

where we have identified ζn with n by Theorem 3.5. If in addition f is continuous

and
∑

n∈Z |f̂(n)| <∞, then for all x in R/Z we can express f(x) as the Fourier series

f(x) =
∑
n∈Z

f̂(n)e2πinx. (3.3)

Remark 3.4. The pointwise convergence of the Fourier series to f(x) is a rather

intricate issue [7, 22]. In particular, if the assumption of absolute summability of the

Fourier coefficients is relaxed, then the continuity of f at a point x is no guarantee

for the convergence of its Fourier series to f(x).

3.3 Convolution kernels

In classical Fourier analysis on R/Z, the N th order Dirichlet kernel is given by

DN(x) =
N−1∑

n=−(N−1)

e2πinx.
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Let f be in L1(R/Z). The convolution of the Dirichlet kernel with f gives the N th

partial Fourier sum

SN(x) = (f ∗DN)(x)

=
N−1∑

n=−(N−1)

f̂(n)e2πinx, (3.4)

where f̂(n) is the nth Fourier coefficient of f . The Fejér kernel is

FN(x) =
1

N

N−1∑
j=0

Dj(x).

The convolution of f with FN gives the Cesaro means of the partial sums

f ∗ FN =
S0 + S1 + ...+ SN−1

N
. (3.5)

Following Stein-Shakarchi [22], a sequence of functions {KN} in R/Z that satisfy

the conditions in the following definition are said to be good kernels because (f ∗

KN)(x) converges to f(x) at any point where f is continuous.

Definition 3.2 (Good kernels in R/Z). A family of functions {KN} in R/Z is said

to be a family of good kernels if the following conditions are satisfied

i. For all N ≥ 1 ∫ 1

0

KN(x)dx = 1.

ii. There exists an M > 0 such that for all N ≥ 1,∫ 1

0

|KN(x)|dx ≤M.

iii. For every 0 < δ < 1/2,

lim
N→∞

∫
δ<x≤1/2

|KN(x)|dx = 0.
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Theorem 3.6. Let {KN} be a family of good kernels, and f be a bounded function

in L1(R/Z). Then

lim
N→∞

(KN ∗ f)(x) = f(x),

whenever f is continuous at x. If f is continuous everywhere, then the convergence

is uniform.

For a proof of Theorem 3.6 see [22]. The Dirichlet kernels are not a family of

good kernels in R/Z because they violate condition (ii) in Definition 3.2, validating the

comments we made in Remark 3.4. Examples can be found to show that the partial

sum in (3.4) is not guaranteed to converge to f pointwise, even at a point where f is

continuous. A Lipschitz condition on f is enough to guarantee convergence [22]. In

particular, Stein-Shakarchi has a construction of an everywhere continuous function

whose Fourier series diverges at a point (see Page 83 of [22]). On the other hand,

the Fejér kernels are a family of good kernels. Therefore, the Cesaro means in (3.5)

converges to f(x) at all points x where f is continuous.

3.4 p-adic Haar measure and a change of variables formula

By Proposition 2.12, Zp is a compact abelian group and hence there exists a

normalized Haar measure µ on Zp such that µ(Zp) = 1 (see for example [10]).

Lemma 3.1 (Measure of a disk). The µ-measure of a disk D(a, r) in Zp centered at

a with radius r is equal to its radius r.

Proof. Let k ≥ 0. By Proposition 2.10, Zp can be written as the disjoint union of pk

disks Zp = ∪p
k−1
j=0 D(j, 1/pk). Hence,

1 = µ(Zp)

=

pk−1∑
j=0

µ(D(j, 1/pk))

= pkµ(D(0, 1/pk)), (3.6)
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where the last line of (3.6) follows from the translation invariance of the Haar measure

µ. Therefore, we conclude that µ(D(a, 1/pk)) = µ(D(0, 1/pk)) = 1/pk.

Note that the measure of a circle S(a, 1/pk) is µ(S(a, 1/pk)) = 1/pk − 1/pk+1,

since S(a, 1/pk) can be written as the difference of the two disks D(a, 1/pk) and

D(a, 1/pk+1).

Lemma 3.2. Let E be a Borel subset of Zp, and k ≥ 0. Then µ(pkE) = 1
pk
µ(E).

Proof. For every Borel subset E of Zp, define ν(E) = µ(αE) where α ∈ Zp is a fixed

non-zero constant. It is easily seen that ν is a translation invariant measure on Zp
since

ν(E + x) = µ(αE + αx) = µ(αE) = ν(E).

By the uniqueness of Haar measure up to scaling, we have that ν = cµ, for some

constant c ∈ R+. Suppose we take α to be pk. Then using Lemma 3.1

ν(Zp) = µ(pkZp) = 1/pk,

and we have c = 1/pk, so that ν = 1
pk
µ.

Notation 3.1. We denote by XE(x) the characteristic function of a subset E of Zp.

We have the following change of variables formula.

Proposition 3.2. Let a ∈ Zp and k ≥ 0, and let f : Zp → C be an integrable

function. Then ∫
Zp
XD(a,1/pk)(x)f(x) dµ(x) =

1

pk

∫
Zp
f(a+ pkx) dµ(x).

Proof. First we show that the above formula is valid for any characteristic function

XE(x) where E is measurable. Let D = D(a, 1/pk), since XD(x)XE(x) = XD∩E(x) it

follows that ∫
Zp
XD(x)XE(x) dµ(x) = µ(D ∩ E).
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On the other hand, define

A = {x ∈ Zp | a+ pkx ∈ E}.

Then a+pkA = D∩E, and 1
pk
µ(A) = µ(pkA) = µ(a+pkA) = µ(D∩E) using Lemma

3.2. In particular,∫
Zp
XE(a+ pkx) dµ(x) = µ(A)

= pkµ(D ∩ E)

= pk
∫
Zp
XD(x)XE(x) dµ(x).

Since the result is true for characteristic functions, the general case follows by an

approximation argument and the dominated convergence theorem.

3.5 Dual group of Zp

As we have described in section 3.1, if G is a compact abelian group then the set

of all continuous group homomorphisms (or characters) from G to the multiplicative

unit circle T = {z ∈ C | |z| = 1} forms a discrete group under multiplication, the

Pontryagin dual group Ĝ. Hence, by Proposition 2.12, Zp has a corresponding dual

group Ẑp which we calculate in this section.

The Prüfer p-group

Z(p∞) =
{
e2πi m

pn | m,n ∈ N ∪ {0}, p - m
}
,

is the group of all p-th power roots of unity in C. Recall Notation 1.2 from Chapter

1 for the meaning of ζx. Suppose that ζ ∈ Z(p∞) has order pn, and let x ∈ Zp have

the canonical expansion x = a0 + a1p+ a2p
2 + ....+ an−1p

n−1 + ....., then we interpret

the notation ζx as

ζx = ζa0+a1p+a2p2+....+an−1pn−1

.

Lemma 3.3. Let ζ, ω ∈ Z(p∞). Then for any x, y in Zp, we have

ζx+y = ζxζy,
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and

(ζω)x = ζxωx.

Proof. Suppose that the order of ζ is ‖ζ‖ = pn. Let x and y be in Zp. The unique

canonical expansions of x and y in Zp allows us to write x = m + pns, y = r + pnt

for m, r ∈ N ∪ {0} and s, t ∈ Zp. Then note that by the definition of ζx we have

ζx = ζm+pns = ζm, and similarly ζy = ζr. Therefore,

ζ(x+y) = ζm+pns+r+pnt

= ζm+r+pn(s+t)

= ζm+r

= ζmζr

= ζxζy.

This proves the first assertion. To prove the second assertion, let ζ have order pn and

ω have order pq. Without loss of generality assume that n ≤ q, and thus ζω has order

dividing pq. Write x = m+pns = l+pqt, for some 0 ≤ m < pn and 0 ≤ l < pq. Then,

(ζω)x = (ζω)l+p
qt

= (ζω)l

= ζ lωl

= ζxωx,

where we have used the fact that l ≡ m mod pn.

The next lemma states that the dual group Ẑp of Zp is isomorphic to the Prüfer

p-group Z(p∞). The result is known, but we include a proof due to the lack of a

suitable reference. We use some ideas from Conrad’s calculation of the character

group of Qp in [4].

Lemma 3.4. For each ζ ∈ Z(p∞), the map x 7→ ζx is a character of Zp. Moreover,

the map

Ψ : Z(p∞) −→ Ẑp
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ζ 7−→ (x 7→ ζx)

is an isomorphism from the Prüfer p-group Z(p∞) to the Pontryagin dual group of

Zp.

Proof. It follows from Lemma 3.3 that for each ζ ∈ Z(p∞) the map x 7→ ζx is a

character of Zp, and that Ψ is a group homomorphism. To show the injectivity of Ψ,

suppose that ζx1 = ζx2 for all x in Zp. Then picking x = 1, we get ζ1 = ζ2.

We need to argue that Ψ is surjective. Let γ be in the dual group of Zp. Since

γ(0) = 1 and γ is continuous, there exists a disk D = pnZp of radius 1/pn centered

at zero, such that |γ(x)− γ(0)| < 1 for all x in D, and we can pick a smallest n such

that this is true. Moreover, since D is a subgroup of Zp we must have that the image

γ(D) is a subgroup of T.

Note that there does not exist any non-trivial subgroup of T satisfying the

condition |x − y| < 1 for all elements x and y in the subgroup. Hence, we conclude

that γ(D) = {1}.

Now suppose that γ(1) = ζ = e2πiθ for some θ in [0, 1). Then, 1 = γ(pn) =

γ(1)p
n

= e2πipnθ and thus pnθ ∈ Z. We conclude that θ = m
pn
, for m ∈ Z where p - m

by the minimality of n.

For any integer k, we have γ(k) = γ(1)k = ζk. This completely determines γ,

since we can write Zp as the union of pn disjoint balls Zp = ∪p
n−1
k=0 (k + pnZp) and

for any x ∈ Zp we have x = k + pny, for some 0 ≤ k < pn and y ∈ Zp, and hence

γ(x) = γ(k)γ(pny) = γ(k) because γ ≡ 1 on D(0, 1/pn). We conclude that

γ(x) = ζx,

for all x in Zp.

Using Lemma 3.4, we shall express the Fourier series of any f ∈ L1(Zp) in

terms of the elements of Z(p∞). Let f ∈ L1(Zp). For each ζ ∈ Z(p∞), the ζth Fourier
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coefficient of f is given by

f̂(ζ) =

∫
Zp
f(x)ζ−x dµ(x).

The Fourier inversion formula gives

f(x) =
∑

ζ∈Z(p∞)

f̂(ζ)ζx, (3.7)

whenever
∑

ζ∈Z(p∞) |f̂(ζ)| < ∞ and f is continuous. As we show in Corollary 3.2,

this condition can be relaxed in Zp so that 3.7 holds for all continuous functions f .

3.6 Fourier coefficients of a disk in Zp

We use Proposition 3.2 to calculate the Fourier coefficients of the characteristic

function of a disk.

Lemma 3.5. Let a ∈ Zp, k ≥ 0, and ζ ∈ Z(p∞). Then

X̂D(a,1/pk)(ζ) =


ζ−ap−k if ‖ζ‖ ≤ pk,

0 if ‖ζ‖ > pk.

Proof. Suppose that ‖ζ‖ ≤ pk, then ζpkx = 1 for all x in Zp. Therefore, we have∫
Zp
XD(a,1/pk)(x)ζ−x dµ(x) = p−k

∫
Zp
ζ−(a+pkx) dµ(x)

= ζ−ap−k
∫
Zp
ζ−p

kx dµ(x)

= ζ−ap−k.

On the other hand suppose ‖ζ‖ > pk, and let ω = ζp
k . Then ‖ω‖ = ‖ζ‖/pk > 1 and

hence ∫
Zp
XD(a,1/pk)(x)ζ−x dµ(x) = ζ−ap−k

∫
Zp
ζ−p

kx dµ(x)
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= ζ−ap−k
∫
Zp
ω−x dµ(x)

= 0,

using the orthogonality of characters.

Corollary 3.1. Let a ∈ Zp and k ≥ 0. Then

XD(a,1/pk)(x) = p−k
∑
‖ζ‖≤pk

ζ−aζx.

Proof. Let f(x) = XD(a,1/pk)(x), and Sk(x) = p−k
∑
‖ζ‖≤pk ζ

−aζx. First, we claim that∫
Zp
|f(x)− Sk(x)|2 dµ(x) = 0. (3.8)

Then, the result would follow since (3.8) would imply that f(x) = Sk(x) at any

point where f is continuous, and we know by Proposition 2.8 that the characteristic

function of a disk is continuous in Zp. Note that∫
Zp
|f(x)−Sk(x)|2 dµ(x) =

∫
Zp
|f(x)|2 dµ(x)+

∫
Zp
|Sk(x)|2 dµ(x)−2

∫
Zp
f(x)Sk(x) dµ(x).

The orthogonality of characters gives us∫
Zp
|Sk(x)|2 dµ(x) =

1

p2k

∑
‖ζ‖≤pk

1

=
1

pk
.

Now since f̂(ζ) = p−kζ−a, we have∫
Zp
f(x)Sk(x) dµ(x) =

∑
‖ζ‖≤pk

p−kζa
∫
Zp
f(x)ζ−x dµ(x)

=
1

p2k

∑
‖ζ‖≤pk

1

=
1

pk
.

Finally, note that
∫
Zp |f(x)|2 dµ(x) = 1/pk, using the fact that the measure of a disk

is equal to its radius. This proves (3.8).
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3.7 The Dirichlet and Fejér kernels in Zp

In this section, we look at the convergence properties of Fourier series in Zp.

After we proved the following results on the convergence of Fourier series using p-adic

analogues of Dirichlet and Fejér kernels, we learned that similar results had been

obtained by Taibleson for the ring of formal power series over the finite field Fp [23],

which, like Zp, is the ring of integers in a local field.

Analogous to the circle, we define the Dirichlet and Fejér kernels on Zp as follows

Definition 3.3. The N th order Dirichlet kernel on Zp is defined to be

DN(x) =
∑
‖ζ‖≤pN

ζx

and the N th order Fejér kernel on Zp is

FN(x) =
1

N

N−1∑
k=0

Dk(x),

where ζ ∈ Z(p∞).

Note that if f ∈ L1(Zp), then

(f ∗DN)(x) =
∑
‖ζ‖≤pN

f̂(ζ)ζx,

which is the N th partial Fourier sum. Similarly, f ∗ FN gives the N th Cesaro means,

(f ∗ FN)(x) =
1

N

N−1∑
k=0

∑
‖ζ‖≤pk

f̂(ζ)ζx.

An alternate expression for the Dirichlet kernel can be derived using Corollary

3.1, for N ≥ 0 we have

XD(0;1/pN )(x) = p−N
∑
‖ζ‖≤pN

ζx,

and hence

DN(x) = pNXD(0;1/pN )(x).
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That is, the Dirichlet kernel of order N is the scaled characteristic function of a disk

of radius p−N centered at zero. From this, we also get the following expression for

the Fejér kernel

FN(x) =
1

N

N−1∑
k=0

pkXD(0;1/pk)(x).

This expression helps us visualize the Fejér kernel in Zp as a ‘wedding cake’. From

this we have

f ∗ FN(x) =
1

N

N−1∑
k=0

pkf ∗ XD(0;1/pk)(x). (3.9)

Motivated by Definition 3.2 in R/Z, we define analogous notions of good kernels

in Zp.

Definition 3.4 (Good kernels in Zp). A family of functions {KN} in Zp is said to be

a family of good kernels if the following conditions are satisfied

i. For all N ≥ 1 ∫
Zp
KN(x) dµ(x) = 1.

ii. There exists an M > 0 such that for all N ≥ 1,∫
Zp
|KN(x)| dµ(x) ≤M.

iii. For every k > 0,

lim
N→∞

∫
Zp−D(0;1/pk)

|KN(x)| dµ(x) = 0.

Definition 3.5 (Excellent kernels in Zp). A family of good kernels {KN} in Zp is

said to be excellent kernels if they satisfy the following condition, which is stronger

than condition (iii) in Definition 3.4. For every k ≥ 1, we have

lim
N→∞

supx∈Zp−D(0,1/pk)|KN(x)| = 0. (3.10)

Theorem 3.7. Let {KN} be a family of good kernels, and f ∈ L1(Zp) be a bounded

function. Then

lim
N→∞

(KN ∗ f)(x) = f(x),
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whenever f is continuous at x. If f is continuous everywhere, then the convergence

is uniform. If the family of kernels {KN} is excellent, then the same conclusions hold

with the boundedness assumption on f removed.

Proof. Since f is bounded, there exists a B such that |f(x)| ≤ B for all x in Zp. Note

that if f is continuous at x, then given an ε > 0, we can find an k large enough such

that for all |y|p ≤ 1/pk, we have |f(x− y)− f(x)| < ε
2M

. We have

|f ∗KN(x)− f(x)| =

∣∣∣∣∣
∫
Zp
f(x− y)KN(y) dµ(y)− f(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Zp
f(x− y)KN(y) dµ(y)−

∫
Zp
f(x)KN(y) dµ(y)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Zp

(f(x− y)− f(x))KN(y)dµ(y)

∣∣∣∣∣
≤

∣∣∣∣∫
D(0;1/pk)

(f(x− y)− f(x))KN(y)dµ(y)

∣∣∣∣
+

∣∣∣∣∣
∫
Zp−D(0;1/pk)

(f(x− y)− f(x))KN(y)dµ(y)

∣∣∣∣∣
≤ ε

2
+ 2B

∫
Zp−D(0;1/pk)

|KN(y)| dµ(y). (3.11)

Now pick an L such that the integral on the right hand side is less than ε
4B

for all

N > L. This gives the desired result. If f is continuous everywhere on Zp, then it is

uniformly continuous since Zp is compact. Therefore, our pick of k, and hence L can

be made independent of x giving us uniform convergence. Now suppose that {KN}

is a family of excellent kernels, and assume that f is not necessarily bounded. Then

the last line of the estimate 3.11 can be replaced by

|f ∗KN(x)− f(x)| ≤ ε

2
+ 2‖f‖1supy∈Zp−D(0;1/pk)|KN(y)|.

The remainder of the proof follows analogously.

Theorem 3.8. The Dirichlet and Fejér kernels are a family of excellent kernels in

Zp.
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Proof. First, consider the Dirichlet kernel. Writing DN(x) = pNXD(0,1/pN )(x) we get∫
Zp
DN(x) dµ(x) = pN

∫
Zp
XD(0,1/pN )(x) dµ(x)

= 1.

Since DN(x) is non-negative, condition (ii) of Definition 3.4 is also satisfied.

Given a ball of radius 1/pk centered at zero, for all N > k we have D(0, 1/pN) ⊂

D(0, 1/pk) and hence

lim
N→∞

supZp−D(0;1/pk)|DN(x)| = lim
N→∞

pNsupZp−D(0;1/pk)XD(0,1/pN )(x)

= 0,

which shows the condition in 3.10. For the Fejér kernel we have∫
Zp
FN(x) dµ(x) =

1

N

N−1∑
j=0

∫
Zp
Dj(x) dµ(x)

= 1.

Since each Dj is non-negative, FN is non-negative and hence condition (ii) for a good

kernel is also satisfied. Finally we need to check the condition of Definition 3.5. Given

ball D(0, 1/pk) we have

supZp−D(0;1/pk)|FN(x)| =
1

N

N−1∑
j=0

supZp−D(0;1/pk)Dj(x)

=
1

N

N−1∑
j=0

pjsupZp−D(0;1/pk)XD(0,1/pj)(x)

=
1

N

k−1∑
j=0

pjsupZp−D(0;1/pk)XD(0,1/pj)(x).

Letting N go to infinity, the term on the right hand side goes to zero.

Corollary 3.2. The following hold

1. Let f : Zp → C be any integrable function. Then the Fourier series of f

converges to f at any point where f is continuous. Similarly, the Cesaro means

also converge to f at any point of continuity.
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2. If f is continuous on Zp, then its Fourier series converges uniformly to f on

Zp. Similarly for the Cesaro means.

3. Consider the set C(Zp) of continuous functions from Zp to C with the sup met-

ric. Denote by Φ the set of trigonometric polynomials. That is Φ is the set of

all finite linear combinations of the form

Φ = { a1ζ
x
1 + ...+ anζ

x
n | ai ∈ C, ζi ∈ Z(p∞) } .

Then Φ is dense in C(Zp).

Proof. The statements follow from Theorems 3.7 and 3.8.

Note that (3) in Corollary 3.2 is also implied by the Stone-Weierstrass theorem.
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4 Equidistribution theory on Zp

Equidistribution of sequences on the ring of p-adic integers was previously stud-

ied in [1, 2, 5]. In particular, Cugiani in [5] defines equidistribution and shows that

the sequence na+ b is equidistributed if a is a unit. Beer does a quantitative analysis

in [1] and [2]. Our aim is to derive a LeVeque-type inequality on the discrepancy of

a finite sequence using Fourier analysis. Recall from Proposition 2.10 that Zp can be

written as the union of pk disjoint disks of the form

Zp =

pk−1⋃
j=0

D(j, 1/pk).

Hence, it is natural to define a notion of equidistribution using such sets.

Definition 4.1. A sequence {xn} is said to be equidistributed in Zp if for every a in

Zp and every k ∈ N, we have

lim
N→∞

∣∣D(a, 1/pk) ∩ {x1, ..., xN}
∣∣

N
=

1

pk
.

That is, the proportion of the first N elements of {xn} lying in a disk D(a, 1/pk)

is equal to its measure in the limit of large N , and this holds true for all such disks.

This definition of equidistribution in Zp was first given by Cugiani in [5], where

Propositions 4.1 and 6.1 were also proved. The details are also given in Kuipers and

Niederreiter [14]. One also wants to measure how well a sequence distributes itself. To

this end, we define the notion of discrepancy to quantify the idea that some sequences

are better equidistributed than others.

Definition 4.2. The discrepancy of a finite sequence {x1, x2, ..., xN} in Zp is

DN = supa∈Zp, k∈N

∣∣∣∣∣
∣∣D(a, 1/pk) ∩ {x1, ..., xN}

∣∣
N

− 1

pk

∣∣∣∣∣ .
Some elementary arguments show that

1

N
≤ DN ≤ 1.
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The main aim of this dissertation is to prove a Fourier analytic upper bound on the

discrepancy of a set of N elements {x1, x2, ..., xN} in Zp.

We begin with the observation that a Weyl type criterion holds for equidistri-

bution in Zp.

Proposition 4.1 (p-adic Weyl’s Criterion). A sequence {xn} is equidistributed in Zp
if and only if for every non-trivial ζ in Z(p∞) we have

lim
N→∞

1

N

N∑
n=1

ζxn = 0.

Proof. First, we show the forward implication. Note that from the definition of

equidistribution, for any disk D(a, 1/pk) we have

lim
N→∞

1

N

N∑
n=1

XD(a,1/pk)(xn) = p−k.

For every ζ ∈ Z(p∞), the character ζx is locally constant on Zp. That is, ζx can be

written as a finite linear combination of characteristic functions of disks

ζx =

‖ζ‖∑
i=1

ζ iXD(i,1/‖ζ‖)(x). (4.1)

This follows from the definition of ζx as given in Chapter 3. Indeed, if ζ has order

‖ζ‖ = pn, then the value of ζx depends only on x mod pn. Therefore, ζx is constant

on each disk of radius 1/‖ζ‖, and (4.1) holds.

Also, using the orthogonality of characters for any ζ 6= 1 we have

0 =

∫
Zp
ζx dµ

=

‖ζ‖∑
i=1

ζ i
∫
Zp
XD(i,1/‖ζ‖)(x) dµ

=
1

‖ζ‖

‖ζ‖∑
i=1

ζ i. (4.2)

Hence,

1

N

N∑
n=1

ζxn =
1

N

N∑
n=1

‖ζ‖∑
i=1

ζ iXD(i,1/‖ζ‖)(xn)
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=
1

N

‖ζ‖∑
i=1

ζ i
N∑
n=1

XD(i,1/‖ζ‖)(xn)

=

‖ζ‖∑
i=1

ζ i

(
1

N

N∑
n=1

XD(i,1/‖ζ‖)(xn)− 1

‖ζ‖

)
, (4.3)

where the last line follows by making use of (4.2). Taking the limit asN goes to infinity

the term in the last line of (4.3) goes to zero, by the definition of equidistribution.

To prove the reverse implication, assume that lim
N→∞

1

N

N∑
n=1

ζxn = 0. Note that

for any disk D(a, 1/pk), its characteristic function XD(a,1/pk)(x) can be expressed as a

finite Fourier series as we have shown in Corollary 3.1. Therefore,

lim
N→∞

1

N

N∑
n=1

XD(a,1/pk)(xn) = lim
N→∞

1

Npk

N∑
n=1

∑
‖ζ‖≤pk

ζ−aζxn

= lim
N→∞

1

Npk

N∑
n=1

∑
1<‖ζ‖≤pk

ζ−aζxn +
1

pk

=
1

pk

∑
1<‖ζ‖≤pk

ζ−a lim
N→∞

1

N

N∑
n=1

ζxn +
1

pk

=
1

pk
, (4.4)

and hence {xn} is equidistributed.

Proposition 4.1 could be extended to a more general class of Riemann integrable

functions on Zp. The details are given in Kuipers and Niederreiter [14]. We give here

instead, a proof for the class of continuous functions f : Zp → C. Our proof is different

from the one presented in [14], since we argue using the density of trigonometric

polynomials.

Theorem 4.1. The sequence {xn} is equidistributed in Zp if and only if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
Zp
f(x) dµ, (4.5)

for all continuous functions f : Zp → C.
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Proof. The reverse implication is trivial since characteristic functions of disks are

continuous in Zp.

For the forward implication, assume {xn} is equidistributed. By the p-adic Weyl

criterion, (4.5) holds for all characters f(x) = ζx of Zp. We know from Corollary 3.2

that trigonometric polynomials are dense in C(Zp). Since (4.5) holds when f(x) is

any character, it also holds for any trigonometric polynomial. Hence, given an ε > 0,

pick a trigonometric polynomial ψ such that ‖f − ψ‖∞ < ε
2
. We then have,∣∣∣∣∣

∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

ψ(xn)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

ψ(xn)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Zp

(f − ψ)(x) dµ(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Zp
ψ(x) dµ(x)− 1

N

N∑
n=1

ψ(xn)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

(ψ(xn)− f(xn))

∣∣∣∣∣
≤ ε

2
+
ε

2
+

∣∣∣∣∣
∫
Zp
ψ(x) dµ(x)− 1

N

N∑
n=1

ψ(xn)

∣∣∣∣∣ ,
and letting N go to infinity we get

lim sup
N→∞

∣∣∣∣∣
∫
f dµ− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ ε.

Since ε was arbitrary this completes the proof.
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5 A LeVeque-type inequality

We are now ready to prove Theorem 1.10, the main theorem of this dissertation.

For the ease of reading, we restate the theorem below.

Theorem 5.1 (LeVeque-type Inequality). The discrepancy of a finite sequence {x1, ..., xN}

in Zp is bounded by

DN ≤ C(p)

 ∑
ζ∈Z(p∞)\{1}

1

‖ζ‖3

∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣
2
 1

4

, (5.1)

where C(p) is a constant dependent only on p.

Let {x1, x2, ..., xN} be a finite sequence in Zp. Define the function f : Zp×Zp −→

R

f(x, y) =
|{x1, x2, ..., xN} ∩D(x, |y|p)|

N
− |y|p,

where D(x, |y|p) is a disk of radius |y|p centered at x. The discrepancy of the points

{x1, ..., xN} is then

DN = supx,y∈Zp |f(x, y)| .

We suppress the p in | · |p as it would be clear from the context. We can also write

f(x, y) =
1

N

(
N∑
n=1

XD(x,|y|)(xn)

)
− |y|

=
1

N

(
N∑
n=1

XD(xn,|y|)(x)

)
− |y|.

Our proof of Theorem 1.10 proceeds as follows. We shall bound the L2 norm

‖f‖2
2 =

∫∫
Z2
p

|f(x, y)|2 dµ(x)dµ(y)

from below by a constant multiple of D4
N using geometrical arguments, and from

above by using Theorem 3.4 (Plancherel theorem). The two steps are given below as

lemmas.
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Lemma 5.1. The discrepancy DN is bounded by

D4
N ≤ C1(p)‖f‖2

2,

where C1(p) is a constant dependent on p.

Lemma 5.2. The L2 norm of the function f is bounded by

‖f‖2
2 ≤ C2(p)

∑
ζ∈Z(p∞)\{1}

1

‖ζ‖3

∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣
2

.

where C2(p) is a constant dependent on p.

The proof of Theorem 1.10 then follows by combining Lemmas 5.1 and 5.2.

Remark 5.1. For x > 0, we use the notation bxc and dxe to denote

bxc = max{pk | k ∈ Z, pk ≤ x}

dxe = min{pk | k ∈ Z, x ≤ pk}.

We consider these to be the floor and ceiling functions on (0,∞) relative to the value

group pZ of Qp. Note that bxc ≤ x < pbxc and 1
p
dxe < x ≤ dxe.

Proof of Lemma 5.1. Pick a point (x0, y0) for which f(x0, y0) is not zero. We consider

each of the two possibilities f(x0, y0) > 0 and f(x0, y0) < 0 separately. Our strategy

in each case is to find a small neighborhood around the point (x0, y0) where |f(x, y)|

is bounded away from zero. Using this fact and integrating over this neighborhood,

we produce a bound of the form ‖f‖2
2 ≥ C(p)|f(x0, y0)|4, where C(p) is a constant

depending only on p.

Case 1

Suppose that ∆ = f(x0, y0) > 0. This case occurs when the disk D(x0, |y0|)

contains more then the expected number of points xn.

Let R = b∆ + |y0|c. Since, |y0| < |y0|+ ∆ and |y0| is in the value group of Qp,

we have |y0| ≤ R. We consider the two cases |y0| < R and |y0| = R.
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Case 1.1:

Suppose that |y0| < R. We must then have |y0| ≤ 1
p
R. If we fix |y| = 1

p
R and

|x − x0| ≤ 1
p
R, then D(x0, |y0|) ⊆ D(x, |y|). We get a nonnegative lower bound on

f(x, y) as follows

f(x, y) =
1

N

N∑
n=1

XD(x,|y|)(xn)− |y|

≥ 1

N

N∑
n=1

XD(x0,|y0|)(xn)− |y|

= |y0|+ f(x0, y0)− |y|

= |y0|+ ∆− |y|

≥
(

1− 1

p

)
R.

We can bound the L2 norm of f from below by evaluating the required integral

only on the set |y| = 1
p
R, |x− x0| ≤ 1

p
R

‖f‖2
2 =

∫∫
Z2
p

|f(x, y)|2 dµ(x)dµ(y)

≥
∫∫
|y|= 1

p
R,|x−x0|≤ 1

p
R

|f(x, y)|2 dµ(x)dµ(y)

≥
∫∫
|y|= 1

p
R,|x−x0|≤ 1

p
R

(
1− 1

p

)2

R2 dµ(x)dµ(y)

=

(
1− 1

p

)3
1

p2
R4

≥
(

1− 1

p

)3
1

p6
∆4

=
(p− 1)3

p9
∆4,

using R = b∆ + |y0|c ≥ 1
p
(|y0|+ ∆) ≥ 1

p
∆.
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Case 1.2:

Suppose that |y0| = R. If we let |y| = R and |x − x0| ≤ R, then D(x0, |y0|) =

D(x, |y|). From this, we get

f(x, y) =
1

N

N∑
n=1

XD(x,|y|)(xn)− |y|

=
1

N

N∑
n=1

XD(x0,|y0|)(xn)− |y0|

= |y0|+ f(x0, y0)− |y|

= f(x0, y0)

= ∆.

Therefore,

‖f‖2
2 =

∫∫
Z2
p

|f(x, y)|2 dµ(x)dµ(y)

≥
∫∫
|y|=R,|x−x0|≤R

∆2 dµ(x)dµ(y)

=

(
1− 1

p

)
R2∆2

≥
(

1− 1

p

)
1

(p− 1)2
∆4

=
1

p(p− 1)
∆4,

using R + ∆ = |y0|+ ∆ < pb|y0|+ ∆c = pR and therefore ∆ < (p− 1)R.

Finally, since (p−1)3

p9
< 1

p(p−1)
we conclude

‖f‖2 ≥ (p− 1)3

p9
∆4

holds in both cases 1.1 and 1.2, so it holds in general for case 1.

Case 2:

Suppose that f(x0, y0) < 0 and ∆ = |f(x0, y0)| = −f(x0, y0). In other words,

the disk D(x0, |y0|) contains fewer than the expected number of points xn.
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Now let R = |y0|. Then if |y| = R and |x − x0| ≤ R, by the strong triangle

inequality D(x, |y|) = D(x0, |y0|) and we have

f(x, y) =
1

N

N∑
n=1

XD(x,|y|)(xn)− |y|

=
1

N

N∑
n=1

XD(x0,|y0|)(xn)− |y0|

= f(x0, y0).

Therefore,

‖f‖2
2 =

∫∫
Z2
p

|f(x, y)|2 dµ(x)dµ(y)

≥
∫∫
|y|=R,|x−x0|≤R

|f(x, y)|2 dµ(x)dµ(y)

=

∫∫
|y|=R,|x−x0|≤R

∆2 dµ(x)dµ(y)

=

(
1− 1

p

)
R2∆2

≥
(

1− 1

p

)
∆4,

where the last line follows because ∆ ≤ R. To see this, note that

∆ = −f(x0, y0)

= |y0| −
1

N

N∑
n=1

XD(x0,|y0|)(xn)

≤ |y0|

= R.

Next, we need to prove Lemma 5.2. Our goal is to find an upper bound on the

L2-norm of f(x, y) using Theorem 3.4. Suppose f(x, y) has a Fourier series in two

p-adic variables given by

f(x, y) =
∑

ζ,ω ∈Z(p∞)

f̂(ζ, ω)ζx ωy.



48

With f ∈ (L1 ∩ L2)(Z2
p), the Plancherel Theorem gives us

‖f‖2
2 =

∑
ζ,ω ∈Z(p∞)

|f̂(ζ, ω)|2.

Therefore, we need to bound the Fourier coefficients of f(x, y). The Fourier coeffi-

cients are

f̂(ζ, ω) =

∫∫
Z2
p

f(x, y) ζ−xω−y dµ(x)dµ(y)

=
1

N

N∑
n=1

∫∫
Z2
p

XD(xn,|y|)(x) ζ−xω−y dµ(x)dµ(y)

−
∫∫

Z2
p

|y| ζ−xω−y dµ(x)dµ(y). (5.2)

Note that if ζ = 1, we use Theorem 3.2 to obtain

f̂(1, ω) =
1

N

N∑
n=1

∫∫
Z2
p

XD(xn,|y|)(x)ω−y dµ(x)dµ(y) −
∫
Zp
|y|ω−y dµ(y)

=
1

N

N∑
n=1

∫
Zp
|y|ω−y dµ(y) −

∫
Zp
|y|ω−y dµ(y)

= 0. (5.3)

When ζ 6= 1, it follows from the orthogonality of characters that the second integral

in line 2 of (5.2) is zero∫∫
Z2
p

|y| ζ−xω−y dµ(x)dµ(y) =

∫
Zp
|y|ω−y

(∫
Zp
ζ−x dµ(x)

)
dµ(y)

= 0.

Therefore,

f̂(ζ, ω) =
1

N

N∑
n=1

∫∫
Z2
p

XD(xn,|y|)(x) ζ−xω−y dµ(x)dµ(y).

Using Lemma 3.5, we have

∫
Zp
XD(xn,|y|)(x)ζ−x dµ(x) =


ζ−xn |y| if ‖ζ‖ ≤ 1/|y|,

0 else.
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Hence, for ζ 6= 1,

f̂(ζ, ω) =
1

N

N∑
n=1

ζ−xn
∫
|y|≤1/‖ζ‖

|y|ω−y dµ(y).

The following lemma provides some estimates that are useful in our succeeding cal-

culations.

Lemma 5.3. Let R = 1/pk, k ∈ Z satisfy 0 < R < 1, and let ω ∈ Z(p∞). Then,∣∣∣∣∫
|y|≤R

|y|ω−y dµ(y)

∣∣∣∣ ≤ p

max(1/R, ‖ω‖)2
. (5.4)

Moreover, ∑
ω∈Z(p∞)

∣∣∣∣∫
|y|≤R

|y|ω−y dµ(y)

∣∣∣∣2 ≤ 2p2R3. (5.5)

Proof of Lemma 5.3. Let R = 1/pk and let ‖ω‖ = pl. We have∫
|y|≤R

|y|ω−y dµ(y) =
∑
j≥k

1

pj

∫
|y|=1/pj

ω−y dµ(y)

=
∑
j≥k

1

pj

∫
Zp

(
XD(0,1/pj)(y)−XD(0,1/pj+1)(y)

)
ω−y dµ(y).(5.6)

When ‖ω‖ ≤ 1/R, that is when l ≤ k, using Lemma 3.5 and (5.6) we have∫
|y|≤R

|y|ω−y dµ(y) =
∑
j≥k

1

pj

(
1

pj
− 1

pj+1

)
=

p

(p+ 1)(1/R)2
.

Thus (5.4) holds in this case. If ‖ω‖ > 1/R, that is when l ≥ k + 1, again using

Lemma 3.5 and (5.6) we have∫
|y|≤R

|y|ω−y dµ(y) =
∑
j≥l

1

pj

(
1

pj
− 1

pj+1

)
− 1

pl−1pl

= − p2

(p+ 1)‖ω‖2
,

and thus (5.4) holds in this case as well.
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To check (5.5), we use the fact that for each j ≥ 1, the group Z(p∞) contains

pj elements of order at most pj, and pj − pj−1 elements of order exactly pj. We then

have ∑
ω∈Z(p∞)

∣∣∣∣∫
|y|≤R

|y|ω−y dµ(y)

∣∣∣∣2 ≤ p2
∑

ω∈Z(p∞)

1

max(1/R, ‖ω‖)4

= p2

 ∑
‖ω‖≤1/R

R4 +
∑

‖ω‖>1/R

1

‖ω‖4


= p2

(
R3 +

p− 1

p(p3 − 1)
R3

)
< 2p2R3.

Finally, we prove Lemma 5.2.

Proof of Lemma 5.2. Applying Theorem 3.4 to f(x, y) and using (5.3) and (5.5), we

conclude

‖f‖2 =
∑

ζ,ω∈Z(p∞)
ζ 6=1

|f̂(ζ, ω)|2

=
∑

ζ∈Z(p∞)
ζ 6=1

 ∑
ω∈Z(p∞)

∣∣∣∣∫
|y|≤1/‖ζ‖

|y|ω−y dµ(y)

∣∣∣∣2
∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣
2

≤ 2p2
∑

ζ∈Z(p∞)
ζ 6=1

1

‖ζ‖3

∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣
2

.

Remark 5.2. The constants appearing in Lemmas 5.1 and 5.2 are C1(p) = p9

(p−1)3

and C2(p) = 2p2. Therefore, the value for the constant C(p) in 5.1 that we obtain

from our proof of Theorem 1.10 is

C(p) = (C1(p)C2(p))1/4
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=

(
2p11

(p− 1)3

)1/4

.

We analyze the best possible value of the constant C(p) appearing in Theorem

1.10. Consider the sequence {xn} = {0, 0, 0, . . .}, the zero sequence. Substituting this

sequence into (5.1) we get

DN ≤ C(p)

 ∑
ζ∈Z(p∞)\{1}

1

‖ζ‖3

 1
4

. (5.7)

We can evaluate the sum on the right hand side of (5.7) using the fact that there are

exactly pr − pr−1 elements of Z(p∞) of order pr. Hence,

∑
ζ∈Z(p∞)\{1}

1

‖ζ‖3
=

∑
1≤r<∞

(pr − pr−1)

p3r

=

(
1− 1

p

) ∑
1≤r<∞

1

p2r

=

(
1− 1

p

)(
p2

p2 − 1
− 1

)

=
1

p(p+ 1)
.

On the other hand, the left hand side of (5.7) is equal to one. This could be seen as

follows. Any disk D(0, 1/pk) centered at 0 of radius 1/pk contains the zero sequence,

and therefore ∣∣{x1, x2, ..., xN} ∩D(0, 1/pk)
∣∣

N
− 1/pk = 1− 1/pk.

Letting k go to infinity we get DN = 1, which is the maximum possible value of DN .

We conclude that in Theorem 1.10, the best possible value for C(p) is no smaller than

(p(p+ 1))1/4.
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6 Linear sequence in Zp

We have the following proposition on the equidistribution of linear sequences,

a proof of which is given in [14] using elementary number theory. We present an

alternate proof using Fourier analysis.

Proposition 6.1. Let a, b ∈ Zp. The sequence xn = na+ b is equidistributed in Zp if

and only if a is a unit in Zp.

Proof. The forward implication follows from Weyl’s criterion (Proposition 4.1). For

suppose, a is not a unit. Then a = pkc, where k > 0 and c is a unit. Now let

ζ = e2πi/pk . Then
1

N

N∑
n=1

ζxn =
1

N

N∑
n=1

ζnp
kcζb = ζb,

and Weyl’s criterion will not hold.

For the reverse implication, let ζ ∈ Z(p∞) with ‖ζ‖ = pk for k ≥ 1. There exists

an m such that 1 ≤ m < pk, with p - m and ζ = e2πim/pk . Suppose that a is a unit in

Zp. Let a = t0 + t1p + t2p
2 + ... be the canonical expansion of a, with t0 6= 0. Then

we let ak = t0 + t1p+ ...+ tk−1p
k−1 be the truncation of this expansion to the first k

terms. By our hypothesis that a is a unit in Zp, we know that p does not divide ak.

We have

1

N

∣∣∣∣∣
N∑
n=1

ζna+b

∣∣∣∣∣ =
1

N

∣∣∣∣∣
N∑
n=1

ζna

∣∣∣∣∣
=

1

N

∣∣∣∣1− ζ(N+1)ak

1− ζak

∣∣∣∣
≤ 1

N

2

|1− ζak |

≤ 1

N

∣∣∣∣ 1

sin(πmak/pk)

∣∣∣∣ . (6.1)

Since p - m, and p - ak, we have sin(πmak/p
k) 6= 0 and hence

1

N

N∑
n=1

ζna+b → 0 asN →

∞; the proof of equidistribution now follows from the p-adic Weyl’s criterion.



53

We now prove Corollary 1.2, that the discrepancy of the sequence xn = na + b

is of the order DN = O
(

1√
N

)
.

Proof of Corollary 1.2. Applying the bound given by Theorem 1.10 we get

D4
N �

∑
ζ∈Z(p∞)\{1}

1

‖ζ‖3

∣∣∣∣∣ 1

N

N∑
n=1

ζna+b

∣∣∣∣∣
2

≤ 1

N2

∞∑
k=1

1

p3k

∑
1≤m<pk
p-m

1

|sin (πmak/pk)|2

≤ 1

N2

∞∑
k=1

1

p3k

∑
1≤m<pk

1

|sin (πmak/pk)|2

≤ 1

N2

∞∑
k=1

1

p3k

∑
1≤l<pk

1

|sin (π l/pk)|2

≤ 2

N2

∞∑
k=1

1

p3k

∑
1≤l≤pk/2

1

|sin (π l/pk)|2
. (6.2)

Note that the second inequality in (6.2) comes from the last inequality in

(6.1). For the fourth inequality, note that since a is a unit we have p - ak. Hence,

gcd(ak, p
k) = 1 and so ak generates Z/pkZ. That is, Z/pkZ =

{
mak |m = 0, .., pk − 1

}
.

The final inequality follows from the identities | sin(θ)| = | sin(−θ)| = | sin(π− θ)|, so

that for pk/2 ≤ l < pk we have | sin(πl/pk)| = | sin(π(pk − l)/pk)|. This allows us to

double the sum over the first half of the interval.

Note that in the interval [0, π/2], sin(θ) is bounded from below by 2θ/π, so that

1

| sin(θ)|
≤ π

2θ
.

This gives us ∑
1≤l≤pk/2

1

|sin (π l/pk)|2
≤

∑
1≤l≤pk/2

p2k

4l2

≤ p2k

4

∑
1≤l<∞

1

l2
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≤ p2kπ2

24
. (6.3)

Finally, applying the bound from (6.3) to (6.2) we get

D4
N � π2

12N2

∞∑
k=1

1

pk
.

We conclude that DN = O
(

1√
N

)
.

Remark 6.1. Choosing a = 1 in Corollary 1.2, the natural numbers in the usual

ordering are equidistributed in Zp with discrepancy DN = O
(

1√
N

)
.
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7 Bounded variation and Koksma inequalities

The generalized Weyl’s criterion Theorem 1.4 (and Theorem 4.1 for the analo-

gous case in Zp) gives a connection between equidistribution and Riemann integration.

Theorem 7.1. A sequence {xn} in R/Z is equidistributed if and only if for every

Riemann integrable function f : R/Z→ C we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x) dx.

The implication is that the arithmetic mean of any integrable function f evalu-

ated over the N points of a sequence, converges to the integral of f if and only if the

points are equidistributed. Evaluating the integral through such arithmetic means is

important in numerical integration, they form the basis of quasi-Monte Carlo meth-

ods. Instead of pseudo random sequences, quasi-Monte Carlo methods use determin-

istic sequences with low discrepancy in the evaluation of integrals. Niederreiter in [19]

provides an exposition of quasi-Monte Carlo methods. Morokoff and Caflisch in [17]

do an extensive experimental study of the effectiveness of quasi-Monte Carlo methods

in evaluating integrals in single and multi-dimensions. Such sequences are now being

used in many engineering applications.

Given the discrepancy DN of a sequence, it is then interesting to study bounds

of the form ∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ CDN , (7.1)

where C is some constant dependent on the analytic properties of the function f . Of

course, the analogue in Zp is that the integral of interest be over Zp. The sharpness of

the approximation depends on how well the sequence is distributed, which is measured

by the discrepancy.
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7.1 Koksma inequalities using bounded variation

The classical Koksma inequality involves the variation of a function f to produce

a bound of the form (7.1). Let f be a complex-valued function on [0, 1], and recall

that the variation of a function is defined to be

V (f) = sup

{
n∑
j=1

|f(xj)− f(xj−1)| | n ≥ 1, 0 = x0 < x1 < .... < xn = 1

}
. (7.2)

Thus the supremum ranges over all possible partitions of the interval [0, 1] into a

finite collection of subintervals. The function f is said to be of bounded variation if

V (f) <∞ (see [10]).

We define the star discrepancy of a finite sequence {x1, x2, ..., xN} in R/Z to be

D∗N = sup0≤b<1

∣∣∣∣ |{x1, x2, ..., xN} ∩ [0, b]|
N

− b
∣∣∣∣ .

It can be shown that D∗N ≤ DN ≤ 2D∗N , see for example page 2 of [16]. Koksma

obtained the following bound on D∗N for functions of bounded variation.

Theorem 7.2. Let f be a function of bounded variation, and {x1, .., xN} be N points

on R/Z with star discrepancy D∗N . Then,∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ V (f)D∗N .

Applying Theorem 7.2 to e2πix, gives us a bound on the Fourier sum appearing

in Weyl’s Criterion ∣∣∣∣∣ 1

N

N∑
n=1

e2πixn

∣∣∣∣∣ ≤ 4D∗N . (7.3)

See [14] for both a proof of Theorem 7.2 and a proof of the inequality 7.3.

Similar notions of bounded variation can be defined for functions f : Zp → C.

Beer in her article [1], uses the following definition of variation. The definition can

be motivated by the fact that Zp can be partitioned in to pk disjoint disks of radius

1/pk (see Proposition 2.10).
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Definition 7.1 (Variation of Beer). Fix an integer λ ≥ 1. Then consider the following

dictionary ordering of the integers from 0 to pλ−1, where we order the points according

to their p-adic canonical expansion a0 + a1p+ ....+ aλ−1p
λ−1 as follows

m0 = 0 + 0p1 + 0p2 + · · ·+ 0pλ−2 + 0pλ−1

m1 = 0 + 0p1 + 0p2 + · · ·+ 0pλ−2 + 1pλ−1

m2 = 0 + 0p1 + 0p2 + · · ·+ 0pλ−2 + 2pλ−1

...

mp−1 = 0 + 0p1 + 0p2 + · · ·+ 0pλ−2 + (p− 1)pλ−1

mp = 0 + 0p1 + 0p2 + · · ·+ 1pλ−2 + 0pλ−1

mp+1 = 0 + 0p1 + 0p2 + · · ·+ 1pλ−2 + 1pλ−1

...

m2p−1 = 0 + 0p1 + 0p2 + · · ·+ 1pλ−2 + (p− 1)pλ−1

m2p = 0 + 0p1 + 0p2 + · · ·+ 2pλ−2 + 0pλ−1

...

...

mpλ−1 = (p− 1) + (p− 1)p+ ....+ (p− 1)pλ−1 = pλ − 1.

(7.4)

For each i ∈ {0, 1, 2, ..., pλ − 1}, let Ei = D(mi, 1/p
λ), and for f : Zp → R define

Vλ(f) = sup

pλ−1∑
i=1

|f(xi)− f(xi−1)|, (7.5)

where the supremum is taken over all choices of points xi−1 ∈ Ei−1, xi ∈ Ei. Then

define the Beer variation of f to be

VB(f) = supλVλ(f). (7.6)

Remark 7.1. The motivation for the dictionary ordering of Beer can be explained

as follows. Let k ≥ 0 and let a0, a1, ..., ak−1 be elements of {0, 1, 2, ...., p − 1}. The
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disk with center a = a0 + a1p + a2p
2 + ... + ak−1p

k−1 and radius 1/pk in Zp can be

written as

D(a, 1/pk) = a+ pkZp.

That is, D(a, 1/pk) is the set of all elements x ∈ Zp whose first k terms in the canonical

expansion begin with a0 + a1p+ a2p
2 + ...+ ak−1p

k−1. Therefore, for 0 ≤ k ≤ λ, any

disk of radius 1/pk in Zp is the union of a block of consecutive disks Ei in the

dictionary ordered partition of Beer.

As an example of Definition 7.1, consider the case when p = 3 and λ = 2. Then

we have the sequence of integers

{m0,m1,m2,m3,m4,m5,m6,m7,m8} = {0, 3, 6, 1, 4, 7, 2, 5, 8}.

Hence, the corresponding disks are Ei = D(mi, 1/9). Now consider a finer partition

with p = 3 and λ = 3. Then,

{m0,m1,m2, .....,m26} = {0, 9, 18, 3, 12, 21, 6, 15, 24,

1, 10, 19, 4, 13, 22, 7, 16, 25,

2, 11, 20, 5, 14, 23, 8, 17, 26},

with corresponding disks Ei = D(mi, 1/27).

Example 7.1. Consider the characteristic function f(x) = XD(a,1/pk)(x) of a disk

D(a, 1/pk) with k ≥ 1. Then,

VB(f) =

 1 if 0 or −1 is in D(a, 1/pk)

2 else.
(7.7)

For each λ ≥ 1, 0 is always contained in the first disk E0 = E(0, 1/pλ) of the partition,

and −1 is always contained in the last disk Epλ−1 = E(pλ − 1, 1/pλ). If 0 is in

D(a, 1/pk), then D(a, 1/pk) is the union of an initial block of disks Ei in the ordered

Beer partition. It is then easy to that Vλ(f) = 1. Similarly, if −1 is in D(a, 1/pk),

then D(a, 1/pk) is the union of the final block of disks in the Beer partition and
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Vλ(f) = 1. If neither 0 or −1 is in D(a, 1/pk), then for λ ≥ k, D(a, 1/pk) is the union

of block of disks Ei containing neither E0 nor Epλ−1. Therefore, Vλ(f) = 2, and (7.7)

follows.

This is very similar to the case of the classical variation of the characteristic

function of a proper subinterval [a, b] of [0, 1], which is 1 if a = 0 or b = 1, and 2 if

0 < a < b < 1.

Example 7.2. Let f(x) = |x|p. Then VB(f) = 1. To show this, first note that f(x)

is constant on every disk in Zp that is not centered at 0 (or equivalently does not

contain 0).

Fix λ ≥ 1. For the ordered Beer partition associated to λ, we can group the

points mi and the corresponding disks Ei into p blocks, where |x|p is constant on each

block, except the first block which contains only E0. For example, with λ = 2, the

disk E0 = D(0, 1/9) is the first block with |x|p ≤ 1/9, E1 = D(3, 1/9), E2 = D(6, 1/9)

form the second block whose elements have constant p-adic norm |x|p = 1/3, and the

rest of the Ei form a block with elements of norm 1.

Hence, in calculating VB(f) the sum occurring in the definition of VB(f) as

given by (7.5) is maximized when x0 = 0, and the choices of x1, x2, ..., xpλ−1 in their

respective disks Ei are arbitrary. It follows that,

Vλ(f) =

pλ−1∑
i=1

|f(xi)− f(xi−1)|

= (1/pλ−1 − 0) + (1/pλ−2 − 1/pλ−1) + .....+ (1/p− 1/p2) + (1− 1/p)

= 1.

Taking the sup over all λ, we conclude that VB(f) = 1.

Beer also proves a Koksma inequality in [1] using Definition 7.1, as stated in

the next theorem.

Theorem 7.3 (p-adic Koksma inequality of Beer). Let f : Zp → R be an integrable
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function. Then, ∣∣∣∣∣
∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ 2pVB(f)DN .

Taibleson in [23], defines an order free notion of variation for functions in a

local field. He works with the specific example of the dyadic group 2ω. Extending

this definition to Zp would be as follows.

Definition 7.2 (Taibleson variation). Let f : Zp → R, and Π = {Sk}nk=1 be any

partition of Zp into disks Sk. That is, Sk ∩ Sl = {∅} for k 6= l, and Zp = ∪nk=1Sk. Let

Vk(Π) = supx∈Skf(x)− infx∈Sk f(x),

and

V (Π) =
∑
k

Vk(Π).

Define the Taibleson variation by VT (f) = supΠV (Π). Then f is of bounded Taibleson

variation if VT (f) <∞.

For f : Zp → C, we consider f(x) = <(f)(x) + i=(f)(x), and let V<(f) =

VT (<(f)(x)), V=(f) = VT (=(f)(x)). Define the Taibleson variation by VT (f) =

V<(f) + V=(f). Then f is of bounded Taibleson variation if VT (f) <∞.

Example 7.3. The characteristic function of any disk D(a, 1/pr) with r > 0 has

Taibleson variation 1. By taking the partition to be just Π = {Zp}, we see that

V (Π) = 1. For any other partition Π = {Sk}, if D(a, 1/pr) is strictly contained in

some Sk then V (Π) = 1. On the other hand, if any Sk is contained in D(a, 1/pr) then

V (Π) = 0. Therefore, VT (D(a, 1/pr)) = 1.

Example 7.4. The norm function f(x) = |x|p also has Taibleson variation 1. By

taking the partition to be just Π = {Zp}, we see that V (Π) = 1. For any other

partition Π = {Sk}, suppose that Sk0 contains 0 and has radius 1/pr (such a disk

must exist since 0 must be in some disk). Then f is constant on each Sk, k 6= k0, and

it follows that V (Π) = 1/pr. We conclude that VT (f) = 1.
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Proposition 7.1. For any f : Zp → R, we have

VT (f) ≤ VB(f).

Proof. Let ε > 0 and {Sk}nk=1 be a partition into disks as in the Taibleson variation.

For each k define αk and βk such that αk 6= βk, and

f(αk) ≥ supx∈Skf(x)− ε
2k+1

f(βk) ≤ infy∈Sk f(y) + ε
2k+1 .

(Note that the ε factors are needed since we cannot guarantee that the extrema are

achieved). We produce a corresponding Beer partition as follows. Take a λ ≥ 1

large enough such that all of the disks Sk in the Taibleson partition have radius at

least 1/pλ, and all of the αk and βk are distinct modulo pλ. We can now enumer-

ate the integers 0, 1, 2, ..., pλ−1 in the dictionary ordering of Beer, the ordered set

{m0,m1,m2....,mpλ−1} along with the corresponding disks Ei = D(mi, 1/p
λ). By our

choice of λ, each disk Sk in the Taibleson partition is a union of consecutive disks

Et, Et+1, ...., Et+r in the Beer partition.

Now αk is in one of these disks, say Ea and βk is in another, say Eb. Select

xa = αk, xb = βk, and make arbitrary choices for the remaining xi ∈ Ei, for i 6= a

and i 6= b. Presuming a < b, we have

f(αk)− f(βk) = f(xa)− f(xb)

=
∑
a<i≤b

f(xi−1)− f(xi)

≤
∑
a<i≤b

|f(xi−1)− f(xi)|

≤
∑

t<i≤t+r

|f(xi−1)− f(xi)|.

If instead b < a, we still have

f(αk)− f(βk) ≤
∑

t<i≤t+r

|f(xi−1)− f(xi)|,
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by a similar argument. Now, summing over all 1 ≤ k ≤ n we obtain∑
k

f(αk)− f(βk) ≤
∑

1<i≤pλ−1

|f(xi−1)− f(xi)|.

On the other hand, we have∑
1≤k≤n

(f(αk)− f(βk)) ≥
∑

1≤k≤n
(
supx∈Skf(x)− infx∈Sk f(x)− ε

2k

)
≥

∑
1≤k≤n

(
supx∈Skf(x)− infx∈Sk f(x)

)
− ε.

As ε was arbitrary, we obtain

∑
1≤k≤n supx∈Skf(x)− infx∈Sk f(x)) ≤

∑
1<i≤pλ−1

|f(xi−1)− f(xi)|

≤ Vλ(f)

≤ VB(f).

Taking the supremum over all Taibleson partitions {Sk}, we obtain VT (f) ≤ VB(f).

The two types of variations have their pros and cons. On the one hand, the

variation as defined by Beer is well suited to derive a Koksma inequality as given by

Theorem 7.3. However, the variation of Taibleson is easier to calculate, and is not

sensitive to 0 and −1 as the variation of Beer. It would be interesting to derive a

Koksma inequality using Taibleson variation, although it is not straightforward.

7.2 A Fourier analytic Koksma inequality

Kuipers and Niederreiter have obtained a Fourier analytic Koksma inequality

on R/Z, where the constant C in (7.1) depends upon the Fourier coefficients of the

function f . See Exercise 5.21 in [14]. We state the result below as a theorem.

Theorem 7.4 (Fourier analytic Koksma inequality). Let f : [0, 1]→ R be a contin-

uous function, with Fourier coefficients f̂(k), k ∈ Z. Let {x1, ..., xN} be N points in
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[0, 1) with star discrepancy D∗N . Then,∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ 8D∗N

∞∑
k=1

k|f̂(k)|. (7.8)

Motivated by Theorem 7.4, we derive an analogous Fourier analytic Koksma

inequality in Zp, for any continuous f : Zp → C.

Theorem 7.5 (Fourier analytic Koksma inequality in Zp). Let f : Zp → C be

a continuous function with Fourier coefficients f̂(ζ). Then, for a set of N points

{x1, ..., xN} in Zp with discrepancy DN we have∣∣∣∣∣
∫
Zp
f dµ(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ DN

∑
ζ∈Z(p∞)

ζ 6=1

‖ζ‖
∣∣∣f̂(ζ)

∣∣∣ . (7.9)

Note that the discrepancy DN here is as defined in Definition 1.4.

Proof. Without loss of generality, we may assume that
∑
ζ 6=1

‖ζ‖
∣∣∣f̂(ζ)

∣∣∣ <∞, otherwise

the theorem would hold vacuously. Note that since f is continuous on Zp, its Fourier

series converges uniformly to f by Corollary 3.2. Hence

f(x) =
∑

ζ∈Z(p∞)

f̂(ζ)ζx,

for all x in Zp. Using this, we get∣∣∣∣∣
∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

∑
ζ∈Z(p∞)

f̂(ζ)ζxn

∣∣∣∣∣∣
=

∣∣∣∣∣ 1

N

∑
ζ 6=1

f̂(ζ)
N∑
n=1

ζxn

∣∣∣∣∣
≤ 1

N

∑
ζ 6=1

∣∣∣f̂(ζ)
∣∣∣ ∣∣∣∣∣

N∑
n=1

ζxn

∣∣∣∣∣ .
Recall the fact that each character ζx is constant on each of the ‖ζ‖ disks of

radius 1/‖ζ‖ in Zp, as described in the proof of Proposition 4.1. Using this, and the
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orthogonality condition as given in (4.2) we have∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

0≤i<‖ζ‖

ζ i

(
1

N

N∑
n=1

XD(i,1/‖ζ‖)(xn)− 1

‖ζ‖

)∣∣∣∣∣∣
≤

∑
0≤i<‖ζ‖

∣∣∣∣∣ 1

N

N∑
n=1

XD(i,1/‖ζ‖)(xn)− 1

‖ζ‖

∣∣∣∣∣
≤ DN‖ζ‖,

so that ∣∣∣∣∣
∫
Zp
f(x) dµ(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ DN

∑
ζ 6=1

‖ζ‖
∣∣∣f̂(ζ)

∣∣∣ .

Remark 7.2. Note that in order for Theorem 7.5 to be non-vacuous, we would require

sufficient smoothness conditions on f so that the expression on the right hand side of

(7.9) converges.

Corollary 7.1. Let ζ ∈ Z(p∞) and {x1, ...., xN} be N points in Zp with discrepancy

DN , then ∣∣∣∣∣ 1

N

N∑
n=1

ζxn

∣∣∣∣∣ ≤ ‖ζ‖DN .

Proof. Take f(x) = ζx in Theorem 7.5.

Niederreiter in his article [18], derives a general Koksma inequality on compact

abelian groups. Here, he also presents a Fourier analytic Koksma inequality. The

inequality being over any general compact group G, does not involve any notion of

discrepancy defined on G. Instead, it considers the distribution of points on the unit

circle under the character maps from G to the unit circle. In contrast, our derivation

as given in Theorem 7.5 is directly related to the structure of Zp.

The following result gives a relationship between the Taibleson variation and

the Fourier-analytic constant in our Koksma inequality in Theorem 7.5. In particular,

it shows that any real valued function with rapidly decaying Fourier coefficients must

have bounded Taibleson variation.
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Proposition 7.2. Let f : Zp → R. Then,

VT (f) ≤ 2
∑
ζ 6=1

‖ζ‖
∣∣∣f̂(ζ)

∣∣∣ ,
where VT (f) is the Taibleson variation of f .

Proof. Let D be a disk of radius δ = p−r in Zp and let x, y be in D such that

f(x) > f(y). Then,

|f(x)− f(y)| =

∣∣∣∣∣∑
ζ 6=1

f̂(ζ) (ζx − ζy)

∣∣∣∣∣
≤

∑
ζ 6=1

|f̂(ζ)|
∣∣ζx−y − 1

∣∣
≤

∑
ζ 6=1

|f̂(ζ)| (δ2‖ζ‖)

= 2δ
∑
ζ 6=1

‖ζ‖|f̂(ζ)|. (7.10)

The third line in 7.10 can be seen as follows. If ‖ζ‖ = pn ≤ pr = 1/δ, then since

|x− y|p ≤ 1/pr we have ζx−y = 1, or |ζx−y − 1| = 0.

If ‖ζ‖ = pn > pr = 1/δ, then 1 < δ‖ζ‖ so that |ζx−y − 1| ≤ 2 ≤ 2δ‖ζ‖.

Now the result follows by applying the upper bound on |f(x)− f(y)| given by

(7.10) to the sum over any partition in Definition 7.2, and taking the supremum over

all partitions.

Example 7.5. Consider the function f(x) = |x|2p. Since f(x) is constant on circles

centered at 0, we can write it as

f(x) =
∞∑
j=0

1

p2j
XS(0,1/pj)(x),

where S(0, 1/pj) = {x ∈ Zp | |x|p = 1/pj} is a circle of radius 1/pj centered at zero.

For ζ 6= 1, the Fourier coefficients are given by

f̂(ζ) =

∫
Zp
f(x)ζ−x dµ(x)
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=
∞∑
j=0

1

p2j

∫
Zp
XS(0,1/pj)(x)ζ−x dµ(x).

Using Lemma 3.5 we have,∫
Zp
XS(0,1/pj)(x)ζ−x dµ(x) =

∫
|x|≤1/pj

ζ−x dµ(x)−
∫
|x|≤1/pj+1

ζ−x dµ(x),

=



1
pj

(1− 1/p) 1 ≤ ‖ζ‖ ≤ pj,

−1
pj+1 ‖ζ‖ = pj+1,

0 ‖ζ‖ > pj+1.

Therefore, with ‖ζ‖ = pt we have

f̂(ζ) =
∑

t−1≤j<∞

1

p2j

∫
XS(0,1/pj)(x)ζ−x dµ

=
1

p2(t−1)

(
−1

pt

)
+

(
1− 1

p

) ∞∑
j=t

1

p3j

=
−p2

p3t
+

1

p3t

(
p− 1

p

)(
p3

p3 − 1

)
=

1

‖ζ‖3

(
−p2 +

p2(p− 1)

p3 − 1

)
,

so that

|f̂(ζ)| = p2

(
p3 − p
p3 − 1

)
1

‖ζ‖3
.

Now using the Koksma bound of Theorem 7.5 we have∣∣∣∣∣
∫
Zp
f dµ− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ DN

∑
ζ 6=1

‖ζ‖
∣∣∣f̂(ζ)

∣∣∣
= p2

(
p3 − p
p3 − 1

)
DN

∑
ζ 6=1

1

‖ζ‖2

= p2

(
p3 − p
p3 − 1

)
DN

∑
1≤r<∞

pr − pr−1

p2r
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= p

(
p3 − p
p3 − 1

)
DN

≤ pDN , (7.11)

where we used the fact that there are precisely pr − pr−1 elements of Z(p∞) of order

‖ζ‖ = pr in line 3 of (7.11).

Remark 7.3. An easy calculation shows that f(x) = |x|2p has Beer variation 1, so

the Koksma inequality given by our Theorem 7.5 is sharper than Beer’s Theorem 7.3

in this particular case. The Fourier analytic p-adic Koksma inequality we prove in

Theorem 7.5 only requires continuity and a certain condition on the convergence of

the Fourier coefficients in order for the right hand side of (7.9) to be convergent. In

contrast, Beer’s bound requires bounded variation which may be a more restrictive

condition in some cases. Moreover, the Fourier coefficients of a function f may in

some cases be easier to calculate than the variation VB(f) or VT (f). For example,

consider the function expressed by its Fourier series

f(x) =
∑
ζ 6=1

(ζ + ζ−1)

‖ζ‖4
ζx.

Then, ∑
ζ∈Z(p∞)

‖ζ‖|f̂(ζ)| =
∑
ζ 6=1

|ζ + ζ−1|
‖ζ‖3

= 2
∑
ζ 6=1

|<(ζ)|
‖ζ‖3

≤ 2
∑
ζ 6=1

1

‖ζ‖3

= 2
∑

1≤r<∞

pr − pr−1

p3r

=
2p

p+ 1
.

So, we have ∣∣∣∣∣
∫
Zp
f dµ− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ 2p

p+ 1
DN .
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