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quantile-quantile plot of two distributions, a measure of the linearity of the quantile-

quantile plot, and the level of correlation between the two random variables.  This 

methodology also gives a user the ability to estimate the rank correlation that when 

simulated, generates the desired linear correlation. This methodology enhances the 

accuracy of simulations with dependent random variables while utilizing existing 

simulation software tools. 
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1. Introduction 
Simulation includes a broad collection of methods to imitate and predict the behavior 

of a real system, product, project, or scenario such as the selection of specific investment 

options. In this research the focus is on computer simulations that utilize pseudo random 

variates. These simulations are applied in situations where a performance measure is a 

function of one or more probability distributions (and perhaps other parameters and 

system dynamics) and an analytical derivation of the function is not feasible. This 

includes simulations of discrete event systems where the simulation of time is an integral 

component, and also “Monte Carlo” simulations where the passage of time is not directly 

simulated1 (I.-T. Yang, 2005). Although both simulations utilize pseudo random variates, 

the results of this research apply more directly to Monte Carlo simulation. Examples of 

two common application areas of Monte-Carlo simulation are financial/engineering 

economic analysis, and project management, where simulation is used to quantify and 

characterize uncertainty and thus provide more complete information for decision makers 

(Cooper and Chapman, 1986). To add more accuracy to simulations, the dependence or 

correlation between the random variables utilized may also be simulated. However, there 

exists a difference between how correlation is most often estimated from data (linear 

correlation), and the correlation that is simulated (rank correlation) in the most popular 

Monte-Carlo simulation packages (add-in packages for spreadsheets). This difference 

was recognized by Garvey (2001), who questioned the validity of simulation results in 

this situation. This research examines the practical effects of this difference by 

developing methods to:  

• Identify when differences in linear and rank correlation may be of concern, 

• Estimate the difference between the rank correlation simulated and the linear   

correlation estimated,  

• Estimate the simulated rank correlation that produces a desired linear correlation.  

                                                
1 Monte-Carlo simulation is sometimes used as a name for any simulation that utilizes pseudo random 
numbers and random variates. 
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The remainder of this paper is organized as follows. First, common measures of 

correlation are introduced, followed by an explanation of the methods for simulating 

correlated random variables. Quantile-Quantile plots are suggested as a basis to facilitate 

estimating Spearman’s rank correlation from Pearson correlation, and the proposed 

empirical method is discussed. Since this research is relevant to applications of Monte-

Carlo simulation, examples of implementing the proposed method on the simulation of 

sums of random variables, and the maximum of two random variables are presented. 

 

 2. Background Information 
2.1. Measures of Correlation 

The correlation between two random variables is a dimensionless measure (between -

1.0 and 1.0) of the degree of association between their values. Multiple measures of 

correlation have been defined with two of the most common correlation measures being 

Pearson’s product-moment correlation and Spearman’s rank correlation (Yule & Kendal, 

1950).  

Pearson’s product-moment correlation coefficient is a measure of the linear 

relationship between two random variables. If X and Y are two random variables then 

linear correlation is defined as: 

𝜌 𝑋,𝑌 = !"#(!,!)
!"# ! !"#(!)

   (1.1) 

Where Cov(X,Y)=E{[X-­‐E(X)][Y-­‐E(Y)]}  =  E(XY)-­‐E(X)E(Y) is the covariance of X and 

Y, and Var(X) and Var(Y) are the variance of X and Y respectively. If two random 

variables are linearly dependent, then 𝜌 𝑋,𝑌 = 1 , and if two random variables are 

independent, then 𝜌 𝑋,𝑌 = 0,   although zero correlation does not imply the 

independence of two random variables (Balakrishnan & Lai, 2009). A positive value of 𝜌 

indicates a direct relationship, while a negative sign indicates an inverse relationship.  

The sample linear correlation coefficient r, for a sample of n bivariate observations 

(𝑥!,𝑦!),… , (𝑥!,𝑦!) is: 

𝑟 = (!!!!)(!!!!)
!
!!!

(!!!!)!(!!!!)!!
!!!

     (1.2) 
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where 𝑥  and 𝑦  are the respective sample means of the 𝑥!   and 𝑦!   values. r is equal to 

the square root of the coefficient of determination of a linear regression model of y as a 

function x, commonly known as “R2” (Neter, Wasserman, & Kutner, 1989).  

Spearman’s rank correlation coefficient is another bivariate measure of association, 

showing the strength of the monotone relationship between two random variables. 

Spearman’s rank correlation coefficient 𝜌!, is based on the ranks of the 𝑥!, and the ranks 

of the 𝑦!  . If (Xi,  Yi),  (Xj,  Yj)  and (Xk,  Yk)  are three independent pairs of random variables, 

then   𝜌!  is defined to be proportional to the probability of concordance minus the 

probability of discordance for two pairs (Xi, Yi), (Xj, Yk). 

𝜌! = 3 𝑝 𝑋! − 𝑋! 𝑌! − 𝑌! > 0 − 𝑝 𝑋! − 𝑋! 𝑌! − 𝑌! < 0  (1.3) 

It is observed that Spearman’s rank correlation coefficient between X and Y is 

Pearson’s product-moment correlation coefficient between the uniform variates 

U~𝑈𝑛𝑖𝑓(0,1) and V~𝑈𝑛𝑖𝑓(0,1) (Balakrishnan & Lai, 2009). 

𝜌! =
! !" !!!

!
!"

   (1.4) 

There are two commonly used estimators (denoted rs) of Spearman’s rank correlation 

coefficient. One estimator is formula 1.2 with the 𝑥!   and 𝑦!   values replaced by their 

ranks. The other estimator of Spearman’s rank correlation is: 

rs = 1- ! !"!!
!!!

!(!!!!)
             (1.5) 

where   di is the differences between the ranks of 𝑥!   and 𝑦!    in each 𝑥! ,𝑦!   pair 

(Sheskin, 2011). The two estimators are the same as long as there are no ties in the ranks 

of the 𝑥!, and no ties in the ranks of the 𝑦!  . 

Since Spearman’s correlation coefficient measures correlation between ranks rather 

than the X and Y values, it is unaffected by any monotone transformation of these 

variables, in contrast to Pearson’s correlation coefficient, which is only unaffected by 

linear transformations of X and Y (Balakrishnan & Lai, 2009). 

If two populations are normal, the relationship between 𝜌!  and 𝜌  is (Kendall & 

Gibbons, 1990): 
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𝜌 = 2𝑠𝑖𝑛 !
!
𝜋𝜌!  (1.6) 

Similar results hold for samples from any elliptically contoured distributions that 

generalize multivariate normal distribution and inherits its properties (Mildenhall, 2006). 

Pearson’s correlation coefficient is a perfect measure of association for normally 

distributed variables because it accurately specifies the dependence between the marginal 

distributions, but it is not always accurate with non-normal variables (Mildenhall, 2006).  

Besides the Pearson and Spearman correlation coefficients, there are other methods for 

describing the strength of association between two random variables such as Kendall’s 

rank correlation coefficient  𝜏, which is a measure of the probabilities of concordance 

between pairs of observations from two distributions of interest (Kendall & Gibbons 

1990 ). 

 

2.2. Correlation in Education and Commonly Used Software 

Despite the existence of multiple correlation measures the term “correlation” is 

typically equated to Pearson’s correlation coefficient in undergraduate educational 

programs. In a selection of 12 introductory statistics and engineering statistics textbooks 

which included Devore (1999),  Hines & Montgomery (1972), Hines, Montgomery, 

Goldsman, & Borror (2003), and  Walpole (2007), correlation is defined as Pearson’s 

linear correlation with little or no mention of other measures.  Additionally, the use of 

computer spreadsheet software has become commonplace in education and practice. In 

software such as Microsoft Excel there is a single correlation function, which computes 

Pearson’s correlation coefficient. 

In contrast, correlation in simulation software typically implements Spearman’s 

correlation. The development of spreadsheet add-in software for generating observations 

from a wide selection of random variables has made Monte-Carlo simulation much more 

accessible to analysts and engineers. Two widely used commercial spreadsheet add-in 

packages for Monte-Carlo simulation are @RISK and Crystal Ball. These add-ins are 

widely used by engineers (Ali Touran and Suphot 1997, Seila 2001, Yang 2005, and 

Mildenhall 2006). These software packages have the ability to simulate dependent 
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random variables by inputting a “correlation coefficient”. It is reasonable to believe that 

most engineers would interpret this correlation to be Pearson’s correlation, however the 

correlation simulated is Spearman’s correlation, which is straightforward to simulate. The 

ramifications of this different interpretation of correlation are examined in this paper. 

3. Literature Review 
Given the prior discussion, it is reasonable to assume that practitioners may estimate 

correlation as Pearson’s correlation and simulate correlation as Spearman’s correlation in 

a simulation model. The literature reviewed falls into one of three categories that are 

relevant to this situation: 1) The use of Monte-Carlo simulation with correlated random 

variables, 2) Methods available for simulating correlated random variables, 3) Research 

addressing or recognizing this situation.  

 

3.1. Applications of Monte-Carlo simulation with correlated random variables 

While there are many Monte-Carlo simulation application areas, two common 

applications where the need to simulate dependent random variables has been recognized 

will be discussed. 

 Monte-Carlo simulation methods are commonly applied in various financial analysis 

and project management studies (BadriAmr, 1997; Tummala & Burchett, 1999; Elkjaer, 

2000). Discussions about the necessity of considering statistical dependencies to avoid 

underestimating total cost have also been presented in the literature (Diekmann, 1983; 

Raftery, 1994; Ranasinghe, 2000). Touran and Wiser (1992) used multivariate lognormal 

distributions to generate Pearson correlated random variables and calculated the total cost 

of a construction project from historic data that showed Pearson correlation was an 

effective means of modeling dependent construction costs. Difficulties in simulating 

Pearson correlation led Touran and Suphot (1997) to investigate the use of rank 

correlation in simulating construction cost simulations. Tests showed that the simulation 

of rank correlation resulted in simulated distributions that were close to the actual 

distributions. Wall (1997) also chose rank correlation over linear correlation in simulating 
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dependent costs because it relies on fewer assumptions about the distribution of data 

(e.g., normality assumptions).  

Monte-Carlo simulation has also been used to quantify the uncertainty in project 

schedules using Critical Path Methods. Rank correlation was used to model the statistical 

dependency of activities in a project network in Van Dorp and Duffey (1999). Yang 

(2007) also modeled dependent project task durations using a simulation method 

proposed by Cario and Nelson (1997) that allows arbitrarily specified marginal 

distributions for task durations and any desired correlation structure. 

 

3.2. Methods for simulating correlated random variables 

Multiple techniques are available for generating correlated values from univariate 

distributions, and other methods work when the particular multivariate distributions are 

fully specified (Lurie & Goldberg, 1998). Given that joint distribution functions are often 

difficult to specify, methods that use marginal distributions to simulate dependent data 

have been developed.  

 

3.2.1 Rank correlation 

 Iman and Conover (1982) use a normalizing transformation and Cholesky 

decomposition in a method for simulating a desired rank correlation matrix for 

multivariate random variables. The Iman and Conover (1982) method operates on 

random variates generated from the marginal distributions of interest, and generates 

permutations of these  values that approximates a desired rank correlation structure.  

Although this distribution-free approach was aimed to generate random variables with 

a desired rank correlation while preserving the intent of the sampling scheme, it is  

misinterpreted in some literatures to be able to simulate dependent data for a specific 

linear correlation (Mildenhall, 2006). Several spreadsheet simulation software packages 

including Oracle Crystal Ball and @Risk have implemented this method to simulate 

dependent variables. 
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Copulas are an alternative method for simulating desired rank correlation that are very 

similar to Iman and Conover Algorithm. Copulas have been also used for simulating 

correlated random variables in risk assessment (Hass 1999). Two of the key differences 

between the normal copula method and Iman and Conover Algorithm are: 

1. The normal copula method corresponds to the Iman and Conover method when 

the latter is computed using normal scores (a normal score for observation i of sample of 

size n is equal to 𝜑!!( !
!!!

) and rescaled to have standard deviation 1).   

2. The Iman and Conover method works on given sample from a marginal 

distribution, whereas the normal copula method generates samples by inverting the 

distribution function during the simulation process. 

In addition, a general method to incorporate correlations between cost elements is 

discussed by Yang (2005). The proposed method first checks the feasibility of the 

correlation matrix (Pearson or Spearman’s) and does the necessary adjustment and before 

starting the simulation phase.  

 

3.2.2. Linear correlation 

Li and Hammond (1975) developed an approach where marginal distributions are 

specified, and a method is developed to determine an intermediate correlation matrix 

from the desired correlation matrix. However, the computations required in this method 

are extremely time consuming. 

Johnson and Ramberg (1978) viewed the marginal distributions as transformations of 

normal distributions to impose a correlation structure, but the mathematics of their 

method becomes intractable for distributions other than the lognormal and inverse 

hyperbolic sine. 

Lurie and Goldberg (1998) used the Li and Hammond idea (1975) and developed an 

approximate method applicable to any sets of continuous distributions.The method 

simulates random variables based on a marginal distribution and a Pearson correlation 

matrix using Cholesky decomposition and Gauss-Newton iteration. This algorithm tries 

to minimize the difference between the correlation matrix of an initial lower triangular 
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matrix and the original correlation matrix in several iterations. Most simulation software 

packages implement the Iman and Conover algorithm, but Risk+TM (a schedule analysis 

add-in to Microsoft@ Project) implements the Lurie and Goldberg algorithm for 

generating correlated variables.  

 

3.3.Research addressing or recognizing the problem 

Garvey (2001) claimed that Spearman’s correlation is not appropriate for cost risk 

analyses because sums of random variables representing costs involve only Pearson’s 

product-moment correlation and not Spearman’s rank correlation, and also because 

Pearson and Spearman’s correlation can be very different. If we assume that total cost of 

a system can be calculated as: 

Cost  total  =  X1  +  X2  +  X3  +  …  +  Xn      (2.1) 

 

where Xi is the ith cost element of the system, the mean and variance of Cost   total can 

be obtained from the following formulas:  

E  (Cost  total)  =  E(X1)  +  E(X2)  +  E(X3)  +…..  +  E  (Xn)  (2.2) 

Var (Cost total) = 𝑉𝑎𝑟   𝑋𝑖!
!!! +2 𝐶𝑜𝑣  (𝑋!!

!!!!!

!!!

!!!
,𝑌!) 

= 𝑉𝑎𝑟  (𝑋𝑖)!
!!! +2 𝜌  (𝑋! ,𝑌!)  𝜎!!𝜎!!

!
!!!!!

!!!

!!!
       (2.3) 

 

Since the correlation in equation 2.3 is linear correlation, Garvey (2001) stated that it 

is not appropriate to use other methods such as rank correlation for estimating 

dependencies in cost estimation simulation. Price (2002) also believes that product-

moment correlation is the appropriate measure for cost-schedule risk analysis since 

durations and costs are interval and not ordinal measures. In contrast, a study presented in 

2004 at the Society of Cost Estimating and Analysis meeting concluded the opposite of 

Garvey (2001), however the distributions used in this study were all identical triangular 

distributions and the results were not generalized (Robinson & Cole, 2004). 
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4. Estimating Pearson and Spearman’s Correlation Differences 
Given two random variables X and Y with distribution functions FX and FY that are 

linearly correlated with ρ estimated from sample data, an empirical approach was taken 

to quantify the difference between the Spearman correlation simulated and the Pearson’s 

correlation that is realized. “S-P Diff” will be used to refer to this difference. A Quantile-

Quantile plot (Q-Q plot) was used to compare two distributions and features of these 

plots become the basis of the empirical model to estimate “S-P Diff”. An experiment was 

designed to identify factors (features of the Q-Q plots) that have a significant impact on 

the value of “S-P Diff”, and then these factors were used in a regression model to 

estimate the “S-P Diff”. The data used in this analysis come from simulations run using 

the Crystal ball Excel Add in. In this section the Quantile-Quantile plot and its properties 

are introduced, and then the simulation procedure, analysis of experiments, and 

regression analysis are discussed in detail. 

A theoretical Q-Q plot is a plot of the percentage points or quantiles of one 

distribution against the corresponding percentage points or quantiles of another 

distribution (Fowlkes, 1987). If F(y) is the cumulative distribution function of random 

variable Y, then quantile of  F   , is equal to Qt(p) which satisfies the following equation 

for p  (0<p<1): 

Qt(p)=F-­‐1(p)            (3.1) 

 

Examples of Q-Q plots are presented in the Appendix. In a Q-Q plot, Qt(pi) of one 

distribution is plotted versus Qt(pi)   of another distribution. Q-Q plots can be used to 

compare the shape of two distributions with each other. When two distributions have 

similarly shaped density functions, the points on the Q-Q plot will fall near the line y  =  x 

(Chambers, Cleveland, Beat, & Tukey, 1983). The shape of the Q-Q plot is invariant 

under linear transformation of the coordinate axes, which means that two distributions 

that differ only in scale or location yield a linear Q-Q plot (Fowlkes, 1987). If large 

departures from a straight line Q-Q plot are observed, it will indicate that the shapes of 
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two distributions are not similar. The reason for departures from a straight line may fall in 

one of the following categories: 

1. When one distribution has longer or shorter tails than the other. This results in a 

S-Shaped Q-Q plot. If the left end of the plot is below the x = y line and the right line is 

above the x = y line, the distribution on the y-axis has a longer tail. 

2. Convex or Concave Curvature is related to the asymmetry of the distributions. It 

shows the distribution on the y-axis is more skewed than the other distribution. For 

example, an increasing slope from left to right indicates the distribution in the y-axis is 

more skewed to the right. 

In summary, we can conclude that a Q-Q plot is either a straight line, S-shaped, or 

convex or concave (Chambers et al., 1983). A measure of the straightness of a Q-Q plot 

is the correlation coefficient (Tsai & Yang, 2005) or coefficient of determination of linear 

regression. 

Q-Q plots are related to correlation coefficients. Several measures of correlation have 

been defined based on the difference between the probability of concordance and 

discordance of two random variables. One method calculates this probability using three 

independent pairs of observation (X1, Y1), (X2, Y2), (X3, Y3). Using crossed observations 

(X1,  Y1),  (X2,  Y3), the probability of concordance is equal to  

𝜄! = 𝑃𝑟{ 𝑋! − 𝑋! 𝑌! − 𝑌! > 0}   (3.2) 

 

And the difference between two probabilities is calculated as followings: 

𝜄! − 𝜄!= 𝑃𝑟{ 𝑋! − 𝑋! 𝑌! − 𝑌! > 0}   − 𝑃𝑟{ 𝑋! − 𝑋! 𝑌! − 𝑌! < 0}=2𝜄! − 1  (3.3) 

 

The minimum and maximum values for the above formula are − !
!
 and !

!
, which can be 

transformed to a -1 to 1 scale by multiplying by 3. If each 𝑋! is replaced by 𝑋!∗ =   𝐹(𝑋!) 

where F is the cumulative distribution function of X and 𝑌! by 𝑌!∗ =   𝐺(𝑌!) where G is the 

cumulative distribution function of Y, the quantities in 3.2 and 3.3 will not be affected. 

This correlation between 𝑋!∗ and 𝑌!∗ has been called the Grade correlation coefficient 
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between X and Y and is equal to Spearman’s rank correlation coefficient when applied to 

finite samples (Kruskal, 1958, Kendall & Gibbons, 1990).  

When two random variables X and Y with known probability distributions have perfect 

Spearman rank correlation, pairs of data (Xi, Yi)  generated  from the distributions will fall 

on the line represented by theoretical Q-Q plot of those random variables. The theoretical 

Q-Q plot contains all pairs of (Xi, Yi)  when Xi=  𝐹!!(𝑋!∗)  and  Yi=  𝐹!!(𝑌!∗).  Similarly, if 

quantiles of one distribution are plotted against the quantile compliments of the other 

distribution, the graph represents pairs having perfect negative Spearman’s correlation. 

Thus Q-Q plots are able to show perfect Spearman’s rank correlation.  

To find a possible relationship between a Q-Q plot and “S-P Diff”, a designed 

experiment was conducted to identify characteristics of the Q-Q plot affecting “S-P Diff”. 

The data for this experiment are from a series of simulations with different combinations 

of distributions, and different levels of correlation. The simulations were implemented 

using Crystal Ball simulation software. Experiments were created using combinations of 

the following factors: 

 

1. Shape of their Q-Q plot (Si) that is categorized as either S-Shaped (1) or Concave 

or Convex (2). 

2. Coefficient of determination of their Q-Q plot (Rj), this value will fall into one of 

the following categories:  

0         ≤ 𝑅! ≤ 0.2   

0.2 < 𝑅!   ≤ 0.4   

0.4 < 𝑅!   ≤ 0.6 

0.6 < 𝑅! ≤ 0.8   

0.8 < 𝑅! ≤ 1   

3. Level of Spearman’s correlation simulated. All distribution combinations were 

simulated using four levels of correlation (0.65,0.75,0.85,0.95 for positive correlation and 

-0.65, -0.75, -0.85, -0.95 for negative correlation).  
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4. The distribution combination is considered a random factor in this experiment 

because each distribution combination was selected randomly from among all possible 

combinations. This factor is nested within combinations of the first two factors. 

The number of paired observations generated in each simulation was 10,000 and each 

simulation was repeated 10 times. The total experiment size was equal to 2000. After 

each simulation run, the 10,000 paired values were extracted and the sample Pearson and 

Spearman’s correlation were calculated.  

The expected mean square values for a factorial design with a nested random factor 

was used to test the effect of each factor and their interactions on “S-P Diff”. The model 

for this experiment is: 

𝑦!"#$= 𝜇 + 𝑆! + 𝑅! + 𝐷!(!") + 𝐶! + 𝑆𝑅!" + 𝑆𝐶!" + 𝑅𝐶!" +   𝐷𝐶! !" ! + 𝑆𝑅𝐶!"# + 𝑒!"#$   (3.4) 

  

The notation used in this model is: 

Si- Shape of QQ-Plot 

Rj- Coefficient of determination of Q-Q plot 

Dk-Distribution combination, random factor nested in shape and coefficient of 

determination 

Cl-levels of correlation for simulation 

eijkl-error term 

 

The factors and their interactions having a significant effect were used in a regression 

model to estimate “S-P Diff”. Regression analysis was conducted using Minitab 

Software. Both full regression and reduced models were constructed and compared. In 

order to choose the best fit between several regression models, the significance of each 

parameter was considered, and also the usability of the model was taken into account.  

 

5. Results 
The analysis of the nested factorial design results shows a significant effect for all 

factors and their interactions (p-value < 0.05), which is partly caused by the high degrees 
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of freedom (1,800) for the error term in the ANOVA. The F-test statistic values were 

used to obtain the most significant factors in the model. The F-test statistic values for, 

shape (S) and coefficient of determination (R), are notably higher than the other test 

statistics, with values equal to 35,532.97 and 18,715.97 respectively. The third largest F-

test statistic value is for the interaction between S and R (F=2415.209), followed by the 

levels of correlation for the simulation (C) with F =799.67. The F-test statistics for 

distribution combination (Dk) is equal to 283.97, and is noticeably smaller than other 

factors mentioned. Since Dk is a random factor and has a relatively low F-test statistic 

value, the variance contribution of Dk and its interactions was ignored and considered 

part of the model error term. Other factors and interactions were included in the 

regression analysis.  

The linear regression analysis was conducted in two ways: 

1. Includes only responses with positive correlation levels. 

2. Includes only responses with negative correlation levels.  

For each regression analysis, full and reduced models were constructed and compared 

based on their p-values. Table 5.1 summarizes the results: 

 
                     Table 5.1- Regression analysis significant factors 

Analysis Significant factors in model 

1 
All main effect factors 
Shape interaction with coefficient of determination 
Shape interaction with correlation level 

2 All main effect factors 
Shape interactions with other factors 

 

The adjusted R2 value for models with significant factors ranged between 79.11 % and 

90.16 %, which shows how well the model explains the observed outcomes. For 

estimating the “S-P Diff” without knowing correlation levels, the models selected are as 

follows: 
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Table 5.2- Linear Regression models for S-P Diff 

(S-P Diff= Estimated Spearman’s correlation – Estimated Pearson correlation from simulation results) 

Option Analysis Regression Model Adjusted R2 

1 1 S-P Diff  = 0.317109 - 0.156712 S- 0.698402 R+ 
0.466213 C+ 0.269173 S×R- 0.142042 S×C 90.54% 

2 1 S-P Diff  = 0.316109 - 0.270548 S- 0.697854 R+ 
0.466926 S+ 0.269803 S×R 90.16% 

3 1 S-P Diff = 0.690305 - 0.269139 S - 0.699916 R + 0.26801 
S×R 86.02% 

4 2 S-P Diff =  -0.27485 + 0.11761 S+ 0.614687 R+ 
0.346648 C - 0.269641 S*R - 0.135873 S×C 79.49% 

5 2 S-P Diff =  -0.274661 + 0.226294 S + 0.614429 R + 
0.346719 C - 0.269664 S *R 79.11% 

6 2 S-P Diff  =  -0.551999 + 0.225958 S+ 0.614486 R - 
0.269004 S×R 76.57% 

 

In this research, estimating S-P Diff without knowing Spearman’s rank correlation is 

of interest and hence, option 3 and option 6 were selected for estimating S-P Diff when 

the correlation is positive or negative respectively. 

 

6. Model implementation for common applications  
Although an empirical model for the relationship between Pearson and Spearman’s 

correlation coefficient has been developed, the impact of simulating Spearman 

correlation instead of Pearson correlation in models was also examined. The goal is to 

estimate the effect of simulating Spearman’s correlation instead of the Pearson 

correlation that is estimated. 

 Two cases when two random variables with known Pearson correlation (𝜌!) , 

coefficient are simulated were examined. In case one ρ! is input as the desired correlation 

level in Crystal ball (which simulates Spearman correlation), and in case two 𝜌!! = 𝜌! +

𝑆𝑃  𝐷𝑖𝑓𝑓 is input as the desired correlation level.  
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   Table 6.1- Cases considered when simulating two random variables with known Pearson correlation 

Case Value input as the desired correlation 
level 

Estimated Pearson 
correlation simulated 

1 𝜌! 𝜌! − 𝑆𝑃  𝐷𝑖𝑓𝑓 

2 𝜌!! = 𝜌! + 𝑆𝑃  𝐷𝑖𝑓𝑓 𝜌! 

      

Simulating case 1 instead of case 2 may result in estimating a mean and standard 

deviation with less accuracy in a larger simulation with multiple pairs of correlated 

random variables. The effect on model results will depend on several factors such as: the 

function simulated, the strength of the relationship between random variables, and the 

type of distributions involved in the simulation. As mentioned before, 

financial/engineering economic analysis and project management are two popular 

applications of Monte-Carlo simulation. The simulated functions in these applications 

include the summation and maximum of random variables.  

Consider two random variables X1 and X2 with known distribution functions, and 

known means (𝜇!  and 𝜇!) and variances (𝜎!!and 𝜎!!). If Y=X1+X2 and the Pearson 

correlation coefficient between X1 and X2 is equal to 𝜌! (−1   ≤ 𝜌! ≤ 1), then an engineer 

could mistakenly input 𝜌! to define correlation, or instead use one of the regression 

models represented in table 5.1 and calculate the corresponding Spearman’s correlation 

(𝜌!! )  to get the desired Pearson correlation (𝜌!) and input 𝜌!!  to define correlation. No 

matter what levels of correlation input in the software, the value representing the mean of 

Y would be similar. In contrast, the estimated variance of the value of interest (Y) changes 

accordingly (Table 6.2).  

 
Table 6.2- Predicted results for simulations of Y=X1+X2 

Case 

Value input in 
correlation 

assumption cell in 
Crystal Ball 

Pearson 
Correlation Mean (Y) Variance (Y) 

1 𝜌! 𝜌! − 𝑆𝑃  𝐷𝑖𝑓𝑓 𝜇! +   𝜇! 𝜎!! +   𝜎!! + 2(𝜌! − 𝑆𝑃  𝐷𝑖𝑓𝑓)  𝜎!  𝜎! 

2 𝜌!! = 𝜌! + 𝑆𝑃  𝐷𝑖𝑓𝑓 𝜌! 𝜇! +   𝜇! 𝜎!! +   𝜎!! + 2𝜌!  𝜎!  𝜎! 
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The percent difference in the simulated coefficient of variation (CV) of Y=X1+X2 

from case 1 to 2 is: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝑜𝑓  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑖𝑛  𝐶𝑉 =   
!!!!  !!!!!(!!!!"  !"##)  !!  !!! !!!!  !!!!!!!  !!  !!  

!!!!  !!!!!!!  !!  !!
   (6.1)                

For one combination of distributions with known S and R, “S-P Diff” could be 

calculated based on option 3 or 6 from table 5.2, equation 6.1 could be considered as an 

objective function of a nonlinear optimization problem subject to constraints on S, R and 

𝜌!. Using Excel Solver solutions for the maximum of equation 6.1 indicates that the 

Percentage of Difference in CV could be greater than 40 % for some extreme cases. It 

also shows that for both negative and positive correlation, combinations of distributions 

with concave or convex Q-Q plots and smaller R values result in extreme differences in 

the coefficient of variations. Table 6.2 shows two extreme cases with values of equation 

6.1. 

 

Table 6.3- Variables and objective function value for maximizing equation 6.1 

Correlation Sign Shape R2 of Q-Q Plot Target Pearson 
Correlation 

Objective 
function 

Positive Concave/Convex 0.11 0.15 48 % 
Negative Concave/Convex 0.1 -0.31 41 % 

 

The maximum values of 6.1 are not realistic for the applications discussed in this 

paper, but it is advisable to calculate this difference based on real data for specific 

problems. It can be concluded that lower levels of the coefficient of determination of Q-Q 

plots will result in less accurate results that are worse with concave or convex plots.  

Although there is no general closed formula available for the mean and variance of the 

maximum of two random variables (Y=Max  (X1,X2)), the effect of simulating Spearman’s  

correlation instead of Pearson’s correlation can be estimated by simulation. For this 

matter, combinations of distributions with different Q-Q plot shapes and R2 values were 

selected and simulated with different levels of correlation categorized in three groups 

(low, medium and high).  For each combination of X1 and  X2, Y was simulated for both 

case1 and case2 from Table 6.1. In order to standardize the response values from the 
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experiments, frequency of having one variable (X1 or   X2)   been selected as Y is also 

simulated. Since, in project task duration simulation, when two tasks reach the same 

nodes, total project durations varies depending on which task is selected as maximum, if 

mean of frequency changes significantly, the total project durations might change. Hence, 

the absolute percentage of difference between mean of frequency for two cases were 

calculated and used as the response value for the experimental design. The factors in this 

experiment are summarized in Table 6.3. 

 
Table 6.4. Experimental design factors to test the effect of simulating Spearman’s correlation on the 

maximum of two random variables 

Name Notation Number of Levels 

Shape of Q-Q Plot Si   2 (S and Concave/Convex) 

R2 of Q-Q plot Rj   3 (Low, Medium, High) 

Sign of Target Correlation Tk   2 (Positive, Negative) 

Target Correlation Level Cl   3 (Low, Medium, High) 

 

The model of this experiment is as follow: 

𝑦!"#$= 𝜇 + 𝑆! + 𝑅! + 𝑇! + 𝐶!(!"#) + 𝑆𝑅!" + 𝑆𝑇!" + 𝑅𝑇!"+𝑆𝑅𝑇!"#   +𝑒!"#$  (6.2) 

Results from the ANOVA show that shape of Q-Q Plot, R2 of Q-Q plot, sign of target 

correlation coefficient and the interaction of Tk have significant effect on the response 

value (P-value <0.05). Sign of target correlation has the highest impact on the response 

value following by its interaction with shape and also the R2 of Q-Q plot. Observations 

show larger differences when two random variables have positive correlation, with lower 

levels of coefficient of determination, and concave or convex Q-Q plot shape. Although 

the magnitude of the difference varied for each individual observation, the largest 

difference between mean of the frequency that one variable is selected as Y in this 

experiment was 44 %.  
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7. Conclusion 
 Although equation 1.4 shows the relationship between  ρ! and ρ  when both random 

variables having normal distributions, there is no general formula to model the 

relationship between the two correlation coefficient for non-normal distributions. This 

research shows that the difference of the two correlation coefficient estimates can be 

modeled as a function of the shape of the quantile-quantile plot of the two distributions, 

and the measure of the linearity of the quantile-quantile plot. This model can be 

beneficial for estimating the Spearman’s rank correlation coefficient for a certain 

combination of distributions and a desired Pearson correlation coefficient. Since the 

Pearson correlation coefficient is what is normally estimated from data, this methodology 

will help users estimate the corresponding Spearman’s rank correlation to use with 

simulation software to increase the accuracy of the simulation results by producing the 

desired Pearson correlation. This method is applicable to any problem that requires the 

estimation of one coefficient from the other. Also, future research could be conducted to 

model this relationship analytically rather than empirically. 

Although, Garvey claimed that the sums of random variable only includes the linear 

correlation coefficient and it is not correct to use rank correlation to simulate dependent 

costs, this research shows that as long as the correlation coefficient captures the 

dependency characteristics correctly, using rank correlation coefficient to simulate 

dependent costs results in accurate outcomes with respect to mean and variance. This is 

possible because of the fact that a certain level of Pearson correlation coefficient for 

specific combinations of two random variables triggers a certain level of Spearman’s rank 

correlation coefficient. Furthermore, it becomes clear that simulating Spearman’s 

correlation instead of Pearson correlation can lead to large differences, but in most cases 

it should not have a large effect in the applications of interest.  
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9. Appendix 
 

 
Figure 1-Theoretical plot of normal quantile versus Beta quantile (𝛼 = 0.5) 
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Figure 2- Theoretical Normal vs. Beta Quantile-Quantile (𝛼 = 0.75) 
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Figure 3- Theoretical Normal vs. Beta Quantile-Quantile (𝛼 = 1) 
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Figure 4- Theoretical Normal vs. Beta Quantile-Quantile (𝛼 = 2) 
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Figure 5- Theoretical Normal vs. Beta Quantile-Quantile (𝛼 = 3) 

 
 


